diff options
author | dos-reis <gdr@axiomatics.org> | 2008-10-01 09:50:16 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2008-10-01 09:50:16 +0000 |
commit | 41c41ca859e093f8029bc5c6e9df996df8998530 (patch) | |
tree | fc6328409bbd3dec92bf4af92f9a0552fe791e59 /src | |
parent | 7390fa59b4e4411c142ecdb13070c5f0ac91d51d (diff) | |
download | open-axiom-41c41ca859e093f8029bc5c6e9df996df8998530.tar.gz |
* algebra/files.spad.pamphlet (IOMode): New domain.
* algebra/net.spad.pamphlet (InputBinaryFile): Likewise.
(OutputBinaryFile): Likewise.
* interp/sys-utility.boot (openBinaryFile): New.
(readByteFromFile): Likewise.
(writeByteToFile): Likewise.
(closeFile): Likewise.
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 10 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 9 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 9 | ||||
-rw-r--r-- | src/algebra/data.spad.pamphlet | 7 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 2 | ||||
-rw-r--r-- | src/algebra/files.spad.pamphlet | 44 | ||||
-rw-r--r-- | src/algebra/net.spad.pamphlet | 91 | ||||
-rw-r--r-- | src/interp/sys-utility.boot | 32 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3326 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5850 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1979 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10022 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32679 |
13 files changed, 28139 insertions, 25921 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 5ef1fcac..232dc099 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,13 @@ +2008-10-01 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/files.spad.pamphlet (IOMode): New domain. + * algebra/net.spad.pamphlet (InputBinaryFile): Likewise. + (OutputBinaryFile): Likewise. + * interp/sys-utility.boot (openBinaryFile): New. + (readByteFromFile): Likewise. + (writeByteToFile): Likewise. + (closeFile): Likewise. + 2008-09-28 Gabriel Dos Reis <gdr@cs.tamu.edu> * algebra/regset.spad.pamphlet (RegularTriangularSet): Remove diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 0e82462f..6e09aa79 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -363,7 +363,7 @@ axiom_algebra_layer_0 = \ ABELSG- ORDSET ORDSET- FNCAT FILECAT SEXCAT \ MKBCFUNC MKRECORD MKUCFUNC DROPT1 PLOT1 ITFUN2 \ ITFUN3 STREAM1 STREAM2 STREAM3 ANY1 SEGBIND2 \ - COMBOPC EQ2 NONE1 CONDUIT + COMBOPC EQ2 NONE1 CONDUIT IOMODE axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) @@ -825,7 +825,8 @@ axiom_algebra_layer_user = \ LSTAST EXITAST RETAST SEGAST PRTDAST CRCAST \ LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \ CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \ - QQUTAST DEFAST MACROAST SPADXPT SPADAST + QQUTAST DEFAST MACROAST SPADXPT SPADAST \ + INBFILE OUTBFILE axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -880,6 +881,10 @@ SPADAST.NRLIB/code.$(FASLEXT): \ CLLCTAST LSTAST EXITAST RETAST CRCEAST PRTDAST RSTRCAST \ SEGAST SEQAST LETAST SUCHTAST COLONAST CASEAST HASAST \ ISAST)) +INBFILE.NRLIB/code.$(FASLEXT): $(OUT)/FNAME.$(FASLEXT) \ + $(OUT)/INBCON.$(FASLEXT) $(OUT)/STRING.$(FASLEXT) +OUTBFILE.NRLIB/code.$(FASLEXT): $(OUT)/FNAME.$(FASLEXT) \ + $(OUT)/OUTBCON.$(FASLEXT) $(OUT)/STRING.$(FASLEXT) .PHONY: all all-algebra mkdir-output-directory all: all-ax diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 11bc702a..10eef219 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -192,7 +192,7 @@ axiom_algebra_layer_0 = \ ABELSG- ORDSET ORDSET- FNCAT FILECAT SEXCAT \ MKBCFUNC MKRECORD MKUCFUNC DROPT1 PLOT1 ITFUN2 \ ITFUN3 STREAM1 STREAM2 STREAM3 ANY1 SEGBIND2 \ - COMBOPC EQ2 NONE1 CONDUIT + COMBOPC EQ2 NONE1 CONDUIT IOMODE axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) @@ -1252,7 +1252,8 @@ axiom_algebra_layer_user = \ LSTAST EXITAST RETAST SEGAST PRTDAST CRCAST \ LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \ CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \ - QQUTAST DEFAST MACROAST SPADXPT SPADAST + QQUTAST DEFAST MACROAST SPADXPT SPADAST \ + INBFILE OUTBFILE axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1307,6 +1308,10 @@ SPADAST.NRLIB/code.$(FASLEXT): \ CLLCTAST LSTAST EXITAST RETAST CRCEAST PRTDAST RSTRCAST \ SEGAST SEQAST LETAST SUCHTAST COLONAST CASEAST HASAST \ ISAST)) +INBFILE.NRLIB/code.$(FASLEXT): $(OUT)/FNAME.$(FASLEXT) \ + $(OUT)/INBCON.$(FASLEXT) $(OUT)/STRING.$(FASLEXT) +OUTBFILE.NRLIB/code.$(FASLEXT): $(OUT)/FNAME.$(FASLEXT) \ + $(OUT)/OUTBCON.$(FASLEXT) $(OUT)/STRING.$(FASLEXT) @ \section{Broken Files} diff --git a/src/algebra/data.spad.pamphlet b/src/algebra/data.spad.pamphlet index e3262ef5..fff04339 100644 --- a/src/algebra/data.spad.pamphlet +++ b/src/algebra/data.spad.pamphlet @@ -23,7 +23,7 @@ import OutputForm ++ Description: ++ Byte is the datatype of 8-bit sized unsigned integer values. Byte(): Public == Private where - Public ==> Join(OrderedSet, CoercibleTo NonNegativeInteger) with + Public == Join(OrderedSet, CoercibleTo NonNegativeInteger) with byte: NonNegativeInteger -> % ++ byte(x) injects the unsigned integer value `v' into ++ the Byte algebra. `v' must be non-negative and less than 256. @@ -34,12 +34,15 @@ Byte(): Public == Private where bitior: (%,%) -> % ++ bitor(x,y) returns the bitwise `inclusive or' of `x' and `y'. - Private ==> add + Private == add byte(x: NonNegativeInteger): % == not (x < 256$Lisp) => userError "integer value cannot be represented by a byte" x : % + hash x == + SXHASH(x)$Lisp + coerce(x: NonNegativeInteger): % == byte x diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 8f50526d..e19ec96c 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -200,6 +200,7 @@ (|InfiniteTupleFunctions2| . ITFUN2) (|InfiniteTupleFunctions3| . ITFUN3) (|Infinity| . INFINITY) + (|InputBinaryFile| . INBFILE) (|Integer| . INT) (|IntegerCombinatoricFunctions| . COMBINAT) (|IntegerLinearDependence| . ZLINDEP) @@ -291,6 +292,7 @@ (|OrdinaryDifferentialRing| . ODR) (|OrdSetInts| . OSI) (|OrthogonalPolynomialFunctions| . ORTHPOL) + (|OutputBinaryFile| . OUTBFILE) (|OutputPackage| . OUT) (|PadeApproximantPackage| . PADEPAC) (|Pair| . PAIR) diff --git a/src/algebra/files.spad.pamphlet b/src/algebra/files.spad.pamphlet index f331e958..34cd7937 100644 --- a/src/algebra/files.spad.pamphlet +++ b/src/algebra/files.spad.pamphlet @@ -1,15 +1,51 @@ \documentclass{article} \usepackage{axiom} \begin{document} -\title{\$SPAD/src/algebra files.spad} -\author{Stephen M. Watt, Victor Miller, Barry Trager} + +\title{src/algebra files.spad} +\author{Stephen M. Watt, Victor Miller, Barry Trager, Gabriel Dos~Reis} + \maketitle \begin{abstract} \end{abstract} -\eject \tableofcontents \eject + + +\section{A domain for IO mode} + +<<domain IOMODE IOMode>>= +)abbrev domain IOMODE IOMode +++ Author: Gabriel Dos Reis +++ Date Created: September 30, 2008 +++ Date Last Updated: September 30, 2008 +++ Basic Operations: inputIOMode, outputIoMode, bothWayIOMode +++ Description: +++ This domain provides constants to describe directions of +++ IO conduits (file, etc) mode of operations. +IOMode(): Public == Private where + Public == SetCategory with + input: % + ++ `input' indicates that an IO conduit is for input. + output: % + ++ `output' indicates that an IO conduit is for output + bothWays: % + ++ `bothWays' indicates that an IO conduit is for both input and output. + Private == add + input == _$InputIOMode$Lisp + output == _$OutputIOMode$Lisp + bothWays == _$BothWaysIOode$Lisp + x = y == EQ(x,y)$Lisp + coerce m == + m = input => outputForm 'input + m = output => outputForm 'output + outputForm 'bothWays + +@ + + \section{category FILECAT FileCategory} + <<category FILECAT FileCategory>>= )abbrev category FILECAT FileCategory ++ Author: Stephen M. Watt, Victor Miller @@ -548,6 +584,8 @@ Library(): TableAggregate(String, Any) with <<*>>= <<license>> +<<domain IOMODE IOMode>> + <<category FILECAT FileCategory>> <<domain FILE File>> <<domain TEXTFILE TextFile>> diff --git a/src/algebra/net.spad.pamphlet b/src/algebra/net.spad.pamphlet index 4a8d4961..ef5f7cec 100644 --- a/src/algebra/net.spad.pamphlet +++ b/src/algebra/net.spad.pamphlet @@ -106,6 +106,94 @@ InputOutputByteConduit(): Category == @ + +\subsection{The InputBinaryFile domain} + +<<domain INBFILE InputBinaryFile>>= +)abbrev domain INBFILE InputBinaryFile +++ Author: Gabriel Dos Reis +++ Date Created: September 30, 2008 +++ Date Last Modified: September 30, 2008 +++ Description: +++ This domain provides representation for binary files open +++ for input operations. `Binary' here means that the conduits +++ do not interpret their contents. +InputBinaryFile(): Public == Private where + Public == Join(InputByteConduit, CoercibleTo OutputForm) with + inputBinaryFile: FileName -> % + ++ inputBinaryFile(f) returns an input conduit obtained by + ++ opening the file named by `f' as a binary file. + inputBinaryFile: String -> % + ++ inputBinaryFile(f) returns an input conduit obtained by + ++ opening the file named by `f' as a binary file. + eof?: % -> Boolean + ++ eof?(ifile) holds when end-of-file has been reached + ++ for the conduit file `ifile'. + isOpen?: % -> Boolean + ++ open?(ifile) holds if `ifile' is in open state. + Private == add + Rep == Record(stream: SExpression, filename: FileName) + inputBinaryFile(f: FileName) == + per [openBinaryFile(f::String,input$IOMode)$Lisp,f] + inputBinaryFile(f: String) == + per [openBinaryFile(f,input$IOMode)$Lisp,f::FileName] + isOpen? ifile == + not null? rep(ifile).stream + readByteIfCan! ifile == + isOpen? ifile => readByteFromFile(rep(ifile).stream)$Lisp + error "file is not open" + eof? ifile == + isOpen? ifile => readByteIfCan! ifile < 0@SingleInteger + error "file is not open" + close! ifile == + if isOpen? ifile then + rep(ifile).stream := closeFile(rep(ifile).stream)$Lisp + ifile + coerce(ifile: %): OutputForm == + rep(ifile).filename::OutputForm +@ + +\subsection{The OutputBinaryFile domain} + +<<domain OUTBFILE OutputBinaryFile>>= +)abbrev domain OUTBFILE OutputBinaryFile +++ Author: Gabriel Dos Reis +++ Date Created: September 30, 2008 +++ Date Last Modified: September 30, 2008 +++ Description: +++ This domain provides representation for binary files open +++ for output operations. `Binary' here means that the conduits +++ do not interpret their contents. +OutputBinaryFile(): Public == Private where + Public == Join(OutputByteConduit, CoercibleTo OutputForm) with + outputBinaryFile: FileName -> % + ++ outputBinaryFile(f) returns an output conduit obtained by + ++ opening the file named by `f' as a binary file. + outputBinaryFile: String -> % + ++ outputBinaryFile(f) returns an output conduit obtained by + ++ opening the file named by `f' as a binary file. + isOpen?: % -> Boolean + ++ open?(ifile) holds if `ifile' is in open state. + Private == add + Rep == Record(stream: SExpression, filename: FileName) + outputBinaryFile(f: FileName) == + per [openBinaryFile(f::String,output$IOMode)$Lisp,f] + outputBinaryFile(f: String) == + per [openBinaryFile(f,output$IOMode)$Lisp,f::FileName] + isOpen? ifile == + not null? rep(ifile).stream + writeByteIfCan!(ifile,b) == + isOpen? ifile => writeByteToFile(rep(ifile).stream,b)$Lisp + error "file is not open" + close! ifile == + if isOpen? ifile then + rep(ifile).stream := closeFile(rep(ifile).stream)$Lisp + ifile + coerce(ifile: %): OutputForm == + rep(ifile).filename::OutputForm +@ + + \section{The Hostname domain} <<domain HOSTNAME Hostname>>= @@ -195,6 +283,9 @@ PortNumber(): Public == Private where <<category OUTBCON OutputByteConduit>> <<category IOBCON InputOutputByteConduit>> +<<domain INBFILE InputBinaryFile>> +<<domain OUTBFILE OutputBinaryFile>> + <<domain HOSTNAME Hostname>> <<domain PORTNUM PortNumber>> diff --git a/src/interp/sys-utility.boot b/src/interp/sys-utility.boot index 82fb11e2..57fc9a9b 100644 --- a/src/interp/sys-utility.boot +++ b/src/interp/sys-utility.boot @@ -220,3 +220,35 @@ PRINT_-AND_-EVAL_-DEFUN(name,body) == PRINT_-DEFUN(name,body) + +--% File IO +$InputIOMode == KEYWORD::INPUT +$OutputIOMode == KEYWORD::OUTPUT +$BothWaysIOMode == KEYWORD::IO + +++ return a binary stream open for `file' in mode `mode'; nil +++ if something wnet wrong. +openBinaryFile(file,mode) == + mode = $InputIOMode => + OPEN(file,KEYWORD::DIRECTION,mode, + KEYWORD::IF_-DOES_-NOT_-EXIST,nil, + KEYWORD::ELEMENT_-TYPE,"%Byte") + OPEN(file,KEYWORD::DIRECTION,mode, + KEYWORD::IF_-EXISTS,KEYWORD::SUPERSEDE, + KEYWORD::ELEMENT_-TYPE,"%Byte") + +++ Attemp to read a byte from input file `ifile'. If not end of +++ file, return the read byte; otherwise -1. +readByteFromFile: %Thing -> %Short +readByteFromFile ifile == + byte := READ_-BYTE(ifile,false) => byte + -1 + +++ Write byte `b' to output binary file `ofile'. +writeByteToFile: (%Thing,%Byte) -> %Short +writeByteToFile(ofile,b) == + WRITE_-BYTE(b,ofile) + +closeFile file == + CLOSE file + nil diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index bd487162..0ffdb818 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2264448 . 3431436953) +(2267193 . 3431822560) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4333 . T) (-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4329 . T) (-4334 . T) (-4328 . T) (-2359 . T)) +((-4339 . T) (-4337 . T) (-4336 . T) ((-4344 "*") . T) (-4335 . T) (-4340 . T) (-4334 . T) (-1964 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,17 +56,17 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3416) +(-32 R -3260) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) +((|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4336))) +((|HasAttribute| |#1| (QUOTE -4342))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2359 . T)) +((-1964 . T)) NIL (-35) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4336 . T) (-4337 . T) (-2359 . T)) +((-4342 . T) (-4343 . T) (-1964 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4330 . T) (-4331 . T) (-4333 . T)) +((-4336 . T) (-4337 . T) (-4339 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3416 UP UPUP -2931) +(-40 -3260 UP UPUP -4189) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4329 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) (-4328 |has| (-400 |#2|) (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-343))) (-3874 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-3874 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (-3874 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-343))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3874 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) -(-41 R -3416) +((-4335 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-342))) (-1561 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-1561 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (-1561 (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-400 |#2|) (QUOTE (-342))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1561 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) +(-41 R -3260) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -414) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,45 +106,45 @@ NIL ((|HasCategory| |#1| (QUOTE (-300)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4333 |has| |#1| (-542)) (-4331 . T) (-4330 . T)) +((-4339 |has| |#1| (-542)) (-4337 . T) (-4336 . T)) ((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4336 . T) (-4337 . T)) -((-3874 (-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-823)))) (-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-1561 (-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|))))))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-535))))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| $ (QUOTE (-1020))) (|HasCategory| $ (LIST (QUOTE -1011) (QUOTE (-550))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4333 . T)) +((-4339 . T)) NIL -(-51) -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) +(-51 S) +((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) NIL NIL -(-52 S) -((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) +(-52) +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) NIL NIL (-53 R M P) ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3416) +(-54 |Base| R -3260) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -154,133 +154,133 @@ NIL NIL (-56 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4336 . T) (-4337 . T) (-2359 . T)) +((-4342 . T) (-4343 . T) (-1964 . T)) NIL -(-57 S) -((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-58 A B) +(-57 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL +(-58 S) +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-59 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-60 -3888) -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-61 -3888) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-60 -1916) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3888) +(-61 -1916) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -3888) +(-62 -1916) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3888) +(-63 -1916) +((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-64 -1916) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -3888) +(-65 -1916) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-66 -3888) +(-66 -1916) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3888) +(-67 -1916) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3888) +(-68 -1916) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-69 -3888) +(-69 -1916) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-70 -3888) +(-70 -1916) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-71 -3888) +(-71 -1916) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-72 -3888) +(-72 -1916) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-73 -3888) +(-73 -1916) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-74 -3888) -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-75 |nameOne| |nameTwo| |nameThree|) +(-74 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 |nameOne| |nameTwo| |nameThree|) +(-75 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -3888) +(-76 -1916) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -3888) +(-77 -1916) +((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-78 -1916) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3888) +(-79 -1916) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3888) +(-80 -1916) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3888) -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-82 -3888) +(-81 -1916) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3888) +(-82 -1916) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3888) +(-83 -1916) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3888) +(-84 -1916) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3888) -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) +(-85 -1916) +((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3888) +(-86 -1916) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -3888) +(-87 -1916) +((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) +NIL +NIL +(-88 -1916) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -290,8 +290,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-356)))) (-90 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-91 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -314,15 +314,15 @@ NIL NIL (-96) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4336 . T)) +((-4342 . T)) NIL (-97) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4336 . T) ((-4338 "*") . T) (-4337 . T) (-4333 . T) (-4331 . T) (-4330 . T) (-4329 . T) (-4334 . T) (-4328 . T) (-4327 . T) (-4326 . T) (-4325 . T) (-4324 . T) (-4332 . T) (-4335 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4323 . T)) +((-4342 . T) ((-4344 "*") . T) (-4343 . T) (-4339 . T) (-4337 . T) (-4336 . T) (-4335 . T) (-4340 . T) (-4334 . T) (-4333 . T) (-4332 . T) (-4331 . T) (-4330 . T) (-4338 . T) (-4341 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4329 . T)) NIL (-98 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4333 . T)) +((-4339 . T)) NIL (-99 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -338,15 +338,15 @@ NIL NIL (-102 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-103 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4338 "*")))) +((|HasAttribute| |#1| (QUOTE (-4344 "*")))) (-104) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4336 . T)) +((-4342 . T)) NIL (-105 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -354,12 +354,12 @@ NIL NIL (-106 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4337 . T) (-2359 . T)) +((-4343 . T) (-1964 . T)) NIL (-107) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-535) (QUOTE (-881))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-535) (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-145))) (|HasCategory| (-535) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-991))) (|HasCategory| (-535) (QUOTE (-796))) (-3874 (|HasCategory| (-535) (QUOTE (-796))) (|HasCategory| (-535) (QUOTE (-823)))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-1117))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-535) (QUOTE (-227))) (|HasCategory| (-535) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-535) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -302) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -279) (QUOTE (-535)) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-300))) (|HasCategory| (-535) (QUOTE (-534))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-535) (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (|HasCategory| (-535) (QUOTE (-143))))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-550) (QUOTE (-882))) (|HasCategory| (-550) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| (-550) (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-995))) (|HasCategory| (-550) (QUOTE (-798))) (-1561 (|HasCategory| (-550) (QUOTE (-798))) (|HasCategory| (-550) (QUOTE (-825)))) (|HasCategory| (-550) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1119))) (|HasCategory| (-550) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-227))) (|HasCategory| (-550) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-550) (LIST (QUOTE -505) (QUOTE (-1144)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -302) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -279) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-300))) (|HasCategory| (-550) (QUOTE (-535))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-550) (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-882)))) (|HasCategory| (-550) (QUOTE (-143))))) (-108) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -370,43 +370,43 @@ NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-112) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1068))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-112) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-112) (QUOTE (-1068))) (|HasCategory| (-112) (LIST (QUOTE -595) (QUOTE (-836))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4331 . T) (-4330 . T)) +((-4337 . T) (-4336 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-113) -((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) +(-113 A) +((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL +((|HasCategory| |#1| (QUOTE (-825)))) +(-114) +((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL -(-114 A) -((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-823)))) -(-115 -3416 UP) +(-115 -3260 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-881))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-116 |#1|) (QUOTE (-991))) (|HasCategory| (-116 |#1|) (QUOTE (-796))) (-3874 (|HasCategory| (-116 |#1|) (QUOTE (-796))) (|HasCategory| (-116 |#1|) (QUOTE (-823)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (QUOTE (-1117))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (QUOTE (-227))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-300))) (|HasCategory| (-116 |#1|) (QUOTE (-534))) (|HasCategory| (-116 |#1|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-881)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-882))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-116 |#1|) (QUOTE (-995))) (|HasCategory| (-116 |#1|) (QUOTE (-798))) (-1561 (|HasCategory| (-116 |#1|) (QUOTE (-798))) (|HasCategory| (-116 |#1|) (QUOTE (-825)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (QUOTE (-1119))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (QUOTE (-227))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -505) (QUOTE (-1144)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-300))) (|HasCategory| (-116 |#1|) (QUOTE (-535))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-882)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4337))) +((|HasAttribute| |#1| (QUOTE -4343))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2359 . T)) +((-1964 . T)) NIL (-120 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,24 +430,24 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4336 . T) (-4337 . T) (-2359 . T)) +((-4342 . T) (-4343 . T) (-1964 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-128) +((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| (-129) (QUOTE (-825))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1068))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129)))))) (-1561 (-12 (|HasCategory| (-129) (QUOTE (-1068))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-129) (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| (-129) (QUOTE (-825))) (|HasCategory| (-129) (QUOTE (-1068)))) (|HasCategory| (-129) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-129) (QUOTE (-1068))) (-12 (|HasCategory| (-129) (QUOTE (-1068))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -595) (QUOTE (-836))))) +(-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL -(-129) -((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| (-128) (QUOTE (-823))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1067))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128)))))) (-3874 (-12 (|HasCategory| (-128) (QUOTE (-1067))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-128) (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| (-128) (QUOTE (-823))) (|HasCategory| (-128) (QUOTE (-1067)))) (|HasCategory| (-128) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-128) (QUOTE (-1067))) (-12 (|HasCategory| (-128) (QUOTE (-1067))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -593) (QUOTE (-835))))) (-130) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -462,14 +462,14 @@ NIL NIL (-133) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4338 "*") . T)) +(((-4344 "*") . T)) NIL -(-134 |minix| -2938 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-134 |minix| -3873 S T$) +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-135 |minix| -2938 S T$) -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +(-135 |minix| -3873 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL (-136) @@ -486,8 +486,8 @@ NIL NIL (-139) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4336 . T) (-4326 . T) (-4337 . T)) -((-3874 (-12 (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4332 . T) (-4343 . T)) +((-1561 (-12 (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1068))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1068))) (-12 (|HasCategory| (-142) (QUOTE (-1068))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-836))))) (-140 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -502,7 +502,7 @@ NIL NIL (-143) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4333 . T)) +((-4339 . T)) NIL (-144 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -510,9 +510,9 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4333 . T)) +((-4339 . T)) NIL -(-146 -3416 UP UPUP) +(-146 -3260 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -523,14 +523,14 @@ NIL (-148 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasAttribute| |#1| (QUOTE -4336))) +((|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasAttribute| |#1| (QUOTE -4342))) (-149 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2359 . T)) +((-1964 . T)) NIL (-150 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4331 . T) (-4330 . T) (-4333 . T)) +((-4337 . T) (-4336 . T) (-4339 . T)) NIL (-151) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -552,7 +552,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-156 R -3416) +(-156 R -3260) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -565,11 +565,11 @@ NIL NIL NIL (-159) -((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) +((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL (-160) -((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) +((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL (-161) @@ -583,23 +583,23 @@ NIL (-163 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasAttribute| |#2| (QUOTE -4332)) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-823)))) +((|HasCategory| |#2| (QUOTE (-882))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-1166))) (|HasCategory| |#2| (QUOTE (-1029))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasAttribute| |#2| (QUOTE -4338)) (|HasAttribute| |#2| (QUOTE -4341)) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-825)))) (-164 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4329 -3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4332 |has| |#1| (-6 -4332)) (-4335 |has| |#1| (-6 -4335)) (-1420 . T) (-2359 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 -1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4338 |has| |#1| (-6 -4338)) (-4341 |has| |#1| (-6 -4341)) (-2738 . T) (-1964 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-165 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-166 R) -((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4329 -3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4332 |has| |#1| (-6 -4332)) (-4335 |has| |#1| (-6 -4335)) (-1420 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-797)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-991))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-881))))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1164)))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1164)))) (|HasCategory| |#1| (QUOTE (-534))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasAttribute| |#1| (QUOTE -4332)) (|HasAttribute| |#1| (QUOTE -4335)) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-343))))) -(-167 R S) +(-166 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL +(-167 R) +((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) +((-4335 -1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4338 |has| |#1| (-6 -4338)) (-4341 |has| |#1| (-6 -4341)) (-2738 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-806)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-995)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-1166)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-882))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-882)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-882)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-882))))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-1029))) (-12 (|HasCategory| |#1| (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-535))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-882))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-356)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasAttribute| |#1| (QUOTE -4338)) (|HasAttribute| |#1| (QUOTE -4341)) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144))))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-342))))) (-168 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -610,7 +610,7 @@ NIL NIL (-170) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-171) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -618,7 +618,7 @@ NIL NIL (-172 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4338 "*") . T) (-4329 . T) (-4334 . T) (-4328 . T) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") . T) (-4335 . T) (-4340 . T) (-4334 . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-173) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -635,7 +635,7 @@ NIL (-176 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-917 |#2|) (LIST (QUOTE -857) (|devaluate| |#1|)))) +((|HasCategory| (-925 |#2|) (LIST (QUOTE -859) (|devaluate| |#1|)))) (-177 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL @@ -656,7 +656,7 @@ NIL ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-182 R -3416) +(-182 R -3260) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -764,28 +764,28 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-209 -3416 UP UPUP R) +(-209 -3260 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-210 -3416 FP) +(-210 -3260 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-211) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-535) (QUOTE (-881))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-535) (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-145))) (|HasCategory| (-535) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-991))) (|HasCategory| (-535) (QUOTE (-796))) (-3874 (|HasCategory| (-535) (QUOTE (-796))) (|HasCategory| (-535) (QUOTE (-823)))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-1117))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-535) (QUOTE (-227))) (|HasCategory| (-535) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-535) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -302) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -279) (QUOTE (-535)) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-300))) (|HasCategory| (-535) (QUOTE (-534))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-535) (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (|HasCategory| (-535) (QUOTE (-143))))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-550) (QUOTE (-882))) (|HasCategory| (-550) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| (-550) (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-995))) (|HasCategory| (-550) (QUOTE (-798))) (-1561 (|HasCategory| (-550) (QUOTE (-798))) (|HasCategory| (-550) (QUOTE (-825)))) (|HasCategory| (-550) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1119))) (|HasCategory| (-550) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-227))) (|HasCategory| (-550) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-550) (LIST (QUOTE -505) (QUOTE (-1144)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -302) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -279) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-300))) (|HasCategory| (-550) (QUOTE (-535))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-550) (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-882)))) (|HasCategory| (-550) (QUOTE (-143))))) (-212) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-213 R -3416) -((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +(-213 R -3260) +((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-214 R) -((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-215 R1 R2) @@ -794,19 +794,19 @@ NIL NIL (-216 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-217 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4333 . T)) +((-4339 . T)) NIL -(-218 R -3416) +(-218 R -3260) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-219) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4112 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-2001 . T) (-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-220) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -814,23 +814,23 @@ NIL NIL (-221 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4344 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-222 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-223 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4337 . T) (-2359 . T)) +((-4343 . T) (-1964 . T)) NIL (-224 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227)))) +((|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-227)))) (-225 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4333 . T)) +((-4339 . T)) NIL (-226 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -838,36 +838,36 @@ NIL NIL (-227) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4333 . T)) +((-4339 . T)) NIL (-228 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4336))) +((|HasAttribute| |#1| (QUOTE -4342))) (-229 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4337 . T) (-2359 . T)) +((-4343 . T) (-1964 . T)) NIL (-230) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-231 S -2938 R) +(-231 S -3873 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821))) (|HasAttribute| |#3| (QUOTE -4333)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-1067)))) -(-232 -2938 R) +((|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823))) (|HasAttribute| |#3| (QUOTE -4339)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-1068)))) +(-232 -3873 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T) (-2359 . T)) +((-4336 |has| |#2| (-1020)) (-4337 |has| |#2| (-1020)) (-4339 |has| |#2| (-6 -4339)) ((-4344 "*") |has| |#2| (-170)) (-4342 . T) (-1964 . T)) NIL -(-233 -2938 R) -((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-3874 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) -(-234 -2938 A B) +(-233 -3873 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL +(-234 -3873 R) +((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) +((-4336 |has| |#2| (-1020)) (-4337 |has| |#2| (-1020)) (-4339 |has| |#2| (-6 -4339)) ((-4344 "*") |has| |#2| (-170)) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (QUOTE (-356))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-771))) (-1561 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068))))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-1561 (|HasCategory| |#2| (QUOTE (-1020))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasAttribute| |#2| (QUOTE -4339)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (-235) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -878,88 +878,88 @@ NIL NIL (-237) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4329 . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-238 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2359 . T)) +((-1964 . T)) NIL (-239 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-240 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-241 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-881))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(((-4344 "*") |has| |#2| (-170)) (-4335 |has| |#2| (-542)) (-4340 |has| |#2| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-882))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4340)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-143))))) (-242) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL (-243 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4333 -3874 (-3179 (|has| |#4| (-1018)) (|has| |#4| (-227))) (-3179 (|has| |#4| (-1018)) (|has| |#4| (-871 (-1142)))) (|has| |#4| (-6 -4333)) (-3179 (|has| |#4| (-1018)) (|has| |#4| (-617 (-535))))) (-4330 |has| |#4| (-1018)) (-4331 |has| |#4| (-1018)) ((-4338 "*") |has| |#4| (-170)) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-356))) (-3874 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-1018)))) (-3874 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (QUOTE (-769))) (-3874 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (QUOTE (-821)))) (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (QUOTE (-170))) (-3874 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-703)))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#4| (QUOTE (-1018)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasAttribute| |#4| (QUOTE -4333)) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4339 -1561 (-1262 (|has| |#4| (-1020)) (|has| |#4| (-227))) (-1262 (|has| |#4| (-1020)) (|has| |#4| (-873 (-1144)))) (|has| |#4| (-6 -4339)) (-1262 (|has| |#4| (-1020)) (|has| |#4| (-619 (-550))))) (-4336 |has| |#4| (-1020)) (-4337 |has| |#4| (-1020)) ((-4344 "*") |has| |#4| (-170)) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-1144)))))) (|HasCategory| |#4| (QUOTE (-356))) (-1561 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-1020)))) (-1561 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (QUOTE (-771))) (-1561 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (QUOTE (-823)))) (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (QUOTE (-170))) (-1561 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1020)))) (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1020)))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-227)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-356)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-361)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-705)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-771)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-823)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-1020)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-1068))))) (-1561 (-12 (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1020)))) (-1561 (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1020)))) (|HasCategory| |#4| (QUOTE (-705))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-1144)))))) (-1561 (|HasCategory| |#4| (QUOTE (-1020))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-1068)))) (-1561 (|HasAttribute| |#4| (QUOTE -4339)) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1020)))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-1144)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-836))))) (-244 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4333 -3874 (-3179 (|has| |#3| (-1018)) (|has| |#3| (-227))) (-3179 (|has| |#3| (-1018)) (|has| |#3| (-871 (-1142)))) (|has| |#3| (-6 -4333)) (-3179 (|has| |#3| (-1018)) (|has| |#3| (-617 (-535))))) (-4330 |has| |#3| (-1018)) (-4331 |has| |#3| (-1018)) ((-4338 "*") |has| |#3| (-170)) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-356))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-769))) (-3874 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821)))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-170))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-703)))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasAttribute| |#3| (QUOTE -4333)) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4339 -1561 (-1262 (|has| |#3| (-1020)) (|has| |#3| (-227))) (-1262 (|has| |#3| (-1020)) (|has| |#3| (-873 (-1144)))) (|has| |#3| (-6 -4339)) (-1262 (|has| |#3| (-1020)) (|has| |#3| (-619 (-550))))) (-4336 |has| |#3| (-1020)) (-4337 |has| |#3| (-1020)) ((-4344 "*") |has| |#3| (-170)) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))))) (|HasCategory| |#3| (QUOTE (-356))) (-1561 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1020)))) (-1561 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-771))) (-1561 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823)))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-170))) (-1561 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-227)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-356)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-361)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-705)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-771)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-823)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1068))))) (-1561 (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1020)))) (-1561 (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasCategory| |#3| (QUOTE (-705))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))))) (-1561 (|HasCategory| |#3| (QUOTE (-1020))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-1561 (|HasAttribute| |#3| (QUOTE -4339)) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-836))))) (-245 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-227)))) (-246 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) NIL (-247 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4336 . T) (-4337 . T) (-2359 . T)) -NIL -(-248 |Ex|) -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +((-4342 . T) (-4343 . T) (-1964 . T)) NIL -NIL -(-249) +(-248) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-250 R |Ex|) +(-249 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-251) +(-250) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-252 R) +(-251 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL +(-252 |Ex|) +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +NIL +NIL (-253) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL (-254) -((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) -NIL -NIL -(-255) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-256 S) +(-255 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL +(-256) +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) +NIL +NIL (-257 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#3| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#3| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#3| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#3| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) (-258 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1004,11 +1004,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-269 R -3416) +(-269 R -3260) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-270 R -3416) +(-270 R -3260) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1027,10 +1027,10 @@ NIL (-274 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067)))) +((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1068)))) (-275 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4337 . T) (-2359 . T)) +((-4343 . T) (-1964 . T)) NIL (-276 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1051,18 +1051,18 @@ NIL (-280 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4337))) +((|HasAttribute| |#1| (QUOTE -4343))) (-281 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-282 S R |Mod| -2145 -3855 |exactQuo|) +(-282 S R |Mod| -2824 -1832 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-283) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4329 . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-284) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1072,65 +1072,65 @@ NIL ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-286 S) -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4333 -3874 (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4330 |has| |#1| (-1018)) (-4331 |has| |#1| (-1018))) -((|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703)))) (|HasCategory| |#1| (QUOTE (-465))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-291))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465)))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703)))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) -(-287 S R) +(-286 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL +(-287 S) +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) +((-4339 -1561 (|has| |#1| (-1020)) (|has| |#1| (-465))) (-4336 |has| |#1| (-1020)) (-4337 |has| |#1| (-1020))) +((|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1020)))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-1020)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1020)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1020)))) (-1561 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705)))) (|HasCategory| |#1| (QUOTE (-465))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1068)))) (-1561 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-295))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465)))) (-1561 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705)))) (-1561 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) (-288 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|)))))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1068))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836))))) (-289) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-290 S) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) -NIL -((|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1018)))) -(-291) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) -NIL -NIL -(-292 -3416 S) +(-290 -3260 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-293 E -3416) +(-291 E -3260) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-294) -((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) +(-292 A B) +((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-295 A B) -((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) +(-293) +((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-296) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) +(-294 S) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +NIL +((|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1020)))) +(-295) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-297 R1) +(-296 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-298 R1 R2) +(-297 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL +(-298) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) +NIL +NIL (-299 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL (-300) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-301 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1140,35 +1140,35 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-303 -3416) +(-303 -3260) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL (-304) -((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) +((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL (-305) -((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) +((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL (-306 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-881))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-991))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-796))) (-3874 (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-796))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-1117))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-227))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -302) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -279) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-300))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-534))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-881)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-143))))) -(-307 R) -((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4333 -3874 (-3179 (|has| |#1| (-1018)) (|has| |#1| (-617 (-535)))) (-12 (|has| |#1| (-542)) (-3874 (-3179 (|has| |#1| (-1018)) (|has| |#1| (-617 (-535)))) (|has| |#1| (-1018)) (|has| |#1| (-465)))) (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) ((-4338 "*") |has| |#1| (-542)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-542)) (-4328 |has| |#1| (-542))) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1078)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1078)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-535))))) -(-308 R S) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-882))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-995))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-798))) (-1561 (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-798))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-825)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-1119))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-227))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -505) (QUOTE (-1144)) (LIST (QUOTE -1213) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -302) (LIST (QUOTE -1213) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (LIST (QUOTE -279) (LIST (QUOTE -1213) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1213) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-300))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-535))) (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-12 (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-882))) (|HasCategory| $ (QUOTE (-143)))) (-1561 (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1213 |#1| |#2| |#3| |#4|) (QUOTE (-882))) (|HasCategory| $ (QUOTE (-143)))))) +(-307 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-309 R FE) +(-308 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-310 R -3416) +(-309 R) +((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) +((-4339 -1561 (-1262 (|has| |#1| (-1020)) (|has| |#1| (-619 (-550)))) (-12 (|has| |#1| (-542)) (-1561 (-1262 (|has| |#1| (-1020)) (|has| |#1| (-619 (-550)))) (|has| |#1| (-1020)) (|has| |#1| (-465)))) (|has| |#1| (-1020)) (|has| |#1| (-465))) (-4337 |has| |#1| (-170)) (-4336 |has| |#1| (-170)) ((-4344 "*") |has| |#1| (-542)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-542)) (-4334 |has| |#1| (-542))) +((-1561 (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-542))) (-1561 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (-1561 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1020)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1020)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550))))) (-1561 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1080)))) (-1561 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))))) (-1561 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1080)))) (-1561 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))))) (-1561 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1020)))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| $ (QUOTE (-1020))) (|HasCategory| $ (LIST (QUOTE -1011) (QUOTE (-550))))) +(-310 R -3260) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1178,8 +1178,8 @@ NIL NIL (-312 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|))))))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|))))))) (-313 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1190,8 +1190,8 @@ NIL NIL (-315 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4331 . T) (-4330 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-768)))) +((-4337 . T) (-4336 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-770)))) (-316 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1199,26 +1199,26 @@ NIL (-317 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-747) (QUOTE (-768)))) +((|HasCategory| (-749) (QUOTE (-770)))) (-318 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL ((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170)))) (-319 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-320 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-321 S -3416) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-321 S -3260) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-361)))) -(-322 -3416) +(-322 -3260) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-323) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) @@ -1232,121 +1232,121 @@ NIL ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-326 -3416 UP UPUP R) -((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) -NIL -NIL -(-327 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-326 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-328 S -3416 UP UPUP R) +(-327 S -3260 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-329 -3416 UP UPUP R) +(-328 -3260 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL +(-329 -3260 UP UPUP R) +((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) +NIL +NIL (-330 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-331 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-332 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-371)))) (|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-535))))) -(-333 |p| |n|) -((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| (-877 |#1|) (QUOTE (-143))) (|HasCategory| (-877 |#1|) (QUOTE (-361)))) (|HasCategory| (-877 |#1|) (QUOTE (-145))) (|HasCategory| (-877 |#1|) (QUOTE (-361))) (|HasCategory| (-877 |#1|) (QUOTE (-143)))) -(-334 S -3416 UP UPUP) +((-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-372)))) (|HasCategory| $ (QUOTE (-1020))) (|HasCategory| $ (LIST (QUOTE -1011) (QUOTE (-550))))) +(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) +NIL +NIL +(-334 S -3260 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-356)))) -(-335 -3416 UP UPUP) +(-335 -3260 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4329 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) (-4328 |has| (-400 |#2|) (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -NIL -(-336 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) +((-4335 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -NIL -(-337 |p| |extdeg|) +(-336 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| (-877 |#1|) (QUOTE (-143))) (|HasCategory| (-877 |#1|) (QUOTE (-361)))) (|HasCategory| (-877 |#1|) (QUOTE (-145))) (|HasCategory| (-877 |#1|) (QUOTE (-361))) (|HasCategory| (-877 |#1|) (QUOTE (-143)))) -(-338 GF |defpol|) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| (-883 |#1|) (QUOTE (-143))) (|HasCategory| (-883 |#1|) (QUOTE (-361)))) (|HasCategory| (-883 |#1|) (QUOTE (-145))) (|HasCategory| (-883 |#1|) (QUOTE (-361))) (|HasCategory| (-883 |#1|) (QUOTE (-143)))) +(-337 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-339 GF |extdeg|) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-338 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-340 GF) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-339 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-341 F1 GF F2) +(-340 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-342 S) +(-341 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-343) +(-342) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-344 R UP -3416) +(-343 R UP -3260) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-345 |p| |extdeg|) +(-344 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| (-877 |#1|) (QUOTE (-143))) (|HasCategory| (-877 |#1|) (QUOTE (-361)))) (|HasCategory| (-877 |#1|) (QUOTE (-145))) (|HasCategory| (-877 |#1|) (QUOTE (-361))) (|HasCategory| (-877 |#1|) (QUOTE (-143)))) -(-346 GF |uni|) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| (-883 |#1|) (QUOTE (-143))) (|HasCategory| (-883 |#1|) (QUOTE (-361)))) (|HasCategory| (-883 |#1|) (QUOTE (-145))) (|HasCategory| (-883 |#1|) (QUOTE (-361))) (|HasCategory| (-883 |#1|) (QUOTE (-143)))) +(-345 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-347 GF |extdeg|) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-346 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-347 |p| |n|) +((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| (-883 |#1|) (QUOTE (-143))) (|HasCategory| (-883 |#1|) (QUOTE (-361)))) (|HasCategory| (-883 |#1|) (QUOTE (-145))) (|HasCategory| (-883 |#1|) (QUOTE (-361))) (|HasCategory| (-883 |#1|) (QUOTE (-143)))) (-348 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-349 GF) -((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +(-349 -3260 GF) +((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-350 -3416 GF) -((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) +(-350 GF) +((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-351 -3416 FP FPP) +(-351 -3260 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-352 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) (-353 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-354 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4333 . T)) +((-4339 . T)) NIL (-355 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1354,14 +1354,14 @@ NIL NIL (-356) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-357 S) -((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) +(-357 |Name| S) +((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-358 |Name| S) -((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) +(-358 S) +((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL (-359 S R) @@ -1370,7 +1370,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-542)))) (-360 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4333 |has| |#1| (-542)) (-4331 . T) (-4330 . T)) +((-4339 |has| |#1| (-542)) (-4337 . T) (-4336 . T)) NIL (-361) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1382,23 +1382,23 @@ NIL ((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-356)))) (-363 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4330 . T) (-4331 . T) (-4333 . T)) +((-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-364 A S) -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +(-364 S A R B) +((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL -((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067)))) -(-365 S) -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4336 . T) (-2359 . T)) NIL -(-366 S A R B) -((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) +(-365 A S) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL +((|HasAttribute| |#1| (QUOTE -4343)) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1068)))) +(-366 S) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +((-4342 . T) (-1964 . T)) NIL (-367 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4331 . T) (-4330 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4337 . T) (-4336 . T)) NIL (-368 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1407,50 +1407,50 @@ NIL (-369 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) +((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-370 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4333 . T)) -NIL -(-371) -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4319 . T) (-4327 . T) (-4112 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4339 . T)) NIL -(-372 |Par|) +(-371 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL +(-372) +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-4325 . T) (-4333 . T) (-2001 . T) (-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +NIL (-373 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL (-374 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4331 . T) (-4330 . T)) -((|HasCategory| |#1| (QUOTE (-170)))) -(-375 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4331 . T) (-4330 . T)) +((-4337 . T) (-4336 . T)) ((|HasCategory| |#1| (QUOTE (-170)))) +(-375 R |Basis|) +((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) +((-4337 . T) (-4336 . T)) +NIL (-376) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2359 . T)) +((-1964 . T)) NIL -(-377 R |Basis|) -((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4331 . T) (-4330 . T)) -NIL -(-378) +(-377) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2359 . T)) +((-1964 . T)) NIL +(-378 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-4337 . T) (-4336 . T)) +((|HasCategory| |#1| (QUOTE (-170)))) (-379 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-823)))) +((|HasCategory| |#1| (QUOTE (-825)))) (-380) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-381) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1462,47 +1462,47 @@ NIL NIL (-383 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4331 . T) (-4330 . T)) +((-4337 . T) (-4336 . T)) NIL (-384) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-385 -3416 UP UPUP R) +(-385 -3260 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-386) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) +(-386 S) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-387 S) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) +(-387) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL (-388) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) -NIL +((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) +((-1964 . T)) NIL (-389) -((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2359 . T)) +((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((-1964 . T)) NIL (-390) -((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2359 . T)) +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL -(-391 -3888 |returnType| -1463 |symbols|) +NIL +(-391 -1916 |returnType| -2899 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-392 -3416 UP) +(-392 -3260 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL (-393 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2359 . T)) +((-1964 . T)) NIL (-394 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) @@ -1510,129 +1510,129 @@ NIL NIL (-395) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-396 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4319)) (|HasAttribute| |#1| (QUOTE -4327))) +((|HasAttribute| |#1| (QUOTE -4325)) (|HasAttribute| |#1| (QUOTE -4333))) (-397) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4112 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-2001 . T) (-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-398 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -302) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -279) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-1183))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-444)))) -(-399 R S) +(-398 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-400 S) -((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4323 -12 (|has| |#1| (-6 -4334)) (|has| |#1| (-444)) (|has| |#1| (-6 -4323))) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-796))) (-3874 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-823)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1117))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-534))) (-12 (|HasAttribute| |#1| (QUOTE -4323)) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-401 A B) +(-399 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-402 S R UP) +(-400 S) +((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) +((-4329 -12 (|has| |#1| (-6 -4340)) (|has| |#1| (-444)) (|has| |#1| (-6 -4329))) (-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-798))) (-1561 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-825)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1119))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806))))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-806)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-535))) (-12 (|HasAttribute| |#1| (QUOTE -4340)) (|HasAttribute| |#1| (QUOTE -4329)) (|HasCategory| |#1| (QUOTE (-444)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-401 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-403 R UP) +(-402 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4330 . T) (-4331 . T) (-4333 . T)) +((-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-404 A S) +(-403 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) -(-405 S) +((|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) +(-404 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-406 R -3416 UP A) -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4333 . T)) -NIL -(-407 R1 F1 U1 A1 R2 F2 U2 A2) +(-405 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-408 R -3416 UP A |ibasis|) +(-406 R -3260 UP A) +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) +((-4339 . T)) +NIL +(-407 R -3260 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1009) (|devaluate| |#2|)))) -(-409 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1011) (|devaluate| |#2|)))) +(-408 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-410 S R) +(-409 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-356)))) -(-411 R) +(-410 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4333 |has| |#1| (-542)) (-4331 . T) (-4330 . T)) +((-4339 |has| |#1| (-542)) (-4337 . T) (-4336 . T)) NIL +(-411 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1144)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -302) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -279) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-1185))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-444)))) (-412 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-413 S R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +(-413 R FE |x| |cen|) +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) -(-414 R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4333 -3874 (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) ((-4338 "*") |has| |#1| (-542)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-542)) (-4328 |has| |#1| (-542)) (-2359 . T)) NIL -(-415 R A S B) +(-414 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-416 R FE |x| |cen|) -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) +(-415 R FE |Expon| UPS TRAN |x|) +((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-417 R FE |Expon| UPS TRAN |x|) -((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) +(-416 S A R B) +((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-418 A S) +(-417 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-361)))) -(-419 S) +((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-361)))) +(-418 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4336 . T) (-4326 . T) (-4337 . T) (-2359 . T)) -NIL -(-420 S A R B) -((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +((-4342 . T) (-4332 . T) (-4343 . T) (-1964 . T)) NIL -NIL -(-421 R -3416) +(-419 R -3260) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-422 R E) +(-420 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4323 -12 (|has| |#1| (-6 -4323)) (|has| |#2| (-6 -4323))) (-4330 . T) (-4331 . T) (-4333 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4323)) (|HasAttribute| |#2| (QUOTE -4323)))) -(-423 R -3416) +((-4329 -12 (|has| |#1| (-6 -4329)) (|has| |#2| (-6 -4329))) (-4336 . T) (-4337 . T) (-4339 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4329)) (|HasAttribute| |#2| (QUOTE -4329)))) +(-421 R -3260) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-424 R -3416) +(-422 S R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +NIL +((|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) +(-423 R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((-4339 -1561 (|has| |#1| (-1020)) (|has| |#1| (-465))) (-4337 |has| |#1| (-170)) (-4336 |has| |#1| (-170)) ((-4344 "*") |has| |#1| (-542)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-542)) (-4334 |has| |#1| (-542)) (-1964 . T)) +NIL +(-424 R -3260) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-425 R -3416) +(-425 R -3260) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-426 R -3416) +(-426 R -3260) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1640,16 +1640,16 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-428 R -3416 UP) +(-428 R -3260 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-48))))) (-429) -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL (-430) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL (-431 |f|) @@ -1658,17 +1658,17 @@ NIL NIL (-432) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2359 . T)) +((-1964 . T)) NIL (-433) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2359 . T)) +((-1964 . T)) NIL (-434 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-435 R UP -3416) +(-435 R UP -3260) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1685,37 +1685,37 @@ NIL NIL NIL (-439 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) -NIL -((|HasCategory| |#1| (QUOTE (-356)))) -(-440 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-441 |Dom| |Expon| |VarSet| |Dpol|) +(-440 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-442 |Dom| |Expon| |VarSet| |Dpol|) +(-441 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL +(-442 |Dom| |Expon| |VarSet| |Dpol|) +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) +NIL +((|HasCategory| |#1| (QUOTE (-356)))) (-443 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL (-444) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-445 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4333 |has| (-400 (-917 |#1|)) (-542)) (-4331 . T) (-4330 . T)) -((|HasCategory| (-400 (-917 |#1|)) (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-400 (-917 |#1|)) (QUOTE (-542)))) +((-4339 |has| (-400 (-925 |#1|)) (-542)) (-4337 . T) (-4336 . T)) +((|HasCategory| (-400 (-925 |#1|)) (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-400 (-925 |#1|)) (QUOTE (-542)))) (-446 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-881))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(((-4344 "*") |has| |#2| (-170)) (-4335 |has| |#2| (-542)) (-4340 |has| |#2| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-882))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4340)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-143))))) (-447 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1742,7 +1742,7 @@ NIL NIL (-453 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4331 . T) (-4330 . T)) +((-4337 . T) (-4336 . T)) NIL (-454 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1750,8 +1750,8 @@ NIL NIL (-455 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-836))))) (-456 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1780,7 +1780,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-463 |lv| -3416 R) +(-463 |lv| -3260 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1790,23 +1790,23 @@ NIL NIL (-465) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4333 . T)) +((-4339 . T)) NIL (-466 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|))))))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|))))))) (-467 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-823))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|)))))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-825))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836))))) (-468 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-836))))) (-469) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-470) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1814,29 +1814,29 @@ NIL NIL (-471 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|)))))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1068))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836))))) (-472) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-473 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-881))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-474 -2938 S) +(((-4344 "*") |has| |#2| (-170)) (-4335 |has| |#2| (-542)) (-4340 |has| |#2| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-882))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4340)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-474 -3873 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-3874 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4336 |has| |#2| (-1020)) (-4337 |has| |#2| (-1020)) (-4339 |has| |#2| (-6 -4339)) ((-4344 "*") |has| |#2| (-170)) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (QUOTE (-356))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-771))) (-1561 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068))))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-1561 (|HasCategory| |#2| (QUOTE (-1020))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasAttribute| |#2| (QUOTE -4339)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (-475) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL (-476 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-477 -3416 UP UPUP R) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-477 -3260 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1846,15 +1846,15 @@ NIL NIL (-479) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-535) (QUOTE (-881))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-535) (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-145))) (|HasCategory| (-535) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-991))) (|HasCategory| (-535) (QUOTE (-796))) (-3874 (|HasCategory| (-535) (QUOTE (-796))) (|HasCategory| (-535) (QUOTE (-823)))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-1117))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-535) (QUOTE (-227))) (|HasCategory| (-535) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-535) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -302) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -279) (QUOTE (-535)) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-300))) (|HasCategory| (-535) (QUOTE (-534))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-535) (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (|HasCategory| (-535) (QUOTE (-143))))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-550) (QUOTE (-882))) (|HasCategory| (-550) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| (-550) (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-995))) (|HasCategory| (-550) (QUOTE (-798))) (-1561 (|HasCategory| (-550) (QUOTE (-798))) (|HasCategory| (-550) (QUOTE (-825)))) (|HasCategory| (-550) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1119))) (|HasCategory| (-550) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-227))) (|HasCategory| (-550) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-550) (LIST (QUOTE -505) (QUOTE (-1144)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -302) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -279) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-300))) (|HasCategory| (-550) (QUOTE (-535))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-550) (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-882)))) (|HasCategory| (-550) (QUOTE (-143))))) (-480 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4336)) (|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) +((|HasAttribute| |#1| (QUOTE -4342)) (|HasAttribute| |#1| (QUOTE -4343)) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (-481 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2359 . T)) +((-1964 . T)) NIL (-482) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) @@ -1868,34 +1868,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-485 -3416 UP |AlExt| |AlPol|) +(-485 -3260 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-486) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-535))))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| $ (QUOTE (-1020))) (|HasCategory| $ (LIST (QUOTE -1011) (QUOTE (-550))))) (-487 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-488 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-489 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-490 R UP -3416) +(-490 R UP -3260) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-491 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-112) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1068))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-112) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-112) (QUOTE (-1068))) (|HasCategory| (-112) (LIST (QUOTE -595) (QUOTE (-836))))) (-492 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1908,10 +1908,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-495 -3416 |Expon| |VarSet| |DPoly|) +(-495 -3260 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-1142))))) +((|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-1144))))) (-496 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -1933,15 +1933,15 @@ NIL NIL NIL (-501 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL (-502 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL (-503 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL (-504 S A B) @@ -1955,39 +1955,39 @@ NIL (-506 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-768)))) +((|HasCategory| |#2| (QUOTE (-770)))) (-507 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-508) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-509 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (|HasCategory| (-563 |#1|) (QUOTE (-143))) (|HasCategory| (-563 |#1|) (QUOTE (-361)))) (|HasCategory| (-563 |#1|) (QUOTE (-145))) (|HasCategory| (-563 |#1|) (QUOTE (-361))) (|HasCategory| (-563 |#1|) (QUOTE (-143)))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| (-565 |#1|) (QUOTE (-143))) (|HasCategory| (-565 |#1|) (QUOTE (-361)))) (|HasCategory| (-565 |#1|) (QUOTE (-145))) (|HasCategory| (-565 |#1|) (QUOTE (-361))) (|HasCategory| (-565 |#1|) (QUOTE (-143)))) (-510 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-511 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-512 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4337))) +((|HasAttribute| |#3| (QUOTE -4343))) (-513 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4337))) +((|HasAttribute| |#7| (QUOTE -4343))) (-514 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4344 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (-515) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2008,79 +2008,79 @@ NIL ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-520 R) +(-520) +((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when end-of-file has been reached for the conduit file `ifile'.")) (|openBinaryFile| (($ (|String|)) "\\spad{openBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{openBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) +NIL +NIL +(-521 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-521 |Varset|) +(-522 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-522 K -3416 |Par|) +(-523 K -3260 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-523) -((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) -NIL -NIL (-524) -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL (-525 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-526 |Coef| UTS) +(-526) +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +NIL +NIL +(-527 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-527 K -3416 |Par|) +(-528 K -3260 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-528 R BP |pMod| |nextMod|) +(-529 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-529 OV E R P) +(-530 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-530 K UP |Coef| UTS) +(-531 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-531 |Coef| UTS) +(-532 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-532 R UP) -((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) +(-533 R UP) +((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-533 S) +(-534 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-534) -((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4334 . T) (-4335 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -NIL (-535) -((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4318 . T) (-4324 . T) (-4328 . T) (-4323 . T) (-4334 . T) (-4335 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) +((-4340 . T) (-4341 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-536 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835))))) -(-537 R -3416) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|)))))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1068))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836))))) +(-537 R -3260) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-538 R0 -3416 UP UPUP R) +(-538 R0 -3260 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2090,7 +2090,7 @@ NIL NIL (-540 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4112 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-2001 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-541 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2098,10 +2098,10 @@ NIL NIL (-542) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-543 R -3416) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) +(-543 R -3260) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL (-544 I) @@ -2109,2840 +2109,2848 @@ NIL NIL NIL (-545) -((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) +((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-546 R -3416 L) -((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) +(-546 R -3260 L) +((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -634) (|devaluate| |#2|)))) (-547) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-548 -3416 UP UPUP R) +(-548 -3260 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-549 -3416 UP) +(-549 -3260 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-550) +((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) +((-4324 . T) (-4330 . T) (-4334 . T) (-4329 . T) (-4340 . T) (-4341 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +NIL +(-551) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-551 R -3416 L) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) +(-552 R -3260 L) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -634) (|devaluate| |#2|)))) -(-552 R -3416) +(-553 R -3260) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-608))))) -(-553 -3416 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1107)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-609))))) +(-554 -3260 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-554 S) +(-555 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-555 -3416) +(-556 -3260) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-556 R) +(-557 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4112 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-2001 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-557) +(-558) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-558 R -3416) +(-559 R -3260) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-277))) (|HasCategory| |#2| (QUOTE (-608))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-277)))) (|HasCategory| |#1| (QUOTE (-542)))) -(-559 -3416 UP) -((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) +((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-277))) (|HasCategory| |#2| (QUOTE (-609))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-1144))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-277)))) (|HasCategory| |#1| (QUOTE (-542)))) +(-560 -3260 UP) +((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-560 R -3416) +(-561 R -3260) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-561) +(-562) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-562 |p| |unBalanced?|) +(-563) +((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) +NIL +NIL +(-564 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-563 |p|) +(-565 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) ((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361)))) -(-564) +(-566) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-565 -3416) -((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4331 . T) (-4330 . T)) -((|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-1142))))) -(-566 E -3416) -((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) +(-567 R -3260) +((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-567 R -3416) -((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) +(-568 E -3260) +((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-568 I) +(-569 -3260) +((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) +((-4337 . T) (-4336 . T)) +((|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-1144))))) +(-570 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-569 GF) +(-571 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-570 R) +(-572 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-571) +(-573) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-572 R E V P TS) +(-574 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-573) +(-575) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-574 |mn|) +(-576 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (-3874 (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067)))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-835))))) -(-575 E V R P) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1068))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (-1561 (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-836)))) (-12 (|HasCategory| (-142) (QUOTE (-1068))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1068)))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1068))) (-12 (|HasCategory| (-142) (QUOTE (-1068))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-836))))) +(-577 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-576 |Coef|) +(-578 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))) (|HasCategory| (-535) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535)))))) -(-577 |Coef|) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))) (|HasCategory| (-550) (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550)))))) +(-579 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4331 |has| |#1| (-542)) (-4330 |has| |#1| (-542)) ((-4338 "*") |has| |#1| (-542)) (-4329 |has| |#1| (-542)) (-4333 . T)) +((-4337 |has| |#1| (-542)) (-4336 |has| |#1| (-542)) ((-4344 "*") |has| |#1| (-542)) (-4335 |has| |#1| (-542)) (-4339 . T)) ((|HasCategory| |#1| (QUOTE (-542)))) -(-578 A B) +(-580 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-579 A B C) +(-581 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-580 R -3416 FG) +(-582 R -3260 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-581 S) +(-583 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-582 R |mn|) +(-584 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-583 S |Index| |Entry|) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-585 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-823))) (|HasAttribute| |#1| (QUOTE -4336)) (|HasCategory| |#3| (QUOTE (-1067)))) -(-584 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4343)) (|HasCategory| |#2| (QUOTE (-825))) (|HasAttribute| |#1| (QUOTE -4342)) (|HasCategory| |#3| (QUOTE (-1068)))) +(-586 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2359 . T)) +((-1964 . T)) NIL -(-585) +(-587) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) NIL NIL -(-586) +(-588) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-587 R A) +(-589 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4333 -3874 (-3179 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))) (-4331 . T) (-4330 . T)) -((-3874 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) -(-588 |Entry|) +((-4339 -1561 (-1262 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))) (-4337 . T) (-4336 . T)) +((-1561 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) +(-590 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| (-1124) (QUOTE (-823))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -593) (QUOTE (-835))))) -(-589 S |Key| |Entry|) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (QUOTE (-1126))) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| (-1126) (QUOTE (-825))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (LIST (QUOTE -595) (QUOTE (-836))))) +(-591 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-590 |Key| |Entry|) +(-592 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4337 . T) (-2359 . T)) -NIL -(-591 S) -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) +((-4343 . T) (-1964 . T)) NIL -((|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) -(-592 R S) +(-593 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-593 S) +(-594 S) +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) +NIL +((|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) +(-595 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-594 S) +(-596 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-595 -3416 UP) +(-597 -3260 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-596) +(-598) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-597 A R S) -((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-821)))) -(-598 S R) +(-599 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-599 R) +(-600 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4333 . T)) +((-4339 . T)) NIL -(-600 R -3416) +(-601 A R S) +((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-823)))) +(-602 R -3260) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-601 R UP) +(-603 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4329 . T) (-4333 . T)) -((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) -(-602 R E V P TS ST) +((-4337 . T) (-4336 . T) ((-4344 "*") . T) (-4335 . T) (-4339 . T)) +((|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) +(-604 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-603 OV E Z P) +(-605 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-604) +(-606) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-605 |VarSet| R |Order|) +(-607 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4333 . T)) +((-4339 . T)) NIL -(-606 R |ls|) +(-608 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-607 R -3416) -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) +(-609) +((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-608) -((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) +(-610 R -3260) +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-609 |lv| -3416) +(-611 |lv| -3260) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-610) +(-612) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -2184) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-1124) (QUOTE (-823))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835))))) -(-611 R A) -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4333 -3874 (-3179 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))) (-4331 . T) (-4330 . T)) -((-3874 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) -(-612 S R) +((-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (QUOTE (-1126))) (LIST (QUOTE |:|) (QUOTE -2119) (QUOTE (-52))))))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-52) (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-52) (QUOTE (-1068))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| (-52) (QUOTE (-1068))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-1126) (QUOTE (-825))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-52) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836))))) +(-613 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-356)))) -(-613 R) +(-614 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4331 . T) (-4330 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4337 . T) (-4336 . T)) NIL -(-614 R FE) -((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) +(-615 R A) +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) +((-4339 -1561 (-1262 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))) (-4337 . T) (-4336 . T)) +((-1561 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) +(-616 R FE) +((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-615 R) -((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) +(-617 R) +((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-616 S R) +(-618 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3659 (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-356)))) -(-617 R) +((-3462 (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-356)))) +(-619 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4333 . T)) -NIL -(-618 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-619 A B) -((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) -NIL +((-4339 . T)) NIL (-620 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-621 A B C) +(-621 A B) +((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) +NIL +NIL +(-622 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-622 T$) +(-623 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-624 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-623 S) +(-625 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-624 R) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-626 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-625 S E |un|) +(-627 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-626 A S) +(-628 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4337))) -(-627 S) +((|HasAttribute| |#1| (QUOTE -4343))) +(-629 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2359 . T)) +((-1964 . T)) NIL -(-628 M R S) -((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4331 . T) (-4330 . T)) -((|HasCategory| |#1| (QUOTE (-767)))) -(-629 R -3416 L) +(-630 R -3260 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-630 A -2739) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) (-631 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) +((-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) (-632 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) +((-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) (-633 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-356)))) (-634 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4330 . T) (-4331 . T) (-4333 . T)) +((-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-635 -3416 UP) +(-635 -3260 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-636 A L) +(-636 A -4208) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) +((-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) +(-637 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-637 S) +(-638 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-638) +(-639) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-639 R) +(-640 M R S) +((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4337 . T) (-4336 . T)) +((|HasCategory| |#1| (QUOTE (-769)))) +(-641 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-640 |VarSet| R) +(-642 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4331 . T) (-4330 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4337 . T) (-4336 . T)) ((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-170)))) -(-641 A S) +(-643 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-642 S) +(-644 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-643 -3416 |Row| |Col| M) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-645 -3260) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-644 -3416) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-646 -3260 |Row| |Col| M) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-645 R E OV P) +(-647 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-646 |n| R) +(-648 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4333 . T) (-4336 . T) (-4330 . T) (-4331 . T)) -((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4338 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-542))) (-3874 (|HasAttribute| |#2| (QUOTE (-4338 #1#))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-170)))) -(-647) +((-4339 . T) (-4342 . T) (-4336 . T) (-4337 . T)) +((|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4344 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (-1561 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-542))) (-1561 (|HasAttribute| |#2| (QUOTE (-4344 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-170)))) +(-649) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-648 |VarSet|) +(-650 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-649 A S) +(-651 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-650 S) +(-652 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2359 . T)) +((-1964 . T)) NIL -(-651 R) +(-653 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-652) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-654) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-653 |VarSet|) +(-655 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-654 A) +(-656 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-655 A C) +(-657 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-656 A B C) +(-658 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-657) +(-659) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-658 A) +(-660 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-659 A C) +(-661 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-660 A B C) +(-662 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-661 S R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -NIL -((|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-542)))) -(-662 R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4336 . T) (-4337 . T) (-2359 . T)) -NIL (-663 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-664 R |Row| |Col| M) +(-664 S R |Row| |Col|) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +NIL +((|HasAttribute| |#2| (QUOTE (-4344 "*"))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-542)))) +(-665 R |Row| |Col|) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +((-4342 . T) (-4343 . T) (-1964 . T)) +NIL +(-666 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542)))) -(-665 R) +(-667 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4336 . T) (-4337 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-666 R) +((-4342 . T) (-4343 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4344 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-668 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-667 T$) +(-669 T$) ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-668 S -3416 FLAF FLAS) +(-670 S -3260 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-669 R Q) +(-671 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-670) +(-672) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4329 . T) (-4334 |has| (-675) (-356)) (-4328 |has| (-675) (-356)) (-1420 . T) (-4335 |has| (-675) (-6 -4335)) (-4332 |has| (-675) (-6 -4332)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-675) (QUOTE (-145))) (|HasCategory| (-675) (QUOTE (-143))) (|HasCategory| (-675) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-675) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-675) (QUOTE (-361))) (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-675) (QUOTE (-227))) (-3874 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-343)))) (|HasCategory| (-675) (QUOTE (-343))) (|HasCategory| (-675) (LIST (QUOTE -279) (QUOTE (-675)) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -302) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-675) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-675) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-675) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (-3874 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-343)))) (|HasCategory| (-675) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-675) (QUOTE (-991))) (|HasCategory| (-675) (QUOTE (-1164))) (-12 (|HasCategory| (-675) (QUOTE (-973))) (|HasCategory| (-675) (QUOTE (-1164)))) (-3874 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (-12 (|HasCategory| (-675) (QUOTE (-343))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-356)))) (-3874 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (-12 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-881)))) (-12 (|HasCategory| (-675) (QUOTE (-343))) (|HasCategory| (-675) (QUOTE (-881))))) (|HasCategory| (-675) (QUOTE (-534))) (-12 (|HasCategory| (-675) (QUOTE (-1027))) (|HasCategory| (-675) (QUOTE (-1164)))) (|HasCategory| (-675) (QUOTE (-1027))) (-3874 (|HasCategory| (-675) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-675) (QUOTE (-356)))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881))) (-3874 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-356)))) (-3874 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-542)))) (-12 (|HasCategory| (-675) (QUOTE (-227))) (|HasCategory| (-675) (QUOTE (-356)))) (-12 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| (-675) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-675) (QUOTE (-823))) (|HasCategory| (-675) (QUOTE (-542))) (|HasAttribute| (-675) (QUOTE -4335)) (|HasAttribute| (-675) (QUOTE -4332)) (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-143)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-343))))) -(-671 S) +((-4335 . T) (-4340 |has| (-677) (-356)) (-4334 |has| (-677) (-356)) (-2738 . T) (-4341 |has| (-677) (-6 -4341)) (-4338 |has| (-677) (-6 -4338)) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-677) (QUOTE (-145))) (|HasCategory| (-677) (QUOTE (-143))) (|HasCategory| (-677) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-677) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-677) (QUOTE (-361))) (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-677) (QUOTE (-227))) (-1561 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-342)))) (|HasCategory| (-677) (QUOTE (-342))) (|HasCategory| (-677) (LIST (QUOTE -279) (QUOTE (-677)) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -302) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -505) (QUOTE (-1144)) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| (-677) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| (-677) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| (-677) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (-1561 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-342)))) (|HasCategory| (-677) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-677) (QUOTE (-995))) (|HasCategory| (-677) (QUOTE (-1166))) (-12 (|HasCategory| (-677) (QUOTE (-975))) (|HasCategory| (-677) (QUOTE (-1166)))) (-1561 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-882)))) (|HasCategory| (-677) (QUOTE (-356))) (-12 (|HasCategory| (-677) (QUOTE (-342))) (|HasCategory| (-677) (QUOTE (-882))))) (-1561 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-882)))) (-12 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-882)))) (-12 (|HasCategory| (-677) (QUOTE (-342))) (|HasCategory| (-677) (QUOTE (-882))))) (|HasCategory| (-677) (QUOTE (-535))) (-12 (|HasCategory| (-677) (QUOTE (-1029))) (|HasCategory| (-677) (QUOTE (-1166)))) (|HasCategory| (-677) (QUOTE (-1029))) (-1561 (|HasCategory| (-677) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-677) (QUOTE (-356)))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-882))) (-1561 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-882)))) (|HasCategory| (-677) (QUOTE (-356)))) (-1561 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-882)))) (|HasCategory| (-677) (QUOTE (-542)))) (-12 (|HasCategory| (-677) (QUOTE (-227))) (|HasCategory| (-677) (QUOTE (-356)))) (-12 (|HasCategory| (-677) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-677) (QUOTE (-356)))) (|HasCategory| (-677) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-677) (QUOTE (-825))) (|HasCategory| (-677) (QUOTE (-542))) (|HasAttribute| (-677) (QUOTE -4341)) (|HasAttribute| (-677) (QUOTE -4338)) (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-882)))) (|HasCategory| (-677) (QUOTE (-143)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-882)))) (|HasCategory| (-677) (QUOTE (-342))))) +(-673 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4337 . T) (-2359 . T)) +((-4343 . T) (-1964 . T)) NIL -(-672 U) +(-674 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-673) -((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) +(-675) +((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-674 OV E -3416 PG) +(-676 OV E -3260 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-675) +(-677) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4112 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-2001 . T) (-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-676 R) +(-678 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-677) +(-679) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4335 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4341 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-678 S D1 D2 I) +(-680 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-679 S) +(-681 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-680 S) +(-682 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-681 S) +(-683 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-682 S T$) +(-684 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-683 S -2990 I) +(-685 S -4183 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-684 E OV R P) +(-686 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-685 R) +(-687 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4330 . T) (-4331 . T) (-4333 . T)) +((-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-686 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-688 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-687) +(-689) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-688 R |Mod| -2145 -3855 |exactQuo|) +(-690 R |Mod| -2824 -1832 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-689 R |Rep|) +(-691 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-343))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-690 IS E |ff|) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4338 |has| |#1| (-356)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-342))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-692 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-691 R M) +(-693 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) (-4333 . T)) +((-4337 |has| |#1| (-170)) (-4336 |has| |#1| (-170)) (-4339 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) -(-692 R |Mod| -2145 -3855 |exactQuo|) +(-694 R |Mod| -2824 -1832 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4333 . T)) +((-4339 . T)) NIL -(-693 S R) +(-695 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-694 R) +(-696 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4331 . T) (-4330 . T)) +((-4337 . T) (-4336 . T)) NIL -(-695 -3416) +(-697 -3260) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4333 . T)) +((-4339 . T)) NIL -(-696 S) +(-698 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-697) +(-699) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-698 S) +(-700 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-699) +(-701) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-700 S R UP) +(-702 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361)))) -(-701 R UP) +((|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361)))) +(-703 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4329 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-702 S) +(-704 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-703) +(-705) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-704 -3416 UP) +(-706 -3260 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-705 |VarSet| E1 E2 R S PR PS) +(-707 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-706 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-708 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-707 E OV R PPR) +(-709 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-708 |vl| R) +(-710 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-881))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-709 E OV R PRF) +(((-4344 "*") |has| |#2| (-170)) (-4335 |has| |#2| (-542)) (-4340 |has| |#2| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-882))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-838 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4340)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-711 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-710 E OV R P) +(-712 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-711 R S M) +(-713 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-712 R M) +(-714 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) (-4333 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-823)))) -(-713 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4336 . T) (-4326 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-714 S) +((-4337 |has| |#1| (-170)) (-4336 |has| |#1| (-170)) (-4339 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-825)))) +(-715 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4326 . T) (-4337 . T) (-2359 . T)) +((-4332 . T) (-4343 . T) (-1964 . T)) NIL -(-715) +(-716 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-4342 . T) (-4332 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-717) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-716 S) +(-718 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-717 |Coef| |Var|) +(-719 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4331 . T) (-4330 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4337 . T) (-4336 . T) (-4339 . T)) NIL -(-718 OV E R P) +(-720 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-719 E OV R P) +(-721 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-720 S R) +(-722 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-721 R) +(-723 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4331 . T) (-4330 . T)) +((-4337 . T) (-4336 . T)) NIL -(-722) +(-724) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-723) +(-725) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-724) +(-726) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-725) +(-727) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-726) +(-728) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-727) +(-729) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-728) +(-730) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-729) +(-731) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-730) +(-732) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-731) +(-733) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-732) +(-734) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-733) +(-735) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-734) +(-736) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-735) +(-737) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-736) +(-738) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-737 S) +(-739 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-738) +(-740) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-739 S) +(-741 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-740) +(-742) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-741 |Par|) +(-743 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-742 -3416) +(-744 -3260) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-743 P -3416) +(-745 P -3260) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-744 UP -3416) +(-746 UP -3260) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-745) +(-747) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-746 R) +(-748 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-747) +(-749) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4338 "*") . T)) +(((-4344 "*") . T)) NIL -(-748 R -3416) +(-750 R -3260) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-749) -((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) +(-751 S) +((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-750 S) -((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) +(-752) +((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-751 R |PolR| E |PolE|) +(-753 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-752 R E V P TS) +(-754 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-753 -3416 |ExtF| |SUEx| |ExtP| |n|) +(-755 -3260 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-754 BP E OV R P) +(-756 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-755 |Par|) +(-757 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-756 R |VarSet|) +(-758 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142))))) (-3874 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))))) (-3874 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-3659 (|HasCategory| |#1| (QUOTE (-534)))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-535))))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-535))))))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-757 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-758 R S) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1144))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1144))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1144)))) (-3462 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1144)))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1144)))) (-3462 (|HasCategory| |#1| (QUOTE (-535)))) (-3462 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1144)))) (-3462 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550))))) (-3462 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1144)))) (-3462 (|HasCategory| |#1| (LIST (QUOTE -965) (QUOTE (-550))))))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-759 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-759 R) +(-760 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4338 |has| |#1| (-356)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-761 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) -(-760 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) +(-762 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-761 S) +(-763 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-170)))) -(-762) +((-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-170)))) +(-764) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-763) +(-765) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-764) +(-766) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-765) +(-767) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-766 |Curve|) +(-768 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-767) +(-769) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-768) +(-770) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-769) +(-771) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-770) +(-772) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-771 S R) -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -NIL -((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-361)))) -(-772 R) -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4330 . T) (-4331 . T) (-4333 . T)) -NIL (-773) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-774 R) -((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-3874 (|HasCategory| (-967 |#1|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-967 |#1|) (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-967 |#1|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-967 |#1|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) -(-775 -3874 R OS S) +(-774 S R) +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) +NIL +((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-1029))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-361)))) +(-775 R) +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) +((-4336 . T) (-4337 . T) (-4339 . T)) +NIL +(-776 -1561 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-776) +(-777 R) +((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) +((-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-1561 (|HasCategory| (-972 |#1|) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1561 (|HasCategory| (-972 |#1|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-972 |#1|) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-972 |#1|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) +(-778) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-777 R -3416 L) +(-779 R -3260 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-778 R -3416) -((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) +(-780 R -3260) +((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-779) +(-781) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-780 R -3416) +(-782 R -3260) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-781) +(-783) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-782 -3416 UP UPUP R) +(-784 -3260 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-783 -3416 UP L LQ) +(-785 -3260 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-784) +(-786) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-785 -3416 UP L LQ) +(-787 -3260 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-786 -3416 UP) -((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) +(-788 -3260 UP) +((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-787 -3416 L UP A LO) +(-789 -3260 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-788 -3416 UP) +(-790 -3260 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-789 -3416 LO) +(-791 -3260 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-790 -3416 LODO) +(-792 -3260 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-791 -2938 S |f|) +(-793 -3873 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-3874 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) -(-792 R) +((-4336 |has| |#2| (-1020)) (-4337 |has| |#2| (-1020)) (-4339 |has| |#2| (-6 -4339)) ((-4344 "*") |has| |#2| (-170)) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (QUOTE (-356))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-771))) (-1561 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1020)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068))))) (-1561 (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-1561 (|HasCategory| |#2| (QUOTE (-1020))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasAttribute| |#2| (QUOTE -4339)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) +(-794 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-793 |Kernels| R |var|) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-796 (-1144)) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-796 (-1144)) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-796 (-1144)) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-796 (-1144)) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-796 (-1144)) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-795 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4338 "*") |has| |#2| (-356)) (-4329 |has| |#2| (-356)) (-4334 |has| |#2| (-356)) (-4328 |has| |#2| (-356)) (-4333 . T) (-4331 . T) (-4330 . T)) +(((-4344 "*") |has| |#2| (-356)) (-4335 |has| |#2| (-356)) (-4340 |has| |#2| (-356)) (-4334 |has| |#2| (-356)) (-4339 . T) (-4337 . T) (-4336 . T)) ((|HasCategory| |#2| (QUOTE (-356)))) -(-794 S) +(-796 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-795 S) +(-797 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-796) -((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -NIL -(-797) -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) -NIL -NIL (-798) -((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) -NIL +((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL (-799) -((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) +((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL (-800) -((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) +((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL (-801) -((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) +((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL (-802) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-803 R) +(-803) +((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) +NIL +NIL +(-804 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-804 P R) +(-805 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4330 . T) (-4331 . T) (-4333 . T)) +((-4336 . T) (-4337 . T) (-4339 . T)) ((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-227)))) -(-805) +(-806) +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) +NIL +NIL +(-807) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-806 S) +(-808 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4336 . T) (-4326 . T) (-4337 . T) (-2359 . T)) +((-4342 . T) (-4332 . T) (-4343 . T) (-1964 . T)) NIL -(-807) +(-809) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-808 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4333 |has| |#1| (-821))) -((|HasCategory| |#1| (QUOTE (-821))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-534))) (-3874 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-809 R S) +(-810 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-810 R) +(-811 R) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4339 |has| |#1| (-823))) +((|HasCategory| |#1| (QUOTE (-823))) (-1561 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-535))) (-1561 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-812 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) (-4333 . T)) +((-4337 |has| |#1| (-170)) (-4336 |has| |#1| (-170)) (-4339 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) -(-811) +(-813) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-812) +(-814) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-813) +(-815) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-814) +(-816) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-815 R) -((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4333 |has| |#1| (-821))) -((|HasCategory| |#1| (QUOTE (-821))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-534))) (-3874 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-816 R S) +(-817 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-817) +(-818 R) +((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) +((-4339 |has| |#1| (-823))) +((|HasCategory| |#1| (QUOTE (-823))) (-1561 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-535))) (-1561 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-819) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-818 -2938 S) +(-820 -3873 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-819) +(-821) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-820 S) +(-822 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-821) +(-823) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4333 . T)) +((-4339 . T)) NIL -(-822 S) +(-824 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-823) +(-825) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-824 S R) +(-826 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170)))) -(-825 R) +(-827 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4330 . T) (-4331 . T) (-4333 . T)) +((-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-826 R C) +(-828 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) -(-827 R |sigma| -3578) +(-829 R |sigma| -3754) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-828 |x| R |sigma| -3578) +((-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) +(-830 |x| R |sigma| -3754) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-356)))) -(-829 R) +((-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-356)))) +(-831 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) -(-830) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) +(-832) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-831) +(-833) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-832) -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) -NIL -NIL -(-833 S) +(-834 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-834) +(-835) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-835) +(-836) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-836 |VariableList|) +(-837) +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +NIL +NIL +(-838 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-837 R |vl| |wl| |wtlevel|) +(-839 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) (-4333 . T)) +((-4337 |has| |#1| (-170)) (-4336 |has| |#1| (-170)) (-4339 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) -(-838 R PS UP) +(-840 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-839 R |x| |pt|) +(-841 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-840 |p|) -((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -NIL -(-841 |p|) +(-842 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-842 |p|) +(-843 |p|) +((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +NIL +(-844 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-840 |#1|) (QUOTE (-881))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-840 |#1|) (QUOTE (-143))) (|HasCategory| (-840 |#1|) (QUOTE (-145))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-840 |#1|) (QUOTE (-991))) (|HasCategory| (-840 |#1|) (QUOTE (-796))) (-3874 (|HasCategory| (-840 |#1|) (QUOTE (-796))) (|HasCategory| (-840 |#1|) (QUOTE (-823)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-840 |#1|) (QUOTE (-1117))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-840 |#1|) (QUOTE (-227))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -840) (|devaluate| |#1|)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -840) (|devaluate| |#1|)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -840) (|devaluate| |#1|)) (LIST (QUOTE -840) (|devaluate| |#1|)))) (|HasCategory| (-840 |#1|) (QUOTE (-300))) (|HasCategory| (-840 |#1|) (QUOTE (-534))) (|HasCategory| (-840 |#1|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-840 |#1|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-840 |#1|) (QUOTE (-881)))) (|HasCategory| (-840 |#1|) (QUOTE (-143))))) -(-843 |p| PADIC) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-843 |#1|) (QUOTE (-882))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| (-843 |#1|) (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-145))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-843 |#1|) (QUOTE (-995))) (|HasCategory| (-843 |#1|) (QUOTE (-798))) (-1561 (|HasCategory| (-843 |#1|) (QUOTE (-798))) (|HasCategory| (-843 |#1|) (QUOTE (-825)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-843 |#1|) (QUOTE (-1119))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-843 |#1|) (QUOTE (-227))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -505) (QUOTE (-1144)) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -843) (|devaluate| |#1|)) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (QUOTE (-300))) (|HasCategory| (-843 |#1|) (QUOTE (-535))) (|HasCategory| (-843 |#1|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-882)))) (|HasCategory| (-843 |#1|) (QUOTE (-143))))) +(-845 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-796))) (-3874 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-844 S T$) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-882))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-798))) (-1561 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-846 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3874 (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))))) -(-845) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))))) +(-847) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-846) +(-848) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-847 CF1 CF2) +(-849 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-848 |ComponentFunction|) +(-850 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-849 CF1 CF2) +(-851 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-850 |ComponentFunction|) +(-852 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-851) +(-853) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-852 CF1 CF2) +(-854 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-853 |ComponentFunction|) +(-855 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-854) +(-856) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-855 R) +(-857 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-856 R S L) +(-858 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-857 S) +(-859 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-858 |Base| |Subject| |Pat|) +(-860 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3659 (|HasCategory| |#2| (QUOTE (-1018)))) (-3659 (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (-3659 (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) -(-859 R S) -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) -NIL -NIL -(-860 R A B) +((-12 (-3462 (|HasCategory| |#2| (QUOTE (-1020)))) (-3462 (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-1144)))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (-3462 (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-1144)))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-1144))))) +(-861 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-861 R) -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +(-862 R S) +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-862 R -2990) +(-863 R -4183) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-863 R S) +(-864 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-864 |VarSet|) +(-865 R) +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +NIL +NIL +(-866 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-865 UP R) +(-867 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-866) +(-868) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-867 UP -3416) +(-869 UP -3260) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-868) +(-870) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-869) +(-871) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-870 A S) +(-872 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-871 S) +(-873 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4333 . T)) +((-4339 . T)) NIL -(-872 S) +(-874 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-873 S) -((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4333 . T)) -((-3874 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-823)))) -(-874 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-875 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-875 S) +(-876 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4333 . T)) +((-4339 . T)) NIL -(-876 S) +(-877 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-877 |p|) -((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361)))) -(-878 R E |VarSet| S) +(-878 S) +((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) +((-4339 . T)) +((-1561 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-825)))) +(-879 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-879 R S) +(-880 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-880 S) +(-881 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-143)))) -(-881) +(-882) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-882 R0 -3416 UP UPUP R) +(-883 |p|) +((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361)))) +(-884 R0 -3260 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-883 UP UPUP R) +(-885 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-884 UP UPUP) +(-886 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-885 R) +(-887 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-886 R) +(-888 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-887 E OV R P) +(-889 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-888) +(-890) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-889 -3416) +(-891 -3260) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-890) -((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4338 "*") . T)) -NIL -(-891 R) +(-892 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-892) +(-893) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -NIL -(-893 |xx| -3416) -((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL +(-894) +((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) +(((-4344 "*") . T)) NIL -(-894 -3416 P) +(-895 -3260 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-895 R |Var| |Expon| GR) -((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) +(-896 |xx| -3260) +((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-896) -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) +(-897 R |Var| |Expon| GR) +((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-897 S) +(-898 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-898) +(-899) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-899) -((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) +(-900) +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-900) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +(-901) +((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-901 R -3416) +(-902 R -3260) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-902 S A B) +(-903) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +NIL +NIL +(-904 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-903 S R -3416) +(-905 S R -3260) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-904 I) +(-906 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-905 S E) +(-907 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-906 S R L) +(-908 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-907 S E V R P) +(-909 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -857) (|devaluate| |#1|)))) -(-908 -2990) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) +((|HasCategory| |#3| (LIST (QUOTE -859) (|devaluate| |#1|)))) +(-910 R -3260 -4183) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-909 R -3416 -2990) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) +(-911 -4183) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-910 S R Q) +(-912 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-911 S) +(-913 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-912 S R P) +(-914 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-913) +(-915) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-914 R) +(-916 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-915 |lv| R) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-917 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-916 |TheField| |ThePols|) +(-918 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-821)))) -(-917 R) -((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1142) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1142) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1142) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1142) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1142) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-918 R S) +((|HasCategory| |#1| (QUOTE (-823)))) +(-919 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-919 |x| R) +(-920 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-920 S R E |VarSet|) +(-921 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-881))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#4| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#4| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-823)))) -(-921 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-882))) (|HasAttribute| |#2| (QUOTE -4340)) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#4| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-825)))) +(-922 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) NIL -(-922 E V R P -3416) +(-923 E V R P -3260) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-923 E |Vars| R P S) +(-924 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-924 E V R P -3416) +(-925 R) +((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1144) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-1144) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-1144) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-1144) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-1144) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-926 E V R P -3260) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-444)))) -(-925) +(-927) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-926) +(-928) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-927 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-130)))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334))) -(-928 R L) +(-929 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-929 S) -((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (-930 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-931) +(-931 S) +((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-932) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-932 -3416) +(-933 -3260) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-933 I) +(-934 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-934) +(-935) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-935 A B) +(-936 R E) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-130)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4340))) +(-937 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4333 -12 (|has| |#2| (-465)) (|has| |#1| (-465)))) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703))))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-823))))) -(-936) +((-4339 -12 (|has| |#2| (-465)) (|has| |#1| (-465)))) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771))))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-825))))) +(-938) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-937 T$) +(-939 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL NIL -(-938) +(-940) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-939 S) +(-941 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4336 . T) (-4337 . T) (-2359 . T)) +((-4342 . T) (-4343 . T) (-1964 . T)) NIL -(-940 R |polR|) +(-942 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-444)))) -(-941) +(-943) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-942) +(-944) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-943 S |Coef| |Expon| |Var|) +(-945 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-944 |Coef| |Expon| |Var|) +(-946 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-945) +(-947) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-946 S R E |VarSet| P) +(-948 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-542)))) -(-947 R E |VarSet| P) +(-949 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4336 . T) (-2359 . T)) +((-4342 . T) (-1964 . T)) NIL -(-948 R E V P) +(-950 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-444)))) -(-949 K) +(-951 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-950 |VarSet| E RC P) +(-952 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-951 R) +(-953 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-952 R1 R2) +(-954 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-953 R) +(-955 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-954 K) +(-956 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-955 R E OV PPR) +(-957 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-956 K R UP -3416) +(-958 K R UP -3260) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-957 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) -NIL -((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300))))) -(-958 |vl| |nv|) +(-959 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-959 R E V P TS) +(-960 R |Var| |Expon| |Dpoly|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) +NIL +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300))))) +(-961 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-960) +(-962) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-961 A S) -((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -NIL -((|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1117)))) -(-962 S) -((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2359 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -NIL (-963 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-964 |n| K) +(-964 A S) +((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) +NIL +((|HasCategory| |#2| (QUOTE (-882))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1119)))) +(-965 S) +((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) +((-1964 . T) (-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +NIL +(-966 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-965) +(-967) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-966 S) +(-968 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4336 . T) (-4337 . T) (-2359 . T)) +((-4342 . T) (-4343 . T) (-1964 . T)) NIL -(-967 R) -((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4329 |has| |#1| (-283)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-534))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) -(-968 S R) +(-969 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-283)))) -(-969 R) +((|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-1029))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-283)))) +(-970 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4329 |has| |#1| (-283)) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 |has| |#1| (-283)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-970 QR R QS S) +(-971 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-971 S) +(-972 R) +((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) +((-4335 |has| |#1| (-283)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-535))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356))))) +(-973 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-972 S) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-974 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-973) +(-975) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-974 -3416 UP UPUP |radicnd| |n|) +(-976 -3260 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4329 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) (-4328 |has| (-400 |#2|) (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-343))) (-3874 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-3874 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (-3874 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-343))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3874 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) -(-975 |bb|) +((-4335 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-342))) (-1561 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-1561 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (-1561 (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-400 |#2|) (QUOTE (-342))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1561 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) +(-977 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-535) (QUOTE (-881))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-535) (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-145))) (|HasCategory| (-535) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-991))) (|HasCategory| (-535) (QUOTE (-796))) (-3874 (|HasCategory| (-535) (QUOTE (-796))) (|HasCategory| (-535) (QUOTE (-823)))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-1117))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-535) (QUOTE (-227))) (|HasCategory| (-535) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-535) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -302) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -279) (QUOTE (-535)) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-300))) (|HasCategory| (-535) (QUOTE (-534))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-535) (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (|HasCategory| (-535) (QUOTE (-143))))) -(-976) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-550) (QUOTE (-882))) (|HasCategory| (-550) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| (-550) (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-995))) (|HasCategory| (-550) (QUOTE (-798))) (-1561 (|HasCategory| (-550) (QUOTE (-798))) (|HasCategory| (-550) (QUOTE (-825)))) (|HasCategory| (-550) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1119))) (|HasCategory| (-550) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| (-550) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-227))) (|HasCategory| (-550) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| (-550) (LIST (QUOTE -505) (QUOTE (-1144)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -302) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -279) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-300))) (|HasCategory| (-550) (QUOTE (-535))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-550) (LIST (QUOTE -619) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-550) (QUOTE (-882)))) (|HasCategory| (-550) (QUOTE (-143))))) +(-978) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-977) +(-979) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-978 RP) +(-980 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-979 S) +(-981 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-980 A S) +(-982 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-1067)))) -(-981 S) +((|HasAttribute| |#1| (QUOTE -4343)) (|HasCategory| |#2| (QUOTE (-1068)))) +(-983 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2359 . T)) +((-1964 . T)) NIL -(-982 S) +(-984 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-983) +(-985) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4329 . T) (-4334 . T) (-4328 . T) (-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4333 . T)) +((-4335 . T) (-4340 . T) (-4334 . T) (-4337 . T) (-4336 . T) ((-4344 "*") . T) (-4339 . T)) NIL -(-984 R -3416) +(-986 R -3260) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-985 R -3416) +(-987 R -3260) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-986 -3416 UP) +(-988 -3260 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-987 -3416 UP) +(-989 -3260 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-988 S) +(-990 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-989 F1 UP UPUP R F2) +(-991 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-990) +(-992) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-991) -((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) -NIL -NIL -(-992 |Pol|) +(-993 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-993 |Pol|) +(-994 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-994) +(-995) +((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) +NIL +NIL +(-996) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-995 |TheField|) +(-997 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4329 . T) (-4334 . T) (-4328 . T) (-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4333 . T)) -((-3874 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-400 (-535)) (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-400 (-535)) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 (-535)) (LIST (QUOTE -1009) (QUOTE (-535))))) -(-996 -3416 L) +((-4335 . T) (-4340 . T) (-4334 . T) (-4337 . T) (-4336 . T) ((-4344 "*") . T) (-4339 . T)) +((-1561 (|HasCategory| (-400 (-550)) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-400 (-550)) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-400 (-550)) (LIST (QUOTE -1011) (QUOTE (-550))))) +(-998 -3260 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-997 S) +(-999 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1067)))) -(-998 R E V P) +((|HasCategory| |#1| (QUOTE (-1068)))) +(-1000 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835))))) -(-999) -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) -NIL -NIL -(-1000 R) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1001 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4338 "*")))) -(-1001 R) +((|HasAttribute| |#1| (QUOTE (-4344 "*")))) +(-1002 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300)))) -(-1002 S) +(-1003 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1003 S) +(-1004) +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) +NIL +NIL +(-1005 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1004 S) +(-1006 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1005 -3416 |Expon| |VarSet| |FPol| |LFPol|) +(-1007 -3260 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1006) +(-1008) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1142))) (LIST (QUOTE |:|) (QUOTE -2184) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067))) (|HasCategory| (-1142) (QUOTE (-823))) (|HasCategory| (-51) (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835))))) -(-1007) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (QUOTE (-1144))) (LIST (QUOTE |:|) (QUOTE -2119) (QUOTE (-52))))))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-52) (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-52) (QUOTE (-1068))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| (-52) (QUOTE (-1068))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-1144) (QUOTE (-825))) (|HasCategory| (-52) (QUOTE (-1068))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836))))) +(-1009) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1008 A S) +(-1010 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1009 S) +(-1011 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1010 Q R) +(-1012 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1011 R) -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) -NIL -NIL -(-1012) +(-1013) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1013 UP) +(-1014 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1014 R) +(-1015 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1015 R |ls|) +(-1016 R) +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +NIL +NIL +(-1017 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| (-756 |#1| (-836 |#2|)) (QUOTE (-1067))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -756) (|devaluate| |#1|) (LIST (QUOTE -836) (|devaluate| |#2|)))))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-756 |#1| (-836 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-836 |#2|) (QUOTE (-361))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -593) (QUOTE (-835))))) -(-1016) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| (-758 |#1| (-838 |#2|)) (QUOTE (-1068))) (|HasCategory| (-758 |#1| (-838 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -758) (|devaluate| |#1|) (LIST (QUOTE -838) (|devaluate| |#2|)))))) (|HasCategory| (-758 |#1| (-838 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-758 |#1| (-838 |#2|)) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-838 |#2|) (QUOTE (-361))) (|HasCategory| (-758 |#1| (-838 |#2|)) (LIST (QUOTE -595) (QUOTE (-836))))) +(-1018) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1017 S) +(-1019 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1018) +(-1020) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4333 . T)) +((-4339 . T)) NIL -(-1019 |xx| -3416) +(-1021 |xx| -3260) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1020 S |m| |n| R |Row| |Col|) +(-1022 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-300))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-542))) (|HasCategory| |#4| (QUOTE (-170)))) -(-1021 |m| |n| R |Row| |Col|) +(-1023 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4336 . T) (-2359 . T) (-4331 . T) (-4330 . T)) +((-4342 . T) (-1964 . T) (-4337 . T) (-4336 . T)) NIL -(-1022 |m| |n| R) +(-1024 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4336 . T) (-4331 . T) (-4330 . T)) -((-3874 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-300))) (|HasCategory| |#3| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-835)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) -(-1023 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4342 . T) (-4337 . T) (-4336 . T)) +((-1561 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-300))) (|HasCategory| |#3| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-836)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) +(-1025 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1024 R) +(-1026 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1025) +(-1027) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1026 S) +(-1028 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1027) +(-1029) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1028 |TheField| |ThePolDom|) +(-1030 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1029) +(-1031) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4324 . T) (-4328 . T) (-4323 . T) (-4334 . T) (-4335 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4330 . T) (-4334 . T) (-4329 . T) (-4340 . T) (-4341 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1030) +(-1032) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1142))) (LIST (QUOTE |:|) (QUOTE -2184) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067))) (|HasCategory| (-1142) (QUOTE (-823))) (|HasCategory| (-51) (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835))))) -(-1031 S R E V) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (QUOTE (-1144))) (LIST (QUOTE |:|) (QUOTE -2119) (QUOTE (-52))))))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-52) (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-52) (QUOTE (-1068))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| (-52) (QUOTE (-1068))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (QUOTE (-1068))) (|HasCategory| (-1144) (QUOTE (-825))) (|HasCategory| (-52) (QUOTE (-1068))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-52) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (LIST (QUOTE -595) (QUOTE (-836))))) +(-1033 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-1142))))) -(-1032 R E V) +((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -965) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-1144))))) +(-1034 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) NIL -(-1033) +(-1035) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1034 S |TheField| |ThePols|) +(-1036 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1035 |TheField| |ThePols|) +(-1037 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1036 R E V P TS) +(-1038 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1037 S R E V P) +(-1039 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1038 R E V P) +(-1040 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-1039 R E V P TS) +(-1041 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1040) +(-1042) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1041 |Base| R -3416) -((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) +(-1043 |f|) +((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1042 |f|) -((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) +(-1044 |Base| R -3260) +((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1043 |Base| R -3416) +(-1045 |Base| R -3260) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1044 R |ls|) +(-1046 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1045 R UP M) -((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4329 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-343)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))))) -(-1046 UP SAE UPA) +(-1047 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1047 UP SAE UPA) +(-1048 R UP M) +((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) +((-4335 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-342)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144))))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))))) +(-1049 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1048) +(-1050) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1049) +(-1051) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1050 S) +(-1052 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1051) +(-1053) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1052 R) +(-1054 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1053 R) +(-1055 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1054 S) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1056 (-1144)) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-1056 (-1144)) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-1056 (-1144)) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-1056 (-1144)) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-1056 (-1144)) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1056 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1055 S) -((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) -NIL -((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1067)))) -(-1056 R S) +(-1057 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-821)))) -(-1057) +((|HasCategory| |#1| (QUOTE (-823)))) +(-1058) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1058 S) -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) -NIL -((|HasCategory| |#1| (QUOTE (-1067)))) (-1059 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL (-1060 S) +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) +NIL +((|HasCategory| |#1| (QUOTE (-1068)))) +(-1061 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2359 . T)) +((-1964 . T)) +NIL +(-1062 S) +((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -(-1061 S L) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1068)))) +(-1063 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2359 . T)) +((-1964 . T)) NIL -(-1062) +(-1064) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1063 S) -((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4336 . T) (-4326 . T) (-4337 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1064 A S) +(-1065 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1065 S) +(-1066 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4326 . T) (-2359 . T)) +((-4332 . T) (-1964 . T)) NIL -(-1066 S) +(-1067 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1067) +(-1068) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1068 |m| |n|) -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) +(-1069 |m| |n|) +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1069) -((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) +(-1070 S) +((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) +((-4342 . T) (-4332 . T) (-4343 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-825))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1071 |Str| |Sym| |Int| |Flt| |Expr|) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1070 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +(-1072) +((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1071 |Str| |Sym| |Int| |Flt| |Expr|) +(-1073 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1072 R FS) +(-1074 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1073 R E V P TS) +(-1075 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1074 R E V P TS) +(-1076 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1075 R E V P) +(-1077 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-1076) +(-1078) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1077 S) +(-1079 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1078) +(-1080) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1079 |dimtot| |dim1| S) +(-1081 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4330 |has| |#3| (-1018)) (-4331 |has| |#3| (-1018)) (-4333 |has| |#3| (-6 -4333)) ((-4338 "*") |has| |#3| (-170)) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#3| (QUOTE (-356))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-769))) (-3874 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821)))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-170))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#3| (QUOTE -4333)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1080 R |x|) +((-4336 |has| |#3| (-1020)) (-4337 |has| |#3| (-1020)) (-4339 |has| |#3| (-6 -4339)) ((-4344 "*") |has| |#3| (-170)) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))))) (-1561 (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#3| (QUOTE (-356))) (-1561 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1020)))) (-1561 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-771))) (-1561 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823)))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-170))) (-1561 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-1068)))) (-1561 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1020)))) (-1561 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1020)))) (-1561 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1020)))) (-1561 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-227)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-356)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-361)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-705)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-771)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-823)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1068))))) (-1561 (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-825))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-1144))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550))))) (-1561 (|HasCategory| |#3| (QUOTE (-1020))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1011) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1068)))) (|HasAttribute| |#3| (QUOTE -4339)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1082 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-444)))) -(-1081) -((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) +(-1083) +((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1082) -((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) +(-1084 R -3260) +((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1083 R -3416) -((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1085 R) +((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1084 R) -((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1086) +((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1085) +(-1087) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1086) +(-1088) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4324 . T) (-4328 . T) (-4323 . T) (-4334 . T) (-4335 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4330 . T) (-4334 . T) (-4329 . T) (-4340 . T) (-4341 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1087 S) +(-1089 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4336 . T) (-4337 . T) (-2359 . T)) +((-4342 . T) (-4343 . T) (-1964 . T)) NIL -(-1088 S |ndim| R |Row| |Col|) +(-1090 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-356))) (|HasAttribute| |#3| (QUOTE (-4338 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) -(-1089 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-356))) (|HasAttribute| |#3| (QUOTE (-4344 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) +(-1091 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2359 . T) (-4336 . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-1964 . T) (-4342 . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1090 R |Row| |Col| M) +(-1092 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1091 R |VarSet|) +(-1093 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1092 |Coef| |Var| SMP) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1094 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1093 R E V P) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356)))) +(-1095 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-1094 UP -3416) +(-1096 UP -3260) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1095 R) +(-1097 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1096 R) +(-1098 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1097 R) +(-1099 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1098 S A) +(-1100 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-823)))) -(-1099 R) +((|HasCategory| |#1| (QUOTE (-825)))) +(-1101 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1100 R) +(-1102 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1101) +(-1103) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1102) +(-1104) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1103) +(-1105) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) -((-2359 . T)) +((-1964 . T)) NIL -(-1104) +(-1106) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1105) +(-1107) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1106 V C) +(-1108 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1107 V C) +(-1109 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1106) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1067)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1067))) (-3874 (-12 (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1106) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1067)))) (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -593) (QUOTE (-835))))) -(-1108 |ndim| R) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-1108 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1108) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1108 |#1| |#2|) (QUOTE (-1068)))) (|HasCategory| (-1108 |#1| |#2|) (QUOTE (-1068))) (-1561 (|HasCategory| (-1108 |#1| |#2|) (LIST (QUOTE -595) (QUOTE (-836)))) (-12 (|HasCategory| (-1108 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1108) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1108 |#1| |#2|) (QUOTE (-1068))))) (|HasCategory| (-1108 |#1| |#2|) (LIST (QUOTE -595) (QUOTE (-836))))) +(-1110 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4333 . T) (-4325 |has| |#2| (-6 (-4338 "*"))) (-4336 . T) (-4330 . T) (-4331 . T)) -((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-170)))) -(-1109 S) +((-4339 . T) (-4331 |has| |#2| (-6 (-4344 "*"))) (-4342 . T) (-4336 . T) (-4337 . T)) +((|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4344 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (-1561 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-356))) (-1561 (|HasAttribute| |#2| (QUOTE (-4344 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-170)))) +(-1111 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1110) +(-1112) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-1111 R E V P TS) +(-1113 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1112 R E V P) +(-1114 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1113 S) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1115 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1114 A S) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1116 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1115 S) +(-1117 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2359 . T)) +((-1964 . T)) NIL -(-1116 |Key| |Ent| |dent|) +(-1118 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-823))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835))))) -(-1117) +((-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|)))))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-825))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836))))) +(-1119) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1118 |Coef|) +(-1120 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1119 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4337 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1120 S) +(-1121 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1121 A B) +(-1122 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1122 A B C) +(-1123 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1123) +(-1124 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-4343 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1125) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-1124) +(-1126) NIL -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-835))))) -(-1125 |Entry|) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1068))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1068))) (-12 (|HasCategory| (-142) (QUOTE (-1068))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-836))))) +(-1127 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067))) (|HasCategory| (-1124) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -593) (QUOTE (-835))))) -(-1126 A) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (QUOTE (-1126))) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#1|)))))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (QUOTE (-1068))) (|HasCategory| (-1126) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (LIST (QUOTE -595) (QUOTE (-836))))) +(-1128 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) -(-1127 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) +(-1129 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1128 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +(-1130 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1129 R UP) +(-1131 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-300)))) -(-1130 |n| R) +(-1132 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1131 S1 S2) +(-1133 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1132) +(-1134) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1133 |Coef| |var| |cen|) +(-1135 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4338 "*") -3874 (-3179 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-796))) (|has| |#1| (-170)) (-3179 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-881)))) (-4329 -3874 (-3179 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-796))) (|has| |#1| (-542)) (-3179 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-881)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|))))) (|HasCategory| (-535) (QUOTE (-1078))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-991)))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-300)))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1134 R -3416) +(((-4344 "*") -1561 (-1262 (|has| |#1| (-356)) (|has| (-1142 |#1| |#2| |#3|) (-798))) (|has| |#1| (-170)) (-1262 (|has| |#1| (-356)) (|has| (-1142 |#1| |#2| |#3|) (-882)))) (-4335 -1561 (-1262 (|has| |#1| (-356)) (|has| (-1142 |#1| |#2| |#3|) (-798))) (|has| |#1| (-542)) (-1262 (|has| |#1| (-356)) (|has| (-1142 |#1| |#2| |#3|) (-882)))) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1144)) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))))) (-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasCategory| (-550) (QUOTE (-1080))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-356)))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356))))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1144)) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1561 (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1136 R -3260) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1135 R) +(-1137 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1136 R) -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1137 R S) +(-1138 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1138 E OV R P) +(-1139 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1139 |Coef| |var| |cen|) +(-1140 R) +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4338 |has| |#1| (-356)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1141 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|))))))) -(-1140 |Coef| |var| |cen|) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|))))))) +(-1142 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|)))) (|HasCategory| (-747) (QUOTE (-1078))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|))))))) -(-1141) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|)))) (|HasCategory| (-749) (QUOTE (-1080))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|))))))) +(-1143) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1142) +(-1144) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1143 R) +(-1145 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1144 R) +(-1146 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-942) (QUOTE (-130)))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334))) -(-1145) -((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-6 -4340)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| (-944) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasAttribute| |#1| (QUOTE -4340))) +(-1147) +((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1146) +(-1148) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1147) +(-1149) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1148 R) +(-1150 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1149) +(-1151) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1150 S) +(-1152 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1151 |Key| |Entry|) -((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4336 . T) (-4337 . T)) -((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835))))) -(-1152 S) +(-1153 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1153 R) +(-1154 |Key| |Entry|) +((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) +((-4342 . T) (-4343 . T)) +((-12 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2763) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2119) (|devaluate| |#2|)))))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1068)))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -596) (QUOTE (-526)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1068))) (-1561 (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-836)))) (|HasCategory| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (LIST (QUOTE -595) (QUOTE (-836))))) +(-1155 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1154 S |Key| |Entry|) +(-1156 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1155 |Key| |Entry|) +(-1157 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4337 . T) (-2359 . T)) +((-4343 . T) (-1964 . T)) NIL -(-1156 |Key| |Entry|) +(-1158 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1157) +(-1159) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1158) -((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) +(-1160 S) +((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1159 S) -((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) +(-1161) +((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1160) +(-1162) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1161 R) +(-1163 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1162) +(-1164) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1163 S) +(-1165 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1164) +(-1166) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1165 S) +(-1167 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1166 S) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1068))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1168 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1167) +(-1169) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1168 R -3416) +(-1170 R -3260) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1169 R |Row| |Col| M) +(-1171 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1170 R -3416) +(-1172 R -3260) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -857) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -857) (|devaluate| |#1|))))) -(-1171 |Coef|) -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1172 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -859) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -859) (|devaluate| |#1|))))) +(-1173 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-361)))) -(-1173 R E V P) +(-1174 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-1174 |Curve|) +(-1175 |Coef|) +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356)))) +(-1176 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1175) +(-1177) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1176 S) +(-1178 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1177 -3416) +((|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1179 -3260) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1178) -((|constructor| (NIL "The fundamental Type."))) -((-2359 . T)) -NIL -(-1179) +(-1180) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1180 S) +(-1181) +((|constructor| (NIL "The fundamental Type."))) +((-1964 . T)) +NIL +(-1182 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-823)))) -(-1181) +((|HasCategory| |#1| (QUOTE (-825)))) +(-1183) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1182 S) +(-1184 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1183) +(-1185) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1184 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4338 "*") -3874 (-3179 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-796))) (|has| |#1| (-170)) (-3179 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-881)))) (-4329 -3874 (-3179 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-796))) (|has| |#1| (-542)) (-3179 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-881)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|))))) (|HasCategory| (-535) (QUOTE (-1078))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-991)))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-300)))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1185 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1186 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1186 |Coef|) +(-1187 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1187 S |Coef| UTS) +(-1188 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-356)))) -(-1188 |Coef| UTS) +(-1189 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-2359 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-1964 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1189 |Coef| UTS) +(-1190 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))) (-3874 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-145))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))))) (-3874 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-227))))) (|HasCategory| (-535) (QUOTE (-1078))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-991)))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-881))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143)))))) -(-1190 ZP) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-882)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-995)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-1144)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))) (-1561 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-145))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasCategory| (-550) (QUOTE (-1080))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-882)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-1144))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-995)))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1144)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-882))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143)))))) +(-1191 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4344 "*") -1561 (-1262 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-798))) (|has| |#1| (-170)) (-1262 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-882)))) (-4335 -1561 (-1262 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-798))) (|has| |#1| (-542)) (-1262 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-882)))) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) +((-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1144)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))))) (-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasCategory| (-550) (QUOTE (-1080))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-356)))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356))))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1144)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1561 (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1192 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1191 S) -((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) -NIL -((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1067)))) -(-1192 R S) +(-1193 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-821)))) -(-1193 |x| R) -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4332 |has| |#2| (-356)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-1194 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-823)))) +(-1194 S) +((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) +NIL +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1068)))) +(-1195 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1195 R Q UP) +(-1196 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1196 R UP) +(-1197 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1197 R UP) +(-1198 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1198 R U) +(-1199 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1199 S R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1117)))) -(-1200 R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T)) -NIL +(-1200 |x| R) +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) +(((-4344 "*") |has| |#2| (-170)) (-4335 |has| |#2| (-542)) (-4338 |has| |#2| (-356)) (-4340 |has| |#2| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-882))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -859) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-372))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -859) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-550))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-372)))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -865) (QUOTE (-550)))))) (-12 (|HasCategory| (-1050) (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (-1561 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (-1561 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE -4340)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (-1561 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-882)))) (|HasCategory| |#2| (QUOTE (-143))))) (-1201 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1202 S |Coef| |Expon|) +(-1202 S R) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +NIL +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1119)))) +(-1203 R) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4338 |has| |#1| (-356)) (-4340 |has| |#1| (-6 -4340)) (-4337 . T) (-4336 . T) (-4339 . T)) +NIL +(-1204 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4300) (LIST (|devaluate| |#2|) (QUOTE (-1142)))))) -(-1203 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1518) (LIST (|devaluate| |#2|) (QUOTE (-1144)))))) +(-1205 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1204 RC P) -((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) +(-1206 RC P) +((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1205 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|))))))) -(-1206 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1207 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1207 |Coef|) +(-1208 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1208 S |Coef| ULS) +(-1209 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1209 |Coef| ULS) +(-1210 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1210 |Coef| ULS) +(-1211 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) -(-1211 R FE |var| |cen|) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) +(-1212 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4340 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-550)) (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-1561 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-550)))))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|))))))) +(-1213 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4338 "*") |has| (-1205 |#2| |#3| |#4|) (-170)) (-4329 |has| (-1205 |#2| |#3| |#4|) (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-356))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-444))) (-3874 (|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-542)))) -(-1212 A S) +(((-4344 "*") |has| (-1212 |#2| |#3| |#4|) (-170)) (-4335 |has| (-1212 |#2| |#3| |#4|) (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1011) (QUOTE (-550)))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-356))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-444))) (-1561 (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1011) (LIST (QUOTE -400) (QUOTE (-550)))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-542)))) +(-1214 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4337))) -(-1213 S) +((|HasAttribute| |#1| (QUOTE -4343))) +(-1215 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2359 . T)) +((-1964 . T)) NIL -(-1214 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|)))) (|HasCategory| (-747) (QUOTE (-1078))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|))))))) -(-1215 |Coef1| |Coef2| UTS1 UTS2) +(-1216 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1216 S |Coef|) +(-1217 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-931))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasSignature| |#2| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4155) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1142))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356)))) -(-1217 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-1166))) (|HasSignature| |#2| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1489) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1144))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-356)))) +(-1218 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1218 |Coef| UTS) +(-1219 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +(((-4344 "*") |has| |#1| (-170)) (-4335 |has| |#1| (-542)) (-4336 . T) (-4337 . T) (-4339 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-542))) (-1561 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-1144)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|)))) (|HasCategory| (-749) (QUOTE (-1080))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (QUOTE (-1144)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasCategory| |#1| (QUOTE (-356))) (-1561 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1166))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -1489) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1144))))) (|HasSignature| |#1| (LIST (QUOTE -3141) (LIST (LIST (QUOTE -623) (QUOTE (-1144))) (|devaluate| |#1|))))))) +(-1220 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1219 -3416 UP L UTS) +(-1221 -3260 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-542)))) -(-1220) +(-1222) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-2359 . T)) +((-1964 . T)) NIL -(-1221 |sym|) +(-1223 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1222 S R) +(-1224 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1223 R) +((|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1225 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4337 . T) (-4336 . T) (-2359 . T)) +((-4343 . T) (-4342 . T) (-1964 . T)) NIL -(-1224 R) -((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4337 . T) (-4336 . T)) -((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1225 A B) +(-1226 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1226) -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) -NIL -NIL -(-1227) +(-1227 R) +((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) +((-4343 . T) (-4342 . T)) +((-1561 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1561 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-526)))) (-1561 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-550) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1228) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1228) +(-1229) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1229) +(-1230) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1230) +(-1231) +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) +NIL +NIL +(-1232) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1231 A S) +(-1233 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1232 S) +(-1234 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4331 . T) (-4330 . T)) +((-4337 . T) (-4336 . T)) NIL -(-1233 R) +(-1235 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1234 K R UP -3416) +(-1236 K R UP -3260) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1235) +(-1237) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1236) +(-1238) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1237 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1239 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) (-4333 . T)) +((-4337 |has| |#1| (-170)) (-4336 |has| |#1| (-170)) (-4339 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1238 R E V P) +(-1240 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4337 . T) (-4336 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835))))) -(-1239 R) +((-4343 . T) (-4342 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-526)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-836))))) +(-1241 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4330 . T) (-4331 . T) (-4333 . T)) +((-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1240 |vl| R) +(-1242 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4333 . T) (-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4329))) -(-1241 R |VarSet| XPOLY) +((-4339 . T) (-4335 |has| |#2| (-6 -4335)) (-4337 . T) (-4336 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4335))) +(-1243 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1242 S -3416) +(-1244 |vl| R) +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) +((-4335 |has| |#2| (-6 -4335)) (-4337 . T) (-4336 . T) (-4339 . T)) +NIL +(-1245 S -3260) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) -(-1243 -3416) +(-1246 -3260) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +((-4334 . T) (-4340 . T) (-4335 . T) ((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL -(-1244 |vl| R) -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T)) -NIL -(-1245 |VarSet| R) +(-1247 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -694) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasAttribute| |#2| (QUOTE -4329))) -(-1246 R) -((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4329 |has| |#1| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4329))) -(-1247 |vl| R) +((-4335 |has| |#2| (-6 -4335)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -696) (LIST (QUOTE -400) (QUOTE (-550))))) (|HasAttribute| |#2| (QUOTE -4335))) +(-1248 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T)) +((-4335 |has| |#2| (-6 -4335)) (-4337 . T) (-4336 . T) (-4339 . T)) NIL -(-1248 R E) +(-1249 R) +((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) +((-4335 |has| |#1| (-6 -4335)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4335))) +(-1250 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4333 . T) (-4334 |has| |#1| (-6 -4334)) (-4329 |has| |#1| (-6 -4329)) (-4331 . T) (-4330 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasAttribute| |#1| (QUOTE -4333)) (|HasAttribute| |#1| (QUOTE -4334)) (|HasAttribute| |#1| (QUOTE -4329))) -(-1249 |VarSet| R) +((-4339 . T) (-4340 |has| |#1| (-6 -4340)) (-4335 |has| |#1| (-6 -4335)) (-4337 . T) (-4336 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasAttribute| |#1| (QUOTE -4339)) (|HasAttribute| |#1| (QUOTE -4340)) (|HasAttribute| |#1| (QUOTE -4335))) +(-1251 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4329))) -(-1250 A) +((-4335 |has| |#2| (-6 -4335)) (-4337 . T) (-4336 . T) (-4339 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4335))) +(-1252 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1251 R |ls| |ls2|) +(-1253 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1252 R) +(-1254 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1253 |p|) +(-1255 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T)) +(((-4344 "*") . T) (-4336 . T) (-4337 . T) (-4339 . T)) NIL NIL NIL @@ -4960,4 +4968,4 @@ NIL NIL NIL NIL -((-3 NIL 2264428 2264433 2264438 2264443) (-2 NIL 2264408 2264413 2264418 2264423) (-1 NIL 2264388 2264393 2264398 2264403) (0 NIL 2264368 2264373 2264378 2264383) (-1253 "ZMOD.spad" 2264177 2264190 2264306 2264363) (-1252 "ZLINDEP.spad" 2263221 2263232 2264167 2264172) (-1251 "ZDSOLVE.spad" 2253070 2253092 2263211 2263216) (-1250 "YSTREAM.spad" 2252563 2252574 2253060 2253065) (-1249 "XRPOLY.spad" 2251783 2251803 2252419 2252488) (-1248 "XPR.spad" 2249512 2249525 2251501 2251600) (-1247 "XPOLYC.spad" 2248829 2248845 2249438 2249507) (-1246 "XPOLY.spad" 2248384 2248395 2248685 2248754) (-1245 "XPBWPOLY.spad" 2246821 2246841 2248164 2248233) (-1244 "XFALG.spad" 2243845 2243861 2246747 2246816) (-1243 "XF.spad" 2242306 2242321 2243747 2243840) (-1242 "XF.spad" 2240747 2240764 2242190 2242195) (-1241 "XEXPPKG.spad" 2239998 2240024 2240737 2240742) (-1240 "XDPOLY.spad" 2239612 2239628 2239854 2239923) (-1239 "XALG.spad" 2239210 2239221 2239568 2239607) (-1238 "WUTSET.spad" 2235049 2235066 2238856 2238883) (-1237 "WP.spad" 2234063 2234107 2234907 2234974) (-1236 "WHILEAST.spad" 2233861 2233870 2234053 2234058) (-1235 "WHEREAST.spad" 2233532 2233541 2233851 2233856) (-1234 "WFFINTBS.spad" 2231095 2231117 2233522 2233527) (-1233 "WEIER.spad" 2229309 2229320 2231085 2231090) (-1232 "VSPACE.spad" 2228982 2228993 2229277 2229304) (-1231 "VSPACE.spad" 2228675 2228688 2228972 2228977) (-1230 "VOID.spad" 2228265 2228274 2228665 2228670) (-1229 "VIEWDEF.spad" 2223462 2223471 2228255 2228260) (-1228 "VIEW3D.spad" 2207297 2207306 2223452 2223457) (-1227 "VIEW2D.spad" 2195034 2195043 2207287 2207292) (-1226 "VIEW.spad" 2192656 2192665 2195024 2195029) (-1225 "VECTOR2.spad" 2191283 2191296 2192646 2192651) (-1224 "VECTOR.spad" 2189958 2189969 2190209 2190236) (-1223 "VECTCAT.spad" 2187846 2187857 2189914 2189953) (-1222 "VECTCAT.spad" 2185554 2185567 2187624 2187629) (-1221 "VARIABLE.spad" 2185334 2185349 2185544 2185549) (-1220 "UTYPE.spad" 2184968 2184977 2185314 2185329) (-1219 "UTSODETL.spad" 2184261 2184285 2184924 2184929) (-1218 "UTSODE.spad" 2182449 2182469 2184251 2184256) (-1217 "UTSCAT.spad" 2179900 2179916 2182347 2182444) (-1216 "UTSCAT.spad" 2176995 2177013 2179444 2179449) (-1215 "UTS2.spad" 2176588 2176623 2176985 2176990) (-1214 "UTS.spad" 2171377 2171405 2175055 2175152) (-1213 "URAGG.spad" 2165999 2166010 2171357 2171372) (-1212 "URAGG.spad" 2160595 2160608 2165955 2165960) (-1211 "UPXSSING.spad" 2158238 2158264 2159676 2159809) (-1210 "UPXSCONS.spad" 2155995 2156015 2156370 2156519) (-1209 "UPXSCCA.spad" 2154453 2154473 2155841 2155990) (-1208 "UPXSCCA.spad" 2153053 2153075 2154443 2154448) (-1207 "UPXSCAT.spad" 2151634 2151650 2152899 2153048) (-1206 "UPXS2.spad" 2151175 2151228 2151624 2151629) (-1205 "UPXS.spad" 2148202 2148230 2149307 2149456) (-1204 "UPSQFREE.spad" 2146615 2146629 2148192 2148197) (-1203 "UPSCAT.spad" 2144208 2144232 2146513 2146610) (-1202 "UPSCAT.spad" 2141507 2141533 2143814 2143819) (-1201 "UPOLYC2.spad" 2140976 2140995 2141497 2141502) (-1200 "UPOLYC.spad" 2135954 2135965 2140818 2140971) (-1199 "UPOLYC.spad" 2130824 2130837 2135690 2135695) (-1198 "UPMP.spad" 2129714 2129727 2130814 2130819) (-1197 "UPDIVP.spad" 2129277 2129291 2129704 2129709) (-1196 "UPDECOMP.spad" 2127514 2127528 2129267 2129272) (-1195 "UPCDEN.spad" 2126721 2126737 2127504 2127509) (-1194 "UP2.spad" 2126083 2126104 2126711 2126716) (-1193 "UP.spad" 2123125 2123140 2123633 2123786) (-1192 "UNISEG2.spad" 2122618 2122631 2123081 2123086) (-1191 "UNISEG.spad" 2121971 2121982 2122537 2122542) (-1190 "UNIFACT.spad" 2121072 2121084 2121961 2121966) (-1189 "ULSCONS.spad" 2115111 2115131 2115483 2115632) (-1188 "ULSCCAT.spad" 2112708 2112728 2114931 2115106) (-1187 "ULSCCAT.spad" 2110439 2110461 2112664 2112669) (-1186 "ULSCAT.spad" 2108655 2108671 2110285 2110434) (-1185 "ULS2.spad" 2108167 2108220 2108645 2108650) (-1184 "ULS.spad" 2098721 2098749 2099814 2100243) (-1183 "UFD.spad" 2097786 2097795 2098647 2098716) (-1182 "UFD.spad" 2096913 2096924 2097776 2097781) (-1181 "UDVO.spad" 2095760 2095769 2096903 2096908) (-1180 "UDPO.spad" 2093187 2093198 2095716 2095721) (-1179 "TYPEAST.spad" 2093106 2093115 2093177 2093182) (-1178 "TYPE.spad" 2093028 2093037 2093086 2093101) (-1177 "TWOFACT.spad" 2091678 2091693 2093018 2093023) (-1176 "TUPLE.spad" 2091064 2091075 2091577 2091582) (-1175 "TUBETOOL.spad" 2087901 2087910 2091054 2091059) (-1174 "TUBE.spad" 2086542 2086559 2087891 2087896) (-1173 "TSETCAT.spad" 2073657 2073674 2086498 2086537) (-1172 "TSETCAT.spad" 2060770 2060789 2073613 2073618) (-1171 "TS.spad" 2059359 2059375 2060335 2060432) (-1170 "TRMANIP.spad" 2053725 2053742 2059065 2059070) (-1169 "TRIMAT.spad" 2052684 2052709 2053715 2053720) (-1168 "TRIGMNIP.spad" 2051201 2051218 2052674 2052679) (-1167 "TRIGCAT.spad" 2050713 2050722 2051191 2051196) (-1166 "TRIGCAT.spad" 2050223 2050234 2050703 2050708) (-1165 "TREE.spad" 2048794 2048805 2049830 2049857) (-1164 "TRANFUN.spad" 2048625 2048634 2048784 2048789) (-1163 "TRANFUN.spad" 2048454 2048465 2048615 2048620) (-1162 "TOPSP.spad" 2048128 2048137 2048444 2048449) (-1161 "TOOLSIGN.spad" 2047791 2047802 2048118 2048123) (-1160 "TEXTFILE.spad" 2046348 2046357 2047781 2047786) (-1159 "TEX1.spad" 2045904 2045915 2046338 2046343) (-1158 "TEX.spad" 2042921 2042930 2045894 2045899) (-1157 "TEMUTL.spad" 2042476 2042485 2042911 2042916) (-1156 "TBCMPPK.spad" 2040569 2040592 2042466 2042471) (-1155 "TBAGG.spad" 2039593 2039616 2040537 2040564) (-1154 "TBAGG.spad" 2038637 2038662 2039583 2039588) (-1153 "TANEXP.spad" 2038013 2038024 2038627 2038632) (-1152 "TABLEAU.spad" 2037494 2037505 2038003 2038008) (-1151 "TABLE.spad" 2035905 2035928 2036175 2036202) (-1150 "TABLBUMP.spad" 2032688 2032699 2035895 2035900) (-1149 "SYSTEM.spad" 2031962 2031971 2032678 2032683) (-1148 "SYSSOLP.spad" 2029435 2029446 2031952 2031957) (-1147 "SYNTAX.spad" 2025627 2025636 2029425 2029430) (-1146 "SYMTAB.spad" 2023683 2023692 2025617 2025622) (-1145 "SYMS.spad" 2019674 2019683 2023673 2023678) (-1144 "SYMPOLY.spad" 2018681 2018692 2018763 2018890) (-1143 "SYMFUNC.spad" 2018156 2018167 2018671 2018676) (-1142 "SYMBOL.spad" 2015492 2015501 2018146 2018151) (-1141 "SWITCH.spad" 2012249 2012258 2015482 2015487) (-1140 "SUTS.spad" 2009148 2009176 2010716 2010813) (-1139 "SUPXS.spad" 2006162 2006190 2007280 2007429) (-1138 "SUPFRACF.spad" 2005267 2005285 2006152 2006157) (-1137 "SUP2.spad" 2004657 2004670 2005257 2005262) (-1136 "SUP.spad" 2001426 2001437 2002207 2002360) (-1135 "SUMRF.spad" 2000392 2000403 2001416 2001421) (-1134 "SUMFS.spad" 2000025 2000042 2000382 2000387) (-1133 "SULS.spad" 1990566 1990594 1991672 1992101) (-1132 "SUCHTAST.spad" 1990335 1990344 1990556 1990561) (-1131 "SUCH.spad" 1990015 1990030 1990325 1990330) (-1130 "SUBSPACE.spad" 1982022 1982037 1990005 1990010) (-1129 "SUBRESP.spad" 1981182 1981196 1981978 1981983) (-1128 "STTFNC.spad" 1977650 1977666 1981172 1981177) (-1127 "STTF.spad" 1973749 1973765 1977640 1977645) (-1126 "STTAYLOR.spad" 1966147 1966158 1973630 1973635) (-1125 "STRTBL.spad" 1964652 1964669 1964801 1964828) (-1124 "STRING.spad" 1964061 1964070 1964075 1964102) (-1123 "STRICAT.spad" 1963837 1963846 1964017 1964056) (-1122 "STREAM3.spad" 1963382 1963397 1963827 1963832) (-1121 "STREAM2.spad" 1962450 1962463 1963372 1963377) (-1120 "STREAM1.spad" 1962154 1962165 1962440 1962445) (-1119 "STREAM.spad" 1958922 1958933 1961679 1961694) (-1118 "STINPROD.spad" 1957828 1957844 1958912 1958917) (-1117 "STEP.spad" 1957029 1957038 1957818 1957823) (-1116 "STBL.spad" 1955555 1955583 1955722 1955737) (-1115 "STAGG.spad" 1954620 1954631 1955535 1955550) (-1114 "STAGG.spad" 1953693 1953706 1954610 1954615) (-1113 "STACK.spad" 1953044 1953055 1953300 1953327) (-1112 "SREGSET.spad" 1950748 1950765 1952690 1952717) (-1111 "SRDCMPK.spad" 1949293 1949313 1950738 1950743) (-1110 "SRAGG.spad" 1944378 1944387 1949249 1949288) (-1109 "SRAGG.spad" 1939495 1939506 1944368 1944373) (-1108 "SQMATRIX.spad" 1937111 1937129 1938027 1938114) (-1107 "SPLTREE.spad" 1931663 1931676 1936547 1936574) (-1106 "SPLNODE.spad" 1928251 1928264 1931653 1931658) (-1105 "SPFCAT.spad" 1927028 1927037 1928241 1928246) (-1104 "SPECOUT.spad" 1925578 1925587 1927018 1927023) (-1103 "SPADXPT.spad" 1917707 1917716 1925558 1925573) (-1102 "spad-parser.spad" 1917172 1917181 1917697 1917702) (-1101 "SPADAST.spad" 1916873 1916882 1917162 1917167) (-1100 "SPACEC.spad" 1900886 1900897 1916863 1916868) (-1099 "SPACE3.spad" 1900662 1900673 1900876 1900881) (-1098 "SORTPAK.spad" 1900207 1900220 1900618 1900623) (-1097 "SOLVETRA.spad" 1897964 1897975 1900197 1900202) (-1096 "SOLVESER.spad" 1896484 1896495 1897954 1897959) (-1095 "SOLVERAD.spad" 1892494 1892505 1896474 1896479) (-1094 "SOLVEFOR.spad" 1890914 1890932 1892484 1892489) (-1093 "SNTSCAT.spad" 1890502 1890519 1890870 1890909) (-1092 "SMTS.spad" 1888762 1888788 1890067 1890164) (-1091 "SMP.spad" 1886201 1886221 1886591 1886718) (-1090 "SMITH.spad" 1885044 1885069 1886191 1886196) (-1089 "SMATCAT.spad" 1883142 1883172 1884976 1885039) (-1088 "SMATCAT.spad" 1881184 1881216 1883020 1883025) (-1087 "SKAGG.spad" 1880133 1880144 1881140 1881179) (-1086 "SINT.spad" 1878441 1878450 1879999 1880128) (-1085 "SIMPAN.spad" 1878169 1878178 1878431 1878436) (-1084 "SIGNRF.spad" 1877284 1877295 1878159 1878164) (-1083 "SIGNEF.spad" 1876560 1876577 1877274 1877279) (-1082 "SIGAST.spad" 1875941 1875950 1876550 1876555) (-1081 "SIG.spad" 1875269 1875278 1875931 1875936) (-1080 "SHP.spad" 1873187 1873202 1875225 1875230) (-1079 "SHDP.spad" 1864172 1864199 1864681 1864812) (-1078 "SGROUP.spad" 1863780 1863789 1864162 1864167) (-1077 "SGROUP.spad" 1863386 1863397 1863770 1863775) (-1076 "SGCF.spad" 1856267 1856276 1863376 1863381) (-1075 "SFRTCAT.spad" 1855183 1855200 1856223 1856262) (-1074 "SFRGCD.spad" 1854246 1854266 1855173 1855178) (-1073 "SFQCMPK.spad" 1848883 1848903 1854236 1854241) (-1072 "SFORT.spad" 1848318 1848332 1848873 1848878) (-1071 "SEXOF.spad" 1848161 1848201 1848308 1848313) (-1070 "SEXCAT.spad" 1845265 1845305 1848151 1848156) (-1069 "SEX.spad" 1845157 1845166 1845255 1845260) (-1068 "SETMN.spad" 1843593 1843610 1845147 1845152) (-1067 "SETCAT.spad" 1843078 1843087 1843583 1843588) (-1066 "SETCAT.spad" 1842561 1842572 1843068 1843073) (-1065 "SETAGG.spad" 1839070 1839081 1842529 1842556) (-1064 "SETAGG.spad" 1835599 1835612 1839060 1839065) (-1063 "SET.spad" 1833899 1833910 1835020 1835059) (-1062 "SEQAST.spad" 1833602 1833611 1833889 1833894) (-1061 "SEGXCAT.spad" 1832714 1832727 1833582 1833597) (-1060 "SEGCAT.spad" 1831533 1831544 1832694 1832709) (-1059 "SEGBIND2.spad" 1831229 1831242 1831523 1831528) (-1058 "SEGBIND.spad" 1830301 1830312 1831184 1831189) (-1057 "SEGAST.spad" 1830015 1830024 1830291 1830296) (-1056 "SEG2.spad" 1829440 1829453 1829971 1829976) (-1055 "SEG.spad" 1829253 1829264 1829359 1829364) (-1054 "SDVAR.spad" 1828529 1828540 1829243 1829248) (-1053 "SDPOL.spad" 1825919 1825930 1826210 1826337) (-1052 "SCPKG.spad" 1823998 1824009 1825909 1825914) (-1051 "SCOPE.spad" 1823143 1823152 1823988 1823993) (-1050 "SCACHE.spad" 1821825 1821836 1823133 1823138) (-1049 "SASTCAT.spad" 1821734 1821743 1821815 1821820) (-1048 "SAOS.spad" 1821606 1821615 1821724 1821729) (-1047 "SAERFFC.spad" 1821319 1821339 1821596 1821601) (-1046 "SAEFACT.spad" 1821020 1821040 1821309 1821314) (-1045 "SAE.spad" 1819195 1819211 1819806 1819941) (-1044 "RURPK.spad" 1816836 1816852 1819185 1819190) (-1043 "RULESET.spad" 1816277 1816301 1816826 1816831) (-1042 "RULECOLD.spad" 1816129 1816142 1816267 1816272) (-1041 "RULE.spad" 1814333 1814357 1816119 1816124) (-1040 "RSTRCAST.spad" 1814050 1814059 1814323 1814328) (-1039 "RSETGCD.spad" 1810428 1810448 1814040 1814045) (-1038 "RSETCAT.spad" 1800200 1800217 1810384 1810423) (-1037 "RSETCAT.spad" 1790004 1790023 1800190 1800195) (-1036 "RSDCMPK.spad" 1788456 1788476 1789994 1789999) (-1035 "RRCC.spad" 1786840 1786870 1788446 1788451) (-1034 "RRCC.spad" 1785222 1785254 1786830 1786835) (-1033 "RPTAST.spad" 1784924 1784933 1785212 1785217) (-1032 "RPOLCAT.spad" 1764284 1764299 1784792 1784919) (-1031 "RPOLCAT.spad" 1743358 1743375 1763868 1763873) (-1030 "ROUTINE.spad" 1739221 1739230 1742005 1742032) (-1029 "ROMAN.spad" 1738453 1738462 1739087 1739216) (-1028 "ROIRC.spad" 1737533 1737565 1738443 1738448) (-1027 "RNS.spad" 1736436 1736445 1737435 1737528) (-1026 "RNS.spad" 1735425 1735436 1736426 1736431) (-1025 "RNG.spad" 1735160 1735169 1735415 1735420) (-1024 "RMODULE.spad" 1734798 1734809 1735150 1735155) (-1023 "RMCAT2.spad" 1734206 1734263 1734788 1734793) (-1022 "RMATRIX.spad" 1732885 1732904 1733373 1733412) (-1021 "RMATCAT.spad" 1728406 1728437 1732829 1732880) (-1020 "RMATCAT.spad" 1723829 1723862 1728254 1728259) (-1019 "RINTERP.spad" 1723717 1723737 1723819 1723824) (-1018 "RING.spad" 1723074 1723083 1723697 1723712) (-1017 "RING.spad" 1722439 1722450 1723064 1723069) (-1016 "RIDIST.spad" 1721823 1721832 1722429 1722434) (-1015 "RGCHAIN.spad" 1720402 1720418 1721308 1721335) (-1014 "RFFACTOR.spad" 1719864 1719875 1720392 1720397) (-1013 "RFFACT.spad" 1719599 1719611 1719854 1719859) (-1012 "RFDIST.spad" 1718587 1718596 1719589 1719594) (-1011 "RF.spad" 1716201 1716212 1718577 1718582) (-1010 "RETSOL.spad" 1715618 1715631 1716191 1716196) (-1009 "RETRACT.spad" 1714967 1714978 1715608 1715613) (-1008 "RETRACT.spad" 1714314 1714327 1714957 1714962) (-1007 "RETAST.spad" 1714126 1714135 1714304 1714309) (-1006 "RESULT.spad" 1712186 1712195 1712773 1712800) (-1005 "RESRING.spad" 1711533 1711580 1712124 1712181) (-1004 "RESLATC.spad" 1710857 1710868 1711523 1711528) (-1003 "REPSQ.spad" 1710586 1710597 1710847 1710852) (-1002 "REPDB.spad" 1710291 1710302 1710576 1710581) (-1001 "REP2.spad" 1699863 1699874 1710133 1710138) (-1000 "REP1.spad" 1693853 1693864 1699813 1699818) (-999 "REP.spad" 1691406 1691414 1693843 1693848) (-998 "REGSET.spad" 1689204 1689220 1691052 1691079) (-997 "REF.spad" 1688534 1688544 1689159 1689164) (-996 "REDORDER.spad" 1687711 1687727 1688524 1688529) (-995 "RECLOS.spad" 1686495 1686514 1687198 1687291) (-994 "REALSOLV.spad" 1685628 1685636 1686485 1686490) (-993 "REAL0Q.spad" 1682911 1682925 1685618 1685623) (-992 "REAL0.spad" 1679740 1679754 1682901 1682906) (-991 "REAL.spad" 1679613 1679621 1679730 1679735) (-990 "RDUCEAST.spad" 1679335 1679343 1679603 1679608) (-989 "RDIV.spad" 1678987 1679011 1679325 1679330) (-988 "RDIST.spad" 1678551 1678561 1678977 1678982) (-987 "RDETRS.spad" 1677348 1677365 1678541 1678546) (-986 "RDETR.spad" 1675456 1675473 1677338 1677343) (-985 "RDEEFS.spad" 1674530 1674546 1675446 1675451) (-984 "RDEEF.spad" 1673527 1673543 1674520 1674525) (-983 "RCFIELD.spad" 1670714 1670722 1673429 1673522) (-982 "RCFIELD.spad" 1667987 1667997 1670704 1670709) (-981 "RCAGG.spad" 1665890 1665900 1667967 1667982) (-980 "RCAGG.spad" 1663730 1663742 1665809 1665814) (-979 "RATRET.spad" 1663091 1663101 1663720 1663725) (-978 "RATFACT.spad" 1662784 1662795 1663081 1663086) (-977 "RANDSRC.spad" 1662104 1662112 1662774 1662779) (-976 "RADUTIL.spad" 1661859 1661867 1662094 1662099) (-975 "RADIX.spad" 1658650 1658663 1660327 1660420) (-974 "RADFF.spad" 1657064 1657100 1657182 1657338) (-973 "RADCAT.spad" 1656658 1656666 1657054 1657059) (-972 "RADCAT.spad" 1656250 1656260 1656648 1656653) (-971 "QUEUE.spad" 1655593 1655603 1655857 1655884) (-970 "QUATCT2.spad" 1655212 1655230 1655583 1655588) (-969 "QUATCAT.spad" 1653377 1653387 1655142 1655207) (-968 "QUATCAT.spad" 1651293 1651305 1653060 1653065) (-967 "QUAT.spad" 1649875 1649885 1650217 1650282) (-966 "QUAGG.spad" 1648689 1648699 1649831 1649870) (-965 "QQUTAST.spad" 1648458 1648466 1648679 1648684) (-964 "QFORM.spad" 1647921 1647935 1648448 1648453) (-963 "QFCAT2.spad" 1647612 1647628 1647911 1647916) (-962 "QFCAT.spad" 1646303 1646313 1647502 1647607) (-961 "QFCAT.spad" 1644598 1644610 1645799 1645804) (-960 "QEQUAT.spad" 1644155 1644163 1644588 1644593) (-959 "QCMPACK.spad" 1638902 1638921 1644145 1644150) (-958 "QALGSET2.spad" 1636898 1636916 1638892 1638897) (-957 "QALGSET.spad" 1632975 1633007 1636812 1636817) (-956 "PWFFINTB.spad" 1630285 1630306 1632965 1632970) (-955 "PUSHVAR.spad" 1629614 1629633 1630275 1630280) (-954 "PTRANFN.spad" 1625740 1625750 1629604 1629609) (-953 "PTPACK.spad" 1622828 1622838 1625730 1625735) (-952 "PTFUNC2.spad" 1622649 1622663 1622818 1622823) (-951 "PTCAT.spad" 1621731 1621741 1622605 1622644) (-950 "PSQFR.spad" 1621038 1621062 1621721 1621726) (-949 "PSEUDLIN.spad" 1619896 1619906 1621028 1621033) (-948 "PSETPK.spad" 1605329 1605345 1619774 1619779) (-947 "PSETCAT.spad" 1599237 1599260 1605297 1605324) (-946 "PSETCAT.spad" 1593131 1593156 1599193 1599198) (-945 "PSCURVE.spad" 1592114 1592122 1593121 1593126) (-944 "PSCAT.spad" 1590881 1590910 1592012 1592109) (-943 "PSCAT.spad" 1589738 1589769 1590871 1590876) (-942 "PRTITION.spad" 1588581 1588589 1589728 1589733) (-941 "PRTDAST.spad" 1588300 1588308 1588571 1588576) (-940 "PRS.spad" 1577862 1577879 1588256 1588261) (-939 "PRQAGG.spad" 1577281 1577291 1577818 1577857) (-938 "PROPLOG.spad" 1576684 1576692 1577271 1577276) (-937 "PROPFRML.spad" 1574602 1574613 1576674 1576679) (-936 "PROPERTY.spad" 1574096 1574104 1574592 1574597) (-935 "PRODUCT.spad" 1571776 1571788 1572062 1572117) (-934 "PRINT.spad" 1571528 1571536 1571766 1571771) (-933 "PRIMES.spad" 1569779 1569789 1571518 1571523) (-932 "PRIMELT.spad" 1567760 1567774 1569769 1569774) (-931 "PRIMCAT.spad" 1567383 1567391 1567750 1567755) (-930 "PRIMARR2.spad" 1566106 1566118 1567373 1567378) (-929 "PRIMARR.spad" 1565111 1565121 1565289 1565316) (-928 "PREASSOC.spad" 1564483 1564495 1565101 1565106) (-927 "PR.spad" 1562869 1562881 1563574 1563701) (-926 "PPCURVE.spad" 1562006 1562014 1562859 1562864) (-925 "PORTNUM.spad" 1561781 1561789 1561996 1562001) (-924 "POLYROOT.spad" 1560553 1560575 1561737 1561742) (-923 "POLYLIFT.spad" 1559814 1559837 1560543 1560548) (-922 "POLYCATQ.spad" 1557916 1557938 1559804 1559809) (-921 "POLYCAT.spad" 1551322 1551343 1557784 1557911) (-920 "POLYCAT.spad" 1544030 1544053 1550494 1550499) (-919 "POLY2UP.spad" 1543478 1543492 1544020 1544025) (-918 "POLY2.spad" 1543073 1543085 1543468 1543473) (-917 "POLY.spad" 1540370 1540380 1540887 1541014) (-916 "POLUTIL.spad" 1539311 1539340 1540326 1540331) (-915 "POLTOPOL.spad" 1538059 1538074 1539301 1539306) (-914 "POINT.spad" 1536898 1536908 1536985 1537012) (-913 "PNTHEORY.spad" 1533564 1533572 1536888 1536893) (-912 "PMTOOLS.spad" 1532321 1532335 1533554 1533559) (-911 "PMSYM.spad" 1531866 1531876 1532311 1532316) (-910 "PMQFCAT.spad" 1531453 1531467 1531856 1531861) (-909 "PMPREDFS.spad" 1530897 1530919 1531443 1531448) (-908 "PMPRED.spad" 1530366 1530380 1530887 1530892) (-907 "PMPLCAT.spad" 1529436 1529454 1530298 1530303) (-906 "PMLSAGG.spad" 1529017 1529031 1529426 1529431) (-905 "PMKERNEL.spad" 1528584 1528596 1529007 1529012) (-904 "PMINS.spad" 1528160 1528170 1528574 1528579) (-903 "PMFS.spad" 1527733 1527751 1528150 1528155) (-902 "PMDOWN.spad" 1527019 1527033 1527723 1527728) (-901 "PMASSFS.spad" 1525988 1526004 1527009 1527014) (-900 "PMASS.spad" 1525000 1525008 1525978 1525983) (-899 "PLOTTOOL.spad" 1524780 1524788 1524990 1524995) (-898 "PLOT3D.spad" 1521200 1521208 1524770 1524775) (-897 "PLOT1.spad" 1520341 1520351 1521190 1521195) (-896 "PLOT.spad" 1515172 1515180 1520331 1520336) (-895 "PLEQN.spad" 1502388 1502415 1515162 1515167) (-894 "PINTERPA.spad" 1502170 1502186 1502378 1502383) (-893 "PINTERP.spad" 1501786 1501805 1502160 1502165) (-892 "PID.spad" 1500742 1500750 1501712 1501781) (-891 "PICOERCE.spad" 1500399 1500409 1500732 1500737) (-890 "PI.spad" 1500006 1500014 1500373 1500394) (-889 "PGROEB.spad" 1498603 1498617 1499996 1500001) (-888 "PGE.spad" 1489856 1489864 1498593 1498598) (-887 "PGCD.spad" 1488738 1488755 1489846 1489851) (-886 "PFRPAC.spad" 1487881 1487891 1488728 1488733) (-885 "PFR.spad" 1484538 1484548 1487783 1487876) (-884 "PFOTOOLS.spad" 1483796 1483812 1484528 1484533) (-883 "PFOQ.spad" 1483166 1483184 1483786 1483791) (-882 "PFO.spad" 1482585 1482612 1483156 1483161) (-881 "PFECAT.spad" 1480251 1480259 1482511 1482580) (-880 "PFECAT.spad" 1477945 1477955 1480207 1480212) (-879 "PFBRU.spad" 1475815 1475827 1477935 1477940) (-878 "PFBR.spad" 1473353 1473376 1475805 1475810) (-877 "PF.spad" 1472927 1472939 1473158 1473251) (-876 "PERMGRP.spad" 1467663 1467673 1472917 1472922) (-875 "PERMCAT.spad" 1466215 1466225 1467643 1467658) (-874 "PERMAN.spad" 1464747 1464761 1466205 1466210) (-873 "PERM.spad" 1460428 1460438 1464577 1464592) (-872 "PENDTREE.spad" 1459701 1459711 1460057 1460062) (-871 "PDRING.spad" 1458192 1458202 1459681 1459696) (-870 "PDRING.spad" 1456691 1456703 1458182 1458187) (-869 "PDEPROB.spad" 1455648 1455656 1456681 1456686) (-868 "PDEPACK.spad" 1449650 1449658 1455638 1455643) (-867 "PDECOMP.spad" 1449112 1449129 1449640 1449645) (-866 "PDECAT.spad" 1447466 1447474 1449102 1449107) (-865 "PCOMP.spad" 1447317 1447330 1447456 1447461) (-864 "PBWLB.spad" 1445899 1445916 1447307 1447312) (-863 "PATTERN2.spad" 1445635 1445647 1445889 1445894) (-862 "PATTERN1.spad" 1443937 1443953 1445625 1445630) (-861 "PATTERN.spad" 1438368 1438378 1443927 1443932) (-860 "PATRES2.spad" 1438030 1438044 1438358 1438363) (-859 "PATRES.spad" 1435577 1435589 1438020 1438025) (-858 "PATMATCH.spad" 1433734 1433765 1435285 1435290) (-857 "PATMAB.spad" 1433159 1433169 1433724 1433729) (-856 "PATLRES.spad" 1432243 1432257 1433149 1433154) (-855 "PATAB.spad" 1432007 1432017 1432233 1432238) (-854 "PARTPERM.spad" 1429369 1429377 1431997 1432002) (-853 "PARSURF.spad" 1428797 1428825 1429359 1429364) (-852 "PARSU2.spad" 1428592 1428608 1428787 1428792) (-851 "script-parser.spad" 1428112 1428120 1428582 1428587) (-850 "PARSCURV.spad" 1427540 1427568 1428102 1428107) (-849 "PARSC2.spad" 1427329 1427345 1427530 1427535) (-848 "PARPCURV.spad" 1426787 1426815 1427319 1427324) (-847 "PARPC2.spad" 1426576 1426592 1426777 1426782) (-846 "PAN2EXPR.spad" 1425988 1425996 1426566 1426571) (-845 "PALETTE.spad" 1424958 1424966 1425978 1425983) (-844 "PAIR.spad" 1423941 1423954 1424546 1424551) (-843 "PADICRC.spad" 1421272 1421290 1422447 1422540) (-842 "PADICRAT.spad" 1419288 1419300 1419509 1419602) (-841 "PADICCT.spad" 1417829 1417841 1419214 1419283) (-840 "PADIC.spad" 1417524 1417536 1417755 1417824) (-839 "PADEPAC.spad" 1416203 1416222 1417514 1417519) (-838 "PADE.spad" 1414943 1414959 1416193 1416198) (-837 "OWP.spad" 1413927 1413957 1414801 1414868) (-836 "OVAR.spad" 1413708 1413731 1413917 1413922) (-835 "OUTFORM.spad" 1403122 1403130 1413698 1413703) (-834 "OUTBCON.spad" 1402401 1402409 1403112 1403117) (-833 "OUTBCON.spad" 1401678 1401688 1402391 1402396) (-832 "OUT.spad" 1400762 1400770 1401668 1401673) (-831 "OSI.spad" 1400237 1400245 1400752 1400757) (-830 "OSGROUP.spad" 1400155 1400163 1400227 1400232) (-829 "ORTHPOL.spad" 1398616 1398626 1400072 1400077) (-828 "OREUP.spad" 1397974 1398002 1398296 1398335) (-827 "ORESUP.spad" 1397273 1397297 1397654 1397693) (-826 "OREPCTO.spad" 1395092 1395104 1397193 1397198) (-825 "OREPCAT.spad" 1389149 1389159 1395048 1395087) (-824 "OREPCAT.spad" 1383096 1383108 1388997 1389002) (-823 "ORDSET.spad" 1382262 1382270 1383086 1383091) (-822 "ORDSET.spad" 1381426 1381436 1382252 1382257) (-821 "ORDRING.spad" 1380816 1380824 1381406 1381421) (-820 "ORDRING.spad" 1380214 1380224 1380806 1380811) (-819 "ORDMON.spad" 1380069 1380077 1380204 1380209) (-818 "ORDFUNS.spad" 1379195 1379211 1380059 1380064) (-817 "ORDFIN.spad" 1379129 1379137 1379185 1379190) (-816 "ORDCOMP2.spad" 1378414 1378426 1379119 1379124) (-815 "ORDCOMP.spad" 1376879 1376889 1377961 1377990) (-814 "OPTPROB.spad" 1375459 1375467 1376869 1376874) (-813 "OPTPACK.spad" 1367844 1367852 1375449 1375454) (-812 "OPTCAT.spad" 1365519 1365527 1367834 1367839) (-811 "OPQUERY.spad" 1365068 1365076 1365509 1365514) (-810 "OP.spad" 1364810 1364820 1364890 1364957) (-809 "ONECOMP2.spad" 1364228 1364240 1364800 1364805) (-808 "ONECOMP.spad" 1362973 1362983 1363775 1363804) (-807 "OMSERVER.spad" 1361975 1361983 1362963 1362968) (-806 "OMSAGG.spad" 1361751 1361761 1361919 1361970) (-805 "OMPKG.spad" 1360363 1360371 1361741 1361746) (-804 "OMLO.spad" 1359788 1359800 1360249 1360288) (-803 "OMEXPR.spad" 1359622 1359632 1359778 1359783) (-802 "OMERRK.spad" 1358656 1358664 1359612 1359617) (-801 "OMERR.spad" 1358199 1358207 1358646 1358651) (-800 "OMENC.spad" 1357543 1357551 1358189 1358194) (-799 "OMDEV.spad" 1351832 1351840 1357533 1357538) (-798 "OMCONN.spad" 1351241 1351249 1351822 1351827) (-797 "OM.spad" 1350206 1350214 1351231 1351236) (-796 "OINTDOM.spad" 1349969 1349977 1350132 1350201) (-795 "OFMONOID.spad" 1346156 1346166 1349959 1349964) (-794 "ODVAR.spad" 1345417 1345427 1346146 1346151) (-793 "ODR.spad" 1344865 1344891 1345229 1345378) (-792 "ODPOL.spad" 1342211 1342221 1342551 1342678) (-791 "ODP.spad" 1333332 1333352 1333705 1333836) (-790 "ODETOOLS.spad" 1331915 1331934 1333322 1333327) (-789 "ODESYS.spad" 1329565 1329582 1331905 1331910) (-788 "ODERTRIC.spad" 1325506 1325523 1329522 1329527) (-787 "ODERED.spad" 1324893 1324917 1325496 1325501) (-786 "ODERAT.spad" 1322446 1322463 1324883 1324888) (-785 "ODEPRRIC.spad" 1319337 1319359 1322436 1322441) (-784 "ODEPROB.spad" 1318536 1318544 1319327 1319332) (-783 "ODEPRIM.spad" 1315810 1315832 1318526 1318531) (-782 "ODEPAL.spad" 1315186 1315210 1315800 1315805) (-781 "ODEPACK.spad" 1301788 1301796 1315176 1315181) (-780 "ODEINT.spad" 1301219 1301235 1301778 1301783) (-779 "ODEIFTBL.spad" 1298614 1298622 1301209 1301214) (-778 "ODEEF.spad" 1293985 1294001 1298604 1298609) (-777 "ODECONST.spad" 1293504 1293522 1293975 1293980) (-776 "ODECAT.spad" 1292100 1292108 1293494 1293499) (-775 "OCTCT2.spad" 1291744 1291765 1292090 1292095) (-774 "OCT.spad" 1289882 1289892 1290598 1290637) (-773 "OCAMON.spad" 1289730 1289738 1289872 1289877) (-772 "OC.spad" 1287504 1287514 1289686 1289725) (-771 "OC.spad" 1285003 1285015 1287187 1287192) (-770 "OASGP.spad" 1284818 1284826 1284993 1284998) (-769 "OAMONS.spad" 1284338 1284346 1284808 1284813) (-768 "OAMON.spad" 1284199 1284207 1284328 1284333) (-767 "OAGROUP.spad" 1284061 1284069 1284189 1284194) (-766 "NUMTUBE.spad" 1283648 1283664 1284051 1284056) (-765 "NUMQUAD.spad" 1271510 1271518 1283638 1283643) (-764 "NUMODE.spad" 1262646 1262654 1271500 1271505) (-763 "NUMINT.spad" 1260204 1260212 1262636 1262641) (-762 "NUMFMT.spad" 1259044 1259052 1260194 1260199) (-761 "NUMERIC.spad" 1251116 1251126 1258849 1258854) (-760 "NTSCAT.spad" 1249606 1249622 1251072 1251111) (-759 "NTPOLFN.spad" 1249151 1249161 1249523 1249528) (-758 "NSUP2.spad" 1248543 1248555 1249141 1249146) (-757 "NSUP.spad" 1241553 1241563 1246093 1246246) (-756 "NSMP.spad" 1237748 1237767 1238056 1238183) (-755 "NREP.spad" 1236120 1236134 1237738 1237743) (-754 "NPCOEF.spad" 1235366 1235386 1236110 1236115) (-753 "NORMRETR.spad" 1234964 1235003 1235356 1235361) (-752 "NORMPK.spad" 1232866 1232885 1234954 1234959) (-751 "NORMMA.spad" 1232554 1232580 1232856 1232861) (-750 "NONE1.spad" 1232230 1232240 1232544 1232549) (-749 "NONE.spad" 1231971 1231979 1232220 1232225) (-748 "NODE1.spad" 1231440 1231456 1231961 1231966) (-747 "NNI.spad" 1230327 1230335 1231414 1231435) (-746 "NLINSOL.spad" 1228949 1228959 1230317 1230322) (-745 "NIPROB.spad" 1227432 1227440 1228939 1228944) (-744 "NFINTBAS.spad" 1224892 1224909 1227422 1227427) (-743 "NCODIV.spad" 1223090 1223106 1224882 1224887) (-742 "NCNTFRAC.spad" 1222732 1222746 1223080 1223085) (-741 "NCEP.spad" 1220892 1220906 1222722 1222727) (-740 "NASRING.spad" 1220488 1220496 1220882 1220887) (-739 "NASRING.spad" 1220082 1220092 1220478 1220483) (-738 "NARNG.spad" 1219426 1219434 1220072 1220077) (-737 "NARNG.spad" 1218768 1218778 1219416 1219421) (-736 "NAGSP.spad" 1217841 1217849 1218758 1218763) (-735 "NAGS.spad" 1207366 1207374 1217831 1217836) (-734 "NAGF07.spad" 1205759 1205767 1207356 1207361) (-733 "NAGF04.spad" 1199991 1199999 1205749 1205754) (-732 "NAGF02.spad" 1193800 1193808 1199981 1199986) (-731 "NAGF01.spad" 1189403 1189411 1193790 1193795) (-730 "NAGE04.spad" 1182863 1182871 1189393 1189398) (-729 "NAGE02.spad" 1173205 1173213 1182853 1182858) (-728 "NAGE01.spad" 1169089 1169097 1173195 1173200) (-727 "NAGD03.spad" 1167009 1167017 1169079 1169084) (-726 "NAGD02.spad" 1159540 1159548 1166999 1167004) (-725 "NAGD01.spad" 1153653 1153661 1159530 1159535) (-724 "NAGC06.spad" 1149440 1149448 1153643 1153648) (-723 "NAGC05.spad" 1147909 1147917 1149430 1149435) (-722 "NAGC02.spad" 1147164 1147172 1147899 1147904) (-721 "NAALG.spad" 1146699 1146709 1147132 1147159) (-720 "NAALG.spad" 1146254 1146266 1146689 1146694) (-719 "MULTSQFR.spad" 1143212 1143229 1146244 1146249) (-718 "MULTFACT.spad" 1142595 1142612 1143202 1143207) (-717 "MTSCAT.spad" 1140629 1140650 1142493 1142590) (-716 "MTHING.spad" 1140286 1140296 1140619 1140624) (-715 "MSYSCMD.spad" 1139720 1139728 1140276 1140281) (-714 "MSETAGG.spad" 1139553 1139563 1139676 1139715) (-713 "MSET.spad" 1137495 1137505 1139259 1139298) (-712 "MRING.spad" 1134466 1134478 1137203 1137270) (-711 "MRF2.spad" 1134034 1134048 1134456 1134461) (-710 "MRATFAC.spad" 1133580 1133597 1134024 1134029) (-709 "MPRFF.spad" 1131610 1131629 1133570 1133575) (-708 "MPOLY.spad" 1129045 1129060 1129404 1129531) (-707 "MPCPF.spad" 1128309 1128328 1129035 1129040) (-706 "MPC3.spad" 1128124 1128164 1128299 1128304) (-705 "MPC2.spad" 1127766 1127799 1128114 1128119) (-704 "MONOTOOL.spad" 1126101 1126118 1127756 1127761) (-703 "MONOID.spad" 1125420 1125428 1126091 1126096) (-702 "MONOID.spad" 1124737 1124747 1125410 1125415) (-701 "MONOGEN.spad" 1123483 1123496 1124597 1124732) (-700 "MONOGEN.spad" 1122251 1122266 1123367 1123372) (-699 "MONADWU.spad" 1120265 1120273 1122241 1122246) (-698 "MONADWU.spad" 1118277 1118287 1120255 1120260) (-697 "MONAD.spad" 1117421 1117429 1118267 1118272) (-696 "MONAD.spad" 1116563 1116573 1117411 1117416) (-695 "MOEBIUS.spad" 1115249 1115263 1116543 1116558) (-694 "MODULE.spad" 1115119 1115129 1115217 1115244) (-693 "MODULE.spad" 1115009 1115021 1115109 1115114) (-692 "MODRING.spad" 1114340 1114379 1114989 1115004) (-691 "MODOP.spad" 1112999 1113011 1114162 1114229) (-690 "MODMONOM.spad" 1112531 1112549 1112989 1112994) (-689 "MODMON.spad" 1109233 1109249 1110009 1110162) (-688 "MODFIELD.spad" 1108591 1108630 1109135 1109228) (-687 "MMLFORM.spad" 1107451 1107459 1108581 1108586) (-686 "MMAP.spad" 1107191 1107225 1107441 1107446) (-685 "MLO.spad" 1105618 1105628 1107147 1107186) (-684 "MLIFT.spad" 1104190 1104207 1105608 1105613) (-683 "MKUCFUNC.spad" 1103723 1103741 1104180 1104185) (-682 "MKRECORD.spad" 1103325 1103338 1103713 1103718) (-681 "MKFUNC.spad" 1102706 1102716 1103315 1103320) (-680 "MKFLCFN.spad" 1101662 1101672 1102696 1102701) (-679 "MKCHSET.spad" 1101438 1101448 1101652 1101657) (-678 "MKBCFUNC.spad" 1100923 1100941 1101428 1101433) (-677 "MINT.spad" 1100362 1100370 1100825 1100918) (-676 "MHROWRED.spad" 1098863 1098873 1100352 1100357) (-675 "MFLOAT.spad" 1097379 1097387 1098753 1098858) (-674 "MFINFACT.spad" 1096779 1096801 1097369 1097374) (-673 "MESH.spad" 1094516 1094524 1096769 1096774) (-672 "MDDFACT.spad" 1092709 1092719 1094506 1094511) (-671 "MDAGG.spad" 1091984 1091994 1092677 1092704) (-670 "MCMPLX.spad" 1087959 1087967 1088573 1088774) (-669 "MCDEN.spad" 1087167 1087179 1087949 1087954) (-668 "MCALCFN.spad" 1084269 1084295 1087157 1087162) (-667 "MAYBE.spad" 1083518 1083529 1084259 1084264) (-666 "MATSTOR.spad" 1080794 1080804 1083508 1083513) (-665 "MATRIX.spad" 1079498 1079508 1079982 1080009) (-664 "MATLIN.spad" 1076824 1076848 1079382 1079387) (-663 "MATCAT2.spad" 1076092 1076140 1076814 1076819) (-662 "MATCAT.spad" 1067665 1067687 1076048 1076087) (-661 "MATCAT.spad" 1059122 1059146 1067507 1067512) (-660 "MAPPKG3.spad" 1058021 1058035 1059112 1059117) (-659 "MAPPKG2.spad" 1057355 1057367 1058011 1058016) (-658 "MAPPKG1.spad" 1056173 1056183 1057345 1057350) (-657 "MAPPAST.spad" 1055486 1055494 1056163 1056168) (-656 "MAPHACK3.spad" 1055294 1055308 1055476 1055481) (-655 "MAPHACK2.spad" 1055059 1055071 1055284 1055289) (-654 "MAPHACK1.spad" 1054689 1054699 1055049 1055054) (-653 "MAGMA.spad" 1052479 1052496 1054679 1054684) (-652 "MACROAST.spad" 1052058 1052066 1052469 1052474) (-651 "M3D.spad" 1049754 1049764 1051436 1051441) (-650 "LZSTAGG.spad" 1046972 1046982 1049734 1049749) (-649 "LZSTAGG.spad" 1044198 1044210 1046962 1046967) (-648 "LWORD.spad" 1040903 1040920 1044188 1044193) (-647 "LSTAST.spad" 1040687 1040695 1040893 1040898) (-646 "LSQM.spad" 1038910 1038924 1039308 1039359) (-645 "LSPP.spad" 1038443 1038460 1038900 1038905) (-644 "LSMP1.spad" 1036264 1036278 1038433 1038438) (-643 "LSMP.spad" 1035111 1035139 1036254 1036259) (-642 "LSAGG.spad" 1034768 1034778 1035067 1035106) (-641 "LSAGG.spad" 1034457 1034469 1034758 1034763) (-640 "LPOLY.spad" 1033411 1033430 1034313 1034382) (-639 "LPEFRAC.spad" 1032668 1032678 1033401 1033406) (-638 "LOGIC.spad" 1032270 1032278 1032658 1032663) (-637 "LOGIC.spad" 1031870 1031880 1032260 1032265) (-636 "LODOOPS.spad" 1030788 1030800 1031860 1031865) (-635 "LODOF.spad" 1029832 1029849 1030745 1030750) (-634 "LODOCAT.spad" 1028490 1028500 1029788 1029827) (-633 "LODOCAT.spad" 1027146 1027158 1028446 1028451) (-632 "LODO2.spad" 1026419 1026431 1026826 1026865) (-631 "LODO1.spad" 1025819 1025829 1026099 1026138) (-630 "LODO.spad" 1025203 1025219 1025499 1025538) (-629 "LODEEF.spad" 1023975 1023993 1025193 1025198) (-628 "LO.spad" 1023376 1023390 1023909 1023936) (-627 "LNAGG.spad" 1019168 1019178 1023356 1023371) (-626 "LNAGG.spad" 1014934 1014946 1019124 1019129) (-625 "LMOPS.spad" 1011670 1011687 1014924 1014929) (-624 "LMODULE.spad" 1011312 1011322 1011660 1011665) (-623 "LMDICT.spad" 1010595 1010605 1010863 1010890) (-622 "LITERAL.spad" 1010501 1010512 1010585 1010590) (-621 "LIST3.spad" 1009792 1009806 1010491 1010496) (-620 "LIST2MAP.spad" 1006669 1006681 1009782 1009787) (-619 "LIST2.spad" 1005309 1005321 1006659 1006664) (-618 "LIST.spad" 1003027 1003037 1004456 1004483) (-617 "LINEXP.spad" 1002459 1002469 1003007 1003022) (-616 "LINDEP.spad" 1001236 1001248 1002371 1002376) (-615 "LIMITRF.spad" 999169 999179 1001226 1001231) (-614 "LIMITPS.spad" 998059 998072 999159 999164) (-613 "LIECAT.spad" 997535 997545 997985 998054) (-612 "LIECAT.spad" 997039 997051 997491 997496) (-611 "LIE.spad" 995053 995065 996329 996474) (-610 "LIB.spad" 993101 993109 993712 993727) (-609 "LGROBP.spad" 990454 990473 993091 993096) (-608 "LFCAT.spad" 989473 989481 990444 990449) (-607 "LF.spad" 988392 988408 989463 989468) (-606 "LEXTRIPK.spad" 983895 983910 988382 988387) (-605 "LEXP.spad" 981898 981925 983875 983890) (-604 "LETAST.spad" 981597 981605 981888 981893) (-603 "LEADCDET.spad" 979981 979998 981587 981592) (-602 "LAZM3PK.spad" 978685 978707 979971 979976) (-601 "LAUPOL.spad" 977374 977387 978278 978347) (-600 "LAPLACE.spad" 976947 976963 977364 977369) (-599 "LALG.spad" 976723 976733 976927 976942) (-598 "LALG.spad" 976507 976519 976713 976718) (-597 "LA.spad" 975947 975961 976429 976468) (-596 "KTVLOGIC.spad" 975370 975378 975937 975942) (-595 "KOVACIC.spad" 974083 974100 975360 975365) (-594 "KONVERT.spad" 973805 973815 974073 974078) (-593 "KOERCE.spad" 973542 973552 973795 973800) (-592 "KERNEL2.spad" 973245 973257 973532 973537) (-591 "KERNEL.spad" 971780 971790 973029 973034) (-590 "KDAGG.spad" 970871 970893 971748 971775) (-589 "KDAGG.spad" 969982 970006 970861 970866) (-588 "KAFILE.spad" 968945 968961 969180 969207) (-587 "JORDAN.spad" 966772 966784 968235 968380) (-586 "JOINAST.spad" 966466 966474 966762 966767) (-585 "JAVACODE.spad" 966232 966240 966456 966461) (-584 "IXAGG.spad" 964345 964369 966212 966227) (-583 "IXAGG.spad" 962323 962349 964192 964197) (-582 "IVECTOR.spad" 961094 961109 961249 961276) (-581 "ITUPLE.spad" 960239 960249 961084 961089) (-580 "ITRIGMNP.spad" 959050 959069 960229 960234) (-579 "ITFUN3.spad" 958544 958558 959040 959045) (-578 "ITFUN2.spad" 958274 958286 958534 958539) (-577 "ITAYLOR.spad" 956066 956081 958110 958235) (-576 "ISUPS.spad" 948477 948492 955040 955137) (-575 "ISUMP.spad" 947974 947990 948467 948472) (-574 "ISTRING.spad" 946977 946990 947143 947170) (-573 "ISAST.spad" 946696 946704 946967 946972) (-572 "IRURPK.spad" 945409 945428 946686 946691) (-571 "IRSN.spad" 943369 943377 945399 945404) (-570 "IRRF2F.spad" 941844 941854 943325 943330) (-569 "IRREDFFX.spad" 941445 941456 941834 941839) (-568 "IROOT.spad" 939776 939786 941435 941440) (-567 "IR2F.spad" 938976 938992 939766 939771) (-566 "IR2.spad" 937996 938012 938966 938971) (-565 "IR.spad" 935785 935799 937851 937878) (-564 "IPRNTPK.spad" 935545 935553 935775 935780) (-563 "IPF.spad" 935110 935122 935350 935443) (-562 "IPADIC.spad" 934871 934897 935036 935105) (-561 "IOBCON.spad" 934736 934744 934861 934866) (-560 "INVLAPLA.spad" 934381 934397 934726 934731) (-559 "INTTR.spad" 927639 927656 934371 934376) (-558 "INTTOOLS.spad" 925350 925366 927213 927218) (-557 "INTSLPE.spad" 924656 924664 925340 925345) (-556 "INTRVL.spad" 924222 924232 924570 924651) (-555 "INTRF.spad" 922586 922600 924212 924217) (-554 "INTRET.spad" 922018 922028 922576 922581) (-553 "INTRAT.spad" 920693 920710 922008 922013) (-552 "INTPM.spad" 919056 919072 920336 920341) (-551 "INTPAF.spad" 916831 916849 918988 918993) (-550 "INTPACK.spad" 907141 907149 916821 916826) (-549 "INTHERTR.spad" 906407 906424 907131 907136) (-548 "INTHERAL.spad" 906073 906097 906397 906402) (-547 "INTHEORY.spad" 902486 902494 906063 906068) (-546 "INTG0.spad" 895967 895985 902418 902423) (-545 "INTFTBL.spad" 891421 891429 895957 895962) (-544 "INTFACT.spad" 890480 890490 891411 891416) (-543 "INTEF.spad" 888797 888813 890470 890475) (-542 "INTDOM.spad" 887412 887420 888723 888792) (-541 "INTDOM.spad" 886089 886099 887402 887407) (-540 "INTCAT.spad" 884342 884352 886003 886084) (-539 "INTBIT.spad" 883845 883853 884332 884337) (-538 "INTALG.spad" 883027 883054 883835 883840) (-537 "INTAF.spad" 882519 882535 883017 883022) (-536 "INTABL.spad" 881037 881068 881200 881227) (-535 "INT.spad" 880398 880406 880891 881032) (-534 "INS.spad" 877865 877873 880300 880393) (-533 "INS.spad" 875418 875428 877855 877860) (-532 "INPSIGN.spad" 874874 874887 875408 875413) (-531 "INPRODPF.spad" 873940 873959 874864 874869) (-530 "INPRODFF.spad" 872998 873022 873930 873935) (-529 "INNMFACT.spad" 871969 871986 872988 872993) (-528 "INMODGCD.spad" 871453 871483 871959 871964) (-527 "INFSP.spad" 869738 869760 871443 871448) (-526 "INFPROD0.spad" 868788 868807 869728 869733) (-525 "INFORM1.spad" 868413 868423 868778 868783) (-524 "INFORM.spad" 865574 865582 868403 868408) (-523 "INFINITY.spad" 865126 865134 865564 865569) (-522 "INEP.spad" 863658 863680 865116 865121) (-521 "INDE.spad" 863387 863404 863648 863653) (-520 "INCRMAPS.spad" 862808 862818 863377 863382) (-519 "INBFF.spad" 858578 858589 862798 862803) (-518 "INBCON.spad" 857878 857886 858568 858573) (-517 "INBCON.spad" 857176 857186 857868 857873) (-516 "INAST.spad" 856841 856849 857166 857171) (-515 "IMPTAST.spad" 856549 856557 856831 856836) (-514 "IMATRIX.spad" 855494 855520 856006 856033) (-513 "IMATQF.spad" 854588 854632 855450 855455) (-512 "IMATLIN.spad" 853193 853217 854544 854549) (-511 "ILIST.spad" 851849 851864 852376 852403) (-510 "IIARRAY2.spad" 851237 851275 851456 851483) (-509 "IFF.spad" 850647 850663 850918 851011) (-508 "IFAST.spad" 850261 850269 850637 850642) (-507 "IFARRAY.spad" 847748 847763 849444 849471) (-506 "IFAMON.spad" 847610 847627 847704 847709) (-505 "IEVALAB.spad" 846999 847011 847600 847605) (-504 "IEVALAB.spad" 846386 846400 846989 846994) (-503 "IDPOAMS.spad" 846142 846154 846376 846381) (-502 "IDPOAM.spad" 845862 845874 846132 846137) (-501 "IDPO.spad" 845660 845672 845852 845857) (-500 "IDPC.spad" 844594 844606 845650 845655) (-499 "IDPAM.spad" 844339 844351 844584 844589) (-498 "IDPAG.spad" 844086 844098 844329 844334) (-497 "IDENT.spad" 844003 844011 844076 844081) (-496 "IDECOMP.spad" 841240 841258 843993 843998) (-495 "IDEAL.spad" 836163 836202 841175 841180) (-494 "ICDEN.spad" 835314 835330 836153 836158) (-493 "ICARD.spad" 834503 834511 835304 835309) (-492 "IBPTOOLS.spad" 833096 833113 834493 834498) (-491 "IBITS.spad" 832295 832308 832732 832759) (-490 "IBATOOL.spad" 829170 829189 832285 832290) (-489 "IBACHIN.spad" 827657 827672 829160 829165) (-488 "IARRAY2.spad" 826645 826671 827264 827291) (-487 "IARRAY1.spad" 825690 825705 825828 825855) (-486 "IAN.spad" 823903 823911 825506 825599) (-485 "IALGFACT.spad" 823504 823537 823893 823898) (-484 "HYPCAT.spad" 822928 822936 823494 823499) (-483 "HYPCAT.spad" 822350 822360 822918 822923) (-482 "HOSTNAME.spad" 822158 822166 822340 822345) (-481 "HOAGG.spad" 819416 819426 822138 822153) (-480 "HOAGG.spad" 816459 816471 819183 819188) (-479 "HEXADEC.spad" 814329 814337 814927 815020) (-478 "HEUGCD.spad" 813344 813355 814319 814324) (-477 "HELLFDIV.spad" 812934 812958 813334 813339) (-476 "HEAP.spad" 812326 812336 812541 812568) (-475 "HEADAST.spad" 811857 811865 812316 812321) (-474 "HDP.spad" 802974 802990 803351 803482) (-473 "HDMP.spad" 800150 800165 800768 800895) (-472 "HB.spad" 798387 798395 800140 800145) (-471 "HASHTBL.spad" 796857 796888 797068 797095) (-470 "HASAST.spad" 796573 796581 796847 796852) (-469 "HACKPI.spad" 796056 796064 796475 796568) (-468 "GTSET.spad" 794995 795011 795702 795729) (-467 "GSTBL.spad" 793514 793549 793688 793703) (-466 "GSERIES.spad" 790681 790708 791646 791795) (-465 "GROUP.spad" 789950 789958 790661 790676) (-464 "GROUP.spad" 789227 789237 789940 789945) (-463 "GROEBSOL.spad" 787715 787736 789217 789222) (-462 "GRMOD.spad" 786286 786298 787705 787710) (-461 "GRMOD.spad" 784855 784869 786276 786281) (-460 "GRIMAGE.spad" 777460 777468 784845 784850) (-459 "GRDEF.spad" 775839 775847 777450 777455) (-458 "GRAY.spad" 774298 774306 775829 775834) (-457 "GRALG.spad" 773345 773357 774288 774293) (-456 "GRALG.spad" 772390 772404 773335 773340) (-455 "GPOLSET.spad" 771844 771867 772072 772099) (-454 "GOSPER.spad" 771109 771127 771834 771839) (-453 "GMODPOL.spad" 770247 770274 771077 771104) (-452 "GHENSEL.spad" 769316 769330 770237 770242) (-451 "GENUPS.spad" 765417 765430 769306 769311) (-450 "GENUFACT.spad" 764994 765004 765407 765412) (-449 "GENPGCD.spad" 764578 764595 764984 764989) (-448 "GENMFACT.spad" 764030 764049 764568 764573) (-447 "GENEEZ.spad" 761969 761982 764020 764025) (-446 "GDMP.spad" 758987 759004 759763 759890) (-445 "GCNAALG.spad" 752882 752909 758781 758848) (-444 "GCDDOM.spad" 752054 752062 752808 752877) (-443 "GCDDOM.spad" 751288 751298 752044 752049) (-442 "GBINTERN.spad" 747308 747346 751278 751283) (-441 "GBF.spad" 743065 743103 747298 747303) (-440 "GBEUCLID.spad" 740939 740977 743055 743060) (-439 "GB.spad" 738457 738495 740895 740900) (-438 "GAUSSFAC.spad" 737754 737762 738447 738452) (-437 "GALUTIL.spad" 736076 736086 737710 737715) (-436 "GALPOLYU.spad" 734522 734535 736066 736071) (-435 "GALFACTU.spad" 732687 732706 734512 734517) (-434 "GALFACT.spad" 722820 722831 732677 732682) (-433 "FVFUN.spad" 719833 719841 722800 722815) (-432 "FVC.spad" 718875 718883 719813 719828) (-431 "FUNCTION.spad" 718724 718736 718865 718870) (-430 "FTEM.spad" 717887 717895 718714 718719) (-429 "FT.spad" 716102 716110 717877 717882) (-428 "FSUPFACT.spad" 715002 715021 716038 716043) (-427 "FST.spad" 713088 713096 714992 714997) (-426 "FSRED.spad" 712566 712582 713078 713083) (-425 "FSPRMELT.spad" 711390 711406 712523 712528) (-424 "FSPECF.spad" 709467 709483 711380 711385) (-423 "FSINT.spad" 709125 709141 709457 709462) (-422 "FSERIES.spad" 708312 708324 708945 709044) (-421 "FSCINT.spad" 707625 707641 708302 708307) (-420 "FSAGG2.spad" 706324 706340 707615 707620) (-419 "FSAGG.spad" 705429 705439 706268 706319) (-418 "FSAGG.spad" 704508 704520 705349 705354) (-417 "FS2UPS.spad" 698897 698931 704498 704503) (-416 "FS2EXPXP.spad" 698020 698043 698887 698892) (-415 "FS2.spad" 697665 697681 698010 698015) (-414 "FS.spad" 691715 691725 697428 697660) (-413 "FS.spad" 685555 685567 691270 691275) (-412 "FRUTIL.spad" 684497 684507 685545 685550) (-411 "FRNAALG.spad" 679584 679594 684439 684492) (-410 "FRNAALG.spad" 674683 674695 679540 679545) (-409 "FRNAAF2.spad" 674137 674155 674673 674678) (-408 "FRMOD.spad" 673531 673561 674068 674073) (-407 "FRIDEAL2.spad" 673133 673165 673521 673526) (-406 "FRIDEAL.spad" 672328 672349 673113 673128) (-405 "FRETRCT.spad" 671839 671849 672318 672323) (-404 "FRETRCT.spad" 671216 671228 671697 671702) (-403 "FRAMALG.spad" 669544 669557 671172 671211) (-402 "FRAMALG.spad" 667904 667919 669534 669539) (-401 "FRAC2.spad" 667507 667519 667894 667899) (-400 "FRAC.spad" 664607 664617 665010 665183) (-399 "FR2.spad" 663941 663953 664597 664602) (-398 "FR.spad" 657663 657673 662966 663035) (-397 "FPS.spad" 654472 654480 657553 657658) (-396 "FPS.spad" 651309 651319 654392 654397) (-395 "FPC.spad" 650351 650359 651211 651304) (-394 "FPC.spad" 649479 649489 650341 650346) (-393 "FPATMAB.spad" 649231 649241 649459 649474) (-392 "FPARFRAC.spad" 647704 647721 649221 649226) (-391 "FORTRAN.spad" 646210 646253 647694 647699) (-390 "FORTFN.spad" 643370 643378 646190 646205) (-389 "FORTCAT.spad" 643044 643052 643350 643365) (-388 "FORT.spad" 641973 641981 643034 643039) (-387 "FORMULA1.spad" 641452 641462 641963 641968) (-386 "FORMULA.spad" 638790 638798 641442 641447) (-385 "FORDER.spad" 638481 638505 638780 638785) (-384 "FOP.spad" 637682 637690 638471 638476) (-383 "FNLA.spad" 637106 637128 637650 637677) (-382 "FNCAT.spad" 635434 635442 637096 637101) (-381 "FNAME.spad" 635326 635334 635424 635429) (-380 "FMTC.spad" 635124 635132 635252 635321) (-379 "FMONOID.spad" 632179 632189 635080 635085) (-378 "FMFUN.spad" 629199 629207 632159 632174) (-377 "FMCAT.spad" 626853 626871 629167 629194) (-376 "FMC.spad" 625895 625903 626833 626848) (-375 "FM1.spad" 625252 625264 625829 625856) (-374 "FM.spad" 624947 624959 625186 625213) (-373 "FLOATRP.spad" 622668 622682 624937 624942) (-372 "FLOATCP.spad" 620085 620099 622658 622663) (-371 "FLOAT.spad" 613249 613257 619951 620080) (-370 "FLINEXP.spad" 612961 612971 613229 613244) (-369 "FLINEXP.spad" 612627 612639 612897 612902) (-368 "FLASORT.spad" 611947 611959 612617 612622) (-367 "FLALG.spad" 609593 609612 611873 611942) (-366 "FLAGG2.spad" 608274 608290 609583 609588) (-365 "FLAGG.spad" 605280 605290 608242 608269) (-364 "FLAGG.spad" 602199 602211 605163 605168) (-363 "FINRALG.spad" 600228 600241 602155 602194) (-362 "FINRALG.spad" 598183 598198 600112 600117) (-361 "FINITE.spad" 597335 597343 598173 598178) (-360 "FINAALG.spad" 586316 586326 597277 597330) (-359 "FINAALG.spad" 575309 575321 586272 586277) (-358 "FILECAT.spad" 573827 573844 575299 575304) (-357 "FILE.spad" 573410 573420 573817 573822) (-356 "FIELD.spad" 572816 572824 573312 573405) (-355 "FIELD.spad" 572308 572318 572806 572811) (-354 "FGROUP.spad" 570917 570927 572288 572303) (-353 "FGLMICPK.spad" 569704 569719 570907 570912) (-352 "FFX.spad" 569079 569094 569420 569513) (-351 "FFSLPE.spad" 568568 568589 569069 569074) (-350 "FFPOLY2.spad" 567628 567645 568558 568563) (-349 "FFPOLY.spad" 558880 558891 567618 567623) (-348 "FFP.spad" 558277 558297 558596 558689) (-347 "FFNBX.spad" 556789 556809 557993 558086) (-346 "FFNBP.spad" 555302 555319 556505 556598) (-345 "FFNB.spad" 553767 553788 554983 555076) (-344 "FFINTBAS.spad" 551181 551200 553757 553762) (-343 "FFIELDC.spad" 548756 548764 551083 551176) (-342 "FFIELDC.spad" 546417 546427 548746 548751) (-341 "FFHOM.spad" 545165 545182 546407 546412) (-340 "FFF.spad" 542600 542611 545155 545160) (-339 "FFCGX.spad" 541447 541467 542316 542409) (-338 "FFCGP.spad" 540336 540356 541163 541256) (-337 "FFCG.spad" 539128 539149 540017 540110) (-336 "FFCAT2.spad" 538873 538913 539118 539123) (-335 "FFCAT.spad" 531900 531922 538712 538868) (-334 "FFCAT.spad" 525006 525030 531820 531825) (-333 "FF.spad" 524454 524470 524687 524780) (-332 "FEXPR.spad" 516163 516209 524210 524249) (-331 "FEVALAB.spad" 515869 515879 516153 516158) (-330 "FEVALAB.spad" 515360 515372 515646 515651) (-329 "FDIVCAT.spad" 513402 513426 515350 515355) (-328 "FDIVCAT.spad" 511442 511468 513392 513397) (-327 "FDIV2.spad" 511096 511136 511432 511437) (-326 "FDIV.spad" 510538 510562 511086 511091) (-325 "FCPAK1.spad" 509091 509099 510528 510533) (-324 "FCOMP.spad" 508470 508480 509081 509086) (-323 "FC.spad" 498295 498303 508460 508465) (-322 "FAXF.spad" 491230 491244 498197 498290) (-321 "FAXF.spad" 484217 484233 491186 491191) (-320 "FARRAY.spad" 482363 482373 483400 483427) (-319 "FAMR.spad" 480483 480495 482261 482358) (-318 "FAMR.spad" 478587 478601 480367 480372) (-317 "FAMONOID.spad" 478237 478247 478541 478546) (-316 "FAMONC.spad" 476459 476471 478227 478232) (-315 "FAGROUP.spad" 476065 476075 476355 476382) (-314 "FACUTIL.spad" 474261 474278 476055 476060) (-313 "FACTFUNC.spad" 473437 473447 474251 474256) (-312 "EXPUPXS.spad" 470270 470293 471569 471718) (-311 "EXPRTUBE.spad" 467498 467506 470260 470265) (-310 "EXPRODE.spad" 464370 464386 467488 467493) (-309 "EXPR2UPS.spad" 460462 460475 464360 464365) (-308 "EXPR2.spad" 460165 460177 460452 460457) (-307 "EXPR.spad" 455440 455450 456154 456561) (-306 "EXPEXPAN.spad" 452379 452404 453013 453106) (-305 "EXITAST.spad" 452115 452123 452369 452374) (-304 "EXIT.spad" 451786 451794 452105 452110) (-303 "EVALCYC.spad" 451244 451258 451776 451781) (-302 "EVALAB.spad" 450808 450818 451234 451239) (-301 "EVALAB.spad" 450370 450382 450798 450803) (-300 "EUCDOM.spad" 447912 447920 450296 450365) (-299 "EUCDOM.spad" 445516 445526 447902 447907) (-298 "ESTOOLS2.spad" 445117 445131 445506 445511) (-297 "ESTOOLS1.spad" 444802 444813 445107 445112) (-296 "ESTOOLS.spad" 436642 436650 444792 444797) (-295 "ESCONT1.spad" 436391 436403 436632 436637) (-294 "ESCONT.spad" 433164 433172 436381 436386) (-293 "ES2.spad" 432659 432675 433154 433159) (-292 "ES1.spad" 432225 432241 432649 432654) (-291 "ES.spad" 424772 424780 432215 432220) (-290 "ES.spad" 417225 417235 424670 424675) (-289 "ERROR.spad" 414546 414554 417215 417220) (-288 "EQTBL.spad" 413018 413040 413227 413254) (-287 "EQ2.spad" 412734 412746 413008 413013) (-286 "EQ.spad" 407608 407618 410407 410519) (-285 "EP.spad" 403922 403932 407598 407603) (-284 "ENV.spad" 402624 402632 403912 403917) (-283 "ENTIRER.spad" 402292 402300 402568 402619) (-282 "EMR.spad" 401493 401534 402218 402287) (-281 "ELTAGG.spad" 399733 399752 401483 401488) (-280 "ELTAGG.spad" 397937 397958 399689 399694) (-279 "ELTAB.spad" 397384 397402 397927 397932) (-278 "ELFUTS.spad" 396763 396782 397374 397379) (-277 "ELEMFUN.spad" 396452 396460 396753 396758) (-276 "ELEMFUN.spad" 396139 396149 396442 396447) (-275 "ELAGG.spad" 394070 394080 396107 396134) (-274 "ELAGG.spad" 391950 391962 393989 393994) (-273 "ELABEXPR.spad" 390881 390889 391940 391945) (-272 "EFUPXS.spad" 387657 387687 390837 390842) (-271 "EFULS.spad" 384493 384516 387613 387618) (-270 "EFSTRUC.spad" 382448 382464 384483 384488) (-269 "EF.spad" 377214 377230 382438 382443) (-268 "EAB.spad" 375490 375498 377204 377209) (-267 "E04UCFA.spad" 375026 375034 375480 375485) (-266 "E04NAFA.spad" 374603 374611 375016 375021) (-265 "E04MBFA.spad" 374183 374191 374593 374598) (-264 "E04JAFA.spad" 373719 373727 374173 374178) (-263 "E04GCFA.spad" 373255 373263 373709 373714) (-262 "E04FDFA.spad" 372791 372799 373245 373250) (-261 "E04DGFA.spad" 372327 372335 372781 372786) (-260 "E04AGNT.spad" 368169 368177 372317 372322) (-259 "DVARCAT.spad" 364854 364864 368159 368164) (-258 "DVARCAT.spad" 361537 361549 364844 364849) (-257 "DSMP.spad" 358968 358982 359273 359400) (-256 "DROPT1.spad" 358631 358641 358958 358963) (-255 "DROPT0.spad" 353458 353466 358621 358626) (-254 "DROPT.spad" 347403 347411 353448 353453) (-253 "DRAWPT.spad" 345558 345566 347393 347398) (-252 "DRAWHACK.spad" 344866 344876 345548 345553) (-251 "DRAWCX.spad" 342308 342316 344856 344861) (-250 "DRAWCURV.spad" 341845 341860 342298 342303) (-249 "DRAWCFUN.spad" 331017 331025 341835 341840) (-248 "DRAW.spad" 323617 323630 331007 331012) (-247 "DQAGG.spad" 321773 321783 323573 323612) (-246 "DPOLCAT.spad" 317114 317130 321641 321768) (-245 "DPOLCAT.spad" 312541 312559 317070 317075) (-244 "DPMO.spad" 305844 305860 305982 306283) (-243 "DPMM.spad" 299160 299178 299285 299586) (-242 "DOMAIN.spad" 298431 298439 299150 299155) (-241 "DMP.spad" 295653 295668 296225 296352) (-240 "DLP.spad" 295001 295011 295643 295648) (-239 "DLIST.spad" 293413 293423 294184 294211) (-238 "DLAGG.spad" 291814 291824 293393 293408) (-237 "DIVRING.spad" 291356 291364 291758 291809) (-236 "DIVRING.spad" 290942 290952 291346 291351) (-235 "DISPLAY.spad" 289122 289130 290932 290937) (-234 "DIRPROD2.spad" 287930 287948 289112 289117) (-233 "DIRPROD.spad" 278784 278800 279424 279555) (-232 "DIRPCAT.spad" 277714 277730 278636 278779) (-231 "DIRPCAT.spad" 276385 276403 277309 277314) (-230 "DIOSP.spad" 275210 275218 276375 276380) (-229 "DIOPS.spad" 274182 274192 275178 275205) (-228 "DIOPS.spad" 273140 273152 274138 274143) (-227 "DIFRING.spad" 272432 272440 273120 273135) (-226 "DIFRING.spad" 271732 271742 272422 272427) (-225 "DIFEXT.spad" 270891 270901 271712 271727) (-224 "DIFEXT.spad" 269967 269979 270790 270795) (-223 "DIAGG.spad" 269585 269595 269935 269962) (-222 "DIAGG.spad" 269223 269235 269575 269580) (-221 "DHMATRIX.spad" 267527 267537 268680 268707) (-220 "DFSFUN.spad" 260935 260943 267517 267522) (-219 "DFLOAT.spad" 257538 257546 260825 260930) (-218 "DFINTTLS.spad" 255747 255763 257528 257533) (-217 "DERHAM.spad" 253657 253689 255727 255742) (-216 "DEQUEUE.spad" 252975 252985 253264 253291) (-215 "DEGRED.spad" 252590 252604 252965 252970) (-214 "DEFINTRF.spad" 250160 250170 252580 252585) (-213 "DEFINTEF.spad" 248684 248700 250150 250155) (-212 "DEFAST.spad" 248052 248060 248674 248679) (-211 "DECIMAL.spad" 245934 245942 246520 246613) (-210 "DDFACT.spad" 243733 243750 245924 245929) (-209 "DBLRESP.spad" 243331 243355 243723 243728) (-208 "DBASE.spad" 241903 241913 243321 243326) (-207 "DATABUF.spad" 241391 241404 241893 241898) (-206 "D03FAFA.spad" 241219 241227 241381 241386) (-205 "D03EEFA.spad" 241039 241047 241209 241214) (-204 "D03AGNT.spad" 240119 240127 241029 241034) (-203 "D02EJFA.spad" 239581 239589 240109 240114) (-202 "D02CJFA.spad" 239059 239067 239571 239576) (-201 "D02BHFA.spad" 238549 238557 239049 239054) (-200 "D02BBFA.spad" 238039 238047 238539 238544) (-199 "D02AGNT.spad" 232843 232851 238029 238034) (-198 "D01WGTS.spad" 231162 231170 232833 232838) (-197 "D01TRNS.spad" 231139 231147 231152 231157) (-196 "D01GBFA.spad" 230661 230669 231129 231134) (-195 "D01FCFA.spad" 230183 230191 230651 230656) (-194 "D01ASFA.spad" 229651 229659 230173 230178) (-193 "D01AQFA.spad" 229097 229105 229641 229646) (-192 "D01APFA.spad" 228521 228529 229087 229092) (-191 "D01ANFA.spad" 228015 228023 228511 228516) (-190 "D01AMFA.spad" 227525 227533 228005 228010) (-189 "D01ALFA.spad" 227065 227073 227515 227520) (-188 "D01AKFA.spad" 226591 226599 227055 227060) (-187 "D01AJFA.spad" 226114 226122 226581 226586) (-186 "D01AGNT.spad" 222173 222181 226104 226109) (-185 "CYCLOTOM.spad" 221679 221687 222163 222168) (-184 "CYCLES.spad" 218511 218519 221669 221674) (-183 "CVMP.spad" 217928 217938 218501 218506) (-182 "CTRIGMNP.spad" 216418 216434 217918 217923) (-181 "CTORCALL.spad" 216006 216014 216408 216413) (-180 "CSTTOOLS.spad" 215249 215262 215996 216001) (-179 "CRFP.spad" 208953 208966 215239 215244) (-178 "CRCEAST.spad" 208673 208681 208943 208948) (-177 "CRAPACK.spad" 207716 207726 208663 208668) (-176 "CPMATCH.spad" 207216 207231 207641 207646) (-175 "CPIMA.spad" 206921 206940 207206 207211) (-174 "COORDSYS.spad" 201814 201824 206911 206916) (-173 "CONTOUR.spad" 201216 201224 201804 201809) (-172 "CONTFRAC.spad" 196828 196838 201118 201211) (-171 "CONDUIT.spad" 196586 196594 196818 196823) (-170 "COMRING.spad" 196260 196268 196524 196581) (-169 "COMPPROP.spad" 195774 195782 196250 196255) (-168 "COMPLPAT.spad" 195541 195556 195764 195769) (-167 "COMPLEX2.spad" 195254 195266 195531 195536) (-166 "COMPLEX.spad" 189280 189290 189524 189785) (-165 "COMPFACT.spad" 188882 188896 189270 189275) (-164 "COMPCAT.spad" 186938 186948 188604 188877) (-163 "COMPCAT.spad" 184700 184712 186368 186373) (-162 "COMMUPC.spad" 184446 184464 184690 184695) (-161 "COMMONOP.spad" 183979 183987 184436 184441) (-160 "COMMAAST.spad" 183742 183750 183969 183974) (-159 "COMM.spad" 183551 183559 183732 183737) (-158 "COMBOPC.spad" 182456 182464 183541 183546) (-157 "COMBINAT.spad" 181201 181211 182446 182451) (-156 "COMBF.spad" 178569 178585 181191 181196) (-155 "COLOR.spad" 177406 177414 178559 178564) (-154 "COLONAST.spad" 177072 177080 177396 177401) (-153 "CMPLXRT.spad" 176781 176798 177062 177067) (-152 "CLLCTAST.spad" 176443 176451 176771 176776) (-151 "CLIP.spad" 172535 172543 176433 176438) (-150 "CLIF.spad" 171174 171190 172491 172530) (-149 "CLAGG.spad" 167649 167659 171154 171169) (-148 "CLAGG.spad" 164005 164017 167512 167517) (-147 "CINTSLPE.spad" 163330 163343 163995 164000) (-146 "CHVAR.spad" 161408 161430 163320 163325) (-145 "CHARZ.spad" 161323 161331 161388 161403) (-144 "CHARPOL.spad" 160831 160841 161313 161318) (-143 "CHARNZ.spad" 160584 160592 160811 160826) (-142 "CHAR.spad" 158452 158460 160574 160579) (-141 "CFCAT.spad" 157768 157776 158442 158447) (-140 "CDEN.spad" 156926 156940 157758 157763) (-139 "CCLASS.spad" 155075 155083 156337 156376) (-138 "CATEGORY.spad" 154854 154862 155065 155070) (-137 "CATAST.spad" 154481 154489 154844 154849) (-136 "CASEAST.spad" 154195 154203 154471 154476) (-135 "CARTEN2.spad" 153581 153608 154185 154190) (-134 "CARTEN.spad" 148684 148708 153571 153576) (-133 "CARD.spad" 145973 145981 148658 148679) (-132 "CAPSLAST.spad" 145747 145755 145963 145968) (-131 "CACHSET.spad" 145369 145377 145737 145742) (-130 "CABMON.spad" 144922 144930 145359 145364) (-129 "BYTEARY.spad" 143997 144005 144091 144118) (-128 "BYTE.spad" 143391 143399 143987 143992) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP1.spad" 127919 127929 130489 130494) (-113 "BOP.spad" 123383 123391 127909 127914) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP80.spad" 98366 98379 99034 99039) (-86 "ASP8.spad" 97409 97422 98356 98361) (-85 "ASP78.spad" 96860 96873 97399 97404) (-84 "ASP77.spad" 96229 96242 96850 96855) (-83 "ASP74.spad" 95321 95334 96219 96224) (-82 "ASP73.spad" 94592 94605 95311 95316) (-81 "ASP7.spad" 93752 93765 94582 94587) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP49.spad" 87709 87722 88700 88705) (-76 "ASP42.spad" 86116 86155 87699 87704) (-75 "ASP41.spad" 84695 84734 86106 86111) (-74 "ASP4.spad" 83990 84003 84685 84690) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP19.spad" 62496 62509 67800 67805) (-62 "ASP12.spad" 61910 61923 62486 62491) (-61 "ASP10.spad" 61181 61194 61900 61905) (-60 "ASP1.spad" 60562 60575 61171 61176) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY12.spad" 58591 58602 59912 59917) (-57 "ARRAY1.spad" 57426 57435 57774 57801) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY1.spad" 46688 46697 47607 47612) (-51 "ANY.spad" 45030 45037 46678 46683) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2267173 2267178 2267183 2267188) (-2 NIL 2267153 2267158 2267163 2267168) (-1 NIL 2267133 2267138 2267143 2267148) (0 NIL 2267113 2267118 2267123 2267128) (-1255 "ZMOD.spad" 2266922 2266935 2267051 2267108) (-1254 "ZLINDEP.spad" 2265966 2265977 2266912 2266917) (-1253 "ZDSOLVE.spad" 2255815 2255837 2265956 2265961) (-1252 "YSTREAM.spad" 2255308 2255319 2255805 2255810) (-1251 "XRPOLY.spad" 2254528 2254548 2255164 2255233) (-1250 "XPR.spad" 2252257 2252270 2254246 2254345) (-1249 "XPOLY.spad" 2251812 2251823 2252113 2252182) (-1248 "XPOLYC.spad" 2251129 2251145 2251738 2251807) (-1247 "XPBWPOLY.spad" 2249566 2249586 2250909 2250978) (-1246 "XF.spad" 2248027 2248042 2249468 2249561) (-1245 "XF.spad" 2246468 2246485 2247911 2247916) (-1244 "XFALG.spad" 2243492 2243508 2246394 2246463) (-1243 "XEXPPKG.spad" 2242743 2242769 2243482 2243487) (-1242 "XDPOLY.spad" 2242357 2242373 2242599 2242668) (-1241 "XALG.spad" 2241955 2241966 2242313 2242352) (-1240 "WUTSET.spad" 2237794 2237811 2241601 2241628) (-1239 "WP.spad" 2236808 2236852 2237652 2237719) (-1238 "WHILEAST.spad" 2236606 2236615 2236798 2236803) (-1237 "WHEREAST.spad" 2236277 2236286 2236596 2236601) (-1236 "WFFINTBS.spad" 2233840 2233862 2236267 2236272) (-1235 "WEIER.spad" 2232054 2232065 2233830 2233835) (-1234 "VSPACE.spad" 2231727 2231738 2232022 2232049) (-1233 "VSPACE.spad" 2231420 2231433 2231717 2231722) (-1232 "VOID.spad" 2231010 2231019 2231410 2231415) (-1231 "VIEW.spad" 2228632 2228641 2231000 2231005) (-1230 "VIEWDEF.spad" 2223829 2223838 2228622 2228627) (-1229 "VIEW3D.spad" 2207664 2207673 2223819 2223824) (-1228 "VIEW2D.spad" 2195401 2195410 2207654 2207659) (-1227 "VECTOR.spad" 2194076 2194087 2194327 2194354) (-1226 "VECTOR2.spad" 2192703 2192716 2194066 2194071) (-1225 "VECTCAT.spad" 2190591 2190602 2192659 2192698) (-1224 "VECTCAT.spad" 2188299 2188312 2190369 2190374) (-1223 "VARIABLE.spad" 2188079 2188094 2188289 2188294) (-1222 "UTYPE.spad" 2187713 2187722 2188059 2188074) (-1221 "UTSODETL.spad" 2187006 2187030 2187669 2187674) (-1220 "UTSODE.spad" 2185194 2185214 2186996 2187001) (-1219 "UTS.spad" 2179983 2180011 2183661 2183758) (-1218 "UTSCAT.spad" 2177434 2177450 2179881 2179978) (-1217 "UTSCAT.spad" 2174529 2174547 2176978 2176983) (-1216 "UTS2.spad" 2174122 2174157 2174519 2174524) (-1215 "URAGG.spad" 2168744 2168755 2174102 2174117) (-1214 "URAGG.spad" 2163340 2163353 2168700 2168705) (-1213 "UPXSSING.spad" 2160983 2161009 2162421 2162554) (-1212 "UPXS.spad" 2158010 2158038 2159115 2159264) (-1211 "UPXSCONS.spad" 2155767 2155787 2156142 2156291) (-1210 "UPXSCCA.spad" 2154225 2154245 2155613 2155762) (-1209 "UPXSCCA.spad" 2152825 2152847 2154215 2154220) (-1208 "UPXSCAT.spad" 2151406 2151422 2152671 2152820) (-1207 "UPXS2.spad" 2150947 2151000 2151396 2151401) (-1206 "UPSQFREE.spad" 2149359 2149373 2150937 2150942) (-1205 "UPSCAT.spad" 2146952 2146976 2149257 2149354) (-1204 "UPSCAT.spad" 2144251 2144277 2146558 2146563) (-1203 "UPOLYC.spad" 2139229 2139240 2144093 2144246) (-1202 "UPOLYC.spad" 2134099 2134112 2138965 2138970) (-1201 "UPOLYC2.spad" 2133568 2133587 2134089 2134094) (-1200 "UP.spad" 2130610 2130625 2131118 2131271) (-1199 "UPMP.spad" 2129500 2129513 2130600 2130605) (-1198 "UPDIVP.spad" 2129063 2129077 2129490 2129495) (-1197 "UPDECOMP.spad" 2127300 2127314 2129053 2129058) (-1196 "UPCDEN.spad" 2126507 2126523 2127290 2127295) (-1195 "UP2.spad" 2125869 2125890 2126497 2126502) (-1194 "UNISEG.spad" 2125222 2125233 2125788 2125793) (-1193 "UNISEG2.spad" 2124715 2124728 2125178 2125183) (-1192 "UNIFACT.spad" 2123816 2123828 2124705 2124710) (-1191 "ULS.spad" 2114370 2114398 2115463 2115892) (-1190 "ULSCONS.spad" 2108409 2108429 2108781 2108930) (-1189 "ULSCCAT.spad" 2106006 2106026 2108229 2108404) (-1188 "ULSCCAT.spad" 2103737 2103759 2105962 2105967) (-1187 "ULSCAT.spad" 2101953 2101969 2103583 2103732) (-1186 "ULS2.spad" 2101465 2101518 2101943 2101948) (-1185 "UFD.spad" 2100530 2100539 2101391 2101460) (-1184 "UFD.spad" 2099657 2099668 2100520 2100525) (-1183 "UDVO.spad" 2098504 2098513 2099647 2099652) (-1182 "UDPO.spad" 2095931 2095942 2098460 2098465) (-1181 "TYPE.spad" 2095853 2095862 2095911 2095926) (-1180 "TYPEAST.spad" 2095772 2095781 2095843 2095848) (-1179 "TWOFACT.spad" 2094422 2094437 2095762 2095767) (-1178 "TUPLE.spad" 2093808 2093819 2094321 2094326) (-1177 "TUBETOOL.spad" 2090645 2090654 2093798 2093803) (-1176 "TUBE.spad" 2089286 2089303 2090635 2090640) (-1175 "TS.spad" 2087875 2087891 2088851 2088948) (-1174 "TSETCAT.spad" 2074990 2075007 2087831 2087870) (-1173 "TSETCAT.spad" 2062103 2062122 2074946 2074951) (-1172 "TRMANIP.spad" 2056469 2056486 2061809 2061814) (-1171 "TRIMAT.spad" 2055428 2055453 2056459 2056464) (-1170 "TRIGMNIP.spad" 2053945 2053962 2055418 2055423) (-1169 "TRIGCAT.spad" 2053457 2053466 2053935 2053940) (-1168 "TRIGCAT.spad" 2052967 2052978 2053447 2053452) (-1167 "TREE.spad" 2051538 2051549 2052574 2052601) (-1166 "TRANFUN.spad" 2051369 2051378 2051528 2051533) (-1165 "TRANFUN.spad" 2051198 2051209 2051359 2051364) (-1164 "TOPSP.spad" 2050872 2050881 2051188 2051193) (-1163 "TOOLSIGN.spad" 2050535 2050546 2050862 2050867) (-1162 "TEXTFILE.spad" 2049092 2049101 2050525 2050530) (-1161 "TEX.spad" 2046109 2046118 2049082 2049087) (-1160 "TEX1.spad" 2045665 2045676 2046099 2046104) (-1159 "TEMUTL.spad" 2045220 2045229 2045655 2045660) (-1158 "TBCMPPK.spad" 2043313 2043336 2045210 2045215) (-1157 "TBAGG.spad" 2042337 2042360 2043281 2043308) (-1156 "TBAGG.spad" 2041381 2041406 2042327 2042332) (-1155 "TANEXP.spad" 2040757 2040768 2041371 2041376) (-1154 "TABLE.spad" 2039168 2039191 2039438 2039465) (-1153 "TABLEAU.spad" 2038649 2038660 2039158 2039163) (-1152 "TABLBUMP.spad" 2035432 2035443 2038639 2038644) (-1151 "SYSTEM.spad" 2034706 2034715 2035422 2035427) (-1150 "SYSSOLP.spad" 2032179 2032190 2034696 2034701) (-1149 "SYNTAX.spad" 2028371 2028380 2032169 2032174) (-1148 "SYMTAB.spad" 2026427 2026436 2028361 2028366) (-1147 "SYMS.spad" 2022412 2022421 2026417 2026422) (-1146 "SYMPOLY.spad" 2021419 2021430 2021501 2021628) (-1145 "SYMFUNC.spad" 2020894 2020905 2021409 2021414) (-1144 "SYMBOL.spad" 2018230 2018239 2020884 2020889) (-1143 "SWITCH.spad" 2014987 2014996 2018220 2018225) (-1142 "SUTS.spad" 2011886 2011914 2013454 2013551) (-1141 "SUPXS.spad" 2008900 2008928 2010018 2010167) (-1140 "SUP.spad" 2005669 2005680 2006450 2006603) (-1139 "SUPFRACF.spad" 2004774 2004792 2005659 2005664) (-1138 "SUP2.spad" 2004164 2004177 2004764 2004769) (-1137 "SUMRF.spad" 2003130 2003141 2004154 2004159) (-1136 "SUMFS.spad" 2002763 2002780 2003120 2003125) (-1135 "SULS.spad" 1993304 1993332 1994410 1994839) (-1134 "SUCHTAST.spad" 1993073 1993082 1993294 1993299) (-1133 "SUCH.spad" 1992753 1992768 1993063 1993068) (-1132 "SUBSPACE.spad" 1984760 1984775 1992743 1992748) (-1131 "SUBRESP.spad" 1983920 1983934 1984716 1984721) (-1130 "STTF.spad" 1980019 1980035 1983910 1983915) (-1129 "STTFNC.spad" 1976487 1976503 1980009 1980014) (-1128 "STTAYLOR.spad" 1968885 1968896 1976368 1976373) (-1127 "STRTBL.spad" 1967390 1967407 1967539 1967566) (-1126 "STRING.spad" 1966799 1966808 1966813 1966840) (-1125 "STRICAT.spad" 1966575 1966584 1966755 1966794) (-1124 "STREAM.spad" 1963343 1963354 1966100 1966115) (-1123 "STREAM3.spad" 1962888 1962903 1963333 1963338) (-1122 "STREAM2.spad" 1961956 1961969 1962878 1962883) (-1121 "STREAM1.spad" 1961660 1961671 1961946 1961951) (-1120 "STINPROD.spad" 1960566 1960582 1961650 1961655) (-1119 "STEP.spad" 1959767 1959776 1960556 1960561) (-1118 "STBL.spad" 1958293 1958321 1958460 1958475) (-1117 "STAGG.spad" 1957358 1957369 1958273 1958288) (-1116 "STAGG.spad" 1956431 1956444 1957348 1957353) (-1115 "STACK.spad" 1955782 1955793 1956038 1956065) (-1114 "SREGSET.spad" 1953486 1953503 1955428 1955455) (-1113 "SRDCMPK.spad" 1952031 1952051 1953476 1953481) (-1112 "SRAGG.spad" 1947116 1947125 1951987 1952026) (-1111 "SRAGG.spad" 1942233 1942244 1947106 1947111) (-1110 "SQMATRIX.spad" 1939849 1939867 1940765 1940852) (-1109 "SPLTREE.spad" 1934401 1934414 1939285 1939312) (-1108 "SPLNODE.spad" 1930989 1931002 1934391 1934396) (-1107 "SPFCAT.spad" 1929766 1929775 1930979 1930984) (-1106 "SPECOUT.spad" 1928316 1928325 1929756 1929761) (-1105 "SPADXPT.spad" 1920445 1920454 1928296 1928311) (-1104 "spad-parser.spad" 1919910 1919919 1920435 1920440) (-1103 "SPADAST.spad" 1919611 1919620 1919900 1919905) (-1102 "SPACEC.spad" 1903624 1903635 1919601 1919606) (-1101 "SPACE3.spad" 1903400 1903411 1903614 1903619) (-1100 "SORTPAK.spad" 1902945 1902958 1903356 1903361) (-1099 "SOLVETRA.spad" 1900702 1900713 1902935 1902940) (-1098 "SOLVESER.spad" 1899222 1899233 1900692 1900697) (-1097 "SOLVERAD.spad" 1895232 1895243 1899212 1899217) (-1096 "SOLVEFOR.spad" 1893652 1893670 1895222 1895227) (-1095 "SNTSCAT.spad" 1893240 1893257 1893608 1893647) (-1094 "SMTS.spad" 1891500 1891526 1892805 1892902) (-1093 "SMP.spad" 1888939 1888959 1889329 1889456) (-1092 "SMITH.spad" 1887782 1887807 1888929 1888934) (-1091 "SMATCAT.spad" 1885880 1885910 1887714 1887777) (-1090 "SMATCAT.spad" 1883922 1883954 1885758 1885763) (-1089 "SKAGG.spad" 1882871 1882882 1883878 1883917) (-1088 "SINT.spad" 1881179 1881188 1882737 1882866) (-1087 "SIMPAN.spad" 1880907 1880916 1881169 1881174) (-1086 "SIG.spad" 1880235 1880244 1880897 1880902) (-1085 "SIGNRF.spad" 1879343 1879354 1880225 1880230) (-1084 "SIGNEF.spad" 1878612 1878629 1879333 1879338) (-1083 "SIGAST.spad" 1877993 1878002 1878602 1878607) (-1082 "SHP.spad" 1875911 1875926 1877949 1877954) (-1081 "SHDP.spad" 1866896 1866923 1867405 1867536) (-1080 "SGROUP.spad" 1866504 1866513 1866886 1866891) (-1079 "SGROUP.spad" 1866110 1866121 1866494 1866499) (-1078 "SGCF.spad" 1858991 1859000 1866100 1866105) (-1077 "SFRTCAT.spad" 1857907 1857924 1858947 1858986) (-1076 "SFRGCD.spad" 1856970 1856990 1857897 1857902) (-1075 "SFQCMPK.spad" 1851607 1851627 1856960 1856965) (-1074 "SFORT.spad" 1851042 1851056 1851597 1851602) (-1073 "SEXOF.spad" 1850885 1850925 1851032 1851037) (-1072 "SEX.spad" 1850777 1850786 1850875 1850880) (-1071 "SEXCAT.spad" 1847881 1847921 1850767 1850772) (-1070 "SET.spad" 1846181 1846192 1847302 1847341) (-1069 "SETMN.spad" 1844615 1844632 1846171 1846176) (-1068 "SETCAT.spad" 1844100 1844109 1844605 1844610) (-1067 "SETCAT.spad" 1843583 1843594 1844090 1844095) (-1066 "SETAGG.spad" 1840092 1840103 1843551 1843578) (-1065 "SETAGG.spad" 1836621 1836634 1840082 1840087) (-1064 "SEQAST.spad" 1836324 1836333 1836611 1836616) (-1063 "SEGXCAT.spad" 1835436 1835449 1836304 1836319) (-1062 "SEG.spad" 1835249 1835260 1835355 1835360) (-1061 "SEGCAT.spad" 1834068 1834079 1835229 1835244) (-1060 "SEGBIND.spad" 1833140 1833151 1834023 1834028) (-1059 "SEGBIND2.spad" 1832836 1832849 1833130 1833135) (-1058 "SEGAST.spad" 1832550 1832559 1832826 1832831) (-1057 "SEG2.spad" 1831975 1831988 1832506 1832511) (-1056 "SDVAR.spad" 1831251 1831262 1831965 1831970) (-1055 "SDPOL.spad" 1828641 1828652 1828932 1829059) (-1054 "SCPKG.spad" 1826720 1826731 1828631 1828636) (-1053 "SCOPE.spad" 1825865 1825874 1826710 1826715) (-1052 "SCACHE.spad" 1824547 1824558 1825855 1825860) (-1051 "SASTCAT.spad" 1824456 1824465 1824537 1824542) (-1050 "SAOS.spad" 1824328 1824337 1824446 1824451) (-1049 "SAERFFC.spad" 1824041 1824061 1824318 1824323) (-1048 "SAE.spad" 1822216 1822232 1822827 1822962) (-1047 "SAEFACT.spad" 1821917 1821937 1822206 1822211) (-1046 "RURPK.spad" 1819558 1819574 1821907 1821912) (-1045 "RULESET.spad" 1818999 1819023 1819548 1819553) (-1044 "RULE.spad" 1817203 1817227 1818989 1818994) (-1043 "RULECOLD.spad" 1817055 1817068 1817193 1817198) (-1042 "RSTRCAST.spad" 1816772 1816781 1817045 1817050) (-1041 "RSETGCD.spad" 1813150 1813170 1816762 1816767) (-1040 "RSETCAT.spad" 1802922 1802939 1813106 1813145) (-1039 "RSETCAT.spad" 1792726 1792745 1802912 1802917) (-1038 "RSDCMPK.spad" 1791178 1791198 1792716 1792721) (-1037 "RRCC.spad" 1789562 1789592 1791168 1791173) (-1036 "RRCC.spad" 1787944 1787976 1789552 1789557) (-1035 "RPTAST.spad" 1787646 1787655 1787934 1787939) (-1034 "RPOLCAT.spad" 1767006 1767021 1787514 1787641) (-1033 "RPOLCAT.spad" 1746080 1746097 1766590 1766595) (-1032 "ROUTINE.spad" 1741943 1741952 1744727 1744754) (-1031 "ROMAN.spad" 1741175 1741184 1741809 1741938) (-1030 "ROIRC.spad" 1740255 1740287 1741165 1741170) (-1029 "RNS.spad" 1739158 1739167 1740157 1740250) (-1028 "RNS.spad" 1738147 1738158 1739148 1739153) (-1027 "RNG.spad" 1737882 1737891 1738137 1738142) (-1026 "RMODULE.spad" 1737520 1737531 1737872 1737877) (-1025 "RMCAT2.spad" 1736928 1736985 1737510 1737515) (-1024 "RMATRIX.spad" 1735607 1735626 1736095 1736134) (-1023 "RMATCAT.spad" 1731128 1731159 1735551 1735602) (-1022 "RMATCAT.spad" 1726551 1726584 1730976 1730981) (-1021 "RINTERP.spad" 1726439 1726459 1726541 1726546) (-1020 "RING.spad" 1725796 1725805 1726419 1726434) (-1019 "RING.spad" 1725161 1725172 1725786 1725791) (-1018 "RIDIST.spad" 1724545 1724554 1725151 1725156) (-1017 "RGCHAIN.spad" 1723124 1723140 1724030 1724057) (-1016 "RF.spad" 1720738 1720749 1723114 1723119) (-1015 "RFFACTOR.spad" 1720200 1720211 1720728 1720733) (-1014 "RFFACT.spad" 1719935 1719947 1720190 1720195) (-1013 "RFDIST.spad" 1718923 1718932 1719925 1719930) (-1012 "RETSOL.spad" 1718340 1718353 1718913 1718918) (-1011 "RETRACT.spad" 1717689 1717700 1718330 1718335) (-1010 "RETRACT.spad" 1717036 1717049 1717679 1717684) (-1009 "RETAST.spad" 1716848 1716857 1717026 1717031) (-1008 "RESULT.spad" 1714908 1714917 1715495 1715522) (-1007 "RESRING.spad" 1714255 1714302 1714846 1714903) (-1006 "RESLATC.spad" 1713579 1713590 1714245 1714250) (-1005 "REPSQ.spad" 1713308 1713319 1713569 1713574) (-1004 "REP.spad" 1710860 1710869 1713298 1713303) (-1003 "REPDB.spad" 1710565 1710576 1710850 1710855) (-1002 "REP2.spad" 1700137 1700148 1710407 1710412) (-1001 "REP1.spad" 1694127 1694138 1700087 1700092) (-1000 "REGSET.spad" 1691924 1691941 1693773 1693800) (-999 "REF.spad" 1691254 1691264 1691879 1691884) (-998 "REDORDER.spad" 1690431 1690447 1691244 1691249) (-997 "RECLOS.spad" 1689215 1689234 1689918 1690011) (-996 "REALSOLV.spad" 1688348 1688356 1689205 1689210) (-995 "REAL.spad" 1688221 1688229 1688338 1688343) (-994 "REAL0Q.spad" 1685504 1685518 1688211 1688216) (-993 "REAL0.spad" 1682333 1682347 1685494 1685499) (-992 "RDUCEAST.spad" 1682055 1682063 1682323 1682328) (-991 "RDIV.spad" 1681707 1681731 1682045 1682050) (-990 "RDIST.spad" 1681271 1681281 1681697 1681702) (-989 "RDETRS.spad" 1680068 1680085 1681261 1681266) (-988 "RDETR.spad" 1678176 1678193 1680058 1680063) (-987 "RDEEFS.spad" 1677250 1677266 1678166 1678171) (-986 "RDEEF.spad" 1676247 1676263 1677240 1677245) (-985 "RCFIELD.spad" 1673434 1673442 1676149 1676242) (-984 "RCFIELD.spad" 1670707 1670717 1673424 1673429) (-983 "RCAGG.spad" 1668610 1668620 1670687 1670702) (-982 "RCAGG.spad" 1666450 1666462 1668529 1668534) (-981 "RATRET.spad" 1665811 1665821 1666440 1666445) (-980 "RATFACT.spad" 1665504 1665515 1665801 1665806) (-979 "RANDSRC.spad" 1664824 1664832 1665494 1665499) (-978 "RADUTIL.spad" 1664579 1664587 1664814 1664819) (-977 "RADIX.spad" 1661370 1661383 1663047 1663140) (-976 "RADFF.spad" 1659784 1659820 1659902 1660058) (-975 "RADCAT.spad" 1659378 1659386 1659774 1659779) (-974 "RADCAT.spad" 1658970 1658980 1659368 1659373) (-973 "QUEUE.spad" 1658313 1658323 1658577 1658604) (-972 "QUAT.spad" 1656895 1656905 1657237 1657302) (-971 "QUATCT2.spad" 1656514 1656532 1656885 1656890) (-970 "QUATCAT.spad" 1654679 1654689 1656444 1656509) (-969 "QUATCAT.spad" 1652595 1652607 1654362 1654367) (-968 "QUAGG.spad" 1651409 1651419 1652551 1652590) (-967 "QQUTAST.spad" 1651178 1651186 1651399 1651404) (-966 "QFORM.spad" 1650641 1650655 1651168 1651173) (-965 "QFCAT.spad" 1649332 1649342 1650531 1650636) (-964 "QFCAT.spad" 1647627 1647639 1648828 1648833) (-963 "QFCAT2.spad" 1647318 1647334 1647617 1647622) (-962 "QEQUAT.spad" 1646875 1646883 1647308 1647313) (-961 "QCMPACK.spad" 1641622 1641641 1646865 1646870) (-960 "QALGSET.spad" 1637697 1637729 1641536 1641541) (-959 "QALGSET2.spad" 1635693 1635711 1637687 1637692) (-958 "PWFFINTB.spad" 1633003 1633024 1635683 1635688) (-957 "PUSHVAR.spad" 1632332 1632351 1632993 1632998) (-956 "PTRANFN.spad" 1628458 1628468 1632322 1632327) (-955 "PTPACK.spad" 1625546 1625556 1628448 1628453) (-954 "PTFUNC2.spad" 1625367 1625381 1625536 1625541) (-953 "PTCAT.spad" 1624449 1624459 1625323 1625362) (-952 "PSQFR.spad" 1623756 1623780 1624439 1624444) (-951 "PSEUDLIN.spad" 1622614 1622624 1623746 1623751) (-950 "PSETPK.spad" 1608047 1608063 1622492 1622497) (-949 "PSETCAT.spad" 1601955 1601978 1608015 1608042) (-948 "PSETCAT.spad" 1595849 1595874 1601911 1601916) (-947 "PSCURVE.spad" 1594832 1594840 1595839 1595844) (-946 "PSCAT.spad" 1593599 1593628 1594730 1594827) (-945 "PSCAT.spad" 1592456 1592487 1593589 1593594) (-944 "PRTITION.spad" 1591299 1591307 1592446 1592451) (-943 "PRTDAST.spad" 1591018 1591026 1591289 1591294) (-942 "PRS.spad" 1580580 1580597 1590974 1590979) (-941 "PRQAGG.spad" 1579999 1580009 1580536 1580575) (-940 "PROPLOG.spad" 1579402 1579410 1579989 1579994) (-939 "PROPFRML.spad" 1577320 1577331 1579392 1579397) (-938 "PROPERTY.spad" 1576814 1576822 1577310 1577315) (-937 "PRODUCT.spad" 1574494 1574506 1574780 1574835) (-936 "PR.spad" 1572880 1572892 1573585 1573712) (-935 "PRINT.spad" 1572632 1572640 1572870 1572875) (-934 "PRIMES.spad" 1570883 1570893 1572622 1572627) (-933 "PRIMELT.spad" 1568864 1568878 1570873 1570878) (-932 "PRIMCAT.spad" 1568487 1568495 1568854 1568859) (-931 "PRIMARR.spad" 1567492 1567502 1567670 1567697) (-930 "PRIMARR2.spad" 1566215 1566227 1567482 1567487) (-929 "PREASSOC.spad" 1565587 1565599 1566205 1566210) (-928 "PPCURVE.spad" 1564724 1564732 1565577 1565582) (-927 "PORTNUM.spad" 1564499 1564507 1564714 1564719) (-926 "POLYROOT.spad" 1563271 1563293 1564455 1564460) (-925 "POLY.spad" 1560568 1560578 1561085 1561212) (-924 "POLYLIFT.spad" 1559829 1559852 1560558 1560563) (-923 "POLYCATQ.spad" 1557931 1557953 1559819 1559824) (-922 "POLYCAT.spad" 1551337 1551358 1557799 1557926) (-921 "POLYCAT.spad" 1544045 1544068 1550509 1550514) (-920 "POLY2UP.spad" 1543493 1543507 1544035 1544040) (-919 "POLY2.spad" 1543088 1543100 1543483 1543488) (-918 "POLUTIL.spad" 1542029 1542058 1543044 1543049) (-917 "POLTOPOL.spad" 1540777 1540792 1542019 1542024) (-916 "POINT.spad" 1539616 1539626 1539703 1539730) (-915 "PNTHEORY.spad" 1536282 1536290 1539606 1539611) (-914 "PMTOOLS.spad" 1535039 1535053 1536272 1536277) (-913 "PMSYM.spad" 1534584 1534594 1535029 1535034) (-912 "PMQFCAT.spad" 1534171 1534185 1534574 1534579) (-911 "PMPRED.spad" 1533640 1533654 1534161 1534166) (-910 "PMPREDFS.spad" 1533084 1533106 1533630 1533635) (-909 "PMPLCAT.spad" 1532154 1532172 1533016 1533021) (-908 "PMLSAGG.spad" 1531735 1531749 1532144 1532149) (-907 "PMKERNEL.spad" 1531302 1531314 1531725 1531730) (-906 "PMINS.spad" 1530878 1530888 1531292 1531297) (-905 "PMFS.spad" 1530451 1530469 1530868 1530873) (-904 "PMDOWN.spad" 1529737 1529751 1530441 1530446) (-903 "PMASS.spad" 1528749 1528757 1529727 1529732) (-902 "PMASSFS.spad" 1527718 1527734 1528739 1528744) (-901 "PLOTTOOL.spad" 1527498 1527506 1527708 1527713) (-900 "PLOT.spad" 1522329 1522337 1527488 1527493) (-899 "PLOT3D.spad" 1518749 1518757 1522319 1522324) (-898 "PLOT1.spad" 1517890 1517900 1518739 1518744) (-897 "PLEQN.spad" 1505106 1505133 1517880 1517885) (-896 "PINTERP.spad" 1504722 1504741 1505096 1505101) (-895 "PINTERPA.spad" 1504504 1504520 1504712 1504717) (-894 "PI.spad" 1504111 1504119 1504478 1504499) (-893 "PID.spad" 1503067 1503075 1504037 1504106) (-892 "PICOERCE.spad" 1502724 1502734 1503057 1503062) (-891 "PGROEB.spad" 1501321 1501335 1502714 1502719) (-890 "PGE.spad" 1492574 1492582 1501311 1501316) (-889 "PGCD.spad" 1491456 1491473 1492564 1492569) (-888 "PFRPAC.spad" 1490599 1490609 1491446 1491451) (-887 "PFR.spad" 1487256 1487266 1490501 1490594) (-886 "PFOTOOLS.spad" 1486514 1486530 1487246 1487251) (-885 "PFOQ.spad" 1485884 1485902 1486504 1486509) (-884 "PFO.spad" 1485303 1485330 1485874 1485879) (-883 "PF.spad" 1484877 1484889 1485108 1485201) (-882 "PFECAT.spad" 1482543 1482551 1484803 1484872) (-881 "PFECAT.spad" 1480237 1480247 1482499 1482504) (-880 "PFBRU.spad" 1478107 1478119 1480227 1480232) (-879 "PFBR.spad" 1475645 1475668 1478097 1478102) (-878 "PERM.spad" 1471326 1471336 1475475 1475490) (-877 "PERMGRP.spad" 1466062 1466072 1471316 1471321) (-876 "PERMCAT.spad" 1464614 1464624 1466042 1466057) (-875 "PERMAN.spad" 1463146 1463160 1464604 1464609) (-874 "PENDTREE.spad" 1462419 1462429 1462775 1462780) (-873 "PDRING.spad" 1460910 1460920 1462399 1462414) (-872 "PDRING.spad" 1459409 1459421 1460900 1460905) (-871 "PDEPROB.spad" 1458366 1458374 1459399 1459404) (-870 "PDEPACK.spad" 1452368 1452376 1458356 1458361) (-869 "PDECOMP.spad" 1451830 1451847 1452358 1452363) (-868 "PDECAT.spad" 1450184 1450192 1451820 1451825) (-867 "PCOMP.spad" 1450035 1450048 1450174 1450179) (-866 "PBWLB.spad" 1448617 1448634 1450025 1450030) (-865 "PATTERN.spad" 1443048 1443058 1448607 1448612) (-864 "PATTERN2.spad" 1442784 1442796 1443038 1443043) (-863 "PATTERN1.spad" 1441086 1441102 1442774 1442779) (-862 "PATRES.spad" 1438633 1438645 1441076 1441081) (-861 "PATRES2.spad" 1438295 1438309 1438623 1438628) (-860 "PATMATCH.spad" 1436452 1436483 1438003 1438008) (-859 "PATMAB.spad" 1435877 1435887 1436442 1436447) (-858 "PATLRES.spad" 1434961 1434975 1435867 1435872) (-857 "PATAB.spad" 1434725 1434735 1434951 1434956) (-856 "PARTPERM.spad" 1432087 1432095 1434715 1434720) (-855 "PARSURF.spad" 1431515 1431543 1432077 1432082) (-854 "PARSU2.spad" 1431310 1431326 1431505 1431510) (-853 "script-parser.spad" 1430830 1430838 1431300 1431305) (-852 "PARSCURV.spad" 1430258 1430286 1430820 1430825) (-851 "PARSC2.spad" 1430047 1430063 1430248 1430253) (-850 "PARPCURV.spad" 1429505 1429533 1430037 1430042) (-849 "PARPC2.spad" 1429294 1429310 1429495 1429500) (-848 "PAN2EXPR.spad" 1428706 1428714 1429284 1429289) (-847 "PALETTE.spad" 1427676 1427684 1428696 1428701) (-846 "PAIR.spad" 1426659 1426672 1427264 1427269) (-845 "PADICRC.spad" 1423990 1424008 1425165 1425258) (-844 "PADICRAT.spad" 1422006 1422018 1422227 1422320) (-843 "PADIC.spad" 1421701 1421713 1421932 1422001) (-842 "PADICCT.spad" 1420242 1420254 1421627 1421696) (-841 "PADEPAC.spad" 1418921 1418940 1420232 1420237) (-840 "PADE.spad" 1417661 1417677 1418911 1418916) (-839 "OWP.spad" 1416645 1416675 1417519 1417586) (-838 "OVAR.spad" 1416426 1416449 1416635 1416640) (-837 "OUT.spad" 1415510 1415518 1416416 1416421) (-836 "OUTFORM.spad" 1404924 1404932 1415500 1415505) (-835 "OUTBCON.spad" 1404203 1404211 1404914 1404919) (-834 "OUTBCON.spad" 1403480 1403490 1404193 1404198) (-833 "OSI.spad" 1402955 1402963 1403470 1403475) (-832 "OSGROUP.spad" 1402873 1402881 1402945 1402950) (-831 "ORTHPOL.spad" 1401334 1401344 1402790 1402795) (-830 "OREUP.spad" 1400692 1400720 1401014 1401053) (-829 "ORESUP.spad" 1399991 1400015 1400372 1400411) (-828 "OREPCTO.spad" 1397810 1397822 1399911 1399916) (-827 "OREPCAT.spad" 1391867 1391877 1397766 1397805) (-826 "OREPCAT.spad" 1385814 1385826 1391715 1391720) (-825 "ORDSET.spad" 1384980 1384988 1385804 1385809) (-824 "ORDSET.spad" 1384144 1384154 1384970 1384975) (-823 "ORDRING.spad" 1383534 1383542 1384124 1384139) (-822 "ORDRING.spad" 1382932 1382942 1383524 1383529) (-821 "ORDMON.spad" 1382787 1382795 1382922 1382927) (-820 "ORDFUNS.spad" 1381913 1381929 1382777 1382782) (-819 "ORDFIN.spad" 1381847 1381855 1381903 1381908) (-818 "ORDCOMP.spad" 1380312 1380322 1381394 1381423) (-817 "ORDCOMP2.spad" 1379597 1379609 1380302 1380307) (-816 "OPTPROB.spad" 1378177 1378185 1379587 1379592) (-815 "OPTPACK.spad" 1370562 1370570 1378167 1378172) (-814 "OPTCAT.spad" 1368237 1368245 1370552 1370557) (-813 "OPQUERY.spad" 1367786 1367794 1368227 1368232) (-812 "OP.spad" 1367528 1367538 1367608 1367675) (-811 "ONECOMP.spad" 1366273 1366283 1367075 1367104) (-810 "ONECOMP2.spad" 1365691 1365703 1366263 1366268) (-809 "OMSERVER.spad" 1364693 1364701 1365681 1365686) (-808 "OMSAGG.spad" 1364469 1364479 1364637 1364688) (-807 "OMPKG.spad" 1363081 1363089 1364459 1364464) (-806 "OM.spad" 1362046 1362054 1363071 1363076) (-805 "OMLO.spad" 1361471 1361483 1361932 1361971) (-804 "OMEXPR.spad" 1361305 1361315 1361461 1361466) (-803 "OMERR.spad" 1360848 1360856 1361295 1361300) (-802 "OMERRK.spad" 1359882 1359890 1360838 1360843) (-801 "OMENC.spad" 1359226 1359234 1359872 1359877) (-800 "OMDEV.spad" 1353515 1353523 1359216 1359221) (-799 "OMCONN.spad" 1352924 1352932 1353505 1353510) (-798 "OINTDOM.spad" 1352687 1352695 1352850 1352919) (-797 "OFMONOID.spad" 1348874 1348884 1352677 1352682) (-796 "ODVAR.spad" 1348135 1348145 1348864 1348869) (-795 "ODR.spad" 1347583 1347609 1347947 1348096) (-794 "ODPOL.spad" 1344929 1344939 1345269 1345396) (-793 "ODP.spad" 1336050 1336070 1336423 1336554) (-792 "ODETOOLS.spad" 1334633 1334652 1336040 1336045) (-791 "ODESYS.spad" 1332283 1332300 1334623 1334628) (-790 "ODERTRIC.spad" 1328224 1328241 1332240 1332245) (-789 "ODERED.spad" 1327611 1327635 1328214 1328219) (-788 "ODERAT.spad" 1325162 1325179 1327601 1327606) (-787 "ODEPRRIC.spad" 1322053 1322075 1325152 1325157) (-786 "ODEPROB.spad" 1321252 1321260 1322043 1322048) (-785 "ODEPRIM.spad" 1318526 1318548 1321242 1321247) (-784 "ODEPAL.spad" 1317902 1317926 1318516 1318521) (-783 "ODEPACK.spad" 1304504 1304512 1317892 1317897) (-782 "ODEINT.spad" 1303935 1303951 1304494 1304499) (-781 "ODEIFTBL.spad" 1301330 1301338 1303925 1303930) (-780 "ODEEF.spad" 1296697 1296713 1301320 1301325) (-779 "ODECONST.spad" 1296216 1296234 1296687 1296692) (-778 "ODECAT.spad" 1294812 1294820 1296206 1296211) (-777 "OCT.spad" 1292950 1292960 1293666 1293705) (-776 "OCTCT2.spad" 1292594 1292615 1292940 1292945) (-775 "OC.spad" 1290368 1290378 1292550 1292589) (-774 "OC.spad" 1287867 1287879 1290051 1290056) (-773 "OCAMON.spad" 1287715 1287723 1287857 1287862) (-772 "OASGP.spad" 1287530 1287538 1287705 1287710) (-771 "OAMONS.spad" 1287050 1287058 1287520 1287525) (-770 "OAMON.spad" 1286911 1286919 1287040 1287045) (-769 "OAGROUP.spad" 1286773 1286781 1286901 1286906) (-768 "NUMTUBE.spad" 1286360 1286376 1286763 1286768) (-767 "NUMQUAD.spad" 1274222 1274230 1286350 1286355) (-766 "NUMODE.spad" 1265358 1265366 1274212 1274217) (-765 "NUMINT.spad" 1262916 1262924 1265348 1265353) (-764 "NUMFMT.spad" 1261756 1261764 1262906 1262911) (-763 "NUMERIC.spad" 1253828 1253838 1261561 1261566) (-762 "NTSCAT.spad" 1252318 1252334 1253784 1253823) (-761 "NTPOLFN.spad" 1251863 1251873 1252235 1252240) (-760 "NSUP.spad" 1244873 1244883 1249413 1249566) (-759 "NSUP2.spad" 1244265 1244277 1244863 1244868) (-758 "NSMP.spad" 1240460 1240479 1240768 1240895) (-757 "NREP.spad" 1238832 1238846 1240450 1240455) (-756 "NPCOEF.spad" 1238078 1238098 1238822 1238827) (-755 "NORMRETR.spad" 1237676 1237715 1238068 1238073) (-754 "NORMPK.spad" 1235578 1235597 1237666 1237671) (-753 "NORMMA.spad" 1235266 1235292 1235568 1235573) (-752 "NONE.spad" 1235007 1235015 1235256 1235261) (-751 "NONE1.spad" 1234683 1234693 1234997 1235002) (-750 "NODE1.spad" 1234152 1234168 1234673 1234678) (-749 "NNI.spad" 1233039 1233047 1234126 1234147) (-748 "NLINSOL.spad" 1231661 1231671 1233029 1233034) (-747 "NIPROB.spad" 1230144 1230152 1231651 1231656) (-746 "NFINTBAS.spad" 1227604 1227621 1230134 1230139) (-745 "NCODIV.spad" 1225802 1225818 1227594 1227599) (-744 "NCNTFRAC.spad" 1225444 1225458 1225792 1225797) (-743 "NCEP.spad" 1223604 1223618 1225434 1225439) (-742 "NASRING.spad" 1223200 1223208 1223594 1223599) (-741 "NASRING.spad" 1222794 1222804 1223190 1223195) (-740 "NARNG.spad" 1222138 1222146 1222784 1222789) (-739 "NARNG.spad" 1221480 1221490 1222128 1222133) (-738 "NAGSP.spad" 1220553 1220561 1221470 1221475) (-737 "NAGS.spad" 1210078 1210086 1220543 1220548) (-736 "NAGF07.spad" 1208471 1208479 1210068 1210073) (-735 "NAGF04.spad" 1202703 1202711 1208461 1208466) (-734 "NAGF02.spad" 1196512 1196520 1202693 1202698) (-733 "NAGF01.spad" 1192115 1192123 1196502 1196507) (-732 "NAGE04.spad" 1185575 1185583 1192105 1192110) (-731 "NAGE02.spad" 1175917 1175925 1185565 1185570) (-730 "NAGE01.spad" 1171801 1171809 1175907 1175912) (-729 "NAGD03.spad" 1169721 1169729 1171791 1171796) (-728 "NAGD02.spad" 1162252 1162260 1169711 1169716) (-727 "NAGD01.spad" 1156365 1156373 1162242 1162247) (-726 "NAGC06.spad" 1152152 1152160 1156355 1156360) (-725 "NAGC05.spad" 1150621 1150629 1152142 1152147) (-724 "NAGC02.spad" 1149876 1149884 1150611 1150616) (-723 "NAALG.spad" 1149411 1149421 1149844 1149871) (-722 "NAALG.spad" 1148966 1148978 1149401 1149406) (-721 "MULTSQFR.spad" 1145924 1145941 1148956 1148961) (-720 "MULTFACT.spad" 1145307 1145324 1145914 1145919) (-719 "MTSCAT.spad" 1143341 1143362 1145205 1145302) (-718 "MTHING.spad" 1142998 1143008 1143331 1143336) (-717 "MSYSCMD.spad" 1142432 1142440 1142988 1142993) (-716 "MSET.spad" 1140374 1140384 1142138 1142177) (-715 "MSETAGG.spad" 1140207 1140217 1140330 1140369) (-714 "MRING.spad" 1137178 1137190 1139915 1139982) (-713 "MRF2.spad" 1136746 1136760 1137168 1137173) (-712 "MRATFAC.spad" 1136292 1136309 1136736 1136741) (-711 "MPRFF.spad" 1134322 1134341 1136282 1136287) (-710 "MPOLY.spad" 1131757 1131772 1132116 1132243) (-709 "MPCPF.spad" 1131021 1131040 1131747 1131752) (-708 "MPC3.spad" 1130836 1130876 1131011 1131016) (-707 "MPC2.spad" 1130478 1130511 1130826 1130831) (-706 "MONOTOOL.spad" 1128813 1128830 1130468 1130473) (-705 "MONOID.spad" 1128132 1128140 1128803 1128808) (-704 "MONOID.spad" 1127449 1127459 1128122 1128127) (-703 "MONOGEN.spad" 1126195 1126208 1127309 1127444) (-702 "MONOGEN.spad" 1124963 1124978 1126079 1126084) (-701 "MONADWU.spad" 1122977 1122985 1124953 1124958) (-700 "MONADWU.spad" 1120989 1120999 1122967 1122972) (-699 "MONAD.spad" 1120133 1120141 1120979 1120984) (-698 "MONAD.spad" 1119275 1119285 1120123 1120128) (-697 "MOEBIUS.spad" 1117961 1117975 1119255 1119270) (-696 "MODULE.spad" 1117831 1117841 1117929 1117956) (-695 "MODULE.spad" 1117721 1117733 1117821 1117826) (-694 "MODRING.spad" 1117052 1117091 1117701 1117716) (-693 "MODOP.spad" 1115711 1115723 1116874 1116941) (-692 "MODMONOM.spad" 1115243 1115261 1115701 1115706) (-691 "MODMON.spad" 1111945 1111961 1112721 1112874) (-690 "MODFIELD.spad" 1111303 1111342 1111847 1111940) (-689 "MMLFORM.spad" 1110163 1110171 1111293 1111298) (-688 "MMAP.spad" 1109903 1109937 1110153 1110158) (-687 "MLO.spad" 1108330 1108340 1109859 1109898) (-686 "MLIFT.spad" 1106902 1106919 1108320 1108325) (-685 "MKUCFUNC.spad" 1106435 1106453 1106892 1106897) (-684 "MKRECORD.spad" 1106037 1106050 1106425 1106430) (-683 "MKFUNC.spad" 1105418 1105428 1106027 1106032) (-682 "MKFLCFN.spad" 1104374 1104384 1105408 1105413) (-681 "MKCHSET.spad" 1104150 1104160 1104364 1104369) (-680 "MKBCFUNC.spad" 1103635 1103653 1104140 1104145) (-679 "MINT.spad" 1103074 1103082 1103537 1103630) (-678 "MHROWRED.spad" 1101575 1101585 1103064 1103069) (-677 "MFLOAT.spad" 1100091 1100099 1101465 1101570) (-676 "MFINFACT.spad" 1099491 1099513 1100081 1100086) (-675 "MESH.spad" 1097223 1097231 1099481 1099486) (-674 "MDDFACT.spad" 1095416 1095426 1097213 1097218) (-673 "MDAGG.spad" 1094691 1094701 1095384 1095411) (-672 "MCMPLX.spad" 1090666 1090674 1091280 1091481) (-671 "MCDEN.spad" 1089874 1089886 1090656 1090661) (-670 "MCALCFN.spad" 1086976 1087002 1089864 1089869) (-669 "MAYBE.spad" 1086225 1086236 1086966 1086971) (-668 "MATSTOR.spad" 1083501 1083511 1086215 1086220) (-667 "MATRIX.spad" 1082205 1082215 1082689 1082716) (-666 "MATLIN.spad" 1079531 1079555 1082089 1082094) (-665 "MATCAT.spad" 1071104 1071126 1079487 1079526) (-664 "MATCAT.spad" 1062561 1062585 1070946 1070951) (-663 "MATCAT2.spad" 1061829 1061877 1062551 1062556) (-662 "MAPPKG3.spad" 1060728 1060742 1061819 1061824) (-661 "MAPPKG2.spad" 1060062 1060074 1060718 1060723) (-660 "MAPPKG1.spad" 1058880 1058890 1060052 1060057) (-659 "MAPPAST.spad" 1058193 1058201 1058870 1058875) (-658 "MAPHACK3.spad" 1058001 1058015 1058183 1058188) (-657 "MAPHACK2.spad" 1057766 1057778 1057991 1057996) (-656 "MAPHACK1.spad" 1057396 1057406 1057756 1057761) (-655 "MAGMA.spad" 1055186 1055203 1057386 1057391) (-654 "MACROAST.spad" 1054765 1054773 1055176 1055181) (-653 "M3D.spad" 1052461 1052471 1054143 1054148) (-652 "LZSTAGG.spad" 1049679 1049689 1052441 1052456) (-651 "LZSTAGG.spad" 1046905 1046917 1049669 1049674) (-650 "LWORD.spad" 1043610 1043627 1046895 1046900) (-649 "LSTAST.spad" 1043394 1043402 1043600 1043605) (-648 "LSQM.spad" 1041620 1041634 1042018 1042069) (-647 "LSPP.spad" 1041153 1041170 1041610 1041615) (-646 "LSMP.spad" 1039993 1040021 1041143 1041148) (-645 "LSMP1.spad" 1037797 1037811 1039983 1039988) (-644 "LSAGG.spad" 1037454 1037464 1037753 1037792) (-643 "LSAGG.spad" 1037143 1037155 1037444 1037449) (-642 "LPOLY.spad" 1036097 1036116 1036999 1037068) (-641 "LPEFRAC.spad" 1035354 1035364 1036087 1036092) (-640 "LO.spad" 1034755 1034769 1035288 1035315) (-639 "LOGIC.spad" 1034357 1034365 1034745 1034750) (-638 "LOGIC.spad" 1033957 1033967 1034347 1034352) (-637 "LODOOPS.spad" 1032875 1032887 1033947 1033952) (-636 "LODO.spad" 1032259 1032275 1032555 1032594) (-635 "LODOF.spad" 1031303 1031320 1032216 1032221) (-634 "LODOCAT.spad" 1029961 1029971 1031259 1031298) (-633 "LODOCAT.spad" 1028617 1028629 1029917 1029922) (-632 "LODO2.spad" 1027890 1027902 1028297 1028336) (-631 "LODO1.spad" 1027290 1027300 1027570 1027609) (-630 "LODEEF.spad" 1026062 1026080 1027280 1027285) (-629 "LNAGG.spad" 1021854 1021864 1026042 1026057) (-628 "LNAGG.spad" 1017620 1017632 1021810 1021815) (-627 "LMOPS.spad" 1014356 1014373 1017610 1017615) (-626 "LMODULE.spad" 1013998 1014008 1014346 1014351) (-625 "LMDICT.spad" 1013281 1013291 1013549 1013576) (-624 "LITERAL.spad" 1013187 1013198 1013271 1013276) (-623 "LIST.spad" 1010905 1010915 1012334 1012361) (-622 "LIST3.spad" 1010196 1010210 1010895 1010900) (-621 "LIST2.spad" 1008836 1008848 1010186 1010191) (-620 "LIST2MAP.spad" 1005713 1005725 1008826 1008831) (-619 "LINEXP.spad" 1005145 1005155 1005693 1005708) (-618 "LINDEP.spad" 1003922 1003934 1005057 1005062) (-617 "LIMITRF.spad" 1001836 1001846 1003912 1003917) (-616 "LIMITPS.spad" 1000719 1000732 1001826 1001831) (-615 "LIE.spad" 998733 998745 1000009 1000154) (-614 "LIECAT.spad" 998209 998219 998659 998728) (-613 "LIECAT.spad" 997713 997725 998165 998170) (-612 "LIB.spad" 995761 995769 996372 996387) (-611 "LGROBP.spad" 993114 993133 995751 995756) (-610 "LF.spad" 992033 992049 993104 993109) (-609 "LFCAT.spad" 991052 991060 992023 992028) (-608 "LEXTRIPK.spad" 986555 986570 991042 991047) (-607 "LEXP.spad" 984558 984585 986535 986550) (-606 "LETAST.spad" 984257 984265 984548 984553) (-605 "LEADCDET.spad" 982641 982658 984247 984252) (-604 "LAZM3PK.spad" 981345 981367 982631 982636) (-603 "LAUPOL.spad" 980034 980047 980938 981007) (-602 "LAPLACE.spad" 979607 979623 980024 980029) (-601 "LA.spad" 979047 979061 979529 979568) (-600 "LALG.spad" 978823 978833 979027 979042) (-599 "LALG.spad" 978607 978619 978813 978818) (-598 "KTVLOGIC.spad" 978030 978038 978597 978602) (-597 "KOVACIC.spad" 976743 976760 978020 978025) (-596 "KONVERT.spad" 976465 976475 976733 976738) (-595 "KOERCE.spad" 976202 976212 976455 976460) (-594 "KERNEL.spad" 974737 974747 975986 975991) (-593 "KERNEL2.spad" 974440 974452 974727 974732) (-592 "KDAGG.spad" 973531 973553 974408 974435) (-591 "KDAGG.spad" 972642 972666 973521 973526) (-590 "KAFILE.spad" 971605 971621 971840 971867) (-589 "JORDAN.spad" 969432 969444 970895 971040) (-588 "JOINAST.spad" 969126 969134 969422 969427) (-587 "JAVACODE.spad" 968892 968900 969116 969121) (-586 "IXAGG.spad" 967005 967029 968872 968887) (-585 "IXAGG.spad" 964983 965009 966852 966857) (-584 "IVECTOR.spad" 963754 963769 963909 963936) (-583 "ITUPLE.spad" 962899 962909 963744 963749) (-582 "ITRIGMNP.spad" 961710 961729 962889 962894) (-581 "ITFUN3.spad" 961204 961218 961700 961705) (-580 "ITFUN2.spad" 960934 960946 961194 961199) (-579 "ITAYLOR.spad" 958726 958741 960770 960895) (-578 "ISUPS.spad" 951137 951152 957700 957797) (-577 "ISUMP.spad" 950634 950650 951127 951132) (-576 "ISTRING.spad" 949637 949650 949803 949830) (-575 "ISAST.spad" 949356 949364 949627 949632) (-574 "IRURPK.spad" 948069 948088 949346 949351) (-573 "IRSN.spad" 946029 946037 948059 948064) (-572 "IRRF2F.spad" 944504 944514 945985 945990) (-571 "IRREDFFX.spad" 944105 944116 944494 944499) (-570 "IROOT.spad" 942436 942446 944095 944100) (-569 "IR.spad" 940225 940239 942291 942318) (-568 "IR2.spad" 939245 939261 940215 940220) (-567 "IR2F.spad" 938445 938461 939235 939240) (-566 "IPRNTPK.spad" 938205 938213 938435 938440) (-565 "IPF.spad" 937770 937782 938010 938103) (-564 "IPADIC.spad" 937531 937557 937696 937765) (-563 "IOMODE.spad" 937152 937160 937521 937526) (-562 "IOBCON.spad" 937017 937025 937142 937147) (-561 "INVLAPLA.spad" 936662 936678 937007 937012) (-560 "INTTR.spad" 929908 929925 936652 936657) (-559 "INTTOOLS.spad" 927619 927635 929482 929487) (-558 "INTSLPE.spad" 926925 926933 927609 927614) (-557 "INTRVL.spad" 926491 926501 926839 926920) (-556 "INTRF.spad" 924855 924869 926481 926486) (-555 "INTRET.spad" 924287 924297 924845 924850) (-554 "INTRAT.spad" 922962 922979 924277 924282) (-553 "INTPM.spad" 921325 921341 922605 922610) (-552 "INTPAF.spad" 919093 919111 921257 921262) (-551 "INTPACK.spad" 909403 909411 919083 919088) (-550 "INT.spad" 908764 908772 909257 909398) (-549 "INTHERTR.spad" 908030 908047 908754 908759) (-548 "INTHERAL.spad" 907696 907720 908020 908025) (-547 "INTHEORY.spad" 904109 904117 907686 907691) (-546 "INTG0.spad" 897572 897590 904041 904046) (-545 "INTFTBL.spad" 891601 891609 897562 897567) (-544 "INTFACT.spad" 890660 890670 891591 891596) (-543 "INTEF.spad" 888975 888991 890650 890655) (-542 "INTDOM.spad" 887590 887598 888901 888970) (-541 "INTDOM.spad" 886267 886277 887580 887585) (-540 "INTCAT.spad" 884520 884530 886181 886262) (-539 "INTBIT.spad" 884023 884031 884510 884515) (-538 "INTALG.spad" 883205 883232 884013 884018) (-537 "INTAF.spad" 882697 882713 883195 883200) (-536 "INTABL.spad" 881215 881246 881378 881405) (-535 "INS.spad" 878682 878690 881117 881210) (-534 "INS.spad" 876235 876245 878672 878677) (-533 "INPSIGN.spad" 875669 875682 876225 876230) (-532 "INPRODPF.spad" 874735 874754 875659 875664) (-531 "INPRODFF.spad" 873793 873817 874725 874730) (-530 "INNMFACT.spad" 872764 872781 873783 873788) (-529 "INMODGCD.spad" 872248 872278 872754 872759) (-528 "INFSP.spad" 870533 870555 872238 872243) (-527 "INFPROD0.spad" 869583 869602 870523 870528) (-526 "INFORM.spad" 866744 866752 869573 869578) (-525 "INFORM1.spad" 866369 866379 866734 866739) (-524 "INFINITY.spad" 865921 865929 866359 866364) (-523 "INEP.spad" 864453 864475 865911 865916) (-522 "INDE.spad" 864182 864199 864443 864448) (-521 "INCRMAPS.spad" 863603 863613 864172 864177) (-520 "INBFILE.spad" 862911 862919 863593 863598) (-519 "INBFF.spad" 858681 858692 862901 862906) (-518 "INBCON.spad" 857981 857989 858671 858676) (-517 "INBCON.spad" 857279 857289 857971 857976) (-516 "INAST.spad" 856944 856952 857269 857274) (-515 "IMPTAST.spad" 856652 856660 856934 856939) (-514 "IMATRIX.spad" 855597 855623 856109 856136) (-513 "IMATQF.spad" 854691 854735 855553 855558) (-512 "IMATLIN.spad" 853296 853320 854647 854652) (-511 "ILIST.spad" 851952 851967 852479 852506) (-510 "IIARRAY2.spad" 851340 851378 851559 851586) (-509 "IFF.spad" 850750 850766 851021 851114) (-508 "IFAST.spad" 850364 850372 850740 850745) (-507 "IFARRAY.spad" 847851 847866 849547 849574) (-506 "IFAMON.spad" 847713 847730 847807 847812) (-505 "IEVALAB.spad" 847102 847114 847703 847708) (-504 "IEVALAB.spad" 846489 846503 847092 847097) (-503 "IDPO.spad" 846287 846299 846479 846484) (-502 "IDPOAMS.spad" 846043 846055 846277 846282) (-501 "IDPOAM.spad" 845763 845775 846033 846038) (-500 "IDPC.spad" 844697 844709 845753 845758) (-499 "IDPAM.spad" 844442 844454 844687 844692) (-498 "IDPAG.spad" 844189 844201 844432 844437) (-497 "IDENT.spad" 844106 844114 844179 844184) (-496 "IDECOMP.spad" 841343 841361 844096 844101) (-495 "IDEAL.spad" 836266 836305 841278 841283) (-494 "ICDEN.spad" 835417 835433 836256 836261) (-493 "ICARD.spad" 834606 834614 835407 835412) (-492 "IBPTOOLS.spad" 833199 833216 834596 834601) (-491 "IBITS.spad" 832398 832411 832835 832862) (-490 "IBATOOL.spad" 829273 829292 832388 832393) (-489 "IBACHIN.spad" 827760 827775 829263 829268) (-488 "IARRAY2.spad" 826748 826774 827367 827394) (-487 "IARRAY1.spad" 825793 825808 825931 825958) (-486 "IAN.spad" 824006 824014 825609 825702) (-485 "IALGFACT.spad" 823607 823640 823996 824001) (-484 "HYPCAT.spad" 823031 823039 823597 823602) (-483 "HYPCAT.spad" 822453 822463 823021 823026) (-482 "HOSTNAME.spad" 822261 822269 822443 822448) (-481 "HOAGG.spad" 819519 819529 822241 822256) (-480 "HOAGG.spad" 816562 816574 819286 819291) (-479 "HEXADEC.spad" 814432 814440 815030 815123) (-478 "HEUGCD.spad" 813447 813458 814422 814427) (-477 "HELLFDIV.spad" 813037 813061 813437 813442) (-476 "HEAP.spad" 812429 812439 812644 812671) (-475 "HEADAST.spad" 811960 811968 812419 812424) (-474 "HDP.spad" 803077 803093 803454 803585) (-473 "HDMP.spad" 800253 800268 800871 800998) (-472 "HB.spad" 798490 798498 800243 800248) (-471 "HASHTBL.spad" 796960 796991 797171 797198) (-470 "HASAST.spad" 796676 796684 796950 796955) (-469 "HACKPI.spad" 796159 796167 796578 796671) (-468 "GTSET.spad" 795098 795114 795805 795832) (-467 "GSTBL.spad" 793617 793652 793791 793806) (-466 "GSERIES.spad" 790784 790811 791749 791898) (-465 "GROUP.spad" 790053 790061 790764 790779) (-464 "GROUP.spad" 789330 789340 790043 790048) (-463 "GROEBSOL.spad" 787818 787839 789320 789325) (-462 "GRMOD.spad" 786389 786401 787808 787813) (-461 "GRMOD.spad" 784958 784972 786379 786384) (-460 "GRIMAGE.spad" 777563 777571 784948 784953) (-459 "GRDEF.spad" 775942 775950 777553 777558) (-458 "GRAY.spad" 774401 774409 775932 775937) (-457 "GRALG.spad" 773448 773460 774391 774396) (-456 "GRALG.spad" 772493 772507 773438 773443) (-455 "GPOLSET.spad" 771947 771970 772175 772202) (-454 "GOSPER.spad" 771212 771230 771937 771942) (-453 "GMODPOL.spad" 770350 770377 771180 771207) (-452 "GHENSEL.spad" 769419 769433 770340 770345) (-451 "GENUPS.spad" 765520 765533 769409 769414) (-450 "GENUFACT.spad" 765097 765107 765510 765515) (-449 "GENPGCD.spad" 764681 764698 765087 765092) (-448 "GENMFACT.spad" 764133 764152 764671 764676) (-447 "GENEEZ.spad" 762072 762085 764123 764128) (-446 "GDMP.spad" 759090 759107 759866 759993) (-445 "GCNAALG.spad" 752985 753012 758884 758951) (-444 "GCDDOM.spad" 752157 752165 752911 752980) (-443 "GCDDOM.spad" 751391 751401 752147 752152) (-442 "GB.spad" 748909 748947 751347 751352) (-441 "GBINTERN.spad" 744929 744967 748899 748904) (-440 "GBF.spad" 740686 740724 744919 744924) (-439 "GBEUCLID.spad" 738560 738598 740676 740681) (-438 "GAUSSFAC.spad" 737857 737865 738550 738555) (-437 "GALUTIL.spad" 736179 736189 737813 737818) (-436 "GALPOLYU.spad" 734625 734638 736169 736174) (-435 "GALFACTU.spad" 732790 732809 734615 734620) (-434 "GALFACT.spad" 722923 722934 732780 732785) (-433 "FVFUN.spad" 719936 719944 722903 722918) (-432 "FVC.spad" 718978 718986 719916 719931) (-431 "FUNCTION.spad" 718827 718839 718968 718973) (-430 "FT.spad" 717039 717047 718817 718822) (-429 "FTEM.spad" 716202 716210 717029 717034) (-428 "FSUPFACT.spad" 715102 715121 716138 716143) (-427 "FST.spad" 713188 713196 715092 715097) (-426 "FSRED.spad" 712666 712682 713178 713183) (-425 "FSPRMELT.spad" 711490 711506 712623 712628) (-424 "FSPECF.spad" 709567 709583 711480 711485) (-423 "FS.spad" 703617 703627 709330 709562) (-422 "FS.spad" 697457 697469 703172 703177) (-421 "FSINT.spad" 697115 697131 697447 697452) (-420 "FSERIES.spad" 696302 696314 696935 697034) (-419 "FSCINT.spad" 695615 695631 696292 696297) (-418 "FSAGG.spad" 694720 694730 695559 695610) (-417 "FSAGG.spad" 693799 693811 694640 694645) (-416 "FSAGG2.spad" 692498 692514 693789 693794) (-415 "FS2UPS.spad" 686887 686921 692488 692493) (-414 "FS2.spad" 686532 686548 686877 686882) (-413 "FS2EXPXP.spad" 685655 685678 686522 686527) (-412 "FRUTIL.spad" 684597 684607 685645 685650) (-411 "FR.spad" 678292 678302 683622 683691) (-410 "FRNAALG.spad" 673379 673389 678234 678287) (-409 "FRNAALG.spad" 668478 668490 673335 673340) (-408 "FRNAAF2.spad" 667932 667950 668468 668473) (-407 "FRMOD.spad" 667326 667356 667863 667868) (-406 "FRIDEAL.spad" 666521 666542 667306 667321) (-405 "FRIDEAL2.spad" 666123 666155 666511 666516) (-404 "FRETRCT.spad" 665634 665644 666113 666118) (-403 "FRETRCT.spad" 665011 665023 665492 665497) (-402 "FRAMALG.spad" 663339 663352 664967 665006) (-401 "FRAMALG.spad" 661699 661714 663329 663334) (-400 "FRAC.spad" 658799 658809 659202 659375) (-399 "FRAC2.spad" 658402 658414 658789 658794) (-398 "FR2.spad" 657736 657748 658392 658397) (-397 "FPS.spad" 654545 654553 657626 657731) (-396 "FPS.spad" 651382 651392 654465 654470) (-395 "FPC.spad" 650424 650432 651284 651377) (-394 "FPC.spad" 649552 649562 650414 650419) (-393 "FPATMAB.spad" 649304 649314 649532 649547) (-392 "FPARFRAC.spad" 647777 647794 649294 649299) (-391 "FORTRAN.spad" 646283 646326 647767 647772) (-390 "FORT.spad" 645212 645220 646273 646278) (-389 "FORTFN.spad" 642372 642380 645192 645207) (-388 "FORTCAT.spad" 642046 642054 642352 642367) (-387 "FORMULA.spad" 639384 639392 642036 642041) (-386 "FORMULA1.spad" 638863 638873 639374 639379) (-385 "FORDER.spad" 638554 638578 638853 638858) (-384 "FOP.spad" 637755 637763 638544 638549) (-383 "FNLA.spad" 637179 637201 637723 637750) (-382 "FNCAT.spad" 635507 635515 637169 637174) (-381 "FNAME.spad" 635399 635407 635497 635502) (-380 "FMTC.spad" 635197 635205 635325 635394) (-379 "FMONOID.spad" 632252 632262 635153 635158) (-378 "FM.spad" 631947 631959 632186 632213) (-377 "FMFUN.spad" 628967 628975 631927 631942) (-376 "FMC.spad" 628009 628017 628947 628962) (-375 "FMCAT.spad" 625663 625681 627977 628004) (-374 "FM1.spad" 625020 625032 625597 625624) (-373 "FLOATRP.spad" 622741 622755 625010 625015) (-372 "FLOAT.spad" 615905 615913 622607 622736) (-371 "FLOATCP.spad" 613322 613336 615895 615900) (-370 "FLINEXP.spad" 613034 613044 613302 613317) (-369 "FLINEXP.spad" 612700 612712 612970 612975) (-368 "FLASORT.spad" 612020 612032 612690 612695) (-367 "FLALG.spad" 609666 609685 611946 612015) (-366 "FLAGG.spad" 606672 606682 609634 609661) (-365 "FLAGG.spad" 603591 603603 606555 606560) (-364 "FLAGG2.spad" 602272 602288 603581 603586) (-363 "FINRALG.spad" 600301 600314 602228 602267) (-362 "FINRALG.spad" 598256 598271 600185 600190) (-361 "FINITE.spad" 597408 597416 598246 598251) (-360 "FINAALG.spad" 586389 586399 597350 597403) (-359 "FINAALG.spad" 575382 575394 586345 586350) (-358 "FILE.spad" 574965 574975 575372 575377) (-357 "FILECAT.spad" 573483 573500 574955 574960) (-356 "FIELD.spad" 572889 572897 573385 573478) (-355 "FIELD.spad" 572381 572391 572879 572884) (-354 "FGROUP.spad" 570990 571000 572361 572376) (-353 "FGLMICPK.spad" 569777 569792 570980 570985) (-352 "FFX.spad" 569152 569167 569493 569586) (-351 "FFSLPE.spad" 568641 568662 569142 569147) (-350 "FFPOLY.spad" 559893 559904 568631 568636) (-349 "FFPOLY2.spad" 558953 558970 559883 559888) (-348 "FFP.spad" 558350 558370 558669 558762) (-347 "FF.spad" 557798 557814 558031 558124) (-346 "FFNBX.spad" 556310 556330 557514 557607) (-345 "FFNBP.spad" 554823 554840 556026 556119) (-344 "FFNB.spad" 553288 553309 554504 554597) (-343 "FFINTBAS.spad" 550702 550721 553278 553283) (-342 "FFIELDC.spad" 548277 548285 550604 550697) (-341 "FFIELDC.spad" 545938 545948 548267 548272) (-340 "FFHOM.spad" 544686 544703 545928 545933) (-339 "FFF.spad" 542121 542132 544676 544681) (-338 "FFCGX.spad" 540968 540988 541837 541930) (-337 "FFCGP.spad" 539857 539877 540684 540777) (-336 "FFCG.spad" 538649 538670 539538 539631) (-335 "FFCAT.spad" 531676 531698 538488 538644) (-334 "FFCAT.spad" 524782 524806 531596 531601) (-333 "FFCAT2.spad" 524527 524567 524772 524777) (-332 "FEXPR.spad" 516236 516282 524283 524322) (-331 "FEVALAB.spad" 515942 515952 516226 516231) (-330 "FEVALAB.spad" 515433 515445 515719 515724) (-329 "FDIV.spad" 514875 514899 515423 515428) (-328 "FDIVCAT.spad" 512917 512941 514865 514870) (-327 "FDIVCAT.spad" 510957 510983 512907 512912) (-326 "FDIV2.spad" 510611 510651 510947 510952) (-325 "FCPAK1.spad" 509164 509172 510601 510606) (-324 "FCOMP.spad" 508543 508553 509154 509159) (-323 "FC.spad" 498368 498376 508533 508538) (-322 "FAXF.spad" 491303 491317 498270 498363) (-321 "FAXF.spad" 484290 484306 491259 491264) (-320 "FARRAY.spad" 482436 482446 483473 483500) (-319 "FAMR.spad" 480556 480568 482334 482431) (-318 "FAMR.spad" 478660 478674 480440 480445) (-317 "FAMONOID.spad" 478310 478320 478614 478619) (-316 "FAMONC.spad" 476532 476544 478300 478305) (-315 "FAGROUP.spad" 476138 476148 476428 476455) (-314 "FACUTIL.spad" 474334 474351 476128 476133) (-313 "FACTFUNC.spad" 473510 473520 474324 474329) (-312 "EXPUPXS.spad" 470343 470366 471642 471791) (-311 "EXPRTUBE.spad" 467571 467579 470333 470338) (-310 "EXPRODE.spad" 464443 464459 467561 467566) (-309 "EXPR.spad" 459718 459728 460432 460839) (-308 "EXPR2UPS.spad" 455810 455823 459708 459713) (-307 "EXPR2.spad" 455513 455525 455800 455805) (-306 "EXPEXPAN.spad" 452452 452477 453086 453179) (-305 "EXIT.spad" 452123 452131 452442 452447) (-304 "EXITAST.spad" 451859 451867 452113 452118) (-303 "EVALCYC.spad" 451317 451331 451849 451854) (-302 "EVALAB.spad" 450881 450891 451307 451312) (-301 "EVALAB.spad" 450443 450455 450871 450876) (-300 "EUCDOM.spad" 447985 447993 450369 450438) (-299 "EUCDOM.spad" 445589 445599 447975 447980) (-298 "ESTOOLS.spad" 437429 437437 445579 445584) (-297 "ESTOOLS2.spad" 437030 437044 437419 437424) (-296 "ESTOOLS1.spad" 436715 436726 437020 437025) (-295 "ES.spad" 429262 429270 436705 436710) (-294 "ES.spad" 421715 421725 429160 429165) (-293 "ESCONT.spad" 418488 418496 421705 421710) (-292 "ESCONT1.spad" 418237 418249 418478 418483) (-291 "ES2.spad" 417732 417748 418227 418232) (-290 "ES1.spad" 417298 417314 417722 417727) (-289 "ERROR.spad" 414619 414627 417288 417293) (-288 "EQTBL.spad" 413091 413113 413300 413327) (-287 "EQ.spad" 407965 407975 410764 410876) (-286 "EQ2.spad" 407681 407693 407955 407960) (-285 "EP.spad" 403995 404005 407671 407676) (-284 "ENV.spad" 402697 402705 403985 403990) (-283 "ENTIRER.spad" 402365 402373 402641 402692) (-282 "EMR.spad" 401566 401607 402291 402360) (-281 "ELTAGG.spad" 399806 399825 401556 401561) (-280 "ELTAGG.spad" 398010 398031 399762 399767) (-279 "ELTAB.spad" 397457 397475 398000 398005) (-278 "ELFUTS.spad" 396836 396855 397447 397452) (-277 "ELEMFUN.spad" 396525 396533 396826 396831) (-276 "ELEMFUN.spad" 396212 396222 396515 396520) (-275 "ELAGG.spad" 394143 394153 396180 396207) (-274 "ELAGG.spad" 392023 392035 394062 394067) (-273 "ELABEXPR.spad" 390954 390962 392013 392018) (-272 "EFUPXS.spad" 387730 387760 390910 390915) (-271 "EFULS.spad" 384566 384589 387686 387691) (-270 "EFSTRUC.spad" 382521 382537 384556 384561) (-269 "EF.spad" 377287 377303 382511 382516) (-268 "EAB.spad" 375563 375571 377277 377282) (-267 "E04UCFA.spad" 375099 375107 375553 375558) (-266 "E04NAFA.spad" 374676 374684 375089 375094) (-265 "E04MBFA.spad" 374256 374264 374666 374671) (-264 "E04JAFA.spad" 373792 373800 374246 374251) (-263 "E04GCFA.spad" 373328 373336 373782 373787) (-262 "E04FDFA.spad" 372864 372872 373318 373323) (-261 "E04DGFA.spad" 372400 372408 372854 372859) (-260 "E04AGNT.spad" 368242 368250 372390 372395) (-259 "DVARCAT.spad" 364927 364937 368232 368237) (-258 "DVARCAT.spad" 361610 361622 364917 364922) (-257 "DSMP.spad" 359041 359055 359346 359473) (-256 "DROPT.spad" 352986 352994 359031 359036) (-255 "DROPT1.spad" 352649 352659 352976 352981) (-254 "DROPT0.spad" 347476 347484 352639 352644) (-253 "DRAWPT.spad" 345631 345639 347466 347471) (-252 "DRAW.spad" 338231 338244 345621 345626) (-251 "DRAWHACK.spad" 337539 337549 338221 338226) (-250 "DRAWCX.spad" 334981 334989 337529 337534) (-249 "DRAWCURV.spad" 334518 334533 334971 334976) (-248 "DRAWCFUN.spad" 323690 323698 334508 334513) (-247 "DQAGG.spad" 321846 321856 323646 323685) (-246 "DPOLCAT.spad" 317187 317203 321714 321841) (-245 "DPOLCAT.spad" 312614 312632 317143 317148) (-244 "DPMO.spad" 305917 305933 306055 306356) (-243 "DPMM.spad" 299233 299251 299358 299659) (-242 "DOMAIN.spad" 298504 298512 299223 299228) (-241 "DMP.spad" 295726 295741 296298 296425) (-240 "DLP.spad" 295074 295084 295716 295721) (-239 "DLIST.spad" 293486 293496 294257 294284) (-238 "DLAGG.spad" 291887 291897 293466 293481) (-237 "DIVRING.spad" 291429 291437 291831 291882) (-236 "DIVRING.spad" 291015 291025 291419 291424) (-235 "DISPLAY.spad" 289195 289203 291005 291010) (-234 "DIRPROD.spad" 280049 280065 280689 280820) (-233 "DIRPROD2.spad" 278857 278875 280039 280044) (-232 "DIRPCAT.spad" 277787 277803 278709 278852) (-231 "DIRPCAT.spad" 276458 276476 277382 277387) (-230 "DIOSP.spad" 275283 275291 276448 276453) (-229 "DIOPS.spad" 274255 274265 275251 275278) (-228 "DIOPS.spad" 273213 273225 274211 274216) (-227 "DIFRING.spad" 272505 272513 273193 273208) (-226 "DIFRING.spad" 271805 271815 272495 272500) (-225 "DIFEXT.spad" 270964 270974 271785 271800) (-224 "DIFEXT.spad" 270040 270052 270863 270868) (-223 "DIAGG.spad" 269658 269668 270008 270035) (-222 "DIAGG.spad" 269296 269308 269648 269653) (-221 "DHMATRIX.spad" 267600 267610 268753 268780) (-220 "DFSFUN.spad" 261008 261016 267590 267595) (-219 "DFLOAT.spad" 257611 257619 260898 261003) (-218 "DFINTTLS.spad" 255820 255836 257601 257606) (-217 "DERHAM.spad" 253730 253762 255800 255815) (-216 "DEQUEUE.spad" 253048 253058 253337 253364) (-215 "DEGRED.spad" 252663 252677 253038 253043) (-214 "DEFINTRF.spad" 250188 250198 252653 252658) (-213 "DEFINTEF.spad" 248684 248700 250178 250183) (-212 "DEFAST.spad" 248052 248060 248674 248679) (-211 "DECIMAL.spad" 245934 245942 246520 246613) (-210 "DDFACT.spad" 243733 243750 245924 245929) (-209 "DBLRESP.spad" 243331 243355 243723 243728) (-208 "DBASE.spad" 241903 241913 243321 243326) (-207 "DATABUF.spad" 241391 241404 241893 241898) (-206 "D03FAFA.spad" 241219 241227 241381 241386) (-205 "D03EEFA.spad" 241039 241047 241209 241214) (-204 "D03AGNT.spad" 240119 240127 241029 241034) (-203 "D02EJFA.spad" 239581 239589 240109 240114) (-202 "D02CJFA.spad" 239059 239067 239571 239576) (-201 "D02BHFA.spad" 238549 238557 239049 239054) (-200 "D02BBFA.spad" 238039 238047 238539 238544) (-199 "D02AGNT.spad" 232843 232851 238029 238034) (-198 "D01WGTS.spad" 231162 231170 232833 232838) (-197 "D01TRNS.spad" 231139 231147 231152 231157) (-196 "D01GBFA.spad" 230661 230669 231129 231134) (-195 "D01FCFA.spad" 230183 230191 230651 230656) (-194 "D01ASFA.spad" 229651 229659 230173 230178) (-193 "D01AQFA.spad" 229097 229105 229641 229646) (-192 "D01APFA.spad" 228521 228529 229087 229092) (-191 "D01ANFA.spad" 228015 228023 228511 228516) (-190 "D01AMFA.spad" 227525 227533 228005 228010) (-189 "D01ALFA.spad" 227065 227073 227515 227520) (-188 "D01AKFA.spad" 226591 226599 227055 227060) (-187 "D01AJFA.spad" 226114 226122 226581 226586) (-186 "D01AGNT.spad" 222173 222181 226104 226109) (-185 "CYCLOTOM.spad" 221679 221687 222163 222168) (-184 "CYCLES.spad" 218511 218519 221669 221674) (-183 "CVMP.spad" 217928 217938 218501 218506) (-182 "CTRIGMNP.spad" 216418 216434 217918 217923) (-181 "CTORCALL.spad" 216006 216014 216408 216413) (-180 "CSTTOOLS.spad" 215249 215262 215996 216001) (-179 "CRFP.spad" 208953 208966 215239 215244) (-178 "CRCEAST.spad" 208673 208681 208943 208948) (-177 "CRAPACK.spad" 207716 207726 208663 208668) (-176 "CPMATCH.spad" 207216 207231 207641 207646) (-175 "CPIMA.spad" 206921 206940 207206 207211) (-174 "COORDSYS.spad" 201814 201824 206911 206916) (-173 "CONTOUR.spad" 201216 201224 201804 201809) (-172 "CONTFRAC.spad" 196828 196838 201118 201211) (-171 "CONDUIT.spad" 196586 196594 196818 196823) (-170 "COMRING.spad" 196260 196268 196524 196581) (-169 "COMPPROP.spad" 195774 195782 196250 196255) (-168 "COMPLPAT.spad" 195541 195556 195764 195769) (-167 "COMPLEX.spad" 189567 189577 189811 190072) (-166 "COMPLEX2.spad" 189280 189292 189557 189562) (-165 "COMPFACT.spad" 188882 188896 189270 189275) (-164 "COMPCAT.spad" 186938 186948 188604 188877) (-163 "COMPCAT.spad" 184700 184712 186368 186373) (-162 "COMMUPC.spad" 184446 184464 184690 184695) (-161 "COMMONOP.spad" 183979 183987 184436 184441) (-160 "COMM.spad" 183788 183796 183969 183974) (-159 "COMMAAST.spad" 183551 183559 183778 183783) (-158 "COMBOPC.spad" 182456 182464 183541 183546) (-157 "COMBINAT.spad" 181201 181211 182446 182451) (-156 "COMBF.spad" 178569 178585 181191 181196) (-155 "COLOR.spad" 177406 177414 178559 178564) (-154 "COLONAST.spad" 177072 177080 177396 177401) (-153 "CMPLXRT.spad" 176781 176798 177062 177067) (-152 "CLLCTAST.spad" 176443 176451 176771 176776) (-151 "CLIP.spad" 172535 172543 176433 176438) (-150 "CLIF.spad" 171174 171190 172491 172530) (-149 "CLAGG.spad" 167649 167659 171154 171169) (-148 "CLAGG.spad" 164005 164017 167512 167517) (-147 "CINTSLPE.spad" 163330 163343 163995 164000) (-146 "CHVAR.spad" 161408 161430 163320 163325) (-145 "CHARZ.spad" 161323 161331 161388 161403) (-144 "CHARPOL.spad" 160831 160841 161313 161318) (-143 "CHARNZ.spad" 160584 160592 160811 160826) (-142 "CHAR.spad" 158452 158460 160574 160579) (-141 "CFCAT.spad" 157768 157776 158442 158447) (-140 "CDEN.spad" 156926 156940 157758 157763) (-139 "CCLASS.spad" 155075 155083 156337 156376) (-138 "CATEGORY.spad" 154854 154862 155065 155070) (-137 "CATAST.spad" 154481 154489 154844 154849) (-136 "CASEAST.spad" 154195 154203 154471 154476) (-135 "CARTEN.spad" 149298 149322 154185 154190) (-134 "CARTEN2.spad" 148684 148711 149288 149293) (-133 "CARD.spad" 145973 145981 148658 148679) (-132 "CAPSLAST.spad" 145747 145755 145963 145968) (-131 "CACHSET.spad" 145369 145377 145737 145742) (-130 "CABMON.spad" 144922 144930 145359 145364) (-129 "BYTE.spad" 144316 144324 144912 144917) (-128 "BYTEARY.spad" 143391 143399 143485 143512) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP.spad" 125997 126005 130523 130528) (-113 "BOP1.spad" 123383 123393 125953 125958) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP8.spad" 98087 98100 99034 99039) (-86 "ASP80.spad" 97409 97422 98077 98082) (-85 "ASP7.spad" 96569 96582 97399 97404) (-84 "ASP78.spad" 96020 96033 96559 96564) (-83 "ASP77.spad" 95389 95402 96010 96015) (-82 "ASP74.spad" 94481 94494 95379 95384) (-81 "ASP73.spad" 93752 93765 94471 94476) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP4.spad" 88005 88018 88700 88705) (-76 "ASP49.spad" 87004 87017 87995 88000) (-75 "ASP42.spad" 85411 85450 86994 86999) (-74 "ASP41.spad" 83990 84029 85401 85406) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP1.spad" 67191 67204 67800 67805) (-62 "ASP19.spad" 61877 61890 67181 67186) (-61 "ASP12.spad" 61291 61304 61867 61872) (-60 "ASP10.spad" 60562 60575 61281 61286) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY1.spad" 58757 58766 59105 59132) (-57 "ARRAY12.spad" 57426 57437 58747 58752) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY.spad" 45959 45966 47607 47612) (-51 "ANY1.spad" 45030 45039 45949 45954) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index f6f65285..f1560383 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3266 +1,3268 @@ -(145006 . 3431436958) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-400 |#2|) |#3|) . T)) -((((-400 (-535))) |has| #1=(-400 |#2|) (-1009 (-400 (-535)))) (((-535)) |has| #1# (-1009 (-535))) ((#1#) . T)) -((((-400 |#2|)) . T)) -((((-535)) |has| #1=(-400 |#2|) (-617 (-535))) ((#1#) . T)) -((((-400 |#2|)) . T)) -((((-400 |#2|) |#3|) . T)) -(|has| (-400 |#2|) (-145)) -((((-400 |#2|) |#3|) . T)) -(|has| (-400 |#2|) (-143)) -((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T)) -((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T)) -(|has| (-400 |#2|) (-227)) -((((-1142)) |has| (-400 |#2|) (-871 (-1142)))) -((((-400 |#2|)) . T)) -(((|#3|) . T)) -(((#1=(-400 |#2|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T)) +(145022 . 3431822566) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((#0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) #0#) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(((|#2| |#2|) . T)) +((((-550)) . T)) +((($ $) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) ((|#2| |#2|) . T) ((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550))))) +((($) . T)) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#2|) . T)) +((($) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) ((|#2|) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550))))) +(|has| |#1| (-882)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((($) . T) (((-400 (-550))) . T)) +((($) . T)) +((($) . T)) +(((|#2| |#2|) . T)) +((((-142)) . T)) +((((-526)) . T) (((-1126)) . T) (((-219)) . T) (((-372)) . T) (((-865 (-372))) . T)) +(((|#1|) . T)) +((((-219)) . T) (((-836)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-823))) +((($ $) . T) ((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1| |#1|) . T)) +(-1561 (|has| |#1| (-798)) (|has| |#1| (-825))) +((((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T)) +((((-836)) . T)) +((((-836)) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(|has| |#1| (-823)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (((|#1| |#2| |#3|) . T)) +(((|#4|) . T)) +((($) . T) (((-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) +((((-836)) . T)) +((((-836)) |has| |#1| (-1068))) +((((-836)) . T) (((-1149)) . T)) +(((|#1|) . T) ((|#2|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(((|#2| (-474 (-3191 |#1|) (-749))) . T)) +(((|#1| (-522 (-1144))) . T)) +(((#0=(-843 |#1|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(|has| |#4| (-361)) +(|has| |#3| (-361)) (((|#1|) . T)) +((((-843 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1| |#2|) . T)) +((($) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-542)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +((($) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-836)) . T)) +((((-836)) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) +((((-836)) . T)) +(((|#1|) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1|) . T) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) . T)) +(((|#1| |#2|) . T)) +((((-836)) . T)) (((|#1|) . T)) -((((-1108 |#2| |#1|)) . T) ((|#1|) . T)) -((((-835)) . T)) +(((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550)))) ((|#2| |#2|) . T) (($ $) -1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) (((|#1|) . T)) -(((|#1| |#1|) . T)) +(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882)))) +((($ $) . T)) +(((|#2|) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T) (($) -1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882)))) +((($) . T)) +(|has| |#1| (-361)) (((|#1|) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-836)) . T)) +((((-836)) . T)) +(((|#1| |#2|) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020))) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020))) +(((|#1| |#1|) . T)) +(|has| |#1| (-542)) +(((|#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) (((-1144) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1144) |#2|)))) +((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-823))) +((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(|has| |#1| (-1068)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(|has| |#1| (-1068)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(|has| |#1| (-823)) +((($) . T) (((-400 (-550))) . T)) (((|#1|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-835)) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +(-1561 (|has| |#4| (-771)) (|has| |#4| (-823))) +(-1561 (|has| |#4| (-771)) (|has| |#4| (-823))) +(-1561 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-1561 (|has| |#3| (-771)) (|has| |#3| (-823))) (((|#1| |#2|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((|#1| |#2|) . T)) -((((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((|#2|) . T)) -(((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) ((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -((((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((|#1| |#2|) . T)) +(|has| |#1| (-1068)) +(|has| |#1| (-1068)) +(((|#1| (-1144) (-1056 (-1144)) (-522 (-1056 (-1144)))) . T)) +((((-550) |#1|) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-883 |#1|)) . T)) +(((|#1| (-522 |#2|)) . T)) +((((-550)) . T)) +((((-550)) . T)) +(((|#1|) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(((|#1| (-749)) . T)) +(|has| |#2| (-771)) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(|has| |#2| (-823)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-166 (-371))) . T) (((-219)) . T) (((-371)) . T)) -((((-400 (-535))) . T) (((-535)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($) . T) (((-400 (-535))) . T)) -((($) . T) (((-400 (-535))) . T)) -((((-400 (-535))) . T) (($) . T)) -(((#1=(-400 (-535)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-591 $) $) . T)) -((((-835)) . T)) -((((-400 (-535))) . T) (((-535)) . T) (((-591 $)) . T)) -((((-835)) . T)) -(((|#1|) . T)) -((((-835)) . T)) -(((|#1|) . T) (($) . T)) +((((-1126) |#1|) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) (((|#1|) . T)) -((((-835)) . T)) +(((|#3| (-749)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) +(|has| |#1| (-1068)) +((((-400 (-550))) . T) (((-550)) . T)) +((((-1144) |#2|) |has| |#2| (-505 (-1144) |#2|)) ((|#2| |#2|) |has| |#2| (-302 |#2|))) +((((-400 (-550))) . T) (((-550)) . T)) +(((|#1|) . T) (($) . T)) +((((-550)) . T)) +((((-550)) . T)) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) +((((-550)) . T)) +((((-550)) . T)) +(((#0=(-677) (-1140 #0#)) . T)) +((((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +((((-550) |#1|) . T)) +((($) . T) (((-550)) . T) (((-400 (-550))) . T)) (((|#1|) . T)) -(|has| |#1| (-823)) +(|has| |#2| (-356)) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1| (-57 |#1|) (-57 |#1|)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T)) +(((|#1| |#2|) . T)) +((((-836)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-1126) |#1|) . T)) +(((|#3| |#3|) . T)) +((((-836)) . T)) +((((-836)) . T)) (((|#1| |#1|) . T)) -((((-835)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-535)) . T)) -((((-535)) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) (((-535)) . T) (((-400 (-535))) . T)) -((((-535)) . T) (($) . T) (((-400 (-535))) . T)) -((((-535)) . T) (((-400 (-535))) . T) (($) . T)) -(((#1=(-535) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-524)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T)) -((((-400 (-535))) . T) (((-535)) . T)) -((((-535)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-381) (-1086)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-535) (-112)) . T)) -((((-535) (-112)) . T)) -((((-535) (-112)) . T)) -((((-524)) . T)) -((((-112)) . T)) -((((-835)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-524)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) +(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882)))) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) . T)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882)))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((($) -1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) ((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020)))) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-550) |#1|) . T)) +((((-836)) . T)) +((((-167 (-219))) |has| |#1| (-995)) (((-167 (-372))) |has| |#1| (-995)) (((-526)) |has| |#1| (-596 (-526))) (((-1140 |#1|)) . T) (((-865 (-550))) |has| |#1| (-596 (-865 (-550)))) (((-865 (-372))) |has| |#1| (-596 (-865 (-372))))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-823))) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-823))) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542)))) +(|has| |#1| (-356)) +(-12 (|has| |#4| (-227)) (|has| |#4| (-1020))) +(-12 (|has| |#3| (-227)) (|has| |#3| (-1020))) +(-1561 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1020))) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T)) +(((|#1|) . T)) +((((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) +(((|#2|) . T) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +(|has| |#1| (-542)) +(|has| |#1| (-542)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) (((|#1|) . T)) -((((-835)) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) (((-116 |#1|)) . T) (((-400 (-535))) . T)) -((((-116 |#1|)) . T) (($) . T) (((-400 (-535))) . T)) -((((-116 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) -(((#1=(-116 |#1|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-116 |#1|)) . T)) -((((-1142) #1=(-116 |#1|)) |has| #1# (-505 (-1142) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) -(((#1=(-116 |#1|)) |has| #1# (-302 #1#))) -(((#1=(-116 |#1|) $) |has| #1# (-279 #1# #1#))) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) +(|has| |#1| (-542)) +(|has| |#1| (-542)) +(|has| |#1| (-542)) +((((-677)) . T)) (((|#1|) . T)) +(-12 (|has| |#1| (-975)) (|has| |#1| (-1166))) +(((|#2|) . T) (($) . T) (((-400 (-550))) . T)) +(-12 (|has| |#1| (-1068)) (|has| |#2| (-1068))) +((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (((-1142 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) . T)) +(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) +(((|#4| |#4|) -1561 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1020))) (($ $) |has| |#4| (-170))) +(((|#3| |#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1020))) (($ $) |has| |#3| (-170))) (((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) +(((|#2|) . T)) +((((-526)) |has| |#2| (-596 (-526))) (((-865 (-372))) |has| |#2| (-596 (-865 (-372)))) (((-865 (-550))) |has| |#2| (-596 (-865 (-550))))) +((((-836)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-836)) . T)) +((((-526)) |has| |#1| (-596 (-526))) (((-865 (-372))) |has| |#1| (-596 (-865 (-372)))) (((-865 (-550))) |has| |#1| (-596 (-865 (-550))))) +(((|#4|) -1561 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1020))) (($) |has| |#4| (-170))) +(((|#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1020))) (($) |has| |#3| (-170))) +((((-836)) . T)) +((((-836)) . T)) +((((-526)) . T) (((-550)) . T) (((-865 (-550))) . T) (((-372)) . T) (((-219)) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +((($) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T)) +((((-400 $) (-400 $)) |has| |#2| (-542)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-882)) +((((-1126) (-52)) . T)) +((((-550)) |has| #0=(-400 |#2|) (-619 (-550))) ((#0#) . T)) +((((-526)) . T) (((-219)) . T) (((-372)) . T) (((-865 (-372))) . T)) +((((-836)) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020))) +(((|#1|) |has| |#1| (-170))) +(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((((-836)) . T)) +((((-836)) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-836)) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-1068)) +(((|#1|) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) . T) (((-1149)) . T)) +((((-129)) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((((-129)) . T)) +((($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(|has| |#1| (-227)) +((($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1| (-522 (-796 (-1144)))) . T)) +(((|#1| (-944)) . T)) +(((#0=(-843 |#1|) $) |has| #0# (-279 #0# #0#))) +((((-550) |#4|) . T)) +((((-550) |#3|) . T)) (((|#1|) . T)) +(((|#2| |#2|) . T)) +(|has| |#1| (-1119)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +(|has| (-1213 |#1| |#2| |#3| |#4|) (-143)) +(|has| (-1213 |#1| |#2| |#3| |#4|) (-145)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(((|#1|) |has| |#1| (-170))) +((((-1144)) -12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) +(((|#2|) . T)) +(|has| |#1| (-1068)) +((((-1126) |#1|) . T)) (((|#1|) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) +(|has| |#2| (-361)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((($) . T) ((|#1|) . T)) +(((|#2|) |has| |#2| (-1020))) +((((-836)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((#0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) #0#) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((#0=(-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) #0#) |has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))))) +((((-550) |#1|) . T)) +((((-836)) . T)) +((((-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#2| (-596 (-526)))) (((-865 (-372))) -12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372))))) (((-865 (-550))) -12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550)))))) +((((-836)) . T)) +((($) . T)) +((((-836)) . T)) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +((($) . T)) +((($) . T)) +((($) . T)) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-836)) . T)) +((((-836)) . T)) +(|has| (-1212 |#2| |#3| |#4|) (-145)) +(|has| (-1212 |#2| |#3| |#4|) (-143)) +(((|#2|) |has| |#2| (-1068)) (((-550)) -12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068))) (((-400 (-550))) -12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) +(|has| |#1| (-1068)) +((((-836)) . T)) (((|#1|) . T)) (((|#1|) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020))) (((|#1|) . T)) +((((-550) |#1|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-823))) +((((-836)) |has| |#1| (-1068))) +(-1561 (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020)) (|has| |#1| (-1080))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +((((-883 |#1|)) . T)) +((((-400 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-550) |#1|))) +((((-400 (-550))) . T) (($) . T)) +(|has| |#1| (-825)) +(((|#1|) . T) (($) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-836)) . T)) (((|#1|) . T)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) +(|has| |#1| (-356)) +(-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) +(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) +(|has| |#1| (-356)) +((((-550)) . T)) +(|has| |#1| (-15 * (|#1| (-749) |#1|))) +((((-1110 |#2| (-400 (-925 |#1|)))) . T) (((-400 (-925 |#1|))) . T)) +((($) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) (((|#1|) . T)) -((((-747)) . T) (((-835)) . T)) -((((-128)) . T)) -((((-128)) . T)) -((((-835)) . T)) -((((-128)) . T)) -((((-535) (-128)) . T)) -((((-535) (-128)) . T)) -((((-535) (-128)) . T)) -((((-128)) . T)) -((((-128)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-747)) . T)) -((((-835)) . T)) -((((-535) (-747)) . T) ((|#3| (-747)) . T)) -((((-835)) . T)) -(((|#3|) . T)) -(((|#3| (-747)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-618 (-142))) . T) (((-1124)) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2| |#2|) . T)) +((((-550) |#1|) . T)) (((|#2|) . T)) -(((|#2|) . T) (($) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -(|has| |#1| (-797)) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-343))) -((((-835)) . T)) -(|has| |#1| (-145)) +(-1561 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) (((|#1|) . T)) -((((-1142)) |has| |#1| (-871 (-1142)))) -(-3874 (|has| |#1| (-227)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(((|#1|) . T)) -((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(((|#1|) |has| |#1| (-302 |#1|))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((((-1144)) -12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +(-1561 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-542))) +(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-542)))) +((($ $) |has| |#1| (-542))) +(((#0=(-677) (-1140 #0#)) . T)) +((((-836)) . T)) +((((-836)) . T) (((-1227 |#4|)) . T)) +((((-836)) . T) (((-1227 |#3|)) . T)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-542)))) +((($) |has| |#1| (-542))) +((((-836)) . T)) +((($) . T)) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((#1=(-1219 |#1| |#2| |#3|) #1#) |has| |#1| (-356)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) +(((|#1|) . T) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) +(((|#3|) |has| |#3| (-1020))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(|has| |#1| (-1068)) +(((|#2| (-797 |#1|)) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535)))) -(((|#1|) . T)) -((((-535)) |has| |#1| (-857 (-535))) (((-371)) |has| |#1| (-857 (-371)))) -(((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) -(((|#1| (-1136 |#1|)) . T)) -(((|#1| (-1136 |#1|)) . T)) -((($) -3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) -((($) -3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -(((|#1| (-1136 |#1|)) . T)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(-3874 (|has| |#1| (-361)) (|has| |#1| (-343))) -(|has| |#1| (-823)) +(|has| |#1| (-356)) +((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1050) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-883 |#1|)) . T)) +((((-142)) . T)) +((((-142)) . T)) +(((|#3|) |has| |#3| (-1068)) (((-550)) -12 (|has| |#3| (-1011 (-550))) (|has| |#3| (-1068))) (((-400 (-550))) -12 (|has| |#3| (-1011 (-400 (-550)))) (|has| |#3| (-1068)))) +((((-836)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) (((|#1|) . T)) -((((-166 (-219))) |has| |#1| . #1=((-991))) (((-166 (-371))) |has| |#1| . #1#) (((-524)) |has| |#1| (-594 (-524))) (((-1136 |#1|)) . T) (((-861 (-535))) |has| |#1| (-594 (-861 (-535)))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371))))) -(-12 (|has| |#1| (-300)) (|has| |#1| (-881))) -(-12 (|has| |#1| (-973)) (|has| |#1| (-1164))) -(|has| |#1| (-1164)) -(|has| |#1| (-1164)) -(|has| |#1| (-1164)) -(|has| |#1| (-1164)) -(|has| |#1| (-1164)) -(|has| |#1| (-1164)) -(((|#1|) . T)) -((((-835)) . T)) -((((-400 (-535))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) . T) ((#2=(-400 |#1|) #2#) . T) ((|#1| |#1|) . T)) -((((-400 (-535))) . T) (((-400 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-535)) . T)) -((((-535)) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) (((-535)) . T) (((-400 (-535))) . T)) -((((-535)) . T) (($) . T) (((-400 (-535))) . T)) -((((-535)) . T) (((-400 (-535))) . T) (($) . T)) -(((#1=(-535) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-524)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T)) -((((-400 (-535))) . T) (((-535)) . T)) -((((-535)) . T)) -((((-835)) . T) (((-1147)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-307 |#1|)) . T)) -((((-835)) . T)) -((((-307 |#1|)) . T) (($) . T)) -((((-307 |#1|)) . T)) -((((-535)) . T) (((-400 (-535))) . T)) -((((-371)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-524)) . T) (((-219)) . T) (((-371)) . T) (((-861 (-371))) . T)) -((((-835)) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1| (-1224 |#1|) (-1224 |#1|)) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1|) . T)) -(((|#1| (-1224 |#1|) (-1224 |#1|)) . T)) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) -(((|#2|) |has| |#2| (-170))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -((($) -3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018)))) -(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)))) -((((-835)) -3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-835))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1224 |#2|)) . T)) -(|has| |#2| (-170)) -(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170))) -(((|#2| |#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170))) -(((|#2|) |has| |#2| (-1018))) -((((-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1018))) -(|has| |#2| (-361)) -(((|#2|) |has| |#2| (-1018))) -(((|#2|) |has| |#2| (-1018)) (((-535)) -12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) -(((|#2|) |has| |#2| (-1067))) -(((|#2|) |has| |#2| (-1067)) (((-535)) -12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (((-400 (-535))) -12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) -((((-535) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2|) . T)) -((((-535) |#2|) . T)) -((((-535) |#2|) . T)) -(|has| |#2| (-769)) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -(((|#2|) |has| |#2| (-356))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) . T)) +(|has| |#1| (-356)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-823))) +((((-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(|has| |#2| (-798)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-823)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +((((-836)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-526)) |has| |#1| (-596 (-526)))) (((|#1| |#2|) . T)) +((((-1144)) -12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) +((((-1126) |#1|) . T)) +(((|#1| |#2| |#3| (-522 |#3|)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +((((-836)) . T)) (((|#1|) . T)) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(|has| |#1| (-361)) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +((((-550)) . T)) +((((-550)) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +((((-836)) . T)) +((((-836)) . T)) +(-12 (|has| |#2| (-227)) (|has| |#2| (-1020))) +((((-1144) #0=(-843 |#1|)) |has| #0# (-505 (-1144) #0#)) ((#0# #0#) |has| #0# (-302 #0#))) +(((|#1|) . T)) +((((-550) |#4|) . T)) +((((-550) |#3|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +((((-1213 |#1| |#2| |#3| |#4|)) . T)) +((((-400 (-550))) . T) (((-550)) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) (((|#1|) . T)) +((($) . T) (((-550)) . T) (((-400 (-550))) . T)) +((((-550)) . T)) +((((-550)) . T)) +((($) . T) (((-550)) . T) (((-400 (-550))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) (((|#1|) . T)) -(|has| |#1| (-823)) (((|#1|) . T)) (((|#1|) . T)) +(((#0=(-550) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1|) |has| |#1| (-542))) +((((-550) |#4|) . T)) +((((-550) |#3|) . T)) +((((-836)) . T)) +((((-550)) . T) (((-400 (-550))) . T) (($) . T)) +((((-836)) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) +((($ $) . T) ((#0=(-838 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1144) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-170))) +((($) -1561 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) ((|#2|) |has| |#2| (-170)) (((-400 (-550))) |has| |#2| (-38 (-400 (-550))))) +(((|#2| |#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020))) (($ $) |has| |#2| (-170))) +((((-142)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) +((((-836)) . T)) +(((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020))) (($) |has| |#2| (-170))) (((|#1|) . T)) -((((-524)) |has| |#2| (-594 (-524))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535))))) +((((-836)) . T)) +(|has| |#1| (-1068)) +(|has| $ (-145)) +((((-550) |#1|) . T)) +((($) -1561 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) +((((-1144)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) +(|has| |#1| (-356)) +(-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) +(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) +(|has| |#1| (-356)) +(|has| |#1| (-15 * (|#1| (-749) |#1|))) +(((|#1|) . T)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +((((-836)) . T)) +((((-550) (-129)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(((|#2| (-522 (-838 |#1|))) . T)) +((((-836)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +((((-565 |#1|)) . T)) ((($) . T)) -(((|#2| (-233 (-4299 |#1|) (-747))) . T)) -(((|#2|) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T) (($) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))) ((|#2| |#2|) . T) (($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(((|#2| (-233 (-4299 |#1|) (-747))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535)))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-881))) -((($ $) . T) ((#1=(-836 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-823)) -((((-836 |#1|)) . T)) -(|has| |#2| (-881)) -(|has| |#2| (-881)) -((((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) (((-535)) |has| |#2| (-1009 (-535))) ((|#2|) . T) (((-836 |#1|)) . T)) -(((|#2| (-233 (-4299 |#1|) (-747)) (-836 |#1|)) . T)) -((((-835)) . T)) -(((|#4|) |has| |#4| (-170))) -(-3874 (|has| |#4| (-170)) (|has| |#4| (-703)) (|has| |#4| (-821)) (|has| |#4| (-1018))) -(-3874 (|has| |#4| (-170)) (|has| |#4| (-703)) (|has| |#4| (-821)) (|has| |#4| (-1018))) -(-3874 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018))) -(-3874 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018))) -(((|#3|) . T) ((|#2|) . T) (($) -3874 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018))) ((|#4|) -3874 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018)))) -(((|#4|) -3874 (|has| |#4| (-170)) (|has| |#4| (-356)))) -((((-835)) . T) (((-1224 |#4|)) . T)) -(|has| |#4| (-170)) -(((|#4|) -3874 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))) (($) |has| |#4| (-170))) -(((|#4| |#4|) -3874 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))) (($ $) |has| |#4| (-170))) -(((|#4|) |has| |#4| (-1018))) -((((-1142)) -12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) -(-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) -(|has| |#4| (-361)) -(((|#4|) |has| |#4| (-1018))) -(((|#4|) |has| |#4| (-1018)) (((-535)) -12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018)))) -(((|#4|) |has| |#4| (-1067))) -(((|#4|) |has| |#4| (-1067)) (((-535)) -12 (|has| |#4| (-1009 (-535))) (|has| |#4| (-1067))) (((-400 (-535))) -12 (|has| |#4| (-1009 (-400 (-535)))) (|has| |#4| (-1067)))) -((((-535) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) +(((|#1|) . T) (($) . T)) +((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) (((|#4|) . T)) -((((-535) |#4|) . T)) -((((-535) |#4|) . T)) -(|has| |#4| (-769)) -(-3874 (|has| |#4| (-769)) (|has| |#4| (-821))) -(-3874 (|has| |#4| (-769)) (|has| |#4| (-821))) -(-3874 (|has| |#4| (-769)) (|has| |#4| (-821))) -(-3874 (|has| |#4| (-769)) (|has| |#4| (-821))) -(|has| |#4| (-821)) -(|has| |#4| (-821)) -(((|#4|) |has| |#4| (-356))) -(((|#1| |#4|) . T)) -(((|#3|) |has| |#3| (-170))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(((|#2|) . T) (($) -3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) ((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018)))) -(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)))) -((((-835)) . T) (((-1224 |#3|)) . T)) -(|has| |#3| (-170)) -(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($) |has| |#3| (-170))) -(((|#3| |#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($ $) |has| |#3| (-170))) -(((|#3|) |has| |#3| (-1018))) -((((-1142)) -12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) -(-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) -(|has| |#3| (-361)) -(((|#3|) |has| |#3| (-1018))) -(((|#3|) |has| |#3| (-1018)) (((-535)) -12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018)))) -(((|#3|) |has| |#3| (-1067))) -(((|#3|) |has| |#3| (-1067)) (((-535)) -12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067))) (((-400 (-535))) -12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067)))) -((((-535) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (((|#3|) . T)) -((((-535) |#3|) . T)) -((((-535) |#3|) . T)) -(|has| |#3| (-769)) -(-3874 (|has| |#3| (-769)) (|has| |#3| (-821))) -(-3874 (|has| |#3| (-769)) (|has| |#3| (-821))) -(-3874 (|has| |#3| (-769)) (|has| |#3| (-821))) -(-3874 (|has| |#3| (-769)) (|has| |#3| (-821))) -(|has| |#3| (-821)) -(|has| |#3| (-821)) -(((|#3|) |has| |#3| (-356))) -(((|#1| |#3|) . T)) -((((-835)) . T)) +((((-843 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) +((((-1144)) -12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) +(((|#1|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-550) |#2|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1| |#2| |#3| |#4| |#5|) . T)) +(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-542)))) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((#1=(-1142 |#1| |#2| |#3|) #1#) |has| |#1| (-356)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +(((|#2|) |has| |#2| (-1020))) +(|has| |#1| (-1068)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-542)))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (((-1142 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) +(((|#1|) . T) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) |has| |#1| (-170)) (($) . T)) (((|#1|) . T)) -((((-835)) . T)) -(|has| |#1| (-227)) +(((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550)))) ((|#2| |#2|) . T) (($ $) -1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((((-836)) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882)))) +(((#0=(-1050) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T) (($) -1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) ((($) . T)) -(((|#1| (-521 |#3|) |#3|) . T)) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))) (((-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371))))) -((((-1142)) |has| |#1| (-871 (-1142))) ((|#3|) . T)) -(|has| |#1| (-823)) -((($ $) . T) ((|#2| $) |has| |#1| . #1=((-227))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-881))) -((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-521 |#3|)) . T)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(|has| |#1| (-145)) +(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-356))) +(((|#2|) |has| |#2| (-1068)) (((-550)) -12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068))) (((-400 (-550))) -12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) +((((-550) |#1|) . T)) +((((-836)) . T)) +((((-400 |#2|) |#3|) . T)) +(((|#1| (-400 (-550))) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-400 (-550))) . T) (($) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +((((-836)) . T) (((-1149)) . T)) (|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T)) -(((|#1| (-521 |#3|)) . T)) -((((-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535))))) (((-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371))))) (((-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524))))) -((((-1091 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-521 |#3|)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -((((-835)) . T)) -((($) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) +(|has| |#1| (-145)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-400 (-550))) . T) (($) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-400 (-550))) . T) (($) . T)) +(((|#2| |#3| (-838 |#1|)) . T)) +((((-1144)) |has| |#2| (-873 (-1144)))) +(((|#1|) . T)) +(((|#1| (-522 |#2|) |#2|) . T)) +(((|#1| (-749) (-1050)) . T)) +((((-400 (-550))) |has| |#2| (-356)) (($) . T)) +(((|#1| (-522 (-1056 (-1144))) (-1056 (-1144))) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(((|#1|) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(|has| |#2| (-771)) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#2| (-823)) +((((-866 |#1|)) . T) (((-797 |#1|)) . T)) +((((-797 (-1144))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-623 (-550))) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-526)) . T) (((-865 (-550))) . T) (((-372)) . T) (((-219)) . T)) +(|has| |#1| (-227)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) ((($ $) . T)) -((($) . T)) -((((-835)) . T)) -(((|#1|) |has| |#1| (-356))) -((((-1142)) |has| |#1| (-871 (-1142)))) -(((|#1|) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)))) -(((|#1|) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018)))) -(((|#1| |#1|) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018)))) -(((|#1|) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))) (($) -3874 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))) -(-3874 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))) -(|has| |#1| (-465)) -(-3874 (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1067))) -((((-112)) |has| |#1| (-1067)) (((-835)) -3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1067))) -((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|))) -(((|#1| |#2|) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) +(((|#1| |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-1219 |#1| |#2| |#3|) $) -12 (|has| (-1219 |#1| |#2| |#3|) (-279 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356))) (($ $) . T)) +((($ $) . T)) +((($ $) . T)) +(((|#1|) . T)) +((((-1108 |#1| |#2|)) |has| (-1108 |#1| |#2|) (-302 (-1108 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#2|) . T) (((-550)) |has| |#2| (-1011 (-550))) (((-400 (-550))) |has| |#2| (-1011 (-400 (-550))))) +(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(((|#1|) . T)) (((|#1| |#2|) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T)) -(|has| (-1211 |#1| |#2| |#3| |#4|) (-143)) -(|has| (-1211 |#1| |#2| |#3| |#4|) (-145)) -((((-1211 |#1| |#2| |#3| |#4|)) . T)) -((((-1211 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) (((-1211 |#1| |#2| |#3| |#4|)) . T) (((-400 (-535))) . T)) -((((-1211 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-535))) . T)) -((((-1211 |#1| |#2| |#3| |#4|)) . T) (((-400 (-535))) . T) (($) . T)) -(((#1=(-1211 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-1211 |#1| |#2| |#3| |#4|)) . T)) -((((-1142) #1=(-1211 |#1| |#2| |#3| |#4|)) |has| #1# (-505 (-1142) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) -(((#1=(-1211 |#1| |#2| |#3| |#4|)) |has| #1# (-302 #1#))) -(((#1=(-1211 |#1| |#2| |#3| |#4|) $) |has| #1# (-279 #1# #1#))) -((((-1211 |#1| |#2| |#3| |#4|)) . T)) -((((-1211 |#1| |#2| |#3| |#4|)) . T)) -((((-1211 |#1| |#2| |#3| |#4|)) . T)) -((((-1211 |#1| |#2| |#3| |#4|)) . T)) -((((-1205 |#2| |#3| |#4|)) . T) (((-1211 |#1| |#2| |#3| |#4|)) . T)) -((((-1211 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(((|#1|) |has| |#1| (-542))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018))) -((((-835)) . T)) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-542)) (|has| |#1| (-1018)) (|has| |#1| (-1078))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-542)) (|has| |#1| (-1018)) (|has| |#1| (-1078))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018))) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -((((-591 $) $) . T) (($ $) . T)) ((($) . T)) +((($) . T)) +(((|#2|) . T)) +(((|#3|) . T)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(((|#2|) . T)) +((((-836)) -1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-836))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) (((-1227 |#2|)) . T)) +(((|#1|) |has| |#1| (-170))) +((((-550)) . T)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882)))) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-550) (-142)) . T)) +((($) -1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) ((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020)))) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1020))) +(((|#1|) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1020))) +(((|#2|) |has| |#1| (-356))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| |#1|) . T) (($ $) . T)) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| (-522 #0=(-1144)) #0#) . T)) +(((|#1|) . T) (($) . T)) +(|has| |#4| (-170)) +(|has| |#3| (-170)) +(((#0=(-400 (-925 |#1|)) #0#) . T)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(|has| |#1| (-1068)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(|has| |#1| (-1068)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +((((-836)) . T) (((-1149)) . T)) +(((|#1| |#1|) |has| |#1| (-170))) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) . T)) +((((-400 (-925 |#1|))) . T)) +((((-550) (-129)) . T)) +(((|#1|) |has| |#1| (-170))) +((((-129)) . T)) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +((((-836)) . T)) +((((-1213 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1020)) (((-550)) -12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))) +(((|#1| |#2|) . T)) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +(|has| |#3| (-771)) +(-1561 (|has| |#3| (-771)) (|has| |#3| (-823))) +(|has| |#3| (-823)) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542)))) +(((|#2|) . T)) +((((-550) (-129)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-550) |#2|) . T)) +(((|#1| (-1124 |#1|)) |has| |#1| (-823))) +(|has| |#1| (-1068)) +(((|#1|) . T)) +(-12 (|has| |#1| (-356)) (|has| |#2| (-1119))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(|has| |#1| (-1068)) +(((|#2|) . T)) +((((-526)) |has| |#2| (-596 (-526))) (((-865 (-372))) |has| |#2| (-596 (-865 (-372)))) (((-865 (-550))) |has| |#2| (-596 (-865 (-550))))) +(((|#4|) -1561 (|has| |#4| (-170)) (|has| |#4| (-356)))) +(((|#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)))) +((((-836)) . T)) +(((|#1|) . T)) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-882))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-882))) +((($ $) . T) ((#0=(-1144) $) |has| |#1| (-227)) ((#0# |#1|) |has| |#1| (-227)) ((#1=(-796 (-1144)) |#1|) . T) ((#1# $) . T)) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-882))) +((((-550) |#2|) . T)) +((((-836)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((($) -1561 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1020))) ((|#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1020)))) +((((-550) |#1|) . T)) +(|has| (-400 |#2|) (-145)) +(|has| (-400 |#2|) (-143)) +(((|#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-400 (-550))) . T)) +((((-836)) . T)) (|has| |#1| (-542)) (|has| |#1| (-542)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-836)) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +(|has| |#1| (-38 (-400 (-550)))) +((((-381) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#2| (-1119)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-1180)) . T) (((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +(((|#1|) . T)) +((((-381) (-1126)) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +((((-116 |#1|)) . T)) (|has| |#1| (-542)) +((((-129)) . T)) +((((-550) |#1|) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(((|#2|) . T)) +((((-836)) . T)) +((((-797 |#1|)) . T)) +(((|#2|) |has| |#2| (-170))) +((((-1144) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)) (((-400 (-535))) |has| |#1| (-542))) -((($) -3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-542))) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)) (((-400 (-535))) |has| |#1| (-542))) -(|has| |#1| (-542)) -(((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-542)) (($) |has| |#1| (-542))) -(((|#1| |#1|) |has| |#1| (-170)) ((#1=(-400 (-535)) #1#) |has| |#1| (-542)) (($ $) |has| |#1| (-542))) -(|has| |#1| (-542)) -(((|#1|) |has| |#1| (-1018))) -(((|#1|) |has| |#1| (-1018)) (((-535)) -12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) +(((|#1|) |has| |#1| (-170))) +((((-836)) . T)) +((((-526)) |has| |#1| (-596 (-526)))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(((|#2|) |has| |#2| (-302 |#2|))) +(((#0=(-550) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -((((-535)) |has| |#1| (-857 (-535))) (((-371)) |has| |#1| (-857 (-371)))) +(((|#1| (-1140 |#1|)) . T)) +(|has| $ (-145)) +(((|#2|) . T)) +(((#0=(-550) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +((($) . T) (((-550)) . T) (((-400 (-550))) . T)) +(|has| |#2| (-361)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +((((-550)) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-550)) . T) (((-400 (-550))) . T) (($) . T)) +((((-1142 |#1| |#2| |#3|) $) -12 (|has| (-1142 |#1| |#2| |#3|) (-279 (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356))) (($ $) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +((($) . T) (((-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) +((($ $) . T)) +((($ $) . T)) +((((-836)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((#0=(-1219 |#1| |#2| |#3|) #0#) -12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356))) (((-1144) #0#) -12 (|has| (-1219 |#1| |#2| |#3|) (-505 (-1144) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) +(-12 (|has| |#1| (-1068)) (|has| |#2| (-1068))) (((|#1|) . T)) -(|has| |#1| (-465)) -((((-1142)) |has| |#1| (-1018))) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524))) (((-861 (-535))) |has| |#1| (-594 (-861 (-535)))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371))))) -((((-48)) -12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535)))) (((-591 $)) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) -3874 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535)))) (|has| |#1| (-1009 (-400 (-535))))) (((-400 (-917 |#1|))) |has| |#1| (-542)) (((-917 |#1|)) |has| |#1| (-1018)) (((-1142)) . T)) (((|#1|) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -((((-835)) . T)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| (-400 (-535))) . T)) -(((|#1| (-400 (-535))) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1|) . T)) -(((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1| |#1|) . T)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -(((|#1| (-400 (-535)) (-1048)) . T)) -((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) -((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-823)) +((($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-400 (-550))) . T) (((-550)) . T)) +((((-550) (-142)) . T)) +((((-142)) . T)) (((|#1|) . T)) -(((|#1| (-535)) . T)) -(((#1=(-535) #1#) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-835)) . T)) -((((-835)) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1020))) +((((-112)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-112)) . T)) (((|#1|) . T)) -(((|#1| (-747)) . T)) +((((-526)) |has| |#1| (-596 (-526))) (((-219)) . #0=(|has| |#1| (-995))) (((-372)) . #0#)) +((((-836)) . T)) +(|has| |#1| (-798)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(|has| |#1| (-825)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-542))) +(|has| |#1| (-542)) +(|has| |#1| (-882)) +(((|#1|) . T)) +(|has| |#1| (-1068)) +((((-836)) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-542))) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1| (-1227 |#1|) (-1227 |#1|)) . T)) +((((-550) (-142)) . T)) +((($) . T)) +(-1561 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1020))) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +((((-1149)) . T) (((-836)) . T)) +((((-836)) . T)) +(|has| |#1| (-1068)) +(((|#1| (-944)) . T)) +(((|#1| |#1|) . T)) +((($) . T)) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-12 (|has| |#1| (-465)) (|has| |#2| (-465))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(-1561 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) (((|#1|) . T)) +(|has| |#2| (-771)) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(((|#1| |#2|) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(|has| |#2| (-823)) +(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) +(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) +(((|#1| |#2|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#1|) |has| |#1| (-170))) +((((-836)) . T)) +(|has| |#1| (-342)) (((|#1|) . T)) -(|has| |#1| (-823)) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) +((((-400 (-550))) . T) (($) . T)) +((($) . T) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) . T)) +(|has| |#1| (-806)) +((((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T)) +(|has| |#1| (-1068)) +(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) +((($) |has| |#1| (-542))) +(((|#4|) |has| |#4| (-1068))) +(((|#3|) |has| |#3| (-1068))) +(|has| |#3| (-361)) +(((|#1|) . T) (((-836)) . T)) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +((((-836)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542)))) +(((|#1| |#2|) . T)) +((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1| |#1|) |has| |#1| (-170))) +(|has| |#2| (-356)) (((|#1|) . T)) +(((|#1|) |has| |#1| (-170))) +((((-400 (-550))) . T) (((-550)) . T)) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +((((-142)) . T)) (((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-1142)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#3| |#3|) . T)) -(((|#3|) . T) (($) . T)) -(((|#3|) . T)) -((($) . T)) -((($ $) . T) (((-591 $) $) . T)) -((((-835)) . T)) -(((|#3|) . T) (((-591 $)) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T) (($) . T) (((-400 (-535))) . T)) -(((#1=(-877 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-535)) #2#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) +((($) -1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) ((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020)))) +((((-142)) . T)) +((((-142)) . T)) +(((|#1| |#2| |#3|) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1020))) (|has| $ (-145)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T) (($) . T) (((-400 (-535))) . T)) -(((#1=(-877 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-535)) #2#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) (|has| $ (-145)) -((((-877 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) +(|has| |#1| (-1068)) +((((-836)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-542)) (|has| |#1| (-1020)) (|has| |#1| (-1080))) +((($ $) |has| |#1| (-279 $ $)) ((|#1| $) |has| |#1| (-279 |#1| |#1|))) +(((|#1| (-400 (-550))) . T)) (((|#1|) . T)) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) +((((-1144)) . T)) +(|has| |#1| (-542)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(|has| |#1| (-542)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +((((-836)) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(((|#2|) . T) (($) . T)) (|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) +(|has| |#1| (-143)) +(|has| |#4| (-823)) +(((|#2| (-234 (-3191 |#1|) (-749)) (-838 |#1|)) . T)) +(|has| |#3| (-823)) +(((|#1| (-522 |#3|) |#3|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(((#0=(-400 (-550)) #0#) |has| |#2| (-356)) (($ $) . T)) +((((-843 |#1|)) . T)) (|has| |#1| (-145)) (|has| |#1| (-361)) (|has| |#1| (-361)) (|has| |#1| (-361)) -(|has| |#1| (-361)) -(((|#1|) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T)) -((((-877 |#1|)) . T) (($) . T) (((-400 (-535))) . T)) -(((#1=(-877 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-535)) #2#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) -(|has| $ (-145)) -((((-877 |#1|)) . T)) -(((|#1|) . T)) +(|has| |#1| (-143)) +((((-400 (-550))) |has| |#2| (-356)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(-1561 (|has| |#1| (-342)) (|has| |#1| (-361))) +((((-1110 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-170)) +(((|#1| |#2|) . T)) +(-12 (|has| |#2| (-227)) (|has| |#2| (-1020))) +(((|#2|) . T) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(-1561 (|has| |#3| (-771)) (|has| |#3| (-823))) +(-1561 (|has| |#3| (-771)) (|has| |#3| (-823))) +((((-836)) . T)) (((|#1|) . T)) +(((|#2|) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +((((-677)) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(|has| |#1| (-542)) (((|#1|) . T)) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) (((|#1|) . T)) +((((-1144) (-52)) . T)) +((((-836)) . T)) +((((-526)) . T) (((-865 (-550))) . T) (((-372)) . T) (((-219)) . T)) (((|#1|) . T)) +((((-836)) . T)) +((((-526)) . T) (((-865 (-550))) . T) (((-372)) . T) (((-219)) . T)) +(((|#1| (-550)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) +(((|#1| (-400 (-550))) . T)) +(((|#3|) . T) (((-594 $)) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) (((|#1|) . T)) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((($ $) . T) ((|#2| $) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((#0=(-1142 |#1| |#2| |#3|) #0#) -12 (|has| (-1142 |#1| |#2| |#3|) (-302 (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356))) (((-1144) #0#) -12 (|has| (-1142 |#1| |#2| |#3|) (-505 (-1144) (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356)))) +((((-550)) . T) (($) . T) (((-400 (-550))) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1| |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) |has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))))) +((((-836)) . T)) (((|#1|) . T)) +(((|#3| |#3|) . T)) (((|#1|) . T)) +((($) . T) ((|#2|) . T)) +((((-1144) (-52)) . T)) +(((|#3|) . T)) +((($ $) . T) ((#0=(-838 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-806)) +(|has| |#1| (-1068)) +(((|#2| |#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020))) (($ $) |has| |#2| (-170))) +(((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)))) +((((-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020))) (($) |has| |#2| (-170))) +((((-749)) . T)) +((((-550)) . T)) +(|has| |#1| (-542)) +((((-836)) . T)) +(((|#1| (-400 (-550)) (-1050)) . T)) +(|has| |#1| (-143)) (((|#1|) . T)) +(|has| |#1| (-542)) +((((-550)) . T)) +((((-116 |#1|)) . T)) (((|#1|) . T)) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) (|has| |#1| (-145)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-542))) +((((-865 (-550))) . T) (((-865 (-372))) . T) (((-526)) . T) (((-1144)) . T)) +((((-836)) . T)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +((((-836)) . T) (((-1149)) . T)) +((($) . T)) +((((-836)) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(((|#2|) |has| |#2| (-170))) +((($) -1561 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) ((|#2|) |has| |#2| (-170)) (((-400 (-550))) |has| |#2| (-38 (-400 (-550))))) +((((-843 |#1|)) . T)) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) +(-12 (|has| |#3| (-227)) (|has| |#3| (-1020))) +(|has| |#2| (-1119)) +(((#0=(-52)) . T) (((-2 (|:| -2763 (-1144)) (|:| -2119 #0#))) . T)) +(((|#1| |#2|) . T)) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +(((|#1| (-550) (-1050)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| (-400 (-550)) (-1050)) . T)) +((($) -1561 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) +((((-550) |#2|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(|has| |#2| (-361)) +(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) +((((-836)) . T)) +((((-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(((|#1|) . T)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1142 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542)))) +((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-836)) . T)) +(|has| |#1| (-342)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((#0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) #0#) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(|has| |#1| (-542)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-836)) . T)) +(((|#1| |#2|) . T)) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-882))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-882))) +((((-400 (-550))) . T) (((-550)) . T)) +((((-550)) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((($) . T)) +((((-836)) . T)) +(((|#1|) . T)) +((((-843 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) +((((-836)) . T)) +(((|#3| |#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1020))) (($ $) |has| |#3| (-170))) +(|has| |#1| (-995)) +((((-836)) . T)) +(((|#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1020))) (($) |has| |#3| (-170))) +((((-550) (-112)) . T)) +(((|#1|) |has| |#1| (-302 |#1|))) (|has| |#1| (-361)) (|has| |#1| (-361)) (|has| |#1| (-361)) -(|has| |#1| (-361)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) +((((-1144) $) |has| |#1| (-505 (-1144) $)) (($ $) |has| |#1| (-302 $)) ((|#1| |#1|) |has| |#1| (-302 |#1|)) (((-1144) |#1|) |has| |#1| (-505 (-1144) |#1|))) +((((-1144)) |has| |#1| (-873 (-1144)))) +(-1561 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342))) +((((-381) (-1088)) . T)) +(((|#1| |#4|) . T)) +(((|#1| |#3|) . T)) ((((-381) |#1|) . T)) -((((-535)) . T) (((-400 (-535))) . T)) -((((-371)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-524)) . T) (((-1124)) . T) (((-219)) . T) (((-371)) . T) (((-861 (-371))) . T)) -((((-219)) . T) (((-835)) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1|) |has| |#1| (-170))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +(|has| |#1| (-1068)) +((((-836)) . T)) +((((-836)) . T)) +((((-883 |#1|)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882)))) (((|#1| |#2|) . T)) -(((|#1|) . T)) -((((-835)) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) +((($) . T)) (((|#1| |#1|) . T)) +(((#0=(-843 |#1|)) |has| #0# (-302 #0#))) +(((|#1| |#2|) . T)) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (((|#1|) . T)) -((((-835)) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#2|) . T)) +(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(((|#2|) . T) (($) . T)) +(((|#2|) . T) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(|has| |#1| (-1166)) +(((#0=(-550) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +((((-400 (-550))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1020))) +(((|#3|) |has| |#3| (-1020))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(|has| |#1| (-356)) +((((-550)) . T) (((-400 (-550))) . T) (($) . T)) +((($ $) . T) ((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1| |#1|) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-550) |#3|) . T)) +((((-836)) . T)) +((((-526)) |has| |#3| (-596 (-526)))) +((((-667 |#3|)) . T) (((-836)) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-823)) +(|has| |#1| (-823)) +((($) . T) (((-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-542))) +((($) . T)) +(((#0=(-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) #0#) |has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))))) +(|has| |#2| (-825)) +((($) . T)) +(((|#2|) |has| |#2| (-1068))) +((((-836)) -1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-836))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) (((-1227 |#2|)) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-1126) (-52)) . T)) +(|has| |#1| (-825)) +((((-836)) . T)) +((((-550)) |has| #0=(-400 |#2|) (-619 (-550))) ((#0#) . T)) +((((-550) (-142)) . T)) +((((-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T) ((|#1| |#2|) . T)) +((((-400 (-550))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-836)) . T)) +((((-883 |#1|)) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) +(|has| |#1| (-823)) +(|has| |#1| (-356)) +(|has| |#1| (-823)) +(((|#1|) . T) (($) . T)) +(|has| |#1| (-823)) +((((-1144)) |has| |#1| (-873 (-1144)))) +(((|#1| (-1144)) . T)) +(((|#1| (-1227 |#1|) (-1227 |#1|)) . T)) +((((-836)) . T) (((-1149)) . T)) +(((|#1| |#2|) . T)) +((($ $) . T)) +(|has| |#1| (-1068)) +(((|#1| (-1144) (-796 (-1144)) (-522 (-796 (-1144)))) . T)) +((((-400 (-925 |#1|))) . T)) +((((-526)) . T)) +((((-836)) . T)) +((($) . T)) +(((|#2|) . T) (($) . T)) +((((-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -((((-835)) . T)) -(((|#3|) . T)) -(((|#3| |#3|) . T)) +(((|#1|) |has| |#1| (-170))) +((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (((|#3|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-400 |#2|)) . T)) -((((-835)) . T)) -(|has| |#1| (-1183)) -((((-524)) |has| |#1| (-594 (-524))) (((-219)) . #1=(|has| |#1| (-991))) (((-371)) . #1#)) -(|has| |#1| (-991)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-1183))) -((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -((($ $) |has| |#1| (-279 $ $)) ((|#1| $) |has| |#1| (-279 |#1| |#1|))) -((($) |has| |#1| (-302 $)) ((|#1|) |has| |#1| (-302 |#1|))) -((((-1142) $) |has| |#1| (-505 (-1142) $)) (($ $) |has| |#1| (-302 $)) ((|#1| |#1|) |has| |#1| (-302 |#1|)) (((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|))) +(((|#1|) |has| |#1| (-170))) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882)))) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) (((|#1|) . T)) -(|has| |#1| (-227)) -((((-1142)) |has| |#1| (-871 (-1142)))) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1| |#1|) . T) (($ $) . T)) -(((|#1|) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T) (($) . T)) -(-12 (|has| |#1| (-534)) (|has| |#1| (-797))) -((((-835)) . T)) +((((-526)) |has| |#1| (-596 (-526))) (((-865 (-372))) |has| |#1| (-596 (-865 (-372)))) (((-865 (-550))) |has| |#1| (-596 (-865 (-550))))) +((((-836)) . T)) +(((|#2|) . T) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(|has| |#2| (-823)) +(-12 (|has| |#2| (-227)) (|has| |#2| (-1020))) +(|has| |#1| (-542)) +(|has| |#1| (-1119)) +((((-1126) |#1|) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1| |#1|) . T)) +((((-400 (-550))) |has| |#1| (-1011 (-550))) (((-550)) |has| |#1| (-1011 (-550))) (((-1144)) |has| |#1| (-1011 (-1144))) ((|#1|) . T)) +((((-550) |#2|) . T)) +((((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T)) +((((-550)) |has| |#1| (-859 (-550))) (((-372)) |has| |#1| (-859 (-372)))) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1|) . T)) +(((|#1|) . T)) +((((-623 |#4|)) . T) (((-836)) . T)) +((((-526)) |has| |#4| (-596 (-526)))) +((((-526)) |has| |#4| (-596 (-526)))) +((((-836)) . T) (((-623 |#4|)) . T)) +((($) |has| |#1| (-823))) +(((|#1|) . T)) +((((-623 |#4|)) . T) (((-836)) . T)) +((((-526)) |has| |#4| (-596 (-526)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1144)) |has| (-400 |#2|) (-873 (-1144)))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((#0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) #0#) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-836)) -1561 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-595 (-836))) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1020)) (|has| |#3| (-1068))) (((-1227 |#3|)) . T)) +((((-550) |#2|) . T)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(((|#2| |#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020))) (($ $) |has| |#2| (-170))) +((((-836)) . T)) +((((-836)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T) ((|#2|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-1126) (-1144) (-550) (-219) (-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +((((-836)) . T)) +((((-550) (-112)) . T)) +(((|#1|) . T)) +((((-836)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-112)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +((((-836)) . T)) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1020))) (($) |has| |#2| (-170))) +(|has| $ (-145)) +((((-400 |#2|)) . T)) +((((-400 (-550))) |has| #0=(-400 |#2|) (-1011 (-400 (-550)))) (((-550)) |has| #0# (-1011 (-550))) ((#0#) . T)) +(((|#2| |#2|) . T)) +(((|#4|) |has| |#4| (-170))) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(((|#3|) |has| |#3| (-170))) +(|has| |#1| (-145)) (|has| |#1| (-143)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(|has| |#1| (-145)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(|has| |#1| (-145)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) (|has| |#1| (-145)) (((|#1|) . T)) -((((-1142)) |has| |#1| (-871 (-1142)))) -(|has| |#1| (-227)) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) ((|#1|) . T) (((-400 (-535))) . T)) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(((|#1|) |has| |#1| (-302 |#1|))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535)))) -(((|#1|) . T)) -((((-535)) |has| |#1| (-857 (-535))) (((-371)) |has| |#1| (-857 (-371)))) -(|has| |#1| (-796)) -(|has| |#1| (-796)) -(|has| |#1| (-796)) -(-3874 (|has| |#1| (-796)) (|has| |#1| (-823))) -(|has| |#1| (-796)) -(|has| |#1| (-796)) -(|has| |#1| (-796)) -(((|#1|) . T)) -(|has| |#1| (-881)) -(|has| |#1| (-991)) -((((-524)) |has| |#1| (-594 (-524))) (((-861 (-535))) |has| |#1| (-594 (-861 (-535)))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371)))) (((-371)) . #1=(|has| |#1| (-991))) (((-219)) . #1#)) -((((-400 (-535))) |has| |#1| . #1=((-1009 (-535)))) (((-535)) |has| |#1| . #1#) (((-1142)) |has| |#1| (-1009 (-1142))) ((|#1|) . T)) -(|has| |#1| (-1117)) -(((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#1|) . T)) -((((-835)) . T)) +(((|#2|) . T)) +(|has| |#2| (-227)) +((((-836)) . T) (((-1149)) . T)) +((((-1144) (-52)) . T)) +((((-836)) . T)) +((((-836)) . T) (((-1149)) . T)) +(((|#1| |#1|) . T)) +((((-1144)) |has| |#2| (-873 (-1144)))) +((((-550) (-112)) . T)) +(|has| |#1| (-542)) +(((|#2|) . T)) +(((|#2|) . T)) (((|#1|) . T)) +(((|#2| |#2|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-381) (-1124)) . T)) -((((-835)) . T)) -((((-400 (-917 |#1|))) . T)) -((((-400 (-917 |#1|))) . T)) -((((-1108 |#2| (-400 (-917 |#1|)))) . T) (((-400 (-917 |#1|))) . T)) -((((-835)) . T)) -((((-400 (-917 |#1|))) . T)) -(((#1=(-400 (-917 |#1|)) #1#) . T)) -((((-400 (-917 |#1|))) . T)) -((((-400 (-917 |#1|))) . T)) -((((-524)) |has| |#2| (-594 (-524))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535))))) -((($) . T)) -(((|#2| |#3|) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#3|) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#1|) . T)) +((((-836)) . T)) +((((-526)) . T) (((-865 (-550))) . T) (((-372)) . T) (((-219)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-972 |#1|)) . T) ((|#1|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-400 (-550))) . T) (((-400 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1140 |#1|)) . T)) +((((-550)) . T) (($) . T) (((-400 (-550))) . T)) +(((|#3|) . T) (($) . T)) +(|has| |#1| (-825)) (((|#2|) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T) (($) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))) ((|#2| |#2|) . T) (($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(((|#2| |#3|) . T)) +((((-550)) . T) (($) . T) (((-400 (-550))) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +((((-550) |#2|) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) (((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535)))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-881))) -((($ $) . T) ((#1=(-836 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-823)) -((((-836 |#1|)) . T)) -(|has| |#2| (-881)) -(|has| |#2| (-881)) -((((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) (((-535)) |has| |#2| (-1009 (-535))) ((|#2|) . T) (((-836 |#1|)) . T)) -(((|#2| |#3| (-836 |#1|)) . T)) -(((|#2| |#2|) . T) ((|#6| |#6|) . T)) -(((|#2|) . T) ((|#6|) . T)) -((((-835)) . T)) -(((|#2|) . T) ((|#6|) . T)) -(((|#2|) . T) ((|#6|) . T)) -(((|#4|) . T)) -((((-618 |#4|)) . T) (((-835)) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4|) . T)) -((((-524)) |has| |#4| (-594 (-524)))) -(((|#1| |#2| |#3| |#4|) . T)) -((((-835)) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -((((-835)) . T)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| (-400 (-535))) . T)) -(((|#1| (-400 (-535))) . T)) +((((-550) |#3|) . T)) +(((|#2|) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +(|has| |#1| (-38 (-400 (-550)))) +((((-836)) . T)) +(|has| |#1| (-1068)) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((#0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) #0#) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(((|#2| |#2|) . T)) +(|has| |#2| (-356)) +(((|#2|) . T) (((-550)) |has| |#2| (-1011 (-550))) (((-400 (-550))) |has| |#2| (-1011 (-400 (-550))))) +(((|#2|) . T)) +((((-1126) (-52)) . T)) +(((|#2|) |has| |#2| (-170))) +((((-550) |#3|) . T)) +((((-550) (-142)) . T)) +((((-142)) . T)) +((((-836)) . T)) +((((-112)) . T)) (|has| |#1| (-145)) +(((|#1|) . T)) (|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1|) . T)) -(((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1| |#1|) . T)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -(((|#1| (-400 (-535)) (-1048)) . T)) -((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) -((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) +((($) . T)) +(|has| |#1| (-542)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((($) . T)) (((|#1|) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) +((((-836)) . T)) +((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) +((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) +((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) +((((-1126) (-52)) . T)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (((|#1| |#2|) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) +((((-550) (-142)) . T)) +(((#0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) #0#) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +((($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(|has| |#1| (-825)) +(((|#2| (-749) (-1050)) . T)) (((|#1| |#2|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-524)) |has| |#4| (-594 (-524)))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-542))) +(|has| |#1| (-769)) +(((|#1|) |has| |#1| (-170))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (((|#4|) . T)) -((((-835)) . T) (((-618 |#4|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-524)) . T) (((-400 (-1136 (-535)))) . T) (((-219)) . T) (((-371)) . T)) -((((-400 (-535))) . T) (((-535)) . T)) -((((-371)) . T) (((-219)) . T) (((-835)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-835)) . T) (((-1147)) . T)) (((|#1| |#2|) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) +(-1561 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| |#2| (-145)))) +(-1561 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))) +(((|#4|) . T)) +(|has| |#1| (-143)) +((((-1126) |#1|) . T)) +(|has| |#1| (-145)) +(((|#1|) . T)) +((((-550)) . T)) +((((-836)) . T)) (((|#1| |#2|) . T)) -((((-524)) |has| |#2| (-594 (-524))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535))))) -((($) . T)) -(((|#2| (-474 (-4299 |#1|) (-747))) . T)) -(((|#2|) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T)) +((((-836)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#3|) . T)) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(((|#1|) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068))) (((-931 |#1|)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(|has| |#2| (-356)) +(((|#1|) |has| |#1| (-170))) +(((|#2|) |has| |#2| (-1020))) +((((-1126) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) +(((|#2| (-866 |#1|)) . T)) +((($) . T)) +((((-381) (-1126)) . T)) +((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-836)) -1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-836))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) (((-1227 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2763 (-1126)) (|:| -2119 #0#))) . T)) +(((|#1|) . T)) +((((-836)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +((((-142)) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T) (($) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))) ((|#2| |#2|) . T) (($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(((|#2| (-474 (-4299 |#1|) (-747))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535)))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-881))) -((($ $) . T) ((#1=(-836 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-823)) -((((-836 |#1|)) . T)) -(|has| |#2| (-881)) -(|has| |#2| (-881)) -((((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) (((-535)) |has| |#2| (-1009 (-535))) ((|#2|) . T) (((-836 |#1|)) . T)) -(((|#2| (-474 (-4299 |#1|) (-747)) (-836 |#1|)) . T)) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) -(((|#2|) |has| |#2| (-170))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -((($) -3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018)))) -(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)))) -((((-835)) -3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-835))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1224 |#2|)) . T)) -(|has| |#2| (-170)) -(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170))) -(((|#2| |#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170))) -(((|#2|) |has| |#2| (-1018))) -((((-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1018))) -(|has| |#2| (-361)) -(((|#2|) |has| |#2| (-1018))) -(((|#2|) |has| |#2| (-1018)) (((-535)) -12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) -(((|#2|) |has| |#2| (-1067))) -(((|#2|) |has| |#2| (-1067)) (((-535)) -12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (((-400 (-535))) -12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) -((((-535) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2|) . T)) -((((-535) |#2|) . T)) -((((-535) |#2|) . T)) -(|has| |#2| (-769)) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -(((|#2|) |has| |#2| (-356))) +(|has| |#1| (-465)) +(-1561 (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020))) +(|has| |#1| (-356)) +((((-836)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) +((($) |has| |#1| (-542))) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-836)) . T)) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542)))) +((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) (((|#1| |#2|) . T)) -((((-835)) . T) (((-1147)) . T)) -(((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) +((((-1144)) |has| |#1| (-873 (-1144)))) +((((-883 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +((((-836)) . T)) +((((-836)) . T)) +(|has| |#1| (-1068)) +(((|#2| (-474 (-3191 |#1|) (-749)) (-838 |#1|)) . T)) +((((-400 (-550))) . #0=(|has| |#2| (-356))) (($) . #0#)) +(((|#1| (-522 (-1144)) (-1144)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) (((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-835)) . T)) +(|has| |#2| (-170)) +(((|#2| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-835)) . T)) -((((-535)) . T)) -((((-535)) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) (((-535)) . T) (((-400 (-535))) . T)) -((((-535)) . T) (($) . T) (((-400 (-535))) . T)) -((((-535)) . T) (((-400 (-535))) . T) (($) . T)) -(((#1=(-535) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-524)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T)) -((((-400 (-535))) . T) (((-535)) . T)) -((((-535)) . T)) -((((-1124)) . T) (((-835)) . T)) -((((-166 (-371))) . T) (((-219)) . T) (((-371)) . T)) -((((-400 (-535))) . T) (((-535)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($) . T) (((-400 (-535))) . T)) -((($) . T) (((-400 (-535))) . T)) -((((-400 (-535))) . T) (($) . T)) -(((#1=(-400 (-535)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-591 $) $) . T)) -((((-835)) . T)) -((((-400 (-535))) . T) (((-535)) . T) (((-591 $)) . T)) -(((|#1|) . T)) -(|has| |#1| (-823)) -(((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) (((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-535) (-112)) . T)) -((((-535) (-112)) . T)) -((((-535) (-112)) . T)) -((((-524)) . T)) -((((-112)) . T)) -((((-835)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-1142)) . T) (((-835)) . T) (((-1147)) . T)) -(((|#1| |#2|) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#1|) . T)) +(((|#2|) . T)) +(((|#1|) . T) (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) . T)) +((((-1142 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-1144) (-52)) . T)) +((($ $) . T)) +(((|#1| (-550)) . T)) +((((-883 |#1|)) . T)) +(((|#1|) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1020))) (($) -1561 (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020)))) +(((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-550) |#2|) . T)) +((((-550)) . T)) +((((-1219 |#1| |#2| |#3|)) -12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) +(|has| |#1| (-825)) +((((-667 |#2|)) . T) (((-836)) . T)) (((|#1| |#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) +((((-400 (-925 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#1|) |has| |#1| (-170))) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)))) +(|has| |#2| (-825)) +(|has| |#1| (-825)) +(-1561 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-882))) +((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +((((-550) |#2|) . T)) +(((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)))) +(|has| |#1| (-342)) +(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) +((($) . T) (((-400 (-550))) . T)) +((((-550) (-112)) . T)) +(|has| |#1| (-798)) +(|has| |#1| (-798)) +(((|#1|) . T)) +(-1561 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342))) +(|has| |#1| (-823)) (|has| |#1| (-823)) +(|has| |#1| (-823)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(|has| |#1| (-38 (-400 (-550)))) +((((-550)) . T) (($) . T) (((-400 (-550))) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +(|has| |#1| (-38 (-400 (-550)))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-1144)) |has| |#1| (-873 (-1144))) (((-1050)) . T)) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-563 |#1|)) . T)) -((((-563 |#1|)) . T)) -((((-563 |#1|)) . T)) -((((-563 |#1|)) . T) (($) . T) (((-400 (-535))) . T)) -(((#1=(-563 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-535)) #2#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-563 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -((((-563 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) -(|has| $ (-145)) -((((-563 |#1|)) . T)) +(|has| |#1| (-823)) +(((#0=(-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) #0#) |has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(|has| |#1| (-1068)) +((((-836)) . T) (((-1149)) . T)) (((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1| |#4| |#5|) . T)) +(((|#2| |#2|) . T)) (((|#1|) . T)) +(((|#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) . T)) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) +(((|#3| |#3|) . T)) +(((|#2|) . T)) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) +(((|#1| (-522 |#2|) |#2|) . T)) +((((-836)) . T)) +((((-749)) . T) (((-836)) . T)) +(((|#1| (-749) (-1050)) . T)) +(((|#3|) . T)) (((|#1|) . T)) +((((-142)) . T)) +(((|#2|) |has| |#2| (-170))) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) (((|#1|) . T)) -(|has| |#1| (-823)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#3| (-170)) +(((|#4|) |has| |#4| (-356))) +(((|#3|) |has| |#3| (-356))) (((|#1|) . T)) +(((|#2|) |has| |#1| (-356))) +((((-836)) . T)) +(((|#2|) . T)) +(((|#1| (-1140 |#1|)) . T)) +((((-1050)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +((($) . T) ((|#1|) . T) (((-400 (-550))) . T)) +(((|#2|) . T)) +((((-1142 |#1| |#2| |#3|)) |has| |#1| (-356))) +((($) |has| |#1| (-823))) +(|has| |#1| (-882)) +((((-836)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (((|#1|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((#0=(-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) #0#) |has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))))) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-882))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-882))) +(((|#1|) . T) (($) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +(((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) (((|#1|) . T)) -(((|#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-747) |#1|) . T)) -((((-835)) . T)) -((((-1069)) . T)) -((((-835)) . T)) -((((-1124) (-1142) (-535) (-219) (-835)) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-1124)) . T) (((-524)) . T) (((-535)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T)) -((((-535)) . T)) -(((|#1| |#2|) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#1| |#2|) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) +(((|#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)))) +(|has| |#1| (-825)) +(|has| |#1| (-542)) +((((-565 |#1|)) . T)) ((($) . T)) -((((-535)) . T)) +(((|#2|) . T)) +(-1561 (-12 (|has| |#1| (-356)) (|has| |#2| (-798))) (-12 (|has| |#1| (-356)) (|has| |#2| (-825)))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +((((-883 |#1|)) . T)) +(((|#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) . T)) +(((|#1| |#4| |#5|) . T)) +(((|#1| (-749)) . T)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1142 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542)))) +((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) . T)) +((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) +((((-650 |#1|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-526)) . T)) +((((-836)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-836)) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#2|) . T)) +(-1561 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1020)) (|has| |#3| (-1068))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +((((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T)) +(|has| |#1| (-1166)) +(|has| |#1| (-1166)) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) +(|has| |#1| (-1166)) +(|has| |#1| (-1166)) +(((|#3| |#3|) . T)) +((((-550)) . T) (($) . T) (((-400 (-550))) . T)) +((($) . T) (((-400 (-550))) . T) (((-400 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#0=(-400 (-550)) #0#) . T) ((#1=(-400 |#1|) #1#) . T) ((|#1| |#1|) . T)) +(((|#3|) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +((((-1126) (-52)) . T)) +(|has| |#1| (-1068)) +(-1561 (|has| |#2| (-798)) (|has| |#2| (-825))) (((|#1|) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) (((-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) ((($) . T)) -((((-835)) . T)) +((((-1142 |#1| |#2| |#3|)) -12 (|has| (-1142 |#1| |#2| |#3|) (-302 (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356)))) +((((-836)) . T)) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) ((($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +((((-836)) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(|has| |#2| (-882)) +(|has| |#1| (-356)) +(((|#2|) |has| |#2| (-1068))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-882))) +((($) . T) ((|#2|) . T)) +((((-526)) . T) (((-400 (-1140 (-550)))) . T) (((-219)) . T) (((-372)) . T)) +((((-372)) . T) (((-219)) . T) (((-836)) . T)) +(|has| |#1| (-882)) +(|has| |#1| (-882)) +(|has| |#1| (-882)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) ((($ $) . T)) -((($) . T)) -((($) . T)) -(((|#1|) . T)) -((((-535)) . T)) -((($) . T)) -((($) . T)) -((($) . T)) -(|has| $ (-145)) -((($) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($) . T) (((-400 (-535))) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) -(((|#1|) . T)) -(((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T)) -((((-835)) . T)) -((((-400 (-535))) . T)) -((((-400 (-535))) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-535) (-142)) . T)) -((((-535) (-142)) . T)) -((((-535) (-142)) . T)) -((((-142)) . T)) -((((-835)) . T)) -((((-142)) . T)) -((((-142)) . T)) -(|has| |#1| (-15 * (|#1| (-535) |#1|))) -((((-835)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) ((($ $) . T)) -((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) -(((|#1| (-535) (-1048)) . T)) -((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-542))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542)))) -(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542)))) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -(((|#1| (-535)) . T)) -(((|#1| (-535)) . T)) -((($) |has| |#1| (-542))) -((($ $) |has| |#1| (-542))) -((($) |has| |#1| (-542))) -((($) |has| |#1| (-542))) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) +((((-550) (-112)) . T)) ((($) . T)) -((((-835)) . T)) -((((-835)) . T)) (((|#1|) . T)) +((((-550)) . T)) +((((-112)) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#1| (-550)) . T)) +((($) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) +((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) (((|#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -(((|#1|) . T)) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) +((((-550)) . T)) +(((|#1| |#2|) . T)) +((((-1144)) |has| |#1| (-1020))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) (((|#1|) . T)) -(|has| |#1| (-823)) +((((-836)) . T)) +(((|#1| (-550)) . T)) +(((|#1| (-1219 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) +(((|#1| (-400 (-550))) . T)) +(((|#1| (-1191 |#1| |#2| |#3|)) . T)) +(((|#1| (-749)) . T)) (((|#1|) . T)) -((((-128)) . T) (((-835)) . T)) -((((-1179)) . T) (((-835)) . T) (((-1147)) . T)) -(((|#1|) -3874 (|has| |#2| (-360 |#1|)) (|has| |#2| (-411 |#1|)))) -(((|#1|) |has| |#2| (-411 |#1|))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-836)) . T)) +(|has| |#1| (-1068)) +((((-1126) |#1|) . T)) +((($) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-143)) +(((|#1| (-522 (-796 (-1144))) (-796 (-1144))) . T)) +((((-836)) . T)) +((((-1213 |#1| |#2| |#3| |#4|)) . T)) +((((-1213 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1020))) +((((-550) (-112)) . T)) +((((-836)) |has| |#1| (-1068))) +(|has| |#2| (-170)) +((((-550)) . T)) +(|has| |#2| (-823)) (((|#1|) . T)) +((((-550)) . T)) +((((-836)) . T)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-342))) +(|has| |#1| (-145)) +((((-836)) . T)) +(((|#3|) . T)) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +((((-836)) . T)) +((((-1212 |#2| |#3| |#4|)) . T) (((-1213 |#1| |#2| |#3| |#4|)) . T)) +((((-836)) . T)) +((((-48)) -12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550)))) (((-594 $)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) -1561 (-12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550)))) (|has| |#1| (-1011 (-400 (-550))))) (((-400 (-925 |#1|))) |has| |#1| (-542)) (((-925 |#1|)) |has| |#1| (-1020)) (((-1144)) . T)) +(((|#1|) . T) (($) . T)) +(((|#1| (-749)) . T)) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-302 |#1|))) +((((-1213 |#1| |#2| |#3| |#4|)) . T)) +((((-550)) |has| |#1| (-859 (-550))) (((-372)) |has| |#1| (-859 (-372)))) (((|#1|) . T)) -(((|#2|) . T) (((-835)) . T)) +(|has| |#1| (-542)) (((|#1|) . T)) -(((|#1| |#1|) . T)) +((((-836)) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(((|#1|) |has| |#1| (-170))) +((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (((|#1|) . T)) -((((-1124) |#1|) . T)) -((((-1124) |#1|) . T)) -((((-1124) |#1|) . T)) -((((-1124) |#1|) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((#1=(-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) #1#) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))))) -((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -((((-1124) |#1|) . T)) -((((-835)) . T)) -((((-381) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -((((-524)) |has| |#1| (-594 (-524))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#1| (-594 (-861 (-535))))) -(((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(((|#2|) . T)) -((((-835)) . T)) -(((|#2|) . T)) -(((|#2| |#2|) . T)) -(((|#2|) . T) (($) . T)) +(((|#3|) |has| |#3| (-1068))) +(((|#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-356)))) +((((-1212 |#2| |#3| |#4|)) . T)) +((((-112)) . T)) +(|has| |#1| (-798)) +(|has| |#1| (-798)) +(((|#1| (-550) (-1050)) . T)) +((($) |has| |#1| (-302 $)) ((|#1|) |has| |#1| (-302 |#1|))) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(((|#1| (-550) (-1050)) . T)) +(-1561 (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(((|#1| (-400 (-550)) (-1050)) . T)) +(((|#1| (-749) (-1050)) . T)) +(|has| |#1| (-825)) +(((#0=(-883 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-550)) #1#) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) (((|#2|) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(((|#2|) . T) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -((((-400 |#2|)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -(|has| |#2| (-227)) -((($) . T)) -((((-835)) . T)) -((((-1142)) |has| |#2| (-871 (-1142)))) -(((|#2|) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T)) -((((-1124) (-51)) . T)) -((((-835)) . T)) -((((-1124) (-51)) . T)) -((((-1124) (-51)) . T)) -((((-1124) (-51)) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4203 (-1124)) (|:| -2184 #1#))) . T)) -(((#1=(-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) #1#) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))))) -((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))))) -((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) . T)) -((((-1124) (-51)) . T)) -(((|#1|) -3874 (|has| |#2| (-360 |#1|)) (|has| |#2| (-411 |#1|)))) -(((|#1|) |has| |#2| (-411 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-835)) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-797)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) +(|has| |#1| (-1068)) +((((-883 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) +(|has| |#1| (-1068)) (((|#1|) . T)) +(|has| |#1| (-1068)) +((((-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-619 (-550)))) ((|#2|) |has| |#1| (-356))) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) +(((|#2|) |has| |#2| (-170))) +(((|#1|) |has| |#1| (-170))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +((((-836)) . T)) +(|has| |#3| (-823)) +((((-836)) . T)) +((((-1212 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) +((((-836)) . T)) +(((|#1| |#1|) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1020)))) +(((|#1|) . T)) +((((-550)) . T)) +((((-550)) . T)) +(((|#1|) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1020)))) +(((|#2|) |has| |#2| (-356))) +((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-356))) +(|has| |#1| (-825)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) |has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-882))) +(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-526)) . T) (((-550)) . T) (((-865 (-550))) . T) (((-372)) . T) (((-219)) . T)) +((((-836)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +((((-550)) . T) (($) . T) (((-400 (-550))) . T)) +((((-550)) . T) (($) . T) (((-400 (-550))) . T)) +(|has| |#1| (-227)) (((|#1|) . T)) +(((|#1| (-550)) . T)) (|has| |#1| (-823)) +(((|#1| (-1142 |#1| |#2| |#3|)) . T)) +(((|#1| |#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| (-400 (-550))) . T)) +(((|#1| (-1135 |#1| |#2| |#3|)) . T)) +(((|#1| (-749)) . T)) (((|#1|) . T)) +(((|#1| |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-835)) . T) (((-1147)) . T)) -(((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-835)) . T)) -(|has| |#1| (-767)) -(|has| |#1| (-767)) -(|has| |#1| (-767)) -(|has| |#1| (-767)) -(|has| |#1| (-767)) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-835)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T)) -((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(((|#1| |#2|) . T)) +((((-129)) . T)) +((((-142)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#1|) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) . T) (($ $) . T)) +((((-836)) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| (-400 |#2|) (-227)) +(|has| |#1| (-882)) +(((|#2|) |has| |#2| (-1020))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(|has| |#1| (-356)) (((|#1|) |has| |#1| (-170))) -((((-835)) . T)) -(((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) |has| |#1| (-170))) +((((-843 |#1|)) . T)) +((((-836)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) +(((|#2|) |has| |#2| (-1068))) +(|has| |#2| (-825)) (((|#1|) . T)) -((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T)) +((((-400 (-550))) . T) (((-550)) . T) (((-594 $)) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -((((-835)) . T)) +((((-836)) . T)) +((($) . T)) +(|has| |#1| (-825)) +((((-836)) . T)) +(((|#1| (-522 |#2|) |#2|) . T)) +(((|#1| (-550) (-1050)) . T)) +((((-883 |#1|)) . T)) +((((-836)) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) +(((|#1| (-400 (-550)) (-1050)) . T)) +(((|#1| (-749) (-1050)) . T)) +(((#0=(-400 |#2|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-550)) -1561 (|has| (-400 (-550)) (-1011 (-550))) (|has| |#1| (-1011 (-550)))) (((-400 (-550))) . T)) +(((|#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -(((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T)) (((|#1|) . T)) +((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) +(|has| |#2| (-227)) +(((|#2| (-522 (-838 |#1|)) (-838 |#1|)) . T)) +((((-836)) . T)) +((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-836)) . T)) +(((|#1| |#3|) . T)) +((((-836)) . T)) (((|#1|) |has| |#1| (-170))) -((((-835)) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) +((((-677)) . T)) +((((-677)) . T)) +(((|#2|) |has| |#2| (-170))) +(|has| |#2| (-823)) +((((-112)) |has| |#1| (-1068)) (((-836)) -1561 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020)) (|has| |#1| (-1080)) (|has| |#1| (-1068)))) (((|#1|) . T) (($) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -((((-648 |#1|)) . T)) -(((|#2| (-648 |#1|)) . T)) -(((|#2|) . T)) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-835)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) (((|#1| |#2|) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) . T)) +((((-836)) . T)) +((((-550) |#1|) . T)) +((((-677)) . T) (((-400 (-550))) . T) (((-550)) . T)) +(((|#1| |#1|) |has| |#1| (-170))) (((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4338 "*")))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +((((-372)) . T)) +((((-677)) . T)) +((((-400 (-550))) . #0=(|has| |#2| (-356))) (($) . #0#)) +(((|#1|) |has| |#1| (-170))) +((((-400 (-925 |#1|))) . T)) (((|#2| |#2|) . T)) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) (((|#2|) . T)) -((((-665 |#2|)) . T) (((-835)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-1142)) |has| |#2| (-871 (-1142)))) -(|has| |#2| (-227)) +(|has| |#2| (-825)) +(((|#3|) |has| |#3| (-1020))) +(|has| |#2| (-882)) +(|has| |#1| (-882)) +(|has| |#1| (-356)) +(|has| |#1| (-825)) +((((-1144)) |has| |#2| (-873 (-1144)))) +((((-836)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-400 (-550))) . T) (($) . T)) +(|has| |#1| (-465)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-356)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-542)) (|has| |#1| (-1020)) (|has| |#1| (-1080))) +(|has| |#1| (-38 (-400 (-550)))) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +(|has| |#1| (-342)) +((((-142)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +((($) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#2|) . T) (((-836)) . T)) +(((|#2|) . T) (((-836)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-825)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) ((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535)))) -(((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-1009 (-535))) (((-400 (-535))) |has| |#2| (-1009 (-400 (-535))))) -(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2|) . T)) -(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) -((((-835)) . T) (((-1147)) . T)) -(((|#1|) . T)) -((((-835)) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1|) . T)) -((((-835)) . T) (((-1147)) . T)) -(((|#1|) . T)) -((((-835)) . T)) -((((-1179)) . T) (((-835)) . T) (((-1147)) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -(((|#1| (-1224 |#1|) (-1224 |#1|)) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1|) . T)) -(((|#1| (-1224 |#1|) (-1224 |#1|)) . T)) -((((-835)) . T)) -((((-675)) . T)) -((((-675)) . T)) -((((-675)) . T)) -((((-675)) . T)) -((((-675)) . T)) -((((-371)) . T)) -((((-675)) . T)) -(((#1=(-675) (-1136 #1#)) . T)) -(((#1=(-675) (-1136 #1#)) . T)) -(((#1=(-675) (-1136 #1#)) . T)) -((((-675)) . T)) -((((-166 (-219))) . T) (((-166 (-371))) . T) (((-1136 (-675))) . T) (((-861 (-371))) . T)) -((((-675)) . T)) -((((-400 (-535))) . T) (((-675)) . T) (($) . T)) -((((-400 (-535))) . T) (((-675)) . T) (($) . T)) -((((-835)) . T)) -((((-400 (-535))) . T) (((-675)) . T) (($) . T)) -(((#1=(-400 (-535)) #1#) . T) ((#2=(-675) #2#) . T) (($ $) . T)) -((((-400 (-535))) . T) (((-675)) . T) (($) . T)) -((((-675)) . T) (((-400 (-535))) . T) (((-535)) . T)) -((((-371)) . T) (((-535)) . T) (((-400 (-535))) . T)) -((((-371)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-219)) . T) (((-371)) . T) (((-861 (-371))) . T)) -((((-835)) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-524)) . T) (((-535)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T)) -((($) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((((-535)) . T)) -(((|#1|) . T) (((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) +(((|#3|) . T)) +((((-116 |#1|)) . T)) (|has| |#1| (-361)) +(|has| |#1| (-825)) +(((|#2|) . T) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T)) +((((-116 |#1|)) . T)) +(((|#2|) |has| |#2| (-170))) (((|#1|) . T)) -((((-835)) . T)) -((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) +((((-550)) . T)) (|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) (|has| |#1| (-356)) -(((|#1| (-747) (-1048)) . T)) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T)) -(|has| |#1| (-823)) -((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-747)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-526)) |has| |#1| (-596 (-526))) (((-865 (-550))) |has| |#1| (-596 (-865 (-550)))) (((-865 (-372))) |has| |#1| (-596 (-865 (-372)))) (((-372)) . #0=(|has| |#1| (-995))) (((-219)) . #0#)) +(((|#1|) |has| |#1| (-356))) +((((-836)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((($ $) . T) (((-594 $) $) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +((($) . T) (((-1213 |#1| |#2| |#3| |#4|)) . T) (((-400 (-550))) . T)) +((($) -1561 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1020))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-542))) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +((((-372)) . T) (((-550)) . T) (((-400 (-550))) . T)) +((((-623 (-758 |#1| (-838 |#2|)))) . T) (((-836)) . T)) +((((-526)) |has| (-758 |#1| (-838 |#2|)) (-596 (-526)))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-372)) . T)) +(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) +((((-836)) . T)) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-882))) +(((|#1|) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +(|has| |#1| (-1068)) +((((-836)) . T)) +((((-1144)) . T) (((-836)) . T) (((-1149)) . T)) +((((-400 (-550))) . T) (((-550)) . T) (((-594 $)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +((((-550)) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(((#0=(-1212 |#2| |#3| |#4|)) . T) (((-400 (-550))) |has| #0# (-38 (-400 (-550)))) (($) . T)) +((((-550)) . T)) +(|has| |#1| (-356)) +(-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-145)) (|has| |#1| (-356))) (|has| |#1| (-145))) +(-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))) +(|has| |#1| (-356)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) +(|has| |#1| (-227)) +(|has| |#1| (-356)) +(((|#3|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-550)) |has| |#2| (-619 (-550))) ((|#2|) . T)) +(((|#2|) . T)) +(|has| |#1| (-1068)) +(((|#1| |#2|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) +(((|#3|) |has| |#3| (-170))) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) +((((-836)) . T)) +((((-550)) . T)) +(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((((-400 (-550))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) +((((-836)) . T)) +(((|#3|) . T)) +(((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-283)) (|has| |#1| (-356))) ((#0=(-400 (-550)) #0#) |has| |#1| (-356))) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) . T)) +((($) . T)) +((((-550) |#1|) . T)) +((((-1144)) |has| (-400 |#2|) (-873 (-1144)))) +(((|#1|) . T) (($) -1561 (|has| |#1| (-283)) (|has| |#1| (-356))) (((-400 (-550))) |has| |#1| (-356))) +((((-526)) |has| |#2| (-596 (-526)))) +((((-667 |#2|)) . T) (((-836)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +((((-843 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(-1561 (|has| |#4| (-771)) (|has| |#4| (-823))) +(-1561 (|has| |#3| (-771)) (|has| |#3| (-823))) +((((-836)) . T)) +((((-836)) . T)) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#2|) |has| |#2| (-1020))) +(((|#1|) . T)) +((((-400 |#2|)) . T)) (((|#1|) . T)) -((((-1048)) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) -(((|#1| (-747)) . T)) -(((#1=(-1048) |#1|) . T) ((#1# $) . T) (($ $) . T)) +(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) +((((-550) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-550)) . T) (($) . T) (((-400 (-550))) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-400 (-550))) . T) (($) . T)) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-1185))) +((($) . T)) +((((-400 (-550))) |has| #0=(-400 |#2|) (-1011 (-400 (-550)))) (((-550)) |has| #0# (-1011 (-550))) ((#0#) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) +(((|#1| (-749)) . T)) +(|has| |#1| (-825)) +(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) (((-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) +((((-550)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +((((-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) |has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(|has| |#1| (-823)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-342)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#1| |#2|) . T)) +((((-142)) . T)) +((((-758 |#1| (-838 |#2|))) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(|has| |#1| (-1166)) +((((-836)) . T)) +(((|#1|) . T)) +(-1561 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1020)) (|has| |#3| (-1068))) +((((-1144) |#1|) |has| |#1| (-505 (-1144) |#1|))) +(((|#2|) . T)) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-883 |#1|)) . T)) ((($) . T)) -(|has| |#1| (-1117)) +((((-400 (-925 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-526)) |has| |#4| (-596 (-526)))) +((((-836)) . T) (((-623 |#4|)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) (((|#1|) . T)) -((((-835)) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) +(|has| |#1| (-823)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) |has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))))) +(|has| |#1| (-1068)) +(|has| |#1| (-356)) +(|has| |#1| (-825)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-400 (-550))) . T)) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) (|has| |#1| (-143)) (|has| |#1| (-145)) -(((|#2| |#2|) . T)) -((((-113)) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((((-835)) . T)) -((($) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-524)) |has| |#2| (-594 (-524))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535))))) -((($) . T)) -(((|#2| (-521 (-836 |#1|))) . T)) -(((|#2|) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T)) +(-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-145)) (|has| |#1| (-356))) (|has| |#1| (-145))) +(-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +(|has| |#1| (-823)) +(((|#1| |#2|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) +((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) +((((-883 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +(|has| |#1| (-1068)) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T) (((-550)) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T) (($) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))) ((|#2| |#2|) . T) (($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))) -(((|#2| (-521 (-836 |#1|))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535)))) -(-3874 (|has| |#2| (-444)) (|has| |#2| (-881))) -((($ $) . T) ((#1=(-836 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-823)) -((((-836 |#1|)) . T)) -(|has| |#2| (-881)) -(|has| |#2| (-881)) -((((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) (((-535)) |has| |#2| (-1009 (-535))) ((|#2|) . T) (((-836 |#1|)) . T)) -(((|#2| (-521 (-836 |#1|)) (-836 |#1|)) . T)) -(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) |has| |#1| (-170))) +((((-883 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +(|has| |#1| (-1068)) +(((|#2|) |has| |#2| (-170))) +(((|#2|) . T)) +(((|#1| |#1|) . T)) +(((|#3|) |has| |#3| (-356))) +((((-400 |#2|)) . T)) +((((-836)) . T)) +(((|#1|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-526)) |has| |#1| (-596 (-526)))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(((|#1|) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)))) +((((-309 |#1|)) . T)) +(((|#2|) |has| |#2| (-356))) +(((|#2|) . T)) +((((-400 (-550))) . T) (((-677)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((#0=(-758 |#1| (-838 |#2|)) #0#) |has| (-758 |#1| (-838 |#2|)) (-302 (-758 |#1| (-838 |#2|))))) +((((-838 |#1|)) . T)) +(((|#2|) |has| |#2| (-170))) (((|#1|) |has| |#1| (-170))) +(((|#2|) . T)) +((((-1144)) |has| |#1| (-873 (-1144))) (((-1050)) . T)) +((((-1144)) |has| |#1| (-873 (-1144))) (((-1056 (-1144))) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#4|) |has| |#4| (-1020)) (((-550)) -12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020)))) +(((|#3|) |has| |#3| (-1020)) (((-550)) -12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020)))) (|has| |#1| (-143)) (|has| |#1| (-145)) -(((|#1|) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((((-835)) . T)) +((($ $) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020)) (|has| |#1| (-1080)) (|has| |#1| (-1068))) +(|has| |#1| (-542)) +(((|#2|) . T)) +((((-550)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) (((|#1|) . T)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1020))) +((((-565 |#1|)) . T)) +((($) . T)) +(((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) -((((-835)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (((|#1|) . T)) +((($) . T)) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) +((((-836)) . T)) +(((|#2|) |has| |#2| (-6 (-4344 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#1| (-521 |#2|) |#2|) . T)) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#2| (-857 (-535)))) (((-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#2| (-857 (-371))))) -(((|#2|) . T)) -(|has| |#1| (-823)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-881))) -((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-521 |#2|)) . T)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((((-1091 |#1| |#2|)) . T) (((-917 |#1|)) |has| |#2| (-594 (-1142))) (((-835)) . T)) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T)) -((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T)) -((((-1091 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) -(((|#1| (-521 |#2|)) . T)) -(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) +((((-400 (-550))) |has| |#2| (-1011 (-400 (-550)))) (((-550)) |has| |#2| (-1011 (-550))) ((|#2|) . T) (((-838 |#1|)) . T)) +((($) . T) (((-116 |#1|)) . T) (((-400 (-550))) . T)) +((((-1093 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +((((-1140 |#1|)) . T) (((-1050)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +((((-1093 |#1| (-1144))) . T) (((-1056 (-1144))) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-1144)) . T)) +(|has| |#1| (-1068)) ((($) . T)) -((((-917 |#1|)) |has| |#2| (-594 (-1142))) (((-1124)) -12 (|has| |#1| (-1009 (-535))) (|has| |#2| (-594 (-1142)))) (((-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535))))) (((-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371))))) (((-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#2| (-594 (-524))))) -(((|#1| (-521 |#2|) |#2|) . T)) -(((|#1|) . T)) -((((-1136 |#1|)) . T) (((-835)) . T)) -((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) +(|has| |#1| (-1068)) +((((-550)) -12 (|has| |#1| (-859 (-550))) (|has| |#2| (-859 (-550)))) (((-372)) -12 (|has| |#1| (-859 (-372))) (|has| |#2| (-859 (-372))))) +(((|#1| |#2|) . T)) +((((-1144) |#1|) . T)) +(((|#4|) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +((((-1144) (-52)) . T)) +((((-1212 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) +((((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T)) +((((-836)) . T)) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020)) (|has| |#2| (-1068))) +(((#0=(-1213 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-170)) ((#0=(-400 (-550)) #0#) |has| |#1| (-542)) (($ $) |has| |#1| (-542))) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((((-1213 |#1| |#2| |#3| |#4|)) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-542)) (($) |has| |#1| (-542))) (|has| |#1| (-356)) -(((|#1| (-747) (-1048)) . T)) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T)) -(|has| |#1| (-823)) -((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-747)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T)) -((((-1136 |#1|)) . T) (((-1048)) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) -(((|#1| (-747)) . T)) -(((#1=(-1048) |#1|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1117)) -(((|#1|) . T)) +((((-400 (-550))) . T) (($) . T)) +(((|#3|) |has| |#3| (-356))) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +((((-1144)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +(((|#2| |#3|) . T)) +(-1561 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(((|#1| (-522 |#2|)) . T)) +(((|#1| (-749)) . T)) +(((|#1| (-522 (-1056 (-1144)))) . T)) +(((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -((((-835)) . T)) -((($) . T) ((|#1|) . T)) +(|has| |#2| (-882)) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +((((-836)) . T)) +((($ $) . T) ((#0=(-1212 |#2| |#3| |#4|) #0#) . T) ((#1=(-400 (-550)) #1#) |has| #0# (-38 (-400 (-550))))) +((((-883 |#1|)) . T)) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +((($) . T) (((-400 (-550))) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-356)) +(-1561 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-542))) +(|has| |#1| (-356)) +((($) . T) ((#0=(-1212 |#2| |#3| |#4|)) . T) (((-400 (-550))) |has| #0# (-38 (-400 (-550))))) +(((|#1| |#2|) . T)) +((((-1142 |#1| |#2| |#3|)) |has| |#1| (-356))) +(-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356)) (|has| |#1| (-342))) +(-1561 (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020))) +((((-550)) |has| |#1| (-619 (-550))) ((|#1|) . T)) +(((|#1| |#2|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-112)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|))) . T)) +(|has| |#2| (-356)) +(|has| |#1| (-825)) (((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -((((-524)) |has| |#1| (-594 (-524)))) -(|has| |#1| (-361)) (((|#1|) . T)) -((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(((|#1|) |has| |#1| (-302 |#1|))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -((((-967 |#1|)) . T) ((|#1|) . T)) -((((-967 |#1|)) . T) ((|#1|) . T) (((-535)) -3874 (|has| |#1| (-1009 (-535))) (|has| (-967 |#1|) (-1009 (-535)))) (((-400 (-535))) -3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| (-967 |#1|) (-1009 (-400 (-535)))))) -(|has| |#1| (-823)) (((|#1|) . T)) -((((-835)) . T)) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) -(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) +((((-836)) . T)) +(|has| |#1| (-1068)) +(((|#4|) . T)) +(((|#4|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-798)) +(((|#4|) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((((-836)) . T)) +(((|#1| (-522 (-1144))) . T)) +(((|#1|) |has| |#1| (-170))) +((((-836)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#2|) -1561 (|has| |#2| (-6 (-4344 "*"))) (|has| |#2| (-170)))) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(|has| |#2| (-825)) +(|has| |#2| (-882)) +(|has| |#1| (-882)) (((|#2|) |has| |#2| (-170))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018))) -((($) -3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018)))) -(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)))) -((((-835)) -3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-835))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1224 |#2|)) . T)) -(|has| |#2| (-170)) -(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170))) -(((|#2| |#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170))) -(((|#2|) |has| |#2| (-1018))) -((((-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1018))) -(|has| |#2| (-361)) -(((|#2|) |has| |#2| (-1018))) -(((|#2|) |has| |#2| (-1018)) (((-535)) -12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) -(((|#2|) |has| |#2| (-1067))) -(((|#2|) |has| |#2| (-1067)) (((-535)) -12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (((-400 (-535))) -12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) -((((-535) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2|) . T)) -((((-535) |#2|) . T)) -((((-535) |#2|) . T)) -(|has| |#2| (-769)) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(-3874 (|has| |#2| (-769)) (|has| |#2| (-821))) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -(((|#2|) |has| |#2| (-356))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-836)) . T)) +((((-836)) . T)) +((((-526)) . T) (((-550)) . T) (((-865 (-550))) . T) (((-372)) . T) (((-219)) . T)) (((|#1| |#2|) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) . T)) (((|#1|) . T)) -((((-835)) . T)) -(|has| |#1| (-227)) -((($) . T)) -(((|#1| (-521 (-794 (-1142))) (-794 (-1142))) . T)) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-1142)) |has| |#1| (-871 (-1142))) (((-794 (-1142))) . T)) +((((-836)) . T)) +(((|#1| |#2|) . T)) +(((|#1| (-400 (-550))) . T)) +(((|#1|) . T)) +(-1561 (|has| |#1| (-283)) (|has| |#1| (-356))) +((((-142)) . T)) +((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) (|has| |#1| (-823)) -((($ $) . T) ((#1=(-1142) $) |has| |#1| . #2=((-227))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-794 (-1142)) |#1|) . T) ((#3# $) . T)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-881))) -((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-521 (-794 (-1142)))) . T)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T)) -(((|#1| (-521 (-794 (-1142)))) . T)) -((((-1091 |#1| (-1142))) . T) (((-794 (-1142))) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-1142)) . T)) -(((|#1| (-1142) (-794 (-1142)) (-521 (-794 (-1142)))) . T)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -((((-400 (-535))) . #1=(|has| |#2| (-356))) (($) . #1#)) -((((-400 (-535))) . #1=(|has| |#2| (-356))) (($) . #1#)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -((((-400 (-535))) |has| |#2| (-356)) (($) . T)) -((((-835)) . T)) -((((-400 (-535))) |has| |#2| (-356)) (($) . T)) -(((#1=(-400 (-535)) #1#) |has| |#2| (-356)) (($ $) . T)) -((((-835)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -(|has| |#1| (-227)) -(((|#2|) |has| |#2| (-170))) -(((|#2| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(((|#2| |#2|) . T) ((|#1| |#1|) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-526)) |has| |#1| (-596 (-526))) (((-865 (-550))) |has| |#1| (-596 (-865 (-550)))) (((-865 (-372))) |has| |#1| (-596 (-865 (-372))))) +((((-1144) (-52)) . T)) (((|#2|) . T)) -((((-835)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-170))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-836)) . T)) +((((-623 (-142))) . T) (((-1126)) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +((((-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(|has| |#1| (-825)) +((((-836)) . T)) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) . T)) +(((|#2|) |has| |#2| (-356))) +((((-836)) . T)) +((((-526)) |has| |#4| (-596 (-526)))) +((((-836)) . T) (((-623 |#4|)) . T)) (((|#2|) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((($) |has| |#1| (-821))) -(|has| |#1| (-821)) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-821))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-821))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-821))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-821))) -((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -((((-835)) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(((|#1| |#1|) . T)) -((((-113)) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((((-835)) . T)) -((((-835)) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((($) |has| |#1| (-821))) -(|has| |#1| (-821)) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-821))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-821))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-821))) -(-3874 (|has| |#1| (-21)) (|has| |#1| (-821))) -((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -((((-835)) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) . T)) +((((-883 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +(-1561 (|has| |#4| (-170)) (|has| |#4| (-705)) (|has| |#4| (-823)) (|has| |#4| (-1020))) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +((((-1144) (-52)) . T)) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) (((|#1|) . T)) -((((-835)) . T)) -((($) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-835)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-170))) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(|has| |#1| (-882)) +(|has| |#1| (-882)) (((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-1009 (-535))) (((-400 (-535))) |has| |#2| (-1009 (-400 (-535))))) +(((|#1|) . T)) +((((-836)) . T)) +((((-550)) . T)) +(((#0=(-400 (-550)) #0#) . T) (($ $) . T)) +((((-400 (-550))) . T) (($) . T)) +(((|#1| (-400 (-550)) (-1050)) . T)) +(|has| |#1| (-1068)) +(|has| |#1| (-542)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(|has| |#1| (-798)) +(((#0=(-883 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-550)) #1#) . T)) +((((-400 |#2|)) . T)) +(|has| |#1| (-823)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) . T) ((#1=(-550) #1#) . T) (($ $) . T)) +((((-883 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) +(((|#2|) |has| |#2| (-1020)) (((-550)) -12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) +(((|#1|) . T) (((-400 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) (((|#2|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-861 (-535))) . T) (((-861 (-371))) . T) (((-524)) . T) (((-1142)) . T)) -((((-835)) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((((-835)) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) +((((-836)) . T)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2763 (-1144)) (|:| -2119 #0#))) . T)) +(|has| |#1| (-342)) +((((-550)) . T)) +((((-836)) . T)) +(((#0=(-1213 |#1| |#2| |#3| |#4|) $) |has| #0# (-279 #0# #0#))) +(|has| |#1| (-356)) +(((#0=(-1050) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +(((#0=(-400 (-550)) #0#) . T) ((#1=(-677) #1#) . T) (($ $) . T)) +((((-309 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) |has| |#1| (-356))) +(|has| |#1| (-1068)) (((|#1|) . T)) -((((-835)) . T)) -((((-840 |#1|)) . T)) -((((-840 |#1|)) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) (((-840 |#1|)) . T) (((-400 (-535))) . T)) -((((-840 |#1|)) . T) (($) . T) (((-400 (-535))) . T)) -((((-840 |#1|)) . T) (((-400 (-535))) . T) (($) . T)) -(((#1=(-840 |#1|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-840 |#1|)) . T)) -((((-1142) #1=(-840 |#1|)) |has| #1# (-505 (-1142) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) -(((#1=(-840 |#1|)) |has| #1# (-302 #1#))) -(((#1=(-840 |#1|) $) |has| #1# (-279 #1# #1#))) -((((-840 |#1|)) . T)) -((((-840 |#1|)) . T)) -((((-840 |#1|)) . T)) -((((-840 |#1|)) . T)) -((((-840 |#1|)) . T)) -((((-840 |#1|)) . T)) -((((-835)) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) +(((|#1|) -1561 (|has| |#2| (-360 |#1|)) (|has| |#2| (-410 |#1|)))) +(((|#1|) -1561 (|has| |#2| (-360 |#1|)) (|has| |#2| (-410 |#1|)))) (((|#2|) . T)) -((((-1142)) |has| |#2| (-871 (-1142)))) +((((-400 (-550))) . T) (((-677)) . T) (($) . T)) +(((|#3| |#3|) . T)) (|has| |#2| (-227)) -(((|#2|) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) ((|#2|) . T) (((-400 (-535))) . T)) -(((|#2|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#2|) . T) (((-400 (-535))) . T) (($) . T)) -(((|#2| |#2|) . T) ((#1=(-400 (-535)) #1#) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1142) |#2|) |has| |#2| (-505 (-1142) |#2|)) ((|#2| |#2|) |has| |#2| (-302 |#2|))) -(((|#2|) |has| |#2| (-302 |#2|))) -(((|#2| $) |has| |#2| (-279 |#2| |#2|))) -(((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535)))) -(((|#2|) . T)) -((((-535)) |has| |#2| (-857 (-535))) (((-371)) |has| |#2| (-857 (-371)))) -(|has| |#2| (-796)) -(|has| |#2| (-796)) -(|has| |#2| (-796)) -(-3874 (|has| |#2| (-796)) (|has| |#2| (-823))) -(|has| |#2| (-796)) -(|has| |#2| (-796)) -(|has| |#2| (-796)) -(((|#2|) . T)) -(|has| |#2| (-881)) -(|has| |#2| (-991)) -((((-524)) |has| |#2| (-594 (-524))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535)))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-371)) . #1=(|has| |#2| (-991))) (((-219)) . #1#)) -((((-400 (-535))) |has| |#2| . #1=((-1009 (-535)))) (((-535)) |has| |#2| . #1#) (((-1142)) |has| |#2| (-1009 (-1142))) ((|#2|) . T)) -(|has| |#2| (-1117)) +((((-838 |#1|)) . T)) +((((-1144)) |has| |#1| (-873 (-1144))) ((|#3|) . T)) +(-12 (|has| |#1| (-356)) (|has| |#2| (-995))) +((((-1142 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-836)) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +((((-400 (-550))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) +((((-550)) . T)) +(|has| |#1| (-1068)) +(((|#3|) . T)) (((|#2|) . T)) -(-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))) -(-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))) -((((-835)) -3874 (-12 (|has| |#1| (-593 (-835))) (|has| |#2| (-593 (-835)))) (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-1142)) . T) ((|#1|) . T)) -((((-835)) . T)) -((((-648 |#1|)) . T)) -((((-835)) . T)) -((((-835)) . T)) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) +((((-550)) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) +(((|#1| |#2|) . T)) +((($) . T)) +((((-565 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +((($) . T) (((-400 (-550))) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1|) . T) (($) . T)) +(((|#1| (-1227 |#1|) (-1227 |#1|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((#0=(-116 |#1|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +((((-400 (-550))) |has| |#2| (-1011 (-400 (-550)))) (((-550)) |has| |#2| (-1011 (-550))) ((|#2|) . T) (((-838 |#1|)) . T)) +((((-1093 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-835)) . T)) -(-3874 (|has| |#1| (-361)) (|has| |#1| (-823))) (((|#1|) . T)) -((((-835)) . T)) -((((-535)) . T)) -((($) . T)) +((($ $) . T)) +((((-650 |#1|)) . T)) +((($) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T)) +((((-116 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +((((-550)) -12 (|has| |#1| (-859 (-550))) (|has| |#3| (-859 (-550)))) (((-372)) -12 (|has| |#1| (-859 (-372))) (|has| |#3| (-859 (-372))))) +(((|#2|) . T) ((|#6|) . T)) +(((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) (($) . T)) +((((-142)) . T)) ((($) . T)) +((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) . T)) +(|has| |#2| (-882)) +(|has| |#1| (-882)) +(|has| |#1| (-882)) +(((|#4|) . T)) +(|has| |#2| (-995)) ((($) . T)) -(|has| $ (-145)) +(|has| |#1| (-882)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) ((($) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) . T)) -((($) . T) (((-400 (-535))) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#1|) . T)) +(((|#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-823)) +(((|#1|) . T) (($) . T)) +((($) . T)) +(|has| |#1| (-356)) +((((-883 |#1|)) . T)) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(-1561 (|has| |#1| (-361)) (|has| |#1| (-825))) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) +((((-836)) . T)) +((((-1144)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) +((((-400 |#2|) |#3|) . T)) +((($) . T) (((-400 (-550))) . T)) +((((-749) |#1|) . T)) +(((|#2| (-234 (-3191 |#1|) (-749))) . T)) +(((|#1| (-522 |#3|)) . T)) +((((-400 (-550))) . T)) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +((((-836)) . T)) +(((#0=(-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) #0#) |has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))))) +(|has| |#1| (-882)) +(|has| |#2| (-356)) +(-1561 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +((((-167 (-372))) . T) (((-219)) . T) (((-372)) . T)) +((((-836)) . T)) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) +((((-372)) . T) (((-550)) . T)) +(((#0=(-400 (-550)) #0#) . T) (($ $) . T)) +((($ $) . T)) +((($ $) . T)) +(((|#1| |#1|) . T)) +((((-836)) . T)) +(|has| |#1| (-542)) +((((-400 (-550))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(-1561 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342))) +(|has| |#1| (-38 (-400 (-550)))) +(-12 (|has| |#1| (-535)) (|has| |#1| (-806))) +((((-836)) . T)) +((((-1144)) -1561 (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-873 (-1144)))))) +(|has| |#1| (-356)) +((((-1144)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) +(|has| |#1| (-356)) +((((-400 (-550))) . T) (($) . T)) +((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) +(((|#2|) |has| |#1| (-356))) +(((|#2|) |has| |#1| (-356))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) (((|#1|) . T)) +(((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#1| (-594 (-861 (-535))))) +(((|#2|) . T) (((-1144)) -12 (|has| |#1| (-356)) (|has| |#2| (-1011 (-1144)))) (((-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-1011 (-550)))) (((-400 (-550))) -12 (|has| |#1| (-356)) (|has| |#2| (-1011 (-550))))) +(((|#2|) . T)) +((((-1144) #0=(-1213 |#1| |#2| |#3| |#4|)) |has| #0# (-505 (-1144) #0#)) ((#0# #0#) |has| #0# (-302 #0#))) +((((-594 $) $) . T) (($ $) . T)) +((((-167 (-219))) . T) (((-167 (-372))) . T) (((-1140 (-677))) . T) (((-865 (-372))) . T)) +((((-836)) . T)) +(|has| |#1| (-542)) +(|has| |#1| (-542)) +(|has| (-400 |#2|) (-227)) +(((|#1| (-400 (-550))) . T)) +((($ $) . T)) +((((-1144)) |has| |#2| (-873 (-1144)))) ((($) . T)) -(((|#1| (-521 (-1142))) . T)) +((((-836)) . T)) +((((-400 (-550))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-836)) . T)) +(((|#2|) |has| |#1| (-356))) +((((-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-859 (-372)))) (((-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-859 (-550))))) +(|has| |#1| (-356)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(|has| |#1| (-356)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(|has| |#1| (-356)) +(|has| |#1| (-542)) +(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(((|#3|) . T)) (((|#1|) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))) -(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))) -(((|#1| (-521 (-1142))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535)))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-881))) -((($ $) . T) ((#1=(-1142) $) . T) ((#1# |#1|) . T)) -(|has| |#1| (-823)) -((((-1142)) . T)) -((((-371)) |has| |#1| (-857 (-371))) (((-535)) |has| |#1| (-857 (-535)))) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T) (((-1142)) . T)) -(((|#1| (-521 (-1142)) (-1142)) . T)) -((((-1086)) . T) (((-835)) . T)) +(-1561 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(((|#2|) . T)) +(((|#2|) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(|has| |#1| (-38 (-400 (-550)))) (((|#1| |#2|) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(|has| |#1| (-145)) +((((-1126) |#1|) . T)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(|has| |#1| (-145)) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-361))) +(|has| |#1| (-145)) +((((-565 |#1|)) . T)) +((($) . T)) +((((-400 |#2|)) . T)) (|has| |#1| (-542)) -(|has| |#1| (-542)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-542))) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-342))) (|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((((-835)) . T)) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) -(((|#1| |#2|) . T)) +((((-836)) . T)) +((($) . T)) +((((-400 (-550))) |has| |#2| (-1011 (-550))) (((-550)) |has| |#2| (-1011 (-550))) (((-1144)) |has| |#2| (-1011 (-1144))) ((|#2|) . T)) +(((#0=(-400 |#2|) #0#) . T) ((#1=(-400 (-550)) #1#) . T) (($ $) . T)) +((((-1108 |#1| |#2|)) . T)) +(((|#1| (-550)) . T)) +(((|#1| (-400 (-550))) . T)) +((((-550)) |has| |#2| (-859 (-550))) (((-372)) |has| |#2| (-859 (-372)))) +(((|#2|) . T)) +((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) +((((-112)) . T)) +(((|#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-836)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-1144) (-52)) . T)) +((((-400 |#2|)) . T)) +((((-836)) . T)) (((|#1|) . T)) -(|has| |#1| (-823)) +(|has| |#1| (-1068)) +(|has| |#1| (-769)) +(|has| |#1| (-769)) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-114)) . T) ((|#1|) . T)) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) +((((-219)) . T) (((-372)) . T) (((-865 (-372))) . T)) +((((-836)) . T)) +((((-1213 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)) (((-400 (-550))) |has| |#1| (-542))) +((((-836)) . T)) +((((-836)) . T)) +(((|#2|) . T)) +((((-836)) . T)) +(((#0=(-883 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-550)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-769)) (|has| |#2| (-769))) -(-12 (|has| |#1| (-769)) (|has| |#2| (-769))) -(-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))) -(-12 (|has| |#1| (-769)) (|has| |#2| (-769))) -(-12 (|has| |#1| (-769)) (|has| |#2| (-769))) -(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-465)) (|has| |#2| (-465))) -(-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) -(-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) -(-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) -(-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))) -(-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))) -(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-618 (-535))) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T)) -(|has| |#1| (-143)) +((((-883 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) +(|has| |#1| (-356)) +(((|#2|) . T)) +((((-550)) . T)) +((((-836)) . T)) +((((-550)) . T)) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +((((-167 (-372))) . T) (((-219)) . T) (((-372)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-1126)) . T) (((-526)) . T) (((-550)) . T) (((-865 (-550))) . T) (((-372)) . T) (((-219)) . T)) +((((-836)) . T)) (|has| |#1| (-145)) -((((-524)) |has| |#1| (-594 (-524)))) -(((|#1|) . T)) -((((-1142)) |has| |#1| (-871 (-1142)))) -(|has| |#1| (-227)) +(|has| |#1| (-143)) +((($) . T) ((#0=(-1212 |#2| |#3| |#4|)) |has| #0# (-170)) (((-400 (-550))) |has| #0# (-38 (-400 (-550))))) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) (|has| |#1| (-356)) -(-3874 (|has| |#1| (-283)) (|has| |#1| (-356))) -(((|#1|) . T) (((-400 (-535))) |has| |#1| (-356))) -((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-356))) -(((|#1|) . T) (($) -3874 (|has| |#1| (-283)) (|has| |#1| (-356))) (((-400 (-535))) |has| |#1| (-356))) -(((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-283)) (|has| |#1| (-356))) ((#1=(-400 (-535)) #1#) |has| |#1| (-356))) -(((|#1|) . T) (((-400 (-535))) |has| |#1| (-356))) -(((|#1|) . T)) -((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) +(|has| |#1| (-356)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-873 (-1144))) (|has| |#1| (-1020)) (|has| |#1| (-1080)) (|has| |#1| (-1068))) +(|has| |#1| (-1119)) +((((-550) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-116 |#1|) $) |has| #0# (-279 #0# #0#))) +(((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +((((-114)) . T) ((|#1|) . T)) +((((-836)) . T)) +(((|#1| |#2|) . T)) +((((-1144) |#1|) . T)) (((|#1|) |has| |#1| (-302 |#1|))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((((-550) |#1|) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535)))) +((((-550)) . T) (((-400 (-550))) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) -(|has| |#1| (-823)) +(|has| |#1| (-542)) +((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +((((-372)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-542)) +(|has| |#1| (-1068)) +((((-758 |#1| (-838 |#2|))) |has| (-758 |#1| (-838 |#2|)) (-302 (-758 |#1| (-838 |#2|))))) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) (((|#1|) . T)) +(((|#2| |#3|) . T)) (((|#1|) . T)) -((((-400 |#2|) |#3|) . T)) -((((-400 (-535))) |has| #1=(-400 |#2|) (-1009 (-400 (-535)))) (((-535)) |has| #1# (-1009 (-535))) ((#1#) . T)) -((((-400 |#2|)) . T)) -((((-535)) |has| #1=(-400 |#2|) (-617 (-535))) ((#1#) . T)) -((((-400 |#2|)) . T)) -((((-400 |#2|) |#3|) . T)) -(|has| (-400 |#2|) (-145)) -((((-400 |#2|) |#3|) . T)) -(|has| (-400 |#2|) (-143)) -((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T)) -((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T)) -(|has| (-400 |#2|) (-227)) -((((-1142)) |has| (-400 |#2|) (-871 (-1142)))) -((((-400 |#2|)) . T)) -(((|#3|) . T)) -(((#1=(-400 |#2|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T)) -((((-835)) . T)) -((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T)) -(((|#1| |#2| |#3|) . T)) -((((-835)) . T)) -((((-535)) . T)) -((((-535)) . T) (($) . T) (((-400 (-535))) . T)) -((($) . T) (((-535)) . T) (((-400 (-535))) . T)) -((((-535)) . T) (($) . T) (((-400 (-535))) . T)) -((((-535)) . T) (((-400 (-535))) . T) (($) . T)) -(((#1=(-535) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-524)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T)) -((((-400 (-535))) . T) (((-535)) . T)) -((((-535)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T)) -(((|#1|) . T) (($) . T) (((-400 (-535))) . T) (((-535)) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (((-535)) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) . T) ((#2=(-535) #2#) . T) (($ $) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (((-535)) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T) (((-535)) . T) (($) . T)) -(((|#1|) . T) (((-400 (-535))) . T)) -(((|#1|) . T) (((-535)) -3874 (|has| |#1| (-1009 (-535))) (|has| (-400 (-535)) (-1009 (-535)))) (((-400 (-535))) . T)) -(|has| |#1| (-1067)) -((((-835)) |has| |#1| (-1067))) -(|has| |#1| (-1067)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#4|) . T)) -((((-618 |#4|)) . T) (((-835)) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4|) . T)) -((((-524)) |has| |#4| (-594 (-524)))) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) +(|has| |#2| (-882)) +(((|#1| (-522 |#2|)) . T)) +(((|#1| (-749)) . T)) +(|has| |#1| (-227)) +(((|#1| (-522 (-1056 (-1144)))) . T)) +(|has| |#2| (-356)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) . T)) (((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-836)) . T)) +((((-836)) . T)) +(-1561 (|has| |#3| (-771)) (|has| |#3| (-823))) +((((-836)) . T)) +((((-1088)) . T) (((-836)) . T)) +((((-836)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T)) -(((|#1|) . T) (($) . T)) -((((-835)) . T)) -(((|#1|) . T) (($) . T)) -((((-1142) (-51)) . T)) -((((-835)) . T)) -((((-1142) (-51)) . T)) -((((-1142) (-51)) . T)) -((((-1142) (-51)) . T)) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T)) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4203 (-1142)) (|:| -2184 #1#))) . T)) -(((#1=(-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) #1#) |has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))))) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) |has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))))) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T)) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T)) -((((-1142) (-51)) . T)) -((((-835)) . T) (((-1147)) . T)) -(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T)) -((((-756 |#1| (-836 |#2|))) . T)) -((((-618 (-756 |#1| (-836 |#2|)))) . T) (((-835)) . T)) -((((-756 |#1| (-836 |#2|))) |has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|))))) -(((#1=(-756 |#1| (-836 |#2|)) #1#) |has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|))))) -((((-756 |#1| (-836 |#2|))) . T)) -((((-524)) |has| (-756 |#1| (-836 |#2|)) (-594 (-524)))) -(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T)) -(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T)) -((((-524)) |has| |#3| (-594 (-524)))) -(((|#3|) |has| |#3| (-356))) -(((|#3| |#3|) . T)) -(((|#3|) . T)) -((((-665 |#3|)) . T) (((-835)) . T)) -(((|#3|) . T)) +((($ $) . T) (((-594 $) $) . T)) +(((|#1|) . T)) +((((-550)) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) -(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)))) -(((|#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-524)) . T) (((-535)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T)) -((((-535)) . T)) -((((-1142) (-51)) . T)) -((((-835)) . T)) -((((-1142) (-51)) . T)) -((((-1142) (-51)) . T)) -((((-1142) (-51)) . T)) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T)) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4203 (-1142)) (|:| -2184 #1#))) . T)) -(((#1=(-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) #1#) |has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))))) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) |has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))))) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T)) -((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T)) -((((-1142) (-51)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-286 |#3|)) . T)) -(((|#3| |#3|) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#3| |#3|) . T)) -((((-835)) . T)) -((((-835)) . T)) +((((-836)) . T)) +(-1561 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342))) +(-1561 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1020))) +(((#0=(-565 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-550)) #1#) . T)) +((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1| (-1227 |#1|) (-1227 |#1|)) . T)) +((((-565 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) +((($) . T) (((-400 (-550))) . T)) +((($) . T) (((-400 (-550))) . T)) +(((|#2|) |has| |#2| (-6 (-4344 "*")))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-836)) . T)) +((((-287 |#3|)) . T)) +(((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550)))) ((|#2| |#2|) . T) (($ $) -1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +(((|#2| |#2|) . T) ((|#6| |#6|) . T)) +(((|#1|) . T)) +((($) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (($) . T)) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) (((|#2|) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T) (($) -1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +(((|#2|) . T) ((|#6|) . T)) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +((((-836)) . T)) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(|has| |#2| (-882)) +(|has| |#1| (-882)) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) . T)) +((((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1068)) +(((|#1|) . T)) +((((-1144)) . T) ((|#1|) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) +(((#0=(-400 (-550)) #0#) . T)) +((((-400 (-550))) . T)) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(((|#1|) . T)) +(((|#1|) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +((((-526)) . T)) +((((-836)) . T)) +((((-1144)) |has| |#2| (-873 (-1144))) (((-1050)) . T)) +((((-1212 |#2| |#3| |#4|)) . T)) +((((-883 |#1|)) . T)) +((($) . T) (((-400 (-550))) . T)) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +((((-836)) . T)) +(|has| |#1| (-1185)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +((((-1144)) |has| |#1| (-873 (-1144)))) +((((-883 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +((($) . T) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#1|) . T)) +(((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550)))) ((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-542)))) +((($) . T) (((-400 (-550))) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1020)) (((-550)) -12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-542)))) +(|has| |#1| (-542)) (((|#1|) |has| |#1| (-356))) -((((-1142)) -12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) -(-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3874 (|has| |#1| (-361)) (|has| |#1| (-343))) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(-3874 (|has| |#1| (-143)) (|has| |#1| (-343))) -(|has| |#1| (-343)) -(((|#1| |#2|) . T)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($ $) . T) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) -((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -(|has| |#1| (-145)) -(((|#1| |#2|) . T)) +((((-550)) . T)) +(|has| |#1| (-769)) +(|has| |#1| (-769)) +((((-1144) #0=(-116 |#1|)) |has| #0# (-505 (-1144) #0#)) ((#0# #0#) |has| #0# (-302 #0#))) +(((|#2|) . T) (((-550)) |has| |#2| (-1011 (-550))) (((-400 (-550))) |has| |#2| (-1011 (-400 (-550))))) +((((-1050)) . T) ((|#2|) . T) (((-550)) |has| |#2| (-1011 (-550))) (((-400 (-550))) |has| |#2| (-1011 (-400 (-550))))) +(((|#1|) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535)))) (((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) +((((-550) (-749)) . T) ((|#3| (-749)) . T)) +(((|#1|) . T)) (((|#1| |#2|) . T)) -((((-835)) . T)) -((((-835)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-836)) . T)) +(|has| |#2| (-798)) +(|has| |#2| (-798)) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +((((-550)) |has| |#1| (-859 (-550))) (((-372)) |has| |#1| (-859 (-372)))) +(((|#1|) . T)) +((((-843 |#1|)) . T)) +((((-843 |#1|)) . T)) +(-12 (|has| |#1| (-356)) (|has| |#2| (-882))) +((((-400 (-550))) . T) (((-677)) . T) (($) . T)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) (((|#1|) . T)) -((((-835)) . T)) -(|has| |#1| (-227)) -((($) . T)) -(((|#1| (-521 (-1054 (-1142))) (-1054 (-1142))) . T)) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-1142)) |has| |#1| (-871 (-1142))) (((-1054 (-1142))) . T)) -(|has| |#1| (-823)) -((($ $) . T) ((#1=(-1142) $) |has| |#1| . #2=((-227))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1054 (-1142)) |#1|) . T) ((#3# $) . T)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-881))) -((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-521 (-1054 (-1142)))) . T)) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) (((|#1|) . T)) -(((|#1| (-521 (-1054 (-1142)))) . T)) -((((-1091 |#1| (-1142))) . T) (((-1054 (-1142))) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-1142)) . T)) -(((|#1| (-1142) (-1054 (-1142)) (-521 (-1054 (-1142)))) . T)) -((((-835)) . T)) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +(|has| |#1| (-356)) +(((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-618 |#1|)) |has| |#1| (-821))) -(|has| |#1| (-1067)) -((((-835)) |has| |#1| (-1067))) -(|has| |#1| (-1067)) (((|#1|) . T)) -((((-835)) . T) (((-1147)) . T)) -(|has| |#1| (-1067)) -((((-835)) |has| |#1| (-1067))) -(|has| |#1| (-1067)) -((((-835)) . T) (((-1147)) . T)) (((|#1|) . T)) +((((-838 |#1|)) . T)) (((|#1|) . T)) -((((-835)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (((|#1|) . T)) +(((|#2| (-749)) . T)) +((((-1144)) . T)) +((((-843 |#1|)) . T)) +(-1561 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +((((-836)) . T)) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) +(-1561 (|has| |#2| (-771)) (|has| |#2| (-823))) +(-1561 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))) +((((-843 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-361)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +((($ $) . T) (((-594 $) $) . T)) +((($) . T)) +((((-836)) . T)) +((((-550)) . T)) +(((|#2|) . T)) +((((-836)) . T)) +(((|#1|) . T) (((-400 (-550))) |has| |#1| (-356))) +((((-836)) . T)) +(((|#1|) . T)) +((((-836)) . T)) +((($) . T) ((|#2|) . T) (((-400 (-550))) . T)) +(|has| |#1| (-1068)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-836)) . T)) +(|has| |#2| (-882)) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) . T)) +((((-526)) |has| |#2| (-596 (-526))) (((-865 (-372))) |has| |#2| (-596 (-865 (-372)))) (((-865 (-550))) |has| |#2| (-596 (-865 (-550))))) +((((-836)) . T)) +((((-836)) . T)) +(((|#3|) |has| |#3| (-1020)) (((-550)) -12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020)))) +((((-1093 |#1| |#2|)) . T) (((-925 |#1|)) |has| |#2| (-596 (-1144))) (((-836)) . T)) +((((-925 |#1|)) |has| |#2| (-596 (-1144))) (((-1126)) -12 (|has| |#1| (-1011 (-550))) (|has| |#2| (-596 (-1144)))) (((-865 (-550))) -12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550))))) (((-865 (-372))) -12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372))))) (((-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#2| (-596 (-526))))) +((((-1140 |#1|)) . T) (((-836)) . T)) +((((-836)) . T)) +((((-400 (-550))) |has| |#2| (-1011 (-400 (-550)))) (((-550)) |has| |#2| (-1011 (-550))) ((|#2|) . T) (((-838 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) +((((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T) (((-1144)) . T)) +((((-836)) . T)) +((((-550)) . T)) +((($) . T)) +((((-372)) |has| |#1| (-859 (-372))) (((-550)) |has| |#1| (-859 (-550)))) +((((-550)) . T)) +(((|#1|) . T)) +((((-836)) . T)) +(((|#1|) . T)) +((((-836)) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((((-550)) . T) (((-400 (-550))) . T)) +(((|#1|) |has| |#1| (-302 |#1|))) +((((-836)) . T)) +((((-372)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-1124) (-1142) (-535) (-219) (-835)) . T)) -((((-835)) . T)) -(((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-835)) . T)) -(-3874 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067))) -(-3874 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067))) -(((|#3|) |has| |#3| (-170))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -(-3874 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018))) -((($) -3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) ((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018)))) -(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)))) -((((-835)) -3874 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-593 (-835))) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067))) (((-1224 |#3|)) . T)) -(|has| |#3| (-170)) -(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($) |has| |#3| (-170))) -(((|#3| |#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($ $) |has| |#3| (-170))) -(((|#3|) |has| |#3| (-1018))) -((((-1142)) -12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) -(-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) -(|has| |#3| (-361)) -(((|#3|) |has| |#3| (-1018))) -(((|#3|) |has| |#3| (-1018)) (((-535)) -12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018)))) -(((|#3|) |has| |#3| (-1067))) -(((|#3|) |has| |#3| (-1067)) (((-535)) -12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067))) (((-400 (-535))) -12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067)))) -((((-535) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) -(((|#3|) . T)) -((((-535) |#3|) . T)) -((((-535) |#3|) . T)) -(|has| |#3| (-769)) -(-3874 (|has| |#3| (-769)) (|has| |#3| (-821))) -(-3874 (|has| |#3| (-769)) (|has| |#3| (-821))) -(-3874 (|has| |#3| (-769)) (|has| |#3| (-821))) -(-3874 (|has| |#3| (-769)) (|has| |#3| (-821))) -(|has| |#3| (-821)) -(|has| |#3| (-821)) -(((|#3|) |has| |#3| (-356))) -(((|#1| |#3|) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -((((-535)) . T)) -((((-535)) . T)) -((((-524)) . T) (((-535)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T)) -((((-535)) . T)) -((((-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#2| (-594 (-524)))) (((-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371))))) (((-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) -((($) . T)) -(((|#1| (-521 |#2|)) . T)) +((((-836)) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-400 |#2|) |#3|) . T)) (((|#1|) . T)) -((((-835)) . T)) -((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))) -(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))) -(((|#1| (-521 |#2|)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535)))) -(-3874 (|has| |#1| (-444)) (|has| |#1| (-881))) -((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -(|has| |#1| (-823)) -(((|#2|) . T)) -((((-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#2| (-857 (-371)))) (((-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#2| (-857 (-535))))) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T) ((|#2|) . T)) -(((|#1| (-521 |#2|) |#2|) . T)) -((($) . T)) -((($ $) . T) ((|#2| $) . T)) -(((|#2|) . T)) -((((-835)) . T)) -(((|#1| (-521 |#2|) |#2|) . T)) -((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-542))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542)))) -(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542)))) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -(((|#1| (-521 |#2|)) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| |#2|) . T)) -((((-835)) . T)) -(((|#1|) . T)) -((((-1147)) . T) (((-835)) . T)) -((((-835)) . T)) -((((-1106 |#1| |#2|)) . T)) -(((#1=(-1106 |#1| |#2|) #1#) |has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|)))) -((((-1106 |#1| |#2|)) |has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|)))) -((((-835)) . T)) -((((-1106 |#1| |#2|)) . T)) -((((-524)) |has| |#2| (-594 (-524)))) -(((|#2|) |has| |#2| (-6 (-4338 "*")))) +(|has| |#1| (-1068)) +(((|#2| (-474 (-3191 |#1|) (-749))) . T)) +((((-550) |#1|) . T)) +((((-1126)) . T) (((-836)) . T)) (((|#2| |#2|) . T)) +(((|#1| (-522 (-1144))) . T)) +(-1561 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +((((-550)) . T)) (((|#2|) . T)) -((((-665 |#2|)) . T) (((-835)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) -3874 (|has| |#2| (-6 (-4338 "*"))) (|has| |#2| (-170)))) -(((|#2|) . T)) -((((-1142)) |has| |#2| (-871 (-1142)))) -(|has| |#2| (-227)) -(((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535)))) -(((|#2|) . T)) -(((|#2|) . T) (((-535)) |has| |#2| (-1009 (-535))) (((-400 (-535))) |has| |#2| (-1009 (-400 (-535))))) -(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (((|#2|) . T)) -(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-524)) |has| |#4| (-594 (-524)))) -(((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4|) . T)) -((((-835)) . T) (((-618 |#4|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) +((((-1144)) |has| |#1| (-873 (-1144))) (((-1050)) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-619 (-550)))) +(|has| |#1| (-542)) +((($) . T) (((-400 (-550))) . T)) +((($) . T)) +((($) . T)) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) (((|#1|) . T)) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-836)) . T)) +((((-142)) . T)) +(((|#1|) . T) (((-400 (-550))) . T)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#1| |#2|) . T)) (((|#1|) . T)) +((((-836)) . T)) (((|#1|) . T)) +(|has| |#1| (-1119)) +(((|#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|))) . T)) (((|#1|) . T)) +((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +((((-836)) . T)) +((((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-550)) |has| |#1| (-1011 (-550))) ((|#1|) . T) ((|#2|) . T)) +((((-1050)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550))))) +((((-372)) -12 (|has| |#1| (-859 (-372))) (|has| |#2| (-859 (-372)))) (((-550)) -12 (|has| |#1| (-859 (-550))) (|has| |#2| (-859 (-550))))) +((((-1213 |#1| |#2| |#3| |#4|)) . T)) +((((-550) |#1|) . T)) +(((|#1| |#1|) . T)) +((($) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((($) . T)) +((((-677)) . T)) +((((-758 |#1| (-838 |#2|))) . T)) +((($) . T)) +((((-400 (-550))) . T) (($) . T)) +(|has| |#1| (-1068)) +(|has| |#1| (-1068)) +(|has| |#2| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-356)) +(|has| |#1| (-38 (-400 (-550)))) +((((-550)) . T)) +((((-1144)) -12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) +((((-1144)) -12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (((|#1|) . T)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) +(|has| |#1| (-227)) +(((|#1| (-522 |#3|)) . T)) +(|has| |#1| (-361)) +(((|#2| (-234 (-3191 |#1|) (-749))) . T)) +(|has| |#1| (-361)) +(|has| |#1| (-361)) +(((|#1|) . T) (($) . T)) +(((|#1| (-522 |#2|)) . T)) +(-1561 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(((|#1| (-749)) . T)) +(|has| |#1| (-542)) +(-1561 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) +((((-836)) . T)) +(-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) +(-1561 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(((|#1|) |has| |#1| (-170))) +(((|#4|) |has| |#4| (-1020))) +(((|#3|) |has| |#3| (-1020))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((((-400 |#2|)) . T) (((-400 (-550))) . T) (($) . T)) +((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +((((-836)) . T)) +((($) . T) (((-400 (-550))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1068)) (((-550)) -12 (|has| |#4| (-1011 (-550))) (|has| |#4| (-1068))) (((-400 (-550))) -12 (|has| |#4| (-1011 (-400 (-550)))) (|has| |#4| (-1068)))) +(((|#3|) |has| |#3| (-1068)) (((-550)) -12 (|has| |#3| (-1011 (-550))) (|has| |#3| (-1068))) (((-400 (-550))) -12 (|has| |#3| (-1011 (-400 (-550)))) (|has| |#3| (-1068)))) +(|has| |#2| (-356)) +(((|#2|) |has| |#2| (-1020)) (((-550)) -12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((|#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) +(|has| |#2| (-356)) +(((#0=(-400 (-550)) #0#) |has| |#2| (-38 (-400 (-550)))) ((|#2| |#2|) . T) (($ $) -1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1| |#1|) . T) ((#0=(-400 (-550)) #0#) |has| |#1| (-38 (-400 (-550))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(((|#2| |#2|) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T) (($) -1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-400 (-550))) . T)) +(((|#2|) . T)) +((((-836)) |has| |#1| (-1068))) +((($) . T)) +((((-1213 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-835)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-535) (-142)) . T)) -((((-535) (-142)) . T)) -((((-535) (-142)) . T)) -((((-142)) . T)) -((((-142)) . T)) -((((-1124) |#1|) . T)) -((((-835)) . T)) -((((-1124) |#1|) . T)) -((((-1124) |#1|) . T)) -((((-1124) |#1|) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((#1=(-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) #1#) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))))) -((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T)) -((((-1124) |#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1140 |#1| |#2| |#3|)) . T)) -((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1140 |#1| |#2| |#3|)) -12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))))) -(((#1=(-1140 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|)))) (((-1142) #1#) -12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|))))) -((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) +(|has| |#2| (-798)) +(|has| |#2| (-798)) (|has| |#1| (-356)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (|has| |#1| (-356)) +(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-356)) +(((|#1|) |has| |#2| (-410 |#1|))) +(((|#1|) |has| |#2| (-410 |#1|))) +((((-883 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-1180)) . T) (((-836)) . T) (((-1149)) . T)) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) |has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))))) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +((((-550) |#1|) . T)) +(((|#1|) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +((((-1144)) |has| |#1| (-873 (-1144))) (((-796 (-1144))) . T)) +(-1561 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +((((-797 |#1|)) . T)) +(((|#1| |#2|) . T)) +((((-836)) . T)) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +(((|#1| |#2|) . T)) +(|has| |#1| (-38 (-400 (-550)))) +((((-836)) . T)) +((((-1213 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-550))) . T)) +(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)) (((-400 (-550))) |has| |#1| (-542))) +(((|#2|) . T) (((-550)) |has| |#2| (-619 (-550)))) (|has| |#1| (-356)) -(-3874 (-12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) -((((-1142)) -3874 (-12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142)))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) -((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356))) -(-3874 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-145)))) -(-3874 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-143)))) -((((-835)) . T)) -(((|#1|) . T)) -((((-1140 |#1| |#2| |#3|) $) -12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-279 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-535) (-1048)) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((#2=(-1140 |#1| |#2| |#3|) #2#) |has| |#1| (-356)) ((|#1| |#1|) . T)) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1| (-535)) . T)) -(((|#1| (-535)) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| (-1140 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -((((-835)) . T)) -((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) +(-1561 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (-12 (|has| |#1| (-356)) (|has| |#2| (-227)))) +(|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-356)) -(((|#1| (-747) (-1048)) . T)) -(|has| |#1| (-881)) -(|has| |#1| (-881)) -((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T)) +(((|#1|) . T)) +(((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1| |#1|) . T)) +((((-550) |#1|) . T)) +((((-309 |#1|)) . T)) +(((#0=(-677) (-1140 #0#)) . T)) +((((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-823)) -((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T)) +((($ $) . T) ((#0=(-838 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1093 |#1| (-1144))) . T) (((-796 (-1144))) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1011 (-550))) (((-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) (((-1144)) . T)) +((($) . T)) +(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) +(((#0=(-1050) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1144) $) |has| |#1| (-227)) ((#0# |#1|) |has| |#1| (-227)) ((#1=(-1056 (-1144)) |#1|) . T) ((#1# $) . T)) +((($) . T) ((|#2|) . T)) +((($) . T) ((|#2|) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550))))) +(|has| |#2| (-882)) +((($) . T) ((#0=(-1212 |#2| |#3| |#4|)) |has| #0# (-170)) (((-400 (-550))) |has| #0# (-38 (-400 (-550))))) +((((-550) |#1|) . T)) +(((#0=(-1213 |#1| |#2| |#3| |#4|)) |has| #0# (-302 #0#))) +((($) . T)) (((|#1|) . T)) -(((|#1| (-747)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) +((($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#2| |#2|) |has| |#1| (-356)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#0=(-400 (-550)) #0#) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) +(|has| |#2| (-227)) +(|has| $ (-145)) +((((-836)) . T)) +((($) . T) (((-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T)) +((((-836)) . T)) +(|has| |#1| (-823)) +((((-1144)) -12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) +((((-400 |#2|) |#3|) . T)) (((|#1|) . T)) -((((-1048)) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) -(((|#1| (-747)) . T)) -(((#1=(-1048) |#1|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1117)) +((((-836)) . T)) +(((|#2| (-650 |#1|)) . T)) +(-12 (|has| |#1| (-300)) (|has| |#1| (-882))) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#4|) . T)) +(|has| |#1| (-542)) +((($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) ((|#1|) . T)) +((((-1144)) -1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) +(((|#1|) . T) (($) -1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-550))) -1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)))) +((((-1144)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) +((((-1144)) -12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) +(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) +((((-550) |#1|) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(((|#1|) . T)) +(((|#1| (-522 (-796 (-1144)))) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(((|#1|) . T)) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +(((|#1|) . T)) +(-1561 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +((($) . T) (((-843 |#1|)) . T) (((-400 (-550))) . T)) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) +(|has| |#1| (-542)) (((|#1|) . T)) -((((-1140 |#1| |#2| |#3|)) . T) (((-1133 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) -((($ $) . T)) -((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) -(((|#1| (-400 (-535)) (-1048)) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(((|#1| (-400 (-535))) . T)) -(((|#1| (-400 (-535))) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -((((-835)) . T)) -(((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356)))) -(((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356)))) -(((|#1|) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) +(((|#1|) . T)) +((((-400 |#2|)) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-400 (-550)) #0#) . T) (($ $) . T)) +((((-550)) . T)) +((((-836)) . T)) +(((|#2|) . T) (((-400 (-550))) . T) (($) . T)) +((((-565 |#1|)) . T) (((-400 (-550))) . T) (($) . T)) +((((-836)) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-550) |#1|) . T)) +((((-836)) . T)) +((($ $) . T) (((-1144) $) . T)) +((((-1219 |#1| |#2| |#3|)) . T)) +((((-526)) |has| |#2| (-596 (-526))) (((-865 (-372))) |has| |#2| (-596 (-865 (-372)))) (((-865 (-550))) |has| |#2| (-596 (-865 (-550))))) +((((-836)) . T)) +((((-836)) . T)) +((((-865 (-550))) -12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#3| (-596 (-865 (-550))))) (((-865 (-372))) -12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#3| (-596 (-865 (-372))))) (((-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526))))) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1|) . T) (((-836)) . T) (((-1149)) . T)) +((((-836)) . T)) +(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|))) . T)) +(((|#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T)) +((((-836)) . T)) +((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) (|has| |#1| (-356)) +((((-1219 |#1| |#2| |#3|)) . T) (((-1191 |#1| |#2| |#3|)) . T)) +((((-1144)) . T) (((-836)) . T)) +((((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) |has| |#2| (-170)) (($) -1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882)))) +(((|#2|) . T) ((|#6|) . T)) +((($) . T) (((-400 (-550))) |has| |#2| (-38 (-400 (-550)))) ((|#2|) . T)) +((($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((((-1072)) . T)) +((((-836)) . T)) +((($) -1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) +((($) . T)) +((($) -1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) ((|#1|) |has| |#1| (-170)) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(|has| |#2| (-882)) +(|has| |#1| (-882)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-170))) +((((-677)) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170))) +((((-400 (-550))) . T) (($) . T)) +(((|#1| (-550)) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) (|has| |#1| (-356)) (|has| |#1| (-356)) -(((|#1| (-1133 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| (-747)) . T)) -(((|#1| (-747)) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-542))) -(|has| |#1| (-145)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +(-1561 (|has| |#1| (-170)) (|has| |#1| (-542))) +(((|#1| (-550)) . T)) +(((|#1| (-400 (-550))) . T)) +(((|#1| (-749)) . T)) +((((-400 (-550))) . T)) +(((|#1| (-522 |#2|) |#2|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +(|has| |#1| (-1068)) +((((-550) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-865 (-372))) . T) (((-865 (-550))) . T) (((-1144)) . T) (((-526)) . T)) +(((|#1|) . T)) +((((-836)) . T)) +(-1561 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +(-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) +((((-550)) . T)) +((((-550)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(((|#1| |#2|) . T)) +(((|#1|) . T)) +(-1561 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1020))) +((((-1144)) -12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) +(-1561 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) (|has| |#1| (-143)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -(((|#1| (-747) (-1048)) . T)) -((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) -((($ $) . T)) -((((-835)) . T)) -(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T)) -(|has| |#1| (-15 * (|#1| (-747) |#1|))) -(((|#1|) . T)) -((((-835)) . T)) -((((-371)) . T) (((-535)) . T)) -((((-861 (-371))) . T) (((-861 (-535))) . T) (((-1142)) . T) (((-524)) . T)) -((((-835)) . T)) -(((|#1| (-942)) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-542))) (|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((((-835)) . T)) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -(((|#1|) . T)) -(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535))))) -(((|#1| (-942)) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -((((-835)) . T)) +(|has| |#1| (-356)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) +(|has| |#1| (-227)) +((((-836)) . T)) +(((|#1| (-749) (-1050)) . T)) +((((-550) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-116 |#1|)) . T)) +((((-400 (-550))) . T) (((-550)) . T)) +(((|#2|) |has| |#2| (-1020))) +((((-400 (-550))) . T) (($) . T)) +(((|#2|) . T)) +((((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) +((((-550)) . T)) +((((-550)) . T)) +((((-1126) (-1144) (-550) (-219) (-836)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) -((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T)) +(-1561 (|has| |#1| (-342)) (|has| |#1| (-361))) (((|#1| |#2|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-381) (-1124)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067)))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1142) $) . T)) -((((-1142)) . T)) -((((-835)) . T)) -(((|#1| (-521 #1=(-1142)) #1#) . T)) -((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-542))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542)))) -(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542)))) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542))) -(((|#1| (-521 (-1142))) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| (-1142)) . T)) -(|has| |#1| (-1067)) -(|has| |#1| (-1067)) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))) (((-929 |#1|)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1214 |#1| |#2| |#3|)) . T)) -((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1214 |#1| |#2| |#3|)) -12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))))) -(((#1=(-1214 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|)))) (((-1142) #1#) -12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-505 (-1142) (-1214 |#1| |#2| |#3|))))) -((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3874 (-12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) -((((-1142)) -3874 (-12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142)))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) -((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356))) -(-3874 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-145)))) -(-3874 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-143)))) -((((-835)) . T)) -(((|#1|) . T)) -((((-1214 |#1| |#2| |#3|) $) -12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-279 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-535) (-1048)) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((#2=(-1214 |#1| |#2| |#3|) #2#) |has| |#1| (-356)) ((|#1| |#1|) . T)) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1| (-535)) . T)) -(((|#1| (-535)) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| (-1214 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-356))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-1117))) -(((|#2|) . T) (((-1142)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))) (((-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535)))) (((-400 (-535))) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-991))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-881))) -(((|#2|) |has| |#1| (-356))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-796))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-796))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-796))) -(-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-796))) (-12 (|has| |#1| (-356)) (|has| |#2| (-823)))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-796))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-796))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-796))) -((((-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-371)))) (((-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-535))))) -(|has| |#1| (-356)) -(((|#2|) |has| |#1| (-356))) -((((-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-617 (-535)))) ((|#2|) |has| |#1| (-356))) -(((|#2|) |has| |#1| (-356))) -(((|#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) (((-1142) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|)))) -(((|#2|) |has| |#1| (-356))) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) +((($) . T) ((|#1|) . T)) +((((-836)) . T)) +((($) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-400 (-550))) |has| |#1| (-38 (-400 (-550))))) +(((|#2|) |has| |#2| (-1068)) (((-550)) -12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068))) (((-400 (-550))) -12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) +((((-526)) |has| |#1| (-596 (-526)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-825)) (|has| |#1| (-1068)))) +((($) . T) (((-400 (-550))) . T)) +(|has| |#1| (-882)) +(|has| |#1| (-882)) +((((-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-995))) (((-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-995))) (((-865 (-372))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-865 (-372))))) (((-865 (-550))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-865 (-550))))) (((-526)) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-526))))) +((((-836)) . T)) +((((-836)) . T)) +(((|#2| |#2|) . T)) +(((|#1| |#1|) |has| |#1| (-170))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-542))) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-823))) +(((|#2|) . T)) +(-1561 (|has| |#1| (-21)) (|has| |#1| (-823))) +(((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-836)) -1561 (-12 (|has| |#1| (-595 (-836))) (|has| |#2| (-595 (-836)))) (-12 (|has| |#1| (-1068)) (|has| |#2| (-1068))))) +((((-400 |#2|) |#3|) . T)) +((((-400 (-550))) . T) (($) . T)) +(|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-356)) -(-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) -((((-1142)) -3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) -(((|#2|) |has| |#1| (-356))) -((((-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) (((-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) (((-861 (-371))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-371))))) (((-861 (-535))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-535))))) (((-524)) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-524))))) -(-3874 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| |#2| (-145)))) -(-3874 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))) -((((-835)) . T)) +((($ $) . T) ((#0=(-400 (-550)) #0#) . T)) +(|has| (-400 |#2|) (-145)) +(|has| (-400 |#2|) (-143)) +((((-677)) . T)) +(((|#1|) . T) (((-400 (-550))) . T) (((-550)) . T) (($) . T)) +(((#0=(-550) #0#) . T)) +((($) . T) (((-400 (-550))) . T)) +(-1561 (|has| |#4| (-170)) (|has| |#4| (-705)) (|has| |#4| (-823)) (|has| |#4| (-1020))) +(-1561 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1020))) +((((-836)) . T) (((-1149)) . T)) +(|has| |#4| (-771)) +(-1561 (|has| |#4| (-771)) (|has| |#4| (-823))) +(|has| |#4| (-823)) +(|has| |#3| (-771)) +(-1561 (|has| |#3| (-771)) (|has| |#3| (-823))) +(|has| |#3| (-823)) +((((-550)) . T)) +(((|#2|) . T)) +((((-1144)) -1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) +((((-1144)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) +((((-1144)) -12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) (($ $) . T)) -(((|#1| (-535) (-1048)) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#2| |#2|) |has| |#1| (-356)) ((|#1| |#1|) . T)) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) ((|#1|) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1| (-535)) . T)) -(((|#1| (-535)) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| |#2|) . T)) -(((|#1| (-1119 |#1|)) |has| |#1| (-821))) -(|has| |#1| (-1067)) -((((-835)) |has| |#1| (-1067))) -(|has| |#1| (-1067)) (((|#1|) . T)) -(((|#2|) . T)) -((((-835)) . T)) -((((-400 $) (-400 $)) |has| |#2| (-542)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-356)) -(-3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-881))) -(-3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -(-3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -(-3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) -(|has| |#2| (-356)) -(((|#2| (-747) (-1048)) . T)) -(|has| |#2| (-881)) -(|has| |#2| (-881)) -((((-1142)) |has| |#2| (-871 (-1142))) (((-1048)) . T)) -(|has| |#2| (-823)) -((((-535)) |has| |#2| (-617 (-535))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-747)) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-143)) -((($) -3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) ((|#2|) |has| |#2| (-170)) (((-400 (-535))) |has| |#2| (-38 (-400 (-535))))) -((($) . T) ((|#2|) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535))))) -((($) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) ((|#2|) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) ((|#2| |#2|) . T) ((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535))))) -((($) -3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) ((|#2|) |has| |#2| (-170)) (((-400 (-535))) |has| |#2| (-38 (-400 (-535))))) -(((|#2|) . T)) -((((-1048)) . T) ((|#2|) . T) (((-535)) |has| |#2| (-1009 (-535))) (((-400 (-535))) |has| |#2| (-1009 (-400 (-535))))) -(((|#2| (-747)) . T)) -(((#1=(-1048) |#2|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#2| (-1117)) -(((|#2|) . T)) -((((-1214 |#1| |#2| |#3|)) . T) (((-1184 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) +(((|#1|) . T) (($) . T)) +(((|#1|) . T)) +((((-838 |#1|)) . T)) +((((-1142 |#1| |#2| |#3|)) |has| |#1| (-356))) +((((-1108 |#1| |#2|)) . T)) +((((-1142 |#1| |#2| |#3|)) |has| |#1| (-356))) +(((|#2|) . T) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-995)) +(((|#2|) . T) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +((((-836)) . T)) +((((-526)) |has| |#2| (-596 (-526))) (((-865 (-550))) |has| |#2| (-596 (-865 (-550)))) (((-865 (-372))) |has| |#2| (-596 (-865 (-372)))) (((-372)) . #0=(|has| |#2| (-995))) (((-219)) . #0#)) +((((-1144) (-52)) . T)) +(|has| |#1| (-38 (-400 (-550)))) +(|has| |#1| (-38 (-400 (-550)))) +(((|#2|) . T)) ((($ $) . T)) -((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) -(((|#1| (-400 (-535)) (-1048)) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(((|#1| (-400 (-535))) . T)) -(((|#1| (-400 (-535))) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -((((-835)) . T)) -(((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356)))) -(((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356)))) -(((|#1|) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1| (-1184 |#1| |#2| |#3|)) . T)) +((((-400 (-550))) . T) (((-677)) . T) (($) . T)) +((((-1142 |#1| |#2| |#3|)) . T)) +((((-1142 |#1| |#2| |#3|)) . T) (((-1135 |#1| |#2| |#3|)) . T)) +((((-836)) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +((((-550) |#1|) . T)) +((((-1142 |#1| |#2| |#3|)) |has| |#1| (-356))) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1|) . T)) (((|#2|) . T)) +(|has| |#2| (-356)) +(((|#3|) . T) ((|#2|) . T) (($) -1561 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1020))) ((|#4|) -1561 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1020)))) +(((|#2|) . T) (($) -1561 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1020))) ((|#3|) -1561 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1020)))) +(((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) -((($ $) . T)) -((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) -(((|#1| (-400 (-535)) (-1048)) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(((|#1| (-400 (-535))) . T)) -(((|#1| (-400 (-535))) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-356)) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -((((-835)) . T)) -(((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356)))) -(((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356)))) -(((|#1|) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542)))) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) -(-3874 (|has| |#1| (-356)) (|has| |#1| (-542))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) (|has| |#1| (-356)) -(((|#1| |#2|) . T)) -((((-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) -(|has| (-1205 |#2| |#3| |#4|) (-145)) -(|has| (-1205 |#2| |#3| |#4|) (-143)) -((($) . T) ((#1=(-1205 |#2| |#3| |#4|)) |has| #1# (-170)) (((-400 (-535))) |has| #1# (-38 (-400 (-535))))) -((((-835)) . T)) -((($) . T) ((#1=(-1205 |#2| |#3| |#4|)) . T) (((-400 (-535))) |has| #1# (-38 (-400 (-535))))) -((($ $) . T) ((#1=(-1205 |#2| |#3| |#4|) #1#) . T) ((#2=(-400 (-535)) #2#) |has| #1# (-38 (-400 (-535))))) -(((#1=(-1205 |#2| |#3| |#4|)) . T) (((-400 (-535))) |has| #1# (-38 (-400 (-535)))) (($) . T)) -((($) . T) ((#1=(-1205 |#2| |#3| |#4|)) |has| #1# (-170)) (((-400 (-535))) |has| #1# (-38 (-400 (-535))))) -((((-1205 |#2| |#3| |#4|)) . T)) -((((-1205 |#2| |#3| |#4|)) . T)) -((((-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(|has| |#1| (-38 (-400 (-535)))) -(((|#1| (-747)) . T)) -(((|#1| (-747)) . T)) -(|has| |#1| (-542)) -(|has| |#1| (-542)) -(-3874 (|has| |#1| (-170)) (|has| |#1| (-542))) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535))))) -((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535))))) -(((|#1| (-747) (-1048)) . T)) -((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) -((($ $) . T)) -((((-835)) . T)) -(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T)) -(|has| |#1| (-15 * (|#1| (-747) |#1|))) +((((-116 |#1|)) . T)) (((|#1|) . T)) -((((-1142)) . T) (((-835)) . T)) (((|#1|) . T)) +((((-400 (-550))) |has| |#2| (-1011 (-400 (-550)))) (((-550)) |has| |#2| (-1011 (-550))) ((|#2|) . T) (((-838 |#1|)) . T)) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) (((|#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-535) |#1|) . T)) -((((-524)) |has| |#1| (-594 (-524)))) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) +((((-129)) . T) (((-836)) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) -((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067)))) (((|#1|) . T)) -(|has| |#1| (-823)) (((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) (($ $) . T)) +((($ $) . T)) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-882))) +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +((((-836)) . T)) +((((-836)) . T)) +((((-836)) . T)) +(((|#1| (-522 |#2|)) . T)) +((((-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) . T)) +(((|#1| (-550)) . T)) +(((|#1| (-400 (-550))) . T)) +(((|#1| (-749)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-400 (-550))) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +(-1561 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-882))) +(-1561 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-882))) +((($) . T)) +(((|#2| (-522 (-838 |#1|))) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-836)) . T) (((-1149)) . T)) +((((-550) |#1|) . T)) +((((-836)) . T) (((-1149)) . T)) +(((|#2|) . T)) +(((|#2| (-749)) . T)) +((((-836)) -1561 (|has| |#1| (-595 (-836))) (|has| |#1| (-1068)))) (((|#1|) . T)) -((((-835)) . T)) -((((-835)) . T)) -((((-835)) . T) (((-1147)) . T)) -((((-835)) . T) (((-1147)) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((((-835)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-524)) |has| |#4| (-594 (-524)))) -(((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) -(((|#4|) . T)) -((((-835)) . T) (((-618 |#4|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-835)) . T)) +((((-1126) |#1|) . T)) +((((-400 |#2|)) . T)) +((((-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T)) +(|has| |#1| (-542)) +(|has| |#1| (-542)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-170))) -((((-795 |#1|)) . T)) -(((|#2| (-795 |#1|)) . T)) -(((|#2| (-864 |#1|)) . T)) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#2|) . T)) -(((|#2|) . T) (($) . T)) -((((-835)) . T)) -((((-864 |#1|)) . T) (((-795 |#1|)) . T)) -(((|#1| |#2|) . T)) -((((-1142) |#1|) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-835)) . T)) -((((-795 (-1142))) . T)) -((((-1142) |#1|) . T)) -(((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) +(((|#2| $) |has| |#2| (-279 |#2| |#2|))) +(((|#1| (-623 |#1|)) |has| |#1| (-823))) +(-1561 (|has| |#1| (-227)) (|has| |#1| (-342))) +(-1561 (|has| |#1| (-356)) (|has| |#1| (-342))) +(|has| |#1| (-1068)) +(((|#1|) . T)) +((((-400 (-550))) . T) (($) . T)) +((((-972 |#1|)) . T) ((|#1|) . T) (((-550)) -1561 (|has| (-972 |#1|) (-1011 (-550))) (|has| |#1| (-1011 (-550)))) (((-400 (-550))) -1561 (|has| (-972 |#1|) (-1011 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +((((-1144)) |has| |#1| (-873 (-1144)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) +(((|#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) . T)) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-835)) . T)) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#2|) . T)) -(((|#2|) . T) (($) . T)) -((((-835)) . T)) -((((-795 |#1|)) . T)) -(((|#1| |#2|) . T)) -((((-535)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((#0=(-1108 |#1| |#2|) #0#) |has| (-1108 |#1| |#2|) (-302 (-1108 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((#0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) #0#) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) +(((#0=(-116 |#1|)) |has| #0# (-302 #0#))) ((($ $) . T)) -((($) . T)) -((((-835)) . T)) -((($) . T)) -(((-1253 . -170) T) ((-1253 . -703) T) ((-1253 . -1078) T) ((-1253 . -1025) T) ((-1253 . -1018) T) ((-1253 . -624) 144993) ((-1253 . -130) T) ((-1253 . -25) T) ((-1253 . -101) T) ((-1253 . -593) 144975) ((-1253 . -1067) T) ((-1253 . -23) T) ((-1253 . -21) T) ((-1253 . -1024) 144962) ((-1253 . -111) 144947) ((-1253 . -361) T) ((-1253 . -594) 144929) ((-1253 . -1117) T) ((-1249 . -1247) 144908) ((-1249 . -1009) 144885) ((-1249 . -1018) T) ((-1249 . -1025) T) ((-1249 . -1078) T) ((-1249 . -703) T) ((-1249 . -21) T) ((-1249 . -23) T) ((-1249 . -1067) T) ((-1249 . -593) 144867) ((-1249 . -101) T) ((-1249 . -25) T) ((-1249 . -130) T) ((-1249 . -624) 144841) ((-1249 . -1239) 144825) ((-1249 . -694) 144795) ((-1249 . -1024) 144779) ((-1249 . -111) 144758) ((-1249 . -38) 144728) ((-1249 . -1244) 144707) ((-1248 . -1018) T) ((-1248 . -1025) T) ((-1248 . -1078) T) ((-1248 . -703) T) ((-1248 . -21) T) ((-1248 . -23) T) ((-1248 . -1067) T) ((-1248 . -593) 144689) ((-1248 . -101) T) ((-1248 . -25) T) ((-1248 . -130) T) ((-1248 . -624) 144663) ((-1248 . -1239) 144647) ((-1248 . -694) 144617) ((-1248 . -1024) 144601) ((-1248 . -111) 144580) ((-1248 . -38) 144550) ((-1248 . -377) 144529) ((-1248 . -1009) 144513) ((-1246 . -1247) 144489) ((-1246 . -1009) 144463) ((-1246 . -1018) T) ((-1246 . -1025) T) ((-1246 . -1078) T) ((-1246 . -703) T) ((-1246 . -21) T) ((-1246 . -23) T) ((-1246 . -1067) T) ((-1246 . -593) 144445) ((-1246 . -101) T) ((-1246 . -25) T) ((-1246 . -130) T) ((-1246 . -624) 144419) ((-1246 . -1239) 144403) ((-1246 . -694) 144373) ((-1246 . -1024) 144357) ((-1246 . -111) 144336) ((-1246 . -38) 144306) ((-1246 . -1244) 144282) ((-1245 . -1247) 144261) ((-1245 . -1009) 144218) ((-1245 . -1018) T) ((-1245 . -1025) T) ((-1245 . -1078) T) ((-1245 . -703) T) ((-1245 . -21) T) ((-1245 . -23) T) ((-1245 . -1067) T) ((-1245 . -593) 144200) ((-1245 . -101) T) ((-1245 . -25) T) ((-1245 . -130) T) ((-1245 . -624) 144174) ((-1245 . -1239) 144158) ((-1245 . -694) 144128) ((-1245 . -1024) 144112) ((-1245 . -111) 144091) ((-1245 . -38) 144061) ((-1245 . -1244) 144040) ((-1245 . -377) 144012) ((-1240 . -377) 143984) ((-1240 . -1009) 143961) ((-1240 . -694) 143931) ((-1240 . -624) 143905) ((-1240 . -130) T) ((-1240 . -25) T) ((-1240 . -101) T) ((-1240 . -593) 143887) ((-1240 . -1067) T) ((-1240 . -23) T) ((-1240 . -21) T) ((-1240 . -1024) 143871) ((-1240 . -111) 143850) ((-1240 . -1247) 143829) ((-1240 . -1018) T) ((-1240 . -1025) T) ((-1240 . -1078) T) ((-1240 . -703) T) ((-1240 . -1239) 143813) ((-1240 . -38) 143783) ((-1240 . -1244) 143762) ((-1238 . -1173) 143731) ((-1238 . -593) 143693) ((-1238 . -149) 143677) ((-1238 . -34) T) ((-1238 . -1178) T) ((-1238 . -302) 143615) ((-1238 . -505) 143548) ((-1238 . -1067) T) ((-1238 . -101) T) ((-1238 . -481) 143532) ((-1238 . -594) 143493) ((-1238 . -947) 143462) ((-1237 . -1018) T) ((-1237 . -1025) T) ((-1237 . -1078) T) ((-1237 . -703) T) ((-1237 . -21) T) ((-1237 . -23) T) ((-1237 . -1067) T) ((-1237 . -593) 143444) ((-1237 . -101) T) ((-1237 . -25) T) ((-1237 . -130) T) ((-1237 . -624) 143404) ((-1237 . -38) 143374) ((-1237 . -111) 143339) ((-1237 . -1024) 143309) ((-1237 . -694) 143279) ((-1236 . -1049) T) ((-1236 . -593) 143245) ((-1236 . -1067) T) ((-1236 . -101) T) ((-1236 . -92) T) ((-1235 . -1049) T) ((-1235 . -593) 143211) ((-1235 . -1067) T) ((-1235 . -101) T) ((-1235 . -92) T) ((-1228 . -1067) T) ((-1228 . -593) 143193) ((-1228 . -101) T) ((-1227 . -1067) T) ((-1227 . -593) 143175) ((-1227 . -101) T) ((-1224 . -1223) 143159) ((-1224 . -365) 143143) ((-1224 . -823) 143122) ((-1224 . -149) 143106) ((-1224 . -34) T) ((-1224 . -1178) T) ((-1224 . -593) 143018) ((-1224 . -302) 142956) ((-1224 . -505) 142889) ((-1224 . -1067) 142839) ((-1224 . -101) 142789) ((-1224 . -481) 142773) ((-1224 . -594) 142734) ((-1224 . -584) 142711) ((-1224 . -279) 142688) ((-1224 . -281) 142665) ((-1224 . -627) 142649) ((-1224 . -19) 142633) ((-1221 . -1067) T) ((-1221 . -593) 142599) ((-1221 . -101) T) ((-1214 . -1217) 142583) ((-1214 . -227) 142542) ((-1214 . -624) 142467) ((-1214 . -130) T) ((-1214 . -25) T) ((-1214 . -101) T) ((-1214 . -593) 142449) ((-1214 . -1067) T) ((-1214 . -23) T) ((-1214 . -21) T) ((-1214 . -703) T) ((-1214 . -1078) T) ((-1214 . -1025) T) ((-1214 . -1018) T) ((-1214 . -279) 142434) ((-1214 . -871) 142347) ((-1214 . -944) 142316) ((-1214 . -38) 142213) ((-1214 . -111) 142082) ((-1214 . -1024) 141965) ((-1214 . -694) 141862) ((-1214 . -143) 141841) ((-1214 . -145) 141820) ((-1214 . -170) 141771) ((-1214 . -542) 141750) ((-1214 . -283) 141729) ((-1214 . -47) 141706) ((-1214 . -1203) 141683) ((-1214 . -35) 141649) ((-1214 . -94) 141615) ((-1214 . -277) 141581) ((-1214 . -484) 141547) ((-1214 . -1167) 141513) ((-1214 . -1164) 141479) ((-1214 . -973) 141445) ((-1211 . -319) 141389) ((-1211 . -1009) 141355) ((-1211 . -405) 141321) ((-1211 . -38) 141213) ((-1211 . -624) 141118) ((-1211 . -703) T) ((-1211 . -1078) T) ((-1211 . -1025) T) ((-1211 . -1018) T) ((-1211 . -111) 141010) ((-1211 . -1024) 140915) ((-1211 . -21) T) ((-1211 . -23) T) ((-1211 . -1067) T) ((-1211 . -593) 140897) ((-1211 . -101) T) ((-1211 . -25) T) ((-1211 . -130) T) ((-1211 . -694) 140789) ((-1211 . -143) 140750) ((-1211 . -145) 140711) ((-1211 . -170) T) ((-1211 . -542) T) ((-1211 . -283) T) ((-1211 . -47) 140655) ((-1210 . -1209) 140634) ((-1210 . -356) 140613) ((-1210 . -1183) 140592) ((-1210 . -892) 140571) ((-1210 . -542) 140522) ((-1210 . -170) 140453) ((-1210 . -694) 140294) ((-1210 . -38) 140135) ((-1210 . -444) 140114) ((-1210 . -300) 140093) ((-1210 . -624) 139990) ((-1210 . -703) T) ((-1210 . -1078) T) ((-1210 . -1025) T) ((-1210 . -1018) T) ((-1210 . -111) 139811) ((-1210 . -1024) 139646) ((-1210 . -21) T) ((-1210 . -23) T) ((-1210 . -1067) T) ((-1210 . -593) 139628) ((-1210 . -101) T) ((-1210 . -25) T) ((-1210 . -130) T) ((-1210 . -283) 139579) ((-1210 . -237) 139558) ((-1210 . -973) 139524) ((-1210 . -1164) 139490) ((-1210 . -1167) 139456) ((-1210 . -484) 139422) ((-1210 . -277) 139388) ((-1210 . -94) 139354) ((-1210 . -35) 139320) ((-1210 . -1203) 139290) ((-1210 . -47) 139260) ((-1210 . -145) 139239) ((-1210 . -143) 139218) ((-1210 . -944) 139180) ((-1210 . -871) 139086) ((-1210 . -279) 139071) ((-1210 . -227) 139023) ((-1210 . -1207) 139007) ((-1210 . -1009) 138991) ((-1205 . -1209) 138952) ((-1205 . -356) 138931) ((-1205 . -1183) 138910) ((-1205 . -892) 138889) ((-1205 . -542) 138840) ((-1205 . -170) 138771) ((-1205 . -694) 138612) ((-1205 . -38) 138453) ((-1205 . -444) 138432) ((-1205 . -300) 138411) ((-1205 . -624) 138308) ((-1205 . -703) T) ((-1205 . -1078) T) ((-1205 . -1025) T) ((-1205 . -1018) T) ((-1205 . -111) 138129) ((-1205 . -1024) 137964) ((-1205 . -21) T) ((-1205 . -23) T) ((-1205 . -1067) T) ((-1205 . -593) 137946) ((-1205 . -101) T) ((-1205 . -25) T) ((-1205 . -130) T) ((-1205 . -283) 137897) ((-1205 . -237) 137876) ((-1205 . -973) 137842) ((-1205 . -1164) 137808) ((-1205 . -1167) 137774) ((-1205 . -484) 137740) ((-1205 . -277) 137706) ((-1205 . -94) 137672) ((-1205 . -35) 137638) ((-1205 . -1203) 137608) ((-1205 . -47) 137578) ((-1205 . -145) 137557) ((-1205 . -143) 137536) ((-1205 . -944) 137498) ((-1205 . -871) 137404) ((-1205 . -279) 137389) ((-1205 . -227) 137341) ((-1205 . -1207) 137325) ((-1205 . -1009) 137260) ((-1193 . -1200) 137244) ((-1193 . -1117) 137222) ((-1193 . -594) NIL) ((-1193 . -302) 137209) ((-1193 . -505) 137156) ((-1193 . -319) 137133) ((-1193 . -1009) 137013) ((-1193 . -405) 136997) ((-1193 . -38) 136826) ((-1193 . -111) 136635) ((-1193 . -1024) 136458) ((-1193 . -624) 136383) ((-1193 . -694) 136212) ((-1193 . -143) 136191) ((-1193 . -145) 136170) ((-1193 . -47) 136147) ((-1193 . -370) 136131) ((-1193 . -617) 136079) ((-1193 . -823) 136058) ((-1193 . -871) 136001) ((-1193 . -857) NIL) ((-1193 . -881) 135980) ((-1193 . -1183) 135959) ((-1193 . -921) 135928) ((-1193 . -892) 135907) ((-1193 . -542) 135818) ((-1193 . -283) 135729) ((-1193 . -170) 135620) ((-1193 . -444) 135551) ((-1193 . -300) 135530) ((-1193 . -279) 135457) ((-1193 . -227) T) ((-1193 . -130) T) ((-1193 . -25) T) ((-1193 . -101) T) ((-1193 . -593) 135439) ((-1193 . -1067) T) ((-1193 . -23) T) ((-1193 . -21) T) ((-1193 . -703) T) ((-1193 . -1078) T) ((-1193 . -1025) T) ((-1193 . -1018) T) ((-1193 . -225) 135423) ((-1191 . -1060) 135407) ((-1191 . -1178) T) ((-1191 . -1067) 135385) ((-1191 . -593) 135352) ((-1191 . -101) 135330) ((-1191 . -1061) 135287) ((-1189 . -1188) 135266) ((-1189 . -973) 135232) ((-1189 . -1164) 135198) ((-1189 . -1167) 135164) ((-1189 . -484) 135130) ((-1189 . -277) 135096) ((-1189 . -94) 135062) ((-1189 . -35) 135028) ((-1189 . -1203) 135005) ((-1189 . -47) 134982) ((-1189 . -694) 134796) ((-1189 . -624) 134666) ((-1189 . -1024) 134474) ((-1189 . -111) 134263) ((-1189 . -38) 134077) ((-1189 . -944) 134046) ((-1189 . -279) 133966) ((-1189 . -1186) 133950) ((-1189 . -703) T) ((-1189 . -1078) T) ((-1189 . -1025) T) ((-1189 . -1018) T) ((-1189 . -21) T) ((-1189 . -23) T) ((-1189 . -1067) T) ((-1189 . -593) 133932) ((-1189 . -101) T) ((-1189 . -25) T) ((-1189 . -130) T) ((-1189 . -143) 133857) ((-1189 . -145) 133782) ((-1189 . -594) 133455) ((-1189 . -225) 133425) ((-1189 . -871) 133276) ((-1189 . -227) 133181) ((-1189 . -356) 133160) ((-1189 . -1183) 133139) ((-1189 . -892) 133118) ((-1189 . -542) 133069) ((-1189 . -170) 133000) ((-1189 . -444) 132979) ((-1189 . -300) 132958) ((-1189 . -283) 132909) ((-1189 . -237) 132888) ((-1189 . -331) 132858) ((-1189 . -505) 132718) ((-1189 . -302) 132657) ((-1189 . -370) 132627) ((-1189 . -617) 132535) ((-1189 . -393) 132505) ((-1189 . -1178) 132484) ((-1189 . -857) 132357) ((-1189 . -796) 132310) ((-1189 . -767) 132263) ((-1189 . -768) 132216) ((-1189 . -823) 132115) ((-1189 . -770) 132068) ((-1189 . -773) 132021) ((-1189 . -821) 131974) ((-1189 . -855) 131944) ((-1189 . -881) 131897) ((-1189 . -991) 131850) ((-1189 . -1009) 131636) ((-1189 . -1117) 131588) ((-1189 . -962) 131558) ((-1184 . -1188) 131519) ((-1184 . -973) 131485) ((-1184 . -1164) 131451) ((-1184 . -1167) 131417) ((-1184 . -484) 131383) ((-1184 . -277) 131349) ((-1184 . -94) 131315) ((-1184 . -35) 131281) ((-1184 . -1203) 131258) ((-1184 . -47) 131235) ((-1184 . -694) 131031) ((-1184 . -624) 130883) ((-1184 . -1024) 130673) ((-1184 . -111) 130442) ((-1184 . -38) 130238) ((-1184 . -944) 130207) ((-1184 . -279) 130055) ((-1184 . -1186) 130039) ((-1184 . -703) T) ((-1184 . -1078) T) ((-1184 . -1025) T) ((-1184 . -1018) T) ((-1184 . -21) T) ((-1184 . -23) T) ((-1184 . -1067) T) ((-1184 . -593) 130021) ((-1184 . -101) T) ((-1184 . -25) T) ((-1184 . -130) T) ((-1184 . -143) 129928) ((-1184 . -145) 129835) ((-1184 . -594) NIL) ((-1184 . -225) 129787) ((-1184 . -871) 129620) ((-1184 . -227) 129507) ((-1184 . -356) 129486) ((-1184 . -1183) 129465) ((-1184 . -892) 129444) ((-1184 . -542) 129395) ((-1184 . -170) 129326) ((-1184 . -444) 129305) ((-1184 . -300) 129284) ((-1184 . -283) 129235) ((-1184 . -237) 129214) ((-1184 . -331) 129166) ((-1184 . -505) 128935) ((-1184 . -302) 128820) ((-1184 . -370) 128772) ((-1184 . -617) 128724) ((-1184 . -393) 128676) ((-1184 . -1178) 128655) ((-1184 . -857) NIL) ((-1184 . -796) NIL) ((-1184 . -767) NIL) ((-1184 . -768) NIL) ((-1184 . -823) NIL) ((-1184 . -770) NIL) ((-1184 . -773) NIL) ((-1184 . -821) NIL) ((-1184 . -855) 128607) ((-1184 . -881) NIL) ((-1184 . -991) NIL) ((-1184 . -1009) 128573) ((-1184 . -1117) NIL) ((-1184 . -962) 128525) ((-1179 . -1049) T) ((-1179 . -593) 128491) ((-1179 . -1067) T) ((-1179 . -101) T) ((-1179 . -92) T) ((-1176 . -593) 128403) ((-1176 . -1067) 128381) ((-1176 . -101) 128359) ((-1171 . -717) 128335) ((-1171 . -35) 128301) ((-1171 . -94) 128267) ((-1171 . -277) 128233) ((-1171 . -484) 128199) ((-1171 . -1167) 128165) ((-1171 . -1164) 128131) ((-1171 . -973) 128097) ((-1171 . -47) 128066) ((-1171 . -38) 127963) ((-1171 . -694) 127860) ((-1171 . -283) 127839) ((-1171 . -542) 127818) ((-1171 . -111) 127687) ((-1171 . -1024) 127570) ((-1171 . -170) 127521) ((-1171 . -145) 127500) ((-1171 . -143) 127479) ((-1171 . -624) 127404) ((-1171 . -944) 127366) ((-1171 . -1018) T) ((-1171 . -1025) T) ((-1171 . -1078) T) ((-1171 . -703) T) ((-1171 . -21) T) ((-1171 . -23) T) ((-1171 . -1067) T) ((-1171 . -593) 127348) ((-1171 . -101) T) ((-1171 . -25) T) ((-1171 . -130) T) ((-1171 . -871) 127329) ((-1171 . -505) 127296) ((-1171 . -302) 127283) ((-1165 . -981) 127267) ((-1165 . -34) T) ((-1165 . -1178) T) ((-1165 . -593) 127199) ((-1165 . -302) 127137) ((-1165 . -505) 127070) ((-1165 . -1067) 127048) ((-1165 . -101) 127026) ((-1165 . -481) 127010) ((-1160 . -358) 126984) ((-1160 . -101) T) ((-1160 . -593) 126966) ((-1160 . -1067) T) ((-1158 . -1067) T) ((-1158 . -593) 126948) ((-1158 . -101) T) ((-1151 . -1155) 126927) ((-1151 . -223) 126877) ((-1151 . -106) 126827) ((-1151 . -302) 126631) ((-1151 . -505) 126423) ((-1151 . -481) 126360) ((-1151 . -149) 126310) ((-1151 . -594) NIL) ((-1151 . -229) 126260) ((-1151 . -590) 126239) ((-1151 . -281) 126218) ((-1151 . -279) 126197) ((-1151 . -101) T) ((-1151 . -1067) T) ((-1151 . -593) 126179) ((-1151 . -1178) T) ((-1151 . -34) T) ((-1151 . -584) 126158) ((-1147 . -1220) T) ((-1147 . -1067) T) ((-1147 . -593) 126140) ((-1147 . -101) T) ((-1146 . -593) 126122) ((-1145 . -593) 126104) ((-1144 . -319) 126081) ((-1144 . -1009) 125977) ((-1144 . -405) 125961) ((-1144 . -38) 125858) ((-1144 . -624) 125783) ((-1144 . -703) T) ((-1144 . -1078) T) ((-1144 . -1025) T) ((-1144 . -1018) T) ((-1144 . -111) 125652) ((-1144 . -1024) 125535) ((-1144 . -21) T) ((-1144 . -23) T) ((-1144 . -1067) T) ((-1144 . -593) 125517) ((-1144 . -101) T) ((-1144 . -25) T) ((-1144 . -130) T) ((-1144 . -694) 125414) ((-1144 . -143) 125393) ((-1144 . -145) 125372) ((-1144 . -170) 125323) ((-1144 . -542) 125302) ((-1144 . -283) 125281) ((-1144 . -47) 125258) ((-1142 . -823) T) ((-1142 . -101) T) ((-1142 . -593) 125240) ((-1142 . -1067) T) ((-1142 . -594) 125162) ((-1142 . -797) T) ((-1142 . -857) 125129) ((-1141 . -593) 125111) ((-1140 . -1217) 125095) ((-1140 . -227) 125054) ((-1140 . -624) 124979) ((-1140 . -130) T) ((-1140 . -25) T) ((-1140 . -101) T) ((-1140 . -593) 124961) ((-1140 . -1067) T) ((-1140 . -23) T) ((-1140 . -21) T) ((-1140 . -703) T) ((-1140 . -1078) T) ((-1140 . -1025) T) ((-1140 . -1018) T) ((-1140 . -279) 124946) ((-1140 . -871) 124859) ((-1140 . -944) 124828) ((-1140 . -38) 124725) ((-1140 . -111) 124594) ((-1140 . -1024) 124477) ((-1140 . -694) 124374) ((-1140 . -143) 124353) ((-1140 . -145) 124332) ((-1140 . -170) 124283) ((-1140 . -542) 124262) ((-1140 . -283) 124241) ((-1140 . -47) 124218) ((-1140 . -1203) 124195) ((-1140 . -35) 124161) ((-1140 . -94) 124127) ((-1140 . -277) 124093) ((-1140 . -484) 124059) ((-1140 . -1167) 124025) ((-1140 . -1164) 123991) ((-1140 . -973) 123957) ((-1139 . -1209) 123918) ((-1139 . -356) 123897) ((-1139 . -1183) 123876) ((-1139 . -892) 123855) ((-1139 . -542) 123806) ((-1139 . -170) 123737) ((-1139 . -694) 123578) ((-1139 . -38) 123419) ((-1139 . -444) 123398) ((-1139 . -300) 123377) ((-1139 . -624) 123274) ((-1139 . -703) T) ((-1139 . -1078) T) ((-1139 . -1025) T) ((-1139 . -1018) T) ((-1139 . -111) 123095) ((-1139 . -1024) 122930) ((-1139 . -21) T) ((-1139 . -23) T) ((-1139 . -1067) T) ((-1139 . -593) 122912) ((-1139 . -101) T) ((-1139 . -25) T) ((-1139 . -130) T) ((-1139 . -283) 122863) ((-1139 . -237) 122842) ((-1139 . -973) 122808) ((-1139 . -1164) 122774) ((-1139 . -1167) 122740) ((-1139 . -484) 122706) ((-1139 . -277) 122672) ((-1139 . -94) 122638) ((-1139 . -35) 122604) ((-1139 . -1203) 122574) ((-1139 . -47) 122544) ((-1139 . -145) 122523) ((-1139 . -143) 122502) ((-1139 . -944) 122464) ((-1139 . -871) 122370) ((-1139 . -279) 122355) ((-1139 . -227) 122307) ((-1139 . -1207) 122291) ((-1139 . -1009) 122226) ((-1136 . -1200) 122210) ((-1136 . -1117) 122188) ((-1136 . -594) NIL) ((-1136 . -302) 122175) ((-1136 . -505) 122122) ((-1136 . -319) 122099) ((-1136 . -1009) 121979) ((-1136 . -405) 121963) ((-1136 . -38) 121792) ((-1136 . -111) 121601) ((-1136 . -1024) 121424) ((-1136 . -624) 121349) ((-1136 . -694) 121178) ((-1136 . -143) 121157) ((-1136 . -145) 121136) ((-1136 . -47) 121113) ((-1136 . -370) 121097) ((-1136 . -617) 121045) ((-1136 . -823) 121024) ((-1136 . -871) 120967) ((-1136 . -857) NIL) ((-1136 . -881) 120946) ((-1136 . -1183) 120925) ((-1136 . -921) 120894) ((-1136 . -892) 120873) ((-1136 . -542) 120784) ((-1136 . -283) 120695) ((-1136 . -170) 120586) ((-1136 . -444) 120517) ((-1136 . -300) 120496) ((-1136 . -279) 120423) ((-1136 . -227) T) ((-1136 . -130) T) ((-1136 . -25) T) ((-1136 . -101) T) ((-1136 . -593) 120405) ((-1136 . -1067) T) ((-1136 . -23) T) ((-1136 . -21) T) ((-1136 . -703) T) ((-1136 . -1078) T) ((-1136 . -1025) T) ((-1136 . -1018) T) ((-1136 . -225) 120389) ((-1133 . -1188) 120350) ((-1133 . -973) 120316) ((-1133 . -1164) 120282) ((-1133 . -1167) 120248) ((-1133 . -484) 120214) ((-1133 . -277) 120180) ((-1133 . -94) 120146) ((-1133 . -35) 120112) ((-1133 . -1203) 120089) ((-1133 . -47) 120066) ((-1133 . -694) 119862) ((-1133 . -624) 119714) ((-1133 . -1024) 119504) ((-1133 . -111) 119273) ((-1133 . -38) 119069) ((-1133 . -944) 119038) ((-1133 . -279) 118886) ((-1133 . -1186) 118870) ((-1133 . -703) T) ((-1133 . -1078) T) ((-1133 . -1025) T) ((-1133 . -1018) T) ((-1133 . -21) T) ((-1133 . -23) T) ((-1133 . -1067) T) ((-1133 . -593) 118852) ((-1133 . -101) T) ((-1133 . -25) T) ((-1133 . -130) T) ((-1133 . -143) 118759) ((-1133 . -145) 118666) ((-1133 . -594) NIL) ((-1133 . -225) 118618) ((-1133 . -871) 118451) ((-1133 . -227) 118338) ((-1133 . -356) 118317) ((-1133 . -1183) 118296) ((-1133 . -892) 118275) ((-1133 . -542) 118226) ((-1133 . -170) 118157) ((-1133 . -444) 118136) ((-1133 . -300) 118115) ((-1133 . -283) 118066) ((-1133 . -237) 118045) ((-1133 . -331) 117997) ((-1133 . -505) 117766) ((-1133 . -302) 117651) ((-1133 . -370) 117603) ((-1133 . -617) 117555) ((-1133 . -393) 117507) ((-1133 . -1178) 117486) ((-1133 . -857) NIL) ((-1133 . -796) NIL) ((-1133 . -767) NIL) ((-1133 . -768) NIL) ((-1133 . -823) NIL) ((-1133 . -770) NIL) ((-1133 . -773) NIL) ((-1133 . -821) NIL) ((-1133 . -855) 117438) ((-1133 . -881) NIL) ((-1133 . -991) NIL) ((-1133 . -1009) 117404) ((-1133 . -1117) NIL) ((-1133 . -962) 117356) ((-1132 . -1049) T) ((-1132 . -593) 117322) ((-1132 . -1067) T) ((-1132 . -101) T) ((-1132 . -92) T) ((-1131 . -1067) T) ((-1131 . -593) 117304) ((-1131 . -101) T) ((-1130 . -1067) T) ((-1130 . -593) 117286) ((-1130 . -101) T) ((-1125 . -1155) 117262) ((-1125 . -223) 117209) ((-1125 . -106) 117156) ((-1125 . -302) 116951) ((-1125 . -505) 116734) ((-1125 . -481) 116668) ((-1125 . -149) 116615) ((-1125 . -594) NIL) ((-1125 . -229) 116562) ((-1125 . -590) 116538) ((-1125 . -281) 116514) ((-1125 . -279) 116490) ((-1125 . -101) T) ((-1125 . -1067) T) ((-1125 . -593) 116472) ((-1125 . -1178) T) ((-1125 . -34) T) ((-1125 . -584) 116448) ((-1124 . -1123) T) ((-1124 . -19) 116430) ((-1124 . -627) 116412) ((-1124 . -281) 116387) ((-1124 . -279) 116362) ((-1124 . -584) 116337) ((-1124 . -594) NIL) ((-1124 . -481) 116319) ((-1124 . -505) NIL) ((-1124 . -302) NIL) ((-1124 . -1178) T) ((-1124 . -34) T) ((-1124 . -149) 116301) ((-1124 . -823) T) ((-1124 . -365) 116283) ((-1124 . -1110) T) ((-1124 . -101) T) ((-1124 . -593) 116265) ((-1124 . -1067) T) ((-1124 . -797) T) ((-1119 . -650) 116249) ((-1119 . -627) 116233) ((-1119 . -281) 116210) ((-1119 . -279) 116187) ((-1119 . -584) 116164) ((-1119 . -594) 116125) ((-1119 . -481) 116109) ((-1119 . -101) 116087) ((-1119 . -1067) 116065) ((-1119 . -505) 115998) ((-1119 . -302) 115936) ((-1119 . -593) 115868) ((-1119 . -1178) T) ((-1119 . -34) T) ((-1119 . -149) 115852) ((-1119 . -1213) 115836) ((-1119 . -981) 115820) ((-1119 . -1115) 115804) ((-1116 . -1155) 115783) ((-1116 . -223) 115733) ((-1116 . -106) 115683) ((-1116 . -302) 115487) ((-1116 . -505) 115279) ((-1116 . -481) 115216) ((-1116 . -149) 115166) ((-1116 . -594) NIL) ((-1116 . -229) 115116) ((-1116 . -590) 115095) ((-1116 . -281) 115074) ((-1116 . -279) 115053) ((-1116 . -101) T) ((-1116 . -1067) T) ((-1116 . -593) 115035) ((-1116 . -1178) T) ((-1116 . -34) T) ((-1116 . -584) 115014) ((-1113 . -1087) 114998) ((-1113 . -481) 114982) ((-1113 . -101) 114960) ((-1113 . -1067) 114938) ((-1113 . -505) 114871) ((-1113 . -302) 114809) ((-1113 . -593) 114741) ((-1113 . -1178) T) ((-1113 . -34) T) ((-1113 . -106) 114725) ((-1112 . -1075) 114694) ((-1112 . -1173) 114663) ((-1112 . -593) 114625) ((-1112 . -149) 114609) ((-1112 . -34) T) ((-1112 . -1178) T) ((-1112 . -302) 114547) ((-1112 . -505) 114480) ((-1112 . -1067) T) ((-1112 . -101) T) ((-1112 . -481) 114464) ((-1112 . -594) 114425) ((-1112 . -947) 114394) ((-1112 . -1038) 114363) ((-1108 . -1089) 114308) ((-1108 . -481) 114292) ((-1108 . -505) 114225) ((-1108 . -302) 114163) ((-1108 . -1178) T) ((-1108 . -34) T) ((-1108 . -1021) 114103) ((-1108 . -1009) 113999) ((-1108 . -405) 113983) ((-1108 . -617) 113931) ((-1108 . -370) 113915) ((-1108 . -227) 113894) ((-1108 . -871) 113853) ((-1108 . -225) 113837) ((-1108 . -694) 113769) ((-1108 . -624) 113743) ((-1108 . -130) T) ((-1108 . -25) T) ((-1108 . -101) T) ((-1108 . -593) 113705) ((-1108 . -1067) T) ((-1108 . -23) T) ((-1108 . -21) T) ((-1108 . -1024) 113689) ((-1108 . -111) 113668) ((-1108 . -1018) T) ((-1108 . -1025) T) ((-1108 . -1078) T) ((-1108 . -703) T) ((-1108 . -38) 113628) ((-1108 . -594) 113589) ((-1107 . -981) 113560) ((-1107 . -34) T) ((-1107 . -1178) T) ((-1107 . -593) 113542) ((-1107 . -302) 113468) ((-1107 . -505) 113387) ((-1107 . -1067) T) ((-1107 . -101) T) ((-1107 . -481) 113358) ((-1106 . -1067) T) ((-1106 . -593) 113340) ((-1106 . -101) T) ((-1101 . -1103) T) ((-1101 . -1220) T) ((-1101 . -92) T) ((-1101 . -101) T) ((-1101 . -593) 113306) ((-1101 . -1067) T) ((-1101 . -1049) T) ((-1099 . -1100) 113290) ((-1099 . -101) T) ((-1099 . -593) 113272) ((-1099 . -1067) T) ((-1092 . -717) 113251) ((-1092 . -35) 113217) ((-1092 . -94) 113183) ((-1092 . -277) 113149) ((-1092 . -484) 113115) ((-1092 . -1167) 113081) ((-1092 . -1164) 113047) ((-1092 . -973) 113013) ((-1092 . -47) 112985) ((-1092 . -38) 112882) ((-1092 . -694) 112779) ((-1092 . -283) 112758) ((-1092 . -542) 112737) ((-1092 . -111) 112606) ((-1092 . -1024) 112489) ((-1092 . -170) 112440) ((-1092 . -145) 112419) ((-1092 . -143) 112398) ((-1092 . -624) 112323) ((-1092 . -944) 112290) ((-1092 . -1018) T) ((-1092 . -1025) T) ((-1092 . -1078) T) ((-1092 . -703) T) ((-1092 . -21) T) ((-1092 . -23) T) ((-1092 . -1067) T) ((-1092 . -593) 112272) ((-1092 . -101) T) ((-1092 . -25) T) ((-1092 . -130) T) ((-1092 . -871) 112256) ((-1092 . -505) 112226) ((-1092 . -302) 112213) ((-1091 . -921) 112180) ((-1091 . -1009) 112063) ((-1091 . -1183) 112042) ((-1091 . -881) 112021) ((-1091 . -857) 111880) ((-1091 . -871) 111864) ((-1091 . -823) 111843) ((-1091 . -505) 111795) ((-1091 . -444) 111746) ((-1091 . -617) 111694) ((-1091 . -370) 111678) ((-1091 . -47) 111650) ((-1091 . -38) 111499) ((-1091 . -694) 111348) ((-1091 . -283) 111279) ((-1091 . -542) 111210) ((-1091 . -111) 111039) ((-1091 . -1024) 110882) ((-1091 . -170) 110793) ((-1091 . -145) 110772) ((-1091 . -143) 110751) ((-1091 . -624) 110676) ((-1091 . -130) T) ((-1091 . -25) T) ((-1091 . -101) T) ((-1091 . -593) 110658) ((-1091 . -1067) T) ((-1091 . -23) T) ((-1091 . -21) T) ((-1091 . -1018) T) ((-1091 . -1025) T) ((-1091 . -1078) T) ((-1091 . -703) T) ((-1091 . -405) 110642) ((-1091 . -319) 110614) ((-1091 . -302) 110601) ((-1091 . -594) 110349) ((-1086 . -534) T) ((-1086 . -1183) T) ((-1086 . -1117) T) ((-1086 . -1009) 110331) ((-1086 . -594) 110246) ((-1086 . -991) T) ((-1086 . -857) 110228) ((-1086 . -821) T) ((-1086 . -773) T) ((-1086 . -770) T) ((-1086 . -823) T) ((-1086 . -768) T) ((-1086 . -767) T) ((-1086 . -796) T) ((-1086 . -617) 110210) ((-1086 . -892) T) ((-1086 . -542) T) ((-1086 . -283) T) ((-1086 . -170) T) ((-1086 . -694) 110197) ((-1086 . -1024) 110184) ((-1086 . -111) 110169) ((-1086 . -38) 110156) ((-1086 . -444) T) ((-1086 . -300) T) ((-1086 . -227) T) ((-1086 . -141) T) ((-1086 . -1018) T) ((-1086 . -1025) T) ((-1086 . -1078) T) ((-1086 . -703) T) ((-1086 . -21) T) ((-1086 . -23) T) ((-1086 . -1067) T) ((-1086 . -593) 110138) ((-1086 . -101) T) ((-1086 . -25) T) ((-1086 . -130) T) ((-1086 . -624) 110125) ((-1086 . -145) T) ((-1086 . -638) T) ((-1086 . -797) T) ((-1082 . -1049) T) ((-1082 . -593) 110091) ((-1082 . -1067) T) ((-1082 . -101) T) ((-1082 . -92) T) ((-1081 . -1067) T) ((-1081 . -593) 110073) ((-1081 . -101) T) ((-1079 . -232) 110052) ((-1079 . -1232) 110022) ((-1079 . -767) 110001) ((-1079 . -821) 109980) ((-1079 . -773) 109931) ((-1079 . -770) 109882) ((-1079 . -823) 109833) ((-1079 . -768) 109784) ((-1079 . -769) 109763) ((-1079 . -281) 109740) ((-1079 . -279) 109717) ((-1079 . -481) 109701) ((-1079 . -505) 109634) ((-1079 . -302) 109572) ((-1079 . -1178) T) ((-1079 . -34) T) ((-1079 . -584) 109549) ((-1079 . -1009) 109376) ((-1079 . -405) 109345) ((-1079 . -617) 109251) ((-1079 . -370) 109220) ((-1079 . -361) 109199) ((-1079 . -227) 109151) ((-1079 . -871) 109083) ((-1079 . -225) 109052) ((-1079 . -111) 108942) ((-1079 . -1024) 108839) ((-1079 . -170) 108818) ((-1079 . -593) 108549) ((-1079 . -694) 108491) ((-1079 . -624) 108339) ((-1079 . -130) 108209) ((-1079 . -23) 108079) ((-1079 . -21) 107989) ((-1079 . -1018) 107919) ((-1079 . -1025) 107849) ((-1079 . -1078) 107759) ((-1079 . -703) 107669) ((-1079 . -38) 107639) ((-1079 . -1067) 107429) ((-1079 . -101) 107219) ((-1079 . -25) 107070) ((-1072 . -389) T) ((-1072 . -1178) T) ((-1072 . -593) 107052) ((-1071 . -1070) 107016) ((-1071 . -101) T) ((-1071 . -593) 106998) ((-1071 . -1067) T) ((-1069 . -1070) 106950) ((-1069 . -101) T) ((-1069 . -593) 106932) ((-1069 . -1067) T) ((-1068 . -361) T) ((-1068 . -101) T) ((-1068 . -593) 106914) ((-1068 . -1067) T) ((-1063 . -419) 106898) ((-1063 . -1065) 106882) ((-1063 . -361) 106861) ((-1063 . -229) 106845) ((-1063 . -594) 106806) ((-1063 . -149) 106790) ((-1063 . -481) 106774) ((-1063 . -101) T) ((-1063 . -1067) T) ((-1063 . -505) 106707) ((-1063 . -302) 106645) ((-1063 . -593) 106627) ((-1063 . -1178) T) ((-1063 . -34) T) ((-1063 . -106) 106611) ((-1063 . -223) 106595) ((-1062 . -1049) T) ((-1062 . -593) 106561) ((-1062 . -1067) T) ((-1062 . -101) T) ((-1062 . -92) T) ((-1058 . -1178) T) ((-1058 . -1067) 106539) ((-1058 . -593) 106506) ((-1058 . -101) 106484) ((-1057 . -1049) T) ((-1057 . -593) 106450) ((-1057 . -1067) T) ((-1057 . -101) T) ((-1057 . -92) T) ((-1055 . -1060) 106434) ((-1055 . -1178) T) ((-1055 . -1067) 106412) ((-1055 . -593) 106379) ((-1055 . -101) 106357) ((-1055 . -1061) 106315) ((-1054 . -259) 106299) ((-1054 . -1009) 106283) ((-1054 . -1067) T) ((-1054 . -593) 106265) ((-1054 . -101) T) ((-1054 . -823) T) ((-1053 . -246) 106202) ((-1053 . -1009) 106029) ((-1053 . -594) NIL) ((-1053 . -319) 105990) ((-1053 . -405) 105974) ((-1053 . -38) 105823) ((-1053 . -111) 105652) ((-1053 . -1024) 105495) ((-1053 . -624) 105420) ((-1053 . -694) 105269) ((-1053 . -143) 105248) ((-1053 . -145) 105227) ((-1053 . -170) 105138) ((-1053 . -542) 105069) ((-1053 . -283) 105000) ((-1053 . -47) 104961) ((-1053 . -370) 104945) ((-1053 . -617) 104893) ((-1053 . -444) 104844) ((-1053 . -505) 104711) ((-1053 . -823) 104690) ((-1053 . -871) 104625) ((-1053 . -857) NIL) ((-1053 . -881) 104604) ((-1053 . -1183) 104583) ((-1053 . -921) 104528) ((-1053 . -302) 104515) ((-1053 . -227) 104494) ((-1053 . -130) T) ((-1053 . -25) T) ((-1053 . -101) T) ((-1053 . -593) 104476) ((-1053 . -1067) T) ((-1053 . -23) T) ((-1053 . -21) T) ((-1053 . -703) T) ((-1053 . -1078) T) ((-1053 . -1025) T) ((-1053 . -1018) T) ((-1053 . -225) 104460) ((-1051 . -593) 104442) ((-1048 . -823) T) ((-1048 . -101) T) ((-1048 . -593) 104424) ((-1048 . -1067) T) ((-1045 . -701) 104403) ((-1045 . -1009) 104299) ((-1045 . -405) 104283) ((-1045 . -617) 104231) ((-1045 . -370) 104215) ((-1045 . -363) 104194) ((-1045 . -145) 104173) ((-1045 . -694) 104041) ((-1045 . -624) 103951) ((-1045 . -1024) 103861) ((-1045 . -111) 103757) ((-1045 . -38) 103625) ((-1045 . -403) 103604) ((-1045 . -395) 103583) ((-1045 . -143) 103534) ((-1045 . -1117) 103513) ((-1045 . -343) 103492) ((-1045 . -361) 103443) ((-1045 . -237) 103394) ((-1045 . -283) 103345) ((-1045 . -300) 103296) ((-1045 . -444) 103247) ((-1045 . -542) 103198) ((-1045 . -892) 103149) ((-1045 . -1183) 103100) ((-1045 . -356) 103051) ((-1045 . -227) 102976) ((-1045 . -871) 102909) ((-1045 . -225) 102879) ((-1045 . -594) 102863) ((-1045 . -21) T) ((-1045 . -23) T) ((-1045 . -1067) T) ((-1045 . -593) 102845) ((-1045 . -101) T) ((-1045 . -25) T) ((-1045 . -130) T) ((-1045 . -1018) T) ((-1045 . -1025) T) ((-1045 . -1078) T) ((-1045 . -703) T) ((-1045 . -170) T) ((-1043 . -1067) T) ((-1043 . -593) 102827) ((-1043 . -101) T) ((-1043 . -279) 102806) ((-1042 . -1067) T) ((-1042 . -593) 102788) ((-1042 . -101) T) ((-1041 . -1067) T) ((-1041 . -593) 102770) ((-1041 . -101) T) ((-1041 . -279) 102749) ((-1041 . -1009) 102726) ((-1040 . -1049) T) ((-1040 . -593) 102692) ((-1040 . -1067) T) ((-1040 . -101) T) ((-1040 . -92) T) ((-1033 . -1049) T) ((-1033 . -593) 102658) ((-1033 . -1067) T) ((-1033 . -101) T) ((-1033 . -92) T) ((-1030 . -1155) 102633) ((-1030 . -223) 102579) ((-1030 . -106) 102525) ((-1030 . -302) 102376) ((-1030 . -505) 102220) ((-1030 . -481) 102151) ((-1030 . -149) 102097) ((-1030 . -594) NIL) ((-1030 . -229) 102043) ((-1030 . -590) 102018) ((-1030 . -281) 101993) ((-1030 . -279) 101968) ((-1030 . -101) T) ((-1030 . -1067) T) ((-1030 . -593) 101950) ((-1030 . -1178) T) ((-1030 . -34) T) ((-1030 . -584) 101925) ((-1029 . -534) T) ((-1029 . -1183) T) ((-1029 . -1117) T) ((-1029 . -1009) 101907) ((-1029 . -594) 101822) ((-1029 . -991) T) ((-1029 . -857) 101804) ((-1029 . -821) T) ((-1029 . -773) T) ((-1029 . -770) T) ((-1029 . -823) T) ((-1029 . -768) T) ((-1029 . -767) T) ((-1029 . -796) T) ((-1029 . -617) 101786) ((-1029 . -892) T) ((-1029 . -542) T) ((-1029 . -283) T) ((-1029 . -170) T) ((-1029 . -694) 101773) ((-1029 . -1024) 101760) ((-1029 . -111) 101745) ((-1029 . -38) 101732) ((-1029 . -444) T) ((-1029 . -300) T) ((-1029 . -227) T) ((-1029 . -141) T) ((-1029 . -1018) T) ((-1029 . -1025) T) ((-1029 . -1078) T) ((-1029 . -703) T) ((-1029 . -21) T) ((-1029 . -23) T) ((-1029 . -1067) T) ((-1029 . -593) 101714) ((-1029 . -101) T) ((-1029 . -25) T) ((-1029 . -130) T) ((-1029 . -624) 101701) ((-1029 . -145) T) ((-1028 . -1035) 101680) ((-1028 . -101) T) ((-1028 . -593) 101662) ((-1028 . -1067) T) ((-1022 . -1021) 101602) ((-1022 . -694) 101544) ((-1022 . -34) T) ((-1022 . -1178) T) ((-1022 . -302) 101482) ((-1022 . -505) 101415) ((-1022 . -481) 101399) ((-1022 . -624) 101383) ((-1022 . -130) T) ((-1022 . -25) T) ((-1022 . -101) T) ((-1022 . -593) 101345) ((-1022 . -1067) T) ((-1022 . -23) T) ((-1022 . -21) T) ((-1022 . -1024) 101329) ((-1022 . -111) 101308) ((-1022 . -1232) 101278) ((-1022 . -594) 101239) ((-1015 . -1038) 101168) ((-1015 . -947) 101097) ((-1015 . -594) 101039) ((-1015 . -481) 101004) ((-1015 . -101) T) ((-1015 . -1067) T) ((-1015 . -505) 100905) ((-1015 . -302) 100813) ((-1015 . -593) 100756) ((-1015 . -1178) T) ((-1015 . -34) T) ((-1015 . -149) 100721) ((-1015 . -1173) 100650) ((-1007 . -1049) T) ((-1007 . -593) 100616) ((-1007 . -1067) T) ((-1007 . -101) T) ((-1007 . -92) T) ((-1006 . -1155) 100591) ((-1006 . -223) 100537) ((-1006 . -106) 100483) ((-1006 . -302) 100334) ((-1006 . -505) 100178) ((-1006 . -481) 100109) ((-1006 . -149) 100055) ((-1006 . -594) NIL) ((-1006 . -229) 100001) ((-1006 . -590) 99976) ((-1006 . -281) 99951) ((-1006 . -279) 99926) ((-1006 . -101) T) ((-1006 . -1067) T) ((-1006 . -593) 99908) ((-1006 . -1178) T) ((-1006 . -34) T) ((-1006 . -584) 99883) ((-1005 . -170) T) ((-1005 . -703) T) ((-1005 . -1078) T) ((-1005 . -1025) T) ((-1005 . -1018) T) ((-1005 . -624) 99857) ((-1005 . -130) T) ((-1005 . -25) T) ((-1005 . -101) T) ((-1005 . -593) 99839) ((-1005 . -1067) T) ((-1005 . -23) T) ((-1005 . -21) T) ((-1005 . -1024) 99813) ((-1005 . -111) 99780) ((-1005 . -38) 99764) ((-1005 . -694) 99748) ((-998 . -1038) 99717) ((-998 . -947) 99686) ((-998 . -594) 99647) ((-998 . -481) 99631) ((-998 . -101) T) ((-998 . -1067) T) ((-998 . -505) 99564) ((-998 . -302) 99502) ((-998 . -593) 99464) ((-998 . -1178) T) ((-998 . -34) T) ((-998 . -149) 99448) ((-998 . -1173) 99417) ((-997 . -1178) T) ((-997 . -1067) 99395) ((-997 . -593) 99362) ((-997 . -101) 99340) ((-995 . -983) T) ((-995 . -973) T) ((-995 . -767) T) ((-995 . -768) T) ((-995 . -823) T) ((-995 . -770) T) ((-995 . -773) T) ((-995 . -821) T) ((-995 . -1009) 99220) ((-995 . -405) 99182) ((-995 . -237) T) ((-995 . -283) T) ((-995 . -300) T) ((-995 . -444) T) ((-995 . -38) 99119) ((-995 . -694) 99056) ((-995 . -542) T) ((-995 . -892) T) ((-995 . -1183) T) ((-995 . -356) T) ((-995 . -111) 98972) ((-995 . -1024) 98909) ((-995 . -170) T) ((-995 . -145) T) ((-995 . -624) 98846) ((-995 . -130) T) ((-995 . -25) T) ((-995 . -101) T) ((-995 . -593) 98828) ((-995 . -1067) T) ((-995 . -23) T) ((-995 . -21) T) ((-995 . -1018) T) ((-995 . -1025) T) ((-995 . -1078) T) ((-995 . -703) T) ((-990 . -1049) T) ((-990 . -593) 98794) ((-990 . -1067) T) ((-990 . -101) T) ((-990 . -92) T) ((-975 . -962) 98776) ((-975 . -1117) T) ((-975 . -1009) 98736) ((-975 . -594) 98666) ((-975 . -991) T) ((-975 . -881) NIL) ((-975 . -855) 98648) ((-975 . -821) T) ((-975 . -773) T) ((-975 . -770) T) ((-975 . -823) T) ((-975 . -768) T) ((-975 . -767) T) ((-975 . -796) T) ((-975 . -857) 98630) ((-975 . -1178) T) ((-975 . -393) 98612) ((-975 . -617) 98594) ((-975 . -370) 98576) ((-975 . -279) NIL) ((-975 . -302) NIL) ((-975 . -505) NIL) ((-975 . -331) 98558) ((-975 . -237) T) ((-975 . -111) 98492) ((-975 . -1024) 98442) ((-975 . -283) T) ((-975 . -694) 98392) ((-975 . -624) 98342) ((-975 . -38) 98292) ((-975 . -300) T) ((-975 . -444) T) ((-975 . -170) T) ((-975 . -542) T) ((-975 . -892) T) ((-975 . -1183) T) ((-975 . -356) T) ((-975 . -227) T) ((-975 . -871) NIL) ((-975 . -225) 98274) ((-975 . -145) T) ((-975 . -143) NIL) ((-975 . -130) T) ((-975 . -25) T) ((-975 . -101) T) ((-975 . -593) 98256) ((-975 . -1067) T) ((-975 . -23) T) ((-975 . -21) T) ((-975 . -1018) T) ((-975 . -1025) T) ((-975 . -1078) T) ((-975 . -703) T) ((-974 . -335) 98230) ((-974 . -170) T) ((-974 . -703) T) ((-974 . -1078) T) ((-974 . -1025) T) ((-974 . -1018) T) ((-974 . -624) 98175) ((-974 . -130) T) ((-974 . -25) T) ((-974 . -101) T) ((-974 . -593) 98157) ((-974 . -1067) T) ((-974 . -23) T) ((-974 . -21) T) ((-974 . -1024) 98102) ((-974 . -111) 98031) ((-974 . -594) 98015) ((-974 . -225) 97992) ((-974 . -871) 97944) ((-974 . -227) 97916) ((-974 . -356) T) ((-974 . -1183) T) ((-974 . -892) T) ((-974 . -542) T) ((-974 . -694) 97861) ((-974 . -38) 97806) ((-974 . -444) T) ((-974 . -300) T) ((-974 . -283) T) ((-974 . -237) T) ((-974 . -361) NIL) ((-974 . -343) NIL) ((-974 . -1117) NIL) ((-974 . -143) 97778) ((-974 . -395) NIL) ((-974 . -403) 97750) ((-974 . -145) 97722) ((-974 . -363) 97694) ((-974 . -370) 97671) ((-974 . -617) 97610) ((-974 . -405) 97587) ((-974 . -1009) 97475) ((-974 . -701) 97447) ((-971 . -966) 97431) ((-971 . -481) 97415) ((-971 . -101) 97393) ((-971 . -1067) 97371) ((-971 . -505) 97304) ((-971 . -302) 97242) ((-971 . -593) 97174) ((-971 . -1178) T) ((-971 . -34) T) ((-971 . -106) 97158) ((-967 . -969) 97142) ((-967 . -823) 97121) ((-967 . -1009) 97017) ((-967 . -405) 97001) ((-967 . -617) 96949) ((-967 . -370) 96933) ((-967 . -279) 96891) ((-967 . -302) 96856) ((-967 . -505) 96768) ((-967 . -331) 96752) ((-967 . -38) 96700) ((-967 . -111) 96582) ((-967 . -1024) 96478) ((-967 . -624) 96416) ((-967 . -694) 96364) ((-967 . -283) 96315) ((-967 . -237) 96294) ((-967 . -227) 96273) ((-967 . -871) 96232) ((-967 . -225) 96216) ((-967 . -594) 96177) ((-967 . -145) 96156) ((-967 . -143) 96135) ((-967 . -130) T) ((-967 . -25) T) ((-967 . -101) T) ((-967 . -593) 96117) ((-967 . -1067) T) ((-967 . -23) T) ((-967 . -21) T) ((-967 . -1018) T) ((-967 . -1025) T) ((-967 . -1078) T) ((-967 . -703) T) ((-965 . -1049) T) ((-965 . -593) 96083) ((-965 . -1067) T) ((-965 . -101) T) ((-965 . -92) T) ((-964 . -21) T) ((-964 . -23) T) ((-964 . -1067) T) ((-964 . -593) 96065) ((-964 . -101) T) ((-964 . -25) T) ((-964 . -130) T) ((-960 . -593) 96047) ((-957 . -1067) T) ((-957 . -593) 96029) ((-957 . -101) T) ((-942 . -773) T) ((-942 . -770) T) ((-942 . -823) T) ((-942 . -768) T) ((-942 . -23) T) ((-942 . -1067) T) ((-942 . -593) 96011) ((-942 . -101) T) ((-942 . -25) T) ((-942 . -130) T) ((-942 . -594) 95986) ((-941 . -1049) T) ((-941 . -593) 95952) ((-941 . -1067) T) ((-941 . -101) T) ((-941 . -92) T) ((-937 . -938) T) ((-937 . -101) T) ((-937 . -593) 95934) ((-937 . -1067) T) ((-936 . -593) 95916) ((-935 . -1067) T) ((-935 . -593) 95898) ((-935 . -101) T) ((-935 . -361) 95851) ((-935 . -703) 95750) ((-935 . -1078) 95649) ((-935 . -23) 95460) ((-935 . -25) 95271) ((-935 . -130) 95126) ((-935 . -465) 95079) ((-935 . -21) 95034) ((-935 . -769) 94987) ((-935 . -768) 94940) ((-935 . -823) 94839) ((-935 . -770) 94792) ((-935 . -773) 94745) ((-929 . -19) 94729) ((-929 . -627) 94713) ((-929 . -281) 94690) ((-929 . -279) 94667) ((-929 . -584) 94644) ((-929 . -594) 94605) ((-929 . -481) 94589) ((-929 . -101) 94539) ((-929 . -1067) 94489) ((-929 . -505) 94422) ((-929 . -302) 94360) ((-929 . -593) 94272) ((-929 . -1178) T) ((-929 . -34) T) ((-929 . -149) 94256) ((-929 . -823) 94235) ((-929 . -365) 94219) ((-927 . -319) 94198) ((-927 . -1009) 94094) ((-927 . -405) 94078) ((-927 . -38) 93975) ((-927 . -624) 93900) ((-927 . -703) T) ((-927 . -1078) T) ((-927 . -1025) T) ((-927 . -1018) T) ((-927 . -111) 93769) ((-927 . -1024) 93652) ((-927 . -21) T) ((-927 . -23) T) ((-927 . -1067) T) ((-927 . -593) 93634) ((-927 . -101) T) ((-927 . -25) T) ((-927 . -130) T) ((-927 . -694) 93531) ((-927 . -143) 93510) ((-927 . -145) 93489) ((-927 . -170) 93440) ((-927 . -542) 93419) ((-927 . -283) 93398) ((-927 . -47) 93377) ((-925 . -1067) T) ((-925 . -593) 93343) ((-925 . -101) T) ((-917 . -921) 93304) ((-917 . -1009) 93184) ((-917 . -1183) 93163) ((-917 . -881) 93142) ((-917 . -857) 93067) ((-917 . -871) 93048) ((-917 . -823) 93027) ((-917 . -505) 92974) ((-917 . -444) 92925) ((-917 . -617) 92873) ((-917 . -370) 92857) ((-917 . -47) 92826) ((-917 . -38) 92675) ((-917 . -694) 92524) ((-917 . -283) 92455) ((-917 . -542) 92386) ((-917 . -111) 92215) ((-917 . -1024) 92058) ((-917 . -170) 91969) ((-917 . -145) 91948) ((-917 . -143) 91927) ((-917 . -624) 91852) ((-917 . -130) T) ((-917 . -25) T) ((-917 . -101) T) ((-917 . -593) 91834) ((-917 . -1067) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -1018) T) ((-917 . -1025) T) ((-917 . -1078) T) ((-917 . -703) T) ((-917 . -405) 91818) ((-917 . -319) 91787) ((-917 . -302) 91774) ((-917 . -594) 91635) ((-914 . -951) 91619) ((-914 . -19) 91603) ((-914 . -627) 91587) ((-914 . -281) 91564) ((-914 . -279) 91541) ((-914 . -584) 91518) ((-914 . -594) 91479) ((-914 . -481) 91463) ((-914 . -101) 91413) ((-914 . -1067) 91363) ((-914 . -505) 91296) ((-914 . -302) 91234) ((-914 . -593) 91146) ((-914 . -1178) T) ((-914 . -34) T) ((-914 . -149) 91130) ((-914 . -823) 91109) ((-914 . -365) 91093) ((-914 . -1223) 91077) ((-898 . -945) T) ((-898 . -593) 91059) ((-896 . -926) T) ((-896 . -593) 91041) ((-890 . -770) T) ((-890 . -823) T) ((-890 . -1067) T) ((-890 . -593) 91023) ((-890 . -101) T) ((-890 . -25) T) ((-890 . -703) T) ((-890 . -1078) T) ((-885 . -356) T) ((-885 . -1183) T) ((-885 . -892) T) ((-885 . -542) T) ((-885 . -170) T) ((-885 . -694) 90975) ((-885 . -38) 90927) ((-885 . -444) T) ((-885 . -300) T) ((-885 . -624) 90879) ((-885 . -703) T) ((-885 . -1078) T) ((-885 . -1025) T) ((-885 . -1018) T) ((-885 . -111) 90817) ((-885 . -1024) 90769) ((-885 . -21) T) ((-885 . -23) T) ((-885 . -1067) T) ((-885 . -593) 90751) ((-885 . -101) T) ((-885 . -25) T) ((-885 . -130) T) ((-885 . -283) T) ((-885 . -237) T) ((-877 . -343) T) ((-877 . -1117) T) ((-877 . -361) T) ((-877 . -143) T) ((-877 . -356) T) ((-877 . -1183) T) ((-877 . -892) T) ((-877 . -542) T) ((-877 . -170) T) ((-877 . -694) 90716) ((-877 . -38) 90681) ((-877 . -444) T) ((-877 . -300) T) ((-877 . -111) 90637) ((-877 . -1024) 90602) ((-877 . -624) 90567) ((-877 . -283) T) ((-877 . -237) T) ((-877 . -395) T) ((-877 . -1018) T) ((-877 . -1025) T) ((-877 . -1078) T) ((-877 . -703) T) ((-877 . -21) T) ((-877 . -23) T) ((-877 . -1067) T) ((-877 . -593) 90549) ((-877 . -101) T) ((-877 . -25) T) ((-877 . -130) T) ((-877 . -227) T) ((-877 . -322) 90536) ((-877 . -145) 90518) ((-877 . -1009) 90505) ((-877 . -1232) 90492) ((-877 . -1243) 90479) ((-877 . -594) 90461) ((-876 . -1067) T) ((-876 . -593) 90443) ((-876 . -101) T) ((-873 . -875) 90427) ((-873 . -823) 90378) ((-873 . -703) T) ((-873 . -1067) T) ((-873 . -593) 90360) ((-873 . -101) T) ((-873 . -1078) T) ((-873 . -465) T) ((-872 . -119) 90344) ((-872 . -481) 90328) ((-872 . -101) 90306) ((-872 . -1067) 90284) ((-872 . -505) 90217) ((-872 . -302) 90155) ((-872 . -593) 90087) ((-872 . -1178) T) ((-872 . -34) T) ((-872 . -981) 90071) ((-869 . -1067) T) ((-869 . -593) 90053) ((-869 . -101) T) ((-864 . -823) T) ((-864 . -101) T) ((-864 . -593) 90035) ((-864 . -1067) T) ((-864 . -1009) 90012) ((-861 . -1067) T) ((-861 . -593) 89994) ((-861 . -101) T) ((-861 . -1009) 89962) ((-859 . -1067) T) ((-859 . -593) 89944) ((-859 . -101) T) ((-856 . -1067) T) ((-856 . -593) 89926) ((-856 . -101) T) ((-845 . -1067) T) ((-845 . -593) 89908) ((-845 . -101) T) ((-844 . -1178) T) ((-844 . -593) 89780) ((-844 . -1067) 89731) ((-844 . -101) 89682) ((-843 . -962) 89666) ((-843 . -1117) 89644) ((-843 . -1009) 89510) ((-843 . -594) 89318) ((-843 . -991) 89297) ((-843 . -881) 89276) ((-843 . -855) 89260) ((-843 . -821) 89239) ((-843 . -773) 89218) ((-843 . -770) 89197) ((-843 . -823) 89148) ((-843 . -768) 89127) ((-843 . -767) 89106) ((-843 . -796) 89085) ((-843 . -857) 89010) ((-843 . -1178) T) ((-843 . -393) 88994) ((-843 . -617) 88942) ((-843 . -370) 88926) ((-843 . -279) 88884) ((-843 . -302) 88849) ((-843 . -505) 88761) ((-843 . -331) 88745) ((-843 . -237) T) ((-843 . -111) 88683) ((-843 . -1024) 88635) ((-843 . -283) T) ((-843 . -694) 88587) ((-843 . -624) 88539) ((-843 . -38) 88491) ((-843 . -300) T) ((-843 . -444) T) ((-843 . -170) T) ((-843 . -542) T) ((-843 . -892) T) ((-843 . -1183) T) ((-843 . -356) T) ((-843 . -227) 88470) ((-843 . -871) 88429) ((-843 . -225) 88413) ((-843 . -145) 88392) ((-843 . -143) 88371) ((-843 . -130) T) ((-843 . -25) T) ((-843 . -101) T) ((-843 . -593) 88353) ((-843 . -1067) T) ((-843 . -23) T) ((-843 . -21) T) ((-843 . -1018) T) ((-843 . -1025) T) ((-843 . -1078) T) ((-843 . -703) T) ((-842 . -962) 88330) ((-842 . -1117) NIL) ((-842 . -1009) 88307) ((-842 . -594) NIL) ((-842 . -991) NIL) ((-842 . -881) NIL) ((-842 . -855) 88284) ((-842 . -821) NIL) ((-842 . -773) NIL) ((-842 . -770) NIL) ((-842 . -823) NIL) ((-842 . -768) NIL) ((-842 . -767) NIL) ((-842 . -796) NIL) ((-842 . -857) NIL) ((-842 . -1178) T) ((-842 . -393) 88261) ((-842 . -617) 88238) ((-842 . -370) 88215) ((-842 . -279) 88166) ((-842 . -302) 88123) ((-842 . -505) 88031) ((-842 . -331) 88008) ((-842 . -237) T) ((-842 . -111) 87937) ((-842 . -1024) 87882) ((-842 . -283) T) ((-842 . -694) 87827) ((-842 . -624) 87772) ((-842 . -38) 87717) ((-842 . -300) T) ((-842 . -444) T) ((-842 . -170) T) ((-842 . -542) T) ((-842 . -892) T) ((-842 . -1183) T) ((-842 . -356) T) ((-842 . -227) NIL) ((-842 . -871) NIL) ((-842 . -225) 87694) ((-842 . -145) T) ((-842 . -143) NIL) ((-842 . -130) T) ((-842 . -25) T) ((-842 . -101) T) ((-842 . -593) 87676) ((-842 . -1067) T) ((-842 . -23) T) ((-842 . -21) T) ((-842 . -1018) T) ((-842 . -1025) T) ((-842 . -1078) T) ((-842 . -703) T) ((-840 . -841) 87660) ((-840 . -892) T) ((-840 . -542) T) ((-840 . -283) T) ((-840 . -170) T) ((-840 . -694) 87647) ((-840 . -1024) 87634) ((-840 . -111) 87619) ((-840 . -38) 87606) ((-840 . -444) T) ((-840 . -300) T) ((-840 . -1018) T) ((-840 . -1025) T) ((-840 . -1078) T) ((-840 . -703) T) ((-840 . -21) T) ((-840 . -23) T) ((-840 . -1067) T) ((-840 . -593) 87588) ((-840 . -101) T) ((-840 . -25) T) ((-840 . -130) T) ((-840 . -624) 87575) ((-840 . -145) T) ((-837 . -1018) T) ((-837 . -1025) T) ((-837 . -1078) T) ((-837 . -703) T) ((-837 . -21) T) ((-837 . -23) T) ((-837 . -1067) T) ((-837 . -593) 87557) ((-837 . -101) T) ((-837 . -25) T) ((-837 . -130) T) ((-837 . -624) 87517) ((-837 . -38) 87487) ((-837 . -111) 87452) ((-837 . -1024) 87422) ((-837 . -694) 87392) ((-836 . -817) T) ((-836 . -823) T) ((-836 . -1067) T) ((-836 . -593) 87374) ((-836 . -101) T) ((-836 . -361) T) ((-836 . -594) 87296) ((-835 . -1067) T) ((-835 . -593) 87278) ((-835 . -101) T) ((-831 . -823) T) ((-831 . -101) T) ((-831 . -593) 87260) ((-831 . -1067) T) ((-828 . -825) 87244) ((-828 . -1009) 87140) ((-828 . -405) 87124) ((-828 . -694) 87094) ((-828 . -624) 87068) ((-828 . -130) T) ((-828 . -25) T) ((-828 . -101) T) ((-828 . -593) 87050) ((-828 . -1067) T) ((-828 . -23) T) ((-828 . -21) T) ((-828 . -1024) 87034) ((-828 . -111) 87013) ((-828 . -1018) T) ((-828 . -1025) T) ((-828 . -1078) T) ((-828 . -703) T) ((-828 . -38) 86983) ((-827 . -825) 86967) ((-827 . -1009) 86863) ((-827 . -405) 86847) ((-827 . -694) 86817) ((-827 . -624) 86791) ((-827 . -130) T) ((-827 . -25) T) ((-827 . -101) T) ((-827 . -593) 86773) ((-827 . -1067) T) ((-827 . -23) T) ((-827 . -21) T) ((-827 . -1024) 86757) ((-827 . -111) 86736) ((-827 . -1018) T) ((-827 . -1025) T) ((-827 . -1078) T) ((-827 . -703) T) ((-827 . -38) 86706) ((-815 . -1067) T) ((-815 . -593) 86688) ((-815 . -101) T) ((-815 . -405) 86672) ((-815 . -1009) 86568) ((-815 . -21) 86520) ((-815 . -23) 86472) ((-815 . -25) 86424) ((-815 . -130) 86376) ((-815 . -821) 86355) ((-815 . -624) 86328) ((-815 . -1025) 86307) ((-815 . -1018) 86286) ((-815 . -773) 86265) ((-815 . -770) 86244) ((-815 . -823) 86223) ((-815 . -768) 86202) ((-815 . -767) 86181) ((-815 . -1078) 86160) ((-815 . -703) 86139) ((-814 . -1067) T) ((-814 . -593) 86121) ((-814 . -101) T) ((-810 . -1018) T) ((-810 . -1025) T) ((-810 . -1078) T) ((-810 . -703) T) ((-810 . -21) T) ((-810 . -23) T) ((-810 . -1067) T) ((-810 . -593) 86103) ((-810 . -101) T) ((-810 . -25) T) ((-810 . -130) T) ((-810 . -624) 86063) ((-810 . -1009) 86032) ((-810 . -279) 86011) ((-810 . -145) 85990) ((-810 . -143) 85969) ((-810 . -38) 85939) ((-810 . -111) 85904) ((-810 . -1024) 85874) ((-810 . -694) 85844) ((-808 . -1067) T) ((-808 . -593) 85826) ((-808 . -101) T) ((-808 . -405) 85810) ((-808 . -1009) 85706) ((-808 . -21) 85658) ((-808 . -23) 85610) ((-808 . -25) 85562) ((-808 . -130) 85514) ((-808 . -821) 85493) ((-808 . -624) 85466) ((-808 . -1025) 85445) ((-808 . -1018) 85424) ((-808 . -773) 85403) ((-808 . -770) 85382) ((-808 . -823) 85361) ((-808 . -768) 85340) ((-808 . -767) 85319) ((-808 . -1078) 85298) ((-808 . -703) 85277) ((-804 . -685) 85261) ((-804 . -694) 85231) ((-804 . -624) 85205) ((-804 . -130) T) ((-804 . -25) T) ((-804 . -101) T) ((-804 . -593) 85187) ((-804 . -1067) T) ((-804 . -23) T) ((-804 . -21) T) ((-804 . -1024) 85171) ((-804 . -111) 85150) ((-804 . -1018) T) ((-804 . -1025) T) ((-804 . -1078) T) ((-804 . -703) T) ((-804 . -38) 85120) ((-804 . -227) 85099) ((-802 . -1067) T) ((-802 . -593) 85081) ((-802 . -101) T) ((-801 . -1067) T) ((-801 . -593) 85063) ((-801 . -101) T) ((-800 . -1067) T) ((-800 . -593) 85045) ((-800 . -101) T) ((-795 . -819) T) ((-795 . -823) T) ((-795 . -830) T) ((-795 . -1078) T) ((-795 . -101) T) ((-795 . -593) 85027) ((-795 . -1067) T) ((-795 . -703) T) ((-795 . -1009) 85011) ((-794 . -259) 84995) ((-794 . -1009) 84979) ((-794 . -1067) T) ((-794 . -593) 84961) ((-794 . -101) T) ((-794 . -823) T) ((-793 . -111) 84903) ((-793 . -1024) 84854) ((-793 . -21) T) ((-793 . -23) T) ((-793 . -1067) T) ((-793 . -593) 84836) ((-793 . -101) T) ((-793 . -25) T) ((-793 . -130) T) ((-793 . -624) 84787) ((-793 . -227) T) ((-793 . -703) T) ((-793 . -1078) T) ((-793 . -1025) T) ((-793 . -1018) T) ((-793 . -356) 84766) ((-793 . -1183) 84745) ((-793 . -892) 84724) ((-793 . -542) 84703) ((-793 . -170) 84682) ((-793 . -694) 84624) ((-793 . -38) 84566) ((-793 . -444) 84545) ((-793 . -300) 84524) ((-793 . -283) 84503) ((-793 . -237) 84482) ((-792 . -246) 84421) ((-792 . -1009) 84249) ((-792 . -594) NIL) ((-792 . -319) 84211) ((-792 . -405) 84195) ((-792 . -38) 84044) ((-792 . -111) 83873) ((-792 . -1024) 83716) ((-792 . -624) 83641) ((-792 . -694) 83490) ((-792 . -143) 83469) ((-792 . -145) 83448) ((-792 . -170) 83359) ((-792 . -542) 83290) ((-792 . -283) 83221) ((-792 . -47) 83183) ((-792 . -370) 83167) ((-792 . -617) 83115) ((-792 . -444) 83066) ((-792 . -505) 82934) ((-792 . -823) 82913) ((-792 . -871) 82849) ((-792 . -857) NIL) ((-792 . -881) 82828) ((-792 . -1183) 82807) ((-792 . -921) 82754) ((-792 . -302) 82741) ((-792 . -227) 82720) ((-792 . -130) T) ((-792 . -25) T) ((-792 . -101) T) ((-792 . -593) 82702) ((-792 . -1067) T) ((-792 . -23) T) ((-792 . -21) T) ((-792 . -703) T) ((-792 . -1078) T) ((-792 . -1025) T) ((-792 . -1018) T) ((-792 . -225) 82686) ((-791 . -232) 82665) ((-791 . -1232) 82635) ((-791 . -767) 82614) ((-791 . -821) 82593) ((-791 . -773) 82544) ((-791 . -770) 82495) ((-791 . -823) 82446) ((-791 . -768) 82397) ((-791 . -769) 82376) ((-791 . -281) 82353) ((-791 . -279) 82330) ((-791 . -481) 82314) ((-791 . -505) 82247) ((-791 . -302) 82185) ((-791 . -1178) T) ((-791 . -34) T) ((-791 . -584) 82162) ((-791 . -1009) 81989) ((-791 . -405) 81958) ((-791 . -617) 81864) ((-791 . -370) 81833) ((-791 . -361) 81812) ((-791 . -227) 81764) ((-791 . -871) 81696) ((-791 . -225) 81665) ((-791 . -111) 81555) ((-791 . -1024) 81452) ((-791 . -170) 81431) ((-791 . -593) 81162) ((-791 . -694) 81104) ((-791 . -624) 80952) ((-791 . -130) 80822) ((-791 . -23) 80692) ((-791 . -21) 80602) ((-791 . -1018) 80532) ((-791 . -1025) 80462) ((-791 . -1078) 80372) ((-791 . -703) 80282) ((-791 . -38) 80252) ((-791 . -1067) 80042) ((-791 . -101) 79832) ((-791 . -25) 79683) ((-784 . -1067) T) ((-784 . -593) 79665) ((-784 . -101) T) ((-774 . -772) 79649) ((-774 . -823) 79628) ((-774 . -1009) 79411) ((-774 . -405) 79375) ((-774 . -279) 79333) ((-774 . -302) 79298) ((-774 . -505) 79210) ((-774 . -331) 79194) ((-774 . -361) 79173) ((-774 . -594) 79134) ((-774 . -145) 79113) ((-774 . -143) 79092) ((-774 . -694) 79076) ((-774 . -624) 79050) ((-774 . -130) T) ((-774 . -25) T) ((-774 . -101) T) ((-774 . -593) 79032) ((-774 . -1067) T) ((-774 . -23) T) ((-774 . -21) T) ((-774 . -1024) 79016) ((-774 . -111) 78995) ((-774 . -1018) T) ((-774 . -1025) T) ((-774 . -1078) T) ((-774 . -703) T) ((-774 . -38) 78979) ((-757 . -1200) 78963) ((-757 . -1117) 78941) ((-757 . -594) NIL) ((-757 . -302) 78928) ((-757 . -505) 78875) ((-757 . -319) 78852) ((-757 . -1009) 78711) ((-757 . -405) 78695) ((-757 . -38) 78524) ((-757 . -111) 78333) ((-757 . -1024) 78156) ((-757 . -624) 78081) ((-757 . -694) 77910) ((-757 . -143) 77889) ((-757 . -145) 77868) ((-757 . -47) 77845) ((-757 . -370) 77829) ((-757 . -617) 77777) ((-757 . -823) 77756) ((-757 . -871) 77699) ((-757 . -857) NIL) ((-757 . -881) 77678) ((-757 . -1183) 77657) ((-757 . -921) 77626) ((-757 . -892) 77605) ((-757 . -542) 77516) ((-757 . -283) 77427) ((-757 . -170) 77318) ((-757 . -444) 77249) ((-757 . -300) 77228) ((-757 . -279) 77155) ((-757 . -227) T) ((-757 . -130) T) ((-757 . -25) T) ((-757 . -101) T) ((-757 . -593) 77116) ((-757 . -1067) T) ((-757 . -23) T) ((-757 . -21) T) ((-757 . -703) T) ((-757 . -1078) T) ((-757 . -1025) T) ((-757 . -1018) T) ((-757 . -225) 77100) ((-756 . -1032) 77067) ((-756 . -594) 76701) ((-756 . -302) 76688) ((-756 . -505) 76640) ((-756 . -319) 76612) ((-756 . -1009) 76469) ((-756 . -405) 76453) ((-756 . -38) 76302) ((-756 . -624) 76227) ((-756 . -703) T) ((-756 . -1078) T) ((-756 . -1025) T) ((-756 . -1018) T) ((-756 . -111) 76056) ((-756 . -1024) 75899) ((-756 . -21) T) ((-756 . -23) T) ((-756 . -1067) T) ((-756 . -593) 75813) ((-756 . -101) T) ((-756 . -25) T) ((-756 . -130) T) ((-756 . -694) 75662) ((-756 . -143) 75641) ((-756 . -145) 75620) ((-756 . -170) 75531) ((-756 . -542) 75462) ((-756 . -283) 75393) ((-756 . -47) 75365) ((-756 . -370) 75349) ((-756 . -617) 75297) ((-756 . -444) 75248) ((-756 . -823) 75227) ((-756 . -871) 75211) ((-756 . -857) 75070) ((-756 . -881) 75049) ((-756 . -1183) 75028) ((-756 . -921) 74995) ((-749 . -1067) T) ((-749 . -593) 74977) ((-749 . -101) T) ((-747 . -769) T) ((-747 . -130) T) ((-747 . -25) T) ((-747 . -101) T) ((-747 . -593) 74959) ((-747 . -1067) T) ((-747 . -23) T) ((-747 . -768) T) ((-747 . -823) T) ((-747 . -770) T) ((-747 . -773) T) ((-747 . -703) T) ((-747 . -1078) T) ((-745 . -1067) T) ((-745 . -593) 74941) ((-745 . -101) T) ((-713 . -714) 74925) ((-713 . -1065) 74909) ((-713 . -229) 74893) ((-713 . -594) 74854) ((-713 . -149) 74838) ((-713 . -481) 74822) ((-713 . -101) T) ((-713 . -1067) T) ((-713 . -505) 74755) ((-713 . -302) 74693) ((-713 . -593) 74675) ((-713 . -1178) T) ((-713 . -34) T) ((-713 . -106) 74659) ((-713 . -671) 74643) ((-712 . -1018) T) ((-712 . -1025) T) ((-712 . -1078) T) ((-712 . -703) T) ((-712 . -21) T) ((-712 . -23) T) ((-712 . -1067) T) ((-712 . -593) 74625) ((-712 . -101) T) ((-712 . -25) T) ((-712 . -130) T) ((-712 . -624) 74585) ((-712 . -1009) 74556) ((-712 . -145) 74535) ((-712 . -143) 74514) ((-712 . -38) 74484) ((-712 . -111) 74449) ((-712 . -1024) 74419) ((-712 . -694) 74389) ((-712 . -361) 74342) ((-708 . -921) 74295) ((-708 . -1009) 74171) ((-708 . -1183) 74150) ((-708 . -881) 74129) ((-708 . -857) NIL) ((-708 . -871) 74106) ((-708 . -823) 74085) ((-708 . -505) 74028) ((-708 . -444) 73979) ((-708 . -617) 73927) ((-708 . -370) 73911) ((-708 . -47) 73876) ((-708 . -38) 73725) ((-708 . -694) 73574) ((-708 . -283) 73505) ((-708 . -542) 73436) ((-708 . -111) 73265) ((-708 . -1024) 73108) ((-708 . -170) 73019) ((-708 . -145) 72998) ((-708 . -143) 72977) ((-708 . -624) 72902) ((-708 . -130) T) ((-708 . -25) T) ((-708 . -101) T) ((-708 . -593) 72884) ((-708 . -1067) T) ((-708 . -23) T) ((-708 . -21) T) ((-708 . -1018) T) ((-708 . -1025) T) ((-708 . -1078) T) ((-708 . -703) T) ((-708 . -405) 72868) ((-708 . -319) 72833) ((-708 . -302) 72820) ((-708 . -594) 72681) ((-695 . -465) T) ((-695 . -1078) T) ((-695 . -101) T) ((-695 . -593) 72663) ((-695 . -1067) T) ((-695 . -703) T) ((-692 . -1018) T) ((-692 . -1025) T) ((-692 . -1078) T) ((-692 . -703) T) ((-692 . -21) T) ((-692 . -23) T) ((-692 . -1067) T) ((-692 . -593) 72645) ((-692 . -101) T) ((-692 . -25) T) ((-692 . -130) T) ((-692 . -624) 72632) ((-691 . -1018) T) ((-691 . -1025) T) ((-691 . -1078) T) ((-691 . -703) T) ((-691 . -21) T) ((-691 . -23) T) ((-691 . -1067) T) ((-691 . -593) 72614) ((-691 . -101) T) ((-691 . -25) T) ((-691 . -130) T) ((-691 . -624) 72574) ((-691 . -1009) 72543) ((-691 . -279) 72522) ((-691 . -145) 72501) ((-691 . -143) 72480) ((-691 . -38) 72450) ((-691 . -111) 72415) ((-691 . -1024) 72385) ((-691 . -694) 72355) ((-690 . -823) T) ((-690 . -101) T) ((-690 . -593) 72337) ((-690 . -1067) T) ((-689 . -1200) 72321) ((-689 . -1117) 72299) ((-689 . -594) NIL) ((-689 . -302) 72286) ((-689 . -505) 72233) ((-689 . -319) 72210) ((-689 . -1009) 72090) ((-689 . -405) 72074) ((-689 . -38) 71903) ((-689 . -111) 71712) ((-689 . -1024) 71535) ((-689 . -624) 71460) ((-689 . -694) 71289) ((-689 . -143) 71268) ((-689 . -145) 71247) ((-689 . -47) 71224) ((-689 . -370) 71208) ((-689 . -617) 71156) ((-689 . -823) 71135) ((-689 . -871) 71078) ((-689 . -857) NIL) ((-689 . -881) 71057) ((-689 . -1183) 71036) ((-689 . -921) 71005) ((-689 . -892) 70984) ((-689 . -542) 70895) ((-689 . -283) 70806) ((-689 . -170) 70697) ((-689 . -444) 70628) ((-689 . -300) 70607) ((-689 . -279) 70534) ((-689 . -227) T) ((-689 . -130) T) ((-689 . -25) T) ((-689 . -101) T) ((-689 . -593) 70516) ((-689 . -1067) T) ((-689 . -23) T) ((-689 . -21) T) ((-689 . -703) T) ((-689 . -1078) T) ((-689 . -1025) T) ((-689 . -1018) T) ((-689 . -225) 70500) ((-689 . -361) 70479) ((-688 . -356) T) ((-688 . -1183) T) ((-688 . -892) T) ((-688 . -542) T) ((-688 . -170) T) ((-688 . -694) 70444) ((-688 . -38) 70409) ((-688 . -444) T) ((-688 . -300) T) ((-688 . -624) 70374) ((-688 . -703) T) ((-688 . -1078) T) ((-688 . -1025) T) ((-688 . -1018) T) ((-688 . -111) 70330) ((-688 . -1024) 70295) ((-688 . -21) T) ((-688 . -23) T) ((-688 . -1067) T) ((-688 . -593) 70277) ((-688 . -101) T) ((-688 . -25) T) ((-688 . -130) T) ((-688 . -283) T) ((-688 . -237) T) ((-687 . -1067) T) ((-687 . -593) 70259) ((-687 . -101) T) ((-679 . -131) T) ((-679 . -1067) T) ((-679 . -593) 70228) ((-679 . -101) T) ((-679 . -823) T) ((-677 . -380) T) ((-677 . -1009) 70210) ((-677 . -823) T) ((-677 . -38) 70197) ((-677 . -703) T) ((-677 . -1078) T) ((-677 . -1025) T) ((-677 . -1018) T) ((-677 . -111) 70182) ((-677 . -1024) 70169) ((-677 . -21) T) ((-677 . -23) T) ((-677 . -1067) T) ((-677 . -593) 70151) ((-677 . -101) T) ((-677 . -25) T) ((-677 . -130) T) ((-677 . -624) 70138) ((-677 . -694) 70125) ((-677 . -170) T) ((-677 . -283) T) ((-677 . -542) T) ((-677 . -534) T) ((-677 . -1183) T) ((-677 . -1117) T) ((-677 . -594) 70040) ((-677 . -991) T) ((-677 . -857) 70022) ((-677 . -821) T) ((-677 . -773) T) ((-677 . -770) T) ((-677 . -768) T) ((-677 . -767) T) ((-677 . -796) T) ((-677 . -617) 70004) ((-677 . -892) T) ((-677 . -444) T) ((-677 . -300) T) ((-677 . -227) T) ((-677 . -141) T) ((-677 . -145) T) ((-675 . -397) T) ((-675 . -145) T) ((-675 . -624) 69969) ((-675 . -130) T) ((-675 . -25) T) ((-675 . -101) T) ((-675 . -593) 69951) ((-675 . -1067) T) ((-675 . -23) T) ((-675 . -21) T) ((-675 . -703) T) ((-675 . -1078) T) ((-675 . -1025) T) ((-675 . -1018) T) ((-675 . -594) 69896) ((-675 . -356) T) ((-675 . -1183) T) ((-675 . -892) T) ((-675 . -542) T) ((-675 . -170) T) ((-675 . -694) 69861) ((-675 . -38) 69826) ((-675 . -444) T) ((-675 . -300) T) ((-675 . -111) 69782) ((-675 . -1024) 69747) ((-675 . -283) T) ((-675 . -237) T) ((-675 . -821) T) ((-675 . -773) T) ((-675 . -770) T) ((-675 . -823) T) ((-675 . -768) T) ((-675 . -767) T) ((-675 . -857) 69729) ((-675 . -973) T) ((-675 . -991) T) ((-675 . -1009) 69674) ((-675 . -1027) T) ((-675 . -380) T) ((-670 . -380) T) ((-670 . -1009) 69619) ((-670 . -823) T) ((-670 . -38) 69569) ((-670 . -703) T) ((-670 . -1078) T) ((-670 . -1025) T) ((-670 . -1018) T) ((-670 . -111) 69503) ((-670 . -1024) 69453) ((-670 . -21) T) ((-670 . -23) T) ((-670 . -1067) T) ((-670 . -593) 69435) ((-670 . -101) T) ((-670 . -25) T) ((-670 . -130) T) ((-670 . -624) 69385) ((-670 . -694) 69335) ((-670 . -170) T) ((-670 . -283) T) ((-670 . -542) T) ((-670 . -164) 69317) ((-670 . -35) NIL) ((-670 . -94) NIL) ((-670 . -277) NIL) ((-670 . -484) NIL) ((-670 . -1167) NIL) ((-670 . -1164) NIL) ((-670 . -973) NIL) ((-670 . -881) NIL) ((-670 . -594) 69225) ((-670 . -855) 69207) ((-670 . -361) NIL) ((-670 . -343) NIL) ((-670 . -1117) NIL) ((-670 . -395) NIL) ((-670 . -403) 69174) ((-670 . -363) 69141) ((-670 . -701) 69108) ((-670 . -405) 69090) ((-670 . -857) 69072) ((-670 . -1178) T) ((-670 . -393) 69054) ((-670 . -617) 69036) ((-670 . -370) 69018) ((-670 . -279) NIL) ((-670 . -302) NIL) ((-670 . -505) NIL) ((-670 . -331) 69000) ((-670 . -237) T) ((-670 . -1183) T) ((-670 . -356) T) ((-670 . -892) T) ((-670 . -444) T) ((-670 . -300) T) ((-670 . -227) NIL) ((-670 . -871) NIL) ((-670 . -225) 68982) ((-670 . -145) T) ((-670 . -143) NIL) ((-667 . -1220) T) ((-667 . -593) 68964) ((-665 . -662) 68922) ((-665 . -481) 68906) ((-665 . -101) 68884) ((-665 . -1067) 68862) ((-665 . -505) 68795) ((-665 . -302) 68733) ((-665 . -593) 68665) ((-665 . -1178) T) ((-665 . -34) T) ((-665 . -56) 68623) ((-665 . -594) 68584) ((-657 . -1049) T) ((-657 . -593) 68534) ((-657 . -1067) T) ((-657 . -101) T) ((-657 . -92) T) ((-653 . -823) T) ((-653 . -101) T) ((-653 . -593) 68516) ((-653 . -1067) T) ((-653 . -1009) 68500) ((-652 . -1049) T) ((-652 . -593) 68466) ((-652 . -1067) T) ((-652 . -101) T) ((-652 . -92) T) ((-651 . -481) 68450) ((-651 . -101) 68428) ((-651 . -1067) 68406) ((-651 . -505) 68339) ((-651 . -302) 68277) ((-651 . -593) 68209) ((-651 . -1178) T) ((-651 . -34) T) ((-648 . -823) T) ((-648 . -101) T) ((-648 . -593) 68191) ((-648 . -1067) T) ((-648 . -1009) 68175) ((-647 . -1049) T) ((-647 . -593) 68141) ((-647 . -1067) T) ((-647 . -101) T) ((-647 . -92) T) ((-646 . -1089) 68086) ((-646 . -481) 68070) ((-646 . -505) 68003) ((-646 . -302) 67941) ((-646 . -1178) T) ((-646 . -34) T) ((-646 . -1021) 67881) ((-646 . -1009) 67777) ((-646 . -405) 67761) ((-646 . -617) 67709) ((-646 . -370) 67693) ((-646 . -227) 67672) ((-646 . -871) 67631) ((-646 . -225) 67615) ((-646 . -694) 67599) ((-646 . -624) 67573) ((-646 . -130) T) ((-646 . -25) T) ((-646 . -101) T) ((-646 . -593) 67535) ((-646 . -1067) T) ((-646 . -23) T) ((-646 . -21) T) ((-646 . -1024) 67519) ((-646 . -111) 67498) ((-646 . -1018) T) ((-646 . -1025) T) ((-646 . -1078) T) ((-646 . -703) T) ((-646 . -38) 67458) ((-646 . -411) 67442) ((-646 . -721) 67426) ((-646 . -697) T) ((-646 . -738) T) ((-646 . -360) 67410) ((-640 . -367) 67389) ((-640 . -694) 67373) ((-640 . -624) 67357) ((-640 . -130) T) ((-640 . -25) T) ((-640 . -101) T) ((-640 . -593) 67339) ((-640 . -1067) T) ((-640 . -23) T) ((-640 . -21) T) ((-640 . -1024) 67323) ((-640 . -111) 67302) ((-640 . -613) 67286) ((-640 . -377) 67258) ((-640 . -1009) 67235) ((-632 . -634) 67219) ((-632 . -38) 67189) ((-632 . -624) 67163) ((-632 . -703) T) ((-632 . -1078) T) ((-632 . -1025) T) ((-632 . -1018) T) ((-632 . -111) 67142) ((-632 . -1024) 67126) ((-632 . -21) T) ((-632 . -23) T) ((-632 . -1067) T) ((-632 . -593) 67108) ((-632 . -101) T) ((-632 . -25) T) ((-632 . -130) T) ((-632 . -694) 67078) ((-632 . -405) 67062) ((-632 . -1009) 66958) ((-632 . -825) 66942) ((-632 . -279) 66903) ((-631 . -634) 66887) ((-631 . -38) 66857) ((-631 . -624) 66831) ((-631 . -703) T) ((-631 . -1078) T) ((-631 . -1025) T) ((-631 . -1018) T) ((-631 . -111) 66810) ((-631 . -1024) 66794) ((-631 . -21) T) ((-631 . -23) T) ((-631 . -1067) T) ((-631 . -593) 66776) ((-631 . -101) T) ((-631 . -25) T) ((-631 . -130) T) ((-631 . -694) 66746) ((-631 . -405) 66730) ((-631 . -1009) 66626) ((-631 . -825) 66610) ((-631 . -279) 66589) ((-630 . -634) 66573) ((-630 . -38) 66543) ((-630 . -624) 66517) ((-630 . -703) T) ((-630 . -1078) T) ((-630 . -1025) T) ((-630 . -1018) T) ((-630 . -111) 66496) ((-630 . -1024) 66480) ((-630 . -21) T) ((-630 . -23) T) ((-630 . -1067) T) ((-630 . -593) 66462) ((-630 . -101) T) ((-630 . -25) T) ((-630 . -130) T) ((-630 . -694) 66432) ((-630 . -405) 66416) ((-630 . -1009) 66312) ((-630 . -825) 66296) ((-630 . -279) 66275) ((-628 . -694) 66259) ((-628 . -624) 66243) ((-628 . -130) T) ((-628 . -25) T) ((-628 . -101) T) ((-628 . -593) 66225) ((-628 . -1067) T) ((-628 . -23) T) ((-628 . -21) T) ((-628 . -1024) 66209) ((-628 . -111) 66188) ((-628 . -767) 66167) ((-628 . -768) 66146) ((-628 . -823) 66125) ((-628 . -770) 66104) ((-628 . -773) 66083) ((-625 . -1067) T) ((-625 . -593) 66065) ((-625 . -101) T) ((-625 . -1009) 66049) ((-623 . -671) 66033) ((-623 . -106) 66017) ((-623 . -34) T) ((-623 . -1178) T) ((-623 . -593) 65949) ((-623 . -302) 65887) ((-623 . -505) 65820) ((-623 . -1067) 65798) ((-623 . -101) 65776) ((-623 . -481) 65760) ((-623 . -149) 65744) ((-623 . -594) 65705) ((-623 . -229) 65689) ((-622 . -1049) T) ((-622 . -593) 65642) ((-622 . -1067) T) ((-622 . -101) T) ((-622 . -92) T) ((-618 . -642) 65626) ((-618 . -1213) 65610) ((-618 . -981) 65594) ((-618 . -1115) 65578) ((-618 . -823) 65557) ((-618 . -365) 65541) ((-618 . -627) 65525) ((-618 . -281) 65502) ((-618 . -279) 65479) ((-618 . -584) 65456) ((-618 . -594) 65417) ((-618 . -481) 65401) ((-618 . -101) 65351) ((-618 . -1067) 65301) ((-618 . -505) 65234) ((-618 . -302) 65172) ((-618 . -593) 65084) ((-618 . -1178) T) ((-618 . -34) T) ((-618 . -149) 65068) ((-618 . -275) 65052) ((-618 . -797) 65031) ((-611 . -721) 65015) ((-611 . -697) T) ((-611 . -738) T) ((-611 . -111) 64994) ((-611 . -1024) 64978) ((-611 . -21) T) ((-611 . -23) T) ((-611 . -1067) T) ((-611 . -593) 64947) ((-611 . -101) T) ((-611 . -25) T) ((-611 . -130) T) ((-611 . -624) 64931) ((-611 . -694) 64915) ((-611 . -411) 64880) ((-611 . -360) 64812) ((-610 . -1155) 64787) ((-610 . -223) 64733) ((-610 . -106) 64679) ((-610 . -302) 64530) ((-610 . -505) 64374) ((-610 . -481) 64305) ((-610 . -149) 64251) ((-610 . -594) NIL) ((-610 . -229) 64197) ((-610 . -590) 64172) ((-610 . -281) 64147) ((-610 . -279) 64122) ((-610 . -101) T) ((-610 . -1067) T) ((-610 . -593) 64104) ((-610 . -1178) T) ((-610 . -34) T) ((-610 . -584) 64079) ((-605 . -465) T) ((-605 . -1078) T) ((-605 . -101) T) ((-605 . -593) 64061) ((-605 . -1067) T) ((-605 . -703) T) ((-604 . -1049) T) ((-604 . -593) 64027) ((-604 . -1067) T) ((-604 . -101) T) ((-604 . -92) T) ((-601 . -225) 64011) ((-601 . -871) 63970) ((-601 . -1018) T) ((-601 . -1025) T) ((-601 . -1078) T) ((-601 . -703) T) ((-601 . -21) T) ((-601 . -23) T) ((-601 . -1067) T) ((-601 . -593) 63952) ((-601 . -101) T) ((-601 . -25) T) ((-601 . -130) T) ((-601 . -624) 63939) ((-601 . -227) 63918) ((-601 . -542) T) ((-601 . -283) T) ((-601 . -170) T) ((-601 . -694) 63905) ((-601 . -1024) 63892) ((-601 . -111) 63877) ((-601 . -38) 63864) ((-601 . -594) 63841) ((-601 . -405) 63825) ((-601 . -1009) 63708) ((-601 . -145) 63687) ((-601 . -143) 63666) ((-601 . -300) 63645) ((-601 . -444) 63624) ((-601 . -892) 63603) ((-597 . -38) 63587) ((-597 . -624) 63561) ((-597 . -703) T) ((-597 . -1078) T) ((-597 . -1025) T) ((-597 . -1018) T) ((-597 . -111) 63540) ((-597 . -1024) 63524) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1067) T) ((-597 . -593) 63506) ((-597 . -101) T) ((-597 . -25) T) ((-597 . -130) T) ((-597 . -694) 63490) ((-597 . -821) 63469) ((-597 . -773) 63448) ((-597 . -770) 63427) ((-597 . -823) 63406) ((-597 . -768) 63385) ((-597 . -767) 63364) ((-596 . -938) T) ((-596 . -101) T) ((-596 . -593) 63346) ((-596 . -1067) T) ((-591 . -131) T) ((-591 . -1067) T) ((-591 . -593) 63328) ((-591 . -101) T) ((-591 . -823) T) ((-591 . -855) 63312) ((-591 . -594) 63173) ((-588 . -358) 63113) ((-588 . -101) T) ((-588 . -593) 63095) ((-588 . -1067) T) ((-588 . -1155) 63071) ((-588 . -223) 63018) ((-588 . -106) 62965) ((-588 . -302) 62760) ((-588 . -505) 62543) ((-588 . -481) 62477) ((-588 . -149) 62424) ((-588 . -594) NIL) ((-588 . -229) 62371) ((-588 . -590) 62347) ((-588 . -281) 62323) ((-588 . -279) 62299) ((-588 . -1178) T) ((-588 . -34) T) ((-588 . -584) 62275) ((-587 . -721) 62259) ((-587 . -697) T) ((-587 . -738) T) ((-587 . -111) 62238) ((-587 . -1024) 62222) ((-587 . -21) T) ((-587 . -23) T) ((-587 . -1067) T) ((-587 . -593) 62191) ((-587 . -101) T) ((-587 . -25) T) ((-587 . -130) T) ((-587 . -624) 62175) ((-587 . -694) 62159) ((-587 . -411) 62124) ((-587 . -360) 62056) ((-586 . -1049) T) ((-586 . -593) 62006) ((-586 . -1067) T) ((-586 . -101) T) ((-586 . -92) T) ((-585 . -593) 61973) ((-582 . -1223) 61957) ((-582 . -365) 61941) ((-582 . -823) 61920) ((-582 . -149) 61904) ((-582 . -34) T) ((-582 . -1178) T) ((-582 . -593) 61816) ((-582 . -302) 61754) ((-582 . -505) 61687) ((-582 . -1067) 61637) ((-582 . -101) 61587) ((-582 . -481) 61571) ((-582 . -594) 61532) ((-582 . -584) 61509) ((-582 . -279) 61486) ((-582 . -281) 61463) ((-582 . -627) 61447) ((-582 . -19) 61431) ((-581 . -593) 61413) ((-577 . -1018) T) ((-577 . -1025) T) ((-577 . -1078) T) ((-577 . -703) T) ((-577 . -21) T) ((-577 . -23) T) ((-577 . -1067) T) ((-577 . -593) 61395) ((-577 . -101) T) ((-577 . -25) T) ((-577 . -130) T) ((-577 . -624) 61382) ((-577 . -542) 61361) ((-577 . -283) 61340) ((-577 . -170) 61319) ((-577 . -694) 61292) ((-577 . -1024) 61265) ((-577 . -111) 61236) ((-577 . -38) 61209) ((-576 . -1203) 61186) ((-576 . -47) 61163) ((-576 . -38) 61060) ((-576 . -694) 60957) ((-576 . -283) 60936) ((-576 . -542) 60915) ((-576 . -111) 60784) ((-576 . -1024) 60667) ((-576 . -170) 60618) ((-576 . -145) 60597) ((-576 . -143) 60576) ((-576 . -624) 60501) ((-576 . -944) 60470) ((-576 . -871) 60383) ((-576 . -279) 60368) ((-576 . -1018) T) ((-576 . -1025) T) ((-576 . -1078) T) ((-576 . -703) T) ((-576 . -21) T) ((-576 . -23) T) ((-576 . -1067) T) ((-576 . -593) 60350) ((-576 . -101) T) ((-576 . -25) T) ((-576 . -130) T) ((-576 . -227) 60309) ((-574 . -1110) T) ((-574 . -365) 60291) ((-574 . -823) T) ((-574 . -149) 60273) ((-574 . -34) T) ((-574 . -1178) T) ((-574 . -593) 60255) ((-574 . -302) NIL) ((-574 . -505) NIL) ((-574 . -1067) T) ((-574 . -101) T) ((-574 . -481) 60237) ((-574 . -594) NIL) ((-574 . -584) 60212) ((-574 . -279) 60187) ((-574 . -281) 60162) ((-574 . -627) 60144) ((-574 . -19) 60126) ((-573 . -1049) T) ((-573 . -593) 60092) ((-573 . -1067) T) ((-573 . -101) T) ((-573 . -92) T) ((-565 . -694) 60067) ((-565 . -624) 60042) ((-565 . -130) T) ((-565 . -25) T) ((-565 . -101) T) ((-565 . -593) 60024) ((-565 . -1067) T) ((-565 . -23) T) ((-565 . -21) T) ((-565 . -1024) 59999) ((-565 . -111) 59967) ((-565 . -1009) 59951) ((-563 . -343) T) ((-563 . -1117) T) ((-563 . -361) T) ((-563 . -143) T) ((-563 . -356) T) ((-563 . -1183) T) ((-563 . -892) T) ((-563 . -542) T) ((-563 . -170) T) ((-563 . -694) 59916) ((-563 . -38) 59881) ((-563 . -444) T) ((-563 . -300) T) ((-563 . -111) 59837) ((-563 . -1024) 59802) ((-563 . -624) 59767) ((-563 . -283) T) ((-563 . -237) T) ((-563 . -395) T) ((-563 . -1018) T) ((-563 . -1025) T) ((-563 . -1078) T) ((-563 . -703) T) ((-563 . -21) T) ((-563 . -23) T) ((-563 . -1067) T) ((-563 . -593) 59749) ((-563 . -101) T) ((-563 . -25) T) ((-563 . -130) T) ((-563 . -227) T) ((-563 . -322) 59736) ((-563 . -145) 59718) ((-563 . -1009) 59705) ((-563 . -1232) 59692) ((-563 . -1243) 59679) ((-563 . -594) 59661) ((-562 . -841) 59645) ((-562 . -892) T) ((-562 . -542) T) ((-562 . -283) T) ((-562 . -170) T) ((-562 . -694) 59632) ((-562 . -1024) 59619) ((-562 . -111) 59604) ((-562 . -38) 59591) ((-562 . -444) T) ((-562 . -300) T) ((-562 . -1018) T) ((-562 . -1025) T) ((-562 . -1078) T) ((-562 . -703) T) ((-562 . -21) T) ((-562 . -23) T) ((-562 . -1067) T) ((-562 . -593) 59573) ((-562 . -101) T) ((-562 . -25) T) ((-562 . -130) T) ((-562 . -624) 59560) ((-562 . -145) T) ((-556 . -540) 59544) ((-556 . -35) T) ((-556 . -94) T) ((-556 . -277) T) ((-556 . -484) T) ((-556 . -1167) T) ((-556 . -1164) T) ((-556 . -1009) 59526) ((-556 . -973) T) ((-556 . -823) T) ((-556 . -542) T) ((-556 . -283) T) ((-556 . -170) T) ((-556 . -694) 59513) ((-556 . -624) 59500) ((-556 . -130) T) ((-556 . -25) T) ((-556 . -101) T) ((-556 . -593) 59482) ((-556 . -1067) T) ((-556 . -23) T) ((-556 . -21) T) ((-556 . -1024) 59469) ((-556 . -111) 59454) ((-556 . -1018) T) ((-556 . -1025) T) ((-556 . -1078) T) ((-556 . -703) T) ((-556 . -38) 59441) ((-556 . -444) T) ((-536 . -1155) 59420) ((-536 . -223) 59370) ((-536 . -106) 59320) ((-536 . -302) 59124) ((-536 . -505) 58916) ((-536 . -481) 58853) ((-536 . -149) 58803) ((-536 . -594) NIL) ((-536 . -229) 58753) ((-536 . -590) 58732) ((-536 . -281) 58711) ((-536 . -279) 58690) ((-536 . -101) T) ((-536 . -1067) T) ((-536 . -593) 58672) ((-536 . -1178) T) ((-536 . -34) T) ((-536 . -584) 58651) ((-535 . -534) T) ((-535 . -1183) T) ((-535 . -1117) T) ((-535 . -1009) 58633) ((-535 . -594) 58532) ((-535 . -991) T) ((-535 . -857) 58514) ((-535 . -821) T) ((-535 . -773) T) ((-535 . -770) T) ((-535 . -823) T) ((-535 . -768) T) ((-535 . -767) T) ((-535 . -796) T) ((-535 . -617) 58496) ((-535 . -892) T) ((-535 . -542) T) ((-535 . -283) T) ((-535 . -170) T) ((-535 . -694) 58483) ((-535 . -1024) 58470) ((-535 . -111) 58455) ((-535 . -38) 58442) ((-535 . -444) T) ((-535 . -300) T) ((-535 . -227) T) ((-535 . -141) T) ((-535 . -1018) T) ((-535 . -1025) T) ((-535 . -1078) T) ((-535 . -703) T) ((-535 . -21) T) ((-535 . -23) T) ((-535 . -1067) T) ((-535 . -593) 58424) ((-535 . -101) T) ((-535 . -25) T) ((-535 . -130) T) ((-535 . -624) 58411) ((-535 . -145) T) ((-535 . -797) T) ((-524 . -1070) 58363) ((-524 . -101) T) ((-524 . -593) 58345) ((-524 . -1067) T) ((-524 . -594) 58326) ((-521 . -769) T) ((-521 . -130) T) ((-521 . -25) T) ((-521 . -101) T) ((-521 . -593) 58308) ((-521 . -1067) T) ((-521 . -23) T) ((-521 . -768) T) ((-521 . -823) T) ((-521 . -770) T) ((-521 . -773) T) ((-521 . -500) 58285) ((-516 . -1049) T) ((-516 . -593) 58251) ((-516 . -1067) T) ((-516 . -101) T) ((-516 . -92) T) ((-515 . -1049) T) ((-515 . -593) 58217) ((-515 . -1067) T) ((-515 . -101) T) ((-515 . -92) T) ((-514 . -662) 58167) ((-514 . -481) 58151) ((-514 . -101) 58129) ((-514 . -1067) 58107) ((-514 . -505) 58040) ((-514 . -302) 57978) ((-514 . -593) 57910) ((-514 . -1178) T) ((-514 . -34) T) ((-514 . -56) 57860) ((-511 . -642) 57844) ((-511 . -1213) 57828) ((-511 . -981) 57812) ((-511 . -1115) 57796) ((-511 . -823) 57775) ((-511 . -365) 57759) ((-511 . -627) 57743) ((-511 . -281) 57720) ((-511 . -279) 57697) ((-511 . -584) 57674) ((-511 . -594) 57635) ((-511 . -481) 57619) ((-511 . -101) 57569) ((-511 . -1067) 57519) ((-511 . -505) 57452) ((-511 . -302) 57390) ((-511 . -593) 57302) ((-511 . -1178) T) ((-511 . -34) T) ((-511 . -149) 57286) ((-511 . -275) 57270) ((-510 . -56) 57244) ((-510 . -34) T) ((-510 . -1178) T) ((-510 . -593) 57176) ((-510 . -302) 57114) ((-510 . -505) 57047) ((-510 . -1067) 57025) ((-510 . -101) 57003) ((-510 . -481) 56987) ((-509 . -322) 56964) ((-509 . -227) T) ((-509 . -361) T) ((-509 . -1117) T) ((-509 . -343) T) ((-509 . -145) 56946) ((-509 . -624) 56891) ((-509 . -130) T) ((-509 . -25) T) ((-509 . -101) T) ((-509 . -593) 56873) ((-509 . -1067) T) ((-509 . -23) T) ((-509 . -21) T) ((-509 . -703) T) ((-509 . -1078) T) ((-509 . -1025) T) ((-509 . -1018) T) ((-509 . -356) T) ((-509 . -1183) T) ((-509 . -892) T) ((-509 . -542) T) ((-509 . -170) T) ((-509 . -694) 56818) ((-509 . -38) 56783) ((-509 . -444) T) ((-509 . -300) T) ((-509 . -111) 56712) ((-509 . -1024) 56657) ((-509 . -283) T) ((-509 . -237) T) ((-509 . -395) T) ((-509 . -143) T) ((-509 . -1009) 56634) ((-509 . -1232) 56611) ((-509 . -1243) 56588) ((-508 . -1049) T) ((-508 . -593) 56554) ((-508 . -1067) T) ((-508 . -101) T) ((-508 . -92) T) ((-507 . -19) 56538) ((-507 . -627) 56522) ((-507 . -281) 56499) ((-507 . -279) 56476) ((-507 . -584) 56453) ((-507 . -594) 56414) ((-507 . -481) 56398) ((-507 . -101) 56348) ((-507 . -1067) 56298) ((-507 . -505) 56231) ((-507 . -302) 56169) ((-507 . -593) 56081) ((-507 . -1178) T) ((-507 . -34) T) ((-507 . -149) 56065) ((-507 . -823) 56044) ((-507 . -365) 56028) ((-507 . -275) 56012) ((-506 . -316) 55991) ((-506 . -1009) 55975) ((-506 . -23) T) ((-506 . -1067) T) ((-506 . -593) 55957) ((-506 . -101) T) ((-506 . -25) T) ((-506 . -130) T) ((-503 . -769) T) ((-503 . -130) T) ((-503 . -25) T) ((-503 . -101) T) ((-503 . -593) 55939) ((-503 . -1067) T) ((-503 . -23) T) ((-503 . -768) T) ((-503 . -823) T) ((-503 . -770) T) ((-503 . -773) T) ((-503 . -500) 55918) ((-502 . -768) T) ((-502 . -823) T) ((-502 . -770) T) ((-502 . -25) T) ((-502 . -101) T) ((-502 . -593) 55900) ((-502 . -1067) T) ((-502 . -23) T) ((-502 . -500) 55879) ((-501 . -500) 55858) ((-501 . -101) T) ((-501 . -593) 55840) ((-501 . -1067) T) ((-499 . -23) T) ((-499 . -1067) T) ((-499 . -593) 55822) ((-499 . -101) T) ((-499 . -25) T) ((-499 . -500) 55801) ((-498 . -21) T) ((-498 . -23) T) ((-498 . -1067) T) ((-498 . -593) 55783) ((-498 . -101) T) ((-498 . -25) T) ((-498 . -130) T) ((-498 . -500) 55762) ((-497 . -1049) T) ((-497 . -593) 55712) ((-497 . -1067) T) ((-497 . -101) T) ((-497 . -92) T) ((-495 . -1067) T) ((-495 . -593) 55694) ((-495 . -101) T) ((-493 . -823) T) ((-493 . -101) T) ((-493 . -593) 55676) ((-493 . -1067) T) ((-491 . -123) T) ((-491 . -365) 55658) ((-491 . -823) T) ((-491 . -149) 55640) ((-491 . -34) T) ((-491 . -1178) T) ((-491 . -593) 55622) ((-491 . -302) NIL) ((-491 . -505) NIL) ((-491 . -1067) T) ((-491 . -481) 55604) ((-491 . -594) 55586) ((-491 . -584) 55561) ((-491 . -279) 55536) ((-491 . -281) 55511) ((-491 . -627) 55493) ((-491 . -19) 55475) ((-491 . -101) T) ((-491 . -638) T) ((-488 . -56) 55425) ((-488 . -34) T) ((-488 . -1178) T) ((-488 . -593) 55357) ((-488 . -302) 55295) ((-488 . -505) 55228) ((-488 . -1067) 55206) ((-488 . -101) 55184) ((-488 . -481) 55168) ((-487 . -19) 55152) ((-487 . -627) 55136) ((-487 . -281) 55113) ((-487 . -279) 55090) ((-487 . -584) 55067) ((-487 . -594) 55028) ((-487 . -481) 55012) ((-487 . -101) 54962) ((-487 . -1067) 54912) ((-487 . -505) 54845) ((-487 . -302) 54783) ((-487 . -593) 54695) ((-487 . -1178) T) ((-487 . -34) T) ((-487 . -149) 54679) ((-487 . -823) 54658) ((-487 . -365) 54642) ((-486 . -291) T) ((-486 . -1009) 54585) ((-486 . -1067) T) ((-486 . -593) 54567) ((-486 . -101) T) ((-486 . -823) T) ((-486 . -505) 54533) ((-486 . -302) 54520) ((-486 . -27) T) ((-486 . -973) T) ((-486 . -237) T) ((-486 . -111) 54476) ((-486 . -1024) 54441) ((-486 . -283) T) ((-486 . -694) 54406) ((-486 . -624) 54371) ((-486 . -130) T) ((-486 . -25) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1018) T) ((-486 . -1025) T) ((-486 . -1078) T) ((-486 . -703) T) ((-486 . -38) 54336) ((-486 . -300) T) ((-486 . -444) T) ((-486 . -170) T) ((-486 . -542) T) ((-486 . -892) T) ((-486 . -1183) T) ((-486 . -356) T) ((-486 . -617) 54296) ((-486 . -991) T) ((-486 . -594) 54241) ((-486 . -145) T) ((-486 . -227) T) ((-482 . -1067) T) ((-482 . -593) 54207) ((-482 . -101) T) ((-479 . -962) 54189) ((-479 . -1117) T) ((-479 . -1009) 54149) ((-479 . -594) 54079) ((-479 . -991) T) ((-479 . -881) NIL) ((-479 . -855) 54061) ((-479 . -821) T) ((-479 . -773) T) ((-479 . -770) T) ((-479 . -823) T) ((-479 . -768) T) ((-479 . -767) T) ((-479 . -796) T) ((-479 . -857) 54043) ((-479 . -1178) T) ((-479 . -393) 54025) ((-479 . -617) 54007) ((-479 . -370) 53989) ((-479 . -279) NIL) ((-479 . -302) NIL) ((-479 . -505) NIL) ((-479 . -331) 53971) ((-479 . -237) T) ((-479 . -111) 53905) ((-479 . -1024) 53855) ((-479 . -283) T) ((-479 . -694) 53805) ((-479 . -624) 53755) ((-479 . -38) 53705) ((-479 . -300) T) ((-479 . -444) T) ((-479 . -170) T) ((-479 . -542) T) ((-479 . -892) T) ((-479 . -1183) T) ((-479 . -356) T) ((-479 . -227) T) ((-479 . -871) NIL) ((-479 . -225) 53687) ((-479 . -145) T) ((-479 . -143) NIL) ((-479 . -130) T) ((-479 . -25) T) ((-479 . -101) T) ((-479 . -593) 53669) ((-479 . -1067) T) ((-479 . -23) T) ((-479 . -21) T) ((-479 . -1018) T) ((-479 . -1025) T) ((-479 . -1078) T) ((-479 . -703) T) ((-477 . -329) 53638) ((-477 . -130) T) ((-477 . -25) T) ((-477 . -101) T) ((-477 . -593) 53620) ((-477 . -1067) T) ((-477 . -23) T) ((-477 . -21) T) ((-476 . -939) 53604) ((-476 . -481) 53588) ((-476 . -101) 53566) ((-476 . -1067) 53544) ((-476 . -505) 53477) ((-476 . -302) 53415) ((-476 . -593) 53347) ((-476 . -1178) T) ((-476 . -34) T) ((-476 . -106) 53331) ((-475 . -1049) T) ((-475 . -593) 53297) ((-475 . -1067) T) ((-475 . -101) T) ((-475 . -92) T) ((-474 . -232) 53276) ((-474 . -1232) 53246) ((-474 . -767) 53225) ((-474 . -821) 53204) ((-474 . -773) 53155) ((-474 . -770) 53106) ((-474 . -823) 53057) ((-474 . -768) 53008) ((-474 . -769) 52987) ((-474 . -281) 52964) ((-474 . -279) 52941) ((-474 . -481) 52925) ((-474 . -505) 52858) ((-474 . -302) 52796) ((-474 . -1178) T) ((-474 . -34) T) ((-474 . -584) 52773) ((-474 . -1009) 52600) ((-474 . -405) 52569) ((-474 . -617) 52475) ((-474 . -370) 52444) ((-474 . -361) 52423) ((-474 . -227) 52375) ((-474 . -871) 52307) ((-474 . -225) 52276) ((-474 . -111) 52166) ((-474 . -1024) 52063) ((-474 . -170) 52042) ((-474 . -593) 51773) ((-474 . -694) 51715) ((-474 . -624) 51563) ((-474 . -130) 51433) ((-474 . -23) 51303) ((-474 . -21) 51213) ((-474 . -1018) 51143) ((-474 . -1025) 51073) ((-474 . -1078) 50983) ((-474 . -703) 50893) ((-474 . -38) 50863) ((-474 . -1067) 50653) ((-474 . -101) 50443) ((-474 . -25) 50294) ((-473 . -921) 50239) ((-473 . -1009) 50115) ((-473 . -1183) 50094) ((-473 . -881) 50073) ((-473 . -857) NIL) ((-473 . -871) 50050) ((-473 . -823) 50029) ((-473 . -505) 49972) ((-473 . -444) 49923) ((-473 . -617) 49871) ((-473 . -370) 49855) ((-473 . -47) 49812) ((-473 . -38) 49661) ((-473 . -694) 49510) ((-473 . -283) 49441) ((-473 . -542) 49372) ((-473 . -111) 49201) ((-473 . -1024) 49044) ((-473 . -170) 48955) ((-473 . -145) 48934) ((-473 . -143) 48913) ((-473 . -624) 48838) ((-473 . -130) T) ((-473 . -25) T) ((-473 . -101) T) ((-473 . -593) 48820) ((-473 . -1067) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -1018) T) ((-473 . -1025) T) ((-473 . -1078) T) ((-473 . -703) T) ((-473 . -405) 48804) ((-473 . -319) 48761) ((-473 . -302) 48748) ((-473 . -594) 48609) ((-471 . -1155) 48588) ((-471 . -223) 48538) ((-471 . -106) 48488) ((-471 . -302) 48292) ((-471 . -505) 48084) ((-471 . -481) 48021) ((-471 . -149) 47971) ((-471 . -594) NIL) ((-471 . -229) 47921) ((-471 . -590) 47900) ((-471 . -281) 47879) ((-471 . -279) 47858) ((-471 . -101) T) ((-471 . -1067) T) ((-471 . -593) 47840) ((-471 . -1178) T) ((-471 . -34) T) ((-471 . -584) 47819) ((-470 . -1049) T) ((-470 . -593) 47785) ((-470 . -1067) T) ((-470 . -101) T) ((-470 . -92) T) ((-469 . -356) T) ((-469 . -1183) T) ((-469 . -892) T) ((-469 . -542) T) ((-469 . -170) T) ((-469 . -694) 47750) ((-469 . -38) 47715) ((-469 . -444) T) ((-469 . -300) T) ((-469 . -624) 47680) ((-469 . -703) T) ((-469 . -1078) T) ((-469 . -1025) T) ((-469 . -1018) T) ((-469 . -111) 47636) ((-469 . -1024) 47601) ((-469 . -21) T) ((-469 . -23) T) ((-469 . -1067) T) ((-469 . -593) 47553) ((-469 . -101) T) ((-469 . -25) T) ((-469 . -130) T) ((-469 . -283) T) ((-469 . -237) T) ((-469 . -145) T) ((-469 . -1009) 47513) ((-469 . -991) T) ((-469 . -594) 47435) ((-468 . -1173) 47404) ((-468 . -593) 47366) ((-468 . -149) 47350) ((-468 . -34) T) ((-468 . -1178) T) ((-468 . -302) 47288) ((-468 . -505) 47221) ((-468 . -1067) T) ((-468 . -101) T) ((-468 . -481) 47205) ((-468 . -594) 47166) ((-468 . -947) 47135) ((-467 . -1155) 47114) ((-467 . -223) 47064) ((-467 . -106) 47014) ((-467 . -302) 46818) ((-467 . -505) 46610) ((-467 . -481) 46547) ((-467 . -149) 46497) ((-467 . -594) NIL) ((-467 . -229) 46447) ((-467 . -590) 46426) ((-467 . -281) 46405) ((-467 . -279) 46384) ((-467 . -101) T) ((-467 . -1067) T) ((-467 . -593) 46366) ((-467 . -1178) T) ((-467 . -34) T) ((-467 . -584) 46345) ((-466 . -1207) 46329) ((-466 . -227) 46281) ((-466 . -279) 46266) ((-466 . -871) 46172) ((-466 . -944) 46134) ((-466 . -38) 45975) ((-466 . -111) 45796) ((-466 . -1024) 45631) ((-466 . -624) 45528) ((-466 . -694) 45369) ((-466 . -143) 45348) ((-466 . -145) 45327) ((-466 . -47) 45297) ((-466 . -1203) 45267) ((-466 . -35) 45233) ((-466 . -94) 45199) ((-466 . -277) 45165) ((-466 . -484) 45131) ((-466 . -1167) 45097) ((-466 . -1164) 45063) ((-466 . -973) 45029) ((-466 . -237) 45008) ((-466 . -283) 44959) ((-466 . -130) T) ((-466 . -25) T) ((-466 . -101) T) ((-466 . -593) 44941) ((-466 . -1067) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1018) T) ((-466 . -1025) T) ((-466 . -1078) T) ((-466 . -703) T) ((-466 . -300) 44920) ((-466 . -444) 44899) ((-466 . -170) 44830) ((-466 . -542) 44781) ((-466 . -892) 44760) ((-466 . -1183) 44739) ((-466 . -356) 44718) ((-460 . -1067) T) ((-460 . -593) 44700) ((-460 . -101) T) ((-455 . -947) 44669) ((-455 . -594) 44630) ((-455 . -481) 44614) ((-455 . -101) T) ((-455 . -1067) T) ((-455 . -505) 44547) ((-455 . -302) 44485) ((-455 . -593) 44447) ((-455 . -1178) T) ((-455 . -34) T) ((-455 . -149) 44431) ((-453 . -694) 44402) ((-453 . -624) 44373) ((-453 . -130) T) ((-453 . -25) T) ((-453 . -101) T) ((-453 . -593) 44355) ((-453 . -1067) T) ((-453 . -23) T) ((-453 . -21) T) ((-453 . -1024) 44326) ((-453 . -111) 44287) ((-446 . -921) 44254) ((-446 . -1009) 44130) ((-446 . -1183) 44109) ((-446 . -881) 44088) ((-446 . -857) NIL) ((-446 . -871) 44065) ((-446 . -823) 44044) ((-446 . -505) 43987) ((-446 . -444) 43938) ((-446 . -617) 43886) ((-446 . -370) 43870) ((-446 . -47) 43849) ((-446 . -38) 43698) ((-446 . -694) 43547) ((-446 . -283) 43478) ((-446 . -542) 43409) ((-446 . -111) 43238) ((-446 . -1024) 43081) ((-446 . -170) 42992) ((-446 . -145) 42971) ((-446 . -143) 42950) ((-446 . -624) 42875) ((-446 . -130) T) ((-446 . -25) T) ((-446 . -101) T) ((-446 . -593) 42857) ((-446 . -1067) T) ((-446 . -23) T) ((-446 . -21) T) ((-446 . -1018) T) ((-446 . -1025) T) ((-446 . -1078) T) ((-446 . -703) T) ((-446 . -405) 42841) ((-446 . -319) 42820) ((-446 . -302) 42807) ((-446 . -594) 42668) ((-445 . -411) 42638) ((-445 . -721) 42608) ((-445 . -697) T) ((-445 . -738) T) ((-445 . -111) 42571) ((-445 . -1024) 42541) ((-445 . -21) T) ((-445 . -23) T) ((-445 . -1067) T) ((-445 . -593) 42523) ((-445 . -101) T) ((-445 . -25) T) ((-445 . -130) T) ((-445 . -624) 42453) ((-445 . -694) 42423) ((-445 . -360) 42393) ((-431 . -1067) T) ((-431 . -593) 42375) ((-431 . -101) T) ((-430 . -358) 42349) ((-430 . -101) T) ((-430 . -593) 42331) ((-430 . -1067) T) ((-429 . -1067) T) ((-429 . -593) 42313) ((-429 . -101) T) ((-427 . -593) 42295) ((-422 . -38) 42279) ((-422 . -624) 42253) ((-422 . -703) T) ((-422 . -1078) T) ((-422 . -1025) T) ((-422 . -1018) T) ((-422 . -111) 42232) ((-422 . -1024) 42216) ((-422 . -21) T) ((-422 . -23) T) ((-422 . -1067) T) ((-422 . -593) 42198) ((-422 . -101) T) ((-422 . -25) T) ((-422 . -130) T) ((-422 . -694) 42182) ((-408 . -703) T) ((-408 . -1067) T) ((-408 . -593) 42164) ((-408 . -101) T) ((-408 . -1078) T) ((-406 . -465) T) ((-406 . -1078) T) ((-406 . -101) T) ((-406 . -593) 42146) ((-406 . -1067) T) ((-406 . -703) T) ((-400 . -962) 42130) ((-400 . -1117) 42108) ((-400 . -1009) 41974) ((-400 . -594) 41782) ((-400 . -991) 41761) ((-400 . -881) 41740) ((-400 . -855) 41724) ((-400 . -821) 41703) ((-400 . -773) 41682) ((-400 . -770) 41661) ((-400 . -823) 41612) ((-400 . -768) 41591) ((-400 . -767) 41570) ((-400 . -796) 41549) ((-400 . -857) 41474) ((-400 . -1178) T) ((-400 . -393) 41458) ((-400 . -617) 41406) ((-400 . -370) 41390) ((-400 . -279) 41348) ((-400 . -302) 41313) ((-400 . -505) 41225) ((-400 . -331) 41209) ((-400 . -237) T) ((-400 . -111) 41147) ((-400 . -1024) 41099) ((-400 . -283) T) ((-400 . -694) 41051) ((-400 . -624) 41003) ((-400 . -38) 40955) ((-400 . -300) T) ((-400 . -444) T) ((-400 . -170) T) ((-400 . -542) T) ((-400 . -892) T) ((-400 . -1183) T) ((-400 . -356) T) ((-400 . -227) 40934) ((-400 . -871) 40893) ((-400 . -225) 40877) ((-400 . -145) 40856) ((-400 . -143) 40835) ((-400 . -130) T) ((-400 . -25) T) ((-400 . -101) T) ((-400 . -593) 40817) ((-400 . -1067) T) ((-400 . -23) T) ((-400 . -21) T) ((-400 . -1018) T) ((-400 . -1025) T) ((-400 . -1078) T) ((-400 . -703) T) ((-400 . -797) 40770) ((-398 . -542) T) ((-398 . -283) T) ((-398 . -170) T) ((-398 . -694) 40744) ((-398 . -624) 40718) ((-398 . -130) T) ((-398 . -25) T) ((-398 . -101) T) ((-398 . -593) 40700) ((-398 . -1067) T) ((-398 . -23) T) ((-398 . -21) T) ((-398 . -1024) 40674) ((-398 . -111) 40641) ((-398 . -1018) T) ((-398 . -1025) T) ((-398 . -1078) T) ((-398 . -703) T) ((-398 . -38) 40615) ((-398 . -225) 40599) ((-398 . -871) 40558) ((-398 . -227) 40537) ((-398 . -331) 40521) ((-398 . -505) 40363) ((-398 . -302) 40302) ((-398 . -279) 40230) ((-398 . -405) 40214) ((-398 . -1009) 40110) ((-398 . -444) 40060) ((-398 . -991) 40039) ((-398 . -594) 39947) ((-398 . -1183) 39925) ((-392 . -1067) T) ((-392 . -593) 39907) ((-392 . -101) T) ((-392 . -594) 39884) ((-391 . -389) T) ((-391 . -1178) T) ((-391 . -593) 39866) ((-386 . -1067) T) ((-386 . -593) 39848) ((-386 . -101) T) ((-383 . -721) 39832) ((-383 . -697) T) ((-383 . -738) T) ((-383 . -111) 39811) ((-383 . -1024) 39795) ((-383 . -21) T) ((-383 . -23) T) ((-383 . -1067) T) ((-383 . -593) 39777) ((-383 . -101) T) ((-383 . -25) T) ((-383 . -130) T) ((-383 . -624) 39761) ((-383 . -694) 39745) ((-381 . -382) T) ((-381 . -101) T) ((-381 . -593) 39727) ((-381 . -1067) T) ((-379 . -703) T) ((-379 . -1067) T) ((-379 . -593) 39709) ((-379 . -101) T) ((-379 . -1078) T) ((-379 . -1009) 39693) ((-379 . -823) 39672) ((-375 . -377) 39651) ((-375 . -1009) 39635) ((-375 . -694) 39605) ((-375 . -624) 39589) ((-375 . -130) T) ((-375 . -25) T) ((-375 . -101) T) ((-375 . -593) 39571) ((-375 . -1067) T) ((-375 . -23) T) ((-375 . -21) T) ((-375 . -1024) 39555) ((-375 . -111) 39534) ((-374 . -111) 39513) ((-374 . -1024) 39497) ((-374 . -21) T) ((-374 . -23) T) ((-374 . -1067) T) ((-374 . -593) 39479) ((-374 . -101) T) ((-374 . -25) T) ((-374 . -130) T) ((-374 . -624) 39463) ((-374 . -500) 39442) ((-374 . -694) 39412) ((-371 . -397) T) ((-371 . -145) T) ((-371 . -624) 39377) ((-371 . -130) T) ((-371 . -25) T) ((-371 . -101) T) ((-371 . -593) 39344) ((-371 . -1067) T) ((-371 . -23) T) ((-371 . -21) T) ((-371 . -703) T) ((-371 . -1078) T) ((-371 . -1025) T) ((-371 . -1018) T) ((-371 . -594) 39258) ((-371 . -356) T) ((-371 . -1183) T) ((-371 . -892) T) ((-371 . -542) T) ((-371 . -170) T) ((-371 . -694) 39223) ((-371 . -38) 39188) ((-371 . -444) T) ((-371 . -300) T) ((-371 . -111) 39144) ((-371 . -1024) 39109) ((-371 . -283) T) ((-371 . -237) T) ((-371 . -821) T) ((-371 . -773) T) ((-371 . -770) T) ((-371 . -823) T) ((-371 . -768) T) ((-371 . -767) T) ((-371 . -857) 39091) ((-371 . -973) T) ((-371 . -991) T) ((-371 . -1009) 39051) ((-371 . -1027) T) ((-371 . -227) T) ((-371 . -797) T) ((-371 . -1164) T) ((-371 . -1167) T) ((-371 . -484) T) ((-371 . -277) T) ((-371 . -94) T) ((-371 . -35) T) ((-357 . -358) 39028) ((-357 . -101) T) ((-357 . -593) 39010) ((-357 . -1067) T) ((-354 . -465) T) ((-354 . -1078) T) ((-354 . -101) T) ((-354 . -593) 38992) ((-354 . -1067) T) ((-354 . -703) T) ((-354 . -1009) 38976) ((-352 . -322) 38960) ((-352 . -227) 38939) ((-352 . -361) 38918) ((-352 . -1117) 38897) ((-352 . -343) 38876) ((-352 . -145) 38855) ((-352 . -624) 38807) ((-352 . -130) T) ((-352 . -25) T) ((-352 . -101) T) ((-352 . -593) 38789) ((-352 . -1067) T) ((-352 . -23) T) ((-352 . -21) T) ((-352 . -703) T) ((-352 . -1078) T) ((-352 . -1025) T) ((-352 . -1018) T) ((-352 . -356) T) ((-352 . -1183) T) ((-352 . -892) T) ((-352 . -542) T) ((-352 . -170) T) ((-352 . -694) 38741) ((-352 . -38) 38706) ((-352 . -444) T) ((-352 . -300) T) ((-352 . -111) 38644) ((-352 . -1024) 38596) ((-352 . -283) T) ((-352 . -237) T) ((-352 . -395) 38547) ((-352 . -143) 38498) ((-352 . -1009) 38482) ((-352 . -1232) 38466) ((-352 . -1243) 38450) ((-348 . -322) 38434) ((-348 . -227) 38413) ((-348 . -361) 38392) ((-348 . -1117) 38371) ((-348 . -343) 38350) ((-348 . -145) 38329) ((-348 . -624) 38281) ((-348 . -130) T) ((-348 . -25) T) ((-348 . -101) T) ((-348 . -593) 38263) ((-348 . -1067) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -703) T) ((-348 . -1078) T) ((-348 . -1025) T) ((-348 . -1018) T) ((-348 . -356) T) ((-348 . -1183) T) ((-348 . -892) T) ((-348 . -542) T) ((-348 . -170) T) ((-348 . -694) 38215) ((-348 . -38) 38180) ((-348 . -444) T) ((-348 . -300) T) ((-348 . -111) 38118) ((-348 . -1024) 38070) ((-348 . -283) T) ((-348 . -237) T) ((-348 . -395) 38021) ((-348 . -143) 37972) ((-348 . -1009) 37956) ((-348 . -1232) 37940) ((-348 . -1243) 37924) ((-347 . -322) 37908) ((-347 . -227) 37887) ((-347 . -361) 37866) ((-347 . -1117) 37845) ((-347 . -343) 37824) ((-347 . -145) 37803) ((-347 . -624) 37755) ((-347 . -130) T) ((-347 . -25) T) ((-347 . -101) T) ((-347 . -593) 37737) ((-347 . -1067) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -703) T) ((-347 . -1078) T) ((-347 . -1025) T) ((-347 . -1018) T) ((-347 . -356) T) ((-347 . -1183) T) ((-347 . -892) T) ((-347 . -542) T) ((-347 . -170) T) ((-347 . -694) 37689) ((-347 . -38) 37654) ((-347 . -444) T) ((-347 . -300) T) ((-347 . -111) 37592) ((-347 . -1024) 37544) ((-347 . -283) T) ((-347 . -237) T) ((-347 . -395) 37495) ((-347 . -143) 37446) ((-347 . -1009) 37430) ((-347 . -1232) 37414) ((-347 . -1243) 37398) ((-346 . -322) 37382) ((-346 . -227) 37361) ((-346 . -361) 37340) ((-346 . -1117) 37319) ((-346 . -343) 37298) ((-346 . -145) 37277) ((-346 . -624) 37229) ((-346 . -130) T) ((-346 . -25) T) ((-346 . -101) T) ((-346 . -593) 37211) ((-346 . -1067) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -703) T) ((-346 . -1078) T) ((-346 . -1025) T) ((-346 . -1018) T) ((-346 . -356) T) ((-346 . -1183) T) ((-346 . -892) T) ((-346 . -542) T) ((-346 . -170) T) ((-346 . -694) 37163) ((-346 . -38) 37128) ((-346 . -444) T) ((-346 . -300) T) ((-346 . -111) 37066) ((-346 . -1024) 37018) ((-346 . -283) T) ((-346 . -237) T) ((-346 . -395) 36969) ((-346 . -143) 36920) ((-346 . -1009) 36904) ((-346 . -1232) 36888) ((-346 . -1243) 36872) ((-345 . -322) 36849) ((-345 . -227) T) ((-345 . -361) T) ((-345 . -1117) T) ((-345 . -343) T) ((-345 . -145) 36831) ((-345 . -624) 36776) ((-345 . -130) T) ((-345 . -25) T) ((-345 . -101) T) ((-345 . -593) 36758) ((-345 . -1067) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -703) T) ((-345 . -1078) T) ((-345 . -1025) T) ((-345 . -1018) T) ((-345 . -356) T) ((-345 . -1183) T) ((-345 . -892) T) ((-345 . -542) T) ((-345 . -170) T) ((-345 . -694) 36703) ((-345 . -38) 36668) ((-345 . -444) T) ((-345 . -300) T) ((-345 . -111) 36597) ((-345 . -1024) 36542) ((-345 . -283) T) ((-345 . -237) T) ((-345 . -395) T) ((-345 . -143) T) ((-345 . -1009) 36519) ((-345 . -1232) 36496) ((-345 . -1243) 36473) ((-339 . -322) 36457) ((-339 . -227) 36436) ((-339 . -361) 36415) ((-339 . -1117) 36394) ((-339 . -343) 36373) ((-339 . -145) 36352) ((-339 . -624) 36304) ((-339 . -130) T) ((-339 . -25) T) ((-339 . -101) T) ((-339 . -593) 36286) ((-339 . -1067) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -703) T) ((-339 . -1078) T) ((-339 . -1025) T) ((-339 . -1018) T) ((-339 . -356) T) ((-339 . -1183) T) ((-339 . -892) T) ((-339 . -542) T) ((-339 . -170) T) ((-339 . -694) 36238) ((-339 . -38) 36203) ((-339 . -444) T) ((-339 . -300) T) ((-339 . -111) 36141) ((-339 . -1024) 36093) ((-339 . -283) T) ((-339 . -237) T) ((-339 . -395) 36044) ((-339 . -143) 35995) ((-339 . -1009) 35979) ((-339 . -1232) 35963) ((-339 . -1243) 35947) ((-338 . -322) 35931) ((-338 . -227) 35910) ((-338 . -361) 35889) ((-338 . -1117) 35868) ((-338 . -343) 35847) ((-338 . -145) 35826) ((-338 . -624) 35778) ((-338 . -130) T) ((-338 . -25) T) ((-338 . -101) T) ((-338 . -593) 35760) ((-338 . -1067) T) ((-338 . -23) T) ((-338 . -21) T) ((-338 . -703) T) ((-338 . -1078) T) ((-338 . -1025) T) ((-338 . -1018) T) ((-338 . -356) T) ((-338 . -1183) T) ((-338 . -892) T) ((-338 . -542) T) ((-338 . -170) T) ((-338 . -694) 35712) ((-338 . -38) 35677) ((-338 . -444) T) ((-338 . -300) T) ((-338 . -111) 35615) ((-338 . -1024) 35567) ((-338 . -283) T) ((-338 . -237) T) ((-338 . -395) 35518) ((-338 . -143) 35469) ((-338 . -1009) 35453) ((-338 . -1232) 35437) ((-338 . -1243) 35421) ((-337 . -322) 35398) ((-337 . -227) T) ((-337 . -361) T) ((-337 . -1117) T) ((-337 . -343) T) ((-337 . -145) 35380) ((-337 . -624) 35325) ((-337 . -130) T) ((-337 . -25) T) ((-337 . -101) T) ((-337 . -593) 35307) ((-337 . -1067) T) ((-337 . -23) T) ((-337 . -21) T) ((-337 . -703) T) ((-337 . -1078) T) ((-337 . -1025) T) ((-337 . -1018) T) ((-337 . -356) T) ((-337 . -1183) T) ((-337 . -892) T) ((-337 . -542) T) ((-337 . -170) T) ((-337 . -694) 35252) ((-337 . -38) 35217) ((-337 . -444) T) ((-337 . -300) T) ((-337 . -111) 35146) ((-337 . -1024) 35091) ((-337 . -283) T) ((-337 . -237) T) ((-337 . -395) T) ((-337 . -143) T) ((-337 . -1009) 35068) ((-337 . -1232) 35045) ((-337 . -1243) 35022) ((-333 . -322) 34999) ((-333 . -227) T) ((-333 . -361) T) ((-333 . -1117) T) ((-333 . -343) T) ((-333 . -145) 34981) ((-333 . -624) 34926) ((-333 . -130) T) ((-333 . -25) T) ((-333 . -101) T) ((-333 . -593) 34908) ((-333 . -1067) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -703) T) ((-333 . -1078) T) ((-333 . -1025) T) ((-333 . -1018) T) ((-333 . -356) T) ((-333 . -1183) T) ((-333 . -892) T) ((-333 . -542) T) ((-333 . -170) T) ((-333 . -694) 34853) ((-333 . -38) 34818) ((-333 . -444) T) ((-333 . -300) T) ((-333 . -111) 34747) ((-333 . -1024) 34692) ((-333 . -283) T) ((-333 . -237) T) ((-333 . -395) T) ((-333 . -143) T) ((-333 . -1009) 34669) ((-333 . -1232) 34646) ((-333 . -1243) 34623) ((-332 . -291) T) ((-332 . -1009) 34590) ((-332 . -1067) T) ((-332 . -593) 34572) ((-332 . -101) T) ((-332 . -823) T) ((-332 . -505) 34538) ((-332 . -302) 34525) ((-332 . -38) 34509) ((-332 . -624) 34483) ((-332 . -703) T) ((-332 . -1078) T) ((-332 . -1025) T) ((-332 . -1018) T) ((-332 . -111) 34462) ((-332 . -1024) 34446) ((-332 . -21) T) ((-332 . -23) T) ((-332 . -25) T) ((-332 . -130) T) ((-332 . -694) 34430) ((-332 . -871) 34411) ((-326 . -329) 34380) ((-326 . -130) T) ((-326 . -25) T) ((-326 . -101) T) ((-326 . -593) 34362) ((-326 . -1067) T) ((-326 . -23) T) ((-326 . -21) T) ((-324 . -823) T) ((-324 . -101) T) ((-324 . -593) 34344) ((-324 . -1067) T) ((-323 . -1067) T) ((-323 . -593) 34326) ((-323 . -101) T) ((-320 . -19) 34310) ((-320 . -627) 34294) ((-320 . -281) 34271) ((-320 . -279) 34248) ((-320 . -584) 34225) ((-320 . -594) 34186) ((-320 . -481) 34170) ((-320 . -101) 34120) ((-320 . -1067) 34070) ((-320 . -505) 34003) ((-320 . -302) 33941) ((-320 . -593) 33853) ((-320 . -1178) T) ((-320 . -34) T) ((-320 . -149) 33837) ((-320 . -823) 33816) ((-320 . -365) 33800) ((-320 . -275) 33784) ((-317 . -316) 33761) ((-317 . -1009) 33745) ((-317 . -23) T) ((-317 . -1067) T) ((-317 . -593) 33727) ((-317 . -101) T) ((-317 . -25) T) ((-317 . -130) T) ((-315 . -21) T) ((-315 . -23) T) ((-315 . -1067) T) ((-315 . -593) 33709) ((-315 . -101) T) ((-315 . -25) T) ((-315 . -130) T) ((-315 . -694) 33691) ((-315 . -624) 33673) ((-315 . -1024) 33655) ((-315 . -111) 33630) ((-315 . -316) 33607) ((-315 . -1009) 33591) ((-315 . -823) 33570) ((-312 . -1207) 33554) ((-312 . -227) 33506) ((-312 . -279) 33491) ((-312 . -871) 33397) ((-312 . -944) 33359) ((-312 . -38) 33200) ((-312 . -111) 33021) ((-312 . -1024) 32856) ((-312 . -624) 32753) ((-312 . -694) 32594) ((-312 . -143) 32573) ((-312 . -145) 32552) ((-312 . -47) 32522) ((-312 . -1203) 32492) ((-312 . -35) 32458) ((-312 . -94) 32424) ((-312 . -277) 32390) ((-312 . -484) 32356) ((-312 . -1167) 32322) ((-312 . -1164) 32288) ((-312 . -973) 32254) ((-312 . -237) 32233) ((-312 . -283) 32184) ((-312 . -130) T) ((-312 . -25) T) ((-312 . -101) T) ((-312 . -593) 32166) ((-312 . -1067) T) ((-312 . -23) T) ((-312 . -21) T) ((-312 . -1018) T) ((-312 . -1025) T) ((-312 . -1078) T) ((-312 . -703) T) ((-312 . -300) 32145) ((-312 . -444) 32124) ((-312 . -170) 32055) ((-312 . -542) 32006) ((-312 . -892) 31985) ((-312 . -1183) 31964) ((-312 . -356) 31943) ((-312 . -768) T) ((-312 . -823) T) ((-312 . -770) T) ((-307 . -414) 31927) ((-307 . -1009) 31590) ((-307 . -594) 31451) ((-307 . -855) 31435) ((-307 . -871) 31401) ((-307 . -465) 31380) ((-307 . -405) 31364) ((-307 . -857) 31289) ((-307 . -1178) T) ((-307 . -393) 31273) ((-307 . -617) 31179) ((-307 . -370) 31148) ((-307 . -237) 31127) ((-307 . -111) 31023) ((-307 . -1024) 30933) ((-307 . -283) 30912) ((-307 . -694) 30822) ((-307 . -624) 30643) ((-307 . -38) 30553) ((-307 . -300) 30532) ((-307 . -444) 30511) ((-307 . -170) 30490) ((-307 . -542) 30469) ((-307 . -892) 30448) ((-307 . -1183) 30427) ((-307 . -356) 30406) ((-307 . -302) 30393) ((-307 . -505) 30359) ((-307 . -823) T) ((-307 . -291) T) ((-307 . -145) 30338) ((-307 . -143) 30317) ((-307 . -1018) 30207) ((-307 . -1025) 30097) ((-307 . -1078) 29946) ((-307 . -703) 29795) ((-307 . -130) 29666) ((-307 . -25) 29518) ((-307 . -101) T) ((-307 . -593) 29500) ((-307 . -1067) T) ((-307 . -23) 29352) ((-307 . -21) 29223) ((-307 . -29) 29193) ((-307 . -973) 29172) ((-307 . -27) 29151) ((-307 . -1164) 29130) ((-307 . -1167) 29109) ((-307 . -484) 29088) ((-307 . -277) 29067) ((-307 . -94) 29046) ((-307 . -35) 29025) ((-307 . -158) 29004) ((-307 . -141) 28983) ((-307 . -608) 28962) ((-307 . -931) 28941) ((-307 . -1105) 28920) ((-306 . -962) 28881) ((-306 . -1117) NIL) ((-306 . -1009) 28811) ((-306 . -594) NIL) ((-306 . -991) NIL) ((-306 . -881) NIL) ((-306 . -855) 28772) ((-306 . -821) NIL) ((-306 . -773) NIL) ((-306 . -770) NIL) ((-306 . -823) NIL) ((-306 . -768) NIL) ((-306 . -767) NIL) ((-306 . -796) NIL) ((-306 . -857) NIL) ((-306 . -1178) T) ((-306 . -393) 28733) ((-306 . -617) 28694) ((-306 . -370) 28655) ((-306 . -279) 28590) ((-306 . -302) 28531) ((-306 . -505) 28423) ((-306 . -331) 28384) ((-306 . -237) T) ((-306 . -111) 28297) ((-306 . -1024) 28226) ((-306 . -283) T) ((-306 . -694) 28155) ((-306 . -624) 28084) ((-306 . -38) 28013) ((-306 . -300) T) ((-306 . -444) T) ((-306 . -170) T) ((-306 . -542) T) ((-306 . -892) T) ((-306 . -1183) T) ((-306 . -356) T) ((-306 . -227) NIL) ((-306 . -871) NIL) ((-306 . -225) 27974) ((-306 . -145) 27930) ((-306 . -143) 27886) ((-306 . -130) T) ((-306 . -25) T) ((-306 . -101) T) ((-306 . -593) 27868) ((-306 . -1067) T) ((-306 . -23) T) ((-306 . -21) T) ((-306 . -1018) T) ((-306 . -1025) T) ((-306 . -1078) T) ((-306 . -703) T) ((-305 . -1049) T) ((-305 . -593) 27834) ((-305 . -1067) T) ((-305 . -101) T) ((-305 . -92) T) ((-304 . -1067) T) ((-304 . -593) 27816) ((-304 . -101) T) ((-288 . -1155) 27795) ((-288 . -223) 27745) ((-288 . -106) 27695) ((-288 . -302) 27499) ((-288 . -505) 27291) ((-288 . -481) 27228) ((-288 . -149) 27178) ((-288 . -594) NIL) ((-288 . -229) 27128) ((-288 . -590) 27107) ((-288 . -281) 27086) ((-288 . -279) 27065) ((-288 . -101) T) ((-288 . -1067) T) ((-288 . -593) 27047) ((-288 . -1178) T) ((-288 . -34) T) ((-288 . -584) 27026) ((-286 . -1178) T) ((-286 . -505) 26975) ((-286 . -1067) 26757) ((-286 . -593) 26498) ((-286 . -101) 26280) ((-286 . -25) 26144) ((-286 . -21) 26027) ((-286 . -23) 25910) ((-286 . -130) 25793) ((-286 . -1078) 25674) ((-286 . -703) 25576) ((-286 . -465) 25555) ((-286 . -1018) 25497) ((-286 . -1025) 25439) ((-286 . -624) 25299) ((-286 . -111) 25215) ((-286 . -1024) 25136) ((-286 . -694) 25078) ((-286 . -871) 25037) ((-286 . -1232) 25007) ((-284 . -593) 24989) ((-282 . -300) T) ((-282 . -444) T) ((-282 . -38) 24976) ((-282 . -703) T) ((-282 . -1078) T) ((-282 . -1025) T) ((-282 . -1018) T) ((-282 . -111) 24961) ((-282 . -1024) 24948) ((-282 . -21) T) ((-282 . -23) T) ((-282 . -1067) T) ((-282 . -593) 24930) ((-282 . -101) T) ((-282 . -25) T) ((-282 . -130) T) ((-282 . -624) 24917) ((-282 . -694) 24904) ((-282 . -170) T) ((-282 . -283) T) ((-282 . -542) T) ((-282 . -892) T) ((-273 . -593) 24886) ((-272 . -954) 24870) ((-271 . -954) 24854) ((-268 . -823) T) ((-268 . -101) T) ((-268 . -593) 24836) ((-268 . -1067) T) ((-267 . -812) T) ((-267 . -101) T) ((-267 . -593) 24818) ((-267 . -1067) T) ((-266 . -812) T) ((-266 . -101) T) ((-266 . -593) 24800) ((-266 . -1067) T) ((-265 . -812) T) ((-265 . -101) T) ((-265 . -593) 24782) ((-265 . -1067) T) ((-264 . -812) T) ((-264 . -101) T) ((-264 . -593) 24764) ((-264 . -1067) T) ((-263 . -812) T) ((-263 . -101) T) ((-263 . -593) 24746) ((-263 . -1067) T) ((-262 . -812) T) ((-262 . -101) T) ((-262 . -593) 24728) ((-262 . -1067) T) ((-261 . -812) T) ((-261 . -101) T) ((-261 . -593) 24710) ((-261 . -1067) T) ((-257 . -246) 24672) ((-257 . -1009) 24516) ((-257 . -594) 24264) ((-257 . -319) 24236) ((-257 . -405) 24220) ((-257 . -38) 24069) ((-257 . -111) 23898) ((-257 . -1024) 23741) ((-257 . -624) 23666) ((-257 . -694) 23515) ((-257 . -143) 23494) ((-257 . -145) 23473) ((-257 . -170) 23384) ((-257 . -542) 23315) ((-257 . -283) 23246) ((-257 . -47) 23218) ((-257 . -370) 23202) ((-257 . -617) 23150) ((-257 . -444) 23101) ((-257 . -505) 22986) ((-257 . -823) 22965) ((-257 . -871) 22911) ((-257 . -857) 22770) ((-257 . -881) 22749) ((-257 . -1183) 22728) ((-257 . -921) 22695) ((-257 . -302) 22682) ((-257 . -227) 22661) ((-257 . -130) T) ((-257 . -25) T) ((-257 . -101) T) ((-257 . -593) 22643) ((-257 . -1067) T) ((-257 . -23) T) ((-257 . -21) T) ((-257 . -703) T) ((-257 . -1078) T) ((-257 . -1025) T) ((-257 . -1018) T) ((-257 . -225) 22627) ((-254 . -1067) T) ((-254 . -593) 22609) ((-254 . -101) T) ((-244 . -232) 22588) ((-244 . -1232) 22558) ((-244 . -767) 22537) ((-244 . -821) 22516) ((-244 . -773) 22467) ((-244 . -770) 22418) ((-244 . -823) 22369) ((-244 . -768) 22320) ((-244 . -769) 22299) ((-244 . -281) 22276) ((-244 . -279) 22253) ((-244 . -481) 22237) ((-244 . -505) 22170) ((-244 . -302) 22108) ((-244 . -1178) T) ((-244 . -34) T) ((-244 . -584) 22085) ((-244 . -1009) 21912) ((-244 . -405) 21881) ((-244 . -617) 21787) ((-244 . -370) 21756) ((-244 . -361) 21735) ((-244 . -227) 21687) ((-244 . -871) 21619) ((-244 . -225) 21588) ((-244 . -111) 21478) ((-244 . -1024) 21375) ((-244 . -170) 21354) ((-244 . -593) 21315) ((-244 . -694) 21257) ((-244 . -624) 21092) ((-244 . -130) T) ((-244 . -23) T) ((-244 . -21) T) ((-244 . -1018) 21022) ((-244 . -1025) 20952) ((-244 . -1078) 20862) ((-244 . -703) 20772) ((-244 . -38) 20742) ((-244 . -1067) T) ((-244 . -101) T) ((-244 . -25) T) ((-243 . -232) 20721) ((-243 . -1232) 20691) ((-243 . -767) 20670) ((-243 . -821) 20649) ((-243 . -773) 20600) ((-243 . -770) 20551) ((-243 . -823) 20502) ((-243 . -768) 20453) ((-243 . -769) 20432) ((-243 . -281) 20409) ((-243 . -279) 20386) ((-243 . -481) 20370) ((-243 . -505) 20303) ((-243 . -302) 20241) ((-243 . -1178) T) ((-243 . -34) T) ((-243 . -584) 20218) ((-243 . -1009) 20045) ((-243 . -405) 20014) ((-243 . -617) 19920) ((-243 . -370) 19889) ((-243 . -361) 19868) ((-243 . -227) 19820) ((-243 . -871) 19752) ((-243 . -225) 19721) ((-243 . -111) 19611) ((-243 . -1024) 19508) ((-243 . -170) 19487) ((-243 . -593) 19448) ((-243 . -694) 19390) ((-243 . -624) 19212) ((-243 . -130) T) ((-243 . -23) T) ((-243 . -21) T) ((-243 . -1018) 19142) ((-243 . -1025) 19072) ((-243 . -1078) 18982) ((-243 . -703) 18892) ((-243 . -38) 18862) ((-243 . -1067) T) ((-243 . -101) T) ((-243 . -25) T) ((-242 . -1067) T) ((-242 . -593) 18844) ((-242 . -101) T) ((-241 . -921) 18789) ((-241 . -1009) 18665) ((-241 . -1183) 18644) ((-241 . -881) 18623) ((-241 . -857) NIL) ((-241 . -871) 18600) ((-241 . -823) 18579) ((-241 . -505) 18522) ((-241 . -444) 18473) ((-241 . -617) 18421) ((-241 . -370) 18405) ((-241 . -47) 18362) ((-241 . -38) 18211) ((-241 . -694) 18060) ((-241 . -283) 17991) ((-241 . -542) 17922) ((-241 . -111) 17751) ((-241 . -1024) 17594) ((-241 . -170) 17505) ((-241 . -145) 17484) ((-241 . -143) 17463) ((-241 . -624) 17388) ((-241 . -130) T) ((-241 . -25) T) ((-241 . -101) T) ((-241 . -593) 17370) ((-241 . -1067) T) ((-241 . -23) T) ((-241 . -21) T) ((-241 . -1018) T) ((-241 . -1025) T) ((-241 . -1078) T) ((-241 . -703) T) ((-241 . -405) 17354) ((-241 . -319) 17311) ((-241 . -302) 17298) ((-241 . -594) 17159) ((-239 . -642) 17143) ((-239 . -1213) 17127) ((-239 . -981) 17111) ((-239 . -1115) 17095) ((-239 . -823) 17074) ((-239 . -365) 17058) ((-239 . -627) 17042) ((-239 . -281) 17019) ((-239 . -279) 16996) ((-239 . -584) 16973) ((-239 . -594) 16934) ((-239 . -481) 16918) ((-239 . -101) 16868) ((-239 . -1067) 16818) ((-239 . -505) 16751) ((-239 . -302) 16689) ((-239 . -593) 16601) ((-239 . -1178) T) ((-239 . -34) T) ((-239 . -149) 16585) ((-239 . -275) 16569) ((-233 . -232) 16548) ((-233 . -1232) 16518) ((-233 . -767) 16497) ((-233 . -821) 16476) ((-233 . -773) 16427) ((-233 . -770) 16378) ((-233 . -823) 16329) ((-233 . -768) 16280) ((-233 . -769) 16259) ((-233 . -281) 16236) ((-233 . -279) 16213) ((-233 . -481) 16197) ((-233 . -505) 16130) ((-233 . -302) 16068) ((-233 . -1178) T) ((-233 . -34) T) ((-233 . -584) 16045) ((-233 . -1009) 15872) ((-233 . -405) 15841) ((-233 . -617) 15747) ((-233 . -370) 15716) ((-233 . -361) 15695) ((-233 . -227) 15647) ((-233 . -871) 15579) ((-233 . -225) 15548) ((-233 . -111) 15438) ((-233 . -1024) 15335) ((-233 . -170) 15314) ((-233 . -593) 15045) ((-233 . -694) 14987) ((-233 . -624) 14835) ((-233 . -130) 14705) ((-233 . -23) 14575) ((-233 . -21) 14485) ((-233 . -1018) 14415) ((-233 . -1025) 14345) ((-233 . -1078) 14255) ((-233 . -703) 14165) ((-233 . -38) 14135) ((-233 . -1067) 13925) ((-233 . -101) 13715) ((-233 . -25) 13566) ((-221 . -662) 13524) ((-221 . -481) 13508) ((-221 . -101) 13486) ((-221 . -1067) 13464) ((-221 . -505) 13397) ((-221 . -302) 13335) ((-221 . -593) 13267) ((-221 . -1178) T) ((-221 . -34) T) ((-221 . -56) 13225) ((-219 . -397) T) ((-219 . -145) T) ((-219 . -624) 13190) ((-219 . -130) T) ((-219 . -25) T) ((-219 . -101) T) ((-219 . -593) 13172) ((-219 . -1067) T) ((-219 . -23) T) ((-219 . -21) T) ((-219 . -703) T) ((-219 . -1078) T) ((-219 . -1025) T) ((-219 . -1018) T) ((-219 . -594) 13102) ((-219 . -356) T) ((-219 . -1183) T) ((-219 . -892) T) ((-219 . -542) T) ((-219 . -170) T) ((-219 . -694) 13067) ((-219 . -38) 13032) ((-219 . -444) T) ((-219 . -300) T) ((-219 . -111) 12988) ((-219 . -1024) 12953) ((-219 . -283) T) ((-219 . -237) T) ((-219 . -821) T) ((-219 . -773) T) ((-219 . -770) T) ((-219 . -823) T) ((-219 . -768) T) ((-219 . -767) T) ((-219 . -857) 12935) ((-219 . -973) T) ((-219 . -991) T) ((-219 . -1009) 12895) ((-219 . -1027) T) ((-219 . -227) T) ((-219 . -797) T) ((-219 . -1164) T) ((-219 . -1167) T) ((-219 . -484) T) ((-219 . -277) T) ((-219 . -94) T) ((-219 . -35) T) ((-217 . -599) 12872) ((-217 . -624) 12839) ((-217 . -703) T) ((-217 . -1078) T) ((-217 . -1025) T) ((-217 . -1018) T) ((-217 . -21) T) ((-217 . -23) T) ((-217 . -1067) T) ((-217 . -593) 12821) ((-217 . -101) T) ((-217 . -25) T) ((-217 . -130) T) ((-217 . -1009) 12798) ((-216 . -247) 12782) ((-216 . -1087) 12766) ((-216 . -106) 12750) ((-216 . -34) T) ((-216 . -1178) T) ((-216 . -593) 12682) ((-216 . -302) 12620) ((-216 . -505) 12553) ((-216 . -1067) 12531) ((-216 . -101) 12509) ((-216 . -481) 12493) ((-216 . -966) 12477) ((-212 . -1049) T) ((-212 . -593) 12443) ((-212 . -1067) T) ((-212 . -101) T) ((-212 . -92) T) ((-211 . -962) 12425) ((-211 . -1117) T) ((-211 . -1009) 12385) ((-211 . -594) 12315) ((-211 . -991) T) ((-211 . -881) NIL) ((-211 . -855) 12297) ((-211 . -821) T) ((-211 . -773) T) ((-211 . -770) T) ((-211 . -823) T) ((-211 . -768) T) ((-211 . -767) T) ((-211 . -796) T) ((-211 . -857) 12279) ((-211 . -1178) T) ((-211 . -393) 12261) ((-211 . -617) 12243) ((-211 . -370) 12225) ((-211 . -279) NIL) ((-211 . -302) NIL) ((-211 . -505) NIL) ((-211 . -331) 12207) ((-211 . -237) T) ((-211 . -111) 12141) ((-211 . -1024) 12091) ((-211 . -283) T) ((-211 . -694) 12041) ((-211 . -624) 11991) ((-211 . -38) 11941) ((-211 . -300) T) ((-211 . -444) T) ((-211 . -170) T) ((-211 . -542) T) ((-211 . -892) T) ((-211 . -1183) T) ((-211 . -356) T) ((-211 . -227) T) ((-211 . -871) NIL) ((-211 . -225) 11923) ((-211 . -145) T) ((-211 . -143) NIL) ((-211 . -130) T) ((-211 . -25) T) ((-211 . -101) T) ((-211 . -593) 11905) ((-211 . -1067) T) ((-211 . -23) T) ((-211 . -21) T) ((-211 . -1018) T) ((-211 . -1025) T) ((-211 . -1078) T) ((-211 . -703) T) ((-208 . -1067) T) ((-208 . -593) 11887) ((-208 . -101) T) ((-207 . -1067) T) ((-207 . -593) 11869) ((-207 . -101) T) ((-206 . -866) T) ((-206 . -101) T) ((-206 . -593) 11851) ((-206 . -1067) T) ((-205 . -866) T) ((-205 . -101) T) ((-205 . -593) 11833) ((-205 . -1067) T) ((-203 . -776) T) ((-203 . -101) T) ((-203 . -593) 11815) ((-203 . -1067) T) ((-202 . -776) T) ((-202 . -101) T) ((-202 . -593) 11797) ((-202 . -1067) T) ((-201 . -776) T) ((-201 . -101) T) ((-201 . -593) 11779) ((-201 . -1067) T) ((-200 . -776) T) ((-200 . -101) T) ((-200 . -593) 11761) ((-200 . -1067) T) ((-197 . -763) T) ((-197 . -101) T) ((-197 . -593) 11743) ((-197 . -1067) T) ((-196 . -763) T) ((-196 . -101) T) ((-196 . -593) 11725) ((-196 . -1067) T) ((-195 . -763) T) ((-195 . -101) T) ((-195 . -593) 11707) ((-195 . -1067) T) ((-194 . -763) T) ((-194 . -101) T) ((-194 . -593) 11689) ((-194 . -1067) T) ((-193 . -763) T) ((-193 . -101) T) ((-193 . -593) 11671) ((-193 . -1067) T) ((-192 . -763) T) ((-192 . -101) T) ((-192 . -593) 11653) ((-192 . -1067) T) ((-191 . -763) T) ((-191 . -101) T) ((-191 . -593) 11635) ((-191 . -1067) T) ((-190 . -763) T) ((-190 . -101) T) ((-190 . -593) 11617) ((-190 . -1067) T) ((-189 . -763) T) ((-189 . -101) T) ((-189 . -593) 11599) ((-189 . -1067) T) ((-188 . -763) T) ((-188 . -101) T) ((-188 . -593) 11581) ((-188 . -1067) T) ((-187 . -763) T) ((-187 . -101) T) ((-187 . -593) 11563) ((-187 . -1067) T) ((-181 . -1067) T) ((-181 . -593) 11545) ((-181 . -101) T) ((-178 . -1049) T) ((-178 . -593) 11511) ((-178 . -1067) T) ((-178 . -101) T) ((-178 . -92) T) ((-173 . -593) 11493) ((-172 . -38) 11425) ((-172 . -624) 11357) ((-172 . -703) T) ((-172 . -1078) T) ((-172 . -1025) T) ((-172 . -1018) T) ((-172 . -111) 11268) ((-172 . -1024) 11200) ((-172 . -21) T) ((-172 . -23) T) ((-172 . -1067) T) ((-172 . -593) 11182) ((-172 . -101) T) ((-172 . -25) T) ((-172 . -130) T) ((-172 . -694) 11114) ((-172 . -356) T) ((-172 . -1183) T) ((-172 . -892) T) ((-172 . -542) T) ((-172 . -170) T) ((-172 . -444) T) ((-172 . -300) T) ((-172 . -283) T) ((-172 . -237) T) ((-169 . -1067) T) ((-169 . -593) 11096) ((-169 . -101) T) ((-166 . -164) 11080) ((-166 . -35) 11058) ((-166 . -94) 11036) ((-166 . -277) 11014) ((-166 . -484) 10992) ((-166 . -1167) 10970) ((-166 . -1164) 10948) ((-166 . -973) 10900) ((-166 . -881) 10853) ((-166 . -594) 10615) ((-166 . -855) 10599) ((-166 . -823) 10578) ((-166 . -361) 10529) ((-166 . -343) 10508) ((-166 . -1117) 10487) ((-166 . -395) 10466) ((-166 . -403) 10437) ((-166 . -38) 10265) ((-166 . -111) 10161) ((-166 . -1024) 10071) ((-166 . -624) 9981) ((-166 . -694) 9809) ((-166 . -363) 9780) ((-166 . -701) 9751) ((-166 . -1009) 9647) ((-166 . -405) 9631) ((-166 . -857) 9556) ((-166 . -1178) T) ((-166 . -393) 9540) ((-166 . -617) 9488) ((-166 . -370) 9472) ((-166 . -279) 9430) ((-166 . -302) 9395) ((-166 . -505) 9307) ((-166 . -331) 9291) ((-166 . -237) 9242) ((-166 . -1183) 9147) ((-166 . -356) 9098) ((-166 . -892) 9029) ((-166 . -542) 8940) ((-166 . -283) 8851) ((-166 . -444) 8782) ((-166 . -300) 8713) ((-166 . -227) 8664) ((-166 . -871) 8623) ((-166 . -225) 8607) ((-166 . -170) T) ((-166 . -145) 8586) ((-166 . -1018) T) ((-166 . -1025) T) ((-166 . -1078) T) ((-166 . -703) T) ((-166 . -21) T) ((-166 . -23) T) ((-166 . -1067) T) ((-166 . -593) 8568) ((-166 . -101) T) ((-166 . -25) T) ((-166 . -130) T) ((-166 . -143) 8519) ((-166 . -797) 8498) ((-160 . -1049) T) ((-160 . -593) 8464) ((-160 . -1067) T) ((-160 . -101) T) ((-160 . -92) T) ((-159 . -1067) T) ((-159 . -593) 8446) ((-159 . -101) T) ((-155 . -25) T) ((-155 . -101) T) ((-155 . -593) 8428) ((-155 . -1067) T) ((-154 . -1049) T) ((-154 . -593) 8394) ((-154 . -1067) T) ((-154 . -101) T) ((-154 . -92) T) ((-152 . -1049) T) ((-152 . -593) 8360) ((-152 . -1067) T) ((-152 . -101) T) ((-152 . -92) T) ((-150 . -1018) T) ((-150 . -1025) T) ((-150 . -1078) T) ((-150 . -703) T) ((-150 . -21) T) ((-150 . -23) T) ((-150 . -1067) T) ((-150 . -593) 8342) ((-150 . -101) T) ((-150 . -25) T) ((-150 . -130) T) ((-150 . -624) 8316) ((-150 . -38) 8300) ((-150 . -111) 8279) ((-150 . -1024) 8263) ((-150 . -694) 8247) ((-150 . -1232) 8231) ((-142 . -817) T) ((-142 . -823) T) ((-142 . -1067) T) ((-142 . -593) 8213) ((-142 . -101) T) ((-142 . -361) T) ((-139 . -1067) T) ((-139 . -593) 8195) ((-139 . -101) T) ((-139 . -594) 8154) ((-139 . -419) 8136) ((-139 . -1065) 8118) ((-139 . -361) T) ((-139 . -229) 8100) ((-139 . -149) 8082) ((-139 . -481) 8064) ((-139 . -505) NIL) ((-139 . -302) NIL) ((-139 . -1178) T) ((-139 . -34) T) ((-139 . -106) 8046) ((-139 . -223) 8028) ((-138 . -593) 8010) ((-137 . -1049) T) ((-137 . -593) 7976) ((-137 . -1067) T) ((-137 . -101) T) ((-137 . -92) T) ((-136 . -1049) T) ((-136 . -593) 7942) ((-136 . -1067) T) ((-136 . -101) T) ((-136 . -92) T) ((-134 . -457) 7919) ((-134 . -1009) 7903) ((-134 . -1067) T) ((-134 . -593) 7885) ((-134 . -101) T) ((-134 . -462) 7840) ((-133 . -823) T) ((-133 . -101) T) ((-133 . -593) 7822) ((-133 . -1067) T) ((-133 . -23) T) ((-133 . -25) T) ((-133 . -703) T) ((-133 . -1078) T) ((-133 . -1009) 7804) ((-132 . -1049) T) ((-132 . -593) 7770) ((-132 . -1067) T) ((-132 . -101) T) ((-132 . -92) T) ((-129 . -19) 7752) ((-129 . -627) 7734) ((-129 . -281) 7709) ((-129 . -279) 7684) ((-129 . -584) 7659) ((-129 . -594) NIL) ((-129 . -481) 7641) ((-129 . -101) T) ((-129 . -1067) T) ((-129 . -505) NIL) ((-129 . -302) NIL) ((-129 . -593) 7623) ((-129 . -1178) T) ((-129 . -34) T) ((-129 . -149) 7605) ((-129 . -823) T) ((-129 . -365) 7587) ((-128 . -823) T) ((-128 . -101) T) ((-128 . -593) 7554) ((-128 . -1067) T) ((-127 . -125) 7538) ((-127 . -981) 7522) ((-127 . -34) T) ((-127 . -1178) T) ((-127 . -593) 7454) ((-127 . -302) 7392) ((-127 . -505) 7325) ((-127 . -1067) 7303) ((-127 . -101) 7281) ((-127 . -481) 7265) ((-127 . -119) 7249) ((-126 . -125) 7233) ((-126 . -981) 7217) ((-126 . -34) T) ((-126 . -1178) T) ((-126 . -593) 7149) ((-126 . -302) 7087) ((-126 . -505) 7020) ((-126 . -1067) 6998) ((-126 . -101) 6976) ((-126 . -481) 6960) ((-126 . -119) 6944) ((-121 . -125) 6928) ((-121 . -981) 6912) ((-121 . -34) T) ((-121 . -1178) T) ((-121 . -593) 6844) ((-121 . -302) 6782) ((-121 . -505) 6715) ((-121 . -1067) 6693) ((-121 . -101) 6671) ((-121 . -481) 6655) ((-121 . -119) 6639) ((-117 . -962) 6616) ((-117 . -1117) NIL) ((-117 . -1009) 6593) ((-117 . -594) NIL) ((-117 . -991) NIL) ((-117 . -881) NIL) ((-117 . -855) 6570) ((-117 . -821) NIL) ((-117 . -773) NIL) ((-117 . -770) NIL) ((-117 . -823) NIL) ((-117 . -768) NIL) ((-117 . -767) NIL) ((-117 . -796) NIL) ((-117 . -857) NIL) ((-117 . -1178) T) ((-117 . -393) 6547) ((-117 . -617) 6524) ((-117 . -370) 6501) ((-117 . -279) 6452) ((-117 . -302) 6409) ((-117 . -505) 6317) ((-117 . -331) 6294) ((-117 . -237) T) ((-117 . -111) 6223) ((-117 . -1024) 6168) ((-117 . -283) T) ((-117 . -694) 6113) ((-117 . -624) 6058) ((-117 . -38) 6003) ((-117 . -300) T) ((-117 . -444) T) ((-117 . -170) T) ((-117 . -542) T) ((-117 . -892) T) ((-117 . -1183) T) ((-117 . -356) T) ((-117 . -227) NIL) ((-117 . -871) NIL) ((-117 . -225) 5980) ((-117 . -145) T) ((-117 . -143) NIL) ((-117 . -130) T) ((-117 . -25) T) ((-117 . -101) T) ((-117 . -593) 5962) ((-117 . -1067) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1018) T) ((-117 . -1025) T) ((-117 . -1078) T) ((-117 . -703) T) ((-116 . -841) 5946) ((-116 . -892) T) ((-116 . -542) T) ((-116 . -283) T) ((-116 . -170) T) ((-116 . -694) 5933) ((-116 . -1024) 5920) ((-116 . -111) 5905) ((-116 . -38) 5892) ((-116 . -444) T) ((-116 . -300) T) ((-116 . -1018) T) ((-116 . -1025) T) ((-116 . -1078) T) ((-116 . -703) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1067) T) ((-116 . -593) 5874) ((-116 . -101) T) ((-116 . -25) T) ((-116 . -130) T) ((-116 . -624) 5861) ((-116 . -145) T) ((-113 . -823) T) ((-113 . -101) T) ((-113 . -593) 5843) ((-113 . -1067) T) ((-112 . -817) T) ((-112 . -823) T) ((-112 . -1067) T) ((-112 . -593) 5825) ((-112 . -101) T) ((-112 . -361) T) ((-112 . -638) T) ((-112 . -938) T) ((-112 . -594) 5807) ((-110 . -123) T) ((-110 . -365) 5789) ((-110 . -823) T) ((-110 . -149) 5771) ((-110 . -34) T) ((-110 . -1178) T) ((-110 . -593) 5753) ((-110 . -302) NIL) ((-110 . -505) NIL) ((-110 . -1067) T) ((-110 . -481) 5735) ((-110 . -594) 5717) ((-110 . -584) 5692) ((-110 . -279) 5667) ((-110 . -281) 5642) ((-110 . -627) 5624) ((-110 . -19) 5606) ((-110 . -101) T) ((-110 . -638) T) ((-109 . -358) 5580) ((-109 . -101) T) ((-109 . -593) 5562) ((-109 . -1067) T) ((-108 . -593) 5544) ((-107 . -962) 5526) ((-107 . -1117) T) ((-107 . -1009) 5486) ((-107 . -594) 5416) ((-107 . -991) T) ((-107 . -881) NIL) ((-107 . -855) 5398) ((-107 . -821) T) ((-107 . -773) T) ((-107 . -770) T) ((-107 . -823) T) ((-107 . -768) T) ((-107 . -767) T) ((-107 . -796) T) ((-107 . -857) 5380) ((-107 . -1178) T) ((-107 . -393) 5362) ((-107 . -617) 5344) ((-107 . -370) 5326) ((-107 . -279) NIL) ((-107 . -302) NIL) ((-107 . -505) NIL) ((-107 . -331) 5308) ((-107 . -237) T) ((-107 . -111) 5242) ((-107 . -1024) 5192) ((-107 . -283) T) ((-107 . -694) 5142) ((-107 . -624) 5092) ((-107 . -38) 5042) ((-107 . -300) T) ((-107 . -444) T) ((-107 . -170) T) ((-107 . -542) T) ((-107 . -892) T) ((-107 . -1183) T) ((-107 . -356) T) ((-107 . -227) T) ((-107 . -871) NIL) ((-107 . -225) 5024) ((-107 . -145) T) ((-107 . -143) NIL) ((-107 . -130) T) ((-107 . -25) T) ((-107 . -101) T) ((-107 . -593) 5006) ((-107 . -1067) T) ((-107 . -23) T) ((-107 . -21) T) ((-107 . -1018) T) ((-107 . -1025) T) ((-107 . -1078) T) ((-107 . -703) T) ((-104 . -1067) T) ((-104 . -593) 4988) ((-104 . -101) T) ((-102 . -125) 4972) ((-102 . -981) 4956) ((-102 . -34) T) ((-102 . -1178) T) ((-102 . -593) 4888) ((-102 . -302) 4826) ((-102 . -505) 4759) ((-102 . -1067) 4737) ((-102 . -101) 4715) ((-102 . -481) 4699) ((-102 . -119) 4683) ((-98 . -465) T) ((-98 . -1078) T) ((-98 . -101) T) ((-98 . -593) 4665) ((-98 . -1067) T) ((-98 . -703) T) ((-98 . -279) 4644) ((-96 . -1067) T) ((-96 . -593) 4626) ((-96 . -101) T) ((-95 . -1049) T) ((-95 . -593) 4592) ((-95 . -1067) T) ((-95 . -101) T) ((-95 . -92) T) ((-90 . -1087) 4576) ((-90 . -481) 4560) ((-90 . -101) 4538) ((-90 . -1067) 4516) ((-90 . -505) 4449) ((-90 . -302) 4387) ((-90 . -593) 4319) ((-90 . -1178) T) ((-90 . -34) T) ((-90 . -106) 4303) ((-88 . -390) T) ((-88 . -593) 4285) ((-88 . -1178) T) ((-88 . -389) T) ((-87 . -378) T) ((-87 . -593) 4267) ((-87 . -1178) T) ((-87 . -389) T) ((-86 . -432) T) ((-86 . -593) 4249) ((-86 . -1178) T) ((-86 . -389) T) ((-85 . -433) T) ((-85 . -593) 4231) ((-85 . -1178) T) ((-85 . -389) T) ((-84 . -378) T) ((-84 . -593) 4213) ((-84 . -1178) T) ((-84 . -389) T) ((-83 . -378) T) ((-83 . -593) 4195) ((-83 . -1178) T) ((-83 . -389) T) ((-82 . -433) T) ((-82 . -593) 4177) ((-82 . -1178) T) ((-82 . -389) T) ((-81 . -433) T) ((-81 . -593) 4159) ((-81 . -1178) T) ((-81 . -389) T) ((-80 . -433) T) ((-80 . -593) 4141) ((-80 . -1178) T) ((-80 . -389) T) ((-79 . -433) T) ((-79 . -593) 4123) ((-79 . -1178) T) ((-79 . -389) T) ((-78 . -433) T) ((-78 . -593) 4105) ((-78 . -1178) T) ((-78 . -389) T) ((-77 . -390) T) ((-77 . -593) 4087) ((-77 . -1178) T) ((-77 . -389) T) ((-76 . -433) T) ((-76 . -593) 4069) ((-76 . -1178) T) ((-76 . -389) T) ((-75 . -433) T) ((-75 . -593) 4051) ((-75 . -1178) T) ((-75 . -389) T) ((-74 . -390) T) ((-74 . -593) 4033) ((-74 . -1178) T) ((-74 . -389) T) ((-73 . -433) T) ((-73 . -593) 4015) ((-73 . -1178) T) ((-73 . -389) T) ((-72 . -376) T) ((-72 . -593) 3997) ((-72 . -1178) T) ((-72 . -389) T) ((-71 . -389) T) ((-71 . -1178) T) ((-71 . -593) 3979) ((-70 . -433) T) ((-70 . -593) 3961) ((-70 . -1178) T) ((-70 . -389) T) ((-69 . -376) T) ((-69 . -593) 3943) ((-69 . -1178) T) ((-69 . -389) T) ((-68 . -389) T) ((-68 . -1178) T) ((-68 . -593) 3925) ((-67 . -376) T) ((-67 . -593) 3907) ((-67 . -1178) T) ((-67 . -389) T) ((-66 . -376) T) ((-66 . -593) 3889) ((-66 . -1178) T) ((-66 . -389) T) ((-65 . -390) T) ((-65 . -593) 3871) ((-65 . -1178) T) ((-65 . -389) T) ((-64 . -378) T) ((-64 . -593) 3853) ((-64 . -1178) T) ((-64 . -389) T) ((-63 . -433) T) ((-63 . -593) 3835) ((-63 . -1178) T) ((-63 . -389) T) ((-62 . -389) T) ((-62 . -1178) T) ((-62 . -593) 3817) ((-61 . -433) T) ((-61 . -593) 3799) ((-61 . -1178) T) ((-61 . -389) T) ((-60 . -390) T) ((-60 . -593) 3781) ((-60 . -1178) T) ((-60 . -389) T) ((-59 . -56) 3743) ((-59 . -34) T) ((-59 . -1178) T) ((-59 . -593) 3675) ((-59 . -302) 3613) ((-59 . -505) 3546) ((-59 . -1067) 3524) ((-59 . -101) 3502) ((-59 . -481) 3486) ((-57 . -19) 3470) ((-57 . -627) 3454) ((-57 . -281) 3431) ((-57 . -279) 3408) ((-57 . -584) 3385) ((-57 . -594) 3346) ((-57 . -481) 3330) ((-57 . -101) 3280) ((-57 . -1067) 3230) ((-57 . -505) 3163) ((-57 . -302) 3101) ((-57 . -593) 3013) ((-57 . -1178) T) ((-57 . -34) T) ((-57 . -149) 2997) ((-57 . -823) 2976) ((-57 . -365) 2960) ((-51 . -1067) T) ((-51 . -593) 2942) ((-51 . -101) T) ((-50 . -599) 2926) ((-50 . -624) 2900) ((-50 . -703) T) ((-50 . -1078) T) ((-50 . -1025) T) ((-50 . -1018) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1067) T) ((-50 . -593) 2882) ((-50 . -101) T) ((-50 . -25) T) ((-50 . -130) T) ((-50 . -1009) 2866) ((-49 . -1067) T) ((-49 . -593) 2848) ((-49 . -101) T) ((-48 . -291) T) ((-48 . -1009) 2791) ((-48 . -1067) T) ((-48 . -593) 2773) ((-48 . -101) T) ((-48 . -823) T) ((-48 . -505) 2739) ((-48 . -302) 2726) ((-48 . -27) T) ((-48 . -973) T) ((-48 . -237) T) ((-48 . -111) 2682) ((-48 . -1024) 2647) ((-48 . -283) T) ((-48 . -694) 2612) ((-48 . -624) 2577) ((-48 . -130) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1018) T) ((-48 . -1025) T) ((-48 . -1078) T) ((-48 . -703) T) ((-48 . -38) 2542) ((-48 . -300) T) ((-48 . -444) T) ((-48 . -170) T) ((-48 . -542) T) ((-48 . -892) T) ((-48 . -1183) T) ((-48 . -356) T) ((-48 . -617) 2502) ((-48 . -991) T) ((-48 . -594) 2447) ((-48 . -145) T) ((-48 . -227) T) ((-45 . -36) 2426) ((-45 . -584) 2351) ((-45 . -302) 2155) ((-45 . -505) 1947) ((-45 . -481) 1884) ((-45 . -279) 1809) ((-45 . -281) 1734) ((-45 . -590) 1713) ((-45 . -229) 1663) ((-45 . -106) 1613) ((-45 . -223) 1563) ((-45 . -1155) 1542) ((-45 . -275) 1492) ((-45 . -149) 1442) ((-45 . -34) T) ((-45 . -1178) T) ((-45 . -593) 1424) ((-45 . -1067) T) ((-45 . -101) T) ((-45 . -594) NIL) ((-45 . -627) 1374) ((-45 . -365) 1324) ((-45 . -823) NIL) ((-45 . -1115) 1274) ((-45 . -981) 1224) ((-45 . -1213) 1174) ((-45 . -642) 1124) ((-44 . -411) 1108) ((-44 . -721) 1092) ((-44 . -697) T) ((-44 . -738) T) ((-44 . -111) 1071) ((-44 . -1024) 1055) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1067) T) ((-44 . -593) 1037) ((-44 . -101) T) ((-44 . -25) T) ((-44 . -130) T) ((-44 . -624) 995) ((-44 . -694) 979) ((-44 . -360) 963) ((-40 . -335) 937) ((-40 . -170) T) ((-40 . -703) T) ((-40 . -1078) T) ((-40 . -1025) T) ((-40 . -1018) T) ((-40 . -624) 882) ((-40 . -130) T) ((-40 . -25) T) ((-40 . -101) T) ((-40 . -593) 864) ((-40 . -1067) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1024) 809) ((-40 . -111) 738) ((-40 . -594) 722) ((-40 . -225) 699) ((-40 . -871) 651) ((-40 . -227) 623) ((-40 . -356) T) ((-40 . -1183) T) ((-40 . -892) T) ((-40 . -542) T) ((-40 . -694) 568) ((-40 . -38) 513) ((-40 . -444) T) ((-40 . -300) T) ((-40 . -283) T) ((-40 . -237) T) ((-40 . -361) NIL) ((-40 . -343) NIL) ((-40 . -1117) NIL) ((-40 . -143) 485) ((-40 . -395) NIL) ((-40 . -403) 457) ((-40 . -145) 429) ((-40 . -363) 401) ((-40 . -370) 378) ((-40 . -617) 317) ((-40 . -405) 294) ((-40 . -1009) 182) ((-40 . -701) 154) ((-31 . -1049) T) ((-31 . -593) 120) ((-31 . -1067) T) ((-31 . -101) T) ((-31 . -92) T) ((-30 . -926) T) ((-30 . -593) 102) ((0 . |EnumerationCategory|) T) ((0 . -593) 84) ((0 . -1067) T) ((0 . -101) T) ((-1 . -1067) T) ((-1 . -593) 66) ((-1 . -101) T) ((-2 . |RecordCategory|) T) ((-2 . -593) 48) ((-2 . -1067) T) ((-2 . -101) T) ((-3 . |UnionCategory|) T) ((-3 . -593) 30) ((-3 . -1067) T) ((-3 . -101) T))
\ No newline at end of file +(-1561 (|has| |#1| (-825)) (|has| |#1| (-1068))) +((($ $) . T) ((#0=(-838 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-227)) ((|#2| |#1|) |has| |#1| (-227)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-470 . -1068) T) ((-257 . -505) 144913) ((-241 . -505) 144856) ((-239 . -1068) 144806) ((-557 . -111) 144791) ((-522 . -23) T) ((-137 . -1068) T) ((-136 . -1068) T) ((-117 . -302) 144748) ((-132 . -1068) T) ((-471 . -505) 144540) ((-672 . -101) T) ((-1109 . -505) 144459) ((-383 . -130) T) ((-1240 . -949) 144428) ((-31 . -92) T) ((-584 . -481) 144412) ((-601 . -130) T) ((-797 . -821) T) ((-514 . -56) 144362) ((-58 . -505) 144295) ((-510 . -505) 144228) ((-411 . -873) 144187) ((-167 . -1020) T) ((-507 . -505) 144120) ((-488 . -505) 144053) ((-487 . -505) 143986) ((-777 . -1011) 143769) ((-677 . -38) 143734) ((-336 . -342) T) ((-1062 . -1061) 143718) ((-1062 . -1068) 143696) ((-167 . -237) 143647) ((-167 . -227) 143598) ((-1062 . -1063) 143556) ((-845 . -279) 143514) ((-219 . -773) T) ((-219 . -770) T) ((-672 . -277) NIL) ((-1118 . -1157) 143493) ((-400 . -965) 143477) ((-679 . -21) T) ((-679 . -25) T) ((-1242 . -626) 143451) ((-309 . -158) 143430) ((-309 . -141) 143409) ((-1118 . -106) 143359) ((-133 . -25) T) ((-40 . -225) 143336) ((-116 . -21) T) ((-116 . -25) T) ((-590 . -281) 143312) ((-467 . -281) 143291) ((-1200 . -1020) T) ((-830 . -1020) T) ((-777 . -331) 143275) ((-117 . -1119) NIL) ((-90 . -595) 143207) ((-469 . -130) T) ((-576 . -1181) T) ((-1200 . -319) 143184) ((-557 . -1020) T) ((-1200 . -227) T) ((-640 . -696) 143168) ((-1064 . -595) 143134) ((-931 . -281) 143111) ((-59 . -34) T) ((-1058 . -595) 143077) ((-1042 . -595) 143043) ((-1031 . -773) T) ((-1031 . -770) T) ((-794 . -705) T) ((-710 . -47) 143008) ((-603 . -38) 142995) ((-348 . -283) T) ((-345 . -283) T) ((-337 . -283) T) ((-257 . -283) 142926) ((-241 . -283) 142857) ((-1035 . -595) 142823) ((-1009 . -595) 142789) ((-997 . -101) T) ((-992 . -595) 142755) ((-406 . -705) T) ((-117 . -38) 142700) ((-606 . -595) 142666) ((-406 . -465) T) ((-475 . -595) 142632) ((-347 . -101) T) ((-212 . -595) 142598) ((-1175 . -1027) T) ((-690 . -1027) T) ((-1142 . -47) 142575) ((-1141 . -47) 142545) ((-1135 . -47) 142522) ((-1008 . -149) 142468) ((-883 . -283) T) ((-1094 . -47) 142440) ((-672 . -302) NIL) ((-506 . -595) 142422) ((-501 . -595) 142404) ((-499 . -595) 142386) ((-320 . -1068) 142336) ((-691 . -444) 142267) ((-48 . -101) T) ((-1211 . -279) 142252) ((-1190 . -279) 142172) ((-623 . -644) 142156) ((-623 . -629) 142140) ((-332 . -21) T) ((-332 . -25) T) ((-40 . -342) NIL) ((-172 . -21) T) ((-172 . -25) T) ((-623 . -366) 142124) ((-584 . -279) 142101) ((-587 . -595) 142068) ((-381 . -101) T) ((-1088 . -141) T) ((-126 . -595) 142000) ((-847 . -1068) T) ((-636 . -404) 141984) ((-693 . -595) 141966) ((-160 . -595) 141948) ((-155 . -595) 141930) ((-1242 . -705) T) ((-1070 . -34) T) ((-844 . -773) NIL) ((-844 . -770) NIL) ((-833 . -825) T) ((-710 . -859) NIL) ((-1251 . -130) T) ((-374 . -130) T) ((-877 . -101) T) ((-710 . -1011) 141806) ((-522 . -130) T) ((-1055 . -404) 141790) ((-973 . -481) 141774) ((-117 . -393) 141751) ((-1135 . -1181) 141730) ((-760 . -404) 141714) ((-758 . -404) 141698) ((-916 . -34) T) ((-672 . -1119) NIL) ((-244 . -626) 141533) ((-243 . -626) 141355) ((-795 . -893) 141334) ((-446 . -404) 141318) ((-584 . -19) 141302) ((-1114 . -1174) 141271) ((-1135 . -859) NIL) ((-1135 . -857) 141223) ((-584 . -586) 141200) ((-1167 . -595) 141132) ((-1143 . -595) 141114) ((-61 . -388) T) ((-1141 . -1011) 141049) ((-1135 . -1011) 141015) ((-672 . -38) 140965) ((-466 . -279) 140950) ((-710 . -370) 140934) ((-636 . -1027) T) ((-1211 . -975) 140900) ((-1190 . -975) 140866) ((-1032 . -1157) 140841) ((-845 . -596) 140649) ((-845 . -595) 140631) ((-1154 . -481) 140568) ((-411 . -995) 140547) ((-48 . -302) 140534) ((-1032 . -106) 140480) ((-471 . -481) 140417) ((-511 . -1181) T) ((-1135 . -331) 140369) ((-1109 . -481) 140340) ((-1135 . -370) 140292) ((-1055 . -1027) T) ((-430 . -101) T) ((-181 . -1068) T) ((-244 . -34) T) ((-243 . -34) T) ((-760 . -1027) T) ((-758 . -1027) T) ((-710 . -873) 140269) ((-446 . -1027) T) ((-58 . -481) 140253) ((-1007 . -1026) 140227) ((-510 . -481) 140211) ((-507 . -481) 140195) ((-488 . -481) 140179) ((-487 . -481) 140163) ((-239 . -505) 140096) ((-1007 . -111) 140063) ((-1142 . -873) 139976) ((-1141 . -873) 139882) ((-1135 . -873) 139715) ((-648 . -1080) T) ((-1094 . -873) 139699) ((-624 . -92) T) ((-347 . -1119) T) ((-315 . -1026) 139681) ((-244 . -769) 139660) ((-244 . -772) 139611) ((-244 . -771) 139590) ((-243 . -769) 139569) ((-243 . -772) 139520) ((-243 . -771) 139499) ((-31 . -595) 139465) ((-50 . -1027) T) ((-244 . -705) 139375) ((-243 . -705) 139285) ((-1175 . -1068) T) ((-648 . -23) T) ((-565 . -1027) T) ((-509 . -1027) T) ((-372 . -1026) 139250) ((-315 . -111) 139225) ((-72 . -376) T) ((-72 . -388) T) ((-997 . -38) 139162) ((-672 . -393) 139144) ((-98 . -101) T) ((-690 . -1068) T) ((-976 . -143) 139116) ((-976 . -145) 139088) ((-372 . -111) 139044) ((-312 . -1185) 139023) ((-466 . -975) 138989) ((-347 . -38) 138954) ((-40 . -363) 138926) ((-846 . -595) 138798) ((-127 . -125) 138782) ((-121 . -125) 138766) ((-812 . -1026) 138736) ((-811 . -21) 138688) ((-805 . -1026) 138672) ((-811 . -25) 138624) ((-312 . -542) 138575) ((-550 . -806) T) ((-234 . -1181) T) ((-812 . -111) 138540) ((-805 . -111) 138519) ((-1211 . -595) 138501) ((-1190 . -595) 138483) ((-1190 . -596) 138156) ((-1140 . -882) 138135) ((-1093 . -882) 138114) ((-48 . -38) 138079) ((-1249 . -1080) T) ((-584 . -595) 137991) ((-584 . -596) 137952) ((-1247 . -1080) T) ((-234 . -1011) 137779) ((-1140 . -626) 137704) ((-1093 . -626) 137629) ((-697 . -595) 137611) ((-829 . -626) 137585) ((-482 . -1068) T) ((-1249 . -23) T) ((-1247 . -23) T) ((-1007 . -1020) T) ((-1154 . -279) 137564) ((-167 . -361) 137515) ((-977 . -1181) T) ((-44 . -23) T) ((-471 . -279) 137494) ((-569 . -1068) T) ((-1114 . -1077) 137463) ((-1072 . -1071) 137415) ((-128 . -1181) T) ((-383 . -21) T) ((-383 . -25) T) ((-150 . -1080) T) ((-1255 . -101) T) ((-977 . -857) 137397) ((-977 . -859) 137379) ((-1175 . -696) 137276) ((-603 . -225) 137260) ((-601 . -21) T) ((-282 . -542) T) ((-601 . -25) T) ((-1161 . -1068) T) ((-690 . -696) 137225) ((-234 . -370) 137194) ((-977 . -1011) 137154) ((-372 . -1020) T) ((-217 . -1027) T) ((-117 . -225) 137131) ((-58 . -279) 137108) ((-150 . -23) T) ((-507 . -279) 137085) ((-320 . -505) 137018) ((-487 . -279) 136995) ((-372 . -237) T) ((-372 . -227) T) ((-812 . -1020) T) ((-805 . -1020) T) ((-691 . -922) 136964) ((-679 . -825) T) ((-466 . -595) 136946) ((-805 . -227) 136925) ((-133 . -825) T) ((-636 . -1068) T) ((-1154 . -586) 136904) ((-536 . -1157) 136883) ((-329 . -1068) T) ((-312 . -356) 136862) ((-400 . -145) 136841) ((-400 . -143) 136820) ((-937 . -1080) 136719) ((-234 . -873) 136651) ((-793 . -1080) 136561) ((-632 . -827) 136545) ((-471 . -586) 136524) ((-536 . -106) 136474) ((-977 . -370) 136456) ((-977 . -331) 136438) ((-96 . -1068) T) ((-937 . -23) 136249) ((-469 . -21) T) ((-469 . -25) T) ((-793 . -23) 136119) ((-1144 . -595) 136101) ((-58 . -19) 136085) ((-1144 . -596) 136007) ((-1140 . -705) T) ((-1093 . -705) T) ((-507 . -19) 135991) ((-487 . -19) 135975) ((-58 . -586) 135952) ((-1055 . -1068) T) ((-874 . -101) 135930) ((-829 . -705) T) ((-760 . -1068) T) ((-507 . -586) 135907) ((-487 . -586) 135884) ((-758 . -1068) T) ((-758 . -1034) 135851) ((-453 . -1068) T) ((-446 . -1068) T) ((-569 . -696) 135826) ((-627 . -1068) T) ((-977 . -873) NIL) ((-1219 . -47) 135803) ((-607 . -1080) T) ((-648 . -130) T) ((-1213 . -101) T) ((-1212 . -47) 135773) ((-1191 . -47) 135750) ((-1175 . -170) 135701) ((-1048 . -1185) 135652) ((-268 . -1068) T) ((-84 . -433) T) ((-84 . -388) T) ((-1141 . -300) 135631) ((-1135 . -300) 135610) ((-50 . -1068) T) ((-1048 . -542) 135561) ((-690 . -170) T) ((-578 . -47) 135538) ((-219 . -626) 135503) ((-565 . -1068) T) ((-509 . -1068) T) ((-352 . -1185) T) ((-346 . -1185) T) ((-338 . -1185) T) ((-479 . -798) T) ((-479 . -893) T) ((-312 . -1080) T) ((-107 . -1185) T) ((-332 . -825) T) ((-211 . -893) T) ((-211 . -798) T) ((-693 . -1026) 135473) ((-352 . -542) T) ((-346 . -542) T) ((-338 . -542) T) ((-107 . -542) T) ((-636 . -696) 135443) ((-1135 . -995) NIL) ((-312 . -23) T) ((-66 . -1181) T) ((-973 . -595) 135375) ((-672 . -225) 135357) ((-693 . -111) 135322) ((-623 . -34) T) ((-239 . -481) 135306) ((-1070 . -1066) 135290) ((-169 . -1068) T) ((-925 . -882) 135269) ((-473 . -882) 135248) ((-1255 . -1119) T) ((-1251 . -21) T) ((-1251 . -25) T) ((-1249 . -130) T) ((-1247 . -130) T) ((-1055 . -696) 135097) ((-1031 . -626) 135084) ((-925 . -626) 135009) ((-760 . -696) 134838) ((-526 . -595) 134820) ((-526 . -596) 134801) ((-758 . -696) 134650) ((-1240 . -101) T) ((-1045 . -101) T) ((-374 . -25) T) ((-374 . -21) T) ((-473 . -626) 134575) ((-453 . -696) 134546) ((-446 . -696) 134395) ((-960 . -101) T) ((-1223 . -595) 134361) ((-1212 . -1011) 134296) ((-1191 . -1181) 134275) ((-716 . -101) T) ((-1191 . -859) NIL) ((-1191 . -857) 134227) ((-1154 . -596) NIL) ((-1154 . -595) 134209) ((-522 . -25) T) ((-1110 . -1091) 134154) ((-1017 . -1174) 134083) ((-874 . -302) 134021) ((-336 . -1027) T) ((-139 . -101) T) ((-44 . -130) T) ((-282 . -1080) T) ((-659 . -92) T) ((-654 . -92) T) ((-642 . -595) 134003) ((-624 . -595) 133956) ((-470 . -92) T) ((-348 . -595) 133938) ((-345 . -595) 133920) ((-337 . -595) 133902) ((-257 . -596) 133650) ((-257 . -595) 133632) ((-241 . -595) 133614) ((-241 . -596) 133475) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1191 . -1011) 133441) ((-1175 . -505) 133408) ((-1109 . -595) 133390) ((-797 . -832) T) ((-797 . -705) T) ((-584 . -281) 133367) ((-565 . -696) 133332) ((-471 . -596) NIL) ((-471 . -595) 133314) ((-509 . -696) 133259) ((-309 . -101) T) ((-306 . -101) T) ((-282 . -23) T) ((-150 . -130) T) ((-379 . -705) T) ((-845 . -1026) 133211) ((-883 . -595) 133193) ((-883 . -596) 133175) ((-845 . -111) 133113) ((-135 . -101) T) ((-114 . -101) T) ((-691 . -1203) 133097) ((-693 . -1020) T) ((-672 . -342) NIL) ((-510 . -595) 133029) ((-372 . -773) T) ((-217 . -1068) T) ((-372 . -770) T) ((-219 . -772) T) ((-219 . -769) T) ((-58 . -596) 132990) ((-58 . -595) 132902) ((-219 . -705) T) ((-507 . -596) 132863) ((-507 . -595) 132775) ((-488 . -595) 132707) ((-487 . -596) 132668) ((-487 . -595) 132580) ((-1048 . -356) 132531) ((-40 . -404) 132508) ((-76 . -1181) T) ((-844 . -882) NIL) ((-352 . -322) 132492) ((-352 . -356) T) ((-346 . -322) 132476) ((-346 . -356) T) ((-338 . -322) 132460) ((-338 . -356) T) ((-309 . -277) 132439) ((-107 . -356) T) ((-69 . -1181) T) ((-1191 . -331) 132391) ((-844 . -626) 132336) ((-1191 . -370) 132288) ((-937 . -130) 132143) ((-793 . -130) 132013) ((-931 . -629) 131997) ((-1055 . -170) 131908) ((-931 . -366) 131892) ((-1031 . -772) T) ((-1031 . -769) T) ((-760 . -170) 131783) ((-758 . -170) 131694) ((-794 . -47) 131656) ((-1031 . -705) T) ((-320 . -481) 131640) ((-925 . -705) T) ((-446 . -170) 131551) ((-239 . -279) 131528) ((-473 . -705) T) ((-1240 . -302) 131466) ((-1219 . -873) 131379) ((-1212 . -873) 131285) ((-1211 . -1026) 131120) ((-1191 . -873) 130953) ((-1190 . -1026) 130761) ((-1175 . -283) 130740) ((-1114 . -149) 130724) ((-1088 . -101) T) ((-1043 . -101) T) ((-900 . -928) T) ((-716 . -302) 130662) ((-74 . -1181) T) ((-30 . -928) T) ((-167 . -882) 130615) ((-642 . -375) 130587) ((-112 . -819) T) ((-1 . -595) 130569) ((-1086 . -1068) T) ((-1048 . -23) T) ((-50 . -600) 130553) ((-1048 . -1080) T) ((-976 . -402) 130525) ((-578 . -873) 130438) ((-431 . -101) T) ((-139 . -302) NIL) ((-845 . -1020) T) ((-811 . -825) 130417) ((-80 . -1181) T) ((-690 . -283) T) ((-40 . -1027) T) ((-565 . -170) T) ((-509 . -170) T) ((-502 . -595) 130399) ((-167 . -626) 130309) ((-498 . -595) 130291) ((-344 . -145) 130273) ((-344 . -143) T) ((-352 . -1080) T) ((-346 . -1080) T) ((-338 . -1080) T) ((-977 . -300) T) ((-887 . -300) T) ((-845 . -237) T) ((-107 . -1080) T) ((-845 . -227) 130252) ((-1211 . -111) 130073) ((-1190 . -111) 129862) ((-239 . -1215) 129846) ((-550 . -823) T) ((-352 . -23) T) ((-347 . -342) T) ((-309 . -302) 129833) ((-306 . -302) 129774) ((-346 . -23) T) ((-312 . -130) T) ((-338 . -23) T) ((-977 . -995) T) ((-107 . -23) T) ((-239 . -586) 129751) ((-1213 . -38) 129643) ((-1200 . -882) 129622) ((-112 . -1068) T) ((-1008 . -101) T) ((-1200 . -626) 129547) ((-844 . -772) NIL) ((-830 . -626) 129521) ((-844 . -769) NIL) ((-794 . -859) NIL) ((-844 . -705) T) ((-1055 . -505) 129394) ((-760 . -505) 129341) ((-758 . -505) 129293) ((-557 . -626) 129280) ((-794 . -1011) 129108) ((-446 . -505) 129051) ((-381 . -382) T) ((-59 . -1181) T) ((-601 . -825) 129030) ((-491 . -639) T) ((-1114 . -949) 128999) ((-976 . -444) T) ((-677 . -823) T) ((-501 . -770) T) ((-466 . -1026) 128834) ((-336 . -1068) T) ((-306 . -1119) NIL) ((-282 . -130) T) ((-387 . -1068) T) ((-672 . -363) 128801) ((-843 . -1027) T) ((-217 . -600) 128778) ((-320 . -279) 128755) ((-466 . -111) 128576) ((-1211 . -1020) T) ((-1190 . -1020) T) ((-794 . -370) 128560) ((-167 . -705) T) ((-632 . -101) T) ((-1211 . -237) 128539) ((-1211 . -227) 128491) ((-1190 . -227) 128396) ((-1190 . -237) 128375) ((-976 . -395) NIL) ((-648 . -619) 128323) ((-309 . -38) 128233) ((-306 . -38) 128162) ((-68 . -595) 128144) ((-312 . -484) 128110) ((-1154 . -281) 128089) ((-1081 . -1080) 127999) ((-82 . -1181) T) ((-60 . -595) 127981) ((-471 . -281) 127960) ((-1242 . -1011) 127937) ((-1132 . -1068) T) ((-1081 . -23) 127807) ((-794 . -873) 127743) ((-1200 . -705) T) ((-1070 . -1181) T) ((-1055 . -283) 127674) ((-939 . -1068) T) ((-866 . -101) T) ((-760 . -283) 127585) ((-320 . -19) 127569) ((-58 . -281) 127546) ((-758 . -283) 127477) ((-830 . -705) T) ((-117 . -823) NIL) ((-507 . -281) 127454) ((-320 . -586) 127431) ((-487 . -281) 127408) ((-446 . -283) 127339) ((-1008 . -302) 127190) ((-557 . -705) T) ((-659 . -595) 127140) ((-654 . -595) 127106) ((-640 . -595) 127088) ((-470 . -595) 127054) ((-239 . -596) 127015) ((-239 . -595) 126927) ((-137 . -595) 126893) ((-136 . -595) 126859) ((-132 . -595) 126825) ((-1115 . -34) T) ((-916 . -1181) T) ((-336 . -696) 126770) ((-648 . -25) T) ((-648 . -21) T) ((-466 . -1020) T) ((-615 . -410) 126735) ((-589 . -410) 126700) ((-1088 . -1119) T) ((-565 . -283) T) ((-509 . -283) T) ((-1212 . -300) 126679) ((-466 . -227) 126631) ((-466 . -237) 126610) ((-1191 . -300) 126589) ((-1191 . -995) NIL) ((-1048 . -130) T) ((-845 . -773) 126568) ((-142 . -101) T) ((-40 . -1068) T) ((-845 . -770) 126547) ((-623 . -983) 126531) ((-564 . -1027) T) ((-550 . -1027) T) ((-486 . -1027) T) ((-400 . -444) T) ((-352 . -130) T) ((-309 . -393) 126515) ((-306 . -393) 126476) ((-346 . -130) T) ((-338 . -130) T) ((-1149 . -1068) T) ((-1088 . -38) 126463) ((-1062 . -595) 126430) ((-107 . -130) T) ((-927 . -1068) T) ((-894 . -1068) T) ((-749 . -1068) T) ((-650 . -1068) T) ((-497 . -1051) T) ((-679 . -145) T) ((-116 . -145) T) ((-1249 . -21) T) ((-1249 . -25) T) ((-1247 . -21) T) ((-1247 . -25) T) ((-642 . -1026) 126414) ((-522 . -825) T) ((-491 . -825) T) ((-348 . -1026) 126366) ((-345 . -1026) 126318) ((-337 . -1026) 126270) ((-244 . -1181) T) ((-243 . -1181) T) ((-257 . -1026) 126113) ((-241 . -1026) 125956) ((-642 . -111) 125935) ((-348 . -111) 125873) ((-345 . -111) 125811) ((-337 . -111) 125749) ((-257 . -111) 125578) ((-241 . -111) 125407) ((-795 . -1185) 125386) ((-603 . -404) 125370) ((-44 . -21) T) ((-44 . -25) T) ((-793 . -619) 125276) ((-795 . -542) 125255) ((-244 . -1011) 125082) ((-243 . -1011) 124909) ((-126 . -119) 124893) ((-883 . -1026) 124858) ((-677 . -1027) T) ((-691 . -101) T) ((-336 . -170) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -595) 124840) ((-883 . -111) 124796) ((-40 . -696) 124741) ((-843 . -1068) T) ((-320 . -596) 124702) ((-320 . -595) 124614) ((-1190 . -770) 124567) ((-1190 . -773) 124520) ((-244 . -370) 124489) ((-243 . -370) 124458) ((-632 . -38) 124428) ((-590 . -34) T) ((-474 . -1080) 124338) ((-467 . -34) T) ((-1081 . -130) 124208) ((-937 . -25) 124019) ((-847 . -595) 124001) ((-937 . -21) 123956) ((-793 . -21) 123866) ((-793 . -25) 123717) ((-603 . -1027) T) ((-1146 . -542) 123696) ((-1140 . -47) 123673) ((-348 . -1020) T) ((-345 . -1020) T) ((-474 . -23) 123543) ((-337 . -1020) T) ((-257 . -1020) T) ((-241 . -1020) T) ((-1093 . -47) 123515) ((-117 . -1027) T) ((-1007 . -626) 123489) ((-931 . -34) T) ((-348 . -227) 123468) ((-348 . -237) T) ((-345 . -227) 123447) ((-345 . -237) T) ((-241 . -319) 123404) ((-337 . -227) 123383) ((-337 . -237) T) ((-257 . -319) 123355) ((-257 . -227) 123334) ((-1124 . -149) 123318) ((-244 . -873) 123250) ((-243 . -873) 123182) ((-1050 . -825) T) ((-1194 . -1181) T) ((-407 . -1080) T) ((-1024 . -23) T) ((-883 . -1020) T) ((-315 . -626) 123164) ((-997 . -823) T) ((-1175 . -975) 123130) ((-1141 . -893) 123109) ((-1135 . -893) 123088) ((-883 . -237) T) ((-795 . -356) 123067) ((-378 . -23) T) ((-127 . -1068) 123045) ((-121 . -1068) 123023) ((-883 . -227) T) ((-1135 . -798) NIL) ((-372 . -626) 122988) ((-843 . -696) 122975) ((-1017 . -149) 122940) ((-40 . -170) T) ((-672 . -404) 122922) ((-691 . -302) 122909) ((-812 . -626) 122869) ((-805 . -626) 122843) ((-312 . -25) T) ((-312 . -21) T) ((-636 . -279) 122822) ((-564 . -1068) T) ((-550 . -1068) T) ((-486 . -1068) T) ((-239 . -281) 122799) ((-306 . -225) 122760) ((-1140 . -859) NIL) ((-1093 . -859) 122619) ((-129 . -825) T) ((-1140 . -1011) 122499) ((-1093 . -1011) 122382) ((-181 . -595) 122364) ((-829 . -1011) 122260) ((-760 . -279) 122187) ((-795 . -1080) T) ((-1007 . -705) T) ((-584 . -629) 122171) ((-1017 . -949) 122100) ((-972 . -101) T) ((-795 . -23) T) ((-691 . -1119) 122078) ((-672 . -1027) T) ((-584 . -366) 122062) ((-344 . -444) T) ((-336 . -283) T) ((-1228 . -1068) T) ((-242 . -1068) T) ((-392 . -101) T) ((-282 . -21) T) ((-282 . -25) T) ((-354 . -705) T) ((-689 . -1068) T) ((-677 . -1068) T) ((-354 . -465) T) ((-1175 . -595) 122044) ((-1140 . -370) 122028) ((-1093 . -370) 122012) ((-997 . -404) 121974) ((-139 . -223) 121956) ((-372 . -772) T) ((-372 . -769) T) ((-843 . -170) T) ((-372 . -705) T) ((-690 . -595) 121938) ((-691 . -38) 121767) ((-1227 . -1225) 121751) ((-344 . -395) T) ((-1227 . -1068) 121701) ((-564 . -696) 121688) ((-550 . -696) 121675) ((-486 . -696) 121640) ((-309 . -609) 121619) ((-812 . -705) T) ((-805 . -705) T) ((-623 . -1181) T) ((-1048 . -619) 121567) ((-1140 . -873) 121510) ((-1093 . -873) 121494) ((-640 . -1026) 121478) ((-107 . -619) 121460) ((-474 . -130) 121330) ((-1146 . -1080) T) ((-925 . -47) 121299) ((-603 . -1068) T) ((-640 . -111) 121278) ((-482 . -595) 121244) ((-320 . -281) 121221) ((-473 . -47) 121178) ((-1146 . -23) T) ((-117 . -1068) T) ((-102 . -101) 121156) ((-1239 . -1080) T) ((-1024 . -130) T) ((-997 . -1027) T) ((-797 . -1011) 121140) ((-976 . -703) 121112) ((-1239 . -23) T) ((-677 . -696) 121077) ((-569 . -595) 121059) ((-379 . -1011) 121043) ((-347 . -1027) T) ((-378 . -130) T) ((-317 . -1011) 121027) ((-219 . -859) 121009) ((-977 . -893) T) ((-90 . -34) T) ((-977 . -798) T) ((-887 . -893) T) ((-479 . -1185) T) ((-1161 . -595) 120991) ((-1073 . -1068) T) ((-211 . -1185) T) ((-972 . -302) 120956) ((-219 . -1011) 120916) ((-40 . -283) T) ((-1048 . -21) T) ((-1048 . -25) T) ((-1088 . -806) T) ((-479 . -542) T) ((-352 . -25) T) ((-211 . -542) T) ((-352 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-693 . -626) 120876) ((-338 . -25) T) ((-338 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1027) T) ((-564 . -170) T) ((-550 . -170) T) ((-486 . -170) T) ((-636 . -595) 120858) ((-716 . -715) 120842) ((-329 . -595) 120824) ((-67 . -376) T) ((-67 . -388) T) ((-1070 . -106) 120808) ((-1031 . -859) 120790) ((-925 . -859) 120715) ((-631 . -1080) T) ((-603 . -696) 120702) ((-473 . -859) NIL) ((-1114 . -101) T) ((-1031 . -1011) 120684) ((-96 . -595) 120666) ((-469 . -145) T) ((-925 . -1011) 120546) ((-117 . -696) 120491) ((-631 . -23) T) ((-473 . -1011) 120367) ((-1055 . -596) NIL) ((-1055 . -595) 120349) ((-760 . -596) NIL) ((-760 . -595) 120310) ((-758 . -596) 119944) ((-758 . -595) 119858) ((-1081 . -619) 119764) ((-453 . -595) 119746) ((-446 . -595) 119728) ((-446 . -596) 119589) ((-1008 . -223) 119535) ((-845 . -882) 119514) ((-126 . -34) T) ((-795 . -130) T) ((-627 . -595) 119496) ((-563 . -101) T) ((-348 . -1246) 119480) ((-345 . -1246) 119464) ((-337 . -1246) 119448) ((-127 . -505) 119381) ((-121 . -505) 119314) ((-502 . -770) T) ((-502 . -773) T) ((-501 . -772) T) ((-102 . -302) 119252) ((-216 . -101) 119230) ((-672 . -1068) T) ((-677 . -170) T) ((-845 . -626) 119182) ((-64 . -377) T) ((-268 . -595) 119164) ((-64 . -388) T) ((-925 . -370) 119148) ((-843 . -283) T) ((-50 . -595) 119130) ((-972 . -38) 119078) ((-565 . -595) 119060) ((-473 . -370) 119044) ((-565 . -596) 119026) ((-509 . -595) 119008) ((-883 . -1246) 118995) ((-844 . -1181) T) ((-679 . -444) T) ((-486 . -505) 118961) ((-479 . -356) T) ((-348 . -361) 118940) ((-345 . -361) 118919) ((-337 . -361) 118898) ((-211 . -356) T) ((-693 . -705) T) ((-116 . -444) T) ((-1250 . -1241) 118882) ((-844 . -857) 118859) ((-844 . -859) NIL) ((-937 . -825) 118758) ((-793 . -825) 118709) ((-632 . -634) 118693) ((-1167 . -34) T) ((-169 . -595) 118675) ((-1081 . -21) 118585) ((-1081 . -25) 118436) ((-844 . -1011) 118413) ((-925 . -873) 118394) ((-1200 . -47) 118371) ((-883 . -361) T) ((-58 . -629) 118355) ((-507 . -629) 118339) ((-473 . -873) 118316) ((-70 . -433) T) ((-70 . -388) T) ((-487 . -629) 118300) ((-58 . -366) 118284) ((-603 . -170) T) ((-507 . -366) 118268) ((-487 . -366) 118252) ((-805 . -687) 118236) ((-1140 . -300) 118215) ((-1146 . -130) T) ((-117 . -170) T) ((-1114 . -302) 118153) ((-167 . -1181) T) ((-615 . -723) 118137) ((-589 . -723) 118121) ((-1239 . -130) T) ((-1212 . -893) 118100) ((-1191 . -893) 118079) ((-1191 . -798) NIL) ((-672 . -696) 118029) ((-1190 . -882) 117982) ((-997 . -1068) T) ((-844 . -370) 117959) ((-844 . -331) 117936) ((-878 . -1080) T) ((-167 . -857) 117920) ((-167 . -859) 117845) ((-479 . -1080) T) ((-347 . -1068) T) ((-211 . -1080) T) ((-75 . -433) T) ((-75 . -388) T) ((-167 . -1011) 117741) ((-312 . -825) T) ((-1227 . -505) 117674) ((-1211 . -626) 117571) ((-1190 . -626) 117441) ((-845 . -772) 117420) ((-845 . -769) 117399) ((-845 . -705) T) ((-479 . -23) T) ((-217 . -595) 117381) ((-172 . -444) T) ((-216 . -302) 117319) ((-85 . -433) T) ((-85 . -388) T) ((-211 . -23) T) ((-1251 . -1244) 117298) ((-564 . -283) T) ((-550 . -283) T) ((-655 . -1011) 117282) ((-486 . -283) T) ((-135 . -462) 117237) ((-48 . -1068) T) ((-691 . -225) 117221) ((-844 . -873) NIL) ((-1200 . -859) NIL) ((-862 . -101) T) ((-858 . -101) T) ((-381 . -1068) T) ((-167 . -370) 117205) ((-167 . -331) 117189) ((-1200 . -1011) 117069) ((-830 . -1011) 116965) ((-1110 . -101) T) ((-631 . -130) T) ((-117 . -505) 116873) ((-640 . -770) 116852) ((-640 . -773) 116831) ((-557 . -1011) 116813) ((-287 . -1234) 116783) ((-839 . -101) T) ((-936 . -542) 116762) ((-1175 . -1026) 116645) ((-474 . -619) 116551) ((-877 . -1068) T) ((-997 . -696) 116488) ((-690 . -1026) 116453) ((-598 . -101) T) ((-584 . -34) T) ((-1115 . -1181) T) ((-1175 . -111) 116322) ((-466 . -626) 116219) ((-347 . -696) 116164) ((-167 . -873) 116123) ((-677 . -283) T) ((-672 . -170) T) ((-690 . -111) 116079) ((-1255 . -1027) T) ((-1200 . -370) 116063) ((-411 . -1185) 116041) ((-1086 . -595) 116023) ((-306 . -823) NIL) ((-411 . -542) T) ((-219 . -300) T) ((-1190 . -769) 115976) ((-1190 . -772) 115929) ((-1211 . -705) T) ((-1190 . -705) T) ((-48 . -696) 115894) ((-219 . -995) T) ((-344 . -1234) 115871) ((-1213 . -404) 115837) ((-697 . -705) T) ((-1200 . -873) 115780) ((-112 . -595) 115762) ((-112 . -596) 115744) ((-697 . -465) T) ((-474 . -21) 115654) ((-127 . -481) 115638) ((-121 . -481) 115622) ((-474 . -25) 115473) ((-603 . -283) T) ((-569 . -1026) 115448) ((-430 . -1068) T) ((-1031 . -300) T) ((-117 . -283) T) ((-1072 . -101) T) ((-976 . -101) T) ((-569 . -111) 115416) ((-1110 . -302) 115354) ((-1175 . -1020) T) ((-1031 . -995) T) ((-65 . -1181) T) ((-1024 . -25) T) ((-1024 . -21) T) ((-690 . -1020) T) ((-378 . -21) T) ((-378 . -25) T) ((-672 . -505) NIL) ((-997 . -170) T) ((-690 . -237) T) ((-1031 . -535) T) ((-497 . -101) T) ((-493 . -101) T) ((-347 . -170) T) ((-336 . -595) 115336) ((-387 . -595) 115318) ((-466 . -705) T) ((-1088 . -823) T) ((-865 . -1011) 115286) ((-107 . -825) T) ((-636 . -1026) 115270) ((-479 . -130) T) ((-1213 . -1027) T) ((-211 . -130) T) ((-1124 . -101) 115248) ((-98 . -1068) T) ((-239 . -644) 115232) ((-239 . -629) 115216) ((-636 . -111) 115195) ((-309 . -404) 115179) ((-239 . -366) 115163) ((-1127 . -229) 115110) ((-972 . -225) 115094) ((-73 . -1181) T) ((-48 . -170) T) ((-679 . -380) T) ((-679 . -141) T) ((-1250 . -101) T) ((-1055 . -1026) 114937) ((-257 . -882) 114916) ((-241 . -882) 114895) ((-760 . -1026) 114718) ((-758 . -1026) 114561) ((-590 . -1181) T) ((-1132 . -595) 114543) ((-1055 . -111) 114372) ((-1017 . -101) T) ((-467 . -1181) T) ((-453 . -1026) 114343) ((-446 . -1026) 114186) ((-642 . -626) 114170) ((-844 . -300) T) ((-760 . -111) 113979) ((-758 . -111) 113808) ((-348 . -626) 113760) ((-345 . -626) 113712) ((-337 . -626) 113664) ((-257 . -626) 113589) ((-241 . -626) 113514) ((-1126 . -825) T) ((-1056 . -1011) 113498) ((-453 . -111) 113459) ((-446 . -111) 113288) ((-1044 . -1011) 113265) ((-973 . -34) T) ((-939 . -595) 113247) ((-931 . -1181) T) ((-126 . -983) 113231) ((-936 . -1080) T) ((-844 . -995) NIL) ((-714 . -1080) T) ((-694 . -1080) T) ((-1227 . -481) 113215) ((-1110 . -38) 113175) ((-936 . -23) T) ((-818 . -101) T) ((-795 . -21) T) ((-795 . -25) T) ((-714 . -23) T) ((-694 . -23) T) ((-110 . -639) T) ((-883 . -626) 113140) ((-565 . -1026) 113105) ((-509 . -1026) 113050) ((-221 . -56) 113008) ((-445 . -23) T) ((-400 . -101) T) ((-256 . -101) T) ((-672 . -283) T) ((-839 . -38) 112978) ((-565 . -111) 112934) ((-509 . -111) 112863) ((-411 . -1080) T) ((-309 . -1027) 112753) ((-306 . -1027) T) ((-636 . -1020) T) ((-1255 . -1068) T) ((-167 . -300) 112684) ((-411 . -23) T) ((-40 . -595) 112666) ((-40 . -596) 112650) ((-107 . -965) 112632) ((-116 . -842) 112616) ((-48 . -505) 112582) ((-1167 . -983) 112566) ((-1149 . -595) 112548) ((-1154 . -34) T) ((-927 . -595) 112514) ((-894 . -595) 112496) ((-1081 . -825) 112447) ((-749 . -595) 112429) ((-650 . -595) 112411) ((-1124 . -302) 112349) ((-471 . -34) T) ((-1060 . -1181) T) ((-469 . -444) T) ((-1055 . -1020) T) ((-1109 . -34) T) ((-760 . -1020) T) ((-758 . -1020) T) ((-625 . -229) 112333) ((-612 . -229) 112279) ((-1200 . -300) 112258) ((-1055 . -319) 112219) ((-446 . -1020) T) ((-1146 . -21) T) ((-1055 . -227) 112198) ((-760 . -319) 112175) ((-760 . -227) T) ((-758 . -319) 112147) ((-710 . -1185) 112126) ((-320 . -629) 112110) ((-1146 . -25) T) ((-58 . -34) T) ((-510 . -34) T) ((-507 . -34) T) ((-446 . -319) 112089) ((-320 . -366) 112073) ((-488 . -34) T) ((-487 . -34) T) ((-976 . -1119) NIL) ((-710 . -542) 112004) ((-615 . -101) T) ((-589 . -101) T) ((-348 . -705) T) ((-345 . -705) T) ((-337 . -705) T) ((-257 . -705) T) ((-241 . -705) T) ((-1017 . -302) 111912) ((-874 . -1068) 111890) ((-50 . -1020) T) ((-1239 . -21) T) ((-1239 . -25) T) ((-1142 . -542) 111869) ((-1141 . -1185) 111848) ((-565 . -1020) T) ((-509 . -1020) T) ((-1135 . -1185) 111827) ((-354 . -1011) 111811) ((-315 . -1011) 111795) ((-997 . -283) T) ((-372 . -859) 111777) ((-1141 . -542) 111728) ((-1135 . -542) 111679) ((-976 . -38) 111624) ((-777 . -1080) T) ((-883 . -705) T) ((-565 . -237) T) ((-565 . -227) T) ((-509 . -227) T) ((-509 . -237) T) ((-1094 . -542) 111603) ((-347 . -283) T) ((-625 . -673) 111587) ((-372 . -1011) 111547) ((-1088 . -1027) T) ((-102 . -125) 111531) ((-777 . -23) T) ((-1227 . -279) 111508) ((-400 . -302) 111473) ((-1249 . -1244) 111449) ((-1247 . -1244) 111428) ((-1213 . -1068) T) ((-843 . -595) 111410) ((-812 . -1011) 111379) ((-197 . -765) T) ((-196 . -765) T) ((-195 . -765) T) ((-194 . -765) T) ((-193 . -765) T) ((-192 . -765) T) ((-191 . -765) T) ((-190 . -765) T) ((-189 . -765) T) ((-188 . -765) T) ((-486 . -975) T) ((-267 . -814) T) ((-266 . -814) T) ((-265 . -814) T) ((-264 . -814) T) ((-48 . -283) T) ((-263 . -814) T) ((-262 . -814) T) ((-261 . -814) T) ((-187 . -765) T) ((-594 . -825) T) ((-632 . -404) 111363) ((-110 . -825) T) ((-631 . -21) T) ((-631 . -25) T) ((-1250 . -38) 111333) ((-117 . -279) 111284) ((-1227 . -19) 111268) ((-1227 . -586) 111245) ((-1240 . -1068) T) ((-1045 . -1068) T) ((-960 . -1068) T) ((-936 . -130) T) ((-716 . -1068) T) ((-714 . -130) T) ((-694 . -130) T) ((-502 . -771) T) ((-400 . -1119) 111223) ((-445 . -130) T) ((-502 . -772) T) ((-217 . -1020) T) ((-287 . -101) 111005) ((-139 . -1068) T) ((-677 . -975) T) ((-90 . -1181) T) ((-127 . -595) 110937) ((-121 . -595) 110869) ((-1255 . -170) T) ((-1141 . -356) 110848) ((-1135 . -356) 110827) ((-309 . -1068) T) ((-411 . -130) T) ((-306 . -1068) T) ((-400 . -38) 110779) ((-1101 . -101) T) ((-1213 . -696) 110671) ((-632 . -1027) T) ((-1103 . -1222) T) ((-312 . -143) 110650) ((-312 . -145) 110629) ((-135 . -1068) T) ((-114 . -1068) T) ((-833 . -101) T) ((-564 . -595) 110611) ((-550 . -596) 110510) ((-550 . -595) 110492) ((-486 . -595) 110474) ((-486 . -596) 110419) ((-477 . -23) T) ((-474 . -825) 110370) ((-479 . -619) 110352) ((-938 . -595) 110334) ((-211 . -619) 110316) ((-219 . -397) T) ((-640 . -626) 110300) ((-1140 . -893) 110279) ((-710 . -1080) T) ((-344 . -101) T) ((-1180 . -1051) T) ((-796 . -825) T) ((-710 . -23) T) ((-336 . -1026) 110224) ((-1126 . -1125) T) ((-1115 . -106) 110208) ((-1142 . -1080) T) ((-1141 . -1080) T) ((-506 . -1011) 110192) ((-1135 . -1080) T) ((-1094 . -1080) T) ((-336 . -111) 110121) ((-977 . -1185) T) ((-126 . -1181) T) ((-887 . -1185) T) ((-672 . -279) NIL) ((-1228 . -595) 110103) ((-1142 . -23) T) ((-1141 . -23) T) ((-1135 . -23) T) ((-977 . -542) T) ((-1110 . -225) 110087) ((-887 . -542) T) ((-1094 . -23) T) ((-242 . -595) 110069) ((-1043 . -1068) T) ((-777 . -130) T) ((-689 . -595) 110051) ((-309 . -696) 109961) ((-306 . -696) 109890) ((-677 . -595) 109872) ((-677 . -596) 109817) ((-400 . -393) 109801) ((-431 . -1068) T) ((-479 . -25) T) ((-479 . -21) T) ((-1088 . -1068) T) ((-211 . -25) T) ((-211 . -21) T) ((-691 . -404) 109785) ((-693 . -1011) 109754) ((-1227 . -595) 109666) ((-1227 . -596) 109627) ((-1213 . -170) T) ((-239 . -34) T) ((-899 . -947) T) ((-1167 . -1181) T) ((-640 . -769) 109606) ((-640 . -772) 109585) ((-391 . -388) T) ((-514 . -101) 109563) ((-1008 . -1068) T) ((-216 . -968) 109547) ((-495 . -101) T) ((-603 . -595) 109529) ((-45 . -825) NIL) ((-603 . -596) 109506) ((-1008 . -592) 109481) ((-874 . -505) 109414) ((-336 . -1020) T) ((-117 . -596) NIL) ((-117 . -595) 109396) ((-845 . -1181) T) ((-648 . -410) 109380) ((-648 . -1091) 109325) ((-491 . -149) 109307) ((-336 . -227) T) ((-336 . -237) T) ((-40 . -1026) 109252) ((-845 . -857) 109236) ((-845 . -859) 109161) ((-691 . -1027) T) ((-672 . -975) NIL) ((-3 . |UnionCategory|) T) ((-1211 . -47) 109131) ((-1190 . -47) 109108) ((-1109 . -983) 109079) ((-219 . -893) T) ((-40 . -111) 109008) ((-845 . -1011) 108872) ((-1088 . -696) 108859) ((-1073 . -595) 108841) ((-1048 . -145) 108820) ((-1048 . -143) 108771) ((-977 . -356) T) ((-312 . -1169) 108737) ((-372 . -300) T) ((-312 . -1166) 108703) ((-309 . -170) 108682) ((-306 . -170) T) ((-976 . -225) 108659) ((-887 . -356) T) ((-565 . -1246) 108646) ((-509 . -1246) 108623) ((-352 . -145) 108602) ((-352 . -143) 108553) ((-346 . -145) 108532) ((-346 . -143) 108483) ((-590 . -1157) 108459) ((-338 . -145) 108438) ((-338 . -143) 108389) ((-312 . -35) 108355) ((-467 . -1157) 108334) ((0 . |EnumerationCategory|) T) ((-312 . -94) 108300) ((-372 . -995) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -229) 108250) ((-632 . -1068) T) ((-590 . -106) 108197) ((-477 . -130) T) ((-467 . -106) 108147) ((-234 . -1080) 108057) ((-845 . -370) 108041) ((-845 . -331) 108025) ((-234 . -23) 107895) ((-1031 . -893) T) ((-1031 . -798) T) ((-565 . -361) T) ((-509 . -361) T) ((-344 . -1119) T) ((-320 . -34) T) ((-44 . -410) 107879) ((-846 . -1181) T) ((-383 . -723) 107863) ((-1240 . -505) 107796) ((-710 . -130) T) ((-1219 . -542) 107775) ((-1212 . -1185) 107754) ((-1212 . -542) 107705) ((-1191 . -1185) 107684) ((-304 . -1051) T) ((-1191 . -542) 107635) ((-716 . -505) 107568) ((-1190 . -1181) 107547) ((-1190 . -859) 107420) ((-866 . -1068) T) ((-142 . -819) T) ((-1190 . -857) 107390) ((-669 . -595) 107372) ((-1142 . -130) T) ((-514 . -302) 107310) ((-1141 . -130) T) ((-139 . -505) NIL) ((-1135 . -130) T) ((-1094 . -130) T) ((-997 . -975) T) ((-977 . -23) T) ((-344 . -38) 107275) ((-977 . -1080) T) ((-887 . -1080) T) ((-81 . -595) 107257) ((-40 . -1020) T) ((-843 . -1026) 107244) ((-976 . -342) NIL) ((-845 . -873) 107203) ((-679 . -101) T) ((-944 . -23) T) ((-584 . -1181) T) ((-887 . -23) T) ((-843 . -111) 107188) ((-420 . -1080) T) ((-466 . -47) 107158) ((-207 . -101) T) ((-133 . -101) T) ((-40 . -227) 107130) ((-40 . -237) T) ((-116 . -101) T) ((-579 . -542) 107109) ((-578 . -542) 107088) ((-672 . -595) 107070) ((-672 . -596) 106978) ((-309 . -505) 106944) ((-306 . -505) 106836) ((-1211 . -1011) 106820) ((-1190 . -1011) 106606) ((-972 . -404) 106590) ((-420 . -23) T) ((-1088 . -170) T) ((-1213 . -283) T) ((-632 . -696) 106560) ((-142 . -1068) T) ((-48 . -975) T) ((-400 . -225) 106544) ((-288 . -229) 106494) ((-844 . -893) T) ((-844 . -798) NIL) ((-838 . -825) T) ((-1190 . -331) 106464) ((-1190 . -370) 106434) ((-216 . -1089) 106418) ((-1227 . -281) 106395) ((-1175 . -626) 106320) ((-936 . -21) T) ((-936 . -25) T) ((-714 . -21) T) ((-714 . -25) T) ((-694 . -21) T) ((-694 . -25) T) ((-690 . -626) 106285) ((-445 . -21) T) ((-445 . -25) T) ((-332 . -101) T) ((-172 . -101) T) ((-972 . -1027) T) ((-843 . -1020) T) ((-752 . -101) T) ((-1212 . -356) 106264) ((-1211 . -873) 106170) ((-1191 . -356) 106149) ((-1190 . -873) 106000) ((-997 . -595) 105982) ((-400 . -806) 105935) ((-1142 . -484) 105901) ((-167 . -893) 105832) ((-1141 . -484) 105798) ((-1135 . -484) 105764) ((-691 . -1068) T) ((-1094 . -484) 105730) ((-564 . -1026) 105717) ((-550 . -1026) 105704) ((-486 . -1026) 105669) ((-309 . -283) 105648) ((-306 . -283) T) ((-347 . -595) 105630) ((-411 . -25) T) ((-411 . -21) T) ((-98 . -279) 105609) ((-564 . -111) 105594) ((-550 . -111) 105579) ((-486 . -111) 105535) ((-1144 . -859) 105502) ((-874 . -481) 105486) ((-48 . -595) 105468) ((-48 . -596) 105413) ((-234 . -130) 105283) ((-1200 . -893) 105262) ((-794 . -1185) 105241) ((-1008 . -505) 105085) ((-381 . -595) 105067) ((-794 . -542) 104998) ((-569 . -626) 104973) ((-257 . -47) 104945) ((-241 . -47) 104902) ((-522 . -500) 104879) ((-973 . -1181) T) ((-677 . -1026) 104844) ((-1219 . -1080) T) ((-1212 . -1080) T) ((-1191 . -1080) T) ((-976 . -363) 104816) ((-112 . -361) T) ((-466 . -873) 104722) ((-1219 . -23) T) ((-1212 . -23) T) ((-877 . -595) 104704) ((-90 . -106) 104688) ((-1175 . -705) T) ((-878 . -825) 104639) ((-679 . -1119) T) ((-677 . -111) 104595) ((-1191 . -23) T) ((-579 . -1080) T) ((-578 . -1080) T) ((-691 . -696) 104424) ((-690 . -705) T) ((-1088 . -283) T) ((-977 . -130) T) ((-479 . -825) T) ((-944 . -130) T) ((-887 . -130) T) ((-777 . -25) T) ((-211 . -825) T) ((-777 . -21) T) ((-564 . -1020) T) ((-550 . -1020) T) ((-486 . -1020) T) ((-579 . -23) T) ((-336 . -1246) 104401) ((-312 . -444) 104380) ((-332 . -302) 104367) ((-578 . -23) T) ((-420 . -130) T) ((-636 . -626) 104341) ((-239 . -983) 104325) ((-845 . -300) T) ((-1251 . -1241) 104309) ((-749 . -770) T) ((-749 . -773) T) ((-679 . -38) 104296) ((-550 . -227) T) ((-486 . -237) T) ((-486 . -227) T) ((-1118 . -229) 104246) ((-1055 . -882) 104225) ((-116 . -38) 104212) ((-203 . -778) T) ((-202 . -778) T) ((-201 . -778) T) ((-200 . -778) T) ((-845 . -995) 104191) ((-1240 . -481) 104175) ((-760 . -882) 104154) ((-758 . -882) 104133) ((-1154 . -1181) T) ((-446 . -882) 104112) ((-716 . -481) 104096) ((-1055 . -626) 104021) ((-760 . -626) 103946) ((-603 . -1026) 103933) ((-471 . -1181) T) ((-336 . -361) T) ((-139 . -481) 103915) ((-758 . -626) 103840) ((-1109 . -1181) T) ((-453 . -626) 103811) ((-257 . -859) 103670) ((-241 . -859) NIL) ((-117 . -1026) 103615) ((-446 . -626) 103540) ((-642 . -1011) 103517) ((-603 . -111) 103502) ((-348 . -1011) 103486) ((-345 . -1011) 103470) ((-337 . -1011) 103454) ((-257 . -1011) 103298) ((-241 . -1011) 103174) ((-117 . -111) 103103) ((-58 . -1181) T) ((-510 . -1181) T) ((-507 . -1181) T) ((-488 . -1181) T) ((-487 . -1181) T) ((-430 . -595) 103085) ((-427 . -595) 103067) ((-3 . -101) T) ((-1000 . -1174) 103036) ((-811 . -101) T) ((-667 . -56) 102994) ((-677 . -1020) T) ((-50 . -626) 102968) ((-282 . -444) T) ((-468 . -1174) 102937) ((0 . -101) T) ((-565 . -626) 102902) ((-509 . -626) 102847) ((-49 . -101) T) ((-883 . -1011) 102834) ((-677 . -237) T) ((-1048 . -402) 102813) ((-710 . -619) 102761) ((-972 . -1068) T) ((-691 . -170) 102652) ((-479 . -965) 102634) ((-257 . -370) 102618) ((-241 . -370) 102602) ((-392 . -1068) T) ((-332 . -38) 102586) ((-999 . -101) 102564) ((-211 . -965) 102546) ((-172 . -38) 102478) ((-1211 . -300) 102457) ((-1190 . -300) 102436) ((-636 . -705) T) ((-98 . -595) 102418) ((-1135 . -619) 102370) ((-477 . -25) T) ((-477 . -21) T) ((-1190 . -995) 102323) ((-603 . -1020) T) ((-372 . -397) T) ((-383 . -101) T) ((-257 . -873) 102269) ((-241 . -873) 102246) ((-117 . -1020) T) ((-794 . -1080) T) ((-1055 . -705) T) ((-603 . -227) 102225) ((-601 . -101) T) ((-760 . -705) T) ((-758 . -705) T) ((-406 . -1080) T) ((-117 . -237) T) ((-40 . -361) NIL) ((-117 . -227) NIL) ((-446 . -705) T) ((-794 . -23) T) ((-710 . -25) T) ((-710 . -21) T) ((-681 . -825) T) ((-1045 . -279) 102204) ((-77 . -389) T) ((-77 . -388) T) ((-672 . -1026) 102154) ((-1219 . -130) T) ((-1212 . -130) T) ((-1191 . -130) T) ((-1110 . -404) 102138) ((-615 . -360) 102070) ((-589 . -360) 102002) ((-1124 . -1117) 101986) ((-102 . -1068) 101964) ((-1142 . -25) T) ((-1142 . -21) T) ((-1141 . -21) T) ((-972 . -696) 101912) ((-217 . -626) 101879) ((-672 . -111) 101813) ((-50 . -705) T) ((-1141 . -25) T) ((-344 . -342) T) ((-1135 . -21) T) ((-1048 . -444) 101764) ((-1135 . -25) T) ((-691 . -505) 101711) ((-565 . -705) T) ((-509 . -705) T) ((-1094 . -21) T) ((-1094 . -25) T) ((-579 . -130) T) ((-578 . -130) T) ((-352 . -444) T) ((-346 . -444) T) ((-338 . -444) T) ((-466 . -300) 101690) ((-306 . -279) 101625) ((-107 . -444) T) ((-78 . -433) T) ((-78 . -388) T) ((-469 . -101) T) ((-1255 . -595) 101607) ((-1255 . -596) 101589) ((-1048 . -395) 101568) ((-1008 . -481) 101499) ((-550 . -773) T) ((-550 . -770) T) ((-1032 . -229) 101445) ((-352 . -395) 101396) ((-346 . -395) 101347) ((-338 . -395) 101298) ((-1242 . -1080) T) ((-1242 . -23) T) ((-1229 . -101) T) ((-173 . -595) 101280) ((-1110 . -1027) T) ((-648 . -723) 101264) ((-1146 . -143) 101243) ((-1146 . -145) 101222) ((-1114 . -1068) T) ((-1114 . -1040) 101191) ((-68 . -1181) T) ((-997 . -1026) 101128) ((-839 . -1027) T) ((-234 . -619) 101034) ((-672 . -1020) T) ((-347 . -1026) 100979) ((-60 . -1181) T) ((-997 . -111) 100895) ((-874 . -595) 100827) ((-672 . -237) T) ((-672 . -227) NIL) ((-818 . -823) 100806) ((-677 . -773) T) ((-677 . -770) T) ((-976 . -404) 100783) ((-347 . -111) 100712) ((-372 . -893) T) ((-400 . -823) 100691) ((-691 . -283) 100602) ((-217 . -705) T) ((-1219 . -484) 100568) ((-1212 . -484) 100534) ((-1191 . -484) 100500) ((-563 . -1068) T) ((-309 . -975) 100479) ((-216 . -1068) 100457) ((-312 . -946) 100419) ((-104 . -101) T) ((-48 . -1026) 100384) ((-1251 . -101) T) ((-374 . -101) T) ((-48 . -111) 100340) ((-977 . -619) 100322) ((-1213 . -595) 100304) ((-522 . -101) T) ((-491 . -101) T) ((-1101 . -1102) 100288) ((-150 . -1234) 100272) ((-239 . -1181) T) ((-1180 . -101) T) ((-1140 . -1185) 100251) ((-1093 . -1185) 100230) ((-234 . -21) 100140) ((-234 . -25) 99991) ((-127 . -119) 99975) ((-121 . -119) 99959) ((-44 . -723) 99943) ((-1140 . -542) 99854) ((-1093 . -542) 99785) ((-1008 . -279) 99760) ((-1134 . -1051) T) ((-967 . -1051) T) ((-794 . -130) T) ((-117 . -773) NIL) ((-117 . -770) NIL) ((-348 . -300) T) ((-345 . -300) T) ((-337 . -300) T) ((-1062 . -1181) T) ((-244 . -1080) 99670) ((-243 . -1080) 99580) ((-997 . -1020) T) ((-976 . -1027) T) ((-336 . -626) 99525) ((-601 . -38) 99509) ((-1240 . -595) 99471) ((-1240 . -596) 99432) ((-1045 . -595) 99414) ((-997 . -237) T) ((-347 . -1020) T) ((-793 . -1234) 99384) ((-244 . -23) T) ((-243 . -23) T) ((-960 . -595) 99366) ((-716 . -596) 99327) ((-716 . -595) 99309) ((-777 . -825) 99288) ((-972 . -505) 99200) ((-347 . -227) T) ((-347 . -237) T) ((-1127 . -149) 99147) ((-977 . -25) T) ((-139 . -596) 99106) ((-139 . -595) 99088) ((-883 . -300) T) ((-977 . -21) T) ((-944 . -25) T) ((-887 . -21) T) ((-887 . -25) T) ((-420 . -21) T) ((-420 . -25) T) ((-818 . -404) 99072) ((-48 . -1020) T) ((-1249 . -1241) 99056) ((-1247 . -1241) 99040) ((-1008 . -586) 99015) ((-309 . -596) 98876) ((-309 . -595) 98858) ((-306 . -596) NIL) ((-306 . -595) 98840) ((-48 . -237) T) ((-48 . -227) T) ((-632 . -279) 98801) ((-536 . -229) 98751) ((-135 . -595) 98733) ((-114 . -595) 98715) ((-469 . -38) 98680) ((-1251 . -1248) 98659) ((-1242 . -130) T) ((-1250 . -1027) T) ((-1050 . -101) T) ((-87 . -1181) T) ((-491 . -302) NIL) ((-973 . -106) 98643) ((-862 . -1068) T) ((-858 . -1068) T) ((-1227 . -629) 98627) ((-1227 . -366) 98611) ((-320 . -1181) T) ((-576 . -825) T) ((-1110 . -1068) T) ((-1110 . -1023) 98551) ((-102 . -505) 98484) ((-900 . -595) 98466) ((-336 . -705) T) ((-30 . -595) 98448) ((-839 . -1068) T) ((-818 . -1027) 98427) ((-40 . -626) 98372) ((-219 . -1185) T) ((-400 . -1027) T) ((-1126 . -149) 98354) ((-972 . -283) 98305) ((-598 . -1068) T) ((-219 . -542) T) ((-312 . -1208) 98289) ((-312 . -1205) 98259) ((-1154 . -1157) 98238) ((-1043 . -595) 98220) ((-625 . -149) 98204) ((-612 . -149) 98150) ((-1154 . -106) 98100) ((-471 . -1157) 98079) ((-479 . -145) T) ((-479 . -143) NIL) ((-1088 . -596) 97994) ((-431 . -595) 97976) ((-211 . -145) T) ((-211 . -143) NIL) ((-1088 . -595) 97958) ((-129 . -101) T) ((-52 . -101) T) ((-1191 . -619) 97910) ((-471 . -106) 97860) ((-966 . -23) T) ((-1251 . -38) 97830) ((-1140 . -1080) T) ((-1093 . -1080) T) ((-1031 . -1185) T) ((-304 . -101) T) ((-829 . -1080) T) ((-925 . -1185) 97809) ((-473 . -1185) 97788) ((-710 . -825) 97767) ((-1031 . -542) T) ((-925 . -542) 97698) ((-1140 . -23) T) ((-1093 . -23) T) ((-829 . -23) T) ((-473 . -542) 97629) ((-1110 . -696) 97561) ((-1114 . -505) 97494) ((-1008 . -596) NIL) ((-1008 . -595) 97476) ((-95 . -1051) T) ((-839 . -696) 97446) ((-1175 . -47) 97415) ((-244 . -130) T) ((-243 . -130) T) ((-1072 . -1068) T) ((-976 . -1068) T) ((-61 . -595) 97397) ((-1135 . -825) NIL) ((-997 . -770) T) ((-997 . -773) T) ((-1255 . -1026) 97384) ((-1255 . -111) 97369) ((-843 . -626) 97356) ((-1219 . -25) T) ((-1219 . -21) T) ((-1212 . -21) T) ((-1212 . -25) T) ((-1191 . -21) T) ((-1191 . -25) T) ((-1000 . -149) 97340) ((-845 . -798) 97319) ((-845 . -893) T) ((-691 . -279) 97246) ((-579 . -21) T) ((-579 . -25) T) ((-578 . -21) T) ((-40 . -705) T) ((-216 . -505) 97179) ((-578 . -25) T) ((-468 . -149) 97163) ((-455 . -149) 97147) ((-894 . -772) T) ((-894 . -705) T) ((-749 . -771) T) ((-749 . -772) T) ((-497 . -1068) T) ((-493 . -1068) T) ((-749 . -705) T) ((-219 . -356) T) ((-1124 . -1068) 97125) ((-844 . -1185) T) ((-632 . -595) 97107) ((-844 . -542) T) ((-672 . -361) NIL) ((-352 . -1234) 97091) ((-648 . -101) T) ((-346 . -1234) 97075) ((-338 . -1234) 97059) ((-1250 . -1068) T) ((-511 . -825) 97038) ((-795 . -444) 97017) ((-1017 . -1068) T) ((-1017 . -1040) 96946) ((-1000 . -949) 96915) ((-797 . -1080) T) ((-976 . -696) 96860) ((-379 . -1080) T) ((-468 . -949) 96829) ((-455 . -949) 96798) ((-110 . -149) 96780) ((-72 . -595) 96762) ((-866 . -595) 96744) ((-1048 . -703) 96723) ((-1255 . -1020) T) ((-794 . -619) 96671) ((-287 . -1027) 96613) ((-167 . -1185) 96518) ((-219 . -1080) T) ((-317 . -23) T) ((-1135 . -965) 96470) ((-818 . -1068) T) ((-1094 . -719) 96449) ((-1213 . -1026) 96354) ((-1211 . -893) 96333) ((-843 . -705) T) ((-167 . -542) 96244) ((-1190 . -893) 96223) ((-564 . -626) 96210) ((-400 . -1068) T) ((-550 . -626) 96197) ((-256 . -1068) T) ((-486 . -626) 96162) ((-219 . -23) T) ((-1190 . -798) 96115) ((-1249 . -101) T) ((-347 . -1246) 96092) ((-1247 . -101) T) ((-1213 . -111) 95984) ((-142 . -595) 95966) ((-966 . -130) T) ((-44 . -101) T) ((-234 . -825) 95917) ((-1200 . -1185) 95896) ((-102 . -481) 95880) ((-1250 . -696) 95850) ((-1055 . -47) 95811) ((-1031 . -1080) T) ((-925 . -1080) T) ((-127 . -34) T) ((-121 . -34) T) ((-760 . -47) 95788) ((-758 . -47) 95760) ((-1200 . -542) 95671) ((-347 . -361) T) ((-473 . -1080) T) ((-1140 . -130) T) ((-1093 . -130) T) ((-446 . -47) 95650) ((-844 . -356) T) ((-829 . -130) T) ((-150 . -101) T) ((-1031 . -23) T) ((-925 . -23) T) ((-557 . -542) T) ((-794 . -25) T) ((-794 . -21) T) ((-1110 . -505) 95583) ((-575 . -1051) T) ((-569 . -1011) 95567) ((-473 . -23) T) ((-344 . -1027) T) ((-1175 . -873) 95548) ((-648 . -302) 95486) ((-1081 . -1234) 95456) ((-677 . -626) 95421) ((-976 . -170) T) ((-936 . -143) 95400) ((-615 . -1068) T) ((-589 . -1068) T) ((-936 . -145) 95379) ((-977 . -825) T) ((-714 . -145) 95358) ((-714 . -143) 95337) ((-944 . -825) T) ((-466 . -893) 95316) ((-309 . -1026) 95226) ((-306 . -1026) 95155) ((-972 . -279) 95113) ((-400 . -696) 95065) ((-128 . -825) T) ((-679 . -823) T) ((-1213 . -1020) T) ((-309 . -111) 94961) ((-306 . -111) 94874) ((-937 . -101) T) ((-793 . -101) 94664) ((-691 . -596) NIL) ((-691 . -595) 94646) ((-636 . -1011) 94542) ((-1213 . -319) 94486) ((-1008 . -281) 94461) ((-564 . -705) T) ((-550 . -772) T) ((-167 . -356) 94412) ((-550 . -769) T) ((-550 . -705) T) ((-486 . -705) T) ((-1114 . -481) 94396) ((-1055 . -859) NIL) ((-844 . -1080) T) ((-117 . -882) NIL) ((-1249 . -1248) 94372) ((-1247 . -1248) 94351) ((-760 . -859) NIL) ((-758 . -859) 94210) ((-1242 . -25) T) ((-1242 . -21) T) ((-1178 . -101) 94188) ((-1074 . -388) T) ((-603 . -626) 94175) ((-446 . -859) NIL) ((-653 . -101) 94153) ((-1055 . -1011) 93980) ((-844 . -23) T) ((-760 . -1011) 93839) ((-758 . -1011) 93696) ((-117 . -626) 93641) ((-446 . -1011) 93517) ((-627 . -1011) 93501) ((-607 . -101) T) ((-216 . -481) 93485) ((-1227 . -34) T) ((-615 . -696) 93469) ((-589 . -696) 93453) ((-648 . -38) 93413) ((-312 . -101) T) ((-84 . -595) 93395) ((-50 . -1011) 93379) ((-1088 . -1026) 93366) ((-1055 . -370) 93350) ((-760 . -370) 93334) ((-59 . -56) 93296) ((-677 . -772) T) ((-677 . -769) T) ((-565 . -1011) 93283) ((-509 . -1011) 93260) ((-677 . -705) T) ((-317 . -130) T) ((-309 . -1020) 93150) ((-306 . -1020) T) ((-167 . -1080) T) ((-758 . -370) 93134) ((-45 . -149) 93084) ((-977 . -965) 93066) ((-446 . -370) 93050) ((-400 . -170) T) ((-309 . -237) 93029) ((-306 . -237) T) ((-306 . -227) NIL) ((-287 . -1068) 92811) ((-219 . -130) T) ((-1088 . -111) 92796) ((-167 . -23) T) ((-777 . -145) 92775) ((-777 . -143) 92754) ((-244 . -619) 92660) ((-243 . -619) 92566) ((-312 . -277) 92532) ((-1124 . -505) 92465) ((-1101 . -1068) T) ((-219 . -1029) T) ((-793 . -302) 92403) ((-1055 . -873) 92338) ((-760 . -873) 92281) ((-758 . -873) 92265) ((-1249 . -38) 92235) ((-1247 . -38) 92205) ((-1200 . -1080) T) ((-830 . -1080) T) ((-446 . -873) 92182) ((-833 . -1068) T) ((-1200 . -23) T) ((-557 . -1080) T) ((-830 . -23) T) ((-603 . -705) T) ((-348 . -893) T) ((-345 . -893) T) ((-282 . -101) T) ((-337 . -893) T) ((-1031 . -130) T) ((-943 . -1051) T) ((-925 . -130) T) ((-117 . -772) NIL) ((-117 . -769) NIL) ((-117 . -705) T) ((-672 . -882) NIL) ((-1017 . -505) 92083) ((-473 . -130) T) ((-557 . -23) T) ((-653 . -302) 92021) ((-615 . -740) T) ((-589 . -740) T) ((-1191 . -825) NIL) ((-976 . -283) T) ((-244 . -21) T) ((-672 . -626) 91971) ((-344 . -1068) T) ((-244 . -25) T) ((-243 . -21) T) ((-243 . -25) T) ((-150 . -38) 91955) ((-2 . -101) T) ((-883 . -893) T) ((-474 . -1234) 91925) ((-217 . -1011) 91902) ((-1088 . -1020) T) ((-690 . -300) T) ((-287 . -696) 91844) ((-679 . -1027) T) ((-479 . -444) T) ((-400 . -505) 91756) ((-211 . -444) T) ((-1088 . -227) T) ((-288 . -149) 91706) ((-972 . -596) 91667) ((-972 . -595) 91649) ((-962 . -595) 91631) ((-116 . -1027) T) ((-632 . -1026) 91615) ((-219 . -484) T) ((-392 . -595) 91597) ((-392 . -596) 91574) ((-1024 . -1234) 91544) ((-632 . -111) 91523) ((-1110 . -481) 91507) ((-793 . -38) 91477) ((-62 . -433) T) ((-62 . -388) T) ((-1127 . -101) T) ((-844 . -130) T) ((-476 . -101) 91455) ((-1255 . -361) T) ((-1048 . -101) T) ((-1030 . -101) T) ((-344 . -696) 91400) ((-710 . -145) 91379) ((-710 . -143) 91358) ((-997 . -626) 91295) ((-514 . -1068) 91273) ((-352 . -101) T) ((-346 . -101) T) ((-338 . -101) T) ((-107 . -101) T) ((-495 . -1068) T) ((-347 . -626) 91218) ((-1140 . -619) 91166) ((-1093 . -619) 91114) ((-378 . -500) 91093) ((-811 . -823) 91072) ((-372 . -1185) T) ((-672 . -705) T) ((-332 . -1027) T) ((-1191 . -965) 91024) ((-172 . -1027) T) ((-102 . -595) 90956) ((-1142 . -143) 90935) ((-1142 . -145) 90914) ((-372 . -542) T) ((-1141 . -145) 90893) ((-1141 . -143) 90872) ((-1135 . -143) 90779) ((-400 . -283) T) ((-1135 . -145) 90686) ((-1094 . -145) 90665) ((-1094 . -143) 90644) ((-312 . -38) 90485) ((-167 . -130) T) ((-306 . -773) NIL) ((-306 . -770) NIL) ((-632 . -1020) T) ((-48 . -626) 90450) ((-1134 . -101) T) ((-967 . -101) T) ((-966 . -21) T) ((-127 . -983) 90434) ((-121 . -983) 90418) ((-966 . -25) T) ((-874 . -119) 90402) ((-1126 . -101) T) ((-794 . -825) 90381) ((-1200 . -130) T) ((-1140 . -25) T) ((-1140 . -21) T) ((-830 . -130) T) ((-1093 . -25) T) ((-1093 . -21) T) ((-829 . -25) T) ((-829 . -21) T) ((-760 . -300) 90360) ((-625 . -101) 90338) ((-612 . -101) T) ((-1127 . -302) 90133) ((-557 . -130) T) ((-601 . -823) 90112) ((-1124 . -481) 90096) ((-1118 . -149) 90046) ((-1114 . -595) 90008) ((-1114 . -596) 89969) ((-997 . -769) T) ((-997 . -772) T) ((-997 . -705) T) ((-476 . -302) 89907) ((-445 . -410) 89877) ((-344 . -170) T) ((-282 . -38) 89864) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-261 . -101) T) ((-336 . -1011) 89841) ((-206 . -101) T) ((-205 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-200 . -101) T) ((-197 . -101) T) ((-196 . -101) T) ((-691 . -1026) 89664) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-187 . -101) T) ((-347 . -705) T) ((-691 . -111) 89473) ((-648 . -225) 89457) ((-565 . -300) T) ((-509 . -300) T) ((-287 . -505) 89406) ((-107 . -302) NIL) ((-71 . -388) T) ((-1081 . -101) 89196) ((-811 . -404) 89180) ((-1088 . -773) T) ((-1088 . -770) T) ((-679 . -1068) T) ((-563 . -595) 89162) ((-372 . -356) T) ((-167 . -484) 89140) ((-207 . -1068) T) ((-216 . -595) 89072) ((-133 . -1068) T) ((-116 . -1068) T) ((-48 . -705) T) ((-1017 . -481) 89037) ((-497 . -92) T) ((-139 . -418) 89019) ((-139 . -361) T) ((-1000 . -101) T) ((-503 . -500) 88998) ((-468 . -101) T) ((-455 . -101) T) ((-1007 . -1080) T) ((-1142 . -35) 88964) ((-1142 . -94) 88930) ((-1142 . -1169) 88896) ((-1142 . -1166) 88862) ((-1126 . -302) NIL) ((-88 . -389) T) ((-88 . -388) T) ((-1048 . -1119) 88841) ((-1141 . -1166) 88807) ((-1141 . -1169) 88773) ((-1007 . -23) T) ((-1141 . -94) 88739) ((-557 . -484) T) ((-1141 . -35) 88705) ((-1135 . -1166) 88671) ((-1135 . -1169) 88637) ((-1135 . -94) 88603) ((-354 . -1080) T) ((-352 . -1119) 88582) ((-346 . -1119) 88561) ((-338 . -1119) 88540) ((-1135 . -35) 88506) ((-1094 . -35) 88472) ((-1094 . -94) 88438) ((-107 . -1119) T) ((-1094 . -1169) 88404) ((-811 . -1027) 88383) ((-625 . -302) 88321) ((-612 . -302) 88172) ((-1094 . -1166) 88138) ((-691 . -1020) T) ((-1031 . -619) 88120) ((-1048 . -38) 87988) ((-925 . -619) 87936) ((-977 . -145) T) ((-977 . -143) NIL) ((-372 . -1080) T) ((-317 . -25) T) ((-315 . -23) T) ((-916 . -825) 87915) ((-691 . -319) 87892) ((-473 . -619) 87840) ((-40 . -1011) 87728) ((-679 . -696) 87715) ((-691 . -227) T) ((-332 . -1068) T) ((-172 . -1068) T) ((-324 . -825) T) ((-411 . -444) 87665) ((-372 . -23) T) ((-352 . -38) 87630) ((-346 . -38) 87595) ((-338 . -38) 87560) ((-79 . -433) T) ((-79 . -388) T) ((-219 . -25) T) ((-219 . -21) T) ((-812 . -1080) T) ((-107 . -38) 87510) ((-805 . -1080) T) ((-752 . -1068) T) ((-116 . -696) 87497) ((-650 . -1011) 87481) ((-594 . -101) T) ((-812 . -23) T) ((-805 . -23) T) ((-1124 . -279) 87458) ((-1081 . -302) 87396) ((-1070 . -229) 87380) ((-63 . -389) T) ((-63 . -388) T) ((-110 . -101) T) ((-40 . -370) 87357) ((-95 . -101) T) ((-631 . -827) 87341) ((-1103 . -1051) T) ((-1031 . -21) T) ((-1031 . -25) T) ((-793 . -225) 87310) ((-925 . -25) T) ((-925 . -21) T) ((-601 . -1027) T) ((-473 . -25) T) ((-473 . -21) T) ((-1000 . -302) 87248) ((-862 . -595) 87230) ((-858 . -595) 87212) ((-244 . -825) 87163) ((-243 . -825) 87114) ((-514 . -505) 87047) ((-844 . -619) 87024) ((-468 . -302) 86962) ((-455 . -302) 86900) ((-344 . -283) T) ((-1124 . -1215) 86884) ((-1110 . -595) 86846) ((-1110 . -596) 86807) ((-1108 . -101) T) ((-972 . -1026) 86703) ((-40 . -873) 86655) ((-1124 . -586) 86632) ((-1255 . -626) 86619) ((-1032 . -149) 86565) ((-845 . -1185) T) ((-972 . -111) 86447) ((-332 . -696) 86431) ((-839 . -595) 86413) ((-172 . -696) 86345) ((-400 . -279) 86303) ((-845 . -542) T) ((-107 . -393) 86285) ((-83 . -377) T) ((-83 . -388) T) ((-679 . -170) T) ((-598 . -595) 86267) ((-98 . -705) T) ((-474 . -101) 86057) ((-98 . -465) T) ((-116 . -170) T) ((-1081 . -38) 86027) ((-167 . -619) 85975) ((-1024 . -101) T) ((-844 . -25) T) ((-793 . -232) 85954) ((-844 . -21) T) ((-796 . -101) T) ((-407 . -101) T) ((-378 . -101) T) ((-110 . -302) NIL) ((-221 . -101) 85932) ((-127 . -1181) T) ((-121 . -1181) T) ((-1007 . -130) T) ((-648 . -360) 85916) ((-972 . -1020) T) ((-1200 . -619) 85864) ((-1072 . -595) 85846) ((-976 . -595) 85828) ((-506 . -23) T) ((-501 . -23) T) ((-336 . -300) T) ((-499 . -23) T) ((-315 . -130) T) ((-3 . -1068) T) ((-976 . -596) 85812) ((-972 . -237) 85791) ((-972 . -227) 85770) ((-1255 . -705) T) ((-1219 . -143) 85749) ((-811 . -1068) T) ((-1219 . -145) 85728) ((-1212 . -145) 85707) ((-1212 . -143) 85686) ((-1211 . -1185) 85665) ((-1191 . -143) 85572) ((-1191 . -145) 85479) ((-1190 . -1185) 85458) ((-372 . -130) T) ((-550 . -859) 85440) ((0 . -1068) T) ((-172 . -170) T) ((-167 . -21) T) ((-167 . -25) T) ((-49 . -1068) T) ((-1213 . -626) 85345) ((-1211 . -542) 85296) ((-693 . -1080) T) ((-1190 . -542) 85247) ((-550 . -1011) 85229) ((-578 . -145) 85208) ((-578 . -143) 85187) ((-486 . -1011) 85130) ((-1103 . -1105) T) ((-86 . -377) T) ((-86 . -388) T) ((-845 . -356) T) ((-812 . -130) T) ((-805 . -130) T) ((-693 . -23) T) ((-497 . -595) 85080) ((-493 . -595) 85062) ((-1251 . -1027) T) ((-372 . -1029) T) ((-999 . -1068) 85040) ((-874 . -34) T) ((-474 . -302) 84978) ((-575 . -101) T) ((-1124 . -596) 84939) ((-1124 . -595) 84871) ((-1140 . -825) 84850) ((-45 . -101) T) ((-1093 . -825) 84829) ((-795 . -101) T) ((-1200 . -25) T) ((-1200 . -21) T) ((-830 . -25) T) ((-44 . -360) 84813) ((-830 . -21) T) ((-710 . -444) 84764) ((-1250 . -595) 84746) ((-1024 . -302) 84684) ((-649 . -1051) T) ((-588 . -1051) T) ((-383 . -1068) T) ((-557 . -25) T) ((-557 . -21) T) ((-178 . -1051) T) ((-159 . -1051) T) ((-154 . -1051) T) ((-152 . -1051) T) ((-601 . -1068) T) ((-677 . -859) 84666) ((-1227 . -1181) T) ((-221 . -302) 84604) ((-142 . -361) T) ((-1017 . -596) 84546) ((-1017 . -595) 84489) ((-306 . -882) NIL) ((-677 . -1011) 84434) ((-690 . -893) T) ((-466 . -1185) 84413) ((-1141 . -444) 84392) ((-1135 . -444) 84371) ((-323 . -101) T) ((-845 . -1080) T) ((-309 . -626) 84192) ((-306 . -626) 84121) ((-466 . -542) 84072) ((-332 . -505) 84038) ((-536 . -149) 83988) ((-40 . -300) T) ((-818 . -595) 83970) ((-679 . -283) T) ((-845 . -23) T) ((-372 . -484) T) ((-1048 . -225) 83940) ((-503 . -101) T) ((-400 . -596) 83748) ((-400 . -595) 83730) ((-256 . -595) 83712) ((-116 . -283) T) ((-1213 . -705) T) ((-1211 . -356) 83691) ((-1190 . -356) 83670) ((-1240 . -34) T) ((-117 . -1181) T) ((-107 . -225) 83652) ((-1146 . -101) T) ((-469 . -1068) T) ((-514 . -481) 83636) ((-716 . -34) T) ((-474 . -38) 83606) ((-139 . -34) T) ((-117 . -857) 83583) ((-117 . -859) NIL) ((-603 . -1011) 83466) ((-623 . -825) 83445) ((-1239 . -101) T) ((-288 . -101) T) ((-691 . -361) 83424) ((-117 . -1011) 83401) ((-383 . -696) 83385) ((-601 . -696) 83369) ((-45 . -302) 83173) ((-794 . -143) 83152) ((-794 . -145) 83131) ((-1250 . -375) 83110) ((-797 . -825) T) ((-1229 . -1068) T) ((-1127 . -223) 83057) ((-379 . -825) 83036) ((-1219 . -1169) 83002) ((-1219 . -1166) 82968) ((-1212 . -1166) 82934) ((-506 . -130) T) ((-1212 . -1169) 82900) ((-1191 . -1166) 82866) ((-1191 . -1169) 82832) ((-1219 . -35) 82798) ((-1219 . -94) 82764) ((-615 . -595) 82733) ((-589 . -595) 82702) ((-219 . -825) T) ((-1212 . -94) 82668) ((-1212 . -35) 82634) ((-1211 . -1080) T) ((-1088 . -626) 82621) ((-1191 . -94) 82587) ((-1190 . -1080) T) ((-576 . -149) 82569) ((-1048 . -342) 82548) ((-172 . -283) T) ((-117 . -370) 82525) ((-117 . -331) 82502) ((-1191 . -35) 82468) ((-843 . -300) T) ((-306 . -772) NIL) ((-306 . -769) NIL) ((-309 . -705) 82317) ((-306 . -705) T) ((-466 . -356) 82296) ((-352 . -342) 82275) ((-346 . -342) 82254) ((-338 . -342) 82233) ((-309 . -465) 82212) ((-1211 . -23) T) ((-1190 . -23) T) ((-697 . -1080) T) ((-693 . -130) T) ((-631 . -101) T) ((-469 . -696) 82177) ((-45 . -275) 82127) ((-104 . -1068) T) ((-67 . -595) 82109) ((-943 . -101) T) ((-838 . -101) T) ((-603 . -873) 82068) ((-1251 . -1068) T) ((-374 . -1068) T) ((-1180 . -1068) T) ((-81 . -1181) T) ((-1031 . -825) T) ((-925 . -825) 82047) ((-117 . -873) NIL) ((-760 . -893) 82026) ((-692 . -825) T) ((-522 . -1068) T) ((-491 . -1068) T) ((-348 . -1185) T) ((-345 . -1185) T) ((-337 . -1185) T) ((-257 . -1185) 82005) ((-241 . -1185) 81984) ((-1081 . -225) 81953) ((-473 . -825) 81932) ((-1110 . -1026) 81916) ((-383 . -740) T) ((-1126 . -806) T) ((-672 . -1181) T) ((-348 . -542) T) ((-345 . -542) T) ((-337 . -542) T) ((-257 . -542) 81847) ((-241 . -542) 81778) ((-516 . -1051) T) ((-1110 . -111) 81757) ((-445 . -723) 81727) ((-839 . -1026) 81697) ((-795 . -38) 81639) ((-672 . -857) 81621) ((-672 . -859) 81603) ((-288 . -302) 81407) ((-883 . -1185) T) ((-648 . -404) 81391) ((-839 . -111) 81356) ((-672 . -1011) 81301) ((-977 . -444) T) ((-883 . -542) T) ((-565 . -893) T) ((-466 . -1080) T) ((-509 . -893) T) ((-1124 . -281) 81278) ((-887 . -444) T) ((-64 . -595) 81260) ((-612 . -223) 81206) ((-466 . -23) T) ((-1088 . -772) T) ((-845 . -130) T) ((-1088 . -769) T) ((-1242 . -1244) 81185) ((-1088 . -705) T) ((-632 . -626) 81159) ((-287 . -595) 80900) ((-1008 . -34) T) ((-793 . -823) 80879) ((-564 . -300) T) ((-550 . -300) T) ((-486 . -300) T) ((-1251 . -696) 80849) ((-672 . -370) 80831) ((-672 . -331) 80813) ((-469 . -170) T) ((-374 . -696) 80783) ((-844 . -825) NIL) ((-550 . -995) T) ((-486 . -995) T) ((-1101 . -595) 80765) ((-1081 . -232) 80744) ((-208 . -101) T) ((-1118 . -101) T) ((-70 . -595) 80726) ((-1110 . -1020) T) ((-1146 . -38) 80623) ((-833 . -595) 80605) ((-550 . -535) T) ((-648 . -1027) T) ((-710 . -922) 80558) ((-1110 . -227) 80537) ((-1050 . -1068) T) ((-1007 . -25) T) ((-1007 . -21) T) ((-976 . -1026) 80482) ((-878 . -101) T) ((-839 . -1020) T) ((-672 . -873) NIL) ((-348 . -322) 80466) ((-348 . -356) T) ((-345 . -322) 80450) ((-345 . -356) T) ((-337 . -322) 80434) ((-337 . -356) T) ((-479 . -101) T) ((-1239 . -38) 80404) ((-514 . -665) 80354) ((-211 . -101) T) ((-997 . -1011) 80234) ((-976 . -111) 80163) ((-1142 . -946) 80132) ((-1141 . -946) 80094) ((-511 . -149) 80078) ((-1048 . -363) 80057) ((-344 . -595) 80039) ((-315 . -21) T) ((-347 . -1011) 80016) ((-315 . -25) T) ((-1135 . -946) 79985) ((-1094 . -946) 79952) ((-75 . -595) 79934) ((-677 . -300) T) ((-167 . -825) 79913) ((-883 . -356) T) ((-372 . -25) T) ((-372 . -21) T) ((-883 . -322) 79900) ((-85 . -595) 79882) ((-677 . -995) T) ((-655 . -825) T) ((-1211 . -130) T) ((-1190 . -130) T) ((-874 . -983) 79866) ((-812 . -21) T) ((-48 . -1011) 79809) ((-812 . -25) T) ((-805 . -25) T) ((-805 . -21) T) ((-1249 . -1027) T) ((-1247 . -1027) T) ((-632 . -705) T) ((-1250 . -1026) 79793) ((-1200 . -825) 79772) ((-793 . -404) 79741) ((-102 . -119) 79725) ((-129 . -1068) T) ((-52 . -1068) T) ((-899 . -595) 79707) ((-844 . -965) 79684) ((-801 . -101) T) ((-1250 . -111) 79663) ((-631 . -38) 79633) ((-557 . -825) T) ((-348 . -1080) T) ((-345 . -1080) T) ((-337 . -1080) T) ((-257 . -1080) T) ((-241 . -1080) T) ((-603 . -300) 79612) ((-1118 . -302) 79416) ((-515 . -1051) T) ((-304 . -1068) T) ((-642 . -23) T) ((-474 . -225) 79385) ((-150 . -1027) T) ((-348 . -23) T) ((-345 . -23) T) ((-337 . -23) T) ((-117 . -300) T) ((-257 . -23) T) ((-241 . -23) T) ((-976 . -1020) T) ((-691 . -882) 79364) ((-976 . -227) 79336) ((-976 . -237) T) ((-117 . -995) NIL) ((-883 . -1080) T) ((-1212 . -444) 79315) ((-1191 . -444) 79294) ((-514 . -595) 79226) ((-691 . -626) 79151) ((-400 . -1026) 79103) ((-495 . -595) 79085) ((-883 . -23) T) ((-479 . -302) NIL) ((-466 . -130) T) ((-211 . -302) NIL) ((-400 . -111) 79023) ((-793 . -1027) 78953) ((-716 . -1066) 78937) ((-1211 . -484) 78903) ((-1190 . -484) 78869) ((-469 . -283) T) ((-139 . -1066) 78851) ((-128 . -149) 78833) ((-1250 . -1020) T) ((-1032 . -101) T) ((-491 . -505) NIL) ((-681 . -101) T) ((-474 . -232) 78812) ((-1140 . -143) 78791) ((-1140 . -145) 78770) ((-1093 . -145) 78749) ((-1093 . -143) 78728) ((-615 . -1026) 78712) ((-589 . -1026) 78696) ((-648 . -1068) T) ((-648 . -1023) 78636) ((-1142 . -1218) 78620) ((-1142 . -1205) 78597) ((-479 . -1119) T) ((-1141 . -1210) 78558) ((-1141 . -1205) 78528) ((-1141 . -1208) 78512) ((-211 . -1119) T) ((-336 . -893) T) ((-796 . -259) 78496) ((-615 . -111) 78475) ((-589 . -111) 78454) ((-1135 . -1189) 78415) ((-818 . -1020) 78394) ((-1135 . -1205) 78371) ((-506 . -25) T) ((-486 . -295) T) ((-502 . -23) T) ((-501 . -25) T) ((-499 . -25) T) ((-498 . -23) T) ((-1135 . -1187) 78355) ((-400 . -1020) T) ((-312 . -1027) T) ((-672 . -300) T) ((-107 . -823) T) ((-400 . -237) T) ((-400 . -227) 78334) ((-691 . -705) T) ((-479 . -38) 78284) ((-211 . -38) 78234) ((-466 . -484) 78200) ((-1126 . -1112) T) ((-1069 . -101) T) ((-679 . -595) 78182) ((-679 . -596) 78097) ((-693 . -21) T) ((-693 . -25) T) ((-1103 . -101) T) ((-207 . -595) 78079) ((-133 . -595) 78061) ((-116 . -595) 78043) ((-155 . -25) T) ((-1249 . -1068) T) ((-845 . -619) 77991) ((-1247 . -1068) T) ((-936 . -101) T) ((-714 . -101) T) ((-694 . -101) T) ((-445 . -101) T) ((-794 . -444) 77942) ((-44 . -1068) T) ((-1056 . -825) T) ((-642 . -130) T) ((-1032 . -302) 77793) ((-648 . -696) 77777) ((-282 . -1027) T) ((-348 . -130) T) ((-345 . -130) T) ((-337 . -130) T) ((-257 . -130) T) ((-241 . -130) T) ((-411 . -101) T) ((-150 . -1068) T) ((-45 . -223) 77727) ((-931 . -825) 77706) ((-972 . -626) 77644) ((-234 . -1234) 77614) ((-997 . -300) T) ((-287 . -1026) 77535) ((-883 . -130) T) ((-40 . -893) T) ((-479 . -393) 77517) ((-347 . -300) T) ((-211 . -393) 77499) ((-1048 . -404) 77483) ((-287 . -111) 77399) ((-845 . -25) T) ((-845 . -21) T) ((-332 . -595) 77381) ((-1213 . -47) 77325) ((-219 . -145) T) ((-172 . -595) 77307) ((-1081 . -823) 77286) ((-752 . -595) 77268) ((-590 . -229) 77215) ((-467 . -229) 77165) ((-1249 . -696) 77135) ((-48 . -300) T) ((-1247 . -696) 77105) ((-937 . -1068) T) ((-793 . -1068) 76895) ((-305 . -101) T) ((-874 . -1181) T) ((-48 . -995) T) ((-1190 . -619) 76803) ((-667 . -101) 76781) ((-44 . -696) 76765) ((-536 . -101) T) ((-66 . -376) T) ((-66 . -388) T) ((-640 . -23) T) ((-648 . -740) T) ((-1178 . -1068) 76743) ((-344 . -1026) 76688) ((-653 . -1068) 76666) ((-1031 . -145) T) ((-925 . -145) 76645) ((-925 . -143) 76624) ((-777 . -101) T) ((-150 . -696) 76608) ((-473 . -145) 76587) ((-473 . -143) 76566) ((-344 . -111) 76495) ((-1048 . -1027) T) ((-315 . -825) 76474) ((-1219 . -946) 76443) ((-607 . -1068) T) ((-1212 . -946) 76405) ((-502 . -130) T) ((-498 . -130) T) ((-288 . -223) 76355) ((-352 . -1027) T) ((-346 . -1027) T) ((-338 . -1027) T) ((-287 . -1020) 76297) ((-1191 . -946) 76266) ((-372 . -825) T) ((-107 . -1027) T) ((-972 . -705) T) ((-843 . -893) T) ((-818 . -773) 76245) ((-818 . -770) 76224) ((-411 . -302) 76163) ((-460 . -101) T) ((-578 . -946) 76132) ((-312 . -1068) T) ((-400 . -773) 76111) ((-400 . -770) 76090) ((-491 . -481) 76072) ((-1213 . -1011) 76038) ((-1211 . -21) T) ((-1211 . -25) T) ((-1190 . -21) T) ((-1190 . -25) T) ((-793 . -696) 75980) ((-677 . -397) T) ((-1240 . -1181) T) ((-588 . -101) T) ((-1081 . -404) 75949) ((-976 . -361) NIL) ((-649 . -101) T) ((-178 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-152 . -101) T) ((-102 . -34) T) ((-716 . -1181) T) ((-44 . -740) T) ((-576 . -101) T) ((-76 . -389) T) ((-76 . -388) T) ((-631 . -634) 75933) ((-139 . -1181) T) ((-844 . -145) T) ((-844 . -143) NIL) ((-1180 . -92) T) ((-344 . -1020) T) ((-69 . -376) T) ((-69 . -388) T) ((-1133 . -101) T) ((-648 . -505) 75866) ((-667 . -302) 75804) ((-936 . -38) 75701) ((-714 . -38) 75671) ((-536 . -302) 75475) ((-309 . -1181) T) ((-344 . -227) T) ((-344 . -237) T) ((-306 . -1181) T) ((-282 . -1068) T) ((-1148 . -595) 75457) ((-690 . -1185) T) ((-1124 . -629) 75441) ((-1175 . -542) 75420) ((-690 . -542) T) ((-309 . -857) 75404) ((-309 . -859) 75329) ((-306 . -857) 75290) ((-306 . -859) NIL) ((-777 . -302) 75255) ((-312 . -696) 75096) ((-317 . -316) 75073) ((-477 . -101) T) ((-466 . -25) T) ((-466 . -21) T) ((-411 . -38) 75047) ((-309 . -1011) 74710) ((-219 . -1166) T) ((-219 . -1169) T) ((-3 . -595) 74692) ((-306 . -1011) 74622) ((-2 . -1068) T) ((-2 . |RecordCategory|) T) ((-811 . -595) 74604) ((-1081 . -1027) 74534) ((-564 . -893) T) ((-550 . -798) T) ((-550 . -893) T) ((-486 . -893) T) ((-135 . -1011) 74518) ((-219 . -94) T) ((-74 . -433) T) ((-74 . -388) T) ((0 . -595) 74500) ((-167 . -145) 74479) ((-167 . -143) 74430) ((-219 . -35) T) ((-49 . -595) 74412) ((-469 . -1027) T) ((-479 . -225) 74394) ((-476 . -941) 74378) ((-474 . -823) 74357) ((-211 . -225) 74339) ((-80 . -433) T) ((-80 . -388) T) ((-1114 . -34) T) ((-793 . -170) 74318) ((-710 . -101) T) ((-999 . -595) 74285) ((-491 . -279) 74260) ((-309 . -370) 74229) ((-306 . -370) 74190) ((-306 . -331) 74151) ((-1053 . -595) 74133) ((-794 . -922) 74080) ((-640 . -130) T) ((-1200 . -143) 74059) ((-1200 . -145) 74038) ((-1142 . -101) T) ((-1141 . -101) T) ((-1135 . -101) T) ((-1127 . -1068) T) ((-1094 . -101) T) ((-216 . -34) T) ((-282 . -696) 74025) ((-1127 . -592) 74001) ((-576 . -302) NIL) ((-476 . -1068) 73979) ((-383 . -595) 73961) ((-501 . -825) T) ((-1118 . -223) 73911) ((-1219 . -1218) 73895) ((-1219 . -1205) 73872) ((-1212 . -1210) 73833) ((-1212 . -1205) 73803) ((-1212 . -1208) 73787) ((-1191 . -1189) 73748) ((-1191 . -1205) 73725) ((-601 . -595) 73707) ((-1191 . -1187) 73691) ((-677 . -893) T) ((-1142 . -277) 73657) ((-1141 . -277) 73623) ((-1135 . -277) 73589) ((-1048 . -1068) T) ((-1030 . -1068) T) ((-48 . -295) T) ((-309 . -873) 73555) ((-306 . -873) NIL) ((-1030 . -1037) 73534) ((-1088 . -859) 73516) ((-777 . -38) 73500) ((-257 . -619) 73448) ((-241 . -619) 73396) ((-679 . -1026) 73383) ((-578 . -1205) 73360) ((-1094 . -277) 73326) ((-312 . -170) 73257) ((-352 . -1068) T) ((-346 . -1068) T) ((-338 . -1068) T) ((-491 . -19) 73239) ((-1088 . -1011) 73221) ((-1070 . -149) 73205) ((-107 . -1068) T) ((-116 . -1026) 73192) ((-690 . -356) T) ((-491 . -586) 73167) ((-679 . -111) 73152) ((-429 . -101) T) ((-45 . -1117) 73102) ((-116 . -111) 73087) ((-615 . -699) T) ((-589 . -699) T) ((-793 . -505) 73020) ((-1008 . -1181) T) ((-916 . -149) 73004) ((-516 . -101) T) ((-511 . -101) 72954) ((-1140 . -444) 72885) ((-1134 . -1068) T) ((-1055 . -1185) 72864) ((-760 . -1185) 72843) ((-758 . -1185) 72822) ((-61 . -1181) T) ((-469 . -595) 72774) ((-469 . -596) 72696) ((-1126 . -1068) T) ((-1110 . -626) 72670) ((-1093 . -444) 72621) ((-1055 . -542) 72552) ((-474 . -404) 72521) ((-603 . -893) 72500) ((-446 . -1185) 72479) ((-967 . -1068) T) ((-760 . -542) 72390) ((-391 . -595) 72372) ((-758 . -542) 72303) ((-653 . -505) 72236) ((-710 . -302) 72223) ((-642 . -25) T) ((-642 . -21) T) ((-446 . -542) 72154) ((-117 . -893) T) ((-117 . -798) NIL) ((-348 . -25) T) ((-348 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-337 . -25) T) ((-337 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-82 . -377) T) ((-82 . -388) T) ((-241 . -25) T) ((-241 . -21) T) ((-1229 . -595) 72136) ((-1175 . -1080) T) ((-1175 . -23) T) ((-1135 . -302) 72021) ((-1094 . -302) 72008) ((-1048 . -696) 71876) ((-839 . -626) 71836) ((-916 . -953) 71820) ((-883 . -21) T) ((-282 . -170) T) ((-883 . -25) T) ((-304 . -92) T) ((-845 . -825) 71771) ((-690 . -1080) T) ((-690 . -23) T) ((-625 . -1068) 71749) ((-612 . -592) 71724) ((-612 . -1068) T) ((-565 . -1185) T) ((-509 . -1185) T) ((-565 . -542) T) ((-509 . -542) T) ((-352 . -696) 71676) ((-346 . -696) 71628) ((-338 . -696) 71580) ((-332 . -1026) 71564) ((-172 . -111) 71475) ((-172 . -1026) 71407) ((-107 . -696) 71357) ((-332 . -111) 71336) ((-267 . -1068) T) ((-266 . -1068) T) ((-265 . -1068) T) ((-264 . -1068) T) ((-679 . -1020) T) ((-263 . -1068) T) ((-262 . -1068) T) ((-261 . -1068) T) ((-206 . -1068) T) ((-205 . -1068) T) ((-203 . -1068) T) ((-167 . -1169) 71314) ((-167 . -1166) 71292) ((-202 . -1068) T) ((-201 . -1068) T) ((-116 . -1020) T) ((-200 . -1068) T) ((-197 . -1068) T) ((-679 . -227) T) ((-196 . -1068) T) ((-195 . -1068) T) ((-194 . -1068) T) ((-193 . -1068) T) ((-192 . -1068) T) ((-191 . -1068) T) ((-190 . -1068) T) ((-189 . -1068) T) ((-188 . -1068) T) ((-187 . -1068) T) ((-234 . -101) 71082) ((-167 . -35) 71060) ((-167 . -94) 71038) ((-632 . -1011) 70934) ((-474 . -1027) 70864) ((-1081 . -1068) 70654) ((-1110 . -34) T) ((-648 . -481) 70638) ((-72 . -1181) T) ((-104 . -595) 70620) ((-1251 . -595) 70602) ((-374 . -595) 70584) ((-710 . -38) 70433) ((-557 . -1169) T) ((-557 . -1166) T) ((-522 . -595) 70415) ((-511 . -302) 70353) ((-491 . -595) 70335) ((-491 . -596) 70317) ((-1180 . -595) 70283) ((-1135 . -1119) NIL) ((-1000 . -1040) 70252) ((-1000 . -1068) T) ((-977 . -101) T) ((-944 . -101) T) ((-887 . -101) T) ((-866 . -1011) 70229) ((-1110 . -705) T) ((-976 . -626) 70174) ((-468 . -1068) T) ((-455 . -1068) T) ((-569 . -23) T) ((-557 . -35) T) ((-557 . -94) T) ((-420 . -101) T) ((-1032 . -223) 70120) ((-128 . -101) T) ((-1142 . -38) 70017) ((-839 . -705) T) ((-672 . -893) T) ((-502 . -25) T) ((-498 . -21) T) ((-498 . -25) T) ((-1141 . -38) 69858) ((-332 . -1020) T) ((-1135 . -38) 69654) ((-1048 . -170) T) ((-172 . -1020) T) ((-1094 . -38) 69551) ((-691 . -47) 69528) ((-352 . -170) T) ((-346 . -170) T) ((-510 . -56) 69502) ((-488 . -56) 69452) ((-344 . -1246) 69429) ((-219 . -444) T) ((-312 . -283) 69380) ((-338 . -170) T) ((-172 . -237) T) ((-1190 . -825) 69279) ((-107 . -170) T) ((-845 . -965) 69263) ((-636 . -1080) T) ((-565 . -356) T) ((-565 . -322) 69250) ((-509 . -322) 69227) ((-509 . -356) T) ((-309 . -300) 69206) ((-306 . -300) T) ((-584 . -825) 69185) ((-1081 . -696) 69127) ((-511 . -275) 69111) ((-636 . -23) T) ((-411 . -225) 69095) ((-306 . -995) NIL) ((-329 . -23) T) ((-102 . -983) 69079) ((-45 . -36) 69058) ((-594 . -1068) T) ((-344 . -361) T) ((-515 . -101) T) ((-486 . -27) T) ((-234 . -302) 68996) ((-1055 . -1080) T) ((-1250 . -626) 68970) ((-760 . -1080) T) ((-758 . -1080) T) ((-446 . -1080) T) ((-1031 . -444) T) ((-925 . -444) 68921) ((-1083 . -1051) T) ((-110 . -1068) T) ((-1055 . -23) T) ((-795 . -1027) T) ((-760 . -23) T) ((-758 . -23) T) ((-473 . -444) 68872) ((-1127 . -505) 68655) ((-374 . -375) 68634) ((-1146 . -404) 68618) ((-453 . -23) T) ((-446 . -23) T) ((-95 . -1068) T) ((-476 . -505) 68551) ((-282 . -283) T) ((-1050 . -595) 68533) ((-400 . -882) 68512) ((-50 . -1080) T) ((-997 . -893) T) ((-976 . -705) T) ((-691 . -859) NIL) ((-565 . -1080) T) ((-509 . -1080) T) ((-818 . -626) 68485) ((-1175 . -130) T) ((-1135 . -393) 68437) ((-977 . -302) NIL) ((-793 . -481) 68421) ((-347 . -893) T) ((-1124 . -34) T) ((-400 . -626) 68373) ((-50 . -23) T) ((-690 . -130) T) ((-691 . -1011) 68253) ((-565 . -23) T) ((-107 . -505) NIL) ((-509 . -23) T) ((-167 . -402) 68224) ((-128 . -302) NIL) ((-1108 . -1068) T) ((-1242 . -1241) 68208) ((-679 . -773) T) ((-679 . -770) T) ((-1088 . -300) T) ((-372 . -145) T) ((-273 . -595) 68190) ((-1190 . -965) 68160) ((-48 . -893) T) ((-653 . -481) 68144) ((-244 . -1234) 68114) ((-243 . -1234) 68084) ((-1144 . -825) T) ((-1081 . -170) 68063) ((-1088 . -995) T) ((-1017 . -34) T) ((-812 . -145) 68042) ((-812 . -143) 68021) ((-716 . -106) 68005) ((-594 . -131) T) ((-474 . -1068) 67795) ((-1146 . -1027) T) ((-844 . -444) T) ((-84 . -1181) T) ((-234 . -38) 67765) ((-139 . -106) 67747) ((-691 . -370) 67731) ((-1088 . -535) T) ((-383 . -1026) 67715) ((-1250 . -705) T) ((-1140 . -922) 67684) ((-129 . -595) 67651) ((-52 . -595) 67633) ((-1093 . -922) 67600) ((-631 . -404) 67584) ((-1239 . -1027) T) ((-601 . -1026) 67568) ((-640 . -25) T) ((-640 . -21) T) ((-1126 . -505) NIL) ((-1219 . -101) T) ((-1212 . -101) T) ((-383 . -111) 67547) ((-216 . -247) 67531) ((-1191 . -101) T) ((-1024 . -1068) T) ((-977 . -1119) T) ((-1024 . -1023) 67471) ((-796 . -1068) T) ((-336 . -1185) T) ((-615 . -626) 67455) ((-601 . -111) 67434) ((-589 . -626) 67418) ((-579 . -101) T) ((-569 . -130) T) ((-578 . -101) T) ((-407 . -1068) T) ((-378 . -1068) T) ((-304 . -595) 67384) ((-221 . -1068) 67362) ((-625 . -505) 67295) ((-612 . -505) 67139) ((-811 . -1020) 67118) ((-623 . -149) 67102) ((-336 . -542) T) ((-691 . -873) 67045) ((-536 . -223) 66995) ((-1219 . -277) 66961) ((-1048 . -283) 66912) ((-479 . -823) T) ((-217 . -1080) T) ((-1212 . -277) 66878) ((-1191 . -277) 66844) ((-977 . -38) 66794) ((-211 . -823) T) ((-1175 . -484) 66760) ((-887 . -38) 66712) ((-818 . -772) 66691) ((-818 . -769) 66670) ((-818 . -705) 66649) ((-352 . -283) T) ((-346 . -283) T) ((-338 . -283) T) ((-167 . -444) 66580) ((-420 . -38) 66564) ((-107 . -283) T) ((-217 . -23) T) ((-400 . -772) 66543) ((-400 . -769) 66522) ((-400 . -705) T) ((-491 . -281) 66497) ((-469 . -1026) 66462) ((-636 . -130) T) ((-1081 . -505) 66395) ((-329 . -130) T) ((-167 . -395) 66374) ((-474 . -696) 66316) ((-793 . -279) 66293) ((-469 . -111) 66249) ((-631 . -1027) T) ((-1200 . -444) 66180) ((-1238 . -1051) T) ((-1237 . -1051) T) ((-1055 . -130) T) ((-257 . -825) 66159) ((-241 . -825) 66138) ((-760 . -130) T) ((-758 . -130) T) ((-557 . -444) T) ((-1024 . -696) 66080) ((-601 . -1020) T) ((-1000 . -505) 66013) ((-575 . -1068) T) ((-453 . -130) T) ((-446 . -130) T) ((-45 . -1068) T) ((-378 . -696) 65983) ((-795 . -1068) T) ((-468 . -505) 65916) ((-455 . -505) 65849) ((-445 . -360) 65819) ((-45 . -592) 65798) ((-309 . -295) T) ((-648 . -595) 65760) ((-58 . -825) 65739) ((-1191 . -302) 65624) ((-977 . -393) 65606) ((-793 . -586) 65583) ((-507 . -825) 65562) ((-487 . -825) 65541) ((-40 . -1185) T) ((-972 . -1011) 65437) ((-50 . -130) T) ((-565 . -130) T) ((-509 . -130) T) ((-287 . -626) 65297) ((-336 . -322) 65274) ((-336 . -356) T) ((-315 . -316) 65251) ((-312 . -279) 65236) ((-40 . -542) T) ((-372 . -1166) T) ((-372 . -1169) T) ((-1008 . -1157) 65211) ((-1154 . -229) 65161) ((-1135 . -225) 65113) ((-323 . -1068) T) ((-372 . -94) T) ((-372 . -35) T) ((-1008 . -106) 65059) ((-469 . -1020) T) ((-471 . -229) 65009) ((-1127 . -481) 64943) ((-1251 . -1026) 64927) ((-374 . -1026) 64911) ((-469 . -237) T) ((-794 . -101) T) ((-693 . -145) 64890) ((-693 . -143) 64869) ((-476 . -481) 64853) ((-477 . -328) 64822) ((-1251 . -111) 64801) ((-503 . -1068) T) ((-474 . -170) 64780) ((-972 . -370) 64764) ((-406 . -101) T) ((-374 . -111) 64743) ((-972 . -331) 64727) ((-272 . -956) 64711) ((-271 . -956) 64695) ((-1249 . -595) 64677) ((-1247 . -595) 64659) ((-110 . -505) NIL) ((-1140 . -1203) 64643) ((-829 . -827) 64627) ((-1146 . -1068) T) ((-102 . -1181) T) ((-925 . -922) 64588) ((-795 . -696) 64530) ((-1191 . -1119) NIL) ((-473 . -922) 64475) ((-1031 . -141) T) ((-59 . -101) 64453) ((-44 . -595) 64435) ((-77 . -595) 64417) ((-344 . -626) 64362) ((-1239 . -1068) T) ((-502 . -825) T) ((-336 . -1080) T) ((-288 . -1068) T) ((-972 . -873) 64321) ((-288 . -592) 64300) ((-1219 . -38) 64197) ((-1212 . -38) 64038) ((-479 . -1027) T) ((-1191 . -38) 63834) ((-211 . -1027) T) ((-336 . -23) T) ((-150 . -595) 63816) ((-811 . -773) 63795) ((-811 . -770) 63774) ((-579 . -38) 63747) ((-578 . -38) 63644) ((-843 . -542) T) ((-217 . -130) T) ((-312 . -975) 63610) ((-78 . -595) 63592) ((-691 . -300) 63571) ((-287 . -705) 63473) ((-802 . -101) T) ((-838 . -819) T) ((-287 . -465) 63452) ((-1242 . -101) T) ((-40 . -356) T) ((-845 . -145) 63431) ((-845 . -143) 63410) ((-1126 . -481) 63392) ((-1251 . -1020) T) ((-474 . -505) 63325) ((-1114 . -1181) T) ((-937 . -595) 63307) ((-625 . -481) 63291) ((-612 . -481) 63222) ((-793 . -595) 62953) ((-48 . -27) T) ((-1146 . -696) 62850) ((-631 . -1068) T) ((-429 . -357) 62824) ((-1070 . -101) T) ((-794 . -302) 62811) ((-943 . -1068) T) ((-838 . -1068) T) ((-1247 . -375) 62783) ((-1024 . -505) 62716) ((-1127 . -279) 62692) ((-234 . -225) 62661) ((-1239 . -696) 62631) ((-1134 . -92) T) ((-967 . -92) T) ((-795 . -170) 62610) ((-221 . -505) 62543) ((-601 . -773) 62522) ((-601 . -770) 62501) ((-1178 . -595) 62413) ((-216 . -1181) T) ((-653 . -595) 62345) ((-1124 . -983) 62329) ((-344 . -705) T) ((-916 . -101) 62279) ((-1191 . -393) 62231) ((-1081 . -481) 62215) ((-59 . -302) 62153) ((-324 . -101) T) ((-1175 . -21) T) ((-1175 . -25) T) ((-40 . -1080) T) ((-690 . -21) T) ((-607 . -595) 62135) ((-506 . -316) 62114) ((-690 . -25) T) ((-107 . -279) NIL) ((-894 . -1080) T) ((-40 . -23) T) ((-749 . -1080) T) ((-550 . -1185) T) ((-486 . -1185) T) ((-312 . -595) 62096) ((-977 . -225) 62078) ((-167 . -164) 62062) ((-564 . -542) T) ((-550 . -542) T) ((-486 . -542) T) ((-749 . -23) T) ((-1211 . -145) 62041) ((-1127 . -586) 62017) ((-1211 . -143) 61996) ((-1000 . -481) 61980) ((-1190 . -143) 61905) ((-1190 . -145) 61830) ((-1242 . -1248) 61809) ((-468 . -481) 61793) ((-455 . -481) 61777) ((-514 . -34) T) ((-631 . -696) 61747) ((-112 . -940) T) ((-640 . -825) 61726) ((-1146 . -170) 61677) ((-358 . -101) T) ((-234 . -232) 61656) ((-244 . -101) T) ((-243 . -101) T) ((-1200 . -922) 61625) ((-109 . -101) T) ((-239 . -825) 61604) ((-794 . -38) 61453) ((-45 . -505) 61245) ((-1126 . -279) 61220) ((-208 . -1068) T) ((-1118 . -1068) T) ((-1118 . -592) 61199) ((-569 . -25) T) ((-569 . -21) T) ((-1070 . -302) 61137) ((-936 . -404) 61121) ((-677 . -1185) T) ((-612 . -279) 61096) ((-1055 . -619) 61044) ((-760 . -619) 60992) ((-758 . -619) 60940) ((-336 . -130) T) ((-282 . -595) 60922) ((-677 . -542) T) ((-878 . -1068) T) ((-843 . -1080) T) ((-446 . -619) 60870) ((-878 . -876) 60854) ((-372 . -444) T) ((-479 . -1068) T) ((-679 . -626) 60841) ((-916 . -302) 60779) ((-211 . -1068) T) ((-309 . -893) 60758) ((-306 . -893) T) ((-306 . -798) NIL) ((-383 . -699) T) ((-843 . -23) T) ((-116 . -626) 60745) ((-466 . -143) 60724) ((-411 . -404) 60708) ((-466 . -145) 60687) ((-110 . -481) 60669) ((-2 . -595) 60651) ((-1126 . -19) 60633) ((-1126 . -586) 60608) ((-636 . -21) T) ((-636 . -25) T) ((-576 . -1112) T) ((-1081 . -279) 60585) ((-329 . -25) T) ((-329 . -21) T) ((-486 . -356) T) ((-1242 . -38) 60555) ((-1110 . -1181) T) ((-612 . -586) 60530) ((-1055 . -25) T) ((-1055 . -21) T) ((-522 . -770) T) ((-522 . -773) T) ((-117 . -1185) T) ((-936 . -1027) T) ((-603 . -542) T) ((-760 . -25) T) ((-760 . -21) T) ((-758 . -21) T) ((-758 . -25) T) ((-714 . -1027) T) ((-694 . -1027) T) ((-648 . -1026) 60514) ((-508 . -1051) T) ((-453 . -25) T) ((-117 . -542) T) ((-453 . -21) T) ((-446 . -25) T) ((-446 . -21) T) ((-1110 . -1011) 60410) ((-795 . -283) 60389) ((-801 . -1068) T) ((-939 . -940) T) ((-648 . -111) 60368) ((-288 . -505) 60160) ((-1249 . -1026) 60144) ((-1247 . -1026) 60128) ((-1211 . -1166) 60094) ((-244 . -302) 60032) ((-243 . -302) 59970) ((-1194 . -101) 59948) ((-1127 . -596) NIL) ((-1127 . -595) 59930) ((-1211 . -1169) 59896) ((-1191 . -225) 59848) ((-1190 . -1166) 59814) ((-95 . -92) T) ((-1190 . -1169) 59780) ((-1110 . -370) 59764) ((-1088 . -798) T) ((-1088 . -893) T) ((-1081 . -586) 59741) ((-1048 . -596) 59725) ((-476 . -595) 59657) ((-793 . -281) 59634) ((-590 . -149) 59581) ((-411 . -1027) T) ((-479 . -696) 59531) ((-474 . -481) 59515) ((-320 . -825) 59494) ((-332 . -626) 59468) ((-50 . -21) T) ((-50 . -25) T) ((-211 . -696) 59418) ((-167 . -703) 59389) ((-172 . -626) 59321) ((-565 . -21) T) ((-565 . -25) T) ((-509 . -25) T) ((-509 . -21) T) ((-467 . -149) 59271) ((-1048 . -595) 59253) ((-1030 . -595) 59235) ((-966 . -101) T) ((-836 . -101) T) ((-777 . -404) 59199) ((-40 . -130) T) ((-677 . -356) T) ((-206 . -868) T) ((-679 . -772) T) ((-679 . -769) T) ((-564 . -1080) T) ((-550 . -1080) T) ((-486 . -1080) T) ((-679 . -705) T) ((-352 . -595) 59181) ((-346 . -595) 59163) ((-338 . -595) 59145) ((-65 . -389) T) ((-65 . -388) T) ((-107 . -596) 59075) ((-107 . -595) 59057) ((-205 . -868) T) ((-931 . -149) 59041) ((-1211 . -94) 59007) ((-749 . -130) T) ((-133 . -705) T) ((-116 . -705) T) ((-1211 . -35) 58973) ((-1024 . -481) 58957) ((-564 . -23) T) ((-550 . -23) T) ((-486 . -23) T) ((-1190 . -94) 58923) ((-1190 . -35) 58889) ((-1140 . -101) T) ((-1093 . -101) T) ((-829 . -101) T) ((-221 . -481) 58873) ((-1249 . -111) 58852) ((-1247 . -111) 58831) ((-44 . -1026) 58815) ((-1200 . -1203) 58799) ((-830 . -827) 58783) ((-1146 . -283) 58762) ((-110 . -279) 58737) ((-1110 . -873) 58696) ((-44 . -111) 58675) ((-1149 . -1222) T) ((-1134 . -595) 58641) ((-648 . -1020) T) ((-1126 . -596) NIL) ((-1126 . -595) 58623) ((-1032 . -592) 58598) ((-1032 . -1068) T) ((-967 . -595) 58564) ((-73 . -433) T) ((-73 . -388) T) ((-648 . -227) 58543) ((-150 . -1026) 58527) ((-557 . -540) 58511) ((-348 . -145) 58490) ((-348 . -143) 58441) ((-345 . -145) 58420) ((-681 . -1068) T) ((-345 . -143) 58371) ((-337 . -145) 58350) ((-337 . -143) 58301) ((-257 . -143) 58280) ((-257 . -145) 58259) ((-244 . -38) 58229) ((-241 . -145) 58208) ((-117 . -356) T) ((-241 . -143) 58187) ((-243 . -38) 58157) ((-150 . -111) 58136) ((-976 . -1011) 58024) ((-1135 . -823) NIL) ((-672 . -1185) T) ((-777 . -1027) T) ((-677 . -1080) T) ((-1249 . -1020) T) ((-1247 . -1020) T) ((-1124 . -1181) T) ((-976 . -370) 58001) ((-883 . -143) T) ((-883 . -145) 57983) ((-843 . -130) T) ((-793 . -1026) 57880) ((-672 . -542) T) ((-677 . -23) T) ((-625 . -595) 57812) ((-625 . -596) 57773) ((-612 . -596) NIL) ((-612 . -595) 57755) ((-479 . -170) T) ((-217 . -21) T) ((-211 . -170) T) ((-217 . -25) T) ((-466 . -1169) 57721) ((-466 . -1166) 57687) ((-267 . -595) 57669) ((-266 . -595) 57651) ((-265 . -595) 57633) ((-264 . -595) 57615) ((-263 . -595) 57597) ((-491 . -629) 57579) ((-262 . -595) 57561) ((-332 . -705) T) ((-261 . -595) 57543) ((-110 . -19) 57525) ((-172 . -705) T) ((-491 . -366) 57507) ((-206 . -595) 57489) ((-511 . -1117) 57473) ((-491 . -123) T) ((-110 . -586) 57448) ((-205 . -595) 57430) ((-466 . -35) 57396) ((-466 . -94) 57362) ((-203 . -595) 57344) ((-202 . -595) 57326) ((-201 . -595) 57308) ((-200 . -595) 57290) ((-197 . -595) 57272) ((-196 . -595) 57254) ((-195 . -595) 57236) ((-194 . -595) 57218) ((-193 . -595) 57200) ((-192 . -595) 57182) ((-191 . -595) 57164) ((-526 . -1071) 57116) ((-190 . -595) 57098) ((-189 . -595) 57080) ((-45 . -481) 57017) ((-188 . -595) 56999) ((-187 . -595) 56981) ((-1083 . -101) T) ((-793 . -111) 56871) ((-623 . -101) 56821) ((-474 . -279) 56798) ((-1081 . -595) 56529) ((-1069 . -1068) T) ((-1017 . -1181) T) ((-1250 . -1011) 56513) ((-603 . -1080) T) ((-1140 . -302) 56500) ((-1103 . -1068) T) ((-1093 . -302) 56487) ((-1064 . -1051) T) ((-1058 . -1051) T) ((-1042 . -1051) T) ((-1035 . -1051) T) ((-1009 . -1051) T) ((-992 . -1051) T) ((-117 . -1080) T) ((-797 . -101) T) ((-606 . -1051) T) ((-603 . -23) T) ((-1118 . -505) 56279) ((-475 . -1051) T) ((-976 . -873) 56231) ((-379 . -101) T) ((-317 . -101) T) ((-212 . -1051) T) ((-936 . -1068) T) ((-150 . -1020) T) ((-117 . -23) T) ((-710 . -404) 56215) ((-714 . -1068) T) ((-694 . -1068) T) ((-681 . -131) T) ((-445 . -1068) T) ((-400 . -1181) T) ((-309 . -423) 56199) ((-575 . -92) T) ((-1000 . -596) 56160) ((-997 . -1185) T) ((-219 . -101) T) ((-1000 . -595) 56122) ((-794 . -225) 56106) ((-997 . -542) T) ((-811 . -626) 56079) ((-347 . -1185) T) ((-468 . -595) 56041) ((-468 . -596) 56002) ((-455 . -596) 55963) ((-455 . -595) 55925) ((-400 . -857) 55909) ((-312 . -1026) 55744) ((-400 . -859) 55669) ((-818 . -1011) 55565) ((-479 . -505) NIL) ((-474 . -586) 55542) ((-347 . -542) T) ((-211 . -505) NIL) ((-845 . -444) T) ((-411 . -1068) T) ((-400 . -1011) 55406) ((-312 . -111) 55227) ((-672 . -356) T) ((-219 . -277) T) ((-48 . -1185) T) ((-793 . -1020) 55157) ((-564 . -130) T) ((-550 . -130) T) ((-486 . -130) T) ((-48 . -542) T) ((-1127 . -281) 55133) ((-1140 . -1119) 55111) ((-309 . -27) 55090) ((-1031 . -101) T) ((-793 . -227) 55042) ((-234 . -823) 55021) ((-925 . -101) T) ((-692 . -101) T) ((-288 . -481) 54958) ((-473 . -101) T) ((-710 . -1027) T) ((-594 . -595) 54940) ((-594 . -596) 54801) ((-400 . -370) 54785) ((-400 . -331) 54769) ((-1140 . -38) 54598) ((-1093 . -38) 54447) ((-829 . -38) 54417) ((-383 . -626) 54401) ((-623 . -302) 54339) ((-936 . -696) 54236) ((-714 . -696) 54206) ((-216 . -106) 54190) ((-45 . -279) 54115) ((-601 . -626) 54089) ((-305 . -1068) T) ((-282 . -1026) 54076) ((-110 . -595) 54058) ((-110 . -596) 54040) ((-445 . -696) 54010) ((-794 . -246) 53949) ((-667 . -1068) 53927) ((-536 . -1068) T) ((-1142 . -1027) T) ((-1141 . -1027) T) ((-1135 . -1027) T) ((-282 . -111) 53912) ((-1094 . -1027) T) ((-536 . -592) 53891) ((-95 . -595) 53857) ((-977 . -823) T) ((-221 . -665) 53815) ((-672 . -1080) T) ((-1175 . -719) 53791) ((-312 . -1020) T) ((-336 . -25) T) ((-336 . -21) T) ((-400 . -873) 53750) ((-67 . -1181) T) ((-811 . -772) 53729) ((-411 . -696) 53703) ((-777 . -1068) T) ((-811 . -769) 53682) ((-677 . -130) T) ((-691 . -893) 53661) ((-672 . -23) T) ((-479 . -283) T) ((-811 . -705) 53640) ((-312 . -227) 53592) ((-312 . -237) 53571) ((-211 . -283) T) ((-997 . -356) T) ((-1211 . -444) 53550) ((-1190 . -444) 53529) ((-347 . -322) 53506) ((-347 . -356) T) ((-1108 . -595) 53488) ((-45 . -1215) 53438) ((-844 . -101) T) ((-623 . -275) 53422) ((-677 . -1029) T) ((-1238 . -101) T) ((-469 . -626) 53387) ((-460 . -1068) T) ((-45 . -586) 53312) ((-1237 . -101) T) ((-1126 . -281) 53287) ((-40 . -619) 53226) ((-48 . -356) T) ((-1074 . -595) 53208) ((-1055 . -825) 53187) ((-612 . -281) 53162) ((-760 . -825) 53141) ((-758 . -825) 53120) ((-474 . -595) 52851) ((-234 . -404) 52820) ((-925 . -302) 52807) ((-446 . -825) 52786) ((-64 . -1181) T) ((-1032 . -505) 52630) ((-603 . -130) T) ((-473 . -302) 52617) ((-588 . -1068) T) ((-117 . -130) T) ((-649 . -1068) T) ((-282 . -1020) T) ((-178 . -1068) T) ((-159 . -1068) T) ((-154 . -1068) T) ((-152 . -1068) T) ((-445 . -740) T) ((-31 . -1051) T) ((-936 . -170) 52568) ((-943 . -92) T) ((-1048 . -1026) 52478) ((-601 . -772) 52457) ((-576 . -1068) T) ((-601 . -769) 52436) ((-601 . -705) T) ((-288 . -279) 52415) ((-287 . -1181) T) ((-1024 . -595) 52377) ((-1024 . -596) 52338) ((-997 . -1080) T) ((-167 . -101) T) ((-268 . -825) T) ((-1133 . -1068) T) ((-796 . -595) 52320) ((-1081 . -281) 52297) ((-1070 . -223) 52281) ((-976 . -300) T) ((-777 . -696) 52265) ((-352 . -1026) 52217) ((-347 . -1080) T) ((-346 . -1026) 52169) ((-407 . -595) 52151) ((-378 . -595) 52133) ((-338 . -1026) 52085) ((-221 . -595) 52017) ((-1048 . -111) 51913) ((-997 . -23) T) ((-107 . -1026) 51863) ((-871 . -101) T) ((-816 . -101) T) ((-786 . -101) T) ((-747 . -101) T) ((-655 . -101) T) ((-466 . -444) 51842) ((-411 . -170) T) ((-352 . -111) 51780) ((-346 . -111) 51718) ((-338 . -111) 51656) ((-244 . -225) 51625) ((-243 . -225) 51594) ((-347 . -23) T) ((-70 . -1181) T) ((-219 . -38) 51559) ((-107 . -111) 51493) ((-40 . -25) T) ((-40 . -21) T) ((-648 . -699) T) ((-167 . -277) 51471) ((-48 . -1080) T) ((-894 . -25) T) ((-749 . -25) T) ((-1118 . -481) 51408) ((-477 . -1068) T) ((-1251 . -626) 51382) ((-1200 . -101) T) ((-830 . -101) T) ((-234 . -1027) 51312) ((-1031 . -1119) T) ((-937 . -770) 51265) ((-374 . -626) 51249) ((-48 . -23) T) ((-937 . -773) 51202) ((-793 . -773) 51153) ((-793 . -770) 51104) ((-288 . -586) 51083) ((-469 . -705) T) ((-557 . -101) T) ((-844 . -302) 51040) ((-631 . -279) 51019) ((-112 . -639) T) ((-75 . -1181) T) ((-1031 . -38) 51006) ((-642 . -367) 50985) ((-925 . -38) 50834) ((-710 . -1068) T) ((-473 . -38) 50683) ((-85 . -1181) T) ((-557 . -277) T) ((-1191 . -823) NIL) ((-575 . -595) 50649) ((-1142 . -1068) T) ((-1141 . -1068) T) ((-1135 . -1068) T) ((-344 . -1011) 50626) ((-1048 . -1020) T) ((-977 . -1027) T) ((-45 . -595) 50608) ((-45 . -596) NIL) ((-887 . -1027) T) ((-795 . -595) 50590) ((-1115 . -101) 50568) ((-1048 . -237) 50519) ((-420 . -1027) T) ((-352 . -1020) T) ((-346 . -1020) T) ((-358 . -357) 50496) ((-338 . -1020) T) ((-244 . -232) 50475) ((-243 . -232) 50454) ((-109 . -357) 50428) ((-1048 . -227) 50353) ((-1094 . -1068) T) ((-287 . -873) 50312) ((-107 . -1020) T) ((-672 . -130) T) ((-411 . -505) 50154) ((-352 . -227) 50133) ((-352 . -237) T) ((-44 . -699) T) ((-346 . -227) 50112) ((-346 . -237) T) ((-338 . -227) 50091) ((-338 . -237) T) ((-167 . -302) 50056) ((-107 . -237) T) ((-107 . -227) T) ((-312 . -770) T) ((-843 . -21) T) ((-843 . -25) T) ((-400 . -300) T) ((-491 . -34) T) ((-110 . -281) 50031) ((-1081 . -1026) 49928) ((-844 . -1119) NIL) ((-323 . -595) 49910) ((-400 . -995) 49889) ((-1081 . -111) 49779) ((-669 . -1222) T) ((-429 . -1068) T) ((-1251 . -705) T) ((-62 . -595) 49761) ((-844 . -38) 49706) ((-514 . -1181) T) ((-584 . -149) 49690) ((-503 . -595) 49672) ((-1200 . -302) 49659) ((-710 . -696) 49508) ((-522 . -771) T) ((-522 . -772) T) ((-550 . -619) 49490) ((-486 . -619) 49450) ((-348 . -444) T) ((-345 . -444) T) ((-337 . -444) T) ((-257 . -444) 49401) ((-516 . -1068) T) ((-511 . -1068) 49351) ((-241 . -444) 49302) ((-1118 . -279) 49281) ((-1146 . -595) 49263) ((-667 . -505) 49196) ((-936 . -283) 49175) ((-536 . -505) 48967) ((-1140 . -225) 48951) ((-167 . -1119) 48930) ((-1239 . -595) 48912) ((-1142 . -696) 48809) ((-1141 . -696) 48650) ((-865 . -101) T) ((-1135 . -696) 48446) ((-1094 . -696) 48343) ((-1124 . -652) 48327) ((-348 . -395) 48278) ((-345 . -395) 48229) ((-337 . -395) 48180) ((-997 . -130) T) ((-777 . -505) 48092) ((-288 . -596) NIL) ((-288 . -595) 48074) ((-883 . -444) T) ((-937 . -361) 48027) ((-793 . -361) 48006) ((-501 . -500) 47985) ((-499 . -500) 47964) ((-479 . -279) NIL) ((-474 . -281) 47941) ((-411 . -283) T) ((-347 . -130) T) ((-211 . -279) NIL) ((-672 . -484) NIL) ((-98 . -1080) T) ((-167 . -38) 47769) ((-1211 . -946) 47731) ((-1115 . -302) 47669) ((-1190 . -946) 47638) ((-883 . -395) T) ((-1081 . -1020) 47568) ((-1213 . -542) T) ((-1118 . -586) 47547) ((-112 . -825) T) ((-1032 . -481) 47478) ((-564 . -21) T) ((-564 . -25) T) ((-550 . -21) T) ((-550 . -25) T) ((-486 . -25) T) ((-486 . -21) T) ((-1200 . -1119) 47456) ((-1081 . -227) 47408) ((-48 . -130) T) ((-1162 . -101) T) ((-234 . -1068) 47198) ((-844 . -393) 47175) ((-1056 . -101) T) ((-1044 . -101) T) ((-590 . -101) T) ((-467 . -101) T) ((-1200 . -38) 47004) ((-830 . -38) 46974) ((-710 . -170) 46885) ((-631 . -595) 46867) ((-624 . -1051) T) ((-557 . -38) 46854) ((-943 . -595) 46820) ((-931 . -101) 46770) ((-838 . -595) 46752) ((-838 . -596) 46674) ((-576 . -505) NIL) ((-1219 . -1027) T) ((-1212 . -1027) T) ((-1191 . -1027) T) ((-579 . -1027) T) ((-578 . -1027) T) ((-1255 . -1080) T) ((-1142 . -170) 46625) ((-1141 . -170) 46556) ((-1135 . -170) 46487) ((-1094 . -170) 46438) ((-977 . -1068) T) ((-944 . -1068) T) ((-887 . -1068) T) ((-1175 . -145) 46417) ((-777 . -775) 46401) ((-677 . -25) T) ((-677 . -21) T) ((-117 . -619) 46378) ((-679 . -859) 46360) ((-420 . -1068) T) ((-309 . -1185) 46339) ((-306 . -1185) T) ((-167 . -393) 46323) ((-1175 . -143) 46302) ((-466 . -946) 46264) ((-128 . -1068) T) ((-71 . -595) 46246) ((-107 . -773) T) ((-107 . -770) T) ((-309 . -542) 46225) ((-679 . -1011) 46207) ((-306 . -542) T) ((-1255 . -23) T) ((-133 . -1011) 46189) ((-474 . -1026) 46086) ((-45 . -281) 46011) ((-234 . -696) 45953) ((-508 . -101) T) ((-474 . -111) 45843) ((-1060 . -101) 45821) ((-1007 . -101) T) ((-623 . -806) 45800) ((-710 . -505) 45743) ((-1024 . -1026) 45727) ((-1103 . -92) T) ((-1032 . -279) 45702) ((-603 . -21) T) ((-603 . -25) T) ((-515 . -1068) T) ((-354 . -101) T) ((-315 . -101) T) ((-648 . -626) 45676) ((-378 . -1026) 45660) ((-1024 . -111) 45639) ((-794 . -404) 45623) ((-117 . -25) T) ((-88 . -595) 45605) ((-117 . -21) T) ((-590 . -302) 45400) ((-467 . -302) 45204) ((-1118 . -596) NIL) ((-378 . -111) 45183) ((-372 . -101) T) ((-208 . -595) 45165) ((-1118 . -595) 45147) ((-977 . -696) 45097) ((-1135 . -505) 44866) ((-887 . -696) 44818) ((-1094 . -505) 44788) ((-344 . -300) T) ((-1154 . -149) 44738) ((-931 . -302) 44676) ((-812 . -101) T) ((-420 . -696) 44660) ((-219 . -806) T) ((-805 . -101) T) ((-803 . -101) T) ((-471 . -149) 44610) ((-1211 . -1210) 44589) ((-1088 . -1185) T) ((-332 . -1011) 44556) ((-1211 . -1205) 44526) ((-1211 . -1208) 44510) ((-1190 . -1189) 44489) ((-79 . -595) 44471) ((-878 . -595) 44453) ((-1190 . -1205) 44430) ((-1088 . -542) T) ((-894 . -825) T) ((-749 . -825) T) ((-479 . -596) 44360) ((-479 . -595) 44342) ((-372 . -277) T) ((-650 . -825) T) ((-1190 . -1187) 44326) ((-1213 . -1080) T) ((-211 . -596) 44256) ((-211 . -595) 44238) ((-1032 . -586) 44213) ((-58 . -149) 44197) ((-507 . -149) 44181) ((-487 . -149) 44165) ((-352 . -1246) 44149) ((-346 . -1246) 44133) ((-338 . -1246) 44117) ((-309 . -356) 44096) ((-306 . -356) T) ((-474 . -1020) 44026) ((-672 . -619) 44008) ((-1249 . -626) 43982) ((-1247 . -626) 43956) ((-1213 . -23) T) ((-667 . -481) 43940) ((-63 . -595) 43922) ((-1081 . -773) 43873) ((-1081 . -770) 43824) ((-536 . -481) 43761) ((-648 . -34) T) ((-474 . -227) 43713) ((-288 . -281) 43692) ((-234 . -170) 43671) ((-794 . -1027) T) ((-44 . -626) 43629) ((-1048 . -361) 43580) ((-710 . -283) 43511) ((-511 . -505) 43444) ((-795 . -1026) 43395) ((-1055 . -143) 43374) ((-352 . -361) 43353) ((-346 . -361) 43332) ((-338 . -361) 43311) ((-1055 . -145) 43290) ((-844 . -225) 43267) ((-795 . -111) 43209) ((-760 . -143) 43188) ((-760 . -145) 43167) ((-257 . -922) 43134) ((-244 . -823) 43113) ((-241 . -922) 43058) ((-243 . -823) 43037) ((-758 . -143) 43016) ((-758 . -145) 42995) ((-150 . -626) 42969) ((-446 . -145) 42948) ((-446 . -143) 42927) ((-648 . -705) T) ((-801 . -595) 42909) ((-1219 . -1068) T) ((-1212 . -1068) T) ((-1191 . -1068) T) ((-1175 . -1169) 42875) ((-1175 . -1166) 42841) ((-1142 . -283) 42820) ((-1141 . -283) 42771) ((-1135 . -283) 42722) ((-1094 . -283) 42701) ((-332 . -873) 42682) ((-977 . -170) T) ((-887 . -170) T) ((-579 . -1068) T) ((-578 . -1068) T) ((-672 . -21) T) ((-672 . -25) T) ((-466 . -1208) 42666) ((-466 . -1205) 42636) ((-411 . -279) 42564) ((-309 . -1080) 42413) ((-306 . -1080) T) ((-1175 . -35) 42379) ((-1175 . -94) 42345) ((-83 . -595) 42327) ((-90 . -101) 42305) ((-1255 . -130) T) ((-565 . -143) T) ((-565 . -145) 42287) ((-509 . -145) 42269) ((-509 . -143) T) ((-309 . -23) 42121) ((-40 . -335) 42095) ((-306 . -23) T) ((-1126 . -629) 42077) ((-1242 . -1027) T) ((-1126 . -366) 42059) ((-793 . -626) 41907) ((-1064 . -101) T) ((-1058 . -101) T) ((-1042 . -101) T) ((-167 . -225) 41891) ((-1035 . -101) T) ((-1009 . -101) T) ((-992 . -101) T) ((-576 . -481) 41873) ((-606 . -101) T) ((-234 . -505) 41806) ((-475 . -101) T) ((-1249 . -705) T) ((-1247 . -705) T) ((-212 . -101) T) ((-1146 . -1026) 41689) ((-1146 . -111) 41558) ((-795 . -1020) T) ((-659 . -1051) T) ((-654 . -1051) T) ((-506 . -101) T) ((-501 . -101) T) ((-48 . -619) 41518) ((-499 . -101) T) ((-470 . -1051) T) ((-1239 . -1026) 41488) ((-137 . -1051) T) ((-136 . -1051) T) ((-132 . -1051) T) ((-1007 . -38) 41472) ((-795 . -227) T) ((-795 . -237) 41451) ((-1239 . -111) 41416) ((-1219 . -696) 41313) ((-536 . -279) 41292) ((-1212 . -696) 41133) ((-1200 . -225) 41117) ((-588 . -92) T) ((-1032 . -596) NIL) ((-1032 . -595) 41099) ((-649 . -92) T) ((-178 . -92) T) ((-159 . -92) T) ((-154 . -92) T) ((-152 . -92) T) ((-1191 . -696) 40895) ((-976 . -893) T) ((-681 . -595) 40864) ((-150 . -705) T) ((-1081 . -361) 40843) ((-977 . -505) NIL) ((-244 . -404) 40812) ((-243 . -404) 40781) ((-997 . -25) T) ((-997 . -21) T) ((-579 . -696) 40754) ((-578 . -696) 40651) ((-777 . -279) 40609) ((-126 . -101) 40587) ((-811 . -1011) 40483) ((-167 . -806) 40462) ((-312 . -626) 40359) ((-793 . -34) T) ((-693 . -101) T) ((-1088 . -1080) T) ((-128 . -505) NIL) ((-999 . -1181) T) ((-372 . -38) 40324) ((-347 . -25) T) ((-347 . -21) T) ((-160 . -101) T) ((-155 . -101) T) ((-348 . -1234) 40308) ((-345 . -1234) 40292) ((-337 . -1234) 40276) ((-167 . -342) 40255) ((-550 . -825) T) ((-486 . -825) T) ((-1088 . -23) T) ((-86 . -595) 40237) ((-679 . -300) T) ((-812 . -38) 40207) ((-805 . -38) 40177) ((-1213 . -130) T) ((-1118 . -281) 40156) ((-937 . -771) 40109) ((-937 . -772) 40062) ((-793 . -769) 40041) ((-116 . -300) T) ((-90 . -302) 39979) ((-653 . -34) T) ((-536 . -586) 39958) ((-48 . -25) T) ((-48 . -21) T) ((-793 . -772) 39909) ((-793 . -771) 39888) ((-679 . -995) T) ((-631 . -1026) 39872) ((-937 . -705) 39771) ((-793 . -705) 39681) ((-937 . -465) 39634) ((-474 . -773) 39585) ((-474 . -770) 39536) ((-883 . -1234) 39523) ((-1146 . -1020) T) ((-631 . -111) 39502) ((-1146 . -319) 39479) ((-1167 . -101) 39457) ((-1069 . -595) 39439) ((-679 . -535) T) ((-794 . -1068) T) ((-1239 . -1020) T) ((-406 . -1068) T) ((-1103 . -595) 39405) ((-244 . -1027) 39335) ((-243 . -1027) 39265) ((-282 . -626) 39252) ((-576 . -279) 39227) ((-667 . -665) 39185) ((-936 . -595) 39167) ((-845 . -101) T) ((-714 . -595) 39149) ((-694 . -595) 39131) ((-1219 . -170) 39082) ((-1212 . -170) 39013) ((-1191 . -170) 38944) ((-677 . -825) T) ((-977 . -283) T) ((-445 . -595) 38926) ((-607 . -705) T) ((-59 . -1068) 38904) ((-239 . -149) 38888) ((-887 . -283) T) ((-997 . -985) T) ((-607 . -465) T) ((-691 . -1185) 38867) ((-579 . -170) 38846) ((-578 . -170) 38797) ((-1227 . -825) 38776) ((-691 . -542) 38687) ((-400 . -893) T) ((-400 . -798) 38666) ((-312 . -772) T) ((-312 . -705) T) ((-411 . -595) 38648) ((-411 . -596) 38556) ((-623 . -1117) 38540) ((-110 . -629) 38522) ((-172 . -300) T) ((-126 . -302) 38460) ((-110 . -366) 38442) ((-391 . -1181) T) ((-309 . -130) 38313) ((-306 . -130) T) ((-68 . -388) T) ((-110 . -123) T) ((-511 . -481) 38297) ((-632 . -1080) T) ((-576 . -19) 38279) ((-60 . -433) T) ((-60 . -388) T) ((-802 . -1068) T) ((-576 . -586) 38254) ((-469 . -1011) 38214) ((-631 . -1020) T) ((-632 . -23) T) ((-1242 . -1068) T) ((-31 . -101) T) ((-794 . -696) 38063) ((-117 . -825) NIL) ((-1140 . -404) 38047) ((-1093 . -404) 38031) ((-829 . -404) 38015) ((-846 . -101) 37966) ((-1211 . -101) T) ((-1191 . -505) 37735) ((-1190 . -101) T) ((-516 . -92) T) ((-1167 . -302) 37673) ((-305 . -595) 37655) ((-1142 . -279) 37640) ((-1070 . -1068) T) ((-1141 . -279) 37625) ((-1048 . -626) 37535) ((-282 . -705) T) ((-107 . -882) NIL) ((-667 . -595) 37467) ((-667 . -596) 37428) ((-583 . -595) 37410) ((-536 . -596) NIL) ((-536 . -595) 37392) ((-520 . -595) 37374) ((-1135 . -279) 37222) ((-479 . -1026) 37172) ((-690 . -444) T) ((-502 . -500) 37151) ((-498 . -500) 37130) ((-211 . -1026) 37080) ((-352 . -626) 37032) ((-346 . -626) 36984) ((-219 . -823) T) ((-338 . -626) 36936) ((-584 . -101) 36886) ((-474 . -361) 36865) ((-107 . -626) 36815) ((-479 . -111) 36749) ((-234 . -481) 36733) ((-336 . -145) 36715) ((-336 . -143) T) ((-167 . -363) 36686) ((-916 . -1225) 36670) ((-211 . -111) 36604) ((-845 . -302) 36569) ((-916 . -1068) 36519) ((-777 . -596) 36480) ((-777 . -595) 36462) ((-697 . -101) T) ((-324 . -1068) T) ((-1088 . -130) T) ((-693 . -38) 36432) ((-309 . -484) 36411) ((-491 . -1181) T) ((-1211 . -277) 36377) ((-1190 . -277) 36343) ((-320 . -149) 36327) ((-1032 . -281) 36302) ((-1242 . -696) 36272) ((-1127 . -34) T) ((-1251 . -1011) 36249) ((-460 . -595) 36231) ((-476 . -34) T) ((-374 . -1011) 36215) ((-1140 . -1027) T) ((-1093 . -1027) T) ((-829 . -1027) T) ((-1031 . -823) T) ((-794 . -170) 36126) ((-511 . -279) 36103) ((-128 . -481) 36085) ((-1219 . -283) 36064) ((-117 . -965) 36041) ((-1212 . -283) 35992) ((-1162 . -357) 35966) ((-1056 . -259) 35950) ((-649 . -595) 35916) ((-588 . -595) 35866) ((-466 . -101) T) ((-178 . -595) 35832) ((-159 . -595) 35798) ((-154 . -595) 35764) ((-358 . -1068) T) ((-244 . -1068) T) ((-243 . -1068) T) ((-152 . -595) 35730) ((-109 . -1068) T) ((-1191 . -283) 35681) ((-845 . -1119) 35659) ((-1142 . -975) 35625) ((-590 . -357) 35565) ((-1141 . -975) 35531) ((-590 . -223) 35478) ((-576 . -595) 35460) ((-576 . -596) NIL) ((-672 . -825) T) ((-467 . -223) 35410) ((-479 . -1020) T) ((-1135 . -975) 35376) ((-87 . -432) T) ((-87 . -388) T) ((-211 . -1020) T) ((-1094 . -975) 35342) ((-1048 . -705) T) ((-691 . -1080) T) ((-579 . -283) 35321) ((-578 . -283) 35300) ((-479 . -237) T) ((-479 . -227) T) ((-211 . -237) T) ((-211 . -227) T) ((-1133 . -595) 35282) ((-845 . -38) 35234) ((-352 . -705) T) ((-346 . -705) T) ((-338 . -705) T) ((-107 . -772) T) ((-107 . -769) T) ((-511 . -1215) 35218) ((-107 . -705) T) ((-691 . -23) T) ((-1255 . -25) T) ((-466 . -277) 35184) ((-1255 . -21) T) ((-1190 . -302) 35123) ((-1144 . -101) T) ((-40 . -143) 35095) ((-40 . -145) 35067) ((-511 . -586) 35044) ((-1081 . -626) 34892) ((-584 . -302) 34830) ((-45 . -629) 34780) ((-45 . -644) 34730) ((-45 . -366) 34680) ((-1126 . -34) T) ((-844 . -823) NIL) ((-632 . -130) T) ((-477 . -595) 34662) ((-234 . -279) 34639) ((-625 . -34) T) ((-612 . -34) T) ((-1055 . -444) 34590) ((-794 . -505) 34464) ((-760 . -444) 34395) ((-758 . -444) 34346) ((-446 . -444) 34297) ((-925 . -404) 34281) ((-710 . -595) 34263) ((-244 . -696) 34205) ((-243 . -696) 34147) ((-710 . -596) 34008) ((-473 . -404) 33992) ((-332 . -295) T) ((-515 . -92) T) ((-344 . -893) T) ((-973 . -101) 33970) ((-997 . -825) T) ((-59 . -505) 33903) ((-1190 . -1119) 33855) ((-977 . -279) NIL) ((-219 . -1027) T) ((-372 . -806) T) ((-1081 . -34) T) ((-1194 . -1061) 33839) ((-565 . -444) T) ((-509 . -444) T) ((-1194 . -1068) 33817) ((-1194 . -1063) 33774) ((-234 . -586) 33751) ((-1142 . -595) 33733) ((-1141 . -595) 33715) ((-1135 . -595) 33697) ((-1135 . -596) NIL) ((-1094 . -595) 33679) ((-128 . -279) 33654) ((-845 . -393) 33638) ((-526 . -101) T) ((-1211 . -38) 33479) ((-1190 . -38) 33293) ((-843 . -145) T) ((-565 . -395) T) ((-48 . -825) T) ((-509 . -395) T) ((-1223 . -101) T) ((-1213 . -21) T) ((-1213 . -25) T) ((-1081 . -769) 33272) ((-1081 . -772) 33223) ((-1081 . -771) 33202) ((-966 . -1068) T) ((-1000 . -34) T) ((-836 . -1068) T) ((-1081 . -705) 33112) ((-642 . -101) T) ((-624 . -101) T) ((-536 . -281) 33091) ((-1154 . -101) T) ((-468 . -34) T) ((-455 . -34) T) ((-348 . -101) T) ((-345 . -101) T) ((-337 . -101) T) ((-257 . -101) T) ((-241 . -101) T) ((-469 . -300) T) ((-1031 . -1027) T) ((-925 . -1027) T) ((-309 . -619) 32997) ((-306 . -619) 32958) ((-473 . -1027) T) ((-471 . -101) T) ((-429 . -595) 32940) ((-1140 . -1068) T) ((-1093 . -1068) T) ((-829 . -1068) T) ((-1109 . -101) T) ((-794 . -283) 32871) ((-936 . -1026) 32754) ((-469 . -995) T) ((-128 . -19) 32736) ((-714 . -1026) 32706) ((-128 . -586) 32681) ((-445 . -1026) 32651) ((-1115 . -1089) 32635) ((-1070 . -505) 32568) ((-936 . -111) 32437) ((-883 . -101) T) ((-714 . -111) 32402) ((-516 . -595) 32368) ((-58 . -101) 32318) ((-511 . -596) 32279) ((-511 . -595) 32191) ((-510 . -101) 32169) ((-507 . -101) 32119) ((-488 . -101) 32097) ((-487 . -101) 32047) ((-445 . -111) 32010) ((-244 . -170) 31989) ((-243 . -170) 31968) ((-411 . -1026) 31942) ((-1175 . -946) 31904) ((-972 . -1080) T) ((-916 . -505) 31837) ((-479 . -773) T) ((-466 . -38) 31678) ((-411 . -111) 31645) ((-479 . -770) T) ((-973 . -302) 31583) ((-211 . -773) T) ((-211 . -770) T) ((-972 . -23) T) ((-691 . -130) T) ((-1190 . -393) 31553) ((-309 . -25) 31405) ((-167 . -404) 31389) ((-309 . -21) 31260) ((-306 . -25) T) ((-306 . -21) T) ((-838 . -361) T) ((-110 . -34) T) ((-474 . -626) 31108) ((-844 . -1027) T) ((-576 . -281) 31083) ((-564 . -145) T) ((-550 . -145) T) ((-486 . -145) T) ((-1140 . -696) 30912) ((-1093 . -696) 30761) ((-1088 . -619) 30743) ((-829 . -696) 30713) ((-648 . -1181) T) ((-1 . -101) T) ((-234 . -595) 30444) ((-1083 . -1068) T) ((-1200 . -404) 30428) ((-1154 . -302) 30232) ((-936 . -1020) T) ((-714 . -1020) T) ((-694 . -1020) T) ((-623 . -1068) 30182) ((-1024 . -626) 30166) ((-830 . -404) 30150) ((-502 . -101) T) ((-498 . -101) T) ((-241 . -302) 30137) ((-257 . -302) 30124) ((-936 . -319) 30103) ((-378 . -626) 30087) ((-471 . -302) 29891) ((-244 . -505) 29824) ((-648 . -1011) 29720) ((-243 . -505) 29653) ((-1109 . -302) 29579) ((-797 . -1068) T) ((-777 . -1026) 29563) ((-1219 . -279) 29548) ((-1212 . -279) 29533) ((-1191 . -279) 29381) ((-379 . -1068) T) ((-317 . -1068) T) ((-411 . -1020) T) ((-167 . -1027) T) ((-58 . -302) 29319) ((-777 . -111) 29298) ((-578 . -279) 29283) ((-510 . -302) 29221) ((-507 . -302) 29159) ((-488 . -302) 29097) ((-487 . -302) 29035) ((-411 . -227) 29014) ((-474 . -34) T) ((-977 . -596) 28944) ((-219 . -1068) T) ((-977 . -595) 28926) ((-944 . -595) 28908) ((-944 . -596) 28883) ((-887 . -595) 28865) ((-677 . -145) T) ((-679 . -893) T) ((-679 . -798) T) ((-420 . -595) 28847) ((-1088 . -21) T) ((-128 . -596) NIL) ((-128 . -595) 28829) ((-1088 . -25) T) ((-648 . -370) 28813) ((-116 . -893) T) ((-845 . -225) 28797) ((-77 . -1181) T) ((-126 . -125) 28781) ((-1024 . -34) T) ((-1249 . -1011) 28755) ((-1247 . -1011) 28712) ((-1200 . -1027) T) ((-830 . -1027) T) ((-474 . -769) 28691) ((-348 . -1119) 28670) ((-345 . -1119) 28649) ((-337 . -1119) 28628) ((-474 . -772) 28579) ((-474 . -771) 28558) ((-221 . -34) T) ((-474 . -705) 28468) ((-59 . -481) 28452) ((-557 . -1027) T) ((-1140 . -170) 28343) ((-1093 . -170) 28254) ((-1031 . -1068) T) ((-1055 . -922) 28199) ((-925 . -1068) T) ((-795 . -626) 28150) ((-760 . -922) 28119) ((-692 . -1068) T) ((-758 . -922) 28086) ((-507 . -275) 28070) ((-648 . -873) 28029) ((-473 . -1068) T) ((-446 . -922) 27996) ((-78 . -1181) T) ((-348 . -38) 27961) ((-345 . -38) 27926) ((-337 . -38) 27891) ((-257 . -38) 27740) ((-241 . -38) 27589) ((-883 . -1119) T) ((-603 . -145) 27568) ((-603 . -143) 27547) ((-515 . -595) 27513) ((-117 . -145) T) ((-117 . -143) NIL) ((-407 . -705) T) ((-777 . -1020) T) ((-336 . -444) T) ((-1219 . -975) 27479) ((-1212 . -975) 27445) ((-1191 . -975) 27411) ((-883 . -38) 27376) ((-219 . -696) 27341) ((-312 . -47) 27311) ((-40 . -402) 27283) ((-138 . -595) 27265) ((-972 . -130) T) ((-793 . -1181) T) ((-172 . -893) T) ((-336 . -395) T) ((-511 . -281) 27242) ((-793 . -1011) 27069) ((-45 . -34) T) ((-659 . -101) T) ((-654 . -101) T) ((-640 . -101) T) ((-632 . -21) T) ((-632 . -25) T) ((-1190 . -225) 27039) ((-1070 . -481) 27023) ((-470 . -101) T) ((-653 . -1181) T) ((-239 . -101) 26973) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-844 . -1068) T) ((-1146 . -626) 26898) ((-1031 . -696) 26885) ((-710 . -1026) 26728) ((-1140 . -505) 26675) ((-925 . -696) 26524) ((-1093 . -505) 26476) ((-1238 . -1068) T) ((-1237 . -1068) T) ((-473 . -696) 26325) ((-66 . -595) 26307) ((-710 . -111) 26136) ((-916 . -481) 26120) ((-1239 . -626) 26080) ((-795 . -705) T) ((-1142 . -1026) 25963) ((-1141 . -1026) 25798) ((-1135 . -1026) 25588) ((-1094 . -1026) 25471) ((-976 . -1185) T) ((-1062 . -101) 25449) ((-793 . -370) 25418) ((-976 . -542) T) ((-1142 . -111) 25287) ((-1141 . -111) 25108) ((-1135 . -111) 24877) ((-1094 . -111) 24746) ((-1073 . -1071) 24710) ((-372 . -823) T) ((-1219 . -595) 24692) ((-1212 . -595) 24674) ((-1191 . -595) 24656) ((-1191 . -596) NIL) ((-234 . -281) 24633) ((-40 . -444) T) ((-219 . -170) T) ((-167 . -1068) T) ((-672 . -145) T) ((-672 . -143) NIL) ((-579 . -595) 24615) ((-578 . -595) 24597) ((-871 . -1068) T) ((-816 . -1068) T) ((-786 . -1068) T) ((-747 . -1068) T) ((-636 . -827) 24581) ((-655 . -1068) T) ((-793 . -873) 24513) ((-40 . -395) NIL) ((-1088 . -639) T) ((-844 . -696) 24458) ((-244 . -481) 24442) ((-243 . -481) 24426) ((-691 . -619) 24374) ((-631 . -626) 24348) ((-288 . -34) T) ((-710 . -1020) T) ((-565 . -1234) 24335) ((-509 . -1234) 24312) ((-1200 . -1068) T) ((-1140 . -283) 24223) ((-1093 . -283) 24154) ((-1031 . -170) T) ((-830 . -1068) T) ((-925 . -170) 24065) ((-760 . -1203) 24049) ((-623 . -505) 23982) ((-76 . -595) 23964) ((-710 . -319) 23929) ((-1146 . -705) T) ((-557 . -1068) T) ((-473 . -170) 23840) ((-239 . -302) 23778) ((-128 . -281) 23753) ((-1110 . -1080) T) ((-69 . -595) 23735) ((-1239 . -705) T) ((-1142 . -1020) T) ((-1141 . -1020) T) ((-320 . -101) 23685) ((-1135 . -1020) T) ((-1110 . -23) T) ((-1094 . -1020) T) ((-90 . -1089) 23669) ((-839 . -1080) T) ((-1142 . -227) 23628) ((-1141 . -237) 23607) ((-1141 . -227) 23559) ((-1135 . -227) 23446) ((-1135 . -237) 23425) ((-312 . -873) 23331) ((-839 . -23) T) ((-167 . -696) 23159) ((-400 . -1185) T) ((-1069 . -361) T) ((-997 . -145) T) ((-976 . -356) T) ((-843 . -444) T) ((-916 . -279) 23136) ((-309 . -825) T) ((-306 . -825) NIL) ((-847 . -101) T) ((-691 . -25) T) ((-400 . -542) T) ((-691 . -21) T) ((-347 . -145) 23118) ((-347 . -143) T) ((-1115 . -1068) 23096) ((-445 . -699) T) ((-74 . -595) 23078) ((-114 . -825) T) ((-239 . -275) 23062) ((-234 . -1026) 22959) ((-80 . -595) 22941) ((-714 . -361) 22894) ((-1144 . -806) T) ((-716 . -229) 22878) ((-1127 . -1181) T) ((-139 . -229) 22860) ((-234 . -111) 22750) ((-1200 . -696) 22579) ((-48 . -145) T) ((-844 . -170) T) ((-830 . -696) 22549) ((-476 . -1181) T) ((-925 . -505) 22496) ((-631 . -705) T) ((-557 . -696) 22483) ((-1007 . -1027) T) ((-473 . -505) 22426) ((-916 . -19) 22410) ((-916 . -586) 22387) ((-794 . -596) NIL) ((-794 . -595) 22369) ((-977 . -1026) 22319) ((-406 . -595) 22301) ((-244 . -279) 22278) ((-243 . -279) 22255) ((-479 . -882) NIL) ((-309 . -29) 22225) ((-107 . -1181) T) ((-976 . -1080) T) ((-211 . -882) NIL) ((-887 . -1026) 22177) ((-1048 . -1011) 22073) ((-977 . -111) 22007) ((-716 . -673) 21991) ((-257 . -225) 21975) ((-420 . -1026) 21959) ((-372 . -1027) T) ((-976 . -23) T) ((-887 . -111) 21897) ((-672 . -1169) NIL) ((-479 . -626) 21847) ((-107 . -857) 21829) ((-107 . -859) 21811) ((-672 . -1166) NIL) ((-211 . -626) 21761) ((-352 . -1011) 21745) ((-346 . -1011) 21729) ((-320 . -302) 21667) ((-338 . -1011) 21651) ((-219 . -283) T) ((-420 . -111) 21630) ((-59 . -595) 21562) ((-167 . -170) T) ((-1088 . -825) T) ((-107 . -1011) 21522) ((-865 . -1068) T) ((-812 . -1027) T) ((-805 . -1027) T) ((-672 . -35) NIL) ((-672 . -94) NIL) ((-306 . -965) 21483) ((-181 . -101) T) ((-564 . -444) T) ((-550 . -444) T) ((-486 . -444) T) ((-400 . -356) T) ((-234 . -1020) 21413) ((-1118 . -34) T) ((-469 . -893) T) ((-972 . -619) 21361) ((-244 . -586) 21338) ((-243 . -586) 21315) ((-1048 . -370) 21299) ((-844 . -505) 21207) ((-234 . -227) 21159) ((-1126 . -1181) T) ((-802 . -595) 21141) ((-1250 . -1080) T) ((-1242 . -595) 21123) ((-1200 . -170) 21014) ((-107 . -370) 20996) ((-107 . -331) 20978) ((-1031 . -283) T) ((-925 . -283) 20909) ((-777 . -361) 20888) ((-625 . -1181) T) ((-612 . -1181) T) ((-473 . -283) 20819) ((-557 . -170) T) ((-320 . -275) 20803) ((-1250 . -23) T) ((-1175 . -101) T) ((-1162 . -1068) T) ((-1056 . -1068) T) ((-1044 . -1068) T) ((-82 . -595) 20785) ((-690 . -101) T) ((-348 . -342) 20764) ((-590 . -1068) T) ((-345 . -342) 20743) ((-337 . -342) 20722) ((-467 . -1068) T) ((-1154 . -223) 20672) ((-257 . -246) 20634) ((-1110 . -130) T) ((-590 . -592) 20610) ((-1048 . -873) 20543) ((-977 . -1020) T) ((-887 . -1020) T) ((-467 . -592) 20522) ((-1135 . -770) NIL) ((-1135 . -773) NIL) ((-1070 . -596) 20483) ((-471 . -223) 20433) ((-1070 . -595) 20415) ((-977 . -237) T) ((-977 . -227) T) ((-420 . -1020) T) ((-931 . -1068) 20365) ((-887 . -237) T) ((-839 . -130) T) ((-677 . -444) T) ((-818 . -1080) 20344) ((-107 . -873) NIL) ((-1175 . -277) 20310) ((-845 . -823) 20289) ((-1081 . -1181) T) ((-878 . -705) T) ((-167 . -505) 20201) ((-972 . -25) T) ((-878 . -465) T) ((-400 . -1080) T) ((-479 . -772) T) ((-479 . -769) T) ((-883 . -342) T) ((-479 . -705) T) ((-211 . -772) T) ((-211 . -769) T) ((-972 . -21) T) ((-211 . -705) T) ((-818 . -23) 20153) ((-312 . -300) 20132) ((-1008 . -229) 20078) ((-400 . -23) T) ((-916 . -596) 20039) ((-916 . -595) 19951) ((-623 . -481) 19935) ((-45 . -983) 19885) ((-598 . -940) T) ((-482 . -101) T) ((-324 . -595) 19867) ((-1081 . -1011) 19694) ((-576 . -629) 19676) ((-576 . -366) 19658) ((-336 . -1234) 19635) ((-1000 . -1181) T) ((-844 . -283) T) ((-1200 . -505) 19582) ((-468 . -1181) T) ((-455 . -1181) T) ((-569 . -101) T) ((-1140 . -279) 19509) ((-603 . -444) 19488) ((-973 . -968) 19472) ((-1242 . -375) 19444) ((-508 . -1068) T) ((-117 . -444) T) ((-1161 . -101) T) ((-1060 . -1068) 19422) ((-1007 . -1068) T) ((-1083 . -92) T) ((-866 . -825) T) ((-344 . -1185) T) ((-1219 . -1026) 19305) ((-1081 . -370) 19274) ((-1212 . -1026) 19109) ((-1191 . -1026) 18899) ((-1219 . -111) 18768) ((-1212 . -111) 18589) ((-1191 . -111) 18358) ((-1175 . -302) 18345) ((-344 . -542) T) ((-358 . -595) 18327) ((-282 . -300) T) ((-579 . -1026) 18300) ((-578 . -1026) 18183) ((-354 . -1068) T) ((-315 . -1068) T) ((-244 . -595) 18144) ((-243 . -595) 18105) ((-976 . -130) T) ((-109 . -595) 18087) ((-615 . -23) T) ((-672 . -402) 18054) ((-589 . -23) T) ((-636 . -101) T) ((-579 . -111) 18025) ((-578 . -111) 17894) ((-372 . -1068) T) ((-329 . -101) T) ((-167 . -283) 17805) ((-1190 . -823) 17758) ((-693 . -1027) T) ((-1115 . -505) 17691) ((-1081 . -873) 17623) ((-812 . -1068) T) ((-805 . -1068) T) ((-803 . -1068) T) ((-96 . -101) T) ((-142 . -825) T) ((-594 . -857) 17607) ((-110 . -1181) T) ((-1055 . -101) T) ((-1032 . -34) T) ((-760 . -101) T) ((-758 . -101) T) ((-453 . -101) T) ((-446 . -101) T) ((-234 . -773) 17558) ((-234 . -770) 17509) ((-627 . -101) T) ((-1200 . -283) 17420) ((-642 . -614) 17404) ((-623 . -279) 17381) ((-1007 . -696) 17365) ((-557 . -283) T) ((-936 . -626) 17290) ((-1250 . -130) T) ((-714 . -626) 17250) ((-694 . -626) 17237) ((-268 . -101) T) ((-445 . -626) 17167) ((-50 . -101) T) ((-565 . -101) T) ((-509 . -101) T) ((-1219 . -1020) T) ((-1212 . -1020) T) ((-1191 . -1020) T) ((-1219 . -227) 17126) ((-315 . -696) 17108) ((-1212 . -237) 17087) ((-1212 . -227) 17039) ((-1191 . -227) 16926) ((-1191 . -237) 16905) ((-1175 . -38) 16802) ((-977 . -773) T) ((-579 . -1020) T) ((-578 . -1020) T) ((-977 . -770) T) ((-944 . -773) T) ((-944 . -770) T) ((-845 . -1027) T) ((-843 . -842) 16786) ((-108 . -595) 16768) ((-672 . -444) T) ((-372 . -696) 16733) ((-411 . -626) 16707) ((-691 . -825) 16686) ((-690 . -38) 16651) ((-578 . -227) 16610) ((-40 . -703) 16582) ((-344 . -322) 16559) ((-344 . -356) T) ((-1048 . -300) 16510) ((-287 . -1080) 16391) ((-1074 . -1181) T) ((-169 . -101) T) ((-1194 . -595) 16358) ((-818 . -130) 16310) ((-623 . -1215) 16294) ((-812 . -696) 16264) ((-805 . -696) 16234) ((-474 . -1181) T) ((-352 . -300) T) ((-346 . -300) T) ((-338 . -300) T) ((-623 . -586) 16211) ((-400 . -130) T) ((-511 . -644) 16195) ((-107 . -300) T) ((-287 . -23) 16078) ((-511 . -629) 16062) ((-672 . -395) NIL) ((-511 . -366) 16046) ((-284 . -595) 16028) ((-90 . -1068) 16006) ((-107 . -995) T) ((-550 . -141) T) ((-1227 . -149) 15990) ((-474 . -1011) 15817) ((-1213 . -143) 15778) ((-1213 . -145) 15739) ((-1024 . -1181) T) ((-966 . -595) 15721) ((-836 . -595) 15703) ((-794 . -1026) 15546) ((-1238 . -92) T) ((-1064 . -1068) T) ((-1058 . -1068) T) ((-1055 . -302) 15533) ((-1042 . -1068) T) ((-221 . -1181) T) ((-1035 . -1068) T) ((-1009 . -1068) T) ((-992 . -1068) T) ((-760 . -302) 15520) ((-758 . -302) 15507) ((-1237 . -92) T) ((-794 . -111) 15336) ((-1140 . -596) NIL) ((-606 . -1068) T) ((-1140 . -595) 15318) ((-520 . -171) T) ((-446 . -302) 15305) ((-475 . -1068) T) ((-1093 . -595) 15287) ((-1093 . -596) 15035) ((-1007 . -170) T) ((-212 . -1068) T) ((-829 . -595) 15017) ((-916 . -281) 14994) ((-590 . -505) 14777) ((-796 . -1011) 14761) ((-467 . -505) 14553) ((-936 . -705) T) ((-714 . -705) T) ((-694 . -705) T) ((-344 . -1080) T) ((-1147 . -595) 14535) ((-217 . -101) T) ((-474 . -370) 14504) ((-506 . -1068) T) ((-501 . -1068) T) ((-499 . -1068) T) ((-777 . -626) 14478) ((-997 . -444) T) ((-931 . -505) 14411) ((-344 . -23) T) ((-615 . -130) T) ((-589 . -130) T) ((-347 . -444) T) ((-234 . -361) 14390) ((-372 . -170) T) ((-1211 . -1027) T) ((-1190 . -1027) T) ((-219 . -975) T) ((-677 . -380) T) ((-411 . -705) T) ((-679 . -1185) T) ((-1110 . -619) 14338) ((-564 . -842) 14322) ((-1127 . -1157) 14298) ((-679 . -542) T) ((-126 . -1068) 14276) ((-1242 . -1026) 14260) ((-693 . -1068) T) ((-474 . -873) 14192) ((-636 . -38) 14162) ((-347 . -395) T) ((-309 . -145) 14141) ((-309 . -143) 14120) ((-116 . -542) T) ((-306 . -145) 14076) ((-306 . -143) 14032) ((-48 . -444) T) ((-160 . -1068) T) ((-155 . -1068) T) ((-1127 . -106) 13979) ((-760 . -1119) 13957) ((-667 . -34) T) ((-1242 . -111) 13936) ((-536 . -34) T) ((-476 . -106) 13920) ((-244 . -281) 13897) ((-243 . -281) 13874) ((-844 . -279) 13825) ((-45 . -1181) T) ((-794 . -1020) T) ((-1146 . -47) 13802) ((-794 . -319) 13764) ((-1055 . -38) 13613) ((-794 . -227) 13592) ((-760 . -38) 13421) ((-758 . -38) 13270) ((-128 . -629) 13252) ((-446 . -38) 13101) ((-128 . -366) 13083) ((-1083 . -595) 13049) ((-1086 . -101) T) ((-623 . -596) 13010) ((-623 . -595) 12922) ((-565 . -1119) T) ((-509 . -1119) T) ((-1115 . -481) 12906) ((-1167 . -1068) 12884) ((-1110 . -25) T) ((-1110 . -21) T) ((-466 . -1027) T) ((-1191 . -770) NIL) ((-1191 . -773) NIL) ((-972 . -825) 12863) ((-797 . -595) 12845) ((-839 . -21) T) ((-839 . -25) T) ((-777 . -705) T) ((-172 . -1185) T) ((-565 . -38) 12810) ((-509 . -38) 12775) ((-379 . -595) 12757) ((-317 . -595) 12739) ((-167 . -279) 12697) ((-62 . -1181) T) ((-112 . -101) T) ((-845 . -1068) T) ((-172 . -542) T) ((-693 . -696) 12667) ((-287 . -130) 12550) ((-219 . -595) 12532) ((-219 . -596) 12462) ((-976 . -619) 12401) ((-1242 . -1020) T) ((-1088 . -145) T) ((-612 . -1157) 12376) ((-710 . -882) 12355) ((-576 . -34) T) ((-625 . -106) 12339) ((-612 . -106) 12285) ((-1200 . -279) 12212) ((-710 . -626) 12137) ((-288 . -1181) T) ((-1146 . -1011) 12033) ((-520 . -518) T) ((-1135 . -882) NIL) ((-1031 . -596) 11948) ((-1031 . -595) 11930) ((-925 . -595) 11912) ((-336 . -101) T) ((-244 . -1026) 11809) ((-243 . -1026) 11706) ((-387 . -101) T) ((-31 . -1068) T) ((-925 . -596) 11567) ((-692 . -595) 11549) ((-1240 . -1174) 11518) ((-473 . -595) 11500) ((-473 . -596) 11361) ((-241 . -404) 11345) ((-257 . -404) 11329) ((-244 . -111) 11219) ((-243 . -111) 11109) ((-1142 . -626) 11034) ((-1141 . -626) 10931) ((-1135 . -626) 10783) ((-1094 . -626) 10708) ((-344 . -130) T) ((-81 . -433) T) ((-81 . -388) T) ((-976 . -25) T) ((-976 . -21) T) ((-846 . -1068) 10659) ((-845 . -696) 10611) ((-372 . -283) T) ((-167 . -975) 10563) ((-672 . -380) T) ((-972 . -970) 10547) ((-679 . -1080) T) ((-672 . -164) 10529) ((-1211 . -1068) T) ((-1190 . -1068) T) ((-309 . -1166) 10508) ((-309 . -1169) 10487) ((-1132 . -101) T) ((-309 . -932) 10466) ((-133 . -1080) T) ((-116 . -1080) T) ((-584 . -1225) 10450) ((-679 . -23) T) ((-584 . -1068) 10400) ((-90 . -505) 10333) ((-172 . -356) T) ((-309 . -94) 10312) ((-309 . -35) 10291) ((-590 . -481) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-939 . -101) T) ((-697 . -1068) T) ((-467 . -481) 10162) ((-400 . -619) 10110) ((-631 . -1011) 10006) ((-931 . -481) 9990) ((-348 . -1027) T) ((-345 . -1027) T) ((-337 . -1027) T) ((-257 . -1027) T) ((-241 . -1027) T) ((-844 . -596) NIL) ((-844 . -595) 9972) ((-1250 . -21) T) ((-1238 . -595) 9938) ((-1237 . -595) 9904) ((-557 . -975) T) ((-710 . -705) T) ((-1250 . -25) T) ((-244 . -1020) 9834) ((-243 . -1020) 9764) ((-71 . -1181) T) ((-244 . -227) 9716) ((-243 . -227) 9668) ((-40 . -101) T) ((-883 . -1027) T) ((-1149 . -101) T) ((-1142 . -705) T) ((-1141 . -705) T) ((-1135 . -705) T) ((-1135 . -769) NIL) ((-1135 . -772) NIL) ((-927 . -101) T) ((-894 . -101) T) ((-1094 . -705) T) ((-749 . -101) T) ((-650 . -101) T) ((-466 . -1068) T) ((-332 . -1080) T) ((-172 . -1080) T) ((-312 . -893) 9647) ((-1211 . -696) 9488) ((-845 . -170) T) ((-1190 . -696) 9302) ((-818 . -21) 9254) ((-818 . -25) 9206) ((-239 . -1117) 9190) ((-126 . -505) 9123) ((-400 . -25) T) ((-400 . -21) T) ((-332 . -23) T) ((-167 . -596) 8891) ((-167 . -595) 8873) ((-172 . -23) T) ((-623 . -281) 8850) ((-511 . -34) T) ((-871 . -595) 8832) ((-88 . -1181) T) ((-816 . -595) 8814) ((-786 . -595) 8796) ((-747 . -595) 8778) ((-655 . -595) 8760) ((-234 . -626) 8608) ((-1144 . -1068) T) ((-1140 . -1026) 8431) ((-1118 . -1181) T) ((-1093 . -1026) 8274) ((-829 . -1026) 8258) ((-1140 . -111) 8067) ((-1093 . -111) 7896) ((-829 . -111) 7875) ((-1200 . -596) NIL) ((-1200 . -595) 7857) ((-336 . -1119) T) ((-830 . -595) 7839) ((-1044 . -279) 7818) ((-79 . -1181) T) ((-977 . -882) NIL) ((-590 . -279) 7794) ((-1167 . -505) 7727) ((-479 . -1181) T) ((-557 . -595) 7709) ((-467 . -279) 7688) ((-508 . -92) T) ((-211 . -1181) T) ((-1055 . -225) 7672) ((-282 . -893) T) ((-795 . -300) 7651) ((-843 . -101) T) ((-760 . -225) 7635) ((-977 . -626) 7585) ((-931 . -279) 7562) ((-887 . -626) 7514) ((-615 . -21) T) ((-615 . -25) T) ((-589 . -21) T) ((-336 . -38) 7479) ((-672 . -703) 7446) ((-479 . -857) 7428) ((-479 . -859) 7410) ((-466 . -696) 7251) ((-211 . -857) 7233) ((-63 . -1181) T) ((-211 . -859) 7215) ((-589 . -25) T) ((-420 . -626) 7189) ((-479 . -1011) 7149) ((-845 . -505) 7061) ((-211 . -1011) 7021) ((-234 . -34) T) ((-973 . -1068) 6999) ((-1211 . -170) 6930) ((-1190 . -170) 6861) ((-691 . -143) 6840) ((-691 . -145) 6819) ((-679 . -130) T) ((-135 . -457) 6796) ((-636 . -634) 6780) ((-1115 . -595) 6712) ((-116 . -130) T) ((-469 . -1185) T) ((-590 . -586) 6688) ((-467 . -586) 6667) ((-329 . -328) 6636) ((-526 . -1068) T) ((-469 . -542) T) ((-1140 . -1020) T) ((-1093 . -1020) T) ((-829 . -1020) T) ((-234 . -769) 6615) ((-234 . -772) 6566) ((-234 . -771) 6545) ((-1140 . -319) 6522) ((-234 . -705) 6432) ((-931 . -19) 6416) ((-479 . -370) 6398) ((-479 . -331) 6380) ((-1093 . -319) 6352) ((-347 . -1234) 6329) ((-211 . -370) 6311) ((-211 . -331) 6293) ((-931 . -586) 6270) ((-1140 . -227) T) ((-642 . -1068) T) ((-624 . -1068) T) ((-1223 . -1068) T) ((-1154 . -1068) T) ((-1055 . -246) 6207) ((-348 . -1068) T) ((-345 . -1068) T) ((-337 . -1068) T) ((-257 . -1068) T) ((-241 . -1068) T) ((-83 . -1181) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1154 . -592) 6142) ((-471 . -1068) T) ((-1109 . -1068) T) ((-471 . -592) 6121) ((-244 . -773) 6072) ((-244 . -770) 6023) ((-243 . -773) 5974) ((-40 . -1119) NIL) ((-243 . -770) 5925) ((-1048 . -893) 5876) ((-977 . -772) T) ((-977 . -769) T) ((-977 . -705) T) ((-944 . -772) T) ((-887 . -705) T) ((-90 . -481) 5860) ((-479 . -873) NIL) ((-883 . -1068) T) ((-219 . -1026) 5825) ((-845 . -283) T) ((-211 . -873) NIL) ((-811 . -1080) 5804) ((-58 . -1068) 5754) ((-510 . -1068) 5732) ((-507 . -1068) 5682) ((-488 . -1068) 5660) ((-487 . -1068) 5610) ((-564 . -101) T) ((-550 . -101) T) ((-486 . -101) T) ((-466 . -170) 5541) ((-352 . -893) T) ((-346 . -893) T) ((-338 . -893) T) ((-219 . -111) 5497) ((-811 . -23) 5449) ((-420 . -705) T) ((-107 . -893) T) ((-40 . -38) 5394) ((-107 . -798) T) ((-565 . -342) T) ((-509 . -342) T) ((-1190 . -505) 5254) ((-309 . -444) 5233) ((-306 . -444) T) ((-812 . -279) 5212) ((-332 . -130) T) ((-172 . -130) T) ((-287 . -25) 5076) ((-287 . -21) 4959) ((-45 . -1157) 4938) ((-65 . -595) 4920) ((-865 . -595) 4902) ((-584 . -505) 4835) ((-45 . -106) 4785) ((-1070 . -418) 4769) ((-1070 . -361) 4748) ((-1032 . -1181) T) ((-1031 . -1026) 4735) ((-925 . -1026) 4578) ((-1228 . -101) T) ((-1227 . -101) 4528) ((-473 . -1026) 4371) ((-642 . -696) 4355) ((-1031 . -111) 4340) ((-925 . -111) 4169) ((-469 . -356) T) ((-348 . -696) 4121) ((-345 . -696) 4073) ((-337 . -696) 4025) ((-257 . -696) 3874) ((-241 . -696) 3723) ((-1219 . -626) 3648) ((-1191 . -882) NIL) ((-1064 . -92) T) ((-1058 . -92) T) ((-916 . -629) 3632) ((-1042 . -92) T) ((-473 . -111) 3461) ((-1035 . -92) T) ((-1009 . -92) T) ((-916 . -366) 3445) ((-242 . -101) T) ((-992 . -92) T) ((-73 . -595) 3427) ((-936 . -47) 3406) ((-601 . -1080) T) ((-1 . -1068) T) ((-689 . -101) T) ((-677 . -101) T) ((-1212 . -626) 3303) ((-606 . -92) T) ((-1162 . -595) 3285) ((-1056 . -595) 3267) ((-126 . -481) 3251) ((-475 . -92) T) ((-1044 . -595) 3233) ((-383 . -23) T) ((-86 . -1181) T) ((-212 . -92) T) ((-1191 . -626) 3085) ((-883 . -696) 3050) ((-601 . -23) T) ((-590 . -595) 3032) ((-590 . -596) NIL) ((-467 . -596) NIL) ((-467 . -595) 3014) ((-502 . -1068) T) ((-498 . -1068) T) ((-344 . -25) T) ((-344 . -21) T) ((-127 . -302) 2952) ((-121 . -302) 2890) ((-579 . -626) 2877) ((-219 . -1020) T) ((-578 . -626) 2802) ((-372 . -975) T) ((-219 . -237) T) ((-219 . -227) T) ((-931 . -596) 2763) ((-931 . -595) 2675) ((-843 . -38) 2662) ((-1211 . -283) 2613) ((-1190 . -283) 2564) ((-1088 . -444) T) ((-493 . -825) T) ((-309 . -1107) 2543) ((-972 . -145) 2522) ((-972 . -143) 2501) ((-486 . -302) 2488) ((-288 . -1157) 2467) ((-469 . -1080) T) ((-844 . -1026) 2412) ((-603 . -101) T) ((-1167 . -481) 2396) ((-244 . -361) 2375) ((-243 . -361) 2354) ((-288 . -106) 2304) ((-1031 . -1020) T) ((-117 . -101) T) ((-925 . -1020) T) ((-844 . -111) 2233) ((-469 . -23) T) ((-473 . -1020) T) ((-1031 . -227) T) ((-925 . -319) 2202) ((-473 . -319) 2159) ((-348 . -170) T) ((-345 . -170) T) ((-337 . -170) T) ((-257 . -170) 2070) ((-241 . -170) 1981) ((-936 . -1011) 1877) ((-714 . -1011) 1848) ((-508 . -595) 1814) ((-1073 . -101) T) ((-1060 . -595) 1781) ((-1007 . -595) 1763) ((-1219 . -705) T) ((-1212 . -705) T) ((-1191 . -769) NIL) ((-167 . -1026) 1673) ((-1191 . -772) NIL) ((-883 . -170) T) ((-1191 . -705) T) ((-1240 . -149) 1657) ((-976 . -335) 1631) ((-973 . -505) 1564) ((-818 . -825) 1543) ((-550 . -1119) T) ((-466 . -283) 1494) ((-579 . -705) T) ((-354 . -595) 1476) ((-315 . -595) 1458) ((-411 . -1011) 1354) ((-578 . -705) T) ((-400 . -825) 1305) ((-167 . -111) 1201) ((-811 . -130) 1153) ((-716 . -149) 1137) ((-1227 . -302) 1075) ((-479 . -300) T) ((-372 . -595) 1042) ((-511 . -983) 1026) ((-372 . -596) 940) ((-211 . -300) T) ((-139 . -149) 922) ((-693 . -279) 901) ((-479 . -995) T) ((-564 . -38) 888) ((-550 . -38) 875) ((-486 . -38) 840) ((-211 . -995) T) ((-844 . -1020) T) ((-812 . -595) 822) ((-805 . -595) 804) ((-803 . -595) 786) ((-794 . -882) 765) ((-1251 . -1080) T) ((-1200 . -1026) 588) ((-830 . -1026) 572) ((-844 . -237) T) ((-844 . -227) NIL) ((-667 . -1181) T) ((-1251 . -23) T) ((-794 . -626) 497) ((-536 . -1181) T) ((-411 . -331) 481) ((-557 . -1026) 468) ((-1200 . -111) 277) ((-679 . -619) 259) ((-830 . -111) 238) ((-374 . -23) T) ((-1154 . -505) 30) ((-640 . -1068) T) ((-659 . -1068) T) ((-654 . -1068) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 86f2c6fd..8d4faa5e 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,993 +1,1124 @@ -(30 . 3431436951) -(4339 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3431822559) +(4345 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| - |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| - |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| - |AlgebraicallyClosedField&| |AlgebraicallyClosedField| - |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| - |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&| - |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| - |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| + |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| + |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| + |AbelianSemiGroup| |AlgebraicallyClosedField&| + |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| + |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst| + |AlgebraicFunction| |Aggregate&| |Aggregate| + |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| + |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| - |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| - |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| - |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| + |AlgebraGivenByStructuralConstants| |AssociationList| + |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| + |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| + |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| - |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray| - |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| - |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| - |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| - |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| - |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| - |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons| - |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| - |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| - |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |BinaryFile| |Bits| - |BiModule| |Boolean| |BasicOperator| |BasicOperatorFunctions1| - |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| - |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| - |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| - |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |Byte| |ByteArray| - |CancellationAbelianMonoid| |CachableSet| |CapsuleAst| |CardinalNumber| - |CartesianTensor| |CartesianTensorFunctions2| |CaseAst| |CategoryAst| + |OneDimensionalArrayFunctions2| |OneDimensionalArray| + |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| + |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| + |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| + |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| + |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| + |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| + |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| + |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| + |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| + |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean| + |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| + |BalancedPAdicInteger| |BalancedPAdicRational| + |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| + |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| + |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| + |BinaryTree| |ByteArray| |Byte| |CancellationAbelianMonoid| + |CachableSet| |CapsuleAst| |CardinalNumber| + |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst| |Category| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| - |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| - |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| - |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst| - |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| - |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| - |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory| - |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex| - |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| - |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| + |CharacteristicPolynomialPackage| |CharacteristicZero| + |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| + |Collection&| |Collection| |CliffordAlgebra| + |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage| + |ColonAst| |Color| |CombinatorialFunction| + |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst| + |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| + |ComplexCategory&| |ComplexCategory| |ComplexFactorization| + |ComplexFunctions2| |Complex| |ComplexPattern| + |SubSpaceComponentProperty| |CommutativeRing| |Conduit| + |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| - |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools| - |ConstructorCall| |ComplexTrigonometricManipulations| - |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| - |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| - |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| - |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| - |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| - |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| - |d03fafAnnaType| |DataBuffer| |Database| |DoubleResultantPackage| - |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst| - |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| - |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| - |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| - |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| + |CRApackage| |CoerceAst| |ComplexRootFindingPackage| + |CyclicStreamTools| |ConstructorCall| + |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| + |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| + |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| + |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| + |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| + |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| + |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database| + |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| + |DefinitionAst| |ElementaryFunctionDefiniteIntegration| + |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| + |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| + |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| + |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| - |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| - |DirectProductCategory| |DirectProduct| |DirectProductFunctions2| - |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| - |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| + |DictionaryOperations| |DiophantineSolutionPackage| + |DirectProductCategory&| |DirectProductCategory| + |DirectProductFunctions2| |DirectProduct| |DisplayPackage| + |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| + |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| - |DequeueAggregate| |TopLevelDrawFunctions| - |TopLevelDrawFunctionsForCompiledFunctions| - |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| - |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| - |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial| + |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| + |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| + |DrawNumericHack| |TopLevelDrawFunctions| + |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| + |DrawOptionFunctions1| |DrawOption| + |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| - |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| + |ExtAlgBasis| |ElementaryFunction| + |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| - |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| - |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment| - |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| - |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| - |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| - |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| - |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| - |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| - |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2| - |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| - |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| - |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| - |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| - |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| - |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| - |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2| - |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| - |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| - |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| - |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| + |EllipticFunctionsUnivariateTaylorSeries| |Eltable| + |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| + |EntireRing| |Environment| |EigenPackage| |EquationFunctions2| + |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| + |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| + |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| + |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| + |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| + |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit| + |ExponentialExpansion| |ExpressionFunctions2| + |ExpressionToUnivariatePowerSeries| |Expression| + |ExpressionSpaceODESolver| |ExpressionTubePlot| + |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| + |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| + |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| + |FiniteAbelianMonoidRing| |FlexibleArray| + |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| + |FortranCode| |FourierComponent| |FortranCodePackage1| + |FiniteDivisorFunctions2| |FiniteDivisorCategory&| + |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| + |FullyEvalableOver| |FortranExpression| + |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| + |FunctionFieldCategory| |FiniteFieldCyclicGroup| + |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| - |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| - |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| - |FiniteFieldNormalBasisExtensionByPolynomial| - |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial| - |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| + |FiniteFieldHomomorphisms| |FiniteFieldCategory&| + |FiniteFieldCategory| |FunctionFieldIntegralBasis| + |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| + |FiniteFieldNormalBasisExtension| |FiniteField| + |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| + |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| - |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| - |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| - |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| - |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| - |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| - |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| - |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| - |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid| - |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| - |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat| - |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory| - |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion| - |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| - |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| - |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| - |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| - |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| + |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| + |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| + |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| + |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| + |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| + |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| + |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| + |FreeModuleCat| |FortranMatrixCategory| + |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| + |FortranMachineTypeCategory| |FileName| |FileNameCategory| + |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| + |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| + |FortranFunctionCategory| |FortranPackage| |FortranProgram| + |FullPartialFractionExpansion| |FullyPatternMatchable| + |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| + |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| + |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| + |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| + |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| - |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| - |FunctionSpace| |FunctionSpaceFunctions2| - |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| - |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2| - |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| + |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| + |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| + |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| + |FiniteSetAggregate&| |FiniteSetAggregate| + |FunctionSpaceComplexIntegration| |FourierSeries| + |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| - |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| - |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| - |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| - |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| - |GaussianFactorizationPackage| |GroebnerPackage| + |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| + |FortranType| |FunctionCalled| |FortranVectorCategory| + |FortranVectorFunctionCategory| |GaloisGroupFactorizer| + |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| + |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| - |GroebnerInternalPackage| |GcdDomain&| |GcdDomain| - |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| - |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| + |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| + |GenericNonAssociativeAlgebra| + |GeneralDistributedMultivariatePolynomial| |GenExEuclid| + |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| - |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| - |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| - |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| - |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| - |Pi| |HasAst| |HashTable| |HallBasis| - |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| - |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| + |GeneralModulePolynomial| |GosperSummationMethod| + |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| + |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| + |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| + |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable| + |HallBasis| |HomogeneousDistributedMultivariatePolynomial| + |HomogeneousDirectProduct| |HeadAst| |Heap| + |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |Hostname| - |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| - |InnerAlgebraicNumber| |IndexedOneDimensionalArray| + |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| + |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| - |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| - |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| - |Identifier| |IndexedDirectProductAbelianGroup| - |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| - |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| - |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| - |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField| - |InnerIndexedTwoDimensionalArray| |IndexedList| - |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| - |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit| - |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| - |InnerNumericEigenPackage| |Infinity| |InputForm| |InputFormFunctions1| - |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| - |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| - |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| - |IntegerNumberSystem| |Integer| |InnerTable| |AlgebraicIntegration| - |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| - |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| + |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| + |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| + |IdealDecompositionPackage| |Identifier| + |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| + |IndexedDirectProductCategory| + |IndexedDirectProductOrderedAbelianMonoid| + |IndexedDirectProductOrderedAbelianMonoidSup| + |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| + |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| + |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| + |InnerMatrixLinearAlgebraFunctions| + |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| + |InAst| |InputByteConduit&| |InputByteConduit| + |InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps| + |IndexedExponents| |InnerNumericEigenPackage| |Infinity| + |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| + |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| + |InfiniteProductFiniteField| |InfiniteProductPrimeField| + |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| + |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| + |IntervalCategory| |IntegralDomain&| |IntegralDomain| + |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| - |TranscendentalHermiteIntegration| |AnnaNumericalIntegrationPackage| - |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| - |IntegerRetractions| |RationalFunctionIntegration| |Interval| + |TranscendentalHermiteIntegration| |Integer| + |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| + |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| + |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| - |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit| - |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| - |IntegrationResult| |IntegrationResultFunctions2| - |IntegrationResultToFunction| |IntegerRoots| |IrredPolyOverFiniteField| - |IntegrationResultRFToFunction| |IrrRepSymNatPackage| - |InternalRationalUnivariateRepresentationPackage| |IsAst| |IndexedString| - |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| - |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| - |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| - |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| - |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| - |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo| - |Kovacic| |KleeneTrivalentLogic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| - |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| - |LeadingCoefDetermination| |LetAst| |LieExponentials| |LexTriangularPackage| - |LiouvillianFunction| |LiouvillianFunctionCategory| |LinGroebnerPackage| - |Library| |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| - |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| - |LinearlyExplicitRingOver| |List| |ListFunctions2| |ListToMap| - |ListFunctions3| |Literal| |ListMultiDictionary| |LeftModule| |ListMonoidOps| - |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver| - |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| + |TranscendentalIntegration| |InverseLaplaceTransform| + |InputOutputByteConduit| |IOMode| |InnerPAdicInteger| + |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| + |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| + |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| + |IrrRepSymNatPackage| + |InternalRationalUnivariateRepresentationPackage| |IsAst| + |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| + |InnerTaylorSeries| |InfiniteTupleFunctions2| + |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| + |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| + |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| + |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| + |CoercibleTo| |ConvertibleTo| |Kovacic| |KleeneTrivalentLogic| + |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| + |LaurentPolynomial| |LazardSetSolvingPackage| + |LeadingCoefDetermination| |LetAst| |LieExponentials| + |LexTriangularPackage| |LiouvillianFunctionCategory| + |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| + |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| + |RationalFunctionLimitPackage| |LinearDependence| + |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| + |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule| + |ListMonoidOps| |LinearAggregate&| |LinearAggregate| + |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| - |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| + |LinearOrdinaryDifferentialOperator| + |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| - |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| - |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord| - |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| - |MacroAst| |Magma| |MappingPackageInternalHacks1| - |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst| - |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&| - |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| + |ListAggregate| |LinearSystemMatrixPackage1| + |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| + |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&| + |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma| + |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| + |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1| + |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| + |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |Maybe| - |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| - |MultiDictionary| |ModularDistinctDegreeFactorizer| - |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| - |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| - |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| - |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| - |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| - |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| - |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| - |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| - |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| - |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| - |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| - |MultisetAggregate| |MoreSystemCommands| |MergeThing| - |MultivariateTaylorSeriesCategory| |MultivariateFactorize| - |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| + |MultiVariableCalculusFunctions| |MatrixCommonDenominator| + |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| + |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| + |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| + |MakeBinaryCompiledFunction| |MakeCachableSet| + |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| + |MakeUnaryCompiledFunction| |MultivariateLifting| + |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| + |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| + |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| + |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| + |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| + |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| + |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| + |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| + |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| + |MultivariateFactorize| |MultivariateSquareFree| + |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| - |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| - |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| - |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| - |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| - |NumericComplexEigenPackage| |NumericContinuedFraction| - |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| - |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| - |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| - |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| - |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| - |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| - |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| - |Numeric| |NumberFormats| |NumericalIntegrationCategory| + |NagFittingPackage| |NagOptimisationPackage| + |NagMatrixOperationsPackage| |NagEigenPackage| + |NagLinearEquationSolvingPackage| |NagLapack| + |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| + |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| + |NonAssociativeRing| |NumericComplexEigenPackage| + |NumericContinuedFraction| |NonCommutativeOperatorDivision| + |NumberFieldIntegralBasis| |NumericalIntegrationProblem| + |NonLinearSolvePackage| |NonNegativeInteger| + |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| + |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| + |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| + |NewSparseUnivariatePolynomialFunctions2| + |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| + |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| + |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| - |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&| - |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion| - |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| - |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| - |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| - |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| - |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| - |OrderedDirectProduct| |OrderlyDifferentialPolynomial| - |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| - |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice| - |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath| - |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate| - |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2| - |Operator| |OperationsQuery| |NumericalOptimizationCategory| + |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| + |OrderedCancellationAbelianMonoid| |OctonionCategory&| + |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| + |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| + |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| + |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| + |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| + |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| + |SystemODESolver| |ODETools| |OrderedDirectProduct| + |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| + |OrderlyDifferentialVariable| |OrderedFreeMonoid| + |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| + |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| + |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| + |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| + |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| + |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| - |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| - |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| - |OrderedSet| |UnivariateSkewPolynomialCategory&| - |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| - |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| - |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts| - |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputForm| - |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| - |PadeApproximantPackage| |PAdicInteger| |PAdicIntegerCategory| |PAdicRational| - |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression| - |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| - |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser| - |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| - |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| - |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern| - |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| - |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| - |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| - |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| - |PendantTree| |Permutation| |Permanent| |PermutationCategory| - |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion| + |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| + |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| + |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| + |UnivariateSkewPolynomialCategory| + |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| + |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| + |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&| + |OutputByteConduit| |OutputForm| |OutputPackage| |OrderedVariableList| + |OrdinaryWeightedPolynomials| |PadeApproximants| + |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| + |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette| + |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| + |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| + |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2| + |ParametricSurface| |PartitionsAndPermutations| |Patternable| + |PatternMatchListResult| |PatternMatchable| |PatternMatch| + |PatternMatchResultFunctions2| |PatternMatchResult| + |PatternFunctions1| |PatternFunctions2| |Pattern| + |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| + |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| + |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| + |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| + |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| + |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| - |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| - |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| - |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions| - |PrincipalIdealDomain| |PolynomialInterpolation| - |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot| - |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions| - |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| + |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| + |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| + |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| + |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| + |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| + |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| + |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| + |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| - |AttachPredicates| |FunctionSpaceAttachPredicates| - |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| - |PolynomialNumberTheoryFunctions| |Point| |PolToPol| - |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2| - |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| - |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| - |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing| - |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2| - |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| - |PrintPackage| |Product| |Property| |PropositionalFormula| - |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence| - |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| - |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| - |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| - |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| - |PartialTranscendentalFunctions| |PushVariables| - |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| - |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&| - |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm| - |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&| - |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| - |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| - |RandomNumberSource| |RationalFactorize| |RationalRetractions| - |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| - |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| - |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| - |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage| - |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder| - |Reference| |RegularTriangularSet| |RadicalEigenPackage| - |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| + |FunctionSpaceAttachPredicates| |AttachPredicates| + |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| + |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| + |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| + |PolynomialToUnivariatePolynomial| |PolynomialCategory&| + |PolynomialCategory| |PolynomialCategoryQuotientFunctions| + |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| + |PortNumber| |PlottablePlaneCurveCategory| + |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| + |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| + |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| + |Property| |PropositionalFormula| |PropositionalLogic| + |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst| + |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| + |PlottableSpaceCurveCategory| |PolynomialSetCategory&| + |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| + |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| + |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| + |PushVariables| |PAdicWildFunctionFieldIntegralBasis| + |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| + |QueryEquation| |QuotientFieldCategoryFunctions2| + |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| + |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&| + |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| + |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| + |RadixExpansion| |RadixUtilities| |RandomNumberSource| + |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| + |RecursiveAggregate| |RealClosedField&| |RealClosedField| + |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| + |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| + |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| + |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| + |RegularTriangularSet| |RepresentationPackage1| + |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| - |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| - |RationalFunctionFactorizer| |RegularChain| |RandomIntegerDistributions| - |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| - |RectangularMatrixCategory| |RectangularMatrix| - |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| - |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| - |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| + |RandomFloatDistributions| |RationalFunctionFactor| + |RationalFunctionFactorizer| |RationalFunction| |RegularChain| + |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| + |RectangularMatrixCategory&| |RectangularMatrixCategory| + |RectangularMatrix| |RectangularMatrixCategoryFunctions2| + |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| + |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| + |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| - |RegularTriangularSetGcdPackage| |RestrictAst| |RewriteRule| |RuleCalled| - |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| - |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| - |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope| + |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled| + |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| + |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| + |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| + |SpadSyntaxCategory| |SortedCache| |Scope| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| - |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst| - |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory| - |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate| - |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression| - |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| - |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| - |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| - |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| - |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign| - |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| - |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| - |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| - |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| - |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| - |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser| + |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst| + |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| + |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&| + |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| + |Set| |SExpressionCategory| |SExpression| |SExpressionOf| + |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| + |SquareFreeRegularTriangularSetGcdPackage| + |SquareFreeRegularTriangularSetCategory| + |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| + |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst| + |ElementaryFunctionSign| |RationalFunctionSign| |Signature| + |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| + |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| + |SmithNormalForm| |SparseMultivariatePolynomial| + |SparseMultivariateTaylorSeries| + |SquareFreeNormalizedTriangularSetCategory| + |PolynomialSolveByFormulas| |RadicalSolvePackage| + |TransSolvePackageService| |TransSolvePackage| |SortPackage| + |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser| |SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| - |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| - |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream| - |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory| - |String| |StringTable| |StreamTaylorSeriesOperations| - |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| - |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst| - |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| - |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2| - |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries| + |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| + |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| + |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| + |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| + |StreamTranscendentalFunctionsNonCommutative| + |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| + |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries| + |FunctionSpaceSum| |RationalFunctionSum| + |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| + |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| - |SystemSolvePackage| |System| |TableauxBumpers| |Table| |Tableau| + |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| - |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1| - |TextFile| |ToolsForSign| |TopLevelThreeSpace| - |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| - |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| - |TrigonometricManipulations| |TriangularMatrixOperations| - |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| - |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| - |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| + |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| + |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| + |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| + |Tree| |TrigonometricFunctionCategory&| + |TrigonometricFunctionCategory| |TrigonometricManipulations| + |TriangularMatrixOperations| |TranscendentalManipulations| + |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| + |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type| + |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| - |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| - |UnivariateLaurentSeriesCategory| + |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| - |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment| - |UniversalSegmentFunctions2| |UnivariatePolynomial| - |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| + |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| + |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| + |UnivariatePolynomialFunctions2| + |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| - |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&| - |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2| + |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| + |UnivariatePolynomialCategoryFunctions2| + |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| - |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| - |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| + |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| + |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| - |UnivariatePuiseuxSeriesConstructor| - |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| - |UnaryRecursiveAggregate| |UnivariateTaylorSeries| + |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| + |UnivariatePuiseuxSeriesWithExponentialSingularity| + |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| - |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver| - |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory| - |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport| - |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&| - |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| - |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet| - |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&| - |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial| - |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| + |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| + |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable| + |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| + |TwoDimensionalViewport| |ThreeDimensionalViewport| + |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| + |VectorSpace| |WeierstrassPreparation| + |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst| + |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| + |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| + |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| + |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| - |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| - |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?| - |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| - |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| - |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| - |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus| - |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter| - |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid| - |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf| - |any| |applyRules| |localUnquote| |setColumn!| |setRow!| |oneDimensionalArray| - |associatedSystem| |uncouplingMatrices| |associatedEquations| |arrayStack| - |setButtonValue| |setAttributeButtonStep| |resetAttributeButtons| - |getButtonValue| |decrease| |increase| |morphism| |balancedFactorisation| - |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| |sylvesterMatrix| - |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| |bfEntry| |bfKeys| - |inspect| |extract!| |bag| |binding| |position!| |test| |setProperties| - |setProperty| |deleteProperty!| |has?| |input| |comparison| |equality| |nary?| - |unary?| |nullary?| |arity| |properties| |derivative| |constantOperator| - |constantOpIfCan| |integerBound| |setright!| |setleft!| - |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| - |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| - |bitior| |bitand| |byte| |subtractIfCan| |setPosition| - |generalizedContinuumHypothesisAssumed| - |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel| - |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |kind| |alphanumeric| - |alphabetic| |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| - |upperCase?| |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| - |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| - |find| |e| |clipParametric| |clipWithRanges| |numberOfHues| |blue| |green| - |yellow| |red| |iifact| |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow| - |factorial| |multinomial| |permutation| |stirling1| |stirling2| |summation| - |factorials| |mkcomm| |polarCoordinates| |complex| |imaginary| |solid| - |solid?| |denominators| |numerators| |convergents| |approximants| - |reducedForm| |partialQuotients| |partialDenominators| |partialNumerators| - |reducedContinuedFraction| |push| |bindings| |cartesian| |polar| |cylindrical| - |spherical| |parabolic| |parabolicCylindrical| |paraboloidal| - |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal| |bipolar| - |bipolarCylindrical| |toroidal| |conical| |modTree| |multiEuclideanTree| - |complexZeros| |divisorCascade| |graeffe| |pleskenSplit| - |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound| - |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry| - |arguments| |constructorName| |coerceP| |powerSum| |elementary| |alternating| - |cyclic| |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction| - |cyclotomicDecomposition| |cyclotomicFactorization| |rangeIsFinite| - |functionIsContinuousAtEndPoints| |functionIsOscillatory| |changeName| - |exprHasWeightCosWXorSinWX| |exprHasAlgebraicWeight| - |exprHasLogarithmicWeights| |combineFeatureCompatibility| |sparsityIF| - |stiffnessAndStabilityFactor| |stiffnessAndStabilityOfODEIF| |systemSizeIF| - |expenseOfEvaluationIF| |accuracyIF| |intermediateResultsIF| - |subscriptedVariables| |central?| |elliptic?| |doubleResultant| |distdfact| - |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?| |decimal| - |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?| - |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |doubleFloatFormat| - |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity| - |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength| - |setnext!| |setprevious!| |next| |previous| |datalist| - |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |separant| |initial| - |leader| |isobaric?| |weights| |differentialVariables| |extractBottom!| - |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue| - |makeObject| |recolor| |drawComplex| |drawComplexVectorField| |setRealSteps| - |setImagSteps| |setClipValue| |draw| |option?| |range| |colorFunction| - |curveColor| |pointColor| |clip| |clipBoolean| |style| |toScale| - |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| |space| - |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |finiteBound| - |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix| - |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes| - |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan| - |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| - |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| - |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?| - |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ| - |callForm?| |getIdentifier| |getConstant| |type| |select!| |delete!| |sn| |cn| - |dn| |sncndn| |qsetelt!| |categoryFrame| |currentEnv| |setProperties!| - |getProperties| |setProperty!| |getProperty| |scopes| |eigenvalues| - |eigenvector| |generalizedEigenvector| |generalizedEigenvectors| - |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero| - |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel| - |distribute| |subst| |functionIsFracPolynomial?| |problemPoints| |zerosOf| - |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| |ocf2ocdf| |socf2socdf| - |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| |numberOfOperations| |edf2efi| - |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| |vedf2vef| |df2st| |f2st| - |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| |measure2Result| - |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| |fi2df| |mat| |neglist| - |multiEuclidean| |extendedEuclidean| |euclideanSize| |sizeLess?| - |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| |tubePlot| - |exponentialOrder| |completeEval| |lowerPolynomial| |raisePolynomial| - |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt| - |pomopo!| |mapExponents| |linearAssociatedLog| |linearAssociatedOrder| - |linearAssociatedExp| |createNormalElement| |setLabelValue| |getCode| - |printCode| |code| |operation| |common| |printStatement| |save| |stop| |block| - |cond| |returns| |call| |comment| |continue| |goto| |repeatUntilLoop| - |whileLoop| |forLoop| |sin?| |zeroVector| |zeroSquareMatrix| - |identitySquareMatrix| |lSpaceBasis| |finiteBasis| |principal?| |divisor| - |useNagFunctions| |rationalPoints| |nonSingularModel| |algSplitSimple| - |hyperelliptic| |elliptic| |integralDerivationMatrix| |integralRepresents| - |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity| - |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix| - |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?| - |integralAtInfinity?| |integralBasisAtInfinity| |ramified?| - |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?| - |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus| - |getZechTable| |createZechTable| |createMultiplicationTable| - |createMultiplicationMatrix| |createLowComplexityTable| - |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement| - |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication| - |getMultiplicationMatrix| |getMultiplicationTable| |primitive?| - |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly| - |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly| - |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly| - |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly| - |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers| - |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open| - |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial| - |associatorDependence| |lieAlgebra?| |jordanAlgebra?| - |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?| - |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?| - |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?| - |antiCommutative?| |commutative?| |rightCharacteristicPolynomial| - |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace| - |someBasis| |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort| - |shellSort| |outputSpacing| |outputGeneral| |outputFixed| |outputFloating| - |exp1| |log10| |log2| |rationalApproximation| |relerror| |complexSolve| - |complexRoots| |realRoots| |leadingTerm| |writable?| |readable?| |exists?| - |extension| |directory| |filename| |shallowExpand| |deepExpand| - |clearFortranOutputStack| |showFortranOutputStack| |popFortranOutputStack| - |pushFortranOutputStack| |topFortranOutputStack| |setFormula!| |formula| - |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart| - |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision| - |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor| - |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |nilFactor| - |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module| - |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix| - |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents| - |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP| - |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality| - |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| - |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?| - |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| - |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| - |fortranDouble| |fortranReal| |external?| |scalarTypeOf| - |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine| - |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| - |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| - |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?| - |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| - |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm| - |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree| - |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle| - |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares| - |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis| - |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB| - |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD| - |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO| - |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm| - |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm| - |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm| - |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial| - |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial| - |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow| - |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build| - |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray| - |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits| - |putColorInfo| |appendPoint| |component| |ranges| |pointLists| - |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc| - |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact| - |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host| - |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!| - |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate| - |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay| - |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal| - |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?| - |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp| - |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength| - |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports| - |sequence| |iterationVar| |readBytes!| |readByteIfCan!| |setFieldInfo| |pol| - |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis| - |normalElement| |minimalPolynomial| |increment| |incrementBy| |charpol| - |solve1| |innerEigenvectors| |compile| |declare| |parseString| |unparse| - |flatten| |lambda| |binary| |packageCall| |interpret| |innerSolve1| - |innerSolve| |makeEq| |modularGcdPrimitive| |modularGcd| |reduction| - |signAround| |invmod| |powmod| |mulmod| |submod| |addmod| |mask| |dec| |inc| - |symmetricRemainder| |positiveRemainder| |bit?| |algint| |algintegrate| - |palgintegrate| |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?| - |inf| |qinterval| |interval| |unit?| |associates?| |unitCanonical| - |unitNormal| |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate| - |lfextlimint| |BasicMethod| |PollardSmallFactor| |showTheFTable| - |clearTheFTable| |fTable| |showAttributes| |entry| |palgint0| |palgextint0| - |palglimint0| |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| - |fibonacci| |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors| - |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint| - |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate| - |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate| - |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax| - |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate| - |expintegrate| |tanintegrate| |primextendedint| |expextendedint| - |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac| - |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly| - |inverseLaplace| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer| - |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?| - |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand| - |complexIntegrate| |dimensionOfIrreducibleRepresentation| - |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh| - |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc| - |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos| - |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose| - |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG - |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?| - |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan| - |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |true| - |unknown| |false| |laplace| |trailingCoefficient| |normalizeIfCan| |polCase| - |distFact| |identification| |LyndonCoordinates| |LyndonBasis| - |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular| - |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| |Si| |Ei| - |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| |anticoord| - |intcompBasis| |choosemon| |transform| |pack!| |library| |complexLimit| - |limit| |linearlyDependent?| |linearDependence| |solveLinear| |reducedSystem| - |setDifference| |setIntersection| |setUnion| |append| |null| |nil| - |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| - |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm| - |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1| - |symmetricProduct| |symmetricPower| |directSum| - |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve| - |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?| - |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?| - |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D| - |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp| - |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| - |curryRight| |curryLeft| |constantRight| |constantLeft| |twist| - |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat| - |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!| - |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!| - |rightScalarTimes!| |times!| |power!| |nothing| |gradient| |divergence| - |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates| - |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod| - |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent| - |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal| - |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction| - |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction| - |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius| - |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index| - |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower| - |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom| - |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst| - |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference| - |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose| - |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf| - |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf| - |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf| - |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf| - |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf| - |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff| - |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf| - |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf| - |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf| - |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf| - |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef| - |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff| - |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf| - |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf| - |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf| - |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf| - |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf| - |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf| - |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf| - |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf| - |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf| - |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator| - |complexEigenvalues| |complexEigenvectors| |shift| |normalizedAssociate| - |normalize| |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp| - |characteristicPolynomial| |realEigenvalues| |realEigenvectors| - |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant| - |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB| - |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan| - |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces| - |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc| - |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal| - |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| - |imagi| |octon| |ODESolve| |constDsolve| |showTheIFTable| |clearTheIFTable| - |keys| |iFTable| |showIntensityFunctions| |expint| |diff| |algDsolve| - |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE| - |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve| - |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve| - |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters| - |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn| - |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP| - |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp| - |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp| - |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError| - |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString| - |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar| - |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr| - |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger| - |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType| - |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown| - |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?| - |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile| - |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?| - |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop| - |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |getDatabase| - |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?| - |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex| - |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder| - |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient| - |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide| - |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL| - |legendreP| |outputList| |writeBytes!| |writeByteIfCan!| |quo| |rem| |div| >= - > ~= |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| - |bracket| |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| - |presub| |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| - |infix?| |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| - |hspace| |superHeight| |subHeight| |height| |width| |messagePrint| |message| - |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| |digits| - |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark| - |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates| - |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult| - |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed| - |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| - |topPredicate| |setTopPredicate| |patternVariable| |withPredicates| - |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?| - |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?| - |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| |PDESolve| - |leftFactor| |rightFactorCandidate| |measure| D |ptree| |coerceImages| - |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition| - |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent| - |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints| - |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit| - |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base| - |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| - |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit| - |charthRoot| |conditionP| |solveLinearPolynomialEquation| - |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial| - |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix| - |doubleDisc| |polyred| |padicFraction| |padicallyExpand| - |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom| - |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup| - |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11| - |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup| - |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember| - |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime| - |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve| - |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond| - |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive| - |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints| - |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D| - |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D| - |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D| - |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert| - |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes| - |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor| - |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP| - |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy| - |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials| - |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt| - |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix| - |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print| - |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?| - |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?| - |notOperand| |not?| |variable?| |term| |term?| |equiv| |implies| |or| |and| - |merge!| |resultantEuclidean| |semiResultantEuclidean2| - |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean| - |semiIndiceSubResultantEuclidean| |degreeSubResultant| - |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean| - |lastSubResultantEuclidean| |semiLastSubResultantEuclidean| - |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2| - |semiSubResultantGcdEuclidean1| |discriminantEuclidean| - |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit| - |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard| - |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif| - |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?| - |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches| - |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder| - |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?| - |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect| - |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan| - |unprotectedRemoveRedundantFactors| |removeRedundantFactors| - |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?| - |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials| - |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?| - |linearPolynomials| |bivariate?| |bivariatePolynomials| - |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol| - |interReduce| |roughBasicSet| |crushedSet| - |rewriteSetByReducingWithParticularGenerators| - |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors| - |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents| - |removeRedundantFactorsInContents| |removeRedundantFactorsInPols| - |irreducibleFactors| |lazyIrreducibleFactors| - |removeIrreducibleRedundantFactors| |normalForm| |changeBase| - |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord| - |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan| - |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan| - |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan| - |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan| - |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup| - |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations| - |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator| - |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!| - |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue| - |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits| - |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?| - |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance| - |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial| - |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE| - |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint| - |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| = - |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector| - |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt| - |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix| - |symmetricTensors| |tensorProduct| |permutationRepresentation| - |completeEchelonBasis| |createRandomElement| |cyclicSubmodule| - |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?| - |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues| - |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate| - |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal| - |exponential| |chiSquare| F |t| |factorFraction| |uniform| |binomial| - |poisson| |geometric| |ridHack1| |interpolate| |nullSpace| |nullity| |rank| - |rowEchelon| |column| |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| - |maxRowIndex| |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| - |square?| |matrix| |rectangularMatrix| |characteristic| |round| |fractionPart| - |wholePart| |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| - |right| |left| |roman| |recoverAfterFail| |showTheRoutinesTable| - |deleteRoutine!| |getExplanations| |getMeasure| |changeMeasure| - |changeThreshhold| |selectMultiDimensionalRoutines| |selectNonFiniteRoutines| - |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines| - |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines| - |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent| - |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient| - |subResultantChain| |halfExtendedSubResultantGcd2| - |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!| - |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical| - |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide| - |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?| - |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial| - |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial| - |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators| - |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?| - |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit| - |invertibleSet| |invertible?| |invertibleElseSplit?| - |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?| - |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo| - |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant| - |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression| - |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create| - |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope| - |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates| - |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?| - |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex| - |hash| |delta| |member?| |enumerate| |setOfMinN| |elements| - |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer| - |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?| - |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?| - |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?| - |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?| - |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?| - |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!| - |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!| - |stosePrepareSubResAlgo| |stoseInternalLastSubResultant| - |stoseIntegralLastSubResultant| |stoseLastSubResultant| - |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg| - |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet| - |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus| - |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition| - |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0| - |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence| - |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots| - |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature| - |signatureAst| |Or| |And| |Not| |xor| |not| |min| |max| ~ |/\\| |\\/| |depth| - |top| |pop!| |push!| |minordet| |determinant| |diagonalProduct| |trace| - |diagonal| |diagonalMatrix| |scalarMatrix| |hermite| |completeHermite| |smith| - |completeSmith| |diophantineSystem| |csubst| |particularSolution| |mapSolve| - |linear| |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| - |aQuartic| |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| - |unvectorise| |bubbleSort!| |insertionSort!| |check| |objects| |lprop| - |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| - |closedCurve?| |closedCurve| |curve?| |curve| |point?| |enterPointData| - |composites| |components| |numberOfComposites| |numberOfComponents| - |create3Space| |parse| |outputAsFortran| |outputAsScript| |outputAsTex| |abs| - |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| - |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| |setStatus!| - |setCondition!| |setValue!| |copy| |status| |value| |empty?| |splitNodeOf!| - |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions| - |updateStatus!| |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| - |leftTrim| |trim| |split| |position| |replace| |match?| |match| |substring?| - |suffix?| |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| - |KrullNumber| |numberOfVariables| |algebraicDecompose| - |transcendentalDecompose| |internalDecompose| |decompose| |upDateBranches| - |printInfo| |preprocess| |internalZeroSetSplit| |internalAugment| |stack| - |possiblyInfinite?| |explicitlyFinite?| |nextItem| |init| |infiniteProduct| - |evenInfiniteProduct| |oddInfiniteProduct| |generalInfiniteProduct| - |filterUntil| |filterWhile| |generate| |showAll?| |showAllElements| |output| - |cons| |delay| |findCycle| |repeating?| |repeating| |exquo| |recip| |integers| - |oddintegers| |int| |mapmult| |deriv| |gderiv| |compose| |addiag| - |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| |power| |sincos| - |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| |cosh| |tanh| - |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| |acsch| - |subresultantVector| |primitivePart| |pointData| |parent| |level| - |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse| - |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2| - |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children| - |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct| - |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT LT |sample| |list| - |string| |argscript| |superscript| |subscript| |script| |scripts| |scripted?| - |name| |resetNew| |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf| - |printHeader| |returnType!| |argumentList!| |endSubProgram| - |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable| - |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList| - |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case| - |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce| - |solve| |triangularSystems| |rootDirectory| |hostPlatform| - |nativeModuleExtension| |loadNativeModule| |bumprow| |bumptab| |bumptab1| - |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr| - |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!| - |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?| - |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString| - |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue| - |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!| - |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi| - |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?| - |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary| - |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv| - |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog| - |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh| - |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig| - |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq| - |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate| - |coefficient| |coHeight| |extendIfCan| |algebraicVariables| - |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic| - |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce| - |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?| - |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent| - |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?| - |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select| - |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?| - |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder| - |resetVariableOrder| |prime?| |rationalFunction| |taylorIfCan| |taylor| - |removeZeroes| |taylorRep| |factor| |factorSquareFree| |henselFact| |hasHi| - |segment| SEGMENT |fmecg| |commonDenominator| |clearDenominator| - |splitDenominator| |monicRightFactorIfCan| |rightFactorIfCan| - |leftFactorIfCan| |monicDecomposeIfCan| |monicCompleteDecompose| |divideIfCan| - |noKaratsuba| |karatsubaOnce| |karatsuba| |separate| |pseudoDivide| - |pseudoQuotient| |composite| |subResultantGcd| |resultant| |discriminant| - |pseudoRemainder| |shiftLeft| |shiftRight| |karatsubaDivide| |monicDivide| - |divideExponents| |unmakeSUP| |makeSUP| |vectorise| |eval| |extend| - |approximate| |truncate| |order| |center| |terms| |squareFreePart| - |BumInSepFFE| |multiplyExponents| |laurentIfCan| |laurent| |laurentRep| - |rationalPower| |puiseux| |dominantTerm| |limitPlus| |split!| |setlast!| - |setrest!| |setelt| |setfirst!| |cycleSplit!| |concat!| |cycleTail| - |cycleLength| |cycleEntry| |third| |second| |tail| |last| |rest| |elt| |first| - |concat| |invmultisect| |multisect| |revert| |generalLambert| |evenlambert| - |oddlambert| |lambert| |lagrange| |differentiate| |univariatePolynomial| - |integrate| ** |polynomial| |multiplyCoefficients| |quoByVar| |coefficients| - |series| |stFunc1| |stFunc2| |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| - |mpsode| UP2UTS UTS2UP LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| - |outerProduct| |dot| - |zero| + |vector| |scan| |reduce| |graphCurves| - |drawCurves| |update| |show| |scale| |connect| |region| |points| |units| - |getGraph| |putGraph| |graphs| |graphStates| |graphState| |makeViewport2D| - |viewport2D| |getPickedPoints| |key| |close| |write| |colorDef| |reset| - |intensity| |lighting| |clipSurface| |showClipRegion| |showRegion| - |hitherPlane| |eyeDistance| |perspective| |translate| |zoom| |rotate| - |drawStyle| |outlineRender| |diagonals| |axes| |controlPanel| |viewpoint| - |dimensions| |title| |resize| |move| |options| |modifyPointData| |subspace| - |makeViewport3D| |viewport3D| |viewDeltaYDefault| |viewDeltaXDefault| - |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| |pointColorDefault| - |lineColorDefault| |axesColorDefault| |unitsColorDefault| |pointSizeDefault| - |viewPosDefault| |viewSizeDefault| |viewDefaults| |viewWriteDefault| - |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| |tubePointsDefault| - |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| |sts2stst| |clikeUniv| - |weierstrass| |qqq| |integralBasis| |localIntegralBasis| |qualifier| - |mainExpression| |condition| |changeWeightLevel| |characteristicSerie| - |characteristicSet| |medialSet| |Hausdorff| |Frobenius| |transcendenceDegree| - |extensionDegree| |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| - |mirror| |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product| - |LiePolyIfCan| |trunc| |degree| / |quasiRegular| |quasiRegular?| |constant| - |constant?| |coef| |mindeg| |maxdeg| |#| |coerce| |map| |reductum| * - |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve| - |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?| - |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| - |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| + |Record| |Union| |LyndonWordsList| |internal?| |and| |tanhIfCan| + |isMult| |structuralConstants| |createNormalPoly| |mapdiv| |OMgetType| + |createGenericMatrix| |conjugate| |externalList| |in?| + |createNormalElement| |goodnessOfFit| |poisson| |bfEntry| + |setProperties| |morphism| |setFormula!| |addMatch| + |removeRedundantFactorsInPols| |setelt!| |pile| |exptMod| |PDESolve| + |csch2sinh| |iicsch| |algebraic?| |factorial| |An| |epilogue| + |composite| |first| |symmetric?| |antisymmetric?| |initiallyReduced?| + |tryFunctionalDecomposition| |lazyResidueClass| SEGMENT |setlast!| + |changeName| |palgLODE| |mkIntegral| |complexZeros| + |leftMinimalPolynomial| |logical?| |critBonD| |rest| |cycles| + |definingPolynomial| |mathieu11| |basisOfNucleus| |e01sef| |OMgetAttr| + |linearPolynomials| |ranges| |substitute| |c06gqf| |f01mcf| |lambert| + |viewPosDefault| |zoom| |deleteProperty!| |stoseInvertible?reg| + |continuedFraction| |tanNa| |int| |removeDuplicates| + |subscriptedVariables| |adaptive?| |integer?| |sortConstraints| + |scalarMatrix| |denominators| |extractBottom!| |idealiser| + |tableForDiscreteLogarithm| |factorSquareFree| |uncouplingMatrices| + |mat| |inRadical?| |s17dcf| |triangSolve| |backOldPos| |associates?| + |genericLeftNorm| |dimensionOfIrreducibleRepresentation| + |patternMatchTimes| |hexDigit| |exprToXXP| |yellow| |getIdentifier| + |seriesToOutputForm| |sturmVariationsOf| |airyAi| |pToDmp| |powers| + |antiCommutator| |cothIfCan| |normDeriv2| |c02agf| + |rootOfIrreduciblePoly| |yCoordinates| |vark| |checkPrecision| + |realEigenvectors| |OMcloseConn| |queue| |lazyVariations| |divergence| + |whatInfinity| |transcendentalDecompose| |coordinates| |low| + |curryRight| |complexLimit| |linear| |irreducibleFactors| |showAll?| + |paren| |typeList| |lazyPseudoQuotient| |nextsubResultant2| |zerosOf| + |sec2cos| |recip| |setProperty| |iiasinh| |norm| |showTypeInOutput| + |OMencodingBinary| |symmetricTensors| |linkToFortran| |headReduced?| + |nthFractionalTerm| |setRow!| |btwFact| |LyndonWordsList1| + |splitConstant| |sh| |strongGenerators| |polynomial| |critMTonD1| + |UnVectorise| |viewport2D| |nor| |e01sff| |geometric| + |exprHasWeightCosWXorSinWX| |bivariate?| |linGenPos| |fixedPointExquo| + |cons| |hasHi| |f01qcf| |positive?| |separant| |numberOfHues| + |leftFactor| |stoseInvertibleSetreg| |mapUnivariate| |light| + |innerint| |exprToGenUPS| |deref| |hermite| |viewSizeDefault| + |minimalPolynomial| |doublyTransitive?| |nextPrimitiveNormalPoly| + |setrest!| |chebyshevU| |henselFact| |contract| |c05nbf| |shuffle| + |sumOfSquares| |neglist| |and?| |property| |const| |exprToUPS| + |OMgetBind| |isPlus| |symmetricDifference| |leftFactorIfCan| + |unitCanonical| |iCompose| |branchPointAtInfinity?| |imagi| |notelem| + |bright| |wholePart| |c05adf| |initTable!| |complexNumericIfCan| + |paraboloidal| |iiatanh| |partition| |nthRoot| |addPointLast| + |listOfMonoms| |tanIfCan| |factorsOfCyclicGroupSize| |orbit| |/\\| + |subset?| |declare| |mapmult| |GospersMethod| |pmintegrate| + |OMconnInDevice| |bracket| |rightCharacteristicPolynomial| + |movedPoints| |units| |OMunhandledSymbol| |uniform01| |digit| + |stFunc1| |iiacosh| |\\/| |associatedEquations| |minset| + |removeRoughlyRedundantFactorsInPols| |source| |rootPoly| |laplacian| + |integrate| |quoted?| |LowTriBddDenomInv| |tracePowMod| + |pmComplexintegrate| |plenaryPower| |exquo| |red| |localAbs| |s15adf| + |toScale| |e02zaf| |createNormalPrimitivePoly| |processTemplate| + |firstNumer| ~= |squareFreePart| |zeroDimPrime?| |div| + |bivariatePolynomials| |bounds| |write!| |c05pbf| |outputAsTex| + |algintegrate| |SturmHabicht| |doubleRank| |LazardQuotient2| |d02raf| + |coerce| |quo| |totalDegree| |pastel| |mirror| |curryLeft| |divisor| + |difference| |ldf2lst| |resultantReduit| |dihedral| |delete| + |getPickedPoints| |prepareDecompose| |construct| |bernoulliB| + |mightHaveRoots| |iiacoth| |groebgen| |cAcos| |solveInField| + |isobaric?| |varList| |rightZero| |code| |every?| |rename!| + |changeWeightLevel| |integers| NOT |infieldint| |generators| |ref| + |target| |numerator| |returnType!| |oneDimensionalArray| |iisec| + |increment| |logpart| |setMinPoints3D| |vspace| |suchThat| OR |ode1| + |shufflein| |removeRoughlyRedundantFactorsInPol| |leadingTerm| + |monicRightDivide| |blue| |call| |notOperand| |s21baf| |cotIfCan| + |eulerPhi| |less?| AND |exteriorDifferential| |OMgetEndAttr| + |monicDecomposeIfCan| |compiledFunction| |algebraicVariables| + |leastAffineMultiple| |octon| |OMreceive| |trim| |genericRightNorm| + |removeSquaresIfCan| |leadingSupport| |ellipticCylindrical| + |printingInfo?| |sumSquares| |monic?| |rationalPoint?| |addPoint2| + |curry| |simplify| |f04arf| |OMputEndBVar| |universe| |isTimes| + |nextSubsetGray| |e04dgf| |numeric| |viewDeltaYDefault| + |leftCharacteristicPolynomial| |makeFR| |symmetricSquare| |check| + |tab1| |floor| |pointColorPalette| |FormatArabic| |c06eaf| + |nextSublist| |radical| |countRealRoots| |traceMatrix| |hessian| + |d03edf| |normal01| |constantKernel| |permutationGroup| |deriv| + |s15aef| |intersect| |sdf2lst| |palgintegrate| |multiset| |inR?| + |LazardQuotient| |branchIfCan| |prefix| |mainValue| |stFunc2| + |arrayStack| |iiasech| |abs| |cAsin| |resultantReduitEuclidean| + |irreducible?| |firstDenom| |leftZero| |BumInSepFFE| |hspace| + |quotedOperators| |test| |iifact| |useNagFunctions| |extendedint| + |wronskianMatrix| |quadraticForm| |weakBiRank| |colorDef| + |zeroDimPrimary?| |ratpart| |userOrdered?| |characteristicSerie| + |read!| |totolex| |OMgetEndBind| |leftDivide| |argumentList!| |cap| + |weights| |iicsc| |log10| |secIfCan| |genericRightTrace| + |minimumDegree| |constantRight| |interReduce| |radicalEigenvectors| + |writable?| |zeroSetSplitIntoTriangularSystems| |bitand| |sort| |any?| + |charpol| |fibonacci| |OMsend| |f04asf| |eulerE| * |refine| + |sequences| |makingStats?| |euclideanNormalForm| |corrPoly| |bitior| + |plus| |oddintegers| |variable?| |minPoints3D| |htrigs| + |unprotectedRemoveRedundantFactors| |lprop| |bivariateSLPEBR| + |complement| |monicCompleteDecompose| |e04fdf| |deepestInitial| + |associatedSystem| |musserTrials| |mappingAst| |ODESolve| |s21bbf| + |setelt| |iiacos| |OMputEndError| |ode2| |prolateSpheroidal| |c06ebf| + |SturmHabichtMultiple| |viewDeltaXDefault| |green| |d03eef| |addPoint| + |split| |rectangularMatrix| |constantIfCan| |tab| |totalDifferential| + |eq| |firstSubsetGray| |part?| |curveColorPalette| |getlo| + |absolutelyIrreducible?| |replace| |reducedQPowers| |rightNorm| + |startTableGcd!| |copy| |randomLC| |mainDefiningPolynomial| + |shrinkable| |iter| |iiacsch| |overset?| |palginfieldint| |cCsc| + |times| |random| |swap| |bandedHessian| |factor1| |diag| + |mergeDifference| |superHeight| |isExpt| |limitedint| |s17acf| + |semiResultantReduitEuclidean| |back| |mkAnswer| |ceiling| + |compactFraction| |optimize| |exponential1| |rur| |largest| |subst| + |ScanArabic| |OMgetEndBVar| |Beta| |match?| |variationOfParameters| + |rightDivide| |genericRightMinimalPolynomial| |isList| + |subResultantChain| |cscIfCan| |autoCoerce| |wordsForStrongGenerators| + |characteristicSet| |rationalPoints| |gderiv| |width| |roughBasicSet| + |endSubProgram| |zeroSetSplit| |iiasin| |openBinaryFile| |intensity| + |OMserve| |multiplyExponents| |f04atf| |stFuncN| |setButtonValue| + |minPol| |extractIfCan| |readable?| |euclideanGroebner| |monom| + |ratPoly| |solve1| |decimal| |simplifyExp| |harmonic| |llprop| + |iibinom| |cardinality| |radicalEigenvector| |lifting| |e04gcf| + |biRank| |term| |iiatan| |stopMusserTrials| |primaryDecomp| + |removeRedundantFactors| |expr| |iomode| |exp| |c06ecf| |permutations| + |iteratedInitials| |countRealRootsMultiple| |identityMatrix| |cup| + |constDsolve| |kovacic| |d03faf| |monomials| |OMputEndObject| + |constantLeft| |latex| |divideIfCan| |gethi| |viewZoomDefault| + |diagonal?| |common| |host| |merge| |numericIfCan| |stopTableGcd!| + |mainForm| |lex| |middle| |oblateSpheroidal| |specialTrigs| + |var1Steps| |cSec| |leftNorm| |minPoly| |tValues| |minimize| + |subHeight| |cond| |objects| |clipPointsDefault| + |solveLinearPolynomialEquationByRecursion| |bitLength| |integerIfCan| + |optional| |front| |jacobian| |perfectNthPower?| |s21bcf| + |squareFreePrim| |more?| |base| |variable| |ode| |OMgetEndError| + |ParCond| |hermiteH| |divide| |halfExtendedSubResultantGcd2| + |asinIfCan| |upperCase!| |rightRankPolynomial| |create| |directory| + |iterators| |homogeneous?| |s17adf| |crushedSet| |factors| + |reduceByQuasiMonic| |partialFraction| |genus| |makeop| |f04axf| + |medialSet| |physicalLength!| |digamma| |insert!| + |factorGroebnerBasis| |currentSubProgram| |lighting| + |symmetricProduct| |simplifyLog| |jacobi| |lllp| |stop| |flatten| + |isPower| |nonSingularModel| |internalIntegrate0| |exists?| |e04jaf| + |summation| |next| |numberOfFactors| |chiSquare1| |iiacot| + |certainlySubVariety?| |FormatRoman| |computeBasis| |c06ekf| + |lifting1| |signatureAst| |subResultantsChain| |innerEigenvectors| + |e01baf| |isOp| |name| |laplace| |OMputInteger| |compose| + |radicalEigenvalues| |member?| |outputMeasure| |deepestTail| + |repeating?| |body| |term?| |startTableInvSet!| |laurentIfCan| + |rischDE| |slex| |setAttributeButtonStep| |atoms| |quasiRegular| + |cCot| |viewPhiDefault| |showTheIFTable| |rootPower| |freeOf?| + |module| |messagePrint| |iiperm| |localReal?| |noKaratsuba| + |var2Steps| |rotate!| |deepCopy| |basisOfCommutingElements| + |perfectNthRoot| |compdegd| |setVariableOrder| |close!| |tree| + |bipolar| |internalIntegrate| |bitCoef| |laguerreL| |cn| |rightTrace| + |wreath| |acosIfCan| |f04faf| |enterInCache| |drawToScale| |nil| + |twist| |systemCommand| |rewriteSetByReducingWithParticularGenerators| + |Lazard| |collectQuasiMonic| |leader| |bandedJacobian| |trueEqual| + |opeval| |lllip| |Hausdorff| |roman| |OMgetEndObject| |redmat| + |groebnerFactorize| |nthFactor| |localUnquote| + |halfExtendedSubResultantGcd1| |tRange| |expandPower| |skewSFunction| + |iiasec| |previous| |factorByRecursion| |s17aef| |interpretString| + |e04mbf| |newSubProgram| |unary?| |gcdPrimitive| |modularFactor| + |s21bdf| |moebiusMu| |trailingCoefficient| |extension| |makeCos| + |approximate| |mpsode| |polygamma| Y |normal| |pop!| |clipSurface| + |e01bef| |upperCase| |possiblyNewVariety?| |rischDEsys| |outerProduct| + |algSplitSimple| |c06fpf| |balancedBinaryTree| |exprex| |factorials| + |getZechTable| |stopTableInvSet!| |OMputFloat| |padecf| + |wordInStrongGenerators| |coord| |enumerate| |measure2Result| |head| + |close| |parseString| |operators| |symmetricPower| |inverse| + |getVariableOrder| |quoByVar| |cTan| |eigenMatrix| |quasiRegular?| + |viewThetaDefault| |top| |equiv| |approxNthRoot| |exponential| + |rightRegularRepresentation| |rightTraceMatrix| |rischNormalize| + |makeResult| |space| |dequeue!| |display| |satisfy?| |atanIfCan| + |univcase| |f04jgf| |makeRecord| |infieldIntegrate| |insert| + |karatsubaOnce| |bitTruth| |legendreP| |sayLength| |evaluateInverse| + |laurentRep| |currentCategoryFrame| |mesh?| |bipolarCylindrical| + |rewriteIdealWithQuasiMonicGenerators| |Lazard2| |removeZero| |expPot| + |basisOfLeftAnnihilator| |expandLog| |iiacsc| |Frobenius| |adaptive| + |OMgetInteger| |credPol| |nthExpon| |datalist| |formula| |equiv?| + |SFunction| |useSingleFactorBound?| |cyclotomicDecomposition| + |normalizeIfCan| |e04naf| |clearTheSymbolTable| |simpsono| + |factorList| |e01bff| |numberOfDivisors| |monomRDE| |ParCondList| + |dec| |shallowExpand| |push!| |input| |extractIndex| |plot| + |stosePrepareSubResAlgo| |pade| |probablyZeroDim?| |s13aaf| + |sylvesterMatrix| |coerceL| |library| |rightAlternative?| |mainKernel| + |fortranCompilerName| |OMputVariable| |resetVariableOrder| |t| + |composites| |att2Result| |mdeg| |leftScalarTimes!| |nrows| + |leftTraceMatrix| |maxrow| |zeroVector| |entry| |cCos| + |pointColorDefault| |rank| |routines| |ncols| |OMread| |subNodeOf?| + |leftRegularRepresentation| |f04maf| |squareFreeLexTriangular| + |tubePoints| |enqueue!| BY |ramified?| |doubleDisc| |ideal| |cyclic?| + |consnewpol| |mesh| |realZeros| |contains?| |writeBytes!| |set| + |fortranDouble| |putGraph| |rightMult| |hdmpToP| |iisinh| + |currentScope| |getSyntaxFormsFromFile| |doubleResultant| |setnext!| + |d02bbf| |expt| |polCase| |transcendenceDegree| |commonDenominator| + |rowEchLocal| |numberOfImproperPartitions| |zeroDim?| |qPot| + |predicates| |internalSubPolSet?| |cyclotomicFactorization| |baseRDE| + |polar| |dflist| |supRittWu?| |impliesOperands| |setright!| + |vectorise| |sumOfDivisors| |root| |completeHensel| |colorFunction| + |cTanh| |lists| |trapezoidalo| |rootProduct| |eigenvector| |rule| + |submod| |redpps| |idealSimplify| |reset| |clipParametric| + |extractPoint| |coerceP| |expintfldpoly| |normalDenom| |setvalue!| + |showSummary| |ravel| |s13acf| |rightLcm| + |semiSubResultantGcdEuclidean2| |nextNormalPoly| |leftAlternative?| + |gcdprim| |shade| |over| |prepareSubResAlgo| |reshape| + |indicialEquationAtInfinity| |components| |removeCoshSq| |write| + |rightScalarTimes!| |s19abf| |OMreadFile| |cosSinInfo| |weierstrass| + |showAttributes| |save| |zeroSquareMatrix| |pascalTriangle| |resetNew| + |polyred| |adaptive3D?| |complexNormalize| |iiexp| |makeCrit| + |belong?| |log2| |e02daf| |mainSquareFreePart| |fortranReal| |nodeOf?| + |palgextint0| |f02axf| |mainCharacterization| |rowEchelonLocal| + |subSet| |show| |ramifiedAtInfinity?| |graphs| |precision| |d02bhf| + |trivialIdeal?| |radicalSolve| |surface| |df2mf| |RittWuCompare| + |setprevious!| |makeUnit| |internalInfRittWu?| |ran| |OMputError| + |curveColor| |clearDenominator| |cCosh| |update| |trace| |lookup| + |setleft!| |showArrayValues| |entry?| |bumprow| |constant| + |cylindrical| |addmod| |definingInequation| |implies?| + |generalizedEigenvector| |hasPredicate?| |primeFactor| |setchildren!| + |multMonom| |leftExtendedGcd| |semiSubResultantGcdEuclidean1| |sup| + |monomialIntegrate| |extend| |totalfract| |zag| |B1solve| |reduceLODE| + |removeSinhSq| |traverse| |rootSimp| |nthRootIfCan| + |internalLastSubResultant| |loopPoints| |s13adf| |rangePascalTriangle| + |symFunc| |antiAssociative?| |powerSum| |OMreadStr| |virtualDegree| + |qqq| |numberOfComposites| |bfKeys| |e02dcf| |times!| |gcdcofact| + |complexElementary| |iilog| |f02bbf| |brillhartIrreducible?| + |rationalApproximation| |unrankImproperPartitions0| |position| + |mainPrimitivePart| |external?| |setScreenResolution3D| |palglimint0| + |radicalRoots| |identitySquareMatrix| |ldf2vmf| |normalizedDivide| + |padicFraction| |d02cjf| |s19acf| |highCommonTerms| |collectUpper| = + |Ci| |cSinh| |mainMonomials| |isOpen?| |fortran| |graphStates| + |internalSubQuasiComponent?| |updateStatus!| |indices| |OMputObject| + |algebraicOf| |definingEquations| |move| |shanksDiscLogAlgorithm| + |generalizedEigenvectors| |singular?| |node?| |bumptab| < |coordinate| + |pointColor| |leftGcd| |eof?| |normal?| |monomialIntPoly| |reverse!| + |nthFlag| |postfix| > |splitDenominator| |symmetricRemainder| + |expandTrigProducts| |orOperands| |expIfCan| |showScalarValues| + |pushdterm| |generalTwoFactor| <= |spherical| + |generalizedContinuumHypothesisAssumed?| |discriminantEuclidean| + |imagE| |OMlistCDs| |optional?| |conditionsForIdempotents| + |integralLastSubResultant| >= |build| |sizePascalTriangle| |singRicDE| + |f02bjf| |defineProperty| |trigs| |truncate| |loadNativeModule| + |integralBasis| |factorset| |e02ddf| |symbolTableOf| |associative?| + |rootKerSimp| |scalarTypeOf| |iisin| |contractSolve| |s14aaf| |vector| + |relerror| |unrankImproperPartitions1| |power!| |elementary| |d02ejf| + |mapCoef| |palgRDE0| |characteristic| + |numberOfComponents| + |differentiate| |edf2ef| |maxint| |gcdcofactprim| |mainContent| + |plusInfinity| |subQuasiComponent?| |index?| |collect| + |wordInGenerators| - |brillhartTrials| |cAcsc| |mainCoefficients| + |lift| |eigenvectors| |padicallyExpand| |minusInfinity| + |screenResolution3D| |OMputEndApp| |child?| / |lSpaceBasis| + |setStatus| |modifyPointData| |status| |reduce| |graphState| + |inverseLaplace| |s19adf| |infix| |bumptab1| |Si| |clip| + |leftExactQuotient| |reflect| |logIfCan| |extractSplittingLeaf| + |nthExponent| |generalSqFr| |partitions| |positiveRemainder| + |fintegrate| |script| |basis| |singularAtInfinity?| |OMlistSymbols| + |genericRightDiscriminant| |pushucoef| |ReduceOrder| + |fillPascalTriangle| |semiDiscriminantEuclidean| |or?| |makeMulti| + |real?| |f02fjf| |toseLastSubResultant| |monicRightFactorIfCan| + |e02def| |polyRicDE| |imagk| |fortranCarriageReturn| |solveRetract| + |decomposeFunc| |localIntegralBasis| |matrix| |parabolic| + |subresultantSequence| |argumentListOf| |tex| |type| |closeComponent| + |d02gaf| |multiple?| |iicos| |nthCoef| |level| |leadingIndex| + |vedf2vef| |complexSolve| |antiCommutative?| + |removeSuperfluousQuasiComponents| |order| |palgLODE0| |entries| + |error| |maxrank| |cAsec| |binaryFunction| |trace2PowMod| |gradient| + |leftRank| |factorAndSplit| |collectUnder| |distance| |s14abf| + |assert| |quasiAlgebraicSet| |leastMonomial| |element?| |double| + |primitivePart!| |alternating| |iprint| |OMputEndAtp| |vconcat| + |create3Space| |leftRemainder| |subspace| |numberOfFractionalTerms| + |content| |lintgcd| |sinIfCan| |untab| |twoFactor| |finiteBasis| + |clipBoolean| |coefficient| |lazyPseudoRemainder| |makeViewport2D| + |leaves| |OMsupportsCD?| |setMaxPoints3D| |irreducibleFactor| + |genericRightTraceForm| |Ei| |safeCeiling| |bit?| |reify| |s20acf| + |complexForm| |pushuconst| |f02wef| |setref| |e02dff| + |chainSubResultants| |normalElement| |fortranLiteral| |squareMatrix| + |toseInvertible?| |unvectorise| |conjugates| |ricDsolve| + |SturmHabichtSequence| |andOperands| |branchPoint?| |d02gbf| + |binomThmExpt| |qualifier| |rightFactorIfCan| |df2st| |returnTypeOf| + |makeTerm| |imagj| |orbits| |subCase?| |iitan| |key?| |id| + |parabolicCylindrical| |complexRoots| |cAcot| |modifyPoint| |declare!| + |rightOne| |mainVariable| |chineseRemainder| |nodes| |leadingExponent| + |makeFloatFunction| |radicalSimplify| |commutative?| |elem?| + |generic?| |hconcat| |mainVariable?| |currentEnv| |table| |s14baf| + |leftQuotient| |mainMonomial| |cosIfCan| |terms| |OMputEndAttr| + |setOrder| |new| |minrank| |coHeight| |makeViewport3D| + |subresultantVector| |rightRank| |zero| |OMsupportsSymbol?| + |genericLeftDiscriminant| |bat1| |outputAsScript| |style| |safeFloor| + |jordanAdmissible?| |cyclic| |UpTriBddDenomInv| |nilFactor| |f02xef| + |principal?| |algint| |e02gaf| |elColumn2!| |fortranLiteralLine| |hex| + |And| |numberOfMonomials| |bubbleSort!| |null| |schema| + |SturmHabichtCoefficients| |characteristicPolynomial| + |selectSumOfSquaresRoutines| |d02kef| |Or| |maxPoints3D| |pomopo!| + |toseInvertibleSet| |case| |LyndonCoordinates| |f2st| |triangulate| + |gcdPolynomial| |oddInfiniteProduct| |s20adf| |Not| + |removeSuperfluousCases| |symbolIfCan| |mainExpression| |Zero| + |baseRDEsys| |cAtan| |printHeader| |drawCurves| |iicot| |leftOne| + |transpose| |li| |rename| |One| |rubiksGroup| |realRoots| + |denominator| |identity| |divisors| |rspace| |controlPanel| |point| + |unaryFunction| |monicLeftDivide| |setFieldInfo| |schwerpunkt| + |d01apf| |mainVariables| |getOrder| |partialDenominators| + |quasiMonic?| |extendIfCan| |primes| |genericPosition| |startTable!| + |genericLeftTraceForm| |implies| |OMputEndBind| |constructorName| + |leftUnits| |safetyMargin| |viewport3D| |atrapezoidal| |minPoints| + |solveLinearlyOverQ| |f04adf| |bat| |bsolve| |left| |series| |mr| + |primitivePart| |categoryFrame| |s18adf| |regularRepresentation| |xor| + |insertionSort!| |elt| |droot| |right| |modularGcdPrimitive| + |numberOfCycles| |lieAdmissible?| |primextendedint| |setCondition!| + |mapExponents| |members| |goto| |semiIndiceSubResultantEuclidean| + |invmultisect| |fractionFreeGauss!| |normalizeAtInfinity| + |OMReadError?| |argument| |toseSquareFreePart| |LyndonBasis| + |quadraticNorm| |rightGcd| |selectFiniteRoutines| |duplicates?| + |yCoord| |normInvertible?| |numer| |weighted| |min| |float| |cot2tan| + |torsion?| |standardBasisOfCyclicSubmodule| |direction| |radix| |nil?| + |denom| |youngGroup| |rules| |heapSort| |explicitlyFinite?| |scale| + |anfactor| |topPredicate| |decreasePrecision| |presuper| |viewpoint| + |retract| |bezoutMatrix| |drawComplexVectorField| |dictionary| + |d01aqf| |karatsubaDivide| |leftRecip| |getCurve| |pi| |iroot| + |edf2fi| |modularGcd| |complex| |pol| |setErrorBound| |stopTable!| + |lepol| |invertible?| |infinity| |partialNumerators| |cAtanh| + |degreeSubResultant| |systemSizeIF| |boundOfCauchy| |selectsecond| + |setProperties!| |lfunc| |f02adf| |tubeRadiusDefault| |compBound| + |rightExactQuotient| |acothIfCan| |groebner?| |extendedResultant| + |expextendedint| |romberg| |parametric?| |key| |changeNameToObjf| + |quadratic| |dmp2rfi| |cyclePartition| |coth2tanh| |hdmpToDmp| + |constantToUnaryFunction| |pointData| |s18aef| |zCoord| |BasicMethod| + |depth| |kernel| |f07aef| |shellSort| |multisect| |npcoef| + |jacobiIdentity?| |filename| |OMUnknownSymbol?| |setValue!| F2FG + |remainder| |draw| |infinityNorm| |curve?| |symbol| |meshPar1Var| GE + |infiniteProduct| |complementaryBasis| |invertIfCan| |not?| + |createThreeSpace| |OMsetEncoding| |randnum| |basisOfLeftNucloid| + |repeatUntilLoop| |expression| |lazyPremWithDefault| GT + |numberOfNormalPoly| |fortranCharacter| |selectODEIVPRoutines| + |mapGen| |parse| |presub| |buildSyntax| |setRealSteps| + |zeroDimensional?| |normFactors| |integer| LE |condition| + |explicitEntries?| |torsionIfCan| |d01asf| |areEquivalent?| + |increasePrecision| |listLoops| |reduction| |rdHack1| |nextItem| LT + |maxRowIndex| |label| |connect| |setTopPredicate| |supDimElseRittWu?| + |prinshINFO| |leftPower| |makeObject| |bezoutResultant| |lexGroebner| + |signature| |degreeSubResultantEuclidean| |noLinearFactor?| |dioSolve| + |getProperties| |monicDivide| |f02aef| |invertibleElseSplit?| + |dimensions| |edf2df| |rightRemainder| |escape| |xn| |rootSplit| + |primlimitedint| |cubic| |dimension| |coef| |reducedContinuedFraction| + |cAcosh| |removeCosSq| |trunc| |interpret| |startPolynomial| + |selectfirst| |rCoord| |lhs| |optAttributes| |tubePlot| |tablePow| + |outputSpacing| |asechIfCan| |expenseOfEvaluationIF| |inHallBasis?| + |simpson| |OMUnknownCD?| |rhs| |PollardSmallFactor| |explogs2trigs| + |se2rfi| |ptFunc| |coerceListOfPairs| |groebnerIdeal| |parent| + |plotPolar| |cyclicParents| |headRemainder| |reseed| |f07fdf| + |lazyPquo| |revert| |pToHdmp| |powerAssociative?| + |fortranDoubleComplex| |s18aff| |OMputApp| |super| |curve| |nand| + |scaleRoots| |listexp| |arguments| |copy!| |d01bbf| |empty?| |solve| + |closed?| |basisOfRightNucloid| |whileLoop| |setImagSteps| |search| + |evenInfiniteProduct| |selectPDERoutines| |integral?| |algebraicSort| + |bits| |prindINFO| |fglmIfCan| |expenseOfEvaluation| |signAround| + |createIrreduciblePoly| |setProperty!| |getGoodPrime| |mapExpon| + |index| |rightPower| |f02aff| |node| |operator| |cAsinh| + |semiDegreeSubResultantEuclidean| |matrixDimensions| |region| + |explimitedint| |isAbsolutelyIrreducible?| + |purelyAlgebraicLeadingMonomial?| |quartic| |totalGroebner| + |rightQuotient| |acschIfCan| |minRowIndex| |newLine| |option| + |exponentialOrder| |patternVariable| |thetaCoord| |erf| |crest| + |resize| |coercePreimagesImages| |removeSinSq| |insertRoot!| + |dAndcExp| |OMParseError?| |pair| |divideExponents| |Nul| + |trigs2explogs| |push| |outputGeneral| |log| |compile| + |generalLambert| |ord| |makeprod| |ratDenom| |cyclicEqual?| + |showTheFTable| |seed| |solveid| |Aleph| |minimumExponent| |degree| + |cycleElt| |trapezoidal| |fortranComplex| |dilog| |sub| + |roughUnitIdeal?| |pr2dmp| |shiftRoots| |lazyPrem| |reorder| + |extractProperty| |d01fcf| |OMputAtp| |sin| |open?| |setClipValue| + |f07fef| |function| |e02bbf| |alternative?| |fprindINFO| |debug3D| + |moreAlgebraic?| |triangularSystems| |cos| |invmod| |point?| + |nextColeman| |rightTrim| |comparison| |plus!| |unitNormalize| + |s18dcf| |f02agf| |tan| |unknown| |numberOfOperations| |forLoop| + |lastSubResultantEuclidean| |leftTrim| |getProperty| + |selectOptimizationRoutines| |derivationCoordinates| |splitNodeOf!| + |aLinear| |cot| |groebner| |outputFixed| |cCsch| |completeEval| + |badNum| |integralAtInfinity?| |primextintfrac| + |algebraicCoefficients?| |sec| |midpoint| |maximumExponent| |pushdown| + |swap!| |points| |commutativeEquality| |phiCoord| |csc| |cfirst| + |derivative| |listRepresentation| |pquo| |copies| |exponents| + |OMwrite| |meatAxe| |rational| |asin| |bindings| |binaryTournament| + |evenlambert| |repSq| |clearTheFTable| |withPredicates| + |cyclicEntries| |rarrow| |acos| |testModulus| |unravel| |option?| + |fortranLogical| |equivOperands| |unmakeSUP| |roughEqualIdeals?| + |atan| |setClosed| |degreePartition| |hasoln| |powmod| |equation| + |computeCycleLength| |rombergo| |pattern| |prinpolINFO| |d01gaf| + |OMputAttr| |acot| |s01eaf| |e02bcf| |semiLastSubResultantEuclidean| + |destruct| |headAst| |extractClosed| |f02ajf| |subTriSet?| |asec| + |rootDirectory| |initial| |enterPointData| |changeVar| + |nextLatticePermutation| |equality| |isQuotient| |flexible?| |unit| + |s18def| |clearCache| |aQuadratic| |acsc| |sin?| |edf2efi| |subscript| + |scopes| |minus!| |lowerPolynomial| |numFunEvals3D| |one?| |sinh| + |byte| |lexTriangular| |lcm| |cSech| |primlimintfrac| |message| + |selectIntegrationRoutines| |fill!| |remove!| |purelyTranscendental?| + |cosh| |midpoints| |binding| |pushup| |monomial| + |integralBasisAtInfinity| |mix| |color| |rational?| |tanh| |sts2stst| + |outputFloating| |dark| |append| |permanent| |multivariate| |iisqrt2| + |getGraph| |leftMult| |po| |assign| |coth| |rowEch| |remove| |fmecg| + |gcd| |oddlambert| |variables| |height| |fTable| |scanOneDimSubspaces| + |cyclicCopy| |sech| |tube| |constantOperator| |leviCivitaSymbol| + |false| |prem| |vertConcat| |fortranInteger| |prinb| |setPredicates| + |roughSubIdeal?| |csch| |cartesian| |last| |binaryTree| + |factorOfDegree| |getMeasure| |d01gbf| |f02akf| |makeSUP| |OMputBind| + |asinh| |assoc| |HenselLift| |range| |e02bdf| |conditionP| + |computeCycleEntry| |subPolSet?| |aCubic| |acosh| |hostPlatform| + |mulmod| |comp| |nextPartition| |qelt| |magnitude| |eigenvalues| + |raisePolynomial| |heap| |flagFactor| |atanh| |expressIdealMember| + |dfRange| |subResultantGcdEuclidean| |#| |taylor| |logGamma| + |primintfldpoly| |minIndex| |s19aaf| |splitSquarefree| |acoth| + |denomLODE| |cCoth| |ratDsolve| |xRange| |laurent| |imports| + |setAdaptive3D| |hue| |rationalIfCan| |purelyAlgebraic?| |asech| + |root?| |reducedDiscriminant| |scripted?| |yRange| |puiseux| + |firstUncouplingMatrix| |slash| |clikeUniv| |setLabelValue| + |subtractIfCan| |kroneckerDelta| |zRange| |say| |tower| |getMatch| + |rk4a| |endOfFile?| |concat| |iisqrt3| |multiple| |unitVector| + |meshPar2Var| |position!| |factorsOfDegree| |map!| |inv| |character?| + |lazyGintegrate| |subResultantGcd| ~ |applyQuote| |critpOrder| + |palgint0| |reverse| |monicModulo| |qsetelt!| |exp1| |e02bef| + |ground?| |balancedFactorisation| |divisorCascade| |c06gsf| |f02awf| + |roughBase?| |mathieu12| |multinomial| |ground| |open| |pointLists| + |symbol?| F |OMputBVar| |aQuartic| |basisOfCenter| |rotate| + |extractTop!| |categories| |leadingMonomial| |associatorDependence| + |setScreenResolution| |univariateSolve| |normalDeriv| |ruleset| + |nativeModuleExtension| |numerators| |has?| + |irreducibleRepresentation| |leadingCoefficient| |horizConcat| + |complexNumeric| |getConstant| |s17def| |sqfrFactor| |maxIndex| + |genericLeftTrace| |idealiserMatrix| |sechIfCan| |primitiveMonomials| + |changeMeasure| |removeConstantTerm| |airyBi| |principalIdeal| + |commutator| |infinite?| |acsch| |reductum| |kernels| + |solveLinearPolynomialEquation| |inverseIntegralMatrixAtInfinity| + |lazyIrreducibleFactors| |parametersOf| |stronglyReduced?| + |indicialEquations| |bernoulli| |sech2cosh| |cross| |univariate| + |limit| |OMencodingSGML| |setLegalFortranSourceExtensions| |critMonD1| + |nary?| |leaf?| |e02adf| |internalDecompose| |multiplyCoefficients| + |hypergeometric0F1| |tensorProduct| |readIfCan!| |Vectorise| |f01qdf| + |find| |getCode| |singularitiesOf| |stoseInvertible?| |distdfact| + |sequence| |doubleComplex?| |failed?| |negative?| |completeHermite| + |meshFun2Var| |knownInfBasis| |lyndonIfCan| |exprHasAlgebraicWeight| + |center| |integral| |hash| |factor| |d01ajf| |resultant| + |basisOfCentroid| |viewDefaults| |graeffe| |insertBottom!| + |lazyPseudoDivide| |ridHack1| |symbolTable| |mapUnivariateIfCan| |rem| + |count| |fixedPoint| |rk4qc| |sqrt| |splitLinear| |string?| + |multiEuclidean| |mantissa| |mathieu22| |checkRur| + |rightFactorCandidate| |cycle| |cyclotomic| |power| |round| |real| + |makeGraphImage| |realSolve| |unitNormal| |taylorQuoByVar| + |pushFortranOutputStack| |drawStyle| |cschIfCan| |setfirst!| + |lagrange| |OMgetBVar| |mapDown!| |imag| |select!| |screenResolution| + |complete| |fractRadix| |convergents| |popFortranOutputStack| + |moduleSum| |finite?| |central?| |printInfo!| |permutation| + |directProduct| |mkPrim| |s17dgf| |OMconnOutDevice| |prod| + |genericLeftMinimalPolynomial| |associator| |sin2csc| + |outputAsFortran| |sizeMultiplication| |generalPosition| |lieAlgebra?| + |removeIrreducibleRedundantFactors| |subNode?| |fortranTypeOf| + |reduced?| |LagrangeInterpolation| |someBasis| |chebyshevT| + |charClass| |sylvesterSequence| |squareTop| |integralMatrixAtInfinity| + |OMencodingXML| |fracPart| |redPo| |indicialEquation| |e02aef| + |decompose| |c02aff| |halfExtendedResultant2| |changeThreshhold| + |linearlyDependent?| |readLineIfCan!| |setPoly| |f01qef| |outputForm| + |polynomialZeros| |stoseInvertibleSet| |showAllElements| |high| + |factorSquareFreePolynomial| |complex?| |permutationRepresentation| + |zero?| |smith| |printCode| |insertTop!| |lyndon| |objectOf| + |monomial?| |dot| |d01akf| |optpair| |radicalOfLeftTraceForm| + |viewWriteDefault| |goodPoint| |mathieu23| |cAcsch| |interpolate| + |exprHasLogarithmicWeights| |parts| |rotatez| |list?| |discriminant| + |simpleBounds?| |extendedEuclidean| |operation| + |createPrimitiveNormalPoly| |outlineRender| |measure| |asinhIfCan| + |mapMatrixIfCan| |not| |inc| |iterationVar| |pleskenSplit| + |positiveSolve| |lfextendedint| |iExquo| |approximants| |continue| + |pureLex| |cycleSplit!| |zeroMatrix| |euler| |rk4f| |delete!| + |graphImage| |pole?| |wholeRadix| |leftRankPolynomial| + |complexEigenvalues| |sinh2csch| |square?| |OMgetError| + |primitiveElement| |intPatternMatch| |setMaxPoints| |OMconnectTCP| + |overlabel| |psolve| |sort!| |upDateBranches| + |initializeGroupForWordProblem| |startStats!| |sincos| |s17dhf| + |normalForm| |empty| |normalized?| |denomRicDE| |f2df| |e02agf| + |getMultiplicationMatrix| |univariatePolynomial| |stack| |mapUp!| + |OMencodingUnknown| |infLex?| |polyPart| |hMonic| |coefficients| + |alphanumeric?| |sample| |lyndon?| |stoseSquareFreePart| |elliptic?| + |failed| |stirling1| |inverseIntegralMatrix| |readLine!| |exponent| + |f01rcf| |printStatement| |bottom!| |nullSpace| |quotient| |rquo| + |jordanAlgebra?| |double?| |linearDependence| |keys| |augment| + |completeSmith| |distFact| |bothWays| |coerceImages| + |combineFeatureCompatibility| |sturmSequence| |elRow1!| |d01alf| + |completeEchelonBasis| |euclideanSize| |viewWriteAvailable| |nothing| + |polyRDE| |cAsech| |concat!| |mapBivariate| |halfExtendedResultant1| + |selectMultiDimensionalRoutines| |getBadValues| |pair?| |linearMatrix| + |getStream| |nullary?| |beauzamyBound| |delay| |acoshIfCan| + |fixedDivisor| |lp| |predicate| |factorPolynomial| |pseudoRemainder| + |squareFree| |lflimitedint| |cycleRagits| |mathieu24| + |complexEigenvectors| |totalLex| |domainOf| |OMgetObject| |scan| + |constantOpIfCan| |sn| |overbar| |listBranches| |properties| |brace| + |diagonals| |preprocess| |tan2trig| |chvar| |printStats!| |any| + |rotatey| |reciprocalPolynomial| |primintegrate| |OMbindTCP| + |quasiComponent| |ptree| |reducedForm| |ef2edf| |copyInto!| + |translate| |getMultiplicationTable| |nextIrreduciblePoly| |updatF| + |readBytes!| |groebSolve| |omError| |sum| |compound?| |generic| + |numberOfComputedEntries| |e02ahf| |frst| |aromberg| |maxPoints| + |changeBase| |fullPartialFraction| |f01rdf| |wrregime| |nullity| + |coleman| |column| |arg1| |nextPrime| |s17dlf| |writeLine!| |exQuo| + |diophantineSystem| |makeSketch| |top!| |fixedPoints| |value| + |lowerCase?| |arg2| |sinhcosh| |ffactor| |setEmpty!| |sizeLess?| + |lastSubResultant| |leadingCoefficientRicDE| |reverseLex| |cycleTail| + |lquo| |setleaves!| |inspect| |d01amf| |getRef| |var1StepsDefault| + |argscript| |bombieriNorm| |tanh2trigh| |sparsityIF| |parameters| + |stirling2| |conditions| |integralMatrix| |atom?| |linearPart| + |prefixRagits| |block| |sorted?| |normalizedAssociate| |fullDisplay| + |noncommutativeJordanAlgebra?| |match| |solveLinear| + |linearlyDependentOverZ?| |lfinfieldint| |prime| |identification| + |e02ajf| |internalZeroSetSplit| |laguerre| |elRow2!| |dn| + |createRandomElement| |triangular?| |initials| |repeating| |ocf2ocdf| + |monomRDEsys| |or| |inverseColeman| |OMgetEndApp| |expintegrate| + |selectNonFiniteRoutines| |resetBadValues| |outputList| |sPol| + |OMopenFile| |arity| |bag| |dequeue| |clearTable!| + |squareFreePolynomial| |errorInfo| |shiftLeft| |f01ref| |getOperands| + |setColumn!| |janko2| |innerSolve| |rst| |primitive?| |clipWithRanges| + |graphCurves| |integerBound| |companionBlocks| |setPosition| |csubst| + |binarySearchTree| |axes| |indiceSubResultant| |rowEchelon| + |lazyEvaluate| |nextNormalPrimitivePoly| |rotatex| |rootRadius| |sign| + |simplifyPower| |primeFrobenius| |partialQuotients| |box| |leftLcm| + |odd?| |row| |readByteIfCan!| |qfactor| |testDim| |makeSeries| + |moebius| |substring?| |rightUnits| |tan2cot| |cycleLength| + |upperCase?| |void| |asimpson| |d01anf| |setMinPoints| |fractRagits| + |lastSubResultantElseSplit| |rdregime| |LiePoly| |rootBound| + |mindegTerm| |prevPrime| |s18acf| |null?| |quote| |var2StepsDefault| + |suffix?| |inrootof| |e02akf| |normalize| + |stiffnessAndStabilityFactor| |setStatus!| |linearDependenceOverZ| + |nonLinearPart| |basicSet| |delta| |constantCoefficientRicDE| + |listYoungTableaus| |internalAugment| |relationsIdeal| + |leadingBasisTerm| |extract!| |sncndn| |updatD| |lfintegrate| + |prefix?| |superscript| |recolor| |socf2socdf| |legendre| + |physicalLength| |reduceBasisAtInfinity| |tanintegrate| |length| + |f02aaf| |rewriteIdealWithRemainder| |returns| |makeEq| |even?| + |OMgetEndAtp| |ScanRoman| |reducedSystem| |errorKind| |scripts| + |OMopenString| |particularSolution| |indiceSubResultantEuclidean| + |cycleEntry| |usingTable?| |rroot| |xCoord| |cyclicSubmodule| + |number?| |getOperator| |clearTheIFTable| |obj| |singleFactorBound| + |rightExtendedGcd| |numberOfIrreduciblePoly| |addiag| + |hasTopPredicate?| |nonQsign| |generalizedContinuumHypothesisAssumed| + GF2FG |shallowCopy| |cache| |outputArgs| |tanh2coth| |lazy?| + |resetAttributeButtons| |UP2ifCan| |shiftRight| |discreteLog| + |wholeRagits| |leftTrace| |quickSort| |possiblyInfinite?| + |maxColIndex| |iipow| |rightRecip| |supersub| |lambda| |duplicates| + |infix?| |df2fi| |e02baf| |alphabetic?| |reopen!| |shift| |regime| + |stripCommentsAndBlanks| |invertibleSet| |infRittWu?| ** |mask| + |extendedSubResultantGcd| |char| |cAcoth| |makeYoungTableau| |product| + |setsubMatrix!| |makeSin| |s17aff| |printInfo| |minGbasis| + |tubePointsDefault| |symmetricGroup| |drawComplex| |atanhIfCan| + |stiffnessAndStabilityOfODEIF| |recoverAfterFail| |c06fqf| |Gamma| + |quadratic?| |f02abf| |showClipRegion| |saturate| EQ + |factorSquareFreeByRecursion| |hyperelliptic| |setOfMinN| + |lfextlimint| |mapSolve| |init| |mkcomm| |perfectSquare?| |lowerCase!| + |eval| |dmpToHdmp| UP2UTS |anticoord| |constant?| |seriesSolve| + |rewriteIdealWithHeadRemainder| |dim| |unparse| |createZechTable| + |acotIfCan| |numberOfPrimitivePoly| |ignore?| |realElementary| + |retractIfCan| |normalise| FG2F |OMclose| |merge!| |directSum| + |evaluate| |explicitlyEmpty?| |flexibleArray| |limitedIntegrate| |is?| + |kind| |iFTable| |chiSquare| |cos2sec| |minColIndex| + |ScanFloatIgnoreSpaces| |squareFreeFactors| |karatsuba| + |nextsousResultant2| |initiallyReduce| |useSingleFactorBound| + |numberOfChildren| |op| |addBadValue| |hexDigit?| |toroidal| |qroot| + |accuracyIF| |OMgetFloat| |redPol| |overlap| |removeDuplicates!| + |e01bgf| |rationalPower| |LiePolyIfCan| |lazyIntegrate| |figureUnits| + |setPrologue!| |e04ucf| |showTheSymbolTable| |exactQuotient!| + |basisOfRightAnnihilator| |stoseInternalLastSubResultant| + |getButtonValue| |iiGamma| |sqfree| |deepExpand| |minordet| + |alternatingGroup| |distribute| |listConjugateBases| + |selectPolynomials| |prime?| |iidsum| |generator| |recur| |c06frf| + |s17agf| |segment| |iflist2Result| |coerceS| |showRegion| + |perfectSqrt| |pointPlot| |rightDiscriminant| |OMputString| + |rightUnit| |fractionPart| |elements| |besselJ| |cSin| |mvar| + |polarCoordinates| |fortranLinkerArgs| |asecIfCan| |f04mbf| |tableau| + |subMatrix| |elliptic| |mindeg| |quatern| |lineColorDefault| |binary| + |conjug| |union| |lowerCase| |nsqfree| |polygon?| |validExponential| + |showTheRoutinesTable| |intcompBasis| |map| |tubeRadius| + |writeByteIfCan!| |resultantEuclidean| |createMultiplicationTable| + |cosh2sech| |iicosh| |pushNewContour| |randomR| |extendedIntegrate| + |gramschmidt| |inf| |headReduce| |second| |showIntensityFunctions| + |countable?| |solveLinearPolynomialEquationByFractions| |quotientByP| + |extensionDegree| UTS2UP |Is| |univariatePolynomialsGcds| |gbasis| + |resultantnaif| |third| |children| |useEisensteinCriterion?| + |factorFraction| |rangeIsFinite| |rationalFunction| |computeInt| + |options| |OMgetVariable| |separate| |e04ycf| |hcrf| + |linearAssociatedLog| |comment| |e01bhf| |badValues| + |leftDiscriminant| |sumOfKthPowerDivisors| |elseBranch| |conical| + |setTex!| |determinant| |printTypes| |linears| + |stoseIntegralLastSubResultant| |dominantTerm| |f04mcf| + |selectOrPolynomials| |lo| |iiabs| |ScanFloatIgnoreSpacesIfCan| + |putColorInfo| |convert| |pdf2ef| |clearFortranOutputStack| + |exactQuotient| |basisOfLeftNucleus| |functionIsFracPolynomial?| + |OMputSymbol| |polygon| |incr| |froot| |string| |c06fuf| + |inconsistent?| |cLog| |frobenius| |dom| |abelianGroup| |matrixGcd| + |approxSqrt| |size?| |listOfLists| |hi| |nlde| |s17ahf| + |replaceKthElement| |imagK| |relativeApprox| |hitherPlane| + |calcRanges| |acscIfCan| |iitanh| |createLowComplexityNormalBasis| + |decrease| |besselY| |maxdeg| |blankSeparate| |axesColorDefault| + |imaginary| |aspFilename| |adjoint| |reindex| |palgextint| |iidprod| + |rootNormalize| |integralDerivationMatrix| |weight| |stronglyReduce| + |packageCall| |KrullNumber| |cot2trig| |intChoose| |univariate?| + |leftUnit| |varselect| |choosemon| |critT| |qinterval| + |semiResultantEuclidean2| |createMultiplicationMatrix| + |useEisensteinCriterion| |moduloP| |findBinding| |swapColumns!| + |OMgetString| |orthonormalBasis| |f01brf| |resultantEuclideannaif| + |hasSolution?| |expint| |e01daf| |title| |taylorIfCan| + |inGroundField?| |deleteRoutine!| |addMatchRestricted| + |removeRoughlyRedundantFactorsInContents| |hclf| |diagonalProduct| + |child| |uniform| |stoseLastSubResultant| + |functionIsContinuousAtEndPoints| |represents| |factorSFBRlcUnit| + |setEpilogue!| |pseudoDivide| |pdf2df| |newTypeLists| + |linearAssociatedOrder| |problemPoints| |retractable?| + |HermiteIntegrate| |f04qaf| LODO2FUN |zeroOf| |modTree| + |showFortranOutputStack| |cExp| |e| |ddFact| |generateIrredPoly| + |limitPlus| |selectAndPolynomials| |closedCurve?| |checkForZero| + |bringDown| |appendPoint| |computePowers| |imagJ| + |primPartElseUnitCanonical!| |basisOfRightNucleus| |sinhIfCan| |eq?| + |OMgetApp| |thenBranch| |c06gbf| |numFunEvals| |semicolonSeparate| + |rootOf| |divideIfCan!| |cyclicGroup| |getDatabase| |result| |iicoth| + |tanSum| |nthr| |s17ajf| |incrementKthElement| + |rewriteSetWithReduction| |unitsColorDefault| |eyeDistance| + |dimensionsOf| |coth2trigh| |representationType| |palglimint| + |numericalIntegration| |max| |besselI| |RemainderList| |makeVariable| + |critM| |debug| |solid| |eisensteinIrreducible?| |fixPredicate| + |findCycle| |alphanumeric| |univariatePolynomials| |generate| |tanQ| + |powern| |integralRepresents| |tail| |interval| |f01bsf| D + |applyRules| |innerSolve1| |e01saf| |numberOfVariables| |coefChoose| + |modulus| |output| |increase| |kmax| |transform| + |semiResultantEuclideannaif| |diagonal| |semiResultantEuclidean1| + |createLowComplexityTable| |stoseInvertible?sqfreg| |contours| + |removeZeroes| |incrementBy| |ipow| |OMgetSymbol| + |antisymmetricTensors| |df2ef| |lexico| |nextPrimitivePoly| |diff| + |complexExpand| |linSolve| |mergeFactors| |transcendent?| + |createPrimitivePoly| |expand| |rightMinimalPolynomial| |insertMatch| + |removeRedundantFactorsInContents| |list| |cRationalPower| |typeLists| + |nullary| |birth| |coshIfCan| |binomial| |functionIsOscillatory| + |f07adf| |topFortranOutputStack| |filterWhile| |swapRows!| |car| + |prologue| |pseudoQuotient| |matrixConcat3D| |imagI| + |linearAssociatedExp| |numericalOptimization| |ListOfTerms| |palgint| + |closedCurve| |filterUntil| |rootsOf| |charthRoot| + |multiEuclideanTree| |cdr| |pow| |commaSeparate| |separateFactors| + |csc2sin| |split!| |bezoutDiscriminant| |quasiMonicPolynomials| + |intermediateResultsIF| |select| |newReduc| |getExplanations| + |component| |setDifference| |allRootsOf| |autoReduced?| + |primPartElseUnitCanonical| |basisOfMiddleNucleus| + |tryFunctionalDecomposition?| |iisech| |OMgetAtp| |critB| + |setIntersection| RF2UTS |c06gcf| |setAdaptive| |leadingIdeal| + |pointSizeDefault| |digit?| |dihedralGroup| |leastPower| |e01sbf| + |palgRDE| |tanAn| |doubleFloatFormat| |finiteBound| |setUnion| + |s17akf| |float?| |f01maf| |dmpToP| |perspective| |restorePrecision| + |stoseInvertibleSetsqfreg| |createPrimitiveElement| |linear?| + |generalizedInverse| |unit?| |apply| |besselK| |unexpand| + |realEigenvalues| |diagonalMatrix| |print| |solid?| + |differentialVariables| |algebraicDecompose| |alphabetic| |digits| + |callForm?| |rk4| |fi2df| |integralCoordinates| + |generalInfiniteProduct| |pdct| |complexIntegrate| |algDsolve| |true| + |patternMatch| |myDegree| |taylorRep| |radPoly| |ksec| |port| |pack!| + |size| |cPower| |OMmakeConn| |separateDegrees| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| + |canonical| |noetherian| |central| |partiallyOrderedSet| + |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| + |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| + |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| + |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index e844e742..6a430ca2 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5152 +1,5160 @@ -(3163817 . 3431436972) -((-1843 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1841 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4130 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-1191 (-535)) |#2|) 34)) (-2368 (($ $) 59)) (-4185 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3761 (((-535) (-1 (-112) |#2|) $) 22) (((-535) |#2| $) NIL) (((-535) |#2| $ (-535)) 73)) (-2063 (((-618 |#2|) $) 13)) (-3855 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2067 (($ (-1 |#2| |#2|) $) 29)) (-4301 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2373 (($ |#2| $ (-535)) NIL) (($ $ $ (-535)) 50)) (-1395 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2065 (((-112) (-1 (-112) |#2|) $) 21)) (-4142 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-535)) NIL) (($ $ (-1191 (-535))) 49)) (-2374 (($ $ (-535)) 56) (($ $ (-1191 (-535))) 55)) (-2064 (((-747) (-1 (-112) |#2|) $) 26) (((-747) |#2| $) NIL)) (-1842 (($ $ $ (-535)) 52)) (-3742 (($ $) 51)) (-3867 (($ (-618 |#2|)) 53)) (-4144 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-618 $)) 62)) (-4300 (((-835) $) 69)) (-2066 (((-112) (-1 (-112) |#2|) $) 20)) (-3375 (((-112) $ $) 72)) (-3006 (((-112) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3375 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| (-535))) (-15 -1843 ((-112) |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4130 (|#2| |#1| (-1191 (-535)) |#2|)) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4130 (|#2| |#1| (-535) |#2|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2063 ((-618 |#2|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1|))) (-19 |#2|) (-1178)) (T -18)) +(3175158 . 3431822580) +((-3654 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-3491 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1705 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-1194 (-550)) |#2|) 34)) (-2342 (($ $) 59)) (-2419 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2302 (((-550) (-1 (-112) |#2|) $) 22) (((-550) |#2| $) NIL) (((-550) |#2| $ (-550)) 73)) (-3450 (((-623 |#2|) $) 13)) (-1832 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3234 (($ (-1 |#2| |#2|) $) 29)) (-3972 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2055 (($ |#2| $ (-550)) NIL) (($ $ $ (-550)) 50)) (-3321 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-1543 (((-112) (-1 (-112) |#2|) $) 21)) (-2680 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL) (($ $ (-1194 (-550))) 49)) (-1529 (($ $ (-550)) 56) (($ $ (-1194 (-550))) 55)) (-3350 (((-749) (-1 (-112) |#2|) $) 26) (((-749) |#2| $) NIL)) (-3593 (($ $ $ (-550)) 52)) (-1731 (($ $) 51)) (-1532 (($ (-623 |#2|)) 53)) (-3227 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-623 $)) 62)) (-1518 (((-836) $) 69)) (-1675 (((-112) (-1 (-112) |#2|) $) 20)) (-2316 (((-112) $ $) 72)) (-2335 (((-112) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2316 ((-112) |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2335 ((-112) |#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3491 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -3593 (|#1| |#1| |#1| (-550))) (-15 -3654 ((-112) |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -2302 ((-550) |#2| |#1| (-550))) (-15 -2302 ((-550) |#2| |#1|)) (-15 -2302 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -3654 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1832 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1705 (|#2| |#1| (-1194 (-550)) |#2|)) (-15 -2055 (|#1| |#1| |#1| (-550))) (-15 -2055 (|#1| |#2| |#1| (-550))) (-15 -1529 (|#1| |#1| (-1194 (-550)))) (-15 -1529 (|#1| |#1| (-550))) (-15 -2680 (|#1| |#1| (-1194 (-550)))) (-15 -3972 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3227 (|#1| (-623 |#1|))) (-15 -3227 (|#1| |#1| |#1|)) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#2|)) (-15 -1532 (|#1| (-623 |#2|))) (-15 -3321 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2680 (|#2| |#1| (-550))) (-15 -2680 (|#2| |#1| (-550) |#2|)) (-15 -1705 (|#2| |#1| (-550) |#2|)) (-15 -3350 ((-749) |#2| |#1|)) (-15 -3450 ((-623 |#2|) |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1731 (|#1| |#1|))) (-19 |#2|) (-1181)) (T -18)) NIL -(-10 -8 (-15 -3375 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| (-535))) (-15 -1843 ((-112) |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4130 (|#2| |#1| (-1191 (-535)) |#2|)) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4130 (|#2| |#1| (-535) |#2|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2063 ((-618 |#2|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-3761 (((-535) (-1 (-112) |#1|) $) 97) (((-535) |#1| $) 96 (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) 95 (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 83 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 82 (|has| |#1| (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-19 |#1|) (-138) (-1178)) (T -19)) +(-10 -8 (-15 -2316 ((-112) |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2335 ((-112) |#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3491 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -3593 (|#1| |#1| |#1| (-550))) (-15 -3654 ((-112) |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -2302 ((-550) |#2| |#1| (-550))) (-15 -2302 ((-550) |#2| |#1|)) (-15 -2302 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -3654 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1832 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1705 (|#2| |#1| (-1194 (-550)) |#2|)) (-15 -2055 (|#1| |#1| |#1| (-550))) (-15 -2055 (|#1| |#2| |#1| (-550))) (-15 -1529 (|#1| |#1| (-1194 (-550)))) (-15 -1529 (|#1| |#1| (-550))) (-15 -2680 (|#1| |#1| (-1194 (-550)))) (-15 -3972 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3227 (|#1| (-623 |#1|))) (-15 -3227 (|#1| |#1| |#1|)) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#2|)) (-15 -1532 (|#1| (-623 |#2|))) (-15 -3321 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2680 (|#2| |#1| (-550))) (-15 -2680 (|#2| |#1| (-550) |#2|)) (-15 -1705 (|#2| |#1| (-550) |#2|)) (-15 -3350 ((-749) |#2| |#1|)) (-15 -3450 ((-623 |#2|) |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1731 (|#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4343))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4343))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 58 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-2342 (($ $) 90 (|has| $ (-6 -4343)))) (-3243 (($ $) 100)) (-1328 (($ $) 78 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#1| $) 77 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 51)) (-2302 (((-550) (-1 (-112) |#1|) $) 97) (((-550) |#1| $) 96 (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) 95 (|has| |#1| (-1068)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2578 (($ (-749) |#1|) 69)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-2707 (($ $ $) 87 (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-4164 (($ $ $) 86 (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 42 (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3111 (($ $ |#1|) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1194 (-550))) 63)) (-1529 (($ $ (-550)) 62) (($ $ (-1194 (-550))) 61)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3593 (($ $ $ (-550)) 91 (|has| $ (-6 -4343)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 70)) (-3227 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 83 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-2354 (((-112) $ $) 85 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 82 (|has| |#1| (-825)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-19 |#1|) (-138) (-1181)) (T -19)) NIL -(-13 (-365 |t#1|) (-10 -7 (-6 -4337))) -(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1178) . T)) -((-1363 (((-3 $ "failed") $ $) 12)) (-4180 (($ $) NIL) (($ $ $) 9)) (* (($ (-890) $) NIL) (($ (-747) $) 16) (($ (-535) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -1363 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-21)) (T -20)) +(-13 (-366 |t#1|) (-10 -7 (-6 -4343))) +(((-34) . T) ((-101) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1068) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-1181) . T)) +((-3219 (((-3 $ "failed") $ $) 12)) (-2403 (($ $) NIL) (($ $ $) 9)) (* (($ (-894) $) NIL) (($ (-749) $) 16) (($ (-550) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -3219 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -1363 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20))) +(-10 -8 (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -3219 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20))) (((-21) (-138)) (T -21)) -((-4180 (*1 *1 *1) (-4 *1 (-21))) (-4180 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-535))))) -(-13 (-130) (-10 -8 (-15 -4180 ($ $)) (-15 -4180 ($ $ $)) (-15 * ($ (-535) $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-3522 (((-112) $) 10)) (-3879 (($) 15)) (* (($ (-890) $) 14) (($ (-747) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 -3879 (|#1|)) (-15 * (|#1| (-890) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 -3879 (|#1|)) (-15 * (|#1| (-890) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15))) +((-2403 (*1 *1 *1) (-4 *1 (-21))) (-2403 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-550))))) +(-13 (-130) (-10 -8 (-15 -2403 ($ $)) (-15 -2403 ($ $ $)) (-15 * ($ (-550) $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-3433 (((-112) $) 10)) (-3513 (($) 15)) (* (($ (-894) $) 14) (($ (-749) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-749) |#1|)) (-15 -3433 ((-112) |#1|)) (-15 -3513 (|#1|)) (-15 * (|#1| (-894) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-749) |#1|)) (-15 -3433 ((-112) |#1|)) (-15 -3513 (|#1|)) (-15 * (|#1| (-894) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15))) (((-23) (-138)) (T -23)) -((-2979 (*1 *1) (-4 *1 (-23))) (-3879 (*1 *1) (-4 *1 (-23))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-747))))) -(-13 (-25) (-10 -8 (-15 (-2979) ($) -4294) (-15 -3879 ($) -4294) (-15 -3522 ((-112) $)) (-15 * ($ (-747) $)))) -(((-25) . T) ((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((* (($ (-890) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-890) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-890) |#1|))) -((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13))) +((-2626 (*1 *1) (-4 *1 (-23))) (-3513 (*1 *1) (-4 *1 (-23))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-749))))) +(-13 (-25) (-10 -8 (-15 (-2626) ($) -2258) (-15 -3513 ($) -2258) (-15 -3433 ((-112) $)) (-15 * ($ (-749) $)))) +(((-25) . T) ((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((* (($ (-894) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-894) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-894) |#1|))) +((-1504 (((-112) $ $) 7)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13))) (((-25) (-138)) (T -25)) -((-4182 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890))))) -(-13 (-1067) (-10 -8 (-15 -4182 ($ $ $)) (-15 * ($ (-890) $)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-1662 (((-618 $) (-917 $)) 29) (((-618 $) (-1136 $)) 16) (((-618 $) (-1136 $) (-1142)) 20)) (-1258 (($ (-917 $)) 27) (($ (-1136 $)) 11) (($ (-1136 $) (-1142)) 54)) (-1259 (((-618 $) (-917 $)) 30) (((-618 $) (-1136 $)) 18) (((-618 $) (-1136 $) (-1142)) 19)) (-3517 (($ (-917 $)) 28) (($ (-1136 $)) 13) (($ (-1136 $) (-1142)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1662 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1662 ((-618 |#1|) (-1136 |#1|))) (-15 -1662 ((-618 |#1|) (-917 |#1|))) (-15 -1258 (|#1| (-1136 |#1|) (-1142))) (-15 -1258 (|#1| (-1136 |#1|))) (-15 -1258 (|#1| (-917 |#1|))) (-15 -1259 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1259 ((-618 |#1|) (-1136 |#1|))) (-15 -1259 ((-618 |#1|) (-917 |#1|))) (-15 -3517 (|#1| (-1136 |#1|) (-1142))) (-15 -3517 (|#1| (-1136 |#1|))) (-15 -3517 (|#1| (-917 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1662 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1662 ((-618 |#1|) (-1136 |#1|))) (-15 -1662 ((-618 |#1|) (-917 |#1|))) (-15 -1258 (|#1| (-1136 |#1|) (-1142))) (-15 -1258 (|#1| (-1136 |#1|))) (-15 -1258 (|#1| (-917 |#1|))) (-15 -1259 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1259 ((-618 |#1|) (-1136 |#1|))) (-15 -1259 ((-618 |#1|) (-917 |#1|))) (-15 -3517 (|#1| (-1136 |#1|) (-1142))) (-15 -3517 (|#1| (-1136 |#1|))) (-15 -3517 (|#1| (-917 |#1|)))) -((-2887 (((-112) $ $) 7)) (-1662 (((-618 $) (-917 $)) 77) (((-618 $) (-1136 $)) 76) (((-618 $) (-1136 $) (-1142)) 75)) (-1258 (($ (-917 $)) 80) (($ (-1136 $)) 79) (($ (-1136 $) (-1142)) 78)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3358 (($ $) 89)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-1259 (((-618 $) (-917 $)) 83) (((-618 $) (-1136 $)) 82) (((-618 $) (-1136 $) (-1142)) 81)) (-3517 (($ (-917 $)) 86) (($ (-1136 $)) 85) (($ (-1136 $) (-1142)) 84)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 88)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66) (($ $ (-400 (-535))) 87)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64))) +((-2391 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-894))))) +(-13 (-1068) (-10 -8 (-15 -2391 ($ $ $)) (-15 * ($ (-894) $)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1384 (((-623 $) (-925 $)) 29) (((-623 $) (-1140 $)) 16) (((-623 $) (-1140 $) (-1144)) 20)) (-4122 (($ (-925 $)) 27) (($ (-1140 $)) 11) (($ (-1140 $) (-1144)) 54)) (-4241 (((-623 $) (-925 $)) 30) (((-623 $) (-1140 $)) 18) (((-623 $) (-1140 $) (-1144)) 19)) (-4146 (($ (-925 $)) 28) (($ (-1140 $)) 13) (($ (-1140 $) (-1144)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1384 ((-623 |#1|) (-1140 |#1|) (-1144))) (-15 -1384 ((-623 |#1|) (-1140 |#1|))) (-15 -1384 ((-623 |#1|) (-925 |#1|))) (-15 -4122 (|#1| (-1140 |#1|) (-1144))) (-15 -4122 (|#1| (-1140 |#1|))) (-15 -4122 (|#1| (-925 |#1|))) (-15 -4241 ((-623 |#1|) (-1140 |#1|) (-1144))) (-15 -4241 ((-623 |#1|) (-1140 |#1|))) (-15 -4241 ((-623 |#1|) (-925 |#1|))) (-15 -4146 (|#1| (-1140 |#1|) (-1144))) (-15 -4146 (|#1| (-1140 |#1|))) (-15 -4146 (|#1| (-925 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1384 ((-623 |#1|) (-1140 |#1|) (-1144))) (-15 -1384 ((-623 |#1|) (-1140 |#1|))) (-15 -1384 ((-623 |#1|) (-925 |#1|))) (-15 -4122 (|#1| (-1140 |#1|) (-1144))) (-15 -4122 (|#1| (-1140 |#1|))) (-15 -4122 (|#1| (-925 |#1|))) (-15 -4241 ((-623 |#1|) (-1140 |#1|) (-1144))) (-15 -4241 ((-623 |#1|) (-1140 |#1|))) (-15 -4241 ((-623 |#1|) (-925 |#1|))) (-15 -4146 (|#1| (-1140 |#1|) (-1144))) (-15 -4146 (|#1| (-1140 |#1|))) (-15 -4146 (|#1| (-925 |#1|)))) +((-1504 (((-112) $ $) 7)) (-1384 (((-623 $) (-925 $)) 77) (((-623 $) (-1140 $)) 76) (((-623 $) (-1140 $) (-1144)) 75)) (-4122 (($ (-925 $)) 80) (($ (-1140 $)) 79) (($ (-1140 $) (-1144)) 78)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3353 (($ $) 89)) (-3631 (((-112) $ $) 57)) (-3513 (($) 17 T CONST)) (-4241 (((-623 $) (-925 $)) 83) (((-623 $) (-1140 $)) 82) (((-623 $) (-1140 $) (-1144)) 81)) (-4146 (($ (-925 $)) 86) (($ (-1140 $)) 85) (($ (-1140 $) (-1144)) 84)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3933 (((-112) $) 68)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 88)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3338 (((-411 $) $) 71)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 62)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66) (($ $ (-400 (-550))) 87)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) (((-27) (-138)) (T -27)) -((-3517 (*1 *1 *2) (-12 (-5 *2 (-917 *1)) (-4 *1 (-27)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-27)))) (-3517 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-5 *3 (-1142)) (-4 *1 (-27)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1259 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1258 (*1 *1 *2) (-12 (-5 *2 (-917 *1)) (-4 *1 (-27)))) (-1258 (*1 *1 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-27)))) (-1258 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-5 *3 (-1142)) (-4 *1 (-27)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-618 *1))))) -(-13 (-356) (-973) (-10 -8 (-15 -3517 ($ (-917 $))) (-15 -3517 ($ (-1136 $))) (-15 -3517 ($ (-1136 $) (-1142))) (-15 -1259 ((-618 $) (-917 $))) (-15 -1259 ((-618 $) (-1136 $))) (-15 -1259 ((-618 $) (-1136 $) (-1142))) (-15 -1258 ($ (-917 $))) (-15 -1258 ($ (-1136 $))) (-15 -1258 ($ (-1136 $) (-1142))) (-15 -1662 ((-618 $) (-917 $))) (-15 -1662 ((-618 $) (-1136 $))) (-15 -1662 ((-618 $) (-1136 $) (-1142))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-973) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T)) -((-1662 (((-618 $) (-917 $)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-1136 $) (-1142)) 50) (((-618 $) $) 19) (((-618 $) $ (-1142)) 41)) (-1258 (($ (-917 $)) NIL) (($ (-1136 $)) NIL) (($ (-1136 $) (-1142)) 52) (($ $) 17) (($ $ (-1142)) 37)) (-1259 (((-618 $) (-917 $)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-1136 $) (-1142)) 48) (((-618 $) $) 15) (((-618 $) $ (-1142)) 43)) (-3517 (($ (-917 $)) NIL) (($ (-1136 $)) NIL) (($ (-1136 $) (-1142)) NIL) (($ $) 12) (($ $ (-1142)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1662 ((-618 |#1|) |#1| (-1142))) (-15 -1258 (|#1| |#1| (-1142))) (-15 -1662 ((-618 |#1|) |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -1259 ((-618 |#1|) |#1| (-1142))) (-15 -3517 (|#1| |#1| (-1142))) (-15 -1259 ((-618 |#1|) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -1662 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1662 ((-618 |#1|) (-1136 |#1|))) (-15 -1662 ((-618 |#1|) (-917 |#1|))) (-15 -1258 (|#1| (-1136 |#1|) (-1142))) (-15 -1258 (|#1| (-1136 |#1|))) (-15 -1258 (|#1| (-917 |#1|))) (-15 -1259 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1259 ((-618 |#1|) (-1136 |#1|))) (-15 -1259 ((-618 |#1|) (-917 |#1|))) (-15 -3517 (|#1| (-1136 |#1|) (-1142))) (-15 -3517 (|#1| (-1136 |#1|))) (-15 -3517 (|#1| (-917 |#1|)))) (-29 |#2|) (-13 (-823) (-542))) (T -28)) -NIL -(-10 -8 (-15 -1662 ((-618 |#1|) |#1| (-1142))) (-15 -1258 (|#1| |#1| (-1142))) (-15 -1662 ((-618 |#1|) |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -1259 ((-618 |#1|) |#1| (-1142))) (-15 -3517 (|#1| |#1| (-1142))) (-15 -1259 ((-618 |#1|) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -1662 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1662 ((-618 |#1|) (-1136 |#1|))) (-15 -1662 ((-618 |#1|) (-917 |#1|))) (-15 -1258 (|#1| (-1136 |#1|) (-1142))) (-15 -1258 (|#1| (-1136 |#1|))) (-15 -1258 (|#1| (-917 |#1|))) (-15 -1259 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1259 ((-618 |#1|) (-1136 |#1|))) (-15 -1259 ((-618 |#1|) (-917 |#1|))) (-15 -3517 (|#1| (-1136 |#1|) (-1142))) (-15 -3517 (|#1| (-1136 |#1|))) (-15 -3517 (|#1| (-917 |#1|)))) -((-2887 (((-112) $ $) 7)) (-1662 (((-618 $) (-917 $)) 77) (((-618 $) (-1136 $)) 76) (((-618 $) (-1136 $) (-1142)) 75) (((-618 $) $) 123) (((-618 $) $ (-1142)) 121)) (-1258 (($ (-917 $)) 80) (($ (-1136 $)) 79) (($ (-1136 $) (-1142)) 78) (($ $) 124) (($ $ (-1142)) 122)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1142)) $) 198)) (-3407 (((-400 (-1136 $)) $ (-591 $)) 230 (|has| |#1| (-542)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1655 (((-618 (-591 $)) $) 161)) (-1363 (((-3 $ "failed") $ $) 19)) (-1659 (($ $ (-618 (-591 $)) (-618 $)) 151) (($ $ (-618 (-286 $))) 150) (($ $ (-286 $)) 149)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3358 (($ $) 89)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-1259 (((-618 $) (-917 $)) 83) (((-618 $) (-1136 $)) 82) (((-618 $) (-1136 $) (-1142)) 81) (((-618 $) $) 127) (((-618 $) $ (-1142)) 125)) (-3517 (($ (-917 $)) 86) (($ (-1136 $)) 85) (($ (-1136 $) (-1142)) 84) (($ $) 128) (($ $ (-1142)) 126)) (-3491 (((-3 (-917 |#1|) #1="failed") $) 248 (|has| |#1| (-1018))) (((-3 (-400 (-917 |#1|)) #1#) $) 232 (|has| |#1| (-542))) (((-3 |#1| #1#) $) 194) (((-3 (-535) #1#) $) 192 (|has| |#1| (-1009 (-535)))) (((-3 (-1142) #1#) $) 185) (((-3 (-591 $) #1#) $) 136) (((-3 (-400 (-535)) #1#) $) 120 (-3874 (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535))))))) (-3490 (((-917 |#1|) $) 249 (|has| |#1| (-1018))) (((-400 (-917 |#1|)) $) 233 (|has| |#1| (-542))) ((|#1| $) 195) (((-535) $) 191 (|has| |#1| (-1009 (-535)))) (((-1142) $) 186) (((-591 $) $) 137) (((-400 (-535)) $) 119 (-3874 (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535))))))) (-2883 (($ $ $) 53)) (-2353 (((-665 |#1|) (-665 $)) 238 (|has| |#1| (-1018))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 237 (|has| |#1| (-1018))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 118 (-3874 (-3179 (|has| |#1| (-1018)) (|has| |#1| (-617 (-535)))) (-3179 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (((-665 (-535)) (-665 $)) 117 (-3874 (-3179 (|has| |#1| (-1018)) (|has| |#1| (-617 (-535)))) (-3179 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 190 (|has| |#1| (-857 (-371)))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 189 (|has| |#1| (-857 (-535))))) (-2892 (($ (-618 $)) 155) (($ $) 154)) (-1654 (((-618 (-113)) $) 162)) (-3368 (((-113) (-113)) 163)) (-2493 (((-112) $) 30)) (-2994 (((-112) $) 183 (|has| $ (-1009 (-535))))) (-3317 (($ $) 215 (|has| |#1| (-1018)))) (-3319 (((-1091 |#1| (-591 $)) $) 214 (|has| |#1| (-1018)))) (-3332 (($ $ (-535)) 88)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 50)) (-1652 (((-1136 $) (-591 $)) 180 (|has| $ (-1018)))) (-3660 (($ $ $) 134)) (-3661 (($ $ $) 133)) (-4301 (($ (-1 $ $) (-591 $)) 169)) (-1657 (((-3 (-591 $) "failed") $) 159)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-1656 (((-618 (-591 $)) $) 160)) (-2308 (($ (-113) (-618 $)) 168) (($ (-113) $) 167)) (-3144 (((-3 (-618 $) #3="failed") $) 209 (|has| |#1| (-1078)))) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) #3#) $) 218 (|has| |#1| (-1018)))) (-3143 (((-3 (-618 $) #3#) $) 211 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) #3#) $) 212 (|has| |#1| (-25)))) (-3145 (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $ (-1142)) 217 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $ (-113)) 216 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $) 210 (|has| |#1| (-1078)))) (-2952 (((-112) $ (-1142)) 166) (((-112) $ (-113)) 165)) (-2725 (($ $) 67)) (-2922 (((-747) $) 158)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 196)) (-1910 ((|#1| $) 197)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1653 (((-112) $ (-1142)) 171) (((-112) $ $) 170)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-2995 (((-112) $) 182 (|has| $ (-1009 (-535))))) (-4110 (($ $ (-1142) (-747) (-1 $ $)) 222 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-618 $))) 221 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $)))) 220 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $))) 219 (|has| |#1| (-1018))) (($ $ (-618 (-113)) (-618 $) (-1142)) 208 (|has| |#1| (-594 (-524)))) (($ $ (-113) $ (-1142)) 207 (|has| |#1| (-594 (-524)))) (($ $) 206 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142))) 205 (|has| |#1| (-594 (-524)))) (($ $ (-1142)) 204 (|has| |#1| (-594 (-524)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-618 $))) 178) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) 177) (($ $ (-618 (-113)) (-618 (-1 $ $))) 176) (($ $ (-1142) (-1 $ $)) 175) (($ $ (-1142) (-1 $ (-618 $))) 174) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) 173) (($ $ (-618 (-1142)) (-618 (-1 $ $))) 172) (($ $ (-618 $) (-618 $)) 143) (($ $ $ $) 142) (($ $ (-286 $)) 141) (($ $ (-618 (-286 $))) 140) (($ $ (-618 (-591 $)) (-618 $)) 139) (($ $ (-591 $) $) 138)) (-1699 (((-747) $) 56)) (-4142 (($ (-113) (-618 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1658 (($ $ $) 157) (($ $) 156)) (-4153 (($ $ (-1142)) 246 (|has| |#1| (-1018))) (($ $ (-618 (-1142))) 245 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 244 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) 243 (|has| |#1| (-1018)))) (-3316 (($ $) 225 (|has| |#1| (-542)))) (-3318 (((-1091 |#1| (-591 $)) $) 224 (|has| |#1| (-542)))) (-3519 (($ $) 181 (|has| $ (-1018)))) (-4313 (((-524) $) 252 (|has| |#1| (-594 (-524)))) (($ (-398 $)) 223 (|has| |#1| (-542))) (((-861 (-371)) $) 188 (|has| |#1| (-594 (-861 (-371))))) (((-861 (-535)) $) 187 (|has| |#1| (-594 (-861 (-535)))))) (-3330 (($ $ $) 251 (|has| |#1| (-465)))) (-2677 (($ $ $) 250 (|has| |#1| (-465)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ (-917 |#1|)) 247 (|has| |#1| (-1018))) (($ (-400 (-917 |#1|))) 231 (|has| |#1| (-542))) (($ (-400 (-917 (-400 |#1|)))) 229 (|has| |#1| (-542))) (($ (-917 (-400 |#1|))) 228 (|has| |#1| (-542))) (($ (-400 |#1|)) 227 (|has| |#1| (-542))) (($ (-1091 |#1| (-591 $))) 213 (|has| |#1| (-1018))) (($ |#1|) 193) (($ (-1142)) 184) (($ (-591 $)) 135)) (-3023 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-2909 (($ (-618 $)) 153) (($ $) 152)) (-2329 (((-112) (-113)) 164)) (-2170 (((-112) $ $) 37)) (-1909 (($ (-1142) (-618 $)) 203) (($ (-1142) $ $ $ $) 202) (($ (-1142) $ $ $) 201) (($ (-1142) $ $) 200) (($ (-1142) $) 199)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1142)) 242 (|has| |#1| (-1018))) (($ $ (-618 (-1142))) 241 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 240 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) 239 (|has| |#1| (-1018)))) (-2885 (((-112) $ $) 131)) (-2886 (((-112) $ $) 130)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 132)) (-3006 (((-112) $ $) 129)) (-4291 (($ $ $) 62) (($ (-1091 |#1| (-591 $)) (-1091 |#1| (-591 $))) 226 (|has| |#1| (-542)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66) (($ $ (-400 (-535))) 87)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170))))) -(((-29 |#1|) (-138) (-13 (-823) (-542))) (T -29)) -((-3517 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-542))))) (-1259 (*1 *2 *1) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *3)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-542))))) (-1259 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *4)))) (-1258 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-542))))) (-1662 (*1 *2 *1) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *3)))) (-1258 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-542))))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-414 |t#1|) (-10 -8 (-15 -3517 ($ $)) (-15 -1259 ((-618 $) $)) (-15 -3517 ($ $ (-1142))) (-15 -1259 ((-618 $) $ (-1142))) (-15 -1258 ($ $)) (-15 -1662 ((-618 $) $)) (-15 -1258 ($ $ (-1142))) (-15 -1662 ((-618 $) $ (-1142))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))) ((-237) . T) ((-283) . T) ((-300) . T) ((-302 $) . T) ((-291) . T) ((-356) . T) ((-370 |#1|) |has| |#1| (-1018)) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-414 |#1|) . T) ((-444) . T) ((-465) |has| |#1| (-465)) ((-505 (-591 $) $) . T) ((-505 $ $) . T) ((-542) . T) ((-624 #1#) . T) ((-624 |#1|) |has| |#1| (-170)) ((-624 $) . T) ((-617 (-535)) -12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) ((-617 |#1|) |has| |#1| (-1018)) ((-694 #1#) . T) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-871 (-1142)) |has| |#1| (-1018)) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-855 |#1|) . T) ((-892) . T) ((-973) . T) ((-1009 (-400 (-535))) -3874 (|has| |#1| (-1009 (-400 (-535)))) (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) ((-1009 (-400 (-917 |#1|))) |has| |#1| (-542)) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 (-591 $)) . T) ((-1009 (-917 |#1|)) |has| |#1| (-1018)) ((-1009 (-1142)) . T) ((-1009 |#1|) . T) ((-1024 #1#) . T) ((-1024 |#1|) |has| |#1| (-170)) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1178) . T) ((-1183) . T)) -((-3217 (((-1055 (-219)) $) NIL)) (-3218 (((-1055 (-219)) $) NIL)) (-3452 (($ $ (-219)) 125)) (-1260 (($ (-917 (-535)) (-1142) (-1142) (-1055 (-400 (-535))) (-1055 (-400 (-535)))) 83)) (-3219 (((-618 (-618 (-914 (-219)))) $) 137)) (-4300 (((-835) $) 149))) -(((-30) (-13 (-926) (-10 -8 (-15 -1260 ($ (-917 (-535)) (-1142) (-1142) (-1055 (-400 (-535))) (-1055 (-400 (-535))))) (-15 -3452 ($ $ (-219)))))) (T -30)) -((-1260 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-917 (-535))) (-5 *3 (-1142)) (-5 *4 (-1055 (-400 (-535)))) (-5 *1 (-30)))) (-3452 (*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30))))) -(-13 (-926) (-10 -8 (-15 -1260 ($ (-917 (-535)) (-1142) (-1142) (-1055 (-400 (-535))) (-1055 (-400 (-535))))) (-15 -3452 ($ $ (-219))))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 11)) (-3015 (((-1101) $) 9)) (-3375 (((-112) $ $) NIL))) -(((-31) (-13 (-1049) (-10 -8 (-15 -3015 ((-1101) $)) (-15 -3567 ((-1101) $))))) (T -31)) -((-3015 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31))))) -(-13 (-1049) (-10 -8 (-15 -3015 ((-1101) $)) (-15 -3567 ((-1101) $)))) -((-3517 ((|#2| (-1136 |#2|) (-1142)) 43)) (-3368 (((-113) (-113)) 56)) (-1652 (((-1136 |#2|) (-591 |#2|)) 133 (|has| |#1| (-1009 (-535))))) (-1263 ((|#2| |#1| (-535)) 122 (|has| |#1| (-1009 (-535))))) (-1261 ((|#2| (-1136 |#2|) |#2|) 30)) (-1262 (((-835) (-618 |#2|)) 85)) (-3519 ((|#2| |#2|) 129 (|has| |#1| (-1009 (-535))))) (-2329 (((-112) (-113)) 18)) (** ((|#2| |#2| (-400 (-535))) 96 (|has| |#1| (-1009 (-535)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3517 (|#2| (-1136 |#2|) (-1142))) (-15 -3368 ((-113) (-113))) (-15 -2329 ((-112) (-113))) (-15 -1261 (|#2| (-1136 |#2|) |#2|)) (-15 -1262 ((-835) (-618 |#2|))) (IF (|has| |#1| (-1009 (-535))) (PROGN (-15 ** (|#2| |#2| (-400 (-535)))) (-15 -1652 ((-1136 |#2|) (-591 |#2|))) (-15 -3519 (|#2| |#2|)) (-15 -1263 (|#2| |#1| (-535)))) |%noBranch|)) (-13 (-823) (-542)) (-414 |#1|)) (T -32)) -((-1263 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-4 *2 (-414 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1009 *4)) (-4 *3 (-13 (-823) (-542))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-1009 (-535))) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-32 *3 *2)) (-4 *2 (-414 *3)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-414 *4)) (-4 *4 (-1009 (-535))) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-1136 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-535))) (-4 *4 (-1009 (-535))) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-32 *4 *2)) (-4 *2 (-414 *4)))) (-1262 (*1 *2 *3) (-12 (-5 *3 (-618 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-835)) (-5 *1 (-32 *4 *5)))) (-1261 (*1 *2 *3 *2) (-12 (-5 *3 (-1136 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-32 *4 *2)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-414 *4)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-32 *3 *4)) (-4 *4 (-414 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *2)) (-5 *4 (-1142)) (-4 *2 (-414 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-823) (-542)))))) -(-10 -7 (-15 -3517 (|#2| (-1136 |#2|) (-1142))) (-15 -3368 ((-113) (-113))) (-15 -2329 ((-112) (-113))) (-15 -1261 (|#2| (-1136 |#2|) |#2|)) (-15 -1262 ((-835) (-618 |#2|))) (IF (|has| |#1| (-1009 (-535))) (PROGN (-15 ** (|#2| |#2| (-400 (-535)))) (-15 -1652 ((-1136 |#2|) (-591 |#2|))) (-15 -3519 (|#2| |#2|)) (-15 -1263 (|#2| |#1| (-535)))) |%noBranch|)) -((-1264 (((-112) $ (-747)) 16)) (-3879 (($) 10)) (-4065 (((-112) $ (-747)) 15)) (-4062 (((-112) $ (-747)) 14)) (-1265 (((-112) $ $) 8)) (-3745 (((-112) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -3879 (|#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))) (-15 -3745 ((-112) |#1|)) (-15 -1265 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3879 (|#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))) (-15 -3745 ((-112) |#1|)) (-15 -1265 ((-112) |#1| |#1|))) -((-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-4065 (((-112) $ (-747)) 9)) (-4062 (((-112) $ (-747)) 10)) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3742 (($ $) 13)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) +((-4146 (*1 *1 *2) (-12 (-5 *2 (-925 *1)) (-4 *1 (-27)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-27)))) (-4146 (*1 *1 *2 *3) (-12 (-5 *2 (-1140 *1)) (-5 *3 (-1144)) (-4 *1 (-27)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-925 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-1140 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-1140 *1)) (-5 *4 (-1144)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-925 *1)) (-4 *1 (-27)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-27)))) (-4122 (*1 *1 *2 *3) (-12 (-5 *2 (-1140 *1)) (-5 *3 (-1144)) (-4 *1 (-27)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-925 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1140 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) (-1384 (*1 *2 *3 *4) (-12 (-5 *3 (-1140 *1)) (-5 *4 (-1144)) (-4 *1 (-27)) (-5 *2 (-623 *1))))) +(-13 (-356) (-975) (-10 -8 (-15 -4146 ($ (-925 $))) (-15 -4146 ($ (-1140 $))) (-15 -4146 ($ (-1140 $) (-1144))) (-15 -4241 ((-623 $) (-925 $))) (-15 -4241 ((-623 $) (-1140 $))) (-15 -4241 ((-623 $) (-1140 $) (-1144))) (-15 -4122 ($ (-925 $))) (-15 -4122 ($ (-1140 $))) (-15 -4122 ($ (-1140 $) (-1144))) (-15 -1384 ((-623 $) (-925 $))) (-15 -1384 ((-623 $) (-1140 $))) (-15 -1384 ((-623 $) (-1140 $) (-1144))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-893) . T) ((-975) . T) ((-1026 #0#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) . T)) +((-1384 (((-623 $) (-925 $)) NIL) (((-623 $) (-1140 $)) NIL) (((-623 $) (-1140 $) (-1144)) 50) (((-623 $) $) 19) (((-623 $) $ (-1144)) 41)) (-4122 (($ (-925 $)) NIL) (($ (-1140 $)) NIL) (($ (-1140 $) (-1144)) 52) (($ $) 17) (($ $ (-1144)) 37)) (-4241 (((-623 $) (-925 $)) NIL) (((-623 $) (-1140 $)) NIL) (((-623 $) (-1140 $) (-1144)) 48) (((-623 $) $) 15) (((-623 $) $ (-1144)) 43)) (-4146 (($ (-925 $)) NIL) (($ (-1140 $)) NIL) (($ (-1140 $) (-1144)) NIL) (($ $) 12) (($ $ (-1144)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1384 ((-623 |#1|) |#1| (-1144))) (-15 -4122 (|#1| |#1| (-1144))) (-15 -1384 ((-623 |#1|) |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -4241 ((-623 |#1|) |#1| (-1144))) (-15 -4146 (|#1| |#1| (-1144))) (-15 -4241 ((-623 |#1|) |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -1384 ((-623 |#1|) (-1140 |#1|) (-1144))) (-15 -1384 ((-623 |#1|) (-1140 |#1|))) (-15 -1384 ((-623 |#1|) (-925 |#1|))) (-15 -4122 (|#1| (-1140 |#1|) (-1144))) (-15 -4122 (|#1| (-1140 |#1|))) (-15 -4122 (|#1| (-925 |#1|))) (-15 -4241 ((-623 |#1|) (-1140 |#1|) (-1144))) (-15 -4241 ((-623 |#1|) (-1140 |#1|))) (-15 -4241 ((-623 |#1|) (-925 |#1|))) (-15 -4146 (|#1| (-1140 |#1|) (-1144))) (-15 -4146 (|#1| (-1140 |#1|))) (-15 -4146 (|#1| (-925 |#1|)))) (-29 |#2|) (-13 (-825) (-542))) (T -28)) +NIL +(-10 -8 (-15 -1384 ((-623 |#1|) |#1| (-1144))) (-15 -4122 (|#1| |#1| (-1144))) (-15 -1384 ((-623 |#1|) |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -4241 ((-623 |#1|) |#1| (-1144))) (-15 -4146 (|#1| |#1| (-1144))) (-15 -4241 ((-623 |#1|) |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -1384 ((-623 |#1|) (-1140 |#1|) (-1144))) (-15 -1384 ((-623 |#1|) (-1140 |#1|))) (-15 -1384 ((-623 |#1|) (-925 |#1|))) (-15 -4122 (|#1| (-1140 |#1|) (-1144))) (-15 -4122 (|#1| (-1140 |#1|))) (-15 -4122 (|#1| (-925 |#1|))) (-15 -4241 ((-623 |#1|) (-1140 |#1|) (-1144))) (-15 -4241 ((-623 |#1|) (-1140 |#1|))) (-15 -4241 ((-623 |#1|) (-925 |#1|))) (-15 -4146 (|#1| (-1140 |#1|) (-1144))) (-15 -4146 (|#1| (-1140 |#1|))) (-15 -4146 (|#1| (-925 |#1|)))) +((-1504 (((-112) $ $) 7)) (-1384 (((-623 $) (-925 $)) 77) (((-623 $) (-1140 $)) 76) (((-623 $) (-1140 $) (-1144)) 75) (((-623 $) $) 123) (((-623 $) $ (-1144)) 121)) (-4122 (($ (-925 $)) 80) (($ (-1140 $)) 79) (($ (-1140 $) (-1144)) 78) (($ $) 124) (($ $ (-1144)) 122)) (-3433 (((-112) $) 16)) (-3141 (((-623 (-1144)) $) 198)) (-3306 (((-400 (-1140 $)) $ (-594 $)) 230 (|has| |#1| (-542)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3223 (((-623 (-594 $)) $) 161)) (-3219 (((-3 $ "failed") $ $) 19)) (-1760 (($ $ (-623 (-594 $)) (-623 $)) 151) (($ $ (-623 (-287 $))) 150) (($ $ (-287 $)) 149)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3353 (($ $) 89)) (-3631 (((-112) $ $) 57)) (-3513 (($) 17 T CONST)) (-4241 (((-623 $) (-925 $)) 83) (((-623 $) (-1140 $)) 82) (((-623 $) (-1140 $) (-1144)) 81) (((-623 $) $) 127) (((-623 $) $ (-1144)) 125)) (-4146 (($ (-925 $)) 86) (($ (-1140 $)) 85) (($ (-1140 $) (-1144)) 84) (($ $) 128) (($ $ (-1144)) 126)) (-3880 (((-3 (-925 |#1|) "failed") $) 248 (|has| |#1| (-1020))) (((-3 (-400 (-925 |#1|)) "failed") $) 232 (|has| |#1| (-542))) (((-3 |#1| "failed") $) 194) (((-3 (-550) "failed") $) 192 (|has| |#1| (-1011 (-550)))) (((-3 (-1144) "failed") $) 185) (((-3 (-594 $) "failed") $) 136) (((-3 (-400 (-550)) "failed") $) 120 (-1561 (-12 (|has| |#1| (-1011 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1011 (-400 (-550))))))) (-2726 (((-925 |#1|) $) 249 (|has| |#1| (-1020))) (((-400 (-925 |#1|)) $) 233 (|has| |#1| (-542))) ((|#1| $) 195) (((-550) $) 191 (|has| |#1| (-1011 (-550)))) (((-1144) $) 186) (((-594 $) $) 137) (((-400 (-550)) $) 119 (-1561 (-12 (|has| |#1| (-1011 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1011 (-400 (-550))))))) (-3349 (($ $ $) 53)) (-3780 (((-667 |#1|) (-667 $)) 238 (|has| |#1| (-1020))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 237 (|has| |#1| (-1020))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 118 (-1561 (-1262 (|has| |#1| (-1020)) (|has| |#1| (-619 (-550)))) (-1262 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))))) (((-667 (-550)) (-667 $)) 117 (-1561 (-1262 (|has| |#1| (-1020)) (|has| |#1| (-619 (-550)))) (-1262 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))))) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3933 (((-112) $) 68)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 190 (|has| |#1| (-859 (-372)))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 189 (|has| |#1| (-859 (-550))))) (-1380 (($ (-623 $)) 155) (($ $) 154)) (-2029 (((-623 (-114)) $) 162)) (-2926 (((-114) (-114)) 163)) (-3102 (((-112) $) 30)) (-3718 (((-112) $) 183 (|has| $ (-1011 (-550))))) (-1552 (($ $) 215 (|has| |#1| (-1020)))) (-2705 (((-1093 |#1| (-594 $)) $) 214 (|has| |#1| (-1020)))) (-1460 (($ $ (-550)) 88)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-1843 (((-1140 $) (-594 $)) 180 (|has| $ (-1020)))) (-2707 (($ $ $) 134)) (-4164 (($ $ $) 133)) (-3972 (($ (-1 $ $) (-594 $)) 169)) (-2106 (((-3 (-594 $) "failed") $) 159)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3296 (((-623 (-594 $)) $) 160)) (-2776 (($ (-114) (-623 $)) 168) (($ (-114) $) 167)) (-1598 (((-3 (-623 $) "failed") $) 209 (|has| |#1| (-1080)))) (-1896 (((-3 (-2 (|:| |val| $) (|:| -3521 (-550))) "failed") $) 218 (|has| |#1| (-1020)))) (-1444 (((-3 (-623 $) "failed") $) 211 (|has| |#1| (-25)))) (-1264 (((-3 (-2 (|:| -2855 (-550)) (|:| |var| (-594 $))) "failed") $) 212 (|has| |#1| (-25)))) (-1748 (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-1144)) 217 (|has| |#1| (-1020))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-114)) 216 (|has| |#1| (-1020))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $) 210 (|has| |#1| (-1080)))) (-3890 (((-112) $ (-1144)) 166) (((-112) $ (-114)) 165)) (-3235 (($ $) 67)) (-3142 (((-749) $) 158)) (-3337 (((-1088) $) 10)) (-3248 (((-112) $) 196)) (-3256 ((|#1| $) 197)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-1938 (((-112) $ (-1144)) 171) (((-112) $ $) 170)) (-3338 (((-411 $) $) 71)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3777 (((-112) $) 182 (|has| $ (-1011 (-550))))) (-3866 (($ $ (-1144) (-749) (-1 $ $)) 222 (|has| |#1| (-1020))) (($ $ (-1144) (-749) (-1 $ (-623 $))) 221 (|has| |#1| (-1020))) (($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ (-623 $)))) 220 (|has| |#1| (-1020))) (($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ $))) 219 (|has| |#1| (-1020))) (($ $ (-623 (-114)) (-623 $) (-1144)) 208 (|has| |#1| (-596 (-526)))) (($ $ (-114) $ (-1144)) 207 (|has| |#1| (-596 (-526)))) (($ $) 206 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1144))) 205 (|has| |#1| (-596 (-526)))) (($ $ (-1144)) 204 (|has| |#1| (-596 (-526)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-623 $))) 178) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) 177) (($ $ (-623 (-114)) (-623 (-1 $ $))) 176) (($ $ (-1144) (-1 $ $)) 175) (($ $ (-1144) (-1 $ (-623 $))) 174) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) 173) (($ $ (-623 (-1144)) (-623 (-1 $ $))) 172) (($ $ (-623 $) (-623 $)) 143) (($ $ $ $) 142) (($ $ (-287 $)) 141) (($ $ (-623 (-287 $))) 140) (($ $ (-623 (-594 $)) (-623 $)) 139) (($ $ (-594 $) $) 138)) (-3542 (((-749) $) 56)) (-2680 (($ (-114) (-623 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-3930 (($ $ $) 157) (($ $) 156)) (-2393 (($ $ (-1144)) 246 (|has| |#1| (-1020))) (($ $ (-623 (-1144))) 245 (|has| |#1| (-1020))) (($ $ (-1144) (-749)) 244 (|has| |#1| (-1020))) (($ $ (-623 (-1144)) (-623 (-749))) 243 (|has| |#1| (-1020)))) (-2639 (($ $) 225 (|has| |#1| (-542)))) (-2715 (((-1093 |#1| (-594 $)) $) 224 (|has| |#1| (-542)))) (-1310 (($ $) 181 (|has| $ (-1020)))) (-4028 (((-526) $) 252 (|has| |#1| (-596 (-526)))) (($ (-411 $)) 223 (|has| |#1| (-542))) (((-865 (-372)) $) 188 (|has| |#1| (-596 (-865 (-372))))) (((-865 (-550)) $) 187 (|has| |#1| (-596 (-865 (-550)))))) (-1270 (($ $ $) 251 (|has| |#1| (-465)))) (-3292 (($ $ $) 250 (|has| |#1| (-465)))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ (-925 |#1|)) 247 (|has| |#1| (-1020))) (($ (-400 (-925 |#1|))) 231 (|has| |#1| (-542))) (($ (-400 (-925 (-400 |#1|)))) 229 (|has| |#1| (-542))) (($ (-925 (-400 |#1|))) 228 (|has| |#1| (-542))) (($ (-400 |#1|)) 227 (|has| |#1| (-542))) (($ (-1093 |#1| (-594 $))) 213 (|has| |#1| (-1020))) (($ |#1|) 193) (($ (-1144)) 184) (($ (-594 $)) 135)) (-4242 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-3716 (($ (-623 $)) 153) (($ $) 152)) (-2222 (((-112) (-114)) 164)) (-1345 (((-112) $ $) 37)) (-3240 (($ (-1144) (-623 $)) 203) (($ (-1144) $ $ $ $) 202) (($ (-1144) $ $ $) 201) (($ (-1144) $ $) 200) (($ (-1144) $) 199)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-1144)) 242 (|has| |#1| (-1020))) (($ $ (-623 (-1144))) 241 (|has| |#1| (-1020))) (($ $ (-1144) (-749)) 240 (|has| |#1| (-1020))) (($ $ (-623 (-1144)) (-623 (-749))) 239 (|has| |#1| (-1020)))) (-2363 (((-112) $ $) 131)) (-2345 (((-112) $ $) 130)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 132)) (-2335 (((-112) $ $) 129)) (-2414 (($ $ $) 62) (($ (-1093 |#1| (-594 $)) (-1093 |#1| (-594 $))) 226 (|has| |#1| (-542)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66) (($ $ (-400 (-550))) 87)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170))))) +(((-29 |#1|) (-138) (-13 (-825) (-542))) (T -29)) +((-4146 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-542))))) (-4241 (*1 *2 *1) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *3)))) (-4146 (*1 *1 *1 *2) (-12 (-5 *2 (-1144)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-542))))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *4)))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-542))))) (-1384 (*1 *2 *1) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *3)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-1144)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-542))))) (-1384 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-423 |t#1|) (-10 -8 (-15 -4146 ($ $)) (-15 -4241 ((-623 $) $)) (-15 -4146 ($ $ (-1144))) (-15 -4241 ((-623 $) $ (-1144))) (-15 -4122 ($ $)) (-15 -1384 ((-623 $) $)) (-15 -4122 ($ $ (-1144))) (-15 -1384 ((-623 $) $ (-1144))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-596 (-865 (-372))) |has| |#1| (-596 (-865 (-372)))) ((-596 (-865 (-550))) |has| |#1| (-596 (-865 (-550)))) ((-237) . T) ((-283) . T) ((-300) . T) ((-302 $) . T) ((-295) . T) ((-356) . T) ((-370 |#1|) |has| |#1| (-1020)) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-423 |#1|) . T) ((-444) . T) ((-465) |has| |#1| (-465)) ((-505 (-594 $) $) . T) ((-505 $ $) . T) ((-542) . T) ((-626 #0#) . T) ((-626 |#1|) |has| |#1| (-170)) ((-626 $) . T) ((-619 (-550)) -12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) ((-619 |#1|) |has| |#1| (-1020)) ((-696 #0#) . T) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-873 (-1144)) |has| |#1| (-1020)) ((-859 (-372)) |has| |#1| (-859 (-372))) ((-859 (-550)) |has| |#1| (-859 (-550))) ((-857 |#1|) . T) ((-893) . T) ((-975) . T) ((-1011 (-400 (-550))) -1561 (|has| |#1| (-1011 (-400 (-550)))) (-12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550))))) ((-1011 (-400 (-925 |#1|))) |has| |#1| (-542)) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 (-594 $)) . T) ((-1011 (-925 |#1|)) |has| |#1| (-1020)) ((-1011 (-1144)) . T) ((-1011 |#1|) . T) ((-1026 #0#) . T) ((-1026 |#1|) |has| |#1| (-170)) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1181) . T) ((-1185) . T)) +((-3213 (((-1062 (-219)) $) NIL)) (-3202 (((-1062 (-219)) $) NIL)) (-1682 (($ $ (-219)) 125)) (-3622 (($ (-925 (-550)) (-1144) (-1144) (-1062 (-400 (-550))) (-1062 (-400 (-550)))) 83)) (-3576 (((-623 (-623 (-916 (-219)))) $) 137)) (-1518 (((-836) $) 149))) +(((-30) (-13 (-928) (-10 -8 (-15 -3622 ($ (-925 (-550)) (-1144) (-1144) (-1062 (-400 (-550))) (-1062 (-400 (-550))))) (-15 -1682 ($ $ (-219)))))) (T -30)) +((-3622 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-925 (-550))) (-5 *3 (-1144)) (-5 *4 (-1062 (-400 (-550)))) (-5 *1 (-30)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30))))) +(-13 (-928) (-10 -8 (-15 -3622 ($ (-925 (-550)) (-1144) (-1144) (-1062 (-400 (-550))) (-1062 (-400 (-550))))) (-15 -1682 ($ $ (-219))))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 19) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-1103) $) 11)) (-1860 (((-1103) $) 9)) (-2316 (((-112) $ $) NIL))) +(((-31) (-13 (-1051) (-10 -8 (-15 -1860 ((-1103) $)) (-15 -1925 ((-1103) $))))) (T -31)) +((-1860 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-31)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-31))))) +(-13 (-1051) (-10 -8 (-15 -1860 ((-1103) $)) (-15 -1925 ((-1103) $)))) +((-4146 ((|#2| (-1140 |#2|) (-1144)) 43)) (-2926 (((-114) (-114)) 56)) (-1843 (((-1140 |#2|) (-594 |#2|)) 133 (|has| |#1| (-1011 (-550))))) (-2735 ((|#2| |#1| (-550)) 122 (|has| |#1| (-1011 (-550))))) (-3746 ((|#2| (-1140 |#2|) |#2|) 30)) (-2681 (((-836) (-623 |#2|)) 85)) (-1310 ((|#2| |#2|) 129 (|has| |#1| (-1011 (-550))))) (-2222 (((-112) (-114)) 18)) (** ((|#2| |#2| (-400 (-550))) 96 (|has| |#1| (-1011 (-550)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -4146 (|#2| (-1140 |#2|) (-1144))) (-15 -2926 ((-114) (-114))) (-15 -2222 ((-112) (-114))) (-15 -3746 (|#2| (-1140 |#2|) |#2|)) (-15 -2681 ((-836) (-623 |#2|))) (IF (|has| |#1| (-1011 (-550))) (PROGN (-15 ** (|#2| |#2| (-400 (-550)))) (-15 -1843 ((-1140 |#2|) (-594 |#2|))) (-15 -1310 (|#2| |#2|)) (-15 -2735 (|#2| |#1| (-550)))) |%noBranch|)) (-13 (-825) (-542)) (-423 |#1|)) (T -32)) +((-2735 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *2 (-423 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1011 *4)) (-4 *3 (-13 (-825) (-542))))) (-1310 (*1 *2 *2) (-12 (-4 *3 (-1011 (-550))) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-32 *3 *2)) (-4 *2 (-423 *3)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-594 *5)) (-4 *5 (-423 *4)) (-4 *4 (-1011 (-550))) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-1140 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-550))) (-4 *4 (-1011 (-550))) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-32 *4 *2)) (-4 *2 (-423 *4)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-836)) (-5 *1 (-32 *4 *5)))) (-3746 (*1 *2 *3 *2) (-12 (-5 *3 (-1140 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-32 *4 *2)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-423 *4)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-32 *3 *4)) (-4 *4 (-423 *3)))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-1140 *2)) (-5 *4 (-1144)) (-4 *2 (-423 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-825) (-542)))))) +(-10 -7 (-15 -4146 (|#2| (-1140 |#2|) (-1144))) (-15 -2926 ((-114) (-114))) (-15 -2222 ((-112) (-114))) (-15 -3746 (|#2| (-1140 |#2|) |#2|)) (-15 -2681 ((-836) (-623 |#2|))) (IF (|has| |#1| (-1011 (-550))) (PROGN (-15 ** (|#2| |#2| (-400 (-550)))) (-15 -1843 ((-1140 |#2|) (-594 |#2|))) (-15 -1310 (|#2| |#2|)) (-15 -2735 (|#2| |#1| (-550)))) |%noBranch|)) +((-4047 (((-112) $ (-749)) 16)) (-3513 (($) 10)) (-1859 (((-112) $ (-749)) 15)) (-1573 (((-112) $ (-749)) 14)) (-4140 (((-112) $ $) 8)) (-2902 (((-112) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -3513 (|#1|)) (-15 -4047 ((-112) |#1| (-749))) (-15 -1859 ((-112) |#1| (-749))) (-15 -1573 ((-112) |#1| (-749))) (-15 -2902 ((-112) |#1|)) (-15 -4140 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3513 (|#1|)) (-15 -4047 ((-112) |#1| (-749))) (-15 -1859 ((-112) |#1| (-749))) (-15 -1573 ((-112) |#1| (-749))) (-15 -2902 ((-112) |#1|)) (-15 -4140 ((-112) |#1| |#1|))) +((-4047 (((-112) $ (-749)) 8)) (-3513 (($) 7 T CONST)) (-1859 (((-112) $ (-749)) 9)) (-1573 (((-112) $ (-749)) 10)) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-1731 (($ $) 13)) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) (((-34) (-138)) (T -34)) -((-1265 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3742 (*1 *1 *1) (-4 *1 (-34))) (-3911 (*1 *1) (-4 *1 (-34))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4062 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-4065 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-1264 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-3879 (*1 *1) (-4 *1 (-34))) (-4299 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-34)) (-5 *2 (-747))))) -(-13 (-1178) (-10 -8 (-15 -1265 ((-112) $ $)) (-15 -3742 ($ $)) (-15 -3911 ($)) (-15 -3745 ((-112) $)) (-15 -4062 ((-112) $ (-747))) (-15 -4065 ((-112) $ (-747))) (-15 -1264 ((-112) $ (-747))) (-15 -3879 ($) -4294) (IF (|has| $ (-6 -4336)) (-15 -4299 ((-747) $)) |%noBranch|))) -(((-1178) . T)) -((-3835 (($ $) 11)) (-3833 (($ $) 10)) (-3837 (($ $) 9)) (-3838 (($ $) 8)) (-3836 (($ $) 7)) (-3834 (($ $) 6))) +((-4140 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1731 (*1 *1 *1) (-4 *1 (-34))) (-3498 (*1 *1) (-4 *1 (-34))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1573 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-1859 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-4047 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-3513 (*1 *1) (-4 *1 (-34))) (-3191 (*1 *2 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-34)) (-5 *2 (-749))))) +(-13 (-1181) (-10 -8 (-15 -4140 ((-112) $ $)) (-15 -1731 ($ $)) (-15 -3498 ($)) (-15 -2902 ((-112) $)) (-15 -1573 ((-112) $ (-749))) (-15 -1859 ((-112) $ (-749))) (-15 -4047 ((-112) $ (-749))) (-15 -3513 ($) -2258) (IF (|has| $ (-6 -4342)) (-15 -3191 ((-749) $)) |%noBranch|))) +(((-1181) . T)) +((-3187 (($ $) 11)) (-3167 (($ $) 10)) (-3209 (($ $) 9)) (-3294 (($ $) 8)) (-3198 (($ $) 7)) (-3176 (($ $) 6))) (((-35) (-138)) (T -35)) -((-3835 (*1 *1 *1) (-4 *1 (-35))) (-3833 (*1 *1 *1) (-4 *1 (-35))) (-3837 (*1 *1 *1) (-4 *1 (-35))) (-3838 (*1 *1 *1) (-4 *1 (-35))) (-3836 (*1 *1 *1) (-4 *1 (-35))) (-3834 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3834 ($ $)) (-15 -3836 ($ $)) (-15 -3838 ($ $)) (-15 -3837 ($ $)) (-15 -3833 ($ $)) (-15 -3835 ($ $)))) -((-2887 (((-112) $ $) 19 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3744 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 125)) (-4137 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 148)) (-4139 (($ $) 146)) (-3943 (($) 72) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 71)) (-2296 (((-1230) $ |#1| |#1|) 99 (|has| $ (-6 -4337))) (((-1230) $ (-535) (-535)) 178 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 159 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-1841 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 200 (|has| $ (-6 -4337))) (($ $) 199 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-1264 (((-112) $ (-747)) 8)) (-3346 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 134 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 155 (|has| $ (-6 -4337)))) (-4128 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 157 (|has| $ (-6 -4337)))) (-4131 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 153 (|has| $ (-6 -4337)))) (-4130 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 189 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-1191 (-535)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 160 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #1="last" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 158 (|has| $ (-6 -4337))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #3="first" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 154 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #4="value" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 133 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 132 (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 45 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 216)) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 55 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 175 (|has| $ (-6 -4336)))) (-4138 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 147)) (-2305 (((-3 |#2| #5="failed") |#1| $) 61)) (-3879 (($) 7 T CONST)) (-2368 (($ $) 201 (|has| $ (-6 -4337)))) (-2369 (($ $) 211)) (-4141 (($ $ (-747)) 142) (($ $) 140)) (-2446 (($ $) 214 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1394 (($ $) 58 (-3874 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))) (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 220) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 215 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 54 (|has| $ (-6 -4336))) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 174 (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 56 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 52 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 176 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 173 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 172 (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 190 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) 88) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 188)) (-3784 (((-112) $) 192)) (-3761 (((-535) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 208) (((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 207 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) (((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 206 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 30 (|has| $ (-6 -4336))) (((-618 |#2|) $) 79 (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 114 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 123)) (-3348 (((-112) $ $) 131 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-3960 (($ (-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 169)) (-4065 (((-112) $ (-747)) 9)) (-2298 ((|#1| $) 96 (|has| |#1| (-823))) (((-535) $) 180 (|has| (-535) (-823)))) (-3660 (($ $ $) 198 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3180 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3855 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 29 (|has| $ (-6 -4336))) (((-618 |#2|) $) 80 (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 115 (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336)))) (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-2299 ((|#1| $) 95 (|has| |#1| (-823))) (((-535) $) 181 (|has| (-535) (-823)))) (-3661 (($ $ $) 197 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 34 (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 110 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 109)) (-3880 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 225)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 128)) (-3864 (((-112) $) 124)) (-3576 (((-1124) $) 22 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-4140 (($ $ (-747)) 145) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 143)) (-2735 (((-618 |#1|) $) 63)) (-2306 (((-112) |#1| $) 64)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 39)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 40) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 219) (($ $ $ (-535)) 218)) (-2373 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 162) (($ $ $ (-535)) 161)) (-2301 (((-618 |#1|) $) 93) (((-618 (-535)) $) 183)) (-2302 (((-112) |#1| $) 92) (((-112) (-535) $) 184)) (-3577 (((-1086) $) 21 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-4143 ((|#2| $) 97 (|has| |#1| (-823))) (($ $ (-747)) 139) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 137)) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 51) (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #6#) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 171)) (-2297 (($ $ |#2|) 98 (|has| $ (-6 -4337))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 179 (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 41)) (-3785 (((-112) $) 191)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 32 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 112 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) 26 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 25 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 24 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 23 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 121 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 120 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 119 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) 118 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 182 (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-2303 (((-618 |#2|) $) 91) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 185)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 187) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 186) (($ $ (-1191 (-535))) 165) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #3#) 138) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #4#) 126)) (-3350 (((-535) $ $) 129)) (-1518 (($) 49) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 48)) (-1627 (($ $ (-535)) 222) (($ $ (-1191 (-535))) 221)) (-2374 (($ $ (-535)) 164) (($ $ (-1191 (-535))) 163)) (-3979 (((-112) $) 127)) (-4134 (($ $) 151)) (-4132 (($ $) 152 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 150)) (-4136 (($ $) 149)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-747) |#2| $) 81 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 113 (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) 202 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524)))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 50) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 170)) (-4133 (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 224) (($ $ $) 223)) (-4144 (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 168) (($ (-618 $)) 167) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 136) (($ $ $) 135)) (-4300 (((-835) $) 18 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835)))))) (-3859 (((-618 $) $) 122)) (-3349 (((-112) $ $) 130 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 42)) (-1266 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") |#1| $) 108)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 33 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 111 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 195 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2886 (((-112) $ $) 194 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3375 (((-112) $ $) 20 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3005 (((-112) $ $) 196 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3006 (((-112) $ $) 193 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-36 |#1| |#2|) (-138) (-1067) (-1067)) (T -36)) -((-1266 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| -4203 *3) (|:| -2184 *4)))))) -(-13 (-1155 |t#1| |t#2|) (-642 (-2 (|:| -4203 |t#1|) (|:| -2184 |t#2|))) (-10 -8 (-15 -1266 ((-3 (-2 (|:| -4203 |t#1|) (|:| -2184 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-106 #1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((-101) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) (|has| |#2| (-1067))) ((-593 (-835)) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-1067)) (|has| |#2| (-593 (-835)))) ((-149 #2=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((-594 (-524)) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))) ((-223 #1#) . T) ((-229 #1#) . T) ((-279 #3=(-535) #2#) . T) ((-279 |#1| |#2|) . T) ((-281 #3# #2#) . T) ((-281 |#1| |#2|) . T) ((-302 #2#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-275 #2#) . T) ((-365 #2#) . T) ((-481 #2#) . T) ((-481 |#2|) . T) ((-584 #3# #2#) . T) ((-584 |#1| |#2|) . T) ((-505 #2# #2#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-590 |#1| |#2|) . T) ((-627 #2#) . T) ((-642 #2#) . T) ((-823) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) ((-981 #2#) . T) ((-1067) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) (|has| |#2| (-1067))) ((-1115 #2#) . T) ((-1155 |#1| |#2|) . T) ((-1178) . T) ((-1213 #2#) . T)) -((-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-38 |#2|) (-170)) (T -37)) -NIL -(-10 -8 (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +((-3187 (*1 *1 *1) (-4 *1 (-35))) (-3167 (*1 *1 *1) (-4 *1 (-35))) (-3209 (*1 *1 *1) (-4 *1 (-35))) (-3294 (*1 *1 *1) (-4 *1 (-35))) (-3198 (*1 *1 *1) (-4 *1 (-35))) (-3176 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3176 ($ $)) (-15 -3198 ($ $)) (-15 -3294 ($ $)) (-15 -3209 ($ $)) (-15 -3167 ($ $)) (-15 -3187 ($ $)))) +((-1504 (((-112) $ $) 19 (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3625 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 125)) (-3996 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 148)) (-4180 (($ $) 146)) (-2570 (($) 72) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 71)) (-3029 (((-1232) $ |#1| |#1|) 99 (|has| $ (-6 -4343))) (((-1232) $ (-550) (-550)) 178 (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) 159 (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-3491 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 200 (|has| $ (-6 -4343))) (($ $) 199 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)) (|has| $ (-6 -4343))))) (-1674 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-4047 (((-112) $ (-749)) 8)) (-2190 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 134 (|has| $ (-6 -4343)))) (-1431 (($ $ $) 155 (|has| $ (-6 -4343)))) (-1300 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 157 (|has| $ (-6 -4343)))) (-3373 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 153 (|has| $ (-6 -4343)))) (-1705 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 189 (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-1194 (-550)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 160 (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "last" (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 158 (|has| $ (-6 -4343))) (($ $ "rest" $) 156 (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "first" (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 154 (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "value" (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 133 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 132 (|has| $ (-6 -4343)))) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 45 (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 216)) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 55 (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 175 (|has| $ (-6 -4342)))) (-3985 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 147)) (-2908 (((-3 |#2| "failed") |#1| $) 61)) (-3513 (($) 7 T CONST)) (-2342 (($ $) 201 (|has| $ (-6 -4343)))) (-3243 (($ $) 211)) (-1308 (($ $ (-749)) 142) (($ $) 140)) (-3912 (($ $) 214 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-1328 (($ $) 58 (-1561 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342))) (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 46 (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 220) (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 215 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 54 (|has| $ (-6 -4342))) (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 174 (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 56 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 53 (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 52 (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 176 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 173 (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 172 (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 190 (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) 88) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) 188)) (-3815 (((-112) $) 192)) (-2302 (((-550) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 208) (((-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 207 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) (((-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) 206 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 30 (|has| $ (-6 -4342))) (((-623 |#2|) $) 79 (|has| $ (-6 -4342))) (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 114 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 123)) (-2333 (((-112) $ $) 131 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-2578 (($ (-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 169)) (-1859 (((-112) $ (-749)) 9)) (-3195 ((|#1| $) 96 (|has| |#1| (-825))) (((-550) $) 180 (|has| (-550) (-825)))) (-2707 (($ $ $) 198 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-3884 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-1832 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 29 (|has| $ (-6 -4342))) (((-623 |#2|) $) 80 (|has| $ (-6 -4342))) (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 115 (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342)))) (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342))))) (-3283 ((|#1| $) 95 (|has| |#1| (-825))) (((-550) $) 181 (|has| (-550) (-825)))) (-4164 (($ $ $) 197 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 34 (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4343))) (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 110 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 109)) (-4218 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 225)) (-1573 (((-112) $ (-749)) 10)) (-2513 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 128)) (-3312 (((-112) $) 124)) (-1825 (((-1126) $) 22 (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3159 (($ $ (-749)) 145) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 143)) (-3531 (((-623 |#1|) $) 63)) (-2550 (((-112) |#1| $) 64)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 39)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 40) (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) 219) (($ $ $ (-550)) 218)) (-2055 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) 162) (($ $ $ (-550)) 161)) (-2325 (((-623 |#1|) $) 93) (((-623 (-550)) $) 183)) (-2400 (((-112) |#1| $) 92) (((-112) (-550) $) 184)) (-3337 (((-1088) $) 21 (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-1293 ((|#2| $) 97 (|has| |#1| (-825))) (($ $ (-749)) 139) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 137)) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 51) (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 171)) (-3111 (($ $ |#2|) 98 (|has| $ (-6 -4343))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 179 (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 41)) (-2719 (((-112) $) 191)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 32 (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 112 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) 26 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 25 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 24 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 23 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 121 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 120 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 119 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) 118 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 182 (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-2477 (((-623 |#2|) $) 91) (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 185)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 187) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) 186) (($ $ (-1194 (-550))) 165) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "first") 138) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "value") 126)) (-2487 (((-550) $ $) 129)) (-2729 (($) 49) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 48)) (-3476 (($ $ (-550)) 222) (($ $ (-1194 (-550))) 221)) (-1529 (($ $ (-550)) 164) (($ $ (-1194 (-550))) 163)) (-2136 (((-112) $) 127)) (-3635 (($ $) 151)) (-3472 (($ $) 152 (|has| $ (-6 -4343)))) (-3728 (((-749) $) 150)) (-3786 (($ $) 149)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 31 (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-749) |#2| $) 81 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 113 (|has| $ (-6 -4342)))) (-3593 (($ $ $ (-550)) 202 (|has| $ (-6 -4343)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526)))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 50) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 170)) (-3547 (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 224) (($ $ $) 223)) (-3227 (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 168) (($ (-623 $)) 167) (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 136) (($ $ $) 135)) (-1518 (((-836) $) 18 (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))) (|has| |#2| (-595 (-836))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836)))))) (-3997 (((-623 $) $) 122)) (-2413 (((-112) $ $) 130 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 42)) (-3168 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") |#1| $) 108)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 33 (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 111 (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) 195 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-2345 (((-112) $ $) 194 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-2316 (((-112) $ $) 20 (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-2354 (((-112) $ $) 196 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-2335 (((-112) $ $) 193 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-36 |#1| |#2|) (-138) (-1068) (-1068)) (T -36)) +((-3168 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2763 *3) (|:| -2119 *4)))))) +(-13 (-1157 |t#1| |t#2|) (-644 (-2 (|:| -2763 |t#1|) (|:| -2119 |t#2|))) (-10 -8 (-15 -3168 ((-3 (-2 (|:| -2763 |t#1|) (|:| -2119 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T) ((-101) -1561 (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825))) ((-595 (-836)) -1561 (|has| |#2| (-1068)) (|has| |#2| (-595 (-836))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836)))) ((-149 #1=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T) ((-596 (-526)) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))) ((-223 #0#) . T) ((-229 #0#) . T) ((-279 #2=(-550) #1#) . T) ((-279 |#1| |#2|) . T) ((-281 #2# #1#) . T) ((-281 |#1| |#2|) . T) ((-302 #1#) -12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-275 #1#) . T) ((-366 #1#) . T) ((-481 #1#) . T) ((-481 |#2|) . T) ((-586 #2# #1#) . T) ((-586 |#1| |#2|) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-592 |#1| |#2|) . T) ((-629 #1#) . T) ((-644 #1#) . T) ((-825) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)) ((-983 #1#) . T) ((-1068) -1561 (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825))) ((-1117 #1#) . T) ((-1157 |#1| |#2|) . T) ((-1181) . T) ((-1215 #1#) . T)) +((-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) (-38 |#2|) (-170)) (T -37)) +NIL +(-10 -8 (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 35)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) (((-38 |#1|) (-138) (-170)) (T -38)) -((-4300 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))) -(-13 (-1018) (-694 |t#1|) (-10 -8 (-15 -4300 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-3760 (((-398 |#1|) |#1|) 41)) (-4075 (((-398 |#1|) |#1|) 30) (((-398 |#1|) |#1| (-618 (-48))) 33)) (-1267 (((-112) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1| (-618 (-48)))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3760 ((-398 |#1|) |#1|)) (-15 -1267 ((-112) |#1|))) (-1200 (-48))) (T -39)) -((-1267 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))) (-3760 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-48))) (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48)))))) -(-10 -7 (-15 -4075 ((-398 |#1|) |#1| (-618 (-48)))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3760 ((-398 |#1|) |#1|)) (-15 -1267 ((-112) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1758 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2171 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2169 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1896 (((-665 (-400 |#2|)) (-1224 $)) NIL) (((-665 (-400 |#2|))) NIL)) (-3672 (((-400 |#2|) $) NIL)) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-400 |#2|) (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4312 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3454 (((-747)) NIL (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) NIL)) (-1771 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| (-400 |#2|) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-3 (-400 |#2|) #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| (-400 |#2|) (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-400 |#2|) $) NIL)) (-1906 (($ (-1224 (-400 |#2|)) (-1224 $)) NIL) (($ (-1224 (-400 |#2|))) 57) (($ (-1224 |#2|) |#2|) 125)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-343)))) (-2883 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1895 (((-665 (-400 |#2|)) $ (-1224 $)) NIL) (((-665 (-400 |#2|)) $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-400 |#2|))) (|:| |vec| (-1224 (-400 |#2|)))) (-665 $) (-1224 $)) NIL) (((-665 (-400 |#2|)) (-665 $)) NIL)) (-1763 (((-1224 $) (-1224 $)) NIL)) (-4185 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-1750 (((-618 (-618 |#1|))) NIL (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) NIL)) (-3427 (((-890)) NIL)) (-3315 (($) NIL (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) NIL)) (-1769 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2882 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| (-400 |#2|) (-356)))) (-3840 (($ $) NIL)) (-3154 (($) NIL (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) NIL (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-747)) NIL (|has| (-400 |#2|) (-343))) (($ $) NIL (|has| (-400 |#2|) (-343)))) (-4069 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-4114 (((-890) $) NIL (|has| (-400 |#2|) (-343))) (((-808 (-890)) $) NIL (|has| (-400 |#2|) (-343)))) (-2493 (((-112) $) NIL)) (-3719 (((-747)) NIL)) (-1764 (((-1224 $) (-1224 $)) 102)) (-3450 (((-400 |#2|) $) NIL)) (-1751 (((-618 (-917 |#1|)) (-1142)) NIL (|has| |#1| (-356)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2121 (((-890) $) NIL (|has| (-400 |#2|) (-361)))) (-3401 ((|#3| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3576 (((-1124) $) NIL)) (-1268 (((-1230) (-747)) 79)) (-1759 (((-665 (-400 |#2|))) 51)) (-1761 (((-665 (-400 |#2|))) 44)) (-2725 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1224 |#2|) |#2|) 126)) (-1760 (((-665 (-400 |#2|))) 45)) (-1762 (((-665 (-400 |#2|))) 43)) (-1755 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1757 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) 64)) (-1768 (((-1224 $)) 42)) (-4261 (((-1224 $)) 41)) (-1767 (((-112) $) NIL)) (-1766 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3787 (($) NIL (|has| (-400 |#2|) (-343)) CONST)) (-2483 (($ (-890)) NIL (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| #3="failed")) NIL)) (-3577 (((-1086) $) NIL)) (-1777 (((-747)) NIL)) (-2492 (($) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| (-400 |#2|) (-356)))) (-3478 (($ (-618 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-400 |#2|) (-343)))) (-4075 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1699 (((-747) $) NIL (|has| (-400 |#2|) (-356)))) (-4142 ((|#1| $ |#1| |#1|) NIL)) (-1754 (((-3 |#2| #3#)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4100 (((-400 |#2|) (-1224 $)) NIL) (((-400 |#2|)) 39)) (-1882 (((-747) $) NIL (|has| (-400 |#2|) (-343))) (((-3 (-747) "failed") $ $) NIL (|has| (-400 |#2|) (-343)))) (-4153 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2491 (((-665 (-400 |#2|)) (-1224 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3519 ((|#3|) 50)) (-1785 (($) NIL (|has| (-400 |#2|) (-343)))) (-3558 (((-1224 (-400 |#2|)) $ (-1224 $)) NIL) (((-665 (-400 |#2|)) (-1224 $) (-1224 $)) NIL) (((-1224 (-400 |#2|)) $) 58) (((-665 (-400 |#2|)) (-1224 $)) 103)) (-4313 (((-1224 (-400 |#2|)) $) NIL) (($ (-1224 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-400 |#2|) (-343)))) (-1765 (((-1224 $) (-1224 $)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1009 (-400 (-535)))))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3023 (($ $) NIL (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2689 ((|#3| $) NIL)) (-3444 (((-747)) NIL)) (-1774 (((-112)) 37)) (-1773 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2123 (((-1224 $)) 93)) (-2170 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1776 (((-112)) NIL)) (-2979 (($) 16 T CONST)) (-2985 (($) 26 T CONST)) (-2990 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-535)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-535))) NIL (|has| (-400 |#2|) (-356))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1268 ((-1230) (-747))))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) |#3|) (T -40)) -((-1268 (*1 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-4 *5 (-1200 *4)) (-5 *2 (-1230)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1200 (-400 *5))) (-14 *7 *6)))) -(-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1268 ((-1230) (-747))))) -((-1269 ((|#2| |#2|) 48)) (-1274 ((|#2| |#2|) 120 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-535)))))) (-1273 ((|#2| |#2|) 87 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-535)))))) (-1272 ((|#2| |#2|) 88 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-535)))))) (-1275 ((|#2| (-113) |#2| (-747)) 116 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-535)))))) (-1271 (((-1136 |#2|) |#2|) 45)) (-1270 ((|#2| |#2| (-618 (-591 |#2|))) 18) ((|#2| |#2| (-618 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1269 (|#2| |#2|)) (-15 -1270 (|#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| (-618 |#2|))) (-15 -1270 (|#2| |#2| (-618 (-591 |#2|)))) (-15 -1271 ((-1136 |#2|) |#2|)) (IF (|has| |#1| (-823)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1009 (-535))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -1272 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -1275 (|#2| (-113) |#2| (-747)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-542) (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 |#1| (-591 $)) $)) (-15 -3318 ((-1091 |#1| (-591 $)) $)) (-15 -4300 ($ (-1091 |#1| (-591 $))))))) (T -41)) -((-1275 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-747)) (-4 *5 (-444)) (-4 *5 (-823)) (-4 *5 (-1009 (-535))) (-4 *5 (-542)) (-5 *1 (-41 *5 *2)) (-4 *2 (-414 *5)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *5 (-591 $)) $)) (-15 -3318 ((-1091 *5 (-591 $)) $)) (-15 -4300 ($ (-1091 *5 (-591 $))))))))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1272 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1271 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-1136 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) (-15 -3318 ((-1091 *4 (-591 $)) $)) (-15 -4300 ($ (-1091 *4 (-591 $))))))))) (-1270 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-591 *2))) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) (-15 -3318 ((-1091 *4 (-591 $)) $)) (-15 -4300 ($ (-1091 *4 (-591 $))))))) (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) (-1270 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) (-15 -3318 ((-1091 *4 (-591 $)) $)) (-15 -4300 ($ (-1091 *4 (-591 $))))))) (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) (-1270 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1270 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1269 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $)))))))))) -(-10 -7 (-15 -1269 (|#2| |#2|)) (-15 -1270 (|#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| (-618 |#2|))) (-15 -1270 (|#2| |#2| (-618 (-591 |#2|)))) (-15 -1271 ((-1136 |#2|) |#2|)) (IF (|has| |#1| (-823)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1009 (-535))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -1272 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -1275 (|#2| (-113) |#2| (-747)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-4075 (((-398 (-1136 |#3|)) (-1136 |#3|) (-618 (-48))) 23) (((-398 |#3|) |#3| (-618 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4075 ((-398 |#3|) |#3| (-618 (-48)))) (-15 -4075 ((-398 (-1136 |#3|)) (-1136 |#3|) (-618 (-48))))) (-823) (-769) (-921 (-48) |#2| |#1|)) (T -42)) -((-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *7 (-921 (-48) *6 *5)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-398 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-921 (-48) *6 *5))))) -(-10 -7 (-15 -4075 ((-398 |#3|) |#3| (-618 (-48)))) (-15 -4075 ((-398 (-1136 |#3|)) (-1136 |#3|) (-618 (-48))))) -((-1279 (((-747) |#2|) 65)) (-1277 (((-747) |#2|) 68)) (-1292 (((-618 |#2|)) 33)) (-1276 (((-747) |#2|) 67)) (-1278 (((-747) |#2|) 64)) (-1280 (((-747) |#2|) 66)) (-1290 (((-618 (-665 |#1|))) 60)) (-1285 (((-618 |#2|)) 55)) (-1283 (((-618 |#2|) |#2|) 43)) (-1287 (((-618 |#2|)) 57)) (-1286 (((-618 |#2|)) 56)) (-1289 (((-618 (-665 |#1|))) 48)) (-1284 (((-618 |#2|)) 54)) (-1282 (((-618 |#2|) |#2|) 42)) (-1281 (((-618 |#2|)) 50)) (-1291 (((-618 (-665 |#1|))) 61)) (-1288 (((-618 |#2|)) 59)) (-2123 (((-1224 |#2|) (-1224 |#2|)) 84 (|has| |#1| (-300))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1276 ((-747) |#2|)) (-15 -1277 ((-747) |#2|)) (-15 -1278 ((-747) |#2|)) (-15 -1279 ((-747) |#2|)) (-15 -1280 ((-747) |#2|)) (-15 -1281 ((-618 |#2|))) (-15 -1282 ((-618 |#2|) |#2|)) (-15 -1283 ((-618 |#2|) |#2|)) (-15 -1284 ((-618 |#2|))) (-15 -1285 ((-618 |#2|))) (-15 -1286 ((-618 |#2|))) (-15 -1287 ((-618 |#2|))) (-15 -1288 ((-618 |#2|))) (-15 -1289 ((-618 (-665 |#1|)))) (-15 -1290 ((-618 (-665 |#1|)))) (-15 -1291 ((-618 (-665 |#1|)))) (-15 -1292 ((-618 |#2|))) (IF (|has| |#1| (-300)) (-15 -2123 ((-1224 |#2|) (-1224 |#2|))) |%noBranch|)) (-542) (-411 |#1|)) (T -43)) -((-2123 (*1 *2 *2) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-411 *3)) (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-43 *3 *4)))) (-1292 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1290 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1289 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1288 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1287 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1286 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1285 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1284 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1283 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1282 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1281 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1280 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1279 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1278 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1277 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1276 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) -(-10 -7 (-15 -1276 ((-747) |#2|)) (-15 -1277 ((-747) |#2|)) (-15 -1278 ((-747) |#2|)) (-15 -1279 ((-747) |#2|)) (-15 -1280 ((-747) |#2|)) (-15 -1281 ((-618 |#2|))) (-15 -1282 ((-618 |#2|) |#2|)) (-15 -1283 ((-618 |#2|) |#2|)) (-15 -1284 ((-618 |#2|))) (-15 -1285 ((-618 |#2|))) (-15 -1286 ((-618 |#2|))) (-15 -1287 ((-618 |#2|))) (-15 -1288 ((-618 |#2|))) (-15 -1289 ((-618 (-665 |#1|)))) (-15 -1290 ((-618 (-665 |#1|)))) (-15 -1291 ((-618 (-665 |#1|)))) (-15 -1292 ((-618 |#2|))) (IF (|has| |#1| (-300)) (-15 -2123 ((-1224 |#2|) (-1224 |#2|))) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 |#1|)) (-1224 $)) NIL) (((-1224 (-665 |#1|))) 24)) (-1840 (((-1224 $)) 51)) (-3879 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (|has| |#1| (-542)))) (-1814 (((-3 $ #1#)) NIL (|has| |#1| (-542)))) (-1902 (((-665 |#1|) (-1224 $)) NIL) (((-665 |#1|)) NIL)) (-1838 ((|#1| $) NIL)) (-1900 (((-665 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) $) NIL)) (-2487 (((-3 $ #1#) $) NIL (|has| |#1| (-542)))) (-2017 (((-1136 (-917 |#1|))) NIL (|has| |#1| (-356)))) (-2490 (($ $ (-890)) NIL)) (-1836 ((|#1| $) NIL)) (-1816 (((-1136 |#1|) $) NIL (|has| |#1| (-542)))) (-1904 ((|#1| (-1224 $)) NIL) ((|#1|) NIL)) (-1834 (((-1136 |#1|) $) NIL)) (-1828 (((-112)) 87)) (-1906 (($ (-1224 |#1|) (-1224 $)) NIL) (($ (-1224 |#1|)) NIL)) (-3804 (((-3 $ #1#) $) 14 (|has| |#1| (-542)))) (-3427 (((-890)) 52)) (-1825 (((-112)) NIL)) (-2515 (($ $ (-890)) NIL)) (-1821 (((-112)) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) 89)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (|has| |#1| (-542)))) (-1815 (((-3 $ #1#)) NIL (|has| |#1| (-542)))) (-1903 (((-665 |#1|) (-1224 $)) NIL) (((-665 |#1|)) NIL)) (-1839 ((|#1| $) NIL)) (-1901 (((-665 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) $) NIL)) (-2488 (((-3 $ #1#) $) NIL (|has| |#1| (-542)))) (-2021 (((-1136 (-917 |#1|))) NIL (|has| |#1| (-356)))) (-2489 (($ $ (-890)) NIL)) (-1837 ((|#1| $) NIL)) (-1817 (((-1136 |#1|) $) NIL (|has| |#1| (-542)))) (-1905 ((|#1| (-1224 $)) NIL) ((|#1|) NIL)) (-1835 (((-1136 |#1|) $) NIL)) (-1829 (((-112)) 86)) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) 93)) (-1822 (((-112)) 92)) (-1824 (((-112)) 94)) (-3577 (((-1086) $) NIL)) (-1827 (((-112)) 88)) (-4142 ((|#1| $ (-535)) 54)) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) NIL) (((-1224 |#1|) $) 28) (((-665 |#1|) (-1224 $)) NIL)) (-4313 (((-1224 |#1|) $) NIL) (($ (-1224 |#1|)) NIL)) (-2009 (((-618 (-917 |#1|)) (-1224 $)) NIL) (((-618 (-917 |#1|))) NIL)) (-2677 (($ $ $) NIL)) (-1833 (((-112)) 84)) (-4300 (((-835) $) 69) (($ (-1224 |#1|)) 22)) (-2123 (((-1224 $)) 45)) (-1818 (((-618 (-1224 |#1|))) NIL (|has| |#1| (-542)))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) 82)) (-2871 (($ (-665 |#1|) $) 18)) (-2676 (($ $ $) NIL)) (-1832 (((-112)) 85)) (-1830 (((-112)) 83)) (-1826 (((-112)) 81)) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1108 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-411 |#1|) (-624 (-1108 |#2| |#1|)) (-10 -8 (-15 -4300 ($ (-1224 |#1|))))) (-356) (-890) (-618 (-1142)) (-1224 (-665 |#1|))) (T -44)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-356)) (-14 *6 (-1224 (-665 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))))) -(-13 (-411 |#1|) (-624 (-1108 |#2| |#1|)) (-10 -8 (-15 -4300 ($ (-1224 |#1|))))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3744 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-4137 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-4139 (($ $) NIL)) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337))) (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-1841 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823))))) (-3230 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-3346 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) 27 (|has| $ (-6 -4337)))) (-4128 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-4131 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 29 (|has| $ (-6 -4337)))) (-4130 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-1191 (-535)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #1="last" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #3="first" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #4="value" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4138 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2305 (((-3 |#2| #5="failed") |#1| $) 37)) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-4141 (($ $ (-747)) NIL) (($ $) 24)) (-2446 (($ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-3761 (((-535) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) (((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 18 (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 18 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-3960 (($ (-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823))) (((-535) $) 32 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3180 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3855 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823))) (((-535) $) 34 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-3880 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) 42 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4140 (($ $ (-747)) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2735 (((-618 |#1|) $) 20)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2373 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 |#1|) $) NIL) (((-618 (-535)) $) NIL)) (-2302 (((-112) |#1| $) NIL) (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823))) (($ $ (-747)) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 23)) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #6#) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3785 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-2303 (((-618 |#2|) $) NIL) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 17)) (-3745 (((-112) $) 16)) (-3911 (($) 13)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL) (($ $ (-1191 (-535))) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #3#) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #4#) NIL)) (-3350 (((-535) $ $) NIL)) (-1518 (($) 12) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-1627 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-3979 (((-112) $) NIL)) (-4134 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4133 (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL) (($ $ $) NIL)) (-4144 (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL) (($ (-618 $)) NIL) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 25) (($ $ $) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-1266 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") |#1| $) 44)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3005 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-4299 (((-747) $) 22 (|has| $ (-6 -4336))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1067) (-1067)) (T -45)) +((-1518 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))) +(-13 (-1020) (-696 |t#1|) (-10 -8 (-15 -1518 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1026 |#1|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1716 (((-411 |#1|) |#1|) 41)) (-3338 (((-411 |#1|) |#1|) 30) (((-411 |#1|) |#1| (-623 (-48))) 33)) (-1429 (((-112) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -3338 ((-411 |#1|) |#1| (-623 (-48)))) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -1716 ((-411 |#1|) |#1|)) (-15 -1429 ((-112) |#1|))) (-1203 (-48))) (T -39)) +((-1429 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1203 (-48))))) (-1716 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1203 (-48))))) (-3338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1203 (-48))))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-48))) (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1203 (-48)))))) +(-10 -7 (-15 -3338 ((-411 |#1|) |#1| (-623 (-48)))) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -1716 ((-411 |#1|) |#1|)) (-15 -1429 ((-112) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1363 (((-2 (|:| |num| (-1227 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-1447 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4291 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1615 (((-667 (-400 |#2|)) (-1227 $)) NIL) (((-667 (-400 |#2|))) NIL)) (-2252 (((-400 |#2|) $) NIL)) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| (-400 |#2|) (-342)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3564 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3631 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4319 (((-749)) NIL (|has| (-400 |#2|) (-361)))) (-2438 (((-112)) NIL)) (-2332 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| (-400 |#2|) (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-400 |#2|) (-1011 (-400 (-550))))) (((-3 (-400 |#2|) "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| (-400 |#2|) (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| (-400 |#2|) (-1011 (-400 (-550))))) (((-400 |#2|) $) NIL)) (-4110 (($ (-1227 (-400 |#2|)) (-1227 $)) NIL) (($ (-1227 (-400 |#2|))) 57) (($ (-1227 |#2|) |#2|) 125)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-342)))) (-3349 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2677 (((-667 (-400 |#2|)) $ (-1227 $)) NIL) (((-667 (-400 |#2|)) $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-400 |#2|))) (|:| |vec| (-1227 (-400 |#2|)))) (-667 $) (-1227 $)) NIL) (((-667 (-400 |#2|)) (-667 $)) NIL)) (-3770 (((-1227 $) (-1227 $)) NIL)) (-2419 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-1386 (((-3 $ "failed") $) NIL)) (-1774 (((-623 (-623 |#1|))) NIL (|has| |#1| (-361)))) (-1591 (((-112) |#1| |#1|) NIL)) (-2122 (((-894)) NIL)) (-1741 (($) NIL (|has| (-400 |#2|) (-361)))) (-2234 (((-112)) NIL)) (-2133 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1519 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| (-400 |#2|) (-356)))) (-2674 (($ $) NIL)) (-3485 (($) NIL (|has| (-400 |#2|) (-342)))) (-3697 (((-112) $) NIL (|has| (-400 |#2|) (-342)))) (-3714 (($ $ (-749)) NIL (|has| (-400 |#2|) (-342))) (($ $) NIL (|has| (-400 |#2|) (-342)))) (-3933 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-2475 (((-894) $) NIL (|has| (-400 |#2|) (-342))) (((-811 (-894)) $) NIL (|has| (-400 |#2|) (-342)))) (-3102 (((-112) $) NIL)) (-2392 (((-749)) NIL)) (-2694 (((-1227 $) (-1227 $)) 102)) (-1389 (((-400 |#2|) $) NIL)) (-1897 (((-623 (-925 |#1|)) (-1144)) NIL (|has| |#1| (-356)))) (-2826 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-342)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1428 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2253 (((-894) $) NIL (|has| (-400 |#2|) (-361)))) (-2407 ((|#3| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1825 (((-1126) $) NIL)) (-3332 (((-1232) (-749)) 79)) (-3298 (((-667 (-400 |#2|))) 51)) (-3519 (((-667 (-400 |#2|))) 44)) (-3235 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4179 (($ (-1227 |#2|) |#2|) 126)) (-3411 (((-667 (-400 |#2|))) 45)) (-3649 (((-667 (-400 |#2|))) 43)) (-4072 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-4306 (((-2 (|:| |num| (-1227 |#2|)) (|:| |den| |#2|)) $) 64)) (-3119 (((-1227 $)) 42)) (-2372 (((-1227 $)) 41)) (-3022 (((-112) $) NIL)) (-2911 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3862 (($) NIL (|has| (-400 |#2|) (-342)) CONST)) (-2922 (($ (-894)) NIL (|has| (-400 |#2|) (-361)))) (-3858 (((-3 |#2| "failed")) NIL)) (-3337 (((-1088) $) NIL)) (-1880 (((-749)) NIL)) (-3935 (($) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| (-400 |#2|) (-356)))) (-3139 (($ (-623 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| (-400 |#2|) (-342)))) (-3338 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3542 (((-749) $) NIL (|has| (-400 |#2|) (-356)))) (-2680 ((|#1| $ |#1| |#1|) NIL)) (-3959 (((-3 |#2| "failed")) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3453 (((-400 |#2|) (-1227 $)) NIL) (((-400 |#2|)) 39)) (-3811 (((-749) $) NIL (|has| (-400 |#2|) (-342))) (((-3 (-749) "failed") $ $) NIL (|has| (-400 |#2|) (-342)))) (-2393 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-749)) NIL (-1561 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1561 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-3013 (((-667 (-400 |#2|)) (-1227 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-1310 ((|#3|) 50)) (-4288 (($) NIL (|has| (-400 |#2|) (-342)))) (-1373 (((-1227 (-400 |#2|)) $ (-1227 $)) NIL) (((-667 (-400 |#2|)) (-1227 $) (-1227 $)) NIL) (((-1227 (-400 |#2|)) $) 58) (((-667 (-400 |#2|)) (-1227 $)) 103)) (-4028 (((-1227 (-400 |#2|)) $) NIL) (($ (-1227 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| (-400 |#2|) (-342)))) (-2794 (((-1227 $) (-1227 $)) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-550))) NIL (-1561 (|has| (-400 |#2|) (-1011 (-400 (-550)))) (|has| (-400 |#2|) (-356)))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4242 (($ $) NIL (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2608 ((|#3| $) NIL)) (-2390 (((-749)) NIL)) (-1449 (((-112)) 37)) (-2538 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2437 (((-1227 $)) 93)) (-1345 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-2013 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1726 (((-112)) NIL)) (-2626 (($) 16 T CONST)) (-2636 (($) 26 T CONST)) (-4183 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-749)) NIL (-1561 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1561 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-550)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-550))) NIL (|has| (-400 |#2|) (-356))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -3332 ((-1232) (-749))))) (-356) (-1203 |#1|) (-1203 (-400 |#2|)) |#3|) (T -40)) +((-3332 (*1 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-4 *5 (-1203 *4)) (-5 *2 (-1232)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1203 (-400 *5))) (-14 *7 *6)))) +(-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -3332 ((-1232) (-749))))) +((-2851 ((|#2| |#2|) 48)) (-2279 ((|#2| |#2|) 120 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1011 (-550)))))) (-2178 ((|#2| |#2|) 87 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1011 (-550)))))) (-1937 ((|#2| |#2|) 88 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1011 (-550)))))) (-2377 ((|#2| (-114) |#2| (-749)) 116 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1011 (-550)))))) (-1793 (((-1140 |#2|) |#2|) 45)) (-2963 ((|#2| |#2| (-623 (-594 |#2|))) 18) ((|#2| |#2| (-623 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2851 (|#2| |#2|)) (-15 -2963 (|#2| |#2|)) (-15 -2963 (|#2| |#2| |#2|)) (-15 -2963 (|#2| |#2| (-623 |#2|))) (-15 -2963 (|#2| |#2| (-623 (-594 |#2|)))) (-15 -1793 ((-1140 |#2|) |#2|)) (IF (|has| |#1| (-825)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1011 (-550))) (IF (|has| |#2| (-423 |#1|)) (PROGN (-15 -1937 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -2279 (|#2| |#2|)) (-15 -2377 (|#2| (-114) |#2| (-749)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-542) (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 |#1| (-594 $)) $)) (-15 -2715 ((-1093 |#1| (-594 $)) $)) (-15 -1518 ($ (-1093 |#1| (-594 $))))))) (T -41)) +((-2377 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-749)) (-4 *5 (-444)) (-4 *5 (-825)) (-4 *5 (-1011 (-550))) (-4 *5 (-542)) (-5 *1 (-41 *5 *2)) (-4 *2 (-423 *5)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *5 (-594 $)) $)) (-15 -2715 ((-1093 *5 (-594 $)) $)) (-15 -1518 ($ (-1093 *5 (-594 $))))))))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1011 (-550))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) (-15 -2715 ((-1093 *3 (-594 $)) $)) (-15 -1518 ($ (-1093 *3 (-594 $))))))))) (-2178 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1011 (-550))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) (-15 -2715 ((-1093 *3 (-594 $)) $)) (-15 -1518 ($ (-1093 *3 (-594 $))))))))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1011 (-550))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) (-15 -2715 ((-1093 *3 (-594 $)) $)) (-15 -1518 ($ (-1093 *3 (-594 $))))))))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-1140 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *4 (-594 $)) $)) (-15 -2715 ((-1093 *4 (-594 $)) $)) (-15 -1518 ($ (-1093 *4 (-594 $))))))))) (-2963 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-594 *2))) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *4 (-594 $)) $)) (-15 -2715 ((-1093 *4 (-594 $)) $)) (-15 -1518 ($ (-1093 *4 (-594 $))))))) (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) (-2963 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *4 (-594 $)) $)) (-15 -2715 ((-1093 *4 (-594 $)) $)) (-15 -1518 ($ (-1093 *4 (-594 $))))))) (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) (-2963 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) (-15 -2715 ((-1093 *3 (-594 $)) $)) (-15 -1518 ($ (-1093 *3 (-594 $))))))))) (-2963 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) (-15 -2715 ((-1093 *3 (-594 $)) $)) (-15 -1518 ($ (-1093 *3 (-594 $))))))))) (-2851 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) (-15 -2715 ((-1093 *3 (-594 $)) $)) (-15 -1518 ($ (-1093 *3 (-594 $)))))))))) +(-10 -7 (-15 -2851 (|#2| |#2|)) (-15 -2963 (|#2| |#2|)) (-15 -2963 (|#2| |#2| |#2|)) (-15 -2963 (|#2| |#2| (-623 |#2|))) (-15 -2963 (|#2| |#2| (-623 (-594 |#2|)))) (-15 -1793 ((-1140 |#2|) |#2|)) (IF (|has| |#1| (-825)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1011 (-550))) (IF (|has| |#2| (-423 |#1|)) (PROGN (-15 -1937 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -2279 (|#2| |#2|)) (-15 -2377 (|#2| (-114) |#2| (-749)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-3338 (((-411 (-1140 |#3|)) (-1140 |#3|) (-623 (-48))) 23) (((-411 |#3|) |#3| (-623 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3338 ((-411 |#3|) |#3| (-623 (-48)))) (-15 -3338 ((-411 (-1140 |#3|)) (-1140 |#3|) (-623 (-48))))) (-825) (-771) (-922 (-48) |#2| |#1|)) (T -42)) +((-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *7 (-922 (-48) *6 *5)) (-5 *2 (-411 (-1140 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1140 *7)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-411 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-922 (-48) *6 *5))))) +(-10 -7 (-15 -3338 ((-411 |#3|) |#3| (-623 (-48)))) (-15 -3338 ((-411 (-1140 |#3|)) (-1140 |#3|) (-623 (-48))))) +((-1650 (((-749) |#2|) 65)) (-2583 (((-749) |#2|) 68)) (-3443 (((-623 |#2|)) 33)) (-2484 (((-749) |#2|) 67)) (-1515 (((-749) |#2|) 64)) (-1804 (((-749) |#2|) 66)) (-2905 (((-623 (-667 |#1|))) 60)) (-4138 (((-623 |#2|)) 55)) (-3922 (((-623 |#2|) |#2|) 43)) (-1312 (((-623 |#2|)) 57)) (-4261 (((-623 |#2|)) 56)) (-2800 (((-623 (-667 |#1|))) 48)) (-4032 (((-623 |#2|)) 54)) (-2069 (((-623 |#2|) |#2|) 42)) (-1947 (((-623 |#2|)) 50)) (-3341 (((-623 (-667 |#1|))) 61)) (-3263 (((-623 |#2|)) 59)) (-2437 (((-1227 |#2|) (-1227 |#2|)) 84 (|has| |#1| (-300))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2484 ((-749) |#2|)) (-15 -2583 ((-749) |#2|)) (-15 -1515 ((-749) |#2|)) (-15 -1650 ((-749) |#2|)) (-15 -1804 ((-749) |#2|)) (-15 -1947 ((-623 |#2|))) (-15 -2069 ((-623 |#2|) |#2|)) (-15 -3922 ((-623 |#2|) |#2|)) (-15 -4032 ((-623 |#2|))) (-15 -4138 ((-623 |#2|))) (-15 -4261 ((-623 |#2|))) (-15 -1312 ((-623 |#2|))) (-15 -3263 ((-623 |#2|))) (-15 -2800 ((-623 (-667 |#1|)))) (-15 -2905 ((-623 (-667 |#1|)))) (-15 -3341 ((-623 (-667 |#1|)))) (-15 -3443 ((-623 |#2|))) (IF (|has| |#1| (-300)) (-15 -2437 ((-1227 |#2|) (-1227 |#2|))) |%noBranch|)) (-542) (-410 |#1|)) (T -43)) +((-2437 (*1 *2 *2) (-12 (-5 *2 (-1227 *4)) (-4 *4 (-410 *3)) (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-43 *3 *4)))) (-3443 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3341 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2905 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2800 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3263 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-1312 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-4261 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-4138 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-4032 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-2069 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-1947 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-1804 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-1650 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-1515 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-2484 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4))))) +(-10 -7 (-15 -2484 ((-749) |#2|)) (-15 -2583 ((-749) |#2|)) (-15 -1515 ((-749) |#2|)) (-15 -1650 ((-749) |#2|)) (-15 -1804 ((-749) |#2|)) (-15 -1947 ((-623 |#2|))) (-15 -2069 ((-623 |#2|) |#2|)) (-15 -3922 ((-623 |#2|) |#2|)) (-15 -4032 ((-623 |#2|))) (-15 -4138 ((-623 |#2|))) (-15 -4261 ((-623 |#2|))) (-15 -1312 ((-623 |#2|))) (-15 -3263 ((-623 |#2|))) (-15 -2800 ((-623 (-667 |#1|)))) (-15 -2905 ((-623 (-667 |#1|)))) (-15 -3341 ((-623 (-667 |#1|)))) (-15 -3443 ((-623 |#2|))) (IF (|has| |#1| (-300)) (-15 -2437 ((-1227 |#2|) (-1227 |#2|))) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3090 (((-3 $ "failed")) NIL (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1265 (((-1227 (-667 |#1|)) (-1227 $)) NIL) (((-1227 (-667 |#1|))) 24)) (-3406 (((-1227 $)) 51)) (-3513 (($) NIL T CONST)) (-3726 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL (|has| |#1| (-542)))) (-3947 (((-3 $ "failed")) NIL (|has| |#1| (-542)))) (-2043 (((-667 |#1|) (-1227 $)) NIL) (((-667 |#1|)) NIL)) (-1958 ((|#1| $) NIL)) (-2042 (((-667 |#1|) $ (-1227 $)) NIL) (((-667 |#1|) $) NIL)) (-3818 (((-3 $ "failed") $) NIL (|has| |#1| (-542)))) (-1870 (((-1140 (-925 |#1|))) NIL (|has| |#1| (-356)))) (-2923 (($ $ (-894)) NIL)) (-1729 ((|#1| $) NIL)) (-4215 (((-1140 |#1|) $) NIL (|has| |#1| (-542)))) (-3945 ((|#1| (-1227 $)) NIL) ((|#1|) NIL)) (-1474 (((-1140 |#1|) $) NIL)) (-2105 (((-112)) 87)) (-4110 (($ (-1227 |#1|) (-1227 $)) NIL) (($ (-1227 |#1|)) NIL)) (-1386 (((-3 $ "failed") $) 14 (|has| |#1| (-542)))) (-2122 (((-894)) 52)) (-2890 (((-112)) NIL)) (-1494 (($ $ (-894)) NIL)) (-3657 (((-112)) NIL)) (-3400 (((-112)) NIL)) (-2685 (((-112)) 89)) (-2662 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL (|has| |#1| (-542)))) (-4080 (((-3 $ "failed")) NIL (|has| |#1| (-542)))) (-2116 (((-667 |#1|) (-1227 $)) NIL) (((-667 |#1|)) NIL)) (-3813 ((|#1| $) NIL)) (-2127 (((-667 |#1|) $ (-1227 $)) NIL) (((-667 |#1|) $) NIL)) (-2732 (((-3 $ "failed") $) NIL (|has| |#1| (-542)))) (-3480 (((-1140 (-925 |#1|))) NIL (|has| |#1| (-356)))) (-2834 (($ $ (-894)) NIL)) (-1842 ((|#1| $) NIL)) (-1305 (((-1140 |#1|) $) NIL (|has| |#1| (-542)))) (-4012 ((|#1| (-1227 $)) NIL) ((|#1|) NIL)) (-1603 (((-1140 |#1|) $) NIL)) (-2197 (((-112)) 86)) (-1825 (((-1126) $) NIL)) (-3528 (((-112)) 93)) (-2591 (((-112)) 92)) (-2781 (((-112)) 94)) (-3337 (((-1088) $) NIL)) (-3089 (((-112)) 88)) (-2680 ((|#1| $ (-550)) 54)) (-1373 (((-1227 |#1|) $ (-1227 $)) 48) (((-667 |#1|) (-1227 $) (-1227 $)) NIL) (((-1227 |#1|) $) 28) (((-667 |#1|) (-1227 $)) NIL)) (-4028 (((-1227 |#1|) $) NIL) (($ (-1227 |#1|)) NIL)) (-2361 (((-623 (-925 |#1|)) (-1227 $)) NIL) (((-623 (-925 |#1|))) NIL)) (-3292 (($ $ $) NIL)) (-2564 (((-112)) 84)) (-1518 (((-836) $) 69) (($ (-1227 |#1|)) 22)) (-2437 (((-1227 $)) 45)) (-3268 (((-623 (-1227 |#1|))) NIL (|has| |#1| (-542)))) (-3395 (($ $ $ $) NIL)) (-2376 (((-112)) 82)) (-4292 (($ (-667 |#1|) $) 18)) (-1358 (($ $ $) NIL)) (-2473 (((-112)) 85)) (-2286 (((-112)) 83)) (-2990 (((-112)) 81)) (-2626 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1110 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-410 |#1|) (-626 (-1110 |#2| |#1|)) (-10 -8 (-15 -1518 ($ (-1227 |#1|))))) (-356) (-894) (-623 (-1144)) (-1227 (-667 |#1|))) (T -44)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-356)) (-14 *6 (-1227 (-667 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-894)) (-14 *5 (-623 (-1144)))))) +(-13 (-410 |#1|) (-626 (-1110 |#2| |#1|)) (-10 -8 (-15 -1518 ($ (-1227 |#1|))))) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3625 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-3996 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-4180 (($ $) NIL)) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3029 (((-1232) $ |#1| |#1|) NIL (|has| $ (-6 -4343))) (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-3491 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825))))) (-1674 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-2190 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343)))) (-1431 (($ $ $) 27 (|has| $ (-6 -4343)))) (-1300 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343)))) (-3373 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 29 (|has| $ (-6 -4343)))) (-1705 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-1194 (-550)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "last" (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343))) (($ $ "rest" $) NIL (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "first" (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "value" (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3985 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-2908 (((-3 |#2| "failed") |#1| $) 37)) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1308 (($ $ (-749)) NIL) (($ $) 24)) (-3912 (($ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4343))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) NIL) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) NIL)) (-3815 (((-112) $) NIL)) (-2302 (((-550) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (((-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) (((-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 18 (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342))) (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 18 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-2578 (($ (-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 ((|#1| $) NIL (|has| |#1| (-825))) (((-550) $) 32 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-3884 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-1832 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342))) (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3283 ((|#1| $) NIL (|has| |#1| (-825))) (((-550) $) 34 (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343))) (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-4218 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2513 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-3312 (((-112) $) NIL)) (-1825 (((-1126) $) 42 (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3159 (($ $ (-749)) NIL) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-3531 (((-623 |#1|) $) 20)) (-2550 (((-112) |#1| $) NIL)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL) (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2055 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 |#1|) $) NIL) (((-623 (-550)) $) NIL)) (-2400 (((-112) |#1| $) NIL) (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-1293 ((|#2| $) NIL (|has| |#1| (-825))) (($ $ (-749)) NIL) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 23)) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-2719 (((-112) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-2477 (((-623 |#2|) $) NIL) (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 17)) (-2902 (((-112) $) 16)) (-3498 (($) 13)) (-2680 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ (-550)) NIL) (($ $ (-1194 (-550))) NIL) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "first") NIL) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $ "value") NIL)) (-2487 (((-550) $ $) NIL)) (-2729 (($) 12) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3476 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-2136 (((-112) $) NIL)) (-3635 (($ $) NIL)) (-3472 (($ $) NIL (|has| $ (-6 -4343)))) (-3728 (((-749) $) NIL)) (-3786 (($ $) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3547 (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL) (($ $ $) NIL)) (-3227 (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL) (($ (-623 $)) NIL) (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 25) (($ $ $) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))) (|has| |#2| (-595 (-836)))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3168 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") |#1| $) 44)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-2354 (((-112) $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-825)))) (-3191 (((-749) $) 22 (|has| $ (-6 -4342))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1068) (-1068)) (T -45)) NIL (-36 |#1| |#2|) -((-4280 (((-112) $) 12)) (-4301 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-400 (-535)) $) 25) (($ $ (-400 (-535))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4280 ((-112) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-47 |#2| |#3|) (-1018) (-768)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4280 ((-112) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| |#2|) 59)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-4290 ((|#2| $) 62)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4023 ((|#1| $ |#2|) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-47 |#1| |#2|) (-138) (-1018) (-768)) (T -47)) -((-3508 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-3215 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) (-3214 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-4023 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-356))))) -(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (-15 -3508 (|t#1| $)) (-15 -3215 ($ $)) (-15 -4290 (|t#2| $)) (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (-15 -4280 ((-112) $)) (-15 -3214 ($ |t#1| |t#2|)) (-15 -4302 ($ $)) (-15 -4023 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-356)) (-15 -4291 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-542)) (-6 (-542)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-535)))) (-6 (-38 (-400 (-535)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-1662 (((-618 $) (-1136 $) (-1142)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-917 $)) NIL)) (-1258 (($ (-1136 $) (-1142)) NIL) (($ (-1136 $)) NIL) (($ (-917 $)) NIL)) (-3522 (((-112) $) 11)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1655 (((-618 (-591 $)) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-1259 (((-618 $) (-1136 $) (-1142)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-917 $)) NIL)) (-3517 (($ (-1136 $) (-1142)) NIL) (($ (-1136 $)) NIL) (($ (-917 $)) NIL)) (-3491 (((-3 (-591 $) #1="failed") $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 (-400 (-535)) #1#) $) NIL)) (-3490 (((-591 $) $) NIL) (((-535) $) NIL) (((-400 (-535)) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-400 (-535)))) (|:| |vec| (-1224 (-400 (-535))))) (-665 $) (-1224 $)) NIL) (((-665 (-400 (-535))) (-665 $)) NIL)) (-4185 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2892 (($ $) NIL) (($ (-618 $)) NIL)) (-1654 (((-618 (-113)) $) NIL)) (-3368 (((-113) (-113)) NIL)) (-2493 (((-112) $) 14)) (-2994 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-3319 (((-1091 (-535) (-591 $)) $) NIL)) (-3332 (($ $ (-535)) NIL)) (-3450 (((-1136 $) (-1136 $) (-591 $)) NIL) (((-1136 $) (-1136 $) (-618 (-591 $))) NIL) (($ $ (-591 $)) NIL) (($ $ (-618 (-591 $))) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-1652 (((-1136 $) (-591 $)) NIL (|has| $ (-1018)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 $ $) (-591 $)) NIL)) (-1657 (((-3 (-591 $) "failed") $) NIL)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-1656 (((-618 (-591 $)) $) NIL)) (-2308 (($ (-113) $) NIL) (($ (-113) (-618 $)) NIL)) (-2952 (((-112) $ (-113)) NIL) (((-112) $ (-1142)) NIL)) (-2725 (($ $) NIL)) (-2922 (((-747) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1699 (((-747) $) NIL)) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-3318 (((-1091 (-535) (-591 $)) $) NIL)) (-3519 (($ $) NIL (|has| $ (-1018)))) (-4313 (((-371) $) NIL) (((-219) $) NIL) (((-166 (-371)) $) NIL)) (-4300 (((-835) $) NIL) (($ (-591 $)) NIL) (($ (-400 (-535))) NIL) (($ $) NIL) (($ (-535)) NIL) (($ (-1091 (-535) (-591 $))) NIL)) (-3444 (((-747)) NIL)) (-2909 (($ $) NIL) (($ (-618 $)) NIL)) (-2329 (((-112) (-113)) NIL)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 7 T CONST)) (-2985 (($) 12 T CONST)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 16)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $ $) 15) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-400 (-535))) NIL) (($ $ (-535)) NIL) (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ $ $) NIL) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL))) -(((-48) (-13 (-291) (-27) (-1009 (-535)) (-1009 (-400 (-535))) (-617 (-535)) (-991) (-617 (-400 (-535))) (-145) (-594 (-166 (-371))) (-227) (-10 -8 (-15 -4300 ($ (-1091 (-535) (-591 $)))) (-15 -3319 ((-1091 (-535) (-591 $)) $)) (-15 -3318 ((-1091 (-535) (-591 $)) $)) (-15 -4185 ($ $)) (-15 -3450 ((-1136 $) (-1136 $) (-591 $))) (-15 -3450 ((-1136 $) (-1136 $) (-618 (-591 $)))) (-15 -3450 ($ $ (-591 $))) (-15 -3450 ($ $ (-618 (-591 $))))))) (T -48)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) (-4185 (*1 *1 *1) (-5 *1 (-48))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-48))) (-5 *3 (-591 (-48))) (-5 *1 (-48)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-48))) (-5 *3 (-618 (-591 (-48)))) (-5 *1 (-48)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-48))) (-5 *1 (-48)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-591 (-48)))) (-5 *1 (-48))))) -(-13 (-291) (-27) (-1009 (-535)) (-1009 (-400 (-535))) (-617 (-535)) (-991) (-617 (-400 (-535))) (-145) (-594 (-166 (-371))) (-227) (-10 -8 (-15 -4300 ($ (-1091 (-535) (-591 $)))) (-15 -3319 ((-1091 (-535) (-591 $)) $)) (-15 -3318 ((-1091 (-535) (-591 $)) $)) (-15 -4185 ($ $)) (-15 -3450 ((-1136 $) (-1136 $) (-591 $))) (-15 -3450 ((-1136 $) (-1136 $) (-618 (-591 $)))) (-15 -3450 ($ $ (-591 $))) (-15 -3450 ($ $ (-618 (-591 $)))))) -((-2887 (((-112) $ $) NIL)) (-2055 (((-618 (-1142)) $) 17)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 7)) (-3567 (((-1147) $) 18)) (-3375 (((-112) $ $) NIL))) -(((-49) (-13 (-1067) (-10 -8 (-15 -2055 ((-618 (-1142)) $)) (-15 -3567 ((-1147) $))))) (T -49)) -((-2055 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-49)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-49))))) -(-13 (-1067) (-10 -8 (-15 -2055 ((-618 (-1142)) $)) (-15 -3567 ((-1147) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 61)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2983 (((-112) $) 20)) (-3491 (((-3 |#1| "failed") $) 23)) (-3490 ((|#1| $) 24)) (-4302 (($ $) 28)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3508 ((|#1| $) 21)) (-1507 (($ $) 50)) (-3576 (((-1124) $) NIL)) (-1506 (((-112) $) 30)) (-3577 (((-1086) $) NIL)) (-2492 (($ (-747)) 48)) (-4286 (($ (-618 (-535))) 49)) (-4290 (((-747) $) 31)) (-4300 (((-835) $) 64) (($ (-535)) 45) (($ |#1|) 43)) (-4023 ((|#1| $ $) 19)) (-3444 (((-747)) 47)) (-2979 (($) 32 T CONST)) (-2985 (($) 14 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-599 |#1|) (-1009 |#1|) (-10 -8 (-15 -3508 (|#1| $)) (-15 -1507 ($ $)) (-15 -4302 ($ $)) (-15 -4023 (|#1| $ $)) (-15 -2492 ($ (-747))) (-15 -4286 ($ (-618 (-535)))) (-15 -1506 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -4290 ((-747) $)) (-15 -4301 ($ (-1 |#1| |#1|) $)))) (-1018) (-618 (-1142))) (T -50)) -((-3508 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-618 (-1142))))) (-1507 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142))))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142))))) (-4023 (*1 *2 *1 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-618 (-1142))))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-50 *3 *4)) (-14 *4 (-618 (-1142)))))) -(-13 (-599 |#1|) (-1009 |#1|) (-10 -8 (-15 -3508 (|#1| $)) (-15 -1507 ($ $)) (-15 -4302 ($ $)) (-15 -4023 (|#1| $ $)) (-15 -2492 ($ (-747))) (-15 -4286 ($ (-618 (-535)))) (-15 -1506 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -4290 ((-747) $)) (-15 -4301 ($ (-1 |#1| |#1|) $)))) -((-2887 (((-112) $ $) NIL)) (-1293 (((-1124) (-112)) 25)) (-1296 (((-835) $) 24)) (-1294 (((-749) $) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1297 (((-835) $) 16)) (-1295 (((-1069) $) 14)) (-4300 (((-835) $) 32)) (-1298 (($ (-1069) (-749)) 33)) (-3375 (((-112) $ $) 18))) -(((-51) (-13 (-1067) (-10 -8 (-15 -1298 ($ (-1069) (-749))) (-15 -1297 ((-835) $)) (-15 -1296 ((-835) $)) (-15 -1295 ((-1069) $)) (-15 -1294 ((-749) $)) (-15 -1293 ((-1124) (-112)))))) (T -51)) -((-1298 (*1 *1 *2 *3) (-12 (-5 *2 (-1069)) (-5 *3 (-749)) (-5 *1 (-51)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-51)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-51)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-51)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-51)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1124)) (-5 *1 (-51))))) -(-13 (-1067) (-10 -8 (-15 -1298 ($ (-1069) (-749))) (-15 -1297 ((-835) $)) (-15 -1296 ((-835) $)) (-15 -1295 ((-1069) $)) (-15 -1294 ((-749) $)) (-15 -1293 ((-1124) (-112))))) -((-2983 (((-112) (-51)) 13)) (-3491 (((-3 |#1| "failed") (-51)) 21)) (-3490 ((|#1| (-51)) 22)) (-4300 (((-51) |#1|) 18))) -(((-52 |#1|) (-10 -7 (-15 -4300 ((-51) |#1|)) (-15 -3491 ((-3 |#1| "failed") (-51))) (-15 -2983 ((-112) (-51))) (-15 -3490 (|#1| (-51)))) (-1178)) (T -52)) -((-3490 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1178)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1178)))) (-3491 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1178)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1178))))) -(-10 -7 (-15 -4300 ((-51) |#1|)) (-15 -3491 ((-3 |#1| "failed") (-51))) (-15 -2983 ((-112) (-51))) (-15 -3490 (|#1| (-51)))) -((-2871 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2871 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1018) (-624 |#1|) (-825 |#1|)) (T -53)) -((-2871 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-624 *5)) (-4 *5 (-1018)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-825 *5))))) -(-10 -7 (-15 -2871 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1300 ((|#3| |#3| (-618 (-1142))) 35)) (-1299 ((|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3| (-890)) 22) ((|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1299 (|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3|)) (-15 -1299 (|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3| (-890))) (-15 -1300 (|#3| |#3| (-618 (-1142))))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-861 |#1|))) (-13 (-414 |#2|) (-857 |#1|) (-594 (-861 |#1|)))) (T -54)) -((-1300 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) (-1299 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-618 (-1041 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1067)) (-4 *6 (-13 (-1018) (-857 *5) (-823) (-594 (-861 *5)))) (-4 *2 (-13 (-414 *6) (-857 *5) (-594 (-861 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1299 (*1 *2 *3 *2) (-12 (-5 *3 (-618 (-1041 *4 *5 *2))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1299 (|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3|)) (-15 -1299 (|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3| (-890))) (-15 -1300 (|#3| |#3| (-618 (-1142))))) -((-1264 (((-112) $ (-747)) 23)) (-1302 (($ $ (-535) |#3|) 46)) (-1301 (($ $ (-535) |#4|) 50)) (-3430 ((|#3| $ (-535)) 59)) (-2063 (((-618 |#2|) $) 30)) (-4065 (((-112) $ (-747)) 25)) (-3579 (((-112) |#2| $) 54)) (-2067 (($ (-1 |#2| |#2|) $) 37)) (-4301 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-4062 (((-112) $ (-747)) 24)) (-2297 (($ $ |#2|) 34)) (-2065 (((-112) (-1 (-112) |#2|) $) 19)) (-4142 ((|#2| $ (-535) (-535)) NIL) ((|#2| $ (-535) (-535) |#2|) 27)) (-2064 (((-747) (-1 (-112) |#2|) $) 28) (((-747) |#2| $) 56)) (-3742 (($ $) 33)) (-3429 ((|#4| $ (-535)) 62)) (-4300 (((-835) $) 68)) (-2066 (((-112) (-1 (-112) |#2|) $) 18)) (-3375 (((-112) $ $) 53)) (-4299 (((-747) $) 26))) -(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1301 (|#1| |#1| (-535) |#4|)) (-15 -1302 (|#1| |#1| (-535) |#3|)) (-15 -2063 ((-618 |#2|) |#1|)) (-15 -3429 (|#4| |#1| (-535))) (-15 -3430 (|#3| |#1| (-535))) (-15 -4142 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535))) (-15 -2297 (|#1| |#1| |#2|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#2| |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))) (-15 -3742 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1178) (-365 |#2|) (-365 |#2|)) (T -55)) -NIL -(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1301 (|#1| |#1| (-535) |#4|)) (-15 -1302 (|#1| |#1| (-535) |#3|)) (-15 -2063 ((-618 |#2|) |#1|)) (-15 -3429 (|#4| |#1| (-535))) (-15 -3430 (|#3| |#1| (-535))) (-15 -4142 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535))) (-15 -2297 (|#1| |#1| |#2|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#2| |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))) (-15 -3742 (|#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) (-535) |#1|) 44)) (-1302 (($ $ (-535) |#2|) 42)) (-1301 (($ $ (-535) |#3|) 41)) (-3879 (($) 7 T CONST)) (-3430 ((|#2| $ (-535)) 46)) (-1632 ((|#1| $ (-535) (-535) |#1|) 43)) (-3431 ((|#1| $ (-535) (-535)) 48)) (-2063 (((-618 |#1|) $) 30)) (-3433 (((-747) $) 51)) (-3960 (($ (-747) (-747) |#1|) 57)) (-3432 (((-747) $) 50)) (-4065 (((-112) $ (-747)) 9)) (-3437 (((-535) $) 55)) (-3435 (((-535) $) 53)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3436 (((-535) $) 54)) (-3434 (((-535) $) 52)) (-2067 (($ (-1 |#1| |#1|) $) 34)) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) 56)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) (-535)) 49) ((|#1| $ (-535) (-535) |#1|) 47)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-3429 ((|#3| $ (-535)) 45)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-56 |#1| |#2| |#3|) (-138) (-1178) (-365 |t#1|) (-365 |t#1|)) (T -56)) -((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3960 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-747)) (-4 *3 (-1178)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2297 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1178)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-535)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-535)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-535)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-535)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-747)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-747)))) (-4142 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1178)))) (-3431 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-3429 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-618 *3)))) (-4130 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-1632 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-1302 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-535)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1178)) (-4 *3 (-365 *4)) (-4 *5 (-365 *4)))) (-1301 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-535)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) (-4 *3 (-365 *4)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4301 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) -(-13 (-481 |t#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3960 ($ (-747) (-747) |t#1|)) (-15 -2297 ($ $ |t#1|)) (-15 -3437 ((-535) $)) (-15 -3436 ((-535) $)) (-15 -3435 ((-535) $)) (-15 -3434 ((-535) $)) (-15 -3433 ((-747) $)) (-15 -3432 ((-747) $)) (-15 -4142 (|t#1| $ (-535) (-535))) (-15 -3431 (|t#1| $ (-535) (-535))) (-15 -4142 (|t#1| $ (-535) (-535) |t#1|)) (-15 -3430 (|t#2| $ (-535))) (-15 -3429 (|t#3| $ (-535))) (-15 -2063 ((-618 |t#1|) $)) (-15 -4130 (|t#1| $ (-535) (-535) |t#1|)) (-15 -1632 (|t#1| $ (-535) (-535) |t#1|)) (-15 -1302 ($ $ (-535) |t#2|)) (-15 -1301 ($ $ (-535) |t#3|)) (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (-15 -2067 ($ (-1 |t#1| |t#1|) $)) (-15 -4301 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4301 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) 11 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-1303 (($ (-618 |#1|)) 13) (($ (-747) |#1|) 14)) (-3960 (($ (-747) |#1|) 9)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 7)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1303 ($ (-618 |#1|))) (-15 -1303 ($ (-747) |#1|)))) (-1178)) (T -57)) -((-1303 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-57 *3)))) (-1303 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-57 *3)) (-4 *3 (-1178))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1303 ($ (-618 |#1|))) (-15 -1303 ($ (-747) |#1|)))) -((-4184 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-4185 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-4301 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -4184 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4301 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1178) (-1178)) (T -58)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-58 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -4184 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4301 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL)) (-1302 (($ $ (-535) (-57 |#1|)) NIL)) (-1301 (($ $ (-535) (-57 |#1|)) NIL)) (-3879 (($) NIL T CONST)) (-3430 (((-57 |#1|) $ (-535)) NIL)) (-1632 ((|#1| $ (-535) (-535) |#1|) NIL)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3433 (((-747) $) NIL)) (-3960 (($ (-747) (-747) |#1|) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 (((-57 |#1|) $ (-535)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-59 |#1|) (-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4337))) (-1178)) (T -59)) -NIL -(-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4337))) -((-3491 (((-3 $ #1="failed") (-307 (-371))) 41) (((-3 $ #1#) (-307 (-535))) 46) (((-3 $ #1#) (-917 (-371))) 50) (((-3 $ #1#) (-917 (-535))) 54) (((-3 $ #1#) (-400 (-917 (-371)))) 36) (((-3 $ #1#) (-400 (-917 (-535)))) 29)) (-3490 (($ (-307 (-371))) 39) (($ (-307 (-535))) 44) (($ (-917 (-371))) 48) (($ (-917 (-535))) 52) (($ (-400 (-917 (-371)))) 34) (($ (-400 (-917 (-535)))) 26)) (-3722 (((-1230) $) 76)) (-4300 (((-835) $) 69) (($ (-618 (-323))) 61) (($ (-323)) 66) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 64) (($ (-332 (-3867 (QUOTE X)) (-3867) (-675))) 25))) -(((-60 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867 (QUOTE X)) (-3867) (-675)))))) (-1142)) (T -60)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867 (QUOTE X)) (-3867) (-675))) (-5 *1 (-60 *3)) (-14 *3 (-1142))))) -(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867 (QUOTE X)) (-3867) (-675)))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 74) (((-3 $ #1#) (-1224 (-307 (-535)))) 63) (((-3 $ #1#) (-1224 (-917 (-371)))) 94) (((-3 $ #1#) (-1224 (-917 (-535)))) 84) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 52) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 39)) (-3490 (($ (-1224 (-307 (-371)))) 70) (($ (-1224 (-307 (-535)))) 59) (($ (-1224 (-917 (-371)))) 90) (($ (-1224 (-917 (-535)))) 80) (($ (-1224 (-400 (-917 (-371))))) 48) (($ (-1224 (-400 (-917 (-535))))) 32)) (-3722 (((-1230) $) 120)) (-4300 (((-835) $) 113) (($ (-618 (-323))) 103) (($ (-323)) 97) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 101) (($ (-1224 (-332 (-3867 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3867) (-675)))) 31))) -(((-61 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3867) (-675))))))) (-1142)) (T -61)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3867) (-675)))) (-5 *1 (-61 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3867) (-675))))))) -((-3722 (((-1230) $) 53) (((-1230)) 54)) (-4300 (((-835) $) 50))) -(((-62 |#1|) (-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) (-1142)) (T -62)) -((-3722 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-62 *3)) (-14 *3 (-1142))))) -(-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 144) (((-3 $ #1#) (-1224 (-307 (-535)))) 134) (((-3 $ #1#) (-1224 (-917 (-371)))) 164) (((-3 $ #1#) (-1224 (-917 (-535)))) 154) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 123) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 111)) (-3490 (($ (-1224 (-307 (-371)))) 140) (($ (-1224 (-307 (-535)))) 130) (($ (-1224 (-917 (-371)))) 160) (($ (-1224 (-917 (-535)))) 150) (($ (-1224 (-400 (-917 (-371))))) 119) (($ (-1224 (-400 (-917 (-535))))) 104)) (-3722 (((-1230) $) 97)) (-4300 (((-835) $) 91) (($ (-618 (-323))) 29) (($ (-323)) 34) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 32) (($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))) 89))) -(((-63 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675))))))) (-1142)) (T -63)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))) (-5 *1 (-63 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-665 (-307 (-371)))) 109) (((-3 $ #1#) (-665 (-307 (-535)))) 97) (((-3 $ #1#) (-665 (-917 (-371)))) 131) (((-3 $ #1#) (-665 (-917 (-535)))) 120) (((-3 $ #1#) (-665 (-400 (-917 (-371))))) 85) (((-3 $ #1#) (-665 (-400 (-917 (-535))))) 71)) (-3490 (($ (-665 (-307 (-371)))) 105) (($ (-665 (-307 (-535)))) 93) (($ (-665 (-917 (-371)))) 127) (($ (-665 (-917 (-535)))) 116) (($ (-665 (-400 (-917 (-371))))) 81) (($ (-665 (-400 (-917 (-535))))) 64)) (-3722 (((-1230) $) 139)) (-4300 (((-835) $) 133) (($ (-618 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 31) (($ (-665 (-332 (-3867) (-3867 (QUOTE X) (QUOTE HESS)) (-675)))) 54))) -(((-64 |#1|) (-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867) (-3867 (QUOTE X) (QUOTE HESS)) (-675))))))) (-1142)) (T -64)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3867) (-3867 (QUOTE X) (QUOTE HESS)) (-675)))) (-5 *1 (-64 *3)) (-14 *3 (-1142))))) -(-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867) (-3867 (QUOTE X) (QUOTE HESS)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-307 (-371))) 59) (((-3 $ #1#) (-307 (-535))) 64) (((-3 $ #1#) (-917 (-371))) 68) (((-3 $ #1#) (-917 (-535))) 72) (((-3 $ #1#) (-400 (-917 (-371)))) 54) (((-3 $ #1#) (-400 (-917 (-535)))) 47)) (-3490 (($ (-307 (-371))) 57) (($ (-307 (-535))) 62) (($ (-917 (-371))) 66) (($ (-917 (-535))) 70) (($ (-400 (-917 (-371)))) 52) (($ (-400 (-917 (-535)))) 44)) (-3722 (((-1230) $) 81)) (-4300 (((-835) $) 75) (($ (-618 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 31) (($ (-332 (-3867) (-3867 (QUOTE XC)) (-675))) 39))) -(((-65 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE XC)) (-675)))))) (-1142)) (T -65)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867) (-3867 (QUOTE XC)) (-675))) (-5 *1 (-65 *3)) (-14 *3 (-1142))))) -(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE XC)) (-675)))))) -((-3722 (((-1230) $) 63)) (-4300 (((-835) $) 57) (($ (-665 (-675))) 49) (($ (-618 (-323))) 48) (($ (-323)) 55) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 53))) -(((-66 |#1|) (-376) (-1142)) (T -66)) +((-3439 (((-112) $) 12)) (-3972 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-400 (-550)) $) 25) (($ $ (-400 (-550))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) (-47 |#2| |#3|) (-1020) (-770)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3295 (($ $) 58)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-3439 (((-112) $) 60)) (-3118 (($ |#1| |#2|) 59)) (-3972 (($ (-1 |#1| |#1|) $) 61)) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-2970 ((|#2| $) 62)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2510 ((|#1| $ |#2|) 57)) (-4242 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-47 |#1| |#2|) (-138) (-1020) (-770)) (T -47)) +((-3277 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) (-3267 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) (-5 *2 (-112)))) (-3118 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)))) (-2510 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) (-2414 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)) (-4 *2 (-356))))) +(-13 (-1020) (-111 |t#1| |t#1|) (-10 -8 (-15 -3277 (|t#1| $)) (-15 -3267 ($ $)) (-15 -2970 (|t#2| $)) (-15 -3972 ($ (-1 |t#1| |t#1|) $)) (-15 -3439 ((-112) $)) (-15 -3118 ($ |t#1| |t#2|)) (-15 -3295 ($ $)) (-15 -2510 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-356)) (-15 -2414 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-542)) (-6 (-542)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-550)))) (-6 (-38 (-400 (-550)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-1026 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-1384 (((-623 $) (-1140 $) (-1144)) NIL) (((-623 $) (-1140 $)) NIL) (((-623 $) (-925 $)) NIL)) (-4122 (($ (-1140 $) (-1144)) NIL) (($ (-1140 $)) NIL) (($ (-925 $)) NIL)) (-3433 (((-112) $) 11)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3223 (((-623 (-594 $)) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3353 (($ $) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-4241 (((-623 $) (-1140 $) (-1144)) NIL) (((-623 $) (-1140 $)) NIL) (((-623 $) (-925 $)) NIL)) (-4146 (($ (-1140 $) (-1144)) NIL) (($ (-1140 $)) NIL) (($ (-925 $)) NIL)) (-3880 (((-3 (-594 $) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL)) (-2726 (((-594 $) $) NIL) (((-550) $) NIL) (((-400 (-550)) $) NIL)) (-3349 (($ $ $) NIL)) (-3780 (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -1340 (-667 (-400 (-550)))) (|:| |vec| (-1227 (-400 (-550))))) (-667 $) (-1227 $)) NIL) (((-667 (-400 (-550))) (-667 $)) NIL)) (-2419 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1380 (($ $) NIL) (($ (-623 $)) NIL)) (-2029 (((-623 (-114)) $) NIL)) (-2926 (((-114) (-114)) NIL)) (-3102 (((-112) $) 14)) (-3718 (((-112) $) NIL (|has| $ (-1011 (-550))))) (-2705 (((-1093 (-550) (-594 $)) $) NIL)) (-1460 (($ $ (-550)) NIL)) (-1389 (((-1140 $) (-1140 $) (-594 $)) NIL) (((-1140 $) (-1140 $) (-623 (-594 $))) NIL) (($ $ (-594 $)) NIL) (($ $ (-623 (-594 $))) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1843 (((-1140 $) (-594 $)) NIL (|has| $ (-1020)))) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 $ $) (-594 $)) NIL)) (-2106 (((-3 (-594 $) "failed") $) NIL)) (-3106 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3296 (((-623 (-594 $)) $) NIL)) (-2776 (($ (-114) $) NIL) (($ (-114) (-623 $)) NIL)) (-3890 (((-112) $ (-114)) NIL) (((-112) $ (-1144)) NIL)) (-3235 (($ $) NIL)) (-3142 (((-749) $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1938 (((-112) $ $) NIL) (((-112) $ (-1144)) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3777 (((-112) $) NIL (|has| $ (-1011 (-550))))) (-3866 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1144) (-1 $ (-623 $))) NIL) (($ $ (-1144) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3542 (((-749) $) NIL)) (-2680 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3930 (($ $) NIL) (($ $ $) NIL)) (-2393 (($ $ (-749)) NIL) (($ $) NIL)) (-2715 (((-1093 (-550) (-594 $)) $) NIL)) (-1310 (($ $) NIL (|has| $ (-1020)))) (-4028 (((-372) $) NIL) (((-219) $) NIL) (((-167 (-372)) $) NIL)) (-1518 (((-836) $) NIL) (($ (-594 $)) NIL) (($ (-400 (-550))) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-1093 (-550) (-594 $))) NIL)) (-2390 (((-749)) NIL)) (-3716 (($ $) NIL) (($ (-623 $)) NIL)) (-2222 (((-112) (-114)) NIL)) (-1345 (((-112) $ $) NIL)) (-2626 (($) 7 T CONST)) (-2636 (($) 12 T CONST)) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 16)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL)) (-2403 (($ $ $) 15) (($ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-400 (-550))) NIL) (($ $ (-550)) NIL) (($ $ (-749)) NIL) (($ $ (-894)) NIL)) (* (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-894) $) NIL))) +(((-48) (-13 (-295) (-27) (-1011 (-550)) (-1011 (-400 (-550))) (-619 (-550)) (-995) (-619 (-400 (-550))) (-145) (-596 (-167 (-372))) (-227) (-10 -8 (-15 -1518 ($ (-1093 (-550) (-594 $)))) (-15 -2705 ((-1093 (-550) (-594 $)) $)) (-15 -2715 ((-1093 (-550) (-594 $)) $)) (-15 -2419 ($ $)) (-15 -1389 ((-1140 $) (-1140 $) (-594 $))) (-15 -1389 ((-1140 $) (-1140 $) (-623 (-594 $)))) (-15 -1389 ($ $ (-594 $))) (-15 -1389 ($ $ (-623 (-594 $))))))) (T -48)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1093 (-550) (-594 (-48)))) (-5 *1 (-48)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-1093 (-550) (-594 (-48)))) (-5 *1 (-48)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1093 (-550) (-594 (-48)))) (-5 *1 (-48)))) (-2419 (*1 *1 *1) (-5 *1 (-48))) (-1389 (*1 *2 *2 *3) (-12 (-5 *2 (-1140 (-48))) (-5 *3 (-594 (-48))) (-5 *1 (-48)))) (-1389 (*1 *2 *2 *3) (-12 (-5 *2 (-1140 (-48))) (-5 *3 (-623 (-594 (-48)))) (-5 *1 (-48)))) (-1389 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-48))) (-5 *1 (-48)))) (-1389 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-594 (-48)))) (-5 *1 (-48))))) +(-13 (-295) (-27) (-1011 (-550)) (-1011 (-400 (-550))) (-619 (-550)) (-995) (-619 (-400 (-550))) (-145) (-596 (-167 (-372))) (-227) (-10 -8 (-15 -1518 ($ (-1093 (-550) (-594 $)))) (-15 -2705 ((-1093 (-550) (-594 $)) $)) (-15 -2715 ((-1093 (-550) (-594 $)) $)) (-15 -2419 ($ $)) (-15 -1389 ((-1140 $) (-1140 $) (-594 $))) (-15 -1389 ((-1140 $) (-1140 $) (-623 (-594 $)))) (-15 -1389 ($ $ (-594 $))) (-15 -1389 ($ $ (-623 (-594 $)))))) +((-1504 (((-112) $ $) NIL)) (-3646 (((-623 (-1144)) $) 17)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 7)) (-1925 (((-1149) $) 18)) (-2316 (((-112) $ $) NIL))) +(((-49) (-13 (-1068) (-10 -8 (-15 -3646 ((-623 (-1144)) $)) (-15 -1925 ((-1149) $))))) (T -49)) +((-3646 (*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-49)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-49))))) +(-13 (-1068) (-10 -8 (-15 -3646 ((-623 (-1144)) $)) (-15 -1925 ((-1149) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 61)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-4118 (((-112) $) 20)) (-3880 (((-3 |#1| "failed") $) 23)) (-2726 ((|#1| $) 24)) (-3295 (($ $) 28)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-3277 ((|#1| $) 21)) (-3759 (($ $) 50)) (-1825 (((-1126) $) NIL)) (-1874 (((-112) $) 30)) (-3337 (((-1088) $) NIL)) (-3935 (($ (-749)) 48)) (-1812 (($ (-623 (-550))) 49)) (-2970 (((-749) $) 31)) (-1518 (((-836) $) 64) (($ (-550)) 45) (($ |#1|) 43)) (-2510 ((|#1| $ $) 19)) (-2390 (((-749)) 47)) (-2626 (($) 32 T CONST)) (-2636 (($) 14 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 40)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-600 |#1|) (-1011 |#1|) (-10 -8 (-15 -3277 (|#1| $)) (-15 -3759 ($ $)) (-15 -3295 ($ $)) (-15 -2510 (|#1| $ $)) (-15 -3935 ($ (-749))) (-15 -1812 ($ (-623 (-550)))) (-15 -1874 ((-112) $)) (-15 -4118 ((-112) $)) (-15 -2970 ((-749) $)) (-15 -3972 ($ (-1 |#1| |#1|) $)))) (-1020) (-623 (-1144))) (T -50)) +((-3277 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-50 *2 *3)) (-14 *3 (-623 (-1144))))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1020)) (-14 *3 (-623 (-1144))))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1020)) (-14 *3 (-623 (-1144))))) (-2510 (*1 *2 *1 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-50 *2 *3)) (-14 *3 (-623 (-1144))))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) (-14 *4 (-623 (-1144))))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) (-14 *4 (-623 (-1144))))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) (-14 *4 (-623 (-1144))))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) (-14 *4 (-623 (-1144))))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) (-14 *4 (-623 (-1144))))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-50 *3 *4)) (-14 *4 (-623 (-1144)))))) +(-13 (-600 |#1|) (-1011 |#1|) (-10 -8 (-15 -3277 (|#1| $)) (-15 -3759 ($ $)) (-15 -3295 ($ $)) (-15 -2510 (|#1| $ $)) (-15 -3935 ($ (-749))) (-15 -1812 ($ (-623 (-550)))) (-15 -1874 ((-112) $)) (-15 -4118 ((-112) $)) (-15 -2970 ((-749) $)) (-15 -3972 ($ (-1 |#1| |#1|) $)))) +((-4118 (((-112) (-52)) 13)) (-3880 (((-3 |#1| "failed") (-52)) 21)) (-2726 ((|#1| (-52)) 22)) (-1518 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -1518 ((-52) |#1|)) (-15 -3880 ((-3 |#1| "failed") (-52))) (-15 -4118 ((-112) (-52))) (-15 -2726 (|#1| (-52)))) (-1181)) (T -51)) +((-2726 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1181)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1181)))) (-3880 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1181)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1181))))) +(-10 -7 (-15 -1518 ((-52) |#1|)) (-15 -3880 ((-3 |#1| "failed") (-52))) (-15 -4118 ((-112) (-52))) (-15 -2726 (|#1| (-52)))) +((-1504 (((-112) $ $) NIL)) (-1390 (((-1126) (-112)) 25)) (-3438 (((-836) $) 24)) (-3794 (((-752) $) 12)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3570 (((-836) $) 16)) (-4043 (((-1072) $) 14)) (-1518 (((-836) $) 32)) (-3584 (($ (-1072) (-752)) 33)) (-2316 (((-112) $ $) 18))) +(((-52) (-13 (-1068) (-10 -8 (-15 -3584 ($ (-1072) (-752))) (-15 -3570 ((-836) $)) (-15 -3438 ((-836) $)) (-15 -4043 ((-1072) $)) (-15 -3794 ((-752) $)) (-15 -1390 ((-1126) (-112)))))) (T -52)) +((-3584 (*1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-752)) (-5 *1 (-52)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-52)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-52)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-52)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-752)) (-5 *1 (-52)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1126)) (-5 *1 (-52))))) +(-13 (-1068) (-10 -8 (-15 -3584 ($ (-1072) (-752))) (-15 -3570 ((-836) $)) (-15 -3438 ((-836) $)) (-15 -4043 ((-1072) $)) (-15 -3794 ((-752) $)) (-15 -1390 ((-1126) (-112))))) +((-4292 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -4292 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1020) (-626 |#1|) (-827 |#1|)) (T -53)) +((-4292 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-626 *5)) (-4 *5 (-1020)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-827 *5))))) +(-10 -7 (-15 -4292 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1981 ((|#3| |#3| (-623 (-1144))) 35)) (-4184 ((|#3| (-623 (-1044 |#1| |#2| |#3|)) |#3| (-894)) 22) ((|#3| (-623 (-1044 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4184 (|#3| (-623 (-1044 |#1| |#2| |#3|)) |#3|)) (-15 -4184 (|#3| (-623 (-1044 |#1| |#2| |#3|)) |#3| (-894))) (-15 -1981 (|#3| |#3| (-623 (-1144))))) (-1068) (-13 (-1020) (-859 |#1|) (-825) (-596 (-865 |#1|))) (-13 (-423 |#2|) (-859 |#1|) (-596 (-865 |#1|)))) (T -54)) +((-1981 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-1144))) (-4 *4 (-1068)) (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))))) (-4184 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 (-1044 *5 *6 *2))) (-5 *4 (-894)) (-4 *5 (-1068)) (-4 *6 (-13 (-1020) (-859 *5) (-825) (-596 (-865 *5)))) (-4 *2 (-13 (-423 *6) (-859 *5) (-596 (-865 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4184 (*1 *2 *3 *2) (-12 (-5 *3 (-623 (-1044 *4 *5 *2))) (-4 *4 (-1068)) (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -4184 (|#3| (-623 (-1044 |#1| |#2| |#3|)) |#3|)) (-15 -4184 (|#3| (-623 (-1044 |#1| |#2| |#3|)) |#3| (-894))) (-15 -1981 (|#3| |#3| (-623 (-1144))))) +((-4047 (((-112) $ (-749)) 23)) (-1396 (($ $ (-550) |#3|) 46)) (-3693 (($ $ (-550) |#4|) 50)) (-3719 ((|#3| $ (-550)) 59)) (-3450 (((-623 |#2|) $) 30)) (-1859 (((-112) $ (-749)) 25)) (-1921 (((-112) |#2| $) 54)) (-3234 (($ (-1 |#2| |#2|) $) 37)) (-3972 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-1573 (((-112) $ (-749)) 24)) (-3111 (($ $ |#2|) 34)) (-1543 (((-112) (-1 (-112) |#2|) $) 19)) (-2680 ((|#2| $ (-550) (-550)) NIL) ((|#2| $ (-550) (-550) |#2|) 27)) (-3350 (((-749) (-1 (-112) |#2|) $) 28) (((-749) |#2| $) 56)) (-1731 (($ $) 33)) (-3615 ((|#4| $ (-550)) 62)) (-1518 (((-836) $) 68)) (-1675 (((-112) (-1 (-112) |#2|) $) 18)) (-2316 (((-112) $ $) 53)) (-3191 (((-749) $) 26))) +(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3972 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3693 (|#1| |#1| (-550) |#4|)) (-15 -1396 (|#1| |#1| (-550) |#3|)) (-15 -3450 ((-623 |#2|) |#1|)) (-15 -3615 (|#4| |#1| (-550))) (-15 -3719 (|#3| |#1| (-550))) (-15 -2680 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550) (-550))) (-15 -3111 (|#1| |#1| |#2|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -1921 ((-112) |#2| |#1|)) (-15 -3350 ((-749) |#2| |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3191 ((-749) |#1|)) (-15 -4047 ((-112) |#1| (-749))) (-15 -1859 ((-112) |#1| (-749))) (-15 -1573 ((-112) |#1| (-749))) (-15 -1731 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1181) (-366 |#2|) (-366 |#2|)) (T -55)) +NIL +(-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3972 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3693 (|#1| |#1| (-550) |#4|)) (-15 -1396 (|#1| |#1| (-550) |#3|)) (-15 -3450 ((-623 |#2|) |#1|)) (-15 -3615 (|#4| |#1| (-550))) (-15 -3719 (|#3| |#1| (-550))) (-15 -2680 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550) (-550))) (-15 -3111 (|#1| |#1| |#2|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -1921 ((-112) |#2| |#1|)) (-15 -3350 ((-749) |#2| |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3191 ((-749) |#1|)) (-15 -4047 ((-112) |#1| (-749))) (-15 -1859 ((-112) |#1| (-749))) (-15 -1573 ((-112) |#1| (-749))) (-15 -1731 (|#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#1| $ (-550) (-550) |#1|) 44)) (-1396 (($ $ (-550) |#2|) 42)) (-3693 (($ $ (-550) |#3|) 41)) (-3513 (($) 7 T CONST)) (-3719 ((|#2| $ (-550)) 46)) (-3245 ((|#1| $ (-550) (-550) |#1|) 43)) (-3181 ((|#1| $ (-550) (-550)) 48)) (-3450 (((-623 |#1|) $) 30)) (-2115 (((-749) $) 51)) (-2578 (($ (-749) (-749) |#1|) 57)) (-2124 (((-749) $) 50)) (-1859 (((-112) $ (-749)) 9)) (-2938 (((-550) $) 55)) (-3895 (((-550) $) 53)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-2828 (((-550) $) 54)) (-3816 (((-550) $) 52)) (-3234 (($ (-1 |#1| |#1|) $) 34)) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3111 (($ $ |#1|) 56)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ (-550) (-550)) 49) ((|#1| $ (-550) (-550) |#1|) 47)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-3615 ((|#3| $ (-550)) 45)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-56 |#1| |#2| |#3|) (-138) (-1181) (-366 |t#1|) (-366 |t#1|)) (T -56)) +((-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2578 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-749)) (-4 *3 (-1181)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3111 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1181)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-550)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-550)))) (-3895 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-550)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-550)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-749)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-749)))) (-2680 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-1181)))) (-3181 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-1181)))) (-2680 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1181)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1181)) (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) (-3615 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1181)) (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-623 *3)))) (-1705 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1181)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-3245 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1181)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-1396 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1181)) (-4 *3 (-366 *4)) (-4 *5 (-366 *4)))) (-3693 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1181)) (-4 *5 (-366 *4)) (-4 *3 (-366 *4)))) (-3234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3972 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3972 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) +(-13 (-481 |t#1|) (-10 -8 (-6 -4343) (-6 -4342) (-15 -2578 ($ (-749) (-749) |t#1|)) (-15 -3111 ($ $ |t#1|)) (-15 -2938 ((-550) $)) (-15 -2828 ((-550) $)) (-15 -3895 ((-550) $)) (-15 -3816 ((-550) $)) (-15 -2115 ((-749) $)) (-15 -2124 ((-749) $)) (-15 -2680 (|t#1| $ (-550) (-550))) (-15 -3181 (|t#1| $ (-550) (-550))) (-15 -2680 (|t#1| $ (-550) (-550) |t#1|)) (-15 -3719 (|t#2| $ (-550))) (-15 -3615 (|t#3| $ (-550))) (-15 -3450 ((-623 |t#1|) $)) (-15 -1705 (|t#1| $ (-550) (-550) |t#1|)) (-15 -3245 (|t#1| $ (-550) (-550) |t#1|)) (-15 -1396 ($ $ (-550) |t#2|)) (-15 -3693 ($ $ (-550) |t#3|)) (-15 -3972 ($ (-1 |t#1| |t#1|) $)) (-15 -3234 ($ (-1 |t#1| |t#1|) $)) (-15 -3972 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3972 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-3572 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2419 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-3972 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) +(((-57 |#1| |#2|) (-10 -7 (-15 -3572 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2419 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3972 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1181) (-1181)) (T -57)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1181)) (-4 *2 (-1181)) (-5 *1 (-57 *5 *2)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1181)) (-4 *5 (-1181)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) +(-10 -7 (-15 -3572 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2419 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3972 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) |#1|) 11 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-2302 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068)))) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1554 (($ (-623 |#1|)) 13) (($ (-749) |#1|) 14)) (-2578 (($ (-749) |#1|) 9)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) NIL (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 7)) (-2680 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-3227 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1554 ($ (-623 |#1|))) (-15 -1554 ($ (-749) |#1|)))) (-1181)) (T -58)) +((-1554 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-58 *3)))) (-1554 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-58 *3)) (-4 *3 (-1181))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1554 ($ (-623 |#1|))) (-15 -1554 ($ (-749) |#1|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) (-550) |#1|) NIL)) (-1396 (($ $ (-550) (-58 |#1|)) NIL)) (-3693 (($ $ (-550) (-58 |#1|)) NIL)) (-3513 (($) NIL T CONST)) (-3719 (((-58 |#1|) $ (-550)) NIL)) (-3245 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3181 ((|#1| $ (-550) (-550)) NIL)) (-3450 (((-623 |#1|) $) NIL)) (-2115 (((-749) $) NIL)) (-2578 (($ (-749) (-749) |#1|) NIL)) (-2124 (((-749) $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-2938 (((-550) $) NIL)) (-3895 (((-550) $) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2828 (((-550) $) NIL)) (-3816 (((-550) $) NIL)) (-3234 (($ (-1 |#1| |#1|) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3111 (($ $ |#1|) NIL)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-3615 (((-58 |#1|) $ (-550)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4343))) (-1181)) (T -59)) +NIL +(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4343))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 74) (((-3 $ "failed") (-1227 (-309 (-550)))) 63) (((-3 $ "failed") (-1227 (-925 (-372)))) 94) (((-3 $ "failed") (-1227 (-925 (-550)))) 84) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 52) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 39)) (-2726 (($ (-1227 (-309 (-372)))) 70) (($ (-1227 (-309 (-550)))) 59) (($ (-1227 (-925 (-372)))) 90) (($ (-1227 (-925 (-550)))) 80) (($ (-1227 (-400 (-925 (-372))))) 48) (($ (-1227 (-400 (-925 (-550))))) 32)) (-3397 (((-1232) $) 120)) (-1518 (((-836) $) 113) (($ (-623 (-323))) 103) (($ (-323)) 97) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 101) (($ (-1227 (-332 (-1532 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1532) (-677)))) 31))) +(((-60 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1532) (-677))))))) (-1144)) (T -60)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1532) (-677)))) (-5 *1 (-60 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1532) (-677))))))) +((-3397 (((-1232) $) 53) (((-1232)) 54)) (-1518 (((-836) $) 50))) +(((-61 |#1|) (-13 (-388) (-10 -7 (-15 -3397 ((-1232))))) (-1144)) (T -61)) +((-3397 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-61 *3)) (-14 *3 (-1144))))) +(-13 (-388) (-10 -7 (-15 -3397 ((-1232))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 144) (((-3 $ "failed") (-1227 (-309 (-550)))) 134) (((-3 $ "failed") (-1227 (-925 (-372)))) 164) (((-3 $ "failed") (-1227 (-925 (-550)))) 154) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 123) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 111)) (-2726 (($ (-1227 (-309 (-372)))) 140) (($ (-1227 (-309 (-550)))) 130) (($ (-1227 (-925 (-372)))) 160) (($ (-1227 (-925 (-550)))) 150) (($ (-1227 (-400 (-925 (-372))))) 119) (($ (-1227 (-400 (-925 (-550))))) 104)) (-3397 (((-1232) $) 97)) (-1518 (((-836) $) 91) (($ (-623 (-323))) 29) (($ (-323)) 34) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 32) (($ (-1227 (-332 (-1532) (-1532 (QUOTE XC)) (-677)))) 89))) +(((-62 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE XC)) (-677))))))) (-1144)) (T -62)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 (QUOTE XC)) (-677)))) (-5 *1 (-62 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE XC)) (-677))))))) +((-3880 (((-3 $ "failed") (-309 (-372))) 41) (((-3 $ "failed") (-309 (-550))) 46) (((-3 $ "failed") (-925 (-372))) 50) (((-3 $ "failed") (-925 (-550))) 54) (((-3 $ "failed") (-400 (-925 (-372)))) 36) (((-3 $ "failed") (-400 (-925 (-550)))) 29)) (-2726 (($ (-309 (-372))) 39) (($ (-309 (-550))) 44) (($ (-925 (-372))) 48) (($ (-925 (-550))) 52) (($ (-400 (-925 (-372)))) 34) (($ (-400 (-925 (-550)))) 26)) (-3397 (((-1232) $) 76)) (-1518 (((-836) $) 69) (($ (-623 (-323))) 61) (($ (-323)) 66) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 64) (($ (-332 (-1532 (QUOTE X)) (-1532) (-677))) 25))) +(((-63 |#1|) (-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532 (QUOTE X)) (-1532) (-677)))))) (-1144)) (T -63)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-332 (-1532 (QUOTE X)) (-1532) (-677))) (-5 *1 (-63 *3)) (-14 *3 (-1144))))) +(-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532 (QUOTE X)) (-1532) (-677)))))) +((-3880 (((-3 $ "failed") (-667 (-309 (-372)))) 109) (((-3 $ "failed") (-667 (-309 (-550)))) 97) (((-3 $ "failed") (-667 (-925 (-372)))) 131) (((-3 $ "failed") (-667 (-925 (-550)))) 120) (((-3 $ "failed") (-667 (-400 (-925 (-372))))) 85) (((-3 $ "failed") (-667 (-400 (-925 (-550))))) 71)) (-2726 (($ (-667 (-309 (-372)))) 105) (($ (-667 (-309 (-550)))) 93) (($ (-667 (-925 (-372)))) 127) (($ (-667 (-925 (-550)))) 116) (($ (-667 (-400 (-925 (-372))))) 81) (($ (-667 (-400 (-925 (-550))))) 64)) (-3397 (((-1232) $) 139)) (-1518 (((-836) $) 133) (($ (-623 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 31) (($ (-667 (-332 (-1532) (-1532 (QUOTE X) (QUOTE HESS)) (-677)))) 54))) +(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -1518 ($ (-667 (-332 (-1532) (-1532 (QUOTE X) (QUOTE HESS)) (-677))))))) (-1144)) (T -64)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-1532) (-1532 (QUOTE X) (QUOTE HESS)) (-677)))) (-5 *1 (-64 *3)) (-14 *3 (-1144))))) +(-13 (-377) (-10 -8 (-15 -1518 ($ (-667 (-332 (-1532) (-1532 (QUOTE X) (QUOTE HESS)) (-677))))))) +((-3880 (((-3 $ "failed") (-309 (-372))) 59) (((-3 $ "failed") (-309 (-550))) 64) (((-3 $ "failed") (-925 (-372))) 68) (((-3 $ "failed") (-925 (-550))) 72) (((-3 $ "failed") (-400 (-925 (-372)))) 54) (((-3 $ "failed") (-400 (-925 (-550)))) 47)) (-2726 (($ (-309 (-372))) 57) (($ (-309 (-550))) 62) (($ (-925 (-372))) 66) (($ (-925 (-550))) 70) (($ (-400 (-925 (-372)))) 52) (($ (-400 (-925 (-550)))) 44)) (-3397 (((-1232) $) 81)) (-1518 (((-836) $) 75) (($ (-623 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 31) (($ (-332 (-1532) (-1532 (QUOTE XC)) (-677))) 39))) +(((-65 |#1|) (-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532) (-1532 (QUOTE XC)) (-677)))))) (-1144)) (T -65)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-332 (-1532) (-1532 (QUOTE XC)) (-677))) (-5 *1 (-65 *3)) (-14 *3 (-1144))))) +(-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532) (-1532 (QUOTE XC)) (-677)))))) +((-3397 (((-1232) $) 63)) (-1518 (((-836) $) 57) (($ (-667 (-677))) 49) (($ (-623 (-323))) 48) (($ (-323)) 55) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 53))) +(((-66 |#1|) (-376) (-1144)) (T -66)) NIL (-376) -((-3722 (((-1230) $) 64)) (-4300 (((-835) $) 58) (($ (-665 (-675))) 50) (($ (-618 (-323))) 49) (($ (-323)) 52) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 55))) -(((-67 |#1|) (-376) (-1142)) (T -67)) +((-3397 (((-1232) $) 64)) (-1518 (((-836) $) 58) (($ (-667 (-677))) 50) (($ (-623 (-323))) 49) (($ (-323)) 52) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 55))) +(((-67 |#1|) (-376) (-1144)) (T -67)) NIL (-376) -((-3722 (((-1230) $) NIL) (((-1230)) 32)) (-4300 (((-835) $) NIL))) -(((-68 |#1|) (-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) (-1142)) (T -68)) -((-3722 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-68 *3)) (-14 *3 (-1142))))) -(-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) -((-3722 (((-1230) $) 73)) (-4300 (((-835) $) 67) (($ (-665 (-675))) 59) (($ (-618 (-323))) 61) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 58))) -(((-69 |#1|) (-376) (-1142)) (T -69)) +((-3397 (((-1232) $) NIL) (((-1232)) 32)) (-1518 (((-836) $) NIL))) +(((-68 |#1|) (-13 (-388) (-10 -7 (-15 -3397 ((-1232))))) (-1144)) (T -68)) +((-3397 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-68 *3)) (-14 *3 (-1144))))) +(-13 (-388) (-10 -7 (-15 -3397 ((-1232))))) +((-3397 (((-1232) $) 73)) (-1518 (((-836) $) 67) (($ (-667 (-677))) 59) (($ (-623 (-323))) 61) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 58))) +(((-69 |#1|) (-376) (-1144)) (T -69)) NIL (-376) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 103) (((-3 $ #1#) (-1224 (-307 (-535)))) 92) (((-3 $ #1#) (-1224 (-917 (-371)))) 123) (((-3 $ #1#) (-1224 (-917 (-535)))) 113) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 81) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 68)) (-3490 (($ (-1224 (-307 (-371)))) 99) (($ (-1224 (-307 (-535)))) 88) (($ (-1224 (-917 (-371)))) 119) (($ (-1224 (-917 (-535)))) 109) (($ (-1224 (-400 (-917 (-371))))) 77) (($ (-1224 (-400 (-917 (-535))))) 61)) (-3722 (((-1230) $) 136)) (-4300 (((-835) $) 130) (($ (-618 (-323))) 125) (($ (-323)) 128) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 53) (($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))) 54))) -(((-70 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))))))) (-1142)) (T -70)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))) (-5 *1 (-70 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))))))) -((-3722 (((-1230) $) 32) (((-1230)) 31)) (-4300 (((-835) $) 35))) -(((-71 |#1|) (-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) (-1142)) (T -71)) -((-3722 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-71 *3)) (-14 *3 (-1142))))) -(-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) -((-3722 (((-1230) $) 63)) (-4300 (((-835) $) 57) (($ (-665 (-675))) 49) (($ (-618 (-323))) 51) (($ (-323)) 54) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 48))) -(((-72 |#1|) (-376) (-1142)) (T -72)) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 103) (((-3 $ "failed") (-1227 (-309 (-550)))) 92) (((-3 $ "failed") (-1227 (-925 (-372)))) 123) (((-3 $ "failed") (-1227 (-925 (-550)))) 113) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 81) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 68)) (-2726 (($ (-1227 (-309 (-372)))) 99) (($ (-1227 (-309 (-550)))) 88) (($ (-1227 (-925 (-372)))) 119) (($ (-1227 (-925 (-550)))) 109) (($ (-1227 (-400 (-925 (-372))))) 77) (($ (-1227 (-400 (-925 (-550))))) 61)) (-3397 (((-1232) $) 136)) (-1518 (((-836) $) 130) (($ (-623 (-323))) 125) (($ (-323)) 128) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 53) (($ (-1227 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677)))) 54))) +(((-70 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677))))))) (-1144)) (T -70)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677)))) (-5 *1 (-70 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677))))))) +((-3397 (((-1232) $) 32) (((-1232)) 31)) (-1518 (((-836) $) 35))) +(((-71 |#1|) (-13 (-388) (-10 -7 (-15 -3397 ((-1232))))) (-1144)) (T -71)) +((-3397 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-71 *3)) (-14 *3 (-1144))))) +(-13 (-388) (-10 -7 (-15 -3397 ((-1232))))) +((-3397 (((-1232) $) 63)) (-1518 (((-836) $) 57) (($ (-667 (-677))) 49) (($ (-623 (-323))) 51) (($ (-323)) 54) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 48))) +(((-72 |#1|) (-376) (-1144)) (T -72)) NIL (-376) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 125) (((-3 $ #1#) (-1224 (-307 (-535)))) 115) (((-3 $ #1#) (-1224 (-917 (-371)))) 145) (((-3 $ #1#) (-1224 (-917 (-535)))) 135) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 105) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 93)) (-3490 (($ (-1224 (-307 (-371)))) 121) (($ (-1224 (-307 (-535)))) 111) (($ (-1224 (-917 (-371)))) 141) (($ (-1224 (-917 (-535)))) 131) (($ (-1224 (-400 (-917 (-371))))) 101) (($ (-1224 (-400 (-917 (-535))))) 86)) (-3722 (((-1230) $) 78)) (-4300 (((-835) $) 27) (($ (-618 (-323))) 68) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 71) (($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) 65))) -(((-73 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) (-1142)) (T -73)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) (-5 *1 (-73 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-307 (-371))) 46) (((-3 $ #1#) (-307 (-535))) 51) (((-3 $ #1#) (-917 (-371))) 55) (((-3 $ #1#) (-917 (-535))) 59) (((-3 $ #1#) (-400 (-917 (-371)))) 41) (((-3 $ #1#) (-400 (-917 (-535)))) 34)) (-3490 (($ (-307 (-371))) 44) (($ (-307 (-535))) 49) (($ (-917 (-371))) 53) (($ (-917 (-535))) 57) (($ (-400 (-917 (-371)))) 39) (($ (-400 (-917 (-535)))) 31)) (-3722 (((-1230) $) 80)) (-4300 (((-835) $) 74) (($ (-618 (-323))) 66) (($ (-323)) 71) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 69) (($ (-332 (-3867) (-3867 (QUOTE X)) (-675))) 30))) -(((-74 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE X)) (-675)))))) (-1142)) (T -74)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867) (-3867 (QUOTE X)) (-675))) (-5 *1 (-74 *3)) (-14 *3 (-1142))))) -(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE X)) (-675)))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 130) (((-3 $ #1#) (-1224 (-307 (-535)))) 119) (((-3 $ #1#) (-1224 (-917 (-371)))) 150) (((-3 $ #1#) (-1224 (-917 (-535)))) 140) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 108) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 95)) (-3490 (($ (-1224 (-307 (-371)))) 126) (($ (-1224 (-307 (-535)))) 115) (($ (-1224 (-917 (-371)))) 146) (($ (-1224 (-917 (-535)))) 136) (($ (-1224 (-400 (-917 (-371))))) 104) (($ (-1224 (-400 (-917 (-535))))) 88)) (-3722 (((-1230) $) 79)) (-4300 (((-835) $) 71) (($ (-618 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) NIL) (($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE EPS)) (-3867 (QUOTE -4307)) (-675)))) 66))) -(((-75 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE EPS)) (-3867 (QUOTE -4307)) (-675))))))) (-1142) (-1142) (-1142)) (T -75)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X) (QUOTE EPS)) (-3867 (QUOTE -4307)) (-675)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE EPS)) (-3867 (QUOTE -4307)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 134) (((-3 $ #1#) (-1224 (-307 (-535)))) 123) (((-3 $ #1#) (-1224 (-917 (-371)))) 154) (((-3 $ #1#) (-1224 (-917 (-535)))) 144) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 112) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 99)) (-3490 (($ (-1224 (-307 (-371)))) 130) (($ (-1224 (-307 (-535)))) 119) (($ (-1224 (-917 (-371)))) 150) (($ (-1224 (-917 (-535)))) 140) (($ (-1224 (-400 (-917 (-371))))) 108) (($ (-1224 (-400 (-917 (-535))))) 92)) (-3722 (((-1230) $) 83)) (-4300 (((-835) $) 75) (($ (-618 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) NIL) (($ (-1224 (-332 (-3867 (QUOTE EPS)) (-3867 (QUOTE YA) (QUOTE YB)) (-675)))) 70))) -(((-76 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE EPS)) (-3867 (QUOTE YA) (QUOTE YB)) (-675))))))) (-1142) (-1142) (-1142)) (T -76)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE EPS)) (-3867 (QUOTE YA) (QUOTE YB)) (-675)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE EPS)) (-3867 (QUOTE YA) (QUOTE YB)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-307 (-371))) 82) (((-3 $ #1#) (-307 (-535))) 87) (((-3 $ #1#) (-917 (-371))) 91) (((-3 $ #1#) (-917 (-535))) 95) (((-3 $ #1#) (-400 (-917 (-371)))) 77) (((-3 $ #1#) (-400 (-917 (-535)))) 70)) (-3490 (($ (-307 (-371))) 80) (($ (-307 (-535))) 85) (($ (-917 (-371))) 89) (($ (-917 (-535))) 93) (($ (-400 (-917 (-371)))) 75) (($ (-400 (-917 (-535)))) 67)) (-3722 (((-1230) $) 62)) (-4300 (((-835) $) 50) (($ (-618 (-323))) 46) (($ (-323)) 56) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 54) (($ (-332 (-3867) (-3867 (QUOTE X)) (-675))) 47))) -(((-77 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE X)) (-675)))))) (-1142)) (T -77)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867) (-3867 (QUOTE X)) (-675))) (-5 *1 (-77 *3)) (-14 *3 (-1142))))) -(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE X)) (-675)))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 89) (((-3 $ #1#) (-1224 (-307 (-535)))) 78) (((-3 $ #1#) (-1224 (-917 (-371)))) 109) (((-3 $ #1#) (-1224 (-917 (-535)))) 99) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 67) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 54)) (-3490 (($ (-1224 (-307 (-371)))) 85) (($ (-1224 (-307 (-535)))) 74) (($ (-1224 (-917 (-371)))) 105) (($ (-1224 (-917 (-535)))) 95) (($ (-1224 (-400 (-917 (-371))))) 63) (($ (-1224 (-400 (-917 (-535))))) 47)) (-3722 (((-1230) $) 125)) (-4300 (((-835) $) 119) (($ (-618 (-323))) 112) (($ (-323)) 37) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 115) (($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))) 38))) -(((-78 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675))))))) (-1142)) (T -78)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))) (-5 *1 (-78 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 142) (((-3 $ #1#) (-1224 (-307 (-535)))) 132) (((-3 $ #1#) (-1224 (-917 (-371)))) 162) (((-3 $ #1#) (-1224 (-917 (-535)))) 152) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 122) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 110)) (-3490 (($ (-1224 (-307 (-371)))) 138) (($ (-1224 (-307 (-535)))) 128) (($ (-1224 (-917 (-371)))) 158) (($ (-1224 (-917 (-535)))) 148) (($ (-1224 (-400 (-917 (-371))))) 118) (($ (-1224 (-400 (-917 (-535))))) 103)) (-3722 (((-1230) $) 96)) (-4300 (((-835) $) 90) (($ (-618 (-323))) 81) (($ (-323)) 88) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 86) (($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) 82))) -(((-79 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) (-1142)) (T -79)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) (-5 *1 (-79 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 78) (((-3 $ #1#) (-1224 (-307 (-535)))) 67) (((-3 $ #1#) (-1224 (-917 (-371)))) 98) (((-3 $ #1#) (-1224 (-917 (-535)))) 88) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 56) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 43)) (-3490 (($ (-1224 (-307 (-371)))) 74) (($ (-1224 (-307 (-535)))) 63) (($ (-1224 (-917 (-371)))) 94) (($ (-1224 (-917 (-535)))) 84) (($ (-1224 (-400 (-917 (-371))))) 52) (($ (-1224 (-400 (-917 (-535))))) 36)) (-3722 (((-1230) $) 124)) (-4300 (((-835) $) 118) (($ (-618 (-323))) 109) (($ (-323)) 115) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 113) (($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) 35))) -(((-80 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) (-1142)) (T -80)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) (-5 *1 (-80 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 79) (((-3 $ #1#) (-1224 (-307 (-535)))) 68) (((-3 $ #1#) (-1224 (-917 (-371)))) 99) (((-3 $ #1#) (-1224 (-917 (-535)))) 89) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 57) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 44)) (-3490 (($ (-1224 (-307 (-371)))) 75) (($ (-1224 (-307 (-535)))) 64) (($ (-1224 (-917 (-371)))) 95) (($ (-1224 (-917 (-535)))) 85) (($ (-1224 (-400 (-917 (-371))))) 53) (($ (-1224 (-400 (-917 (-535))))) 37)) (-3722 (((-1230) $) 125)) (-4300 (((-835) $) 119) (($ (-618 (-323))) 110) (($ (-323)) 116) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 114) (($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))) 36))) -(((-81 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))))))) (-1142)) (T -81)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))) (-5 *1 (-81 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 95) (((-3 $ #1#) (-1224 (-307 (-535)))) 84) (((-3 $ #1#) (-1224 (-917 (-371)))) 115) (((-3 $ #1#) (-1224 (-917 (-535)))) 105) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 73) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 60)) (-3490 (($ (-1224 (-307 (-371)))) 91) (($ (-1224 (-307 (-535)))) 80) (($ (-1224 (-917 (-371)))) 111) (($ (-1224 (-917 (-535)))) 101) (($ (-1224 (-400 (-917 (-371))))) 69) (($ (-1224 (-400 (-917 (-535))))) 53)) (-3722 (((-1230) $) 45)) (-4300 (((-835) $) 39) (($ (-618 (-323))) 29) (($ (-323)) 32) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 35) (($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))) 30))) -(((-82 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675))))))) (-1142)) (T -82)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))) (-5 *1 (-82 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675))))))) -((-3491 (((-3 $ #1="failed") (-665 (-307 (-371)))) 115) (((-3 $ #1#) (-665 (-307 (-535)))) 104) (((-3 $ #1#) (-665 (-917 (-371)))) 137) (((-3 $ #1#) (-665 (-917 (-535)))) 126) (((-3 $ #1#) (-665 (-400 (-917 (-371))))) 93) (((-3 $ #1#) (-665 (-400 (-917 (-535))))) 80)) (-3490 (($ (-665 (-307 (-371)))) 111) (($ (-665 (-307 (-535)))) 100) (($ (-665 (-917 (-371)))) 133) (($ (-665 (-917 (-535)))) 122) (($ (-665 (-400 (-917 (-371))))) 89) (($ (-665 (-400 (-917 (-535))))) 73)) (-3722 (((-1230) $) 63)) (-4300 (((-835) $) 50) (($ (-618 (-323))) 57) (($ (-323)) 46) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 55) (($ (-665 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))) 47))) -(((-83 |#1|) (-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675))))))) (-1142)) (T -83)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))) (-5 *1 (-83 *3)) (-14 *3 (-1142))))) -(-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675))))))) -((-3491 (((-3 $ #1="failed") (-665 (-307 (-371)))) 112) (((-3 $ #1#) (-665 (-307 (-535)))) 100) (((-3 $ #1#) (-665 (-917 (-371)))) 134) (((-3 $ #1#) (-665 (-917 (-535)))) 123) (((-3 $ #1#) (-665 (-400 (-917 (-371))))) 88) (((-3 $ #1#) (-665 (-400 (-917 (-535))))) 74)) (-3490 (($ (-665 (-307 (-371)))) 108) (($ (-665 (-307 (-535)))) 96) (($ (-665 (-917 (-371)))) 130) (($ (-665 (-917 (-535)))) 119) (($ (-665 (-400 (-917 (-371))))) 84) (($ (-665 (-400 (-917 (-535))))) 67)) (-3722 (((-1230) $) 59)) (-4300 (((-835) $) 53) (($ (-618 (-323))) 47) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 44) (($ (-665 (-332 (-3867 (QUOTE X)) (-3867) (-675)))) 45))) -(((-84 |#1|) (-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE X)) (-3867) (-675))))))) (-1142)) (T -84)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3867 (QUOTE X)) (-3867) (-675)))) (-5 *1 (-84 *3)) (-14 *3 (-1142))))) -(-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE X)) (-3867) (-675))))))) -((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 104) (((-3 $ #1#) (-1224 (-307 (-535)))) 93) (((-3 $ #1#) (-1224 (-917 (-371)))) 124) (((-3 $ #1#) (-1224 (-917 (-535)))) 114) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 82) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 69)) (-3490 (($ (-1224 (-307 (-371)))) 100) (($ (-1224 (-307 (-535)))) 89) (($ (-1224 (-917 (-371)))) 120) (($ (-1224 (-917 (-535)))) 110) (($ (-1224 (-400 (-917 (-371))))) 78) (($ (-1224 (-400 (-917 (-535))))) 62)) (-3722 (((-1230) $) 46)) (-4300 (((-835) $) 40) (($ (-618 (-323))) 49) (($ (-323)) 36) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 52) (($ (-1224 (-332 (-3867 (QUOTE X)) (-3867) (-675)))) 37))) -(((-85 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867) (-675))))))) (-1142)) (T -85)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X)) (-3867) (-675)))) (-5 *1 (-85 *3)) (-14 *3 (-1142))))) -(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867) (-675))))))) -((-3722 (((-1230) $) 44)) (-4300 (((-835) $) 38) (($ (-1224 (-675))) 92) (($ (-618 (-323))) 30) (($ (-323)) 35) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 33))) -(((-86 |#1|) (-432) (-1142)) (T -86)) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 125) (((-3 $ "failed") (-1227 (-309 (-550)))) 115) (((-3 $ "failed") (-1227 (-925 (-372)))) 145) (((-3 $ "failed") (-1227 (-925 (-550)))) 135) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 105) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 93)) (-2726 (($ (-1227 (-309 (-372)))) 121) (($ (-1227 (-309 (-550)))) 111) (($ (-1227 (-925 (-372)))) 141) (($ (-1227 (-925 (-550)))) 131) (($ (-1227 (-400 (-925 (-372))))) 101) (($ (-1227 (-400 (-925 (-550))))) 86)) (-3397 (((-1232) $) 78)) (-1518 (((-836) $) 27) (($ (-623 (-323))) 68) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 71) (($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677)))) 65))) +(((-73 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677))))))) (-1144)) (T -73)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677)))) (-5 *1 (-73 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677))))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 130) (((-3 $ "failed") (-1227 (-309 (-550)))) 119) (((-3 $ "failed") (-1227 (-925 (-372)))) 150) (((-3 $ "failed") (-1227 (-925 (-550)))) 140) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 108) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 95)) (-2726 (($ (-1227 (-309 (-372)))) 126) (($ (-1227 (-309 (-550)))) 115) (($ (-1227 (-925 (-372)))) 146) (($ (-1227 (-925 (-550)))) 136) (($ (-1227 (-400 (-925 (-372))))) 104) (($ (-1227 (-400 (-925 (-550))))) 88)) (-3397 (((-1232) $) 79)) (-1518 (((-836) $) 71) (($ (-623 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) NIL) (($ (-1227 (-332 (-1532 (QUOTE X) (QUOTE EPS)) (-1532 (QUOTE -2004)) (-677)))) 66))) +(((-74 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X) (QUOTE EPS)) (-1532 (QUOTE -2004)) (-677))))))) (-1144) (-1144) (-1144)) (T -74)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532 (QUOTE X) (QUOTE EPS)) (-1532 (QUOTE -2004)) (-677)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1144)) (-14 *4 (-1144)) (-14 *5 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X) (QUOTE EPS)) (-1532 (QUOTE -2004)) (-677))))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 134) (((-3 $ "failed") (-1227 (-309 (-550)))) 123) (((-3 $ "failed") (-1227 (-925 (-372)))) 154) (((-3 $ "failed") (-1227 (-925 (-550)))) 144) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 112) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 99)) (-2726 (($ (-1227 (-309 (-372)))) 130) (($ (-1227 (-309 (-550)))) 119) (($ (-1227 (-925 (-372)))) 150) (($ (-1227 (-925 (-550)))) 140) (($ (-1227 (-400 (-925 (-372))))) 108) (($ (-1227 (-400 (-925 (-550))))) 92)) (-3397 (((-1232) $) 83)) (-1518 (((-836) $) 75) (($ (-623 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) NIL) (($ (-1227 (-332 (-1532 (QUOTE EPS)) (-1532 (QUOTE YA) (QUOTE YB)) (-677)))) 70))) +(((-75 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE EPS)) (-1532 (QUOTE YA) (QUOTE YB)) (-677))))))) (-1144) (-1144) (-1144)) (T -75)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532 (QUOTE EPS)) (-1532 (QUOTE YA) (QUOTE YB)) (-677)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1144)) (-14 *4 (-1144)) (-14 *5 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE EPS)) (-1532 (QUOTE YA) (QUOTE YB)) (-677))))))) +((-3880 (((-3 $ "failed") (-309 (-372))) 82) (((-3 $ "failed") (-309 (-550))) 87) (((-3 $ "failed") (-925 (-372))) 91) (((-3 $ "failed") (-925 (-550))) 95) (((-3 $ "failed") (-400 (-925 (-372)))) 77) (((-3 $ "failed") (-400 (-925 (-550)))) 70)) (-2726 (($ (-309 (-372))) 80) (($ (-309 (-550))) 85) (($ (-925 (-372))) 89) (($ (-925 (-550))) 93) (($ (-400 (-925 (-372)))) 75) (($ (-400 (-925 (-550)))) 67)) (-3397 (((-1232) $) 62)) (-1518 (((-836) $) 50) (($ (-623 (-323))) 46) (($ (-323)) 56) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 54) (($ (-332 (-1532) (-1532 (QUOTE X)) (-677))) 47))) +(((-76 |#1|) (-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532) (-1532 (QUOTE X)) (-677)))))) (-1144)) (T -76)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-332 (-1532) (-1532 (QUOTE X)) (-677))) (-5 *1 (-76 *3)) (-14 *3 (-1144))))) +(-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532) (-1532 (QUOTE X)) (-677)))))) +((-3880 (((-3 $ "failed") (-309 (-372))) 46) (((-3 $ "failed") (-309 (-550))) 51) (((-3 $ "failed") (-925 (-372))) 55) (((-3 $ "failed") (-925 (-550))) 59) (((-3 $ "failed") (-400 (-925 (-372)))) 41) (((-3 $ "failed") (-400 (-925 (-550)))) 34)) (-2726 (($ (-309 (-372))) 44) (($ (-309 (-550))) 49) (($ (-925 (-372))) 53) (($ (-925 (-550))) 57) (($ (-400 (-925 (-372)))) 39) (($ (-400 (-925 (-550)))) 31)) (-3397 (((-1232) $) 80)) (-1518 (((-836) $) 74) (($ (-623 (-323))) 66) (($ (-323)) 71) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 69) (($ (-332 (-1532) (-1532 (QUOTE X)) (-677))) 30))) +(((-77 |#1|) (-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532) (-1532 (QUOTE X)) (-677)))))) (-1144)) (T -77)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-332 (-1532) (-1532 (QUOTE X)) (-677))) (-5 *1 (-77 *3)) (-14 *3 (-1144))))) +(-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532) (-1532 (QUOTE X)) (-677)))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 89) (((-3 $ "failed") (-1227 (-309 (-550)))) 78) (((-3 $ "failed") (-1227 (-925 (-372)))) 109) (((-3 $ "failed") (-1227 (-925 (-550)))) 99) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 67) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 54)) (-2726 (($ (-1227 (-309 (-372)))) 85) (($ (-1227 (-309 (-550)))) 74) (($ (-1227 (-925 (-372)))) 105) (($ (-1227 (-925 (-550)))) 95) (($ (-1227 (-400 (-925 (-372))))) 63) (($ (-1227 (-400 (-925 (-550))))) 47)) (-3397 (((-1232) $) 125)) (-1518 (((-836) $) 119) (($ (-623 (-323))) 112) (($ (-323)) 37) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 115) (($ (-1227 (-332 (-1532) (-1532 (QUOTE XC)) (-677)))) 38))) +(((-78 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE XC)) (-677))))))) (-1144)) (T -78)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 (QUOTE XC)) (-677)))) (-5 *1 (-78 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE XC)) (-677))))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 142) (((-3 $ "failed") (-1227 (-309 (-550)))) 132) (((-3 $ "failed") (-1227 (-925 (-372)))) 162) (((-3 $ "failed") (-1227 (-925 (-550)))) 152) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 122) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 110)) (-2726 (($ (-1227 (-309 (-372)))) 138) (($ (-1227 (-309 (-550)))) 128) (($ (-1227 (-925 (-372)))) 158) (($ (-1227 (-925 (-550)))) 148) (($ (-1227 (-400 (-925 (-372))))) 118) (($ (-1227 (-400 (-925 (-550))))) 103)) (-3397 (((-1232) $) 96)) (-1518 (((-836) $) 90) (($ (-623 (-323))) 81) (($ (-323)) 88) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 86) (($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677)))) 82))) +(((-79 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677))))))) (-1144)) (T -79)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677)))) (-5 *1 (-79 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677))))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 78) (((-3 $ "failed") (-1227 (-309 (-550)))) 67) (((-3 $ "failed") (-1227 (-925 (-372)))) 98) (((-3 $ "failed") (-1227 (-925 (-550)))) 88) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 56) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 43)) (-2726 (($ (-1227 (-309 (-372)))) 74) (($ (-1227 (-309 (-550)))) 63) (($ (-1227 (-925 (-372)))) 94) (($ (-1227 (-925 (-550)))) 84) (($ (-1227 (-400 (-925 (-372))))) 52) (($ (-1227 (-400 (-925 (-550))))) 36)) (-3397 (((-1232) $) 124)) (-1518 (((-836) $) 118) (($ (-623 (-323))) 109) (($ (-323)) 115) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 113) (($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677)))) 35))) +(((-80 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677))))))) (-1144)) (T -80)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677)))) (-5 *1 (-80 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532) (-1532 (QUOTE X)) (-677))))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 95) (((-3 $ "failed") (-1227 (-309 (-550)))) 84) (((-3 $ "failed") (-1227 (-925 (-372)))) 115) (((-3 $ "failed") (-1227 (-925 (-550)))) 105) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 73) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 60)) (-2726 (($ (-1227 (-309 (-372)))) 91) (($ (-1227 (-309 (-550)))) 80) (($ (-1227 (-925 (-372)))) 111) (($ (-1227 (-925 (-550)))) 101) (($ (-1227 (-400 (-925 (-372))))) 69) (($ (-1227 (-400 (-925 (-550))))) 53)) (-3397 (((-1232) $) 45)) (-1518 (((-836) $) 39) (($ (-623 (-323))) 29) (($ (-323)) 32) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 35) (($ (-1227 (-332 (-1532 (QUOTE X) (QUOTE -2004)) (-1532) (-677)))) 30))) +(((-81 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X) (QUOTE -2004)) (-1532) (-677))))))) (-1144)) (T -81)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532 (QUOTE X) (QUOTE -2004)) (-1532) (-677)))) (-5 *1 (-81 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X) (QUOTE -2004)) (-1532) (-677))))))) +((-3880 (((-3 $ "failed") (-667 (-309 (-372)))) 115) (((-3 $ "failed") (-667 (-309 (-550)))) 104) (((-3 $ "failed") (-667 (-925 (-372)))) 137) (((-3 $ "failed") (-667 (-925 (-550)))) 126) (((-3 $ "failed") (-667 (-400 (-925 (-372))))) 93) (((-3 $ "failed") (-667 (-400 (-925 (-550))))) 80)) (-2726 (($ (-667 (-309 (-372)))) 111) (($ (-667 (-309 (-550)))) 100) (($ (-667 (-925 (-372)))) 133) (($ (-667 (-925 (-550)))) 122) (($ (-667 (-400 (-925 (-372))))) 89) (($ (-667 (-400 (-925 (-550))))) 73)) (-3397 (((-1232) $) 63)) (-1518 (((-836) $) 50) (($ (-623 (-323))) 57) (($ (-323)) 46) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 55) (($ (-667 (-332 (-1532 (QUOTE X) (QUOTE -2004)) (-1532) (-677)))) 47))) +(((-82 |#1|) (-13 (-377) (-10 -8 (-15 -1518 ($ (-667 (-332 (-1532 (QUOTE X) (QUOTE -2004)) (-1532) (-677))))))) (-1144)) (T -82)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-1532 (QUOTE X) (QUOTE -2004)) (-1532) (-677)))) (-5 *1 (-82 *3)) (-14 *3 (-1144))))) +(-13 (-377) (-10 -8 (-15 -1518 ($ (-667 (-332 (-1532 (QUOTE X) (QUOTE -2004)) (-1532) (-677))))))) +((-3880 (((-3 $ "failed") (-667 (-309 (-372)))) 112) (((-3 $ "failed") (-667 (-309 (-550)))) 100) (((-3 $ "failed") (-667 (-925 (-372)))) 134) (((-3 $ "failed") (-667 (-925 (-550)))) 123) (((-3 $ "failed") (-667 (-400 (-925 (-372))))) 88) (((-3 $ "failed") (-667 (-400 (-925 (-550))))) 74)) (-2726 (($ (-667 (-309 (-372)))) 108) (($ (-667 (-309 (-550)))) 96) (($ (-667 (-925 (-372)))) 130) (($ (-667 (-925 (-550)))) 119) (($ (-667 (-400 (-925 (-372))))) 84) (($ (-667 (-400 (-925 (-550))))) 67)) (-3397 (((-1232) $) 59)) (-1518 (((-836) $) 53) (($ (-623 (-323))) 47) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 44) (($ (-667 (-332 (-1532 (QUOTE X)) (-1532) (-677)))) 45))) +(((-83 |#1|) (-13 (-377) (-10 -8 (-15 -1518 ($ (-667 (-332 (-1532 (QUOTE X)) (-1532) (-677))))))) (-1144)) (T -83)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-1532 (QUOTE X)) (-1532) (-677)))) (-5 *1 (-83 *3)) (-14 *3 (-1144))))) +(-13 (-377) (-10 -8 (-15 -1518 ($ (-667 (-332 (-1532 (QUOTE X)) (-1532) (-677))))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 104) (((-3 $ "failed") (-1227 (-309 (-550)))) 93) (((-3 $ "failed") (-1227 (-925 (-372)))) 124) (((-3 $ "failed") (-1227 (-925 (-550)))) 114) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 82) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 69)) (-2726 (($ (-1227 (-309 (-372)))) 100) (($ (-1227 (-309 (-550)))) 89) (($ (-1227 (-925 (-372)))) 120) (($ (-1227 (-925 (-550)))) 110) (($ (-1227 (-400 (-925 (-372))))) 78) (($ (-1227 (-400 (-925 (-550))))) 62)) (-3397 (((-1232) $) 46)) (-1518 (((-836) $) 40) (($ (-623 (-323))) 49) (($ (-323)) 36) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 52) (($ (-1227 (-332 (-1532 (QUOTE X)) (-1532) (-677)))) 37))) +(((-84 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X)) (-1532) (-677))))))) (-1144)) (T -84)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532 (QUOTE X)) (-1532) (-677)))) (-5 *1 (-84 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X)) (-1532) (-677))))))) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 79) (((-3 $ "failed") (-1227 (-309 (-550)))) 68) (((-3 $ "failed") (-1227 (-925 (-372)))) 99) (((-3 $ "failed") (-1227 (-925 (-550)))) 89) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 57) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 44)) (-2726 (($ (-1227 (-309 (-372)))) 75) (($ (-1227 (-309 (-550)))) 64) (($ (-1227 (-925 (-372)))) 95) (($ (-1227 (-925 (-550)))) 85) (($ (-1227 (-400 (-925 (-372))))) 53) (($ (-1227 (-400 (-925 (-550))))) 37)) (-3397 (((-1232) $) 125)) (-1518 (((-836) $) 119) (($ (-623 (-323))) 110) (($ (-323)) 116) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 114) (($ (-1227 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677)))) 36))) +(((-85 |#1|) (-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677))))))) (-1144)) (T -85)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677)))) (-5 *1 (-85 *3)) (-14 *3 (-1144))))) +(-13 (-433) (-10 -8 (-15 -1518 ($ (-1227 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677))))))) +((-3880 (((-3 $ "failed") (-667 (-309 (-372)))) 113) (((-3 $ "failed") (-667 (-309 (-550)))) 101) (((-3 $ "failed") (-667 (-925 (-372)))) 135) (((-3 $ "failed") (-667 (-925 (-550)))) 124) (((-3 $ "failed") (-667 (-400 (-925 (-372))))) 89) (((-3 $ "failed") (-667 (-400 (-925 (-550))))) 75)) (-2726 (($ (-667 (-309 (-372)))) 109) (($ (-667 (-309 (-550)))) 97) (($ (-667 (-925 (-372)))) 131) (($ (-667 (-925 (-550)))) 120) (($ (-667 (-400 (-925 (-372))))) 85) (($ (-667 (-400 (-925 (-550))))) 68)) (-3397 (((-1232) $) 59)) (-1518 (((-836) $) 53) (($ (-623 (-323))) 43) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 48) (($ (-667 (-332 (-1532 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1532) (-677)))) 44))) +(((-86 |#1|) (-13 (-377) (-10 -8 (-15 -1518 ($ (-667 (-332 (-1532 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1532) (-677))))))) (-1144)) (T -86)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-1532 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1532) (-677)))) (-5 *1 (-86 *3)) (-14 *3 (-1144))))) +(-13 (-377) (-10 -8 (-15 -1518 ($ (-667 (-332 (-1532 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1532) (-677))))))) +((-3397 (((-1232) $) 44)) (-1518 (((-836) $) 38) (($ (-1227 (-677))) 92) (($ (-623 (-323))) 30) (($ (-323)) 35) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 33))) +(((-87 |#1|) (-432) (-1144)) (T -87)) NIL (-432) -((-3491 (((-3 $ #1="failed") (-665 (-307 (-371)))) 113) (((-3 $ #1#) (-665 (-307 (-535)))) 101) (((-3 $ #1#) (-665 (-917 (-371)))) 135) (((-3 $ #1#) (-665 (-917 (-535)))) 124) (((-3 $ #1#) (-665 (-400 (-917 (-371))))) 89) (((-3 $ #1#) (-665 (-400 (-917 (-535))))) 75)) (-3490 (($ (-665 (-307 (-371)))) 109) (($ (-665 (-307 (-535)))) 97) (($ (-665 (-917 (-371)))) 131) (($ (-665 (-917 (-535)))) 120) (($ (-665 (-400 (-917 (-371))))) 85) (($ (-665 (-400 (-917 (-535))))) 68)) (-3722 (((-1230) $) 59)) (-4300 (((-835) $) 53) (($ (-618 (-323))) 43) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 48) (($ (-665 (-332 (-3867 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3867) (-675)))) 44))) -(((-87 |#1|) (-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3867) (-675))))))) (-1142)) (T -87)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3867 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3867) (-675)))) (-5 *1 (-87 *3)) (-14 *3 (-1142))))) -(-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3867) (-675))))))) -((-3491 (((-3 $ #1="failed") (-307 (-371))) 47) (((-3 $ #1#) (-307 (-535))) 52) (((-3 $ #1#) (-917 (-371))) 56) (((-3 $ #1#) (-917 (-535))) 60) (((-3 $ #1#) (-400 (-917 (-371)))) 42) (((-3 $ #1#) (-400 (-917 (-535)))) 35)) (-3490 (($ (-307 (-371))) 45) (($ (-307 (-535))) 50) (($ (-917 (-371))) 54) (($ (-917 (-535))) 58) (($ (-400 (-917 (-371)))) 40) (($ (-400 (-917 (-535)))) 32)) (-3722 (((-1230) $) 90)) (-4300 (((-835) $) 84) (($ (-618 (-323))) 78) (($ (-323)) 81) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 76) (($ (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))) 31))) -(((-88 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))))) (-1142)) (T -88)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))) (-5 *1 (-88 *3)) (-14 *3 (-1142))))) -(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))))) -((-1305 (((-1224 (-665 |#1|)) (-665 |#1|)) 54)) (-1304 (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 (-618 (-890))))) |#2| (-890)) 44)) (-1306 (((-2 (|:| |minor| (-618 (-890))) (|:| -3600 |#2|) (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 |#2|))) |#2| (-890)) 65 (|has| |#1| (-356))))) -(((-89 |#1| |#2|) (-10 -7 (-15 -1304 ((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 (-618 (-890))))) |#2| (-890))) (-15 -1305 ((-1224 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-356)) (-15 -1306 ((-2 (|:| |minor| (-618 (-890))) (|:| -3600 |#2|) (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 |#2|))) |#2| (-890))) |%noBranch|)) (-542) (-634 |#1|)) (T -89)) -((-1306 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |minor| (-618 (-890))) (|:| -3600 *3) (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-634 *5)))) (-1305 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-665 *4)) (-4 *5 (-634 *4)))) (-1304 (*1 *2 *3 *4) (-12 (-4 *5 (-542)) (-5 *2 (-2 (|:| -1695 (-665 *5)) (|:| |vec| (-1224 (-618 (-890)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-634 *5))))) -(-10 -7 (-15 -1304 ((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 (-618 (-890))))) |#2| (-890))) (-15 -1305 ((-1224 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-356)) (-15 -1306 ((-2 (|:| |minor| (-618 (-890))) (|:| -3600 |#2|) (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 |#2|))) |#2| (-890))) |%noBranch|)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3666 ((|#1| $) 35)) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3668 ((|#1| |#1| $) 30)) (-3667 ((|#1| $) 28)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) NIL)) (-3953 (($ |#1| $) 31)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1327 ((|#1| $) 29)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 16)) (-3911 (($) 39)) (-3665 (((-747) $) 26)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 15)) (-4300 (((-835) $) 25 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) NIL)) (-1307 (($ (-618 |#1|)) 37)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 13 (|has| |#1| (-1067)))) (-4299 (((-747) $) 10 (|has| $ (-6 -4336))))) -(((-90 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -1307 ($ (-618 |#1|))))) (-1067)) (T -90)) -((-1307 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-90 *3))))) -(-13 (-1087 |#1|) (-10 -8 (-15 -1307 ($ (-618 |#1|))))) -((-4300 (((-835) $) 13) (((-1147) $) 8) (($ (-1147)) 9))) -(((-91 |#1|) (-10 -8 (-15 -4300 (|#1| (-1147))) (-15 -4300 ((-1147) |#1|)) (-15 -4300 ((-835) |#1|))) (-92)) (T -91)) -NIL -(-10 -8 (-15 -4300 (|#1| (-1147))) (-15 -4300 ((-1147) |#1|)) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-3375 (((-112) $ $) 6))) +((-3880 (((-3 $ "failed") (-309 (-372))) 47) (((-3 $ "failed") (-309 (-550))) 52) (((-3 $ "failed") (-925 (-372))) 56) (((-3 $ "failed") (-925 (-550))) 60) (((-3 $ "failed") (-400 (-925 (-372)))) 42) (((-3 $ "failed") (-400 (-925 (-550)))) 35)) (-2726 (($ (-309 (-372))) 45) (($ (-309 (-550))) 50) (($ (-925 (-372))) 54) (($ (-925 (-550))) 58) (($ (-400 (-925 (-372)))) 40) (($ (-400 (-925 (-550)))) 32)) (-3397 (((-1232) $) 90)) (-1518 (((-836) $) 84) (($ (-623 (-323))) 78) (($ (-323)) 81) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 76) (($ (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677))) 31))) +(((-88 |#1|) (-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677)))))) (-1144)) (T -88)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677))) (-5 *1 (-88 *3)) (-14 *3 (-1144))))) +(-13 (-389) (-10 -8 (-15 -1518 ($ (-332 (-1532 (QUOTE X)) (-1532 (QUOTE -2004)) (-677)))))) +((-1339 (((-1227 (-667 |#1|)) (-667 |#1|)) 54)) (-1700 (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 (-623 (-894))))) |#2| (-894)) 44)) (-1483 (((-2 (|:| |minor| (-623 (-894))) (|:| -1721 |#2|) (|:| |minors| (-623 (-623 (-894)))) (|:| |ops| (-623 |#2|))) |#2| (-894)) 65 (|has| |#1| (-356))))) +(((-89 |#1| |#2|) (-10 -7 (-15 -1700 ((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 (-623 (-894))))) |#2| (-894))) (-15 -1339 ((-1227 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-356)) (-15 -1483 ((-2 (|:| |minor| (-623 (-894))) (|:| -1721 |#2|) (|:| |minors| (-623 (-623 (-894)))) (|:| |ops| (-623 |#2|))) |#2| (-894))) |%noBranch|)) (-542) (-634 |#1|)) (T -89)) +((-1483 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |minor| (-623 (-894))) (|:| -1721 *3) (|:| |minors| (-623 (-623 (-894)))) (|:| |ops| (-623 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-894)) (-4 *3 (-634 *5)))) (-1339 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-1227 (-667 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-667 *4)) (-4 *5 (-634 *4)))) (-1700 (*1 *2 *3 *4) (-12 (-4 *5 (-542)) (-5 *2 (-2 (|:| -1340 (-667 *5)) (|:| |vec| (-1227 (-623 (-894)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-894)) (-4 *3 (-634 *5))))) +(-10 -7 (-15 -1700 ((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 (-623 (-894))))) |#2| (-894))) (-15 -1339 ((-1227 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-356)) (-15 -1483 ((-2 (|:| |minor| (-623 (-894))) (|:| -1721 |#2|) (|:| |minors| (-623 (-623 (-894)))) (|:| |ops| (-623 |#2|))) |#2| (-894))) |%noBranch|)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2038 ((|#1| $) 35)) (-4047 (((-112) $ (-749)) NIL)) (-3513 (($) NIL T CONST)) (-2094 ((|#1| |#1| $) 30)) (-2006 ((|#1| $) 28)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3638 ((|#1| $) NIL)) (-1886 (($ |#1| $) 31)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3760 ((|#1| $) 29)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 16)) (-3498 (($) 39)) (-2775 (((-749) $) 26)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) 15)) (-1518 (((-836) $) 25 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) NIL)) (-1633 (($ (-623 |#1|)) 37)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 13 (|has| |#1| (-1068)))) (-3191 (((-749) $) 10 (|has| $ (-6 -4342))))) +(((-90 |#1|) (-13 (-1089 |#1|) (-10 -8 (-15 -1633 ($ (-623 |#1|))))) (-1068)) (T -90)) +((-1633 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-90 *3))))) +(-13 (-1089 |#1|) (-10 -8 (-15 -1633 ($ (-623 |#1|))))) +((-1518 (((-836) $) 13) (((-1149) $) 8) (($ (-1149)) 9))) +(((-91 |#1|) (-10 -8 (-15 -1518 (|#1| (-1149))) (-15 -1518 ((-1149) |#1|)) (-15 -1518 ((-836) |#1|))) (-92)) (T -91)) +NIL +(-10 -8 (-15 -1518 (|#1| (-1149))) (-15 -1518 ((-1149) |#1|)) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (((-1149) $) 15) (($ (-1149)) 14)) (-2316 (((-112) $ $) 6))) (((-92) (-138)) (T -92)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-92))))) -(-13 (-1067) (-593 (-1147)) (-10 -8 (-15 -4300 ($ (-1147))))) -(((-101) . T) ((-593 (-835)) . T) ((-593 (-1147)) . T) ((-1067) . T)) -((-3825 (($ $) 10)) (-3826 (($ $) 12))) -(((-93 |#1|) (-10 -8 (-15 -3826 (|#1| |#1|)) (-15 -3825 (|#1| |#1|))) (-94)) (T -93)) -NIL -(-10 -8 (-15 -3826 (|#1| |#1|)) (-15 -3825 (|#1| |#1|))) -((-3823 (($ $) 11)) (-3821 (($ $) 10)) (-3825 (($ $) 9)) (-3826 (($ $) 8)) (-3824 (($ $) 7)) (-3822 (($ $) 6))) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-92))))) +(-13 (-1068) (-595 (-1149)) (-10 -8 (-15 -1518 ($ (-1149))))) +(((-101) . T) ((-595 (-836)) . T) ((-595 (-1149)) . T) ((-1068) . T)) +((-3081 (($ $) 10)) (-3094 (($ $) 12))) +(((-93 |#1|) (-10 -8 (-15 -3094 (|#1| |#1|)) (-15 -3081 (|#1| |#1|))) (-94)) (T -93)) +NIL +(-10 -8 (-15 -3094 (|#1| |#1|)) (-15 -3081 (|#1| |#1|))) +((-3060 (($ $) 11)) (-3043 (($ $) 10)) (-3081 (($ $) 9)) (-3094 (($ $) 8)) (-3072 (($ $) 7)) (-3052 (($ $) 6))) (((-94) (-138)) (T -94)) -((-3823 (*1 *1 *1) (-4 *1 (-94))) (-3821 (*1 *1 *1) (-4 *1 (-94))) (-3825 (*1 *1 *1) (-4 *1 (-94))) (-3826 (*1 *1 *1) (-4 *1 (-94))) (-3824 (*1 *1 *1) (-4 *1 (-94))) (-3822 (*1 *1 *1) (-4 *1 (-94)))) -(-13 (-10 -8 (-15 -3822 ($ $)) (-15 -3824 ($ $)) (-15 -3826 ($ $)) (-15 -3825 ($ $)) (-15 -3821 ($ $)) (-15 -3823 ($ $)))) -((-2887 (((-112) $ $) NIL)) (-3888 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-95) (-13 (-1049) (-10 -8 (-15 -3888 ((-1101) $))))) (T -95)) -((-3888 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-95))))) -(-13 (-1049) (-10 -8 (-15 -3888 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-1308 (((-371) (-1124) (-371)) 42) (((-371) (-1124) (-1124) (-371)) 41)) (-1309 (((-371) (-371)) 33)) (-1310 (((-1230)) 36)) (-3576 (((-1124) $) NIL)) (-1313 (((-371) (-1124) (-1124)) 46) (((-371) (-1124)) 48)) (-3577 (((-1086) $) NIL)) (-1311 (((-371) (-1124) (-1124)) 47)) (-1312 (((-371) (-1124) (-1124)) 49) (((-371) (-1124)) 50)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-96) (-13 (-1067) (-10 -7 (-15 -1313 ((-371) (-1124) (-1124))) (-15 -1313 ((-371) (-1124))) (-15 -1312 ((-371) (-1124) (-1124))) (-15 -1312 ((-371) (-1124))) (-15 -1311 ((-371) (-1124) (-1124))) (-15 -1310 ((-1230))) (-15 -1309 ((-371) (-371))) (-15 -1308 ((-371) (-1124) (-371))) (-15 -1308 ((-371) (-1124) (-1124) (-371))) (-6 -4336)))) (T -96)) -((-1313 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1312 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1311 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1310 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-96)))) (-1309 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96)))) (-1308 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1124)) (-5 *1 (-96)))) (-1308 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1124)) (-5 *1 (-96))))) -(-13 (-1067) (-10 -7 (-15 -1313 ((-371) (-1124) (-1124))) (-15 -1313 ((-371) (-1124))) (-15 -1312 ((-371) (-1124) (-1124))) (-15 -1312 ((-371) (-1124))) (-15 -1311 ((-371) (-1124) (-1124))) (-15 -1310 ((-1230))) (-15 -1309 ((-371) (-371))) (-15 -1308 ((-371) (-1124) (-371))) (-15 -1308 ((-371) (-1124) (-1124) (-371))) (-6 -4336))) +((-3060 (*1 *1 *1) (-4 *1 (-94))) (-3043 (*1 *1 *1) (-4 *1 (-94))) (-3081 (*1 *1 *1) (-4 *1 (-94))) (-3094 (*1 *1 *1) (-4 *1 (-94))) (-3072 (*1 *1 *1) (-4 *1 (-94))) (-3052 (*1 *1 *1) (-4 *1 (-94)))) +(-13 (-10 -8 (-15 -3052 ($ $)) (-15 -3072 ($ $)) (-15 -3094 ($ $)) (-15 -3081 ($ $)) (-15 -3043 ($ $)) (-15 -3060 ($ $)))) +((-1504 (((-112) $ $) NIL)) (-1916 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 17) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-95) (-13 (-1051) (-10 -8 (-15 -1916 ((-1103) $))))) (T -95)) +((-1916 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-95))))) +(-13 (-1051) (-10 -8 (-15 -1916 ((-1103) $)))) +((-1504 (((-112) $ $) NIL)) (-1787 (((-372) (-1126) (-372)) 42) (((-372) (-1126) (-1126) (-372)) 41)) (-1931 (((-372) (-372)) 33)) (-3808 (((-1232)) 36)) (-1825 (((-1126) $) NIL)) (-4191 (((-372) (-1126) (-1126)) 46) (((-372) (-1126)) 48)) (-3337 (((-1088) $) NIL)) (-3924 (((-372) (-1126) (-1126)) 47)) (-4060 (((-372) (-1126) (-1126)) 49) (((-372) (-1126)) 50)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-96) (-13 (-1068) (-10 -7 (-15 -4191 ((-372) (-1126) (-1126))) (-15 -4191 ((-372) (-1126))) (-15 -4060 ((-372) (-1126) (-1126))) (-15 -4060 ((-372) (-1126))) (-15 -3924 ((-372) (-1126) (-1126))) (-15 -3808 ((-1232))) (-15 -1931 ((-372) (-372))) (-15 -1787 ((-372) (-1126) (-372))) (-15 -1787 ((-372) (-1126) (-1126) (-372))) (-6 -4342)))) (T -96)) +((-4191 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96)))) (-4060 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3924 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3808 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-96)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-96)))) (-1787 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1126)) (-5 *1 (-96)))) (-1787 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1126)) (-5 *1 (-96))))) +(-13 (-1068) (-10 -7 (-15 -4191 ((-372) (-1126) (-1126))) (-15 -4191 ((-372) (-1126))) (-15 -4060 ((-372) (-1126) (-1126))) (-15 -4060 ((-372) (-1126))) (-15 -3924 ((-372) (-1126) (-1126))) (-15 -3808 ((-1232))) (-15 -1931 ((-372) (-372))) (-15 -1787 ((-372) (-1126) (-372))) (-15 -1787 ((-372) (-1126) (-1126) (-372))) (-6 -4342))) NIL (((-97) (-138)) (T -97)) NIL -(-13 (-10 -7 (-6 -4336) (-6 (-4338 "*")) (-6 -4337) (-6 -4333) (-6 -4331) (-6 -4330) (-6 -4329) (-6 -4334) (-6 -4328) (-6 -4327) (-6 -4326) (-6 -4325) (-6 -4324) (-6 -4332) (-6 -4335) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4323))) -((-2887 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-1314 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-535))) 22)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 14)) (-3577 (((-1086) $) NIL)) (-4142 ((|#1| $ |#1|) 11)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 20)) (-2985 (($) 8 T CONST)) (-3375 (((-112) $ $) 10)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) 27) (($ $ (-747)) NIL) (($ $ (-535)) 16)) (* (($ $ $) 28))) -(((-98 |#1|) (-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1314 ($ (-1 |#1| |#1|))) (-15 -1314 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1314 ($ (-1 |#1| |#1| (-535)))))) (-1018)) (T -98)) -((-1314 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-1314 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-535))) (-4 *3 (-1018)) (-5 *1 (-98 *3))))) -(-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1314 ($ (-1 |#1| |#1|))) (-15 -1314 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1314 ($ (-1 |#1| |#1| (-535)))))) -((-1315 (((-398 |#2|) |#2| (-618 |#2|)) 10) (((-398 |#2|) |#2| |#2|) 11))) -(((-99 |#1| |#2|) (-10 -7 (-15 -1315 ((-398 |#2|) |#2| |#2|)) (-15 -1315 ((-398 |#2|) |#2| (-618 |#2|)))) (-13 (-444) (-145)) (-1200 |#1|)) (T -99)) -((-1315 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *5 *3)))) (-1315 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -1315 ((-398 |#2|) |#2| |#2|)) (-15 -1315 ((-398 |#2|) |#2| (-618 |#2|)))) -((-2887 (((-112) $ $) 10))) -(((-100 |#1|) (-10 -8 (-15 -2887 ((-112) |#1| |#1|))) (-101)) (T -100)) -NIL -(-10 -8 (-15 -2887 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3375 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4342) (-6 (-4344 "*")) (-6 -4343) (-6 -4339) (-6 -4337) (-6 -4336) (-6 -4335) (-6 -4340) (-6 -4334) (-6 -4333) (-6 -4332) (-6 -4331) (-6 -4330) (-6 -4338) (-6 -4341) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4329))) +((-1504 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-1278 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-550))) 22)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 14)) (-3337 (((-1088) $) NIL)) (-2680 ((|#1| $ |#1|) 11)) (-1270 (($ $ $) NIL)) (-3292 (($ $ $) NIL)) (-1518 (((-836) $) 20)) (-2636 (($) 8 T CONST)) (-2316 (((-112) $ $) 10)) (-2414 (($ $ $) NIL)) (** (($ $ (-894)) 27) (($ $ (-749)) NIL) (($ $ (-550)) 16)) (* (($ $ $) 28))) +(((-98 |#1|) (-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1278 ($ (-1 |#1| |#1|))) (-15 -1278 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1278 ($ (-1 |#1| |#1| (-550)))))) (-1020)) (T -98)) +((-1278 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) (-1278 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) (-1278 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-550))) (-4 *3 (-1020)) (-5 *1 (-98 *3))))) +(-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1278 ($ (-1 |#1| |#1|))) (-15 -1278 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1278 ($ (-1 |#1| |#1| (-550)))))) +((-3249 (((-411 |#2|) |#2| (-623 |#2|)) 10) (((-411 |#2|) |#2| |#2|) 11))) +(((-99 |#1| |#2|) (-10 -7 (-15 -3249 ((-411 |#2|) |#2| |#2|)) (-15 -3249 ((-411 |#2|) |#2| (-623 |#2|)))) (-13 (-444) (-145)) (-1203 |#1|)) (T -99)) +((-3249 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-13 (-444) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-99 *5 *3)))) (-3249 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -3249 ((-411 |#2|) |#2| |#2|)) (-15 -3249 ((-411 |#2|) |#2| (-623 |#2|)))) +((-1504 (((-112) $ $) 10))) +(((-100 |#1|) (-10 -8 (-15 -1504 ((-112) |#1| |#1|))) (-101)) (T -100)) +NIL +(-10 -8 (-15 -1504 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-2316 (((-112) $ $) 6))) (((-101) (-138)) (T -101)) -((-2887 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-3375 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -3375 ((-112) $ $)) (-15 -2887 ((-112) $ $)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) 13 (|has| $ (-6 -4337)))) (-1348 (($ $ $) NIL (|has| $ (-6 -4337)))) (-1349 (($ $ $) NIL (|has| $ (-6 -4337)))) (-1318 (($ $ (-618 |#1|)) 15)) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 11)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) 17)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1317 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1316 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-618 |#1|) |#1| |#1| |#1|)) 35)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) 10)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) 12)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 9)) (-3911 (($) 16)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1319 (($ (-747) |#1|) 19)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -1319 ($ (-747) |#1|)) (-15 -1318 ($ $ (-618 |#1|))) (-15 -1317 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1317 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1316 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1316 ($ $ |#1| (-1 (-618 |#1|) |#1| |#1| |#1|))))) (-1067)) (T -102)) -((-1319 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-102 *3)) (-4 *3 (-1067)))) (-1318 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))) (-1317 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1067)))) (-1317 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))) (-1316 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2)))) (-1316 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-618 *2) *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -1319 ($ (-747) |#1|)) (-15 -1318 ($ $ (-618 |#1|))) (-15 -1317 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1317 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1316 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1316 ($ $ |#1| (-1 (-618 |#1|) |#1| |#1| |#1|))))) -((-1320 ((|#3| |#2| |#2|) 29)) (-1322 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4338 #1="*"))))) (-1321 ((|#3| |#2| |#2|) 30)) (-1323 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4338 #1#)))))) -(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1320 (|#3| |#2| |#2|)) (-15 -1321 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4338 "*"))) (PROGN (-15 -1322 (|#1| |#2| |#2|)) (-15 -1323 (|#1| |#2|))) |%noBranch|)) (-1018) (-1200 |#1|) (-662 |#1| |#4| |#5|) (-365 |#1|) (-365 |#1|)) (T -103)) -((-1323 (*1 *2 *3) (-12 (|has| *2 (-6 (-4338 #1="*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1200 *2)) (-4 *4 (-662 *2 *5 *6)))) (-1322 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4338 #1#))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1200 *2)) (-4 *4 (-662 *2 *5 *6)))) (-1321 (*1 *2 *3 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-662 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1200 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))) (-1320 (*1 *2 *3 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-662 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1200 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) -(-10 -7 (-15 -1320 (|#3| |#2| |#2|)) (-15 -1321 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4338 "*"))) (PROGN (-15 -1322 (|#1| |#2| |#2|)) (-15 -1323 (|#1| |#2|))) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-1325 (((-618 (-1142))) 33)) (-1324 (((-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) (|:| |singularities| (-1119 (-219)))) (-1142)) 35)) (-3375 (((-112) $ $) NIL))) -(((-104) (-13 (-1067) (-10 -7 (-15 -1325 ((-618 (-1142)))) (-15 -1324 ((-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) (|:| |singularities| (-1119 (-219)))) (-1142))) (-6 -4336)))) (T -104)) -((-1325 (*1 *2) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-104)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) (|:| |singularities| (-1119 (-219))))) (-5 *1 (-104))))) -(-13 (-1067) (-10 -7 (-15 -1325 ((-618 (-1142)))) (-15 -1324 ((-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) (|:| |singularities| (-1119 (-219)))) (-1142))) (-6 -4336))) -((-1328 (($ (-618 |#2|)) 11))) -(((-105 |#1| |#2|) (-10 -8 (-15 -1328 (|#1| (-618 |#2|)))) (-106 |#2|) (-1178)) (T -105)) -NIL -(-10 -8 (-15 -1328 (|#1| (-618 |#2|)))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-106 |#1|) (-138) (-1178)) (T -106)) -((-1328 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-106 *3)))) (-1327 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178)))) (-3953 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178)))) (-1326 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178))))) -(-13 (-481 |t#1|) (-10 -8 (-6 -4337) (-15 -1328 ($ (-618 |t#1|))) (-15 -1327 (|t#1| $)) (-15 -3953 ($ |t#1| $)) (-15 -1326 (|t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-535) $) NIL (|has| (-535) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-535) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-535) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-535) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-535) (-1009 (-535))))) (-3490 (((-535) $) NIL) (((-1142) $) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-535) (-1009 (-535)))) (((-535) $) NIL (|has| (-535) (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-535) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-535) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-535) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-535) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-535) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-535) (-1117)))) (-3521 (((-112) $) NIL (|has| (-535) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-535) (-823)))) (-4301 (($ (-1 (-535) (-535)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-535) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-535) (-300))) (((-400 (-535)) $) NIL)) (-3448 (((-535) $) NIL (|has| (-535) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-535)) (-618 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-535) (-535)) NIL (|has| (-535) (-302 (-535)))) (($ $ (-286 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-286 (-535)))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-1142)) (-618 (-535))) NIL (|has| (-535) (-505 (-1142) (-535)))) (($ $ (-1142) (-535)) NIL (|has| (-535) (-505 (-1142) (-535))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-535)) NIL (|has| (-535) (-279 (-535) (-535))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-535) $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| (-535) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-535) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-535) (-594 (-524)))) (((-371) $) NIL (|has| (-535) (-991))) (((-219) $) NIL (|has| (-535) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-535) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 8) (($ (-535)) NIL) (($ (-1142)) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL) (((-975 2) $) 10)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-535) (-881))) (|has| (-535) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-535) $) NIL (|has| (-535) (-534)))) (-2137 (($ (-400 (-535))) 9)) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-535) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-535) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-535) (-823)))) (-4291 (($ $ $) NIL) (($ (-535) (-535)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-535) $) NIL) (($ $ (-535)) NIL))) -(((-107) (-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 2) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -2137 ($ (-400 (-535))))))) (T -107)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-975 2)) (-5 *1 (-107)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107)))) (-2137 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107))))) -(-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 2) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -2137 ($ (-400 (-535)))))) -((-1343 (((-618 (-936)) $) 14)) (-3888 (((-1142) $) 10)) (-4300 (((-835) $) 23)) (-1329 (($ (-1142) (-618 (-936))) 15))) -(((-108) (-13 (-593 (-835)) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -1343 ((-618 (-936)) $)) (-15 -1329 ($ (-1142) (-618 (-936))))))) (T -108)) -((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-108)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-618 (-936))) (-5 *1 (-108)))) (-1329 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-936))) (-5 *1 (-108))))) -(-13 (-593 (-835)) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -1343 ((-618 (-936)) $)) (-15 -1329 ($ (-1142) (-618 (-936)))))) -((-2887 (((-112) $ $) NIL)) (-1808 (((-1086) $ (-1086)) 24)) (-1812 (($ $ (-1124)) 17)) (-3965 (((-3 (-1086) "failed") $) 23)) (-1809 (((-1086) $) 21)) (-1330 (((-1086) $ (-1086)) 26)) (-3761 (((-1086) $) 25)) (-1813 (($ (-381)) NIL) (($ (-381) (-1124)) 16)) (-3888 (((-381) $) NIL)) (-3576 (((-1124) $) NIL)) (-1810 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-1811 (($ $) 18)) (-3375 (((-112) $ $) NIL))) -(((-109) (-13 (-358 (-381) (-1086)) (-10 -8 (-15 -3965 ((-3 (-1086) "failed") $)) (-15 -3761 ((-1086) $)) (-15 -1330 ((-1086) $ (-1086)))))) (T -109)) -((-3965 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-109)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-109)))) (-1330 (*1 *2 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-109))))) -(-13 (-358 (-381) (-1086)) (-10 -8 (-15 -3965 ((-3 (-1086) "failed") $)) (-15 -3761 ((-1086) $)) (-15 -1330 ((-1086) $ (-1086))))) -((-2887 (((-112) $ $) NIL)) (-3662 (($ $) NIL)) (-3658 (($ $ $) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-823)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-3230 (($ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-112) $ (-1191 (-535)) (-112)) NIL (|has| $ (-6 -4337))) (((-112) $ (-535) (-112)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-3748 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-4185 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-1632 (((-112) $ (-535) (-112)) NIL (|has| $ (-6 -4337)))) (-3431 (((-112) $ (-535)) NIL)) (-3761 (((-535) (-112) $ (-535)) NIL (|has| (-112) (-1067))) (((-535) (-112) $) NIL (|has| (-112) (-1067))) (((-535) (-1 (-112) (-112)) $) NIL)) (-2063 (((-618 (-112)) $) NIL (|has| $ (-6 -4336)))) (-3178 (($ $ $) NIL)) (-3659 (($ $) NIL)) (-1355 (($ $ $) NIL)) (-3960 (($ (-747) (-112)) 8)) (-1356 (($ $ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL)) (-3855 (($ $ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2502 (((-618 (-112)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL)) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ (-112) $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-112) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2297 (($ $ (-112)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-112)) (-618 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-618 (-286 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2303 (((-618 (-112)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (($ $ (-1191 (-535))) NIL) (((-112) $ (-535)) NIL) (((-112) $ (-535) (-112)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2064 (((-747) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067)))) (((-747) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-112) (-594 (-524))))) (-3867 (($ (-618 (-112))) NIL)) (-4144 (($ (-618 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4300 (((-835) $) NIL)) (-1885 (($ (-747) (-112)) 9)) (-2066 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-3179 (($ $ $) NIL)) (-3664 (($ $ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-3663 (($ $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-110) (-13 (-123) (-10 -8 (-15 -1885 ($ (-747) (-112)))))) (T -110)) -((-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -1885 ($ (-747) (-112))))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-111 |#1| |#2|) (-138) (-1018) (-1018)) (T -111)) -NIL -(-13 (-624 |t#1|) (-1024 |t#2|) (-10 -7 (-6 -4331) (-6 -4330))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-1024 |#2|) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3662 (($ $) 10)) (-3658 (($ $ $) 15)) (-2313 (($) 7 T CONST)) (-1331 (($ $) 6)) (-3454 (((-747)) 24)) (-3315 (($) 30)) (-3178 (($ $ $) 13)) (-3659 (($ $) 9)) (-1355 (($ $ $) 16)) (-1356 (($ $ $) 17)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2121 (((-890) $) 29)) (-3576 (((-1124) $) NIL)) (-2483 (($ (-890)) 28)) (-3177 (($ $ $) 20)) (-3577 (((-1086) $) NIL)) (-2315 (($) 8 T CONST)) (-3176 (($ $ $) 21)) (-4313 (((-524) $) 36)) (-4300 (((-835) $) 39)) (-3179 (($ $ $) 11)) (-3664 (($ $ $) 14)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 19)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 22)) (-3663 (($ $ $) 12))) -(((-112) (-13 (-817) (-638) (-938) (-594 (-524)) (-10 -8 (-15 -2313 ($) -4294) (-15 -2315 ($) -4294) (-15 -3658 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -1331 ($ $))))) (T -112)) -((-2313 (*1 *1) (-5 *1 (-112))) (-2315 (*1 *1) (-5 *1 (-112))) (-3658 (*1 *1 *1 *1) (-5 *1 (-112))) (-1356 (*1 *1 *1 *1) (-5 *1 (-112))) (-1355 (*1 *1 *1 *1) (-5 *1 (-112))) (-1331 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-817) (-638) (-938) (-594 (-524)) (-10 -8 (-15 -2313 ($) -4294) (-15 -2315 ($) -4294) (-15 -3658 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -1331 ($ $)))) -((-2887 (((-112) $ $) NIL)) (-1572 (((-747) $) 72) (($ $ (-747)) 30)) (-1340 (((-112) $) 32)) (-1333 (($ $ (-1124) (-749)) 26)) (-1332 (($ $ (-45 (-1124) (-749))) 15)) (-3162 (((-3 (-749) "failed") $ (-1124)) 25)) (-1343 (((-45 (-1124) (-749)) $) 14)) (-3368 (($ (-1142)) 17) (($ (-1142) (-747)) 22)) (-1341 (((-112) $) 31)) (-1339 (((-112) $) 33)) (-3888 (((-1142) $) 8)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2952 (((-112) $ (-1142)) 10)) (-1336 (($ $ (-1 (-524) (-618 (-524)))) 52) (((-3 (-1 (-524) (-618 (-524))) "failed") $) 56)) (-3577 (((-1086) $) NIL)) (-1335 (((-112) $ (-1124)) 29)) (-1338 (($ $ (-1 (-112) $ $)) 35)) (-3963 (((-3 (-1 (-835) (-618 (-835))) "failed") $) 54) (($ $ (-1 (-835) (-618 (-835)))) 41) (($ $ (-1 (-835) (-835))) 43)) (-1334 (($ $ (-1124)) 45)) (-3742 (($ $) 63)) (-1337 (($ $ (-1 (-112) $ $)) 36)) (-4300 (((-835) $) 48)) (-3113 (($ $ (-1124)) 27)) (-1342 (((-3 (-747) "failed") $) 58)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 71)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 79))) -(((-113) (-13 (-823) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -1343 ((-45 (-1124) (-749)) $)) (-15 -3742 ($ $)) (-15 -3368 ($ (-1142))) (-15 -3368 ($ (-1142) (-747))) (-15 -1342 ((-3 (-747) "failed") $)) (-15 -1341 ((-112) $)) (-15 -1340 ((-112) $)) (-15 -1339 ((-112) $)) (-15 -1572 ((-747) $)) (-15 -1572 ($ $ (-747))) (-15 -1338 ($ $ (-1 (-112) $ $))) (-15 -1337 ($ $ (-1 (-112) $ $))) (-15 -3963 ((-3 (-1 (-835) (-618 (-835))) "failed") $)) (-15 -3963 ($ $ (-1 (-835) (-618 (-835))))) (-15 -3963 ($ $ (-1 (-835) (-835)))) (-15 -1336 ($ $ (-1 (-524) (-618 (-524))))) (-15 -1336 ((-3 (-1 (-524) (-618 (-524))) "failed") $)) (-15 -2952 ((-112) $ (-1142))) (-15 -1335 ((-112) $ (-1124))) (-15 -3113 ($ $ (-1124))) (-15 -1334 ($ $ (-1124))) (-15 -3162 ((-3 (-749) "failed") $ (-1124))) (-15 -1333 ($ $ (-1124) (-749))) (-15 -1332 ($ $ (-45 (-1124) (-749))))))) (T -113)) -((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-113)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-45 (-1124) (-749))) (-5 *1 (-113)))) (-3742 (*1 *1 *1) (-5 *1 (-113))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-113)))) (-3368 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *1 (-113)))) (-1342 (*1 *2 *1) (|partial| -12 (-5 *2 (-747)) (-5 *1 (-113)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-113)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-113)))) (-1338 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-3963 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-835) (-618 (-835)))) (-5 *1 (-113)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-835) (-618 (-835)))) (-5 *1 (-113)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-835) (-835))) (-5 *1 (-113)))) (-1336 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-524) (-618 (-524)))) (-5 *1 (-113)))) (-1336 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-524) (-618 (-524)))) (-5 *1 (-113)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-113)))) (-1334 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-113)))) (-3162 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-749)) (-5 *1 (-113)))) (-1333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-749)) (-5 *1 (-113)))) (-1332 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1124) (-749))) (-5 *1 (-113))))) -(-13 (-823) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -1343 ((-45 (-1124) (-749)) $)) (-15 -3742 ($ $)) (-15 -3368 ($ (-1142))) (-15 -3368 ($ (-1142) (-747))) (-15 -1342 ((-3 (-747) "failed") $)) (-15 -1341 ((-112) $)) (-15 -1340 ((-112) $)) (-15 -1339 ((-112) $)) (-15 -1572 ((-747) $)) (-15 -1572 ($ $ (-747))) (-15 -1338 ($ $ (-1 (-112) $ $))) (-15 -1337 ($ $ (-1 (-112) $ $))) (-15 -3963 ((-3 (-1 (-835) (-618 (-835))) "failed") $)) (-15 -3963 ($ $ (-1 (-835) (-618 (-835))))) (-15 -3963 ($ $ (-1 (-835) (-835)))) (-15 -1336 ($ $ (-1 (-524) (-618 (-524))))) (-15 -1336 ((-3 (-1 (-524) (-618 (-524))) "failed") $)) (-15 -2952 ((-112) $ (-1142))) (-15 -1335 ((-112) $ (-1124))) (-15 -3113 ($ $ (-1124))) (-15 -1334 ($ $ (-1124))) (-15 -3162 ((-3 (-749) "failed") $ (-1124))) (-15 -1333 ($ $ (-1124) (-749))) (-15 -1332 ($ $ (-45 (-1124) (-749)))))) -((-2843 (((-3 (-1 |#1| (-618 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-618 |#1|))) 11) (((-3 |#1| "failed") (-113) (-618 |#1|)) 21)) (-1344 (((-3 (-618 (-1 |#1| (-618 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-618 (-1 |#1| (-618 |#1|)))) 26)) (-1345 (((-113) |#1|) 56 (|has| |#1| (-823)))) (-1346 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-823))))) -(((-114 |#1|) (-10 -7 (-15 -2843 ((-3 |#1| "failed") (-113) (-618 |#1|))) (-15 -2843 ((-113) (-113) (-1 |#1| (-618 |#1|)))) (-15 -2843 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2843 ((-3 (-1 |#1| (-618 |#1|)) "failed") (-113))) (-15 -1344 ((-113) (-113) (-618 (-1 |#1| (-618 |#1|))))) (-15 -1344 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1344 ((-3 (-618 (-1 |#1| (-618 |#1|))) "failed") (-113))) (IF (|has| |#1| (-823)) (PROGN (-15 -1345 ((-113) |#1|)) (-15 -1346 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1067)) (T -114)) -((-1346 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1067)) (-4 *2 (-823)) (-5 *1 (-114 *2)))) (-1345 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))) (-1344 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-618 (-1 *4 (-618 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1067)))) (-1344 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) (-1344 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 (-1 *4 (-618 *4)))) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) (-2843 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-618 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1067)))) (-2843 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) (-2843 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-618 *4))) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) (-2843 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-618 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1067))))) -(-10 -7 (-15 -2843 ((-3 |#1| "failed") (-113) (-618 |#1|))) (-15 -2843 ((-113) (-113) (-1 |#1| (-618 |#1|)))) (-15 -2843 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2843 ((-3 (-1 |#1| (-618 |#1|)) "failed") (-113))) (-15 -1344 ((-113) (-113) (-618 (-1 |#1| (-618 |#1|))))) (-15 -1344 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1344 ((-3 (-618 (-1 |#1| (-618 |#1|))) "failed") (-113))) (IF (|has| |#1| (-823)) (PROGN (-15 -1345 ((-113) |#1|)) (-15 -1346 ((-3 |#1| "failed") (-113)))) |%noBranch|)) -((-1347 (((-535) |#2|) 37))) -(((-115 |#1| |#2|) (-10 -7 (-15 -1347 ((-535) |#2|))) (-13 (-356) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -115)) -((-1347 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-1009 (-400 *2)))) (-5 *2 (-535)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -1347 ((-535) |#2|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $ (-535)) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2928 (($ (-1136 (-535)) (-535)) NIL)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2929 (($ $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4114 (((-747) $) NIL)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 (((-535)) NIL)) (-2930 (((-535) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4111 (($ $ (-535)) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2932 (((-1119 (-535)) $) NIL)) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-4112 (((-535) $ (-535)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-841 |#1|) (-535)) (T -116)) -NIL -(-841 |#1|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-116 |#1|) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-116 |#1|) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-116 |#1|) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-116 |#1|) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-116 |#1|) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-116 |#1|) (-1009 (-535))))) (-3490 (((-116 |#1|) $) NIL) (((-1142) $) NIL (|has| (-116 |#1|) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-116 |#1|) (-1009 (-535)))) (((-535) $) NIL (|has| (-116 |#1|) (-1009 (-535))))) (-4073 (($ $) NIL) (($ (-535) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-116 |#1|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-116 |#1|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-116 |#1|))) (|:| |vec| (-1224 (-116 |#1|)))) (-665 $) (-1224 $)) NIL) (((-665 (-116 |#1|)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-116 |#1|) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-116 |#1|) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-116 |#1|) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-116 |#1|) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-116 |#1|) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1117)))) (-3521 (((-112) $) NIL (|has| (-116 |#1|) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-116 |#1|) (-823)))) (-3661 (($ $ $) NIL (|has| (-116 |#1|) (-823)))) (-4301 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-116 |#1|) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-116 |#1|) (-300)))) (-3448 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-116 |#1|) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-116 |#1|) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-116 |#1|)) (-618 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-286 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-618 (-286 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-618 (-1142)) (-618 (-116 |#1|))) NIL (|has| (-116 |#1|) (-505 (-1142) (-116 |#1|)))) (($ $ (-1142) (-116 |#1|)) NIL (|has| (-116 |#1|) (-505 (-1142) (-116 |#1|))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-279 (-116 |#1|) (-116 |#1|))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-747)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-116 |#1|) $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| (-116 |#1|) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-116 |#1|) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-116 |#1|) (-594 (-524)))) (((-371) $) NIL (|has| (-116 |#1|) (-991))) (((-219) $) NIL (|has| (-116 |#1|) (-991)))) (-2933 (((-172 (-400 (-535))) $) NIL)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-116 |#1|)) NIL) (($ (-1142)) NIL (|has| (-116 |#1|) (-1009 (-1142))))) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-881))) (|has| (-116 |#1|) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-534)))) (-2170 (((-112) $ $) NIL)) (-4112 (((-400 (-535)) $ (-535)) NIL)) (-3725 (($ $) NIL (|has| (-116 |#1|) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-747)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-4291 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-962 (-116 |#1|)) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) (-535)) (T -117)) -((-4112 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-535)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-117 *3)) (-14 *3 (-535)))) (-4073 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-535)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-962 (-116 |#1|)) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) -((-4130 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3352 (((-618 $) $) 27)) (-3348 (((-112) $ $) 32)) (-3579 (((-112) |#2| $) 36)) (-3351 (((-618 |#2|) $) 22)) (-3864 (((-112) $) 16)) (-4142 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3979 (((-112) $) 45)) (-4300 (((-835) $) 41)) (-3859 (((-618 $) $) 28)) (-3375 (((-112) $ $) 34)) (-4299 (((-747) $) 43))) -(((-118 |#1| |#2|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4130 (|#1| |#1| "right" |#1|)) (-15 -4130 (|#1| |#1| "left" |#1|)) (-15 -4142 (|#1| |#1| "right")) (-15 -4142 (|#1| |#1| "left")) (-15 -4130 (|#2| |#1| #1="value" |#2|)) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3351 ((-618 |#2|) |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#2| |#1|)) (-15 -4299 ((-747) |#1|))) (-119 |#2|) (-1178)) (T -118)) -NIL -(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4130 (|#1| |#1| "right" |#1|)) (-15 -4130 (|#1| |#1| "left" |#1|)) (-15 -4142 (|#1| |#1| "right")) (-15 -4142 (|#1| |#1| "left")) (-15 -4130 (|#2| |#1| #1="value" |#2|)) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3351 ((-618 |#2|) |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#2| |#1|)) (-15 -4299 ((-747) |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1348 (($ $ $) 52 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 54 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) (($ $ "left" $) 55 (|has| $ (-6 -4337))) (($ $ "right" $) 53 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-3455 (($ $) 57)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3456 (($ $) 59)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-119 |#1|) (-138) (-1178)) (T -119)) -((-3456 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1178)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1178)))) (-3455 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1178)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1178)))) (-4130 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) (-4 *3 (-1178)))) (-1349 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1178)))) (-4130 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) (-4 *3 (-1178)))) (-1348 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1178))))) -(-13 (-981 |t#1|) (-10 -8 (-15 -3456 ($ $)) (-15 -4142 ($ $ "left")) (-15 -3455 ($ $)) (-15 -4142 ($ $ "right")) (IF (|has| $ (-6 -4337)) (PROGN (-15 -4130 ($ $ "left" $)) (-15 -1349 ($ $ $)) (-15 -4130 ($ $ "right" $)) (-15 -1348 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-1352 (((-112) |#1|) 24)) (-1351 (((-747) (-747)) 23) (((-747)) 22)) (-1350 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) -(((-120 |#1|) (-10 -7 (-15 -1350 ((-112) |#1|)) (-15 -1350 ((-112) |#1| (-112))) (-15 -1351 ((-747))) (-15 -1351 ((-747) (-747))) (-15 -1352 ((-112) |#1|))) (-1200 (-535))) (T -120)) -((-1352 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) (-1351 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) (-1351 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) (-1350 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) (-1350 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535)))))) -(-10 -7 (-15 -1350 ((-112) |#1|)) (-15 -1350 ((-112) |#1| (-112))) (-15 -1351 ((-747))) (-15 -1351 ((-747) (-747))) (-15 -1352 ((-112) |#1|))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 15)) (-3760 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1348 (($ $ $) 18 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 20 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 17)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) 23)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) 19)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1353 (($ |#1| $) 24)) (-3953 (($ |#1| $) 10)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 14)) (-3911 (($) 8)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1354 (($ (-618 |#1|)) 12)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -1354 ($ (-618 |#1|))) (-15 -3953 ($ |#1| $)) (-15 -1353 ($ |#1| $)) (-15 -3760 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-823)) (T -121)) -((-1354 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-121 *3)))) (-3953 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) (-1353 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) (-3760 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-823))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -1354 ($ (-618 |#1|))) (-15 -3953 ($ |#1| $)) (-15 -1353 ($ |#1| $)) (-15 -3760 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3662 (($ $) 13)) (-3659 (($ $) 11)) (-1355 (($ $ $) 23)) (-1356 (($ $ $) 21)) (-3664 (($ $ $) 19)) (-3663 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -1355 (|#1| |#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3662 (|#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -1355 (|#1| |#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3662 (|#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3662 (($ $) 103)) (-3658 (($ $ $) 25)) (-2296 (((-1230) $ (-535) (-535)) 66 (|has| $ (-6 -4337)))) (-1843 (((-112) $) 98 (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1841 (($ $) 102 (-12 (|has| (-112) (-823)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4337)))) (-3230 (($ $) 97 (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1264 (((-112) $ (-747)) 37)) (-4130 (((-112) $ (-1191 (-535)) (-112)) 88 (|has| $ (-6 -4337))) (((-112) $ (-535) (-112)) 54 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4336)))) (-3879 (($) 38 T CONST)) (-2368 (($ $) 100 (|has| $ (-6 -4337)))) (-2369 (($ $) 90)) (-1394 (($ $) 68 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4336))) (($ (-112) $) 69 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336))))) (-4185 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336))))) (-1632 (((-112) $ (-535) (-112)) 53 (|has| $ (-6 -4337)))) (-3431 (((-112) $ (-535)) 55)) (-3761 (((-535) (-112) $ (-535)) 95 (|has| (-112) (-1067))) (((-535) (-112) $) 94 (|has| (-112) (-1067))) (((-535) (-1 (-112) (-112)) $) 93)) (-2063 (((-618 (-112)) $) 45 (|has| $ (-6 -4336)))) (-3178 (($ $ $) 26)) (-3659 (($ $) 30)) (-1355 (($ $ $) 28)) (-3960 (($ (-747) (-112)) 77)) (-1356 (($ $ $) 29)) (-4065 (((-112) $ (-747)) 36)) (-2298 (((-535) $) 63 (|has| (-535) (-823)))) (-3660 (($ $ $) 13)) (-3855 (($ $ $) 96 (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2502 (((-618 (-112)) $) 46 (|has| $ (-6 -4336)))) (-3579 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 62 (|has| (-535) (-823)))) (-3661 (($ $ $) 14)) (-2067 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4062 (((-112) $ (-747)) 35)) (-3576 (((-1124) $) 9)) (-2373 (($ $ $ (-535)) 87) (($ (-112) $ (-535)) 86)) (-2301 (((-618 (-535)) $) 60)) (-2302 (((-112) (-535) $) 59)) (-3577 (((-1086) $) 10)) (-4143 (((-112) $) 64 (|has| (-535) (-823)))) (-1395 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2297 (($ $ (-112)) 65 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-112)) (-618 (-112))) 52 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-286 (-112))) 50 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-618 (-286 (-112)))) 49 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-1265 (((-112) $ $) 31)) (-2300 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2303 (((-618 (-112)) $) 58)) (-3745 (((-112) $) 34)) (-3911 (($) 33)) (-4142 (($ $ (-1191 (-535))) 83) (((-112) $ (-535)) 57) (((-112) $ (-535) (-112)) 56)) (-2374 (($ $ (-1191 (-535))) 85) (($ $ (-535)) 84)) (-2064 (((-747) (-112) $) 47 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) 99 (|has| $ (-6 -4337)))) (-3742 (($ $) 32)) (-4313 (((-524) $) 67 (|has| (-112) (-594 (-524))))) (-3867 (($ (-618 (-112))) 76)) (-4144 (($ (-618 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4300 (((-835) $) 11)) (-2066 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4336)))) (-3179 (($ $ $) 27)) (-3664 (($ $ $) 105)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-3663 (($ $ $) 104)) (-4299 (((-747) $) 39 (|has| $ (-6 -4336))))) +((-1504 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2316 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2316 ((-112) $ $)) (-15 -1504 ((-112) $ $)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-2190 ((|#1| $ |#1|) 13 (|has| $ (-6 -4343)))) (-2169 (($ $ $) NIL (|has| $ (-6 -4343)))) (-2254 (($ $ $) NIL (|has| $ (-6 -4343)))) (-3637 (($ $ (-623 |#1|)) 15)) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) (($ $ "left" $) NIL (|has| $ (-6 -4343))) (($ $ "right" $) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-2682 (($ $) 11)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2925 (($ $ |#1| $) 17)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3506 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3376 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-623 |#1|) |#1| |#1| |#1|)) 35)) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2671 (($ $) 10)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) 12)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 9)) (-3498 (($) 16)) (-2680 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2487 (((-550) $ $) NIL)) (-2136 (((-112) $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2015 (($ (-749) |#1|) 19)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4342) (-6 -4343) (-15 -2015 ($ (-749) |#1|)) (-15 -3637 ($ $ (-623 |#1|))) (-15 -3506 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3506 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3376 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3376 ($ $ |#1| (-1 (-623 |#1|) |#1| |#1| |#1|))))) (-1068)) (T -102)) +((-2015 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-102 *3)) (-4 *3 (-1068)))) (-3637 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-102 *3)))) (-3506 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1068)))) (-3506 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-102 *3)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1068)) (-5 *1 (-102 *2)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-623 *2) *2 *2 *2)) (-4 *2 (-1068)) (-5 *1 (-102 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4342) (-6 -4343) (-15 -2015 ($ (-749) |#1|)) (-15 -3637 ($ $ (-623 |#1|))) (-15 -3506 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3506 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3376 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3376 ($ $ |#1| (-1 (-623 |#1|) |#1| |#1| |#1|))))) +((-2102 ((|#3| |#2| |#2|) 29)) (-2836 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4344 "*"))))) (-2727 ((|#3| |#2| |#2|) 30)) (-4250 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4344 "*")))))) +(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2102 (|#3| |#2| |#2|)) (-15 -2727 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4344 "*"))) (PROGN (-15 -2836 (|#1| |#2| |#2|)) (-15 -4250 (|#1| |#2|))) |%noBranch|)) (-1020) (-1203 |#1|) (-665 |#1| |#4| |#5|) (-366 |#1|) (-366 |#1|)) (T -103)) +((-4250 (*1 *2 *3) (-12 (|has| *2 (-6 (-4344 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) (-4 *2 (-1020)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1203 *2)) (-4 *4 (-665 *2 *5 *6)))) (-2836 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4344 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) (-4 *2 (-1020)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1203 *2)) (-4 *4 (-665 *2 *5 *6)))) (-2727 (*1 *2 *3 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-665 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1203 *4)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)))) (-2102 (*1 *2 *3 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-665 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1203 *4)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))))) +(-10 -7 (-15 -2102 (|#3| |#2| |#2|)) (-15 -2727 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4344 "*"))) (PROGN (-15 -2836 (|#1| |#2| |#2|)) (-15 -4250 (|#1| |#2|))) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2292 (((-623 (-1144))) 33)) (-1276 (((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1144)) 35)) (-2316 (((-112) $ $) NIL))) +(((-104) (-13 (-1068) (-10 -7 (-15 -2292 ((-623 (-1144)))) (-15 -1276 ((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1144))) (-6 -4342)))) (T -104)) +((-2292 (*1 *2) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-104)))) (-1276 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219))))) (-5 *1 (-104))))) +(-13 (-1068) (-10 -7 (-15 -2292 ((-623 (-1144)))) (-15 -1276 ((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1144))) (-6 -4342))) +((-3685 (($ (-623 |#2|)) 11))) +(((-105 |#1| |#2|) (-10 -8 (-15 -3685 (|#1| (-623 |#2|)))) (-106 |#2|) (-1181)) (T -105)) +NIL +(-10 -8 (-15 -3685 (|#1| (-623 |#2|)))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-3513 (($) 7 T CONST)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-106 |#1|) (-138) (-1181)) (T -106)) +((-3685 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-4 *1 (-106 *3)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1181)))) (-1886 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1181)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1181))))) +(-13 (-481 |t#1|) (-10 -8 (-6 -4343) (-15 -3685 ($ (-623 |t#1|))) (-15 -3760 (|t#1| $)) (-15 -1886 ($ |t#1| $)) (-15 -3638 (|t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 (((-550) $) NIL (|has| (-550) (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| (-550) (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL (|has| (-550) (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-550) (-1011 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-550) (-1011 (-550))))) (-2726 (((-550) $) NIL) (((-1144) $) NIL (|has| (-550) (-1011 (-1144)))) (((-400 (-550)) $) NIL (|has| (-550) (-1011 (-550)))) (((-550) $) NIL (|has| (-550) (-1011 (-550))))) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-550) (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) NIL (|has| (-550) (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| (-550) (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| (-550) (-859 (-372))))) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL)) (-2705 (((-550) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| (-550) (-1119)))) (-3329 (((-112) $) NIL (|has| (-550) (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| (-550) (-825)))) (-3972 (($ (-1 (-550) (-550)) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-550) (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| (-550) (-300))) (((-400 (-550)) $) NIL)) (-1608 (((-550) $) NIL (|has| (-550) (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 (-550)) (-623 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-302 (-550)))) (($ $ (-287 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-287 (-550)))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-1144)) (-623 (-550))) NIL (|has| (-550) (-505 (-1144) (-550)))) (($ $ (-1144) (-550)) NIL (|has| (-550) (-505 (-1144) (-550))))) (-3542 (((-749) $) NIL)) (-2680 (($ $ (-550)) NIL (|has| (-550) (-279 (-550) (-550))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1144)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2639 (($ $) NIL)) (-2715 (((-550) $) NIL)) (-4028 (((-865 (-550)) $) NIL (|has| (-550) (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| (-550) (-596 (-865 (-372))))) (((-526) $) NIL (|has| (-550) (-596 (-526)))) (((-372) $) NIL (|has| (-550) (-995))) (((-219) $) NIL (|has| (-550) (-995)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-550) (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 8) (($ (-550)) NIL) (($ (-1144)) NIL (|has| (-550) (-1011 (-1144)))) (((-400 (-550)) $) NIL) (((-977 2) $) 10)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-550) (-882))) (|has| (-550) (-143))))) (-2390 (((-749)) NIL)) (-1754 (((-550) $) NIL (|has| (-550) (-535)))) (-3963 (($ (-400 (-550))) 9)) (-1345 (((-112) $ $) NIL)) (-1635 (($ $) NIL (|has| (-550) (-798)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1144)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2363 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2414 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) +(((-107) (-13 (-965 (-550)) (-10 -8 (-15 -1518 ((-400 (-550)) $)) (-15 -1518 ((-977 2) $)) (-15 -3948 ((-400 (-550)) $)) (-15 -3963 ($ (-400 (-550))))))) (T -107)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-977 2)) (-5 *1 (-107)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107))))) +(-13 (-965 (-550)) (-10 -8 (-15 -1518 ((-400 (-550)) $)) (-15 -1518 ((-977 2) $)) (-15 -3948 ((-400 (-550)) $)) (-15 -3963 ($ (-400 (-550)))))) +((-3577 (((-623 (-938)) $) 14)) (-1916 (((-1144) $) 10)) (-1518 (((-836) $) 23)) (-3116 (($ (-1144) (-623 (-938))) 15))) +(((-108) (-13 (-595 (-836)) (-10 -8 (-15 -1916 ((-1144) $)) (-15 -3577 ((-623 (-938)) $)) (-15 -3116 ($ (-1144) (-623 (-938))))))) (T -108)) +((-1916 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-108)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-623 (-938))) (-5 *1 (-108)))) (-3116 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-938))) (-5 *1 (-108))))) +(-13 (-595 (-836)) (-10 -8 (-15 -1916 ((-1144) $)) (-15 -3577 ((-623 (-938)) $)) (-15 -3116 ($ (-1144) (-623 (-938)))))) +((-1504 (((-112) $ $) NIL)) (-1510 (((-1088) $ (-1088)) 24)) (-3826 (($ $ (-1126)) 17)) (-3318 (((-3 (-1088) "failed") $) 23)) (-1656 (((-1088) $) 21)) (-3232 (((-1088) $ (-1088)) 26)) (-2302 (((-1088) $) 25)) (-3257 (($ (-381)) NIL) (($ (-381) (-1126)) 16)) (-1916 (((-381) $) NIL)) (-1825 (((-1126) $) NIL)) (-1811 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-1951 (($ $) 18)) (-2316 (((-112) $ $) NIL))) +(((-109) (-13 (-357 (-381) (-1088)) (-10 -8 (-15 -3318 ((-3 (-1088) "failed") $)) (-15 -2302 ((-1088) $)) (-15 -3232 ((-1088) $ (-1088)))))) (T -109)) +((-3318 (*1 *2 *1) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-109)))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-109)))) (-3232 (*1 *2 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-109))))) +(-13 (-357 (-381) (-1088)) (-10 -8 (-15 -3318 ((-3 (-1088) "failed") $)) (-15 -2302 ((-1088) $)) (-15 -3232 ((-1088) $ (-1088))))) +((-1504 (((-112) $ $) NIL)) (-3239 (($ $) NIL)) (-2678 (($ $ $) NIL)) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) $) NIL (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3491 (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| (-112) (-825)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4343)))) (-1674 (($ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-1705 (((-112) $ (-1194 (-550)) (-112)) NIL (|has| $ (-6 -4343))) (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-3137 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-2419 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-3245 (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4343)))) (-3181 (((-112) $ (-550)) NIL)) (-2302 (((-550) (-112) $ (-550)) NIL (|has| (-112) (-1068))) (((-550) (-112) $) NIL (|has| (-112) (-1068))) (((-550) (-1 (-112) (-112)) $) NIL)) (-3450 (((-623 (-112)) $) NIL (|has| $ (-6 -4342)))) (-3675 (($ $ $) NIL)) (-3462 (($ $) NIL)) (-1406 (($ $ $) NIL)) (-2578 (($ (-749) (-112)) 8)) (-2896 (($ $ $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL)) (-1832 (($ $ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2689 (((-623 (-112)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL)) (-3234 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-2055 (($ $ $ (-550)) NIL) (($ (-112) $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-112) $) NIL (|has| (-550) (-825)))) (-3321 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3111 (($ $ (-112)) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-112)) (-623 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-287 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-623 (-287 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-2477 (((-623 (-112)) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 (($ $ (-1194 (-550))) NIL) (((-112) $ (-550)) NIL) (((-112) $ (-550) (-112)) NIL)) (-1529 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-3350 (((-749) (-112) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068)))) (((-749) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342)))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-112) (-596 (-526))))) (-1532 (($ (-623 (-112))) NIL)) (-3227 (($ (-623 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1518 (((-836) $) NIL)) (-2913 (($ (-749) (-112)) 9)) (-1675 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342)))) (-1262 (($ $ $) NIL)) (-1482 (($ $ $) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-1466 (($ $ $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-110) (-13 (-123) (-10 -8 (-15 -2913 ($ (-749) (-112)))))) (T -110)) +((-2913 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -2913 ($ (-749) (-112))))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-138) (-1020) (-1020)) (T -111)) +NIL +(-13 (-626 |t#1|) (-1026 |t#2|) (-10 -7 (-6 -4337) (-6 -4336))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-1026 |#2|) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3239 (($ $) 10)) (-2678 (($ $ $) 15)) (-4311 (($) 7 T CONST)) (-1644 (($ $) 6)) (-4319 (((-749)) 24)) (-1741 (($) 30)) (-3675 (($ $ $) 13)) (-3462 (($ $) 9)) (-1406 (($ $ $) 16)) (-2896 (($ $ $) 17)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-2253 (((-894) $) 29)) (-1825 (((-1126) $) NIL)) (-2922 (($ (-894)) 28)) (-2659 (($ $ $) 20)) (-3337 (((-1088) $) NIL)) (-3150 (($) 8 T CONST)) (-2039 (($ $ $) 21)) (-4028 (((-526) $) 36)) (-1518 (((-836) $) 39)) (-1262 (($ $ $) 11)) (-1482 (($ $ $) 14)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 19)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 22)) (-1466 (($ $ $) 12))) +(((-112) (-13 (-819) (-639) (-940) (-596 (-526)) (-10 -8 (-15 -4311 ($) -2258) (-15 -3150 ($) -2258) (-15 -2678 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -1406 ($ $ $)) (-15 -1644 ($ $))))) (T -112)) +((-4311 (*1 *1) (-5 *1 (-112))) (-3150 (*1 *1) (-5 *1 (-112))) (-2678 (*1 *1 *1 *1) (-5 *1 (-112))) (-2896 (*1 *1 *1 *1) (-5 *1 (-112))) (-1406 (*1 *1 *1 *1) (-5 *1 (-112))) (-1644 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-819) (-639) (-940) (-596 (-526)) (-10 -8 (-15 -4311 ($) -2258) (-15 -3150 ($) -2258) (-15 -2678 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -1406 ($ $ $)) (-15 -1644 ($ $)))) +((-3886 (((-3 (-1 |#1| (-623 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-623 |#1|))) 11) (((-3 |#1| "failed") (-114) (-623 |#1|)) 21)) (-3035 (((-3 (-623 (-1 |#1| (-623 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-623 (-1 |#1| (-623 |#1|)))) 26)) (-3148 (((-114) |#1|) 56 (|has| |#1| (-825)))) (-3573 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-825))))) +(((-113 |#1|) (-10 -7 (-15 -3886 ((-3 |#1| "failed") (-114) (-623 |#1|))) (-15 -3886 ((-114) (-114) (-1 |#1| (-623 |#1|)))) (-15 -3886 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3886 ((-3 (-1 |#1| (-623 |#1|)) "failed") (-114))) (-15 -3035 ((-114) (-114) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3035 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3035 ((-3 (-623 (-1 |#1| (-623 |#1|))) "failed") (-114))) (IF (|has| |#1| (-825)) (PROGN (-15 -3148 ((-114) |#1|)) (-15 -3573 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1068)) (T -113)) +((-3573 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1068)) (-4 *2 (-825)) (-5 *1 (-113 *2)))) (-3148 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-825)) (-4 *3 (-1068)))) (-3035 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-623 (-1 *4 (-623 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1068)))) (-3035 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1068)) (-5 *1 (-113 *4)))) (-3035 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 (-1 *4 (-623 *4)))) (-4 *4 (-1068)) (-5 *1 (-113 *4)))) (-3886 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-623 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1068)))) (-3886 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1068)) (-5 *1 (-113 *4)))) (-3886 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-623 *4))) (-4 *4 (-1068)) (-5 *1 (-113 *4)))) (-3886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-623 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1068))))) +(-10 -7 (-15 -3886 ((-3 |#1| "failed") (-114) (-623 |#1|))) (-15 -3886 ((-114) (-114) (-1 |#1| (-623 |#1|)))) (-15 -3886 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3886 ((-3 (-1 |#1| (-623 |#1|)) "failed") (-114))) (-15 -3035 ((-114) (-114) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3035 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3035 ((-3 (-623 (-1 |#1| (-623 |#1|))) "failed") (-114))) (IF (|has| |#1| (-825)) (PROGN (-15 -3148 ((-114) |#1|)) (-15 -3573 ((-3 |#1| "failed") (-114)))) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-4073 (((-749) $) 72) (($ $ (-749)) 30)) (-1993 (((-112) $) 32)) (-1387 (($ $ (-1126) (-752)) 26)) (-1277 (($ $ (-45 (-1126) (-752))) 15)) (-1440 (((-3 (-752) "failed") $ (-1126)) 25)) (-3577 (((-45 (-1126) (-752)) $) 14)) (-2926 (($ (-1144)) 17) (($ (-1144) (-749)) 22)) (-3555 (((-112) $) 31)) (-3311 (((-112) $) 33)) (-1916 (((-1144) $) 8)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3890 (((-112) $ (-1144)) 10)) (-2095 (($ $ (-1 (-526) (-623 (-526)))) 52) (((-3 (-1 (-526) (-623 (-526))) "failed") $) 56)) (-3337 (((-1088) $) NIL)) (-3275 (((-112) $ (-1126)) 29)) (-3087 (($ $ (-1 (-112) $ $)) 35)) (-2048 (((-3 (-1 (-836) (-623 (-836))) "failed") $) 54) (($ $ (-1 (-836) (-623 (-836)))) 41) (($ $ (-1 (-836) (-836))) 43)) (-1323 (($ $ (-1126)) 45)) (-1731 (($ $) 63)) (-3000 (($ $ (-1 (-112) $ $)) 36)) (-1518 (((-836) $) 48)) (-2489 (($ $ (-1126)) 27)) (-3684 (((-3 (-749) "failed") $) 58)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 71)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 79))) +(((-114) (-13 (-825) (-10 -8 (-15 -1916 ((-1144) $)) (-15 -3577 ((-45 (-1126) (-752)) $)) (-15 -1731 ($ $)) (-15 -2926 ($ (-1144))) (-15 -2926 ($ (-1144) (-749))) (-15 -3684 ((-3 (-749) "failed") $)) (-15 -3555 ((-112) $)) (-15 -1993 ((-112) $)) (-15 -3311 ((-112) $)) (-15 -4073 ((-749) $)) (-15 -4073 ($ $ (-749))) (-15 -3087 ($ $ (-1 (-112) $ $))) (-15 -3000 ($ $ (-1 (-112) $ $))) (-15 -2048 ((-3 (-1 (-836) (-623 (-836))) "failed") $)) (-15 -2048 ($ $ (-1 (-836) (-623 (-836))))) (-15 -2048 ($ $ (-1 (-836) (-836)))) (-15 -2095 ($ $ (-1 (-526) (-623 (-526))))) (-15 -2095 ((-3 (-1 (-526) (-623 (-526))) "failed") $)) (-15 -3890 ((-112) $ (-1144))) (-15 -3275 ((-112) $ (-1126))) (-15 -2489 ($ $ (-1126))) (-15 -1323 ($ $ (-1126))) (-15 -1440 ((-3 (-752) "failed") $ (-1126))) (-15 -1387 ($ $ (-1126) (-752))) (-15 -1277 ($ $ (-45 (-1126) (-752))))))) (T -114)) +((-1916 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-114)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-45 (-1126) (-752))) (-5 *1 (-114)))) (-1731 (*1 *1 *1) (-5 *1 (-114))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-114)))) (-2926 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-749)) (-5 *1 (-114)))) (-3684 (*1 *2 *1) (|partial| -12 (-5 *2 (-749)) (-5 *1 (-114)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-114)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-114)))) (-3087 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3000 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2048 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-836) (-623 (-836)))) (-5 *1 (-114)))) (-2048 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-836) (-623 (-836)))) (-5 *1 (-114)))) (-2048 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-836) (-836))) (-5 *1 (-114)))) (-2095 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-526) (-623 (-526)))) (-5 *1 (-114)))) (-2095 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-526) (-623 (-526)))) (-5 *1 (-114)))) (-3890 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3275 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-114)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-114)))) (-1440 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1126)) (-5 *2 (-752)) (-5 *1 (-114)))) (-1387 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-752)) (-5 *1 (-114)))) (-1277 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1126) (-752))) (-5 *1 (-114))))) +(-13 (-825) (-10 -8 (-15 -1916 ((-1144) $)) (-15 -3577 ((-45 (-1126) (-752)) $)) (-15 -1731 ($ $)) (-15 -2926 ($ (-1144))) (-15 -2926 ($ (-1144) (-749))) (-15 -3684 ((-3 (-749) "failed") $)) (-15 -3555 ((-112) $)) (-15 -1993 ((-112) $)) (-15 -3311 ((-112) $)) (-15 -4073 ((-749) $)) (-15 -4073 ($ $ (-749))) (-15 -3087 ($ $ (-1 (-112) $ $))) (-15 -3000 ($ $ (-1 (-112) $ $))) (-15 -2048 ((-3 (-1 (-836) (-623 (-836))) "failed") $)) (-15 -2048 ($ $ (-1 (-836) (-623 (-836))))) (-15 -2048 ($ $ (-1 (-836) (-836)))) (-15 -2095 ($ $ (-1 (-526) (-623 (-526))))) (-15 -2095 ((-3 (-1 (-526) (-623 (-526))) "failed") $)) (-15 -3890 ((-112) $ (-1144))) (-15 -3275 ((-112) $ (-1126))) (-15 -2489 ($ $ (-1126))) (-15 -1323 ($ $ (-1126))) (-15 -1440 ((-3 (-752) "failed") $ (-1126))) (-15 -1387 ($ $ (-1126) (-752))) (-15 -1277 ($ $ (-45 (-1126) (-752)))))) +((-3700 (((-550) |#2|) 37))) +(((-115 |#1| |#2|) (-10 -7 (-15 -3700 ((-550) |#2|))) (-13 (-356) (-1011 (-400 (-550)))) (-1203 |#1|)) (T -115)) +((-3700 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-1011 (-400 *2)))) (-5 *2 (-550)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -3700 ((-550) |#2|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3353 (($ $ (-550)) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-2172 (($ (-1140 (-550)) (-550)) NIL)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3989 (($ $) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-2475 (((-749) $) NIL)) (-3102 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-4189 (((-550)) NIL)) (-4088 (((-550) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2272 (($ $ (-550)) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-4302 (((-1124 (-550)) $) NIL)) (-3380 (($ $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL)) (-2390 (((-749)) NIL)) (-1345 (((-112) $ $) NIL)) (-2001 (((-550) $ (-550)) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-842 |#1|) (-550)) (T -116)) +NIL +(-842 |#1|) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-116 |#1|) (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| (-116 |#1|) (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| (-116 |#1|) (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL (|has| (-116 |#1|) (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-116 |#1|) (-1011 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-116 |#1|) (-1011 (-550))))) (-2726 (((-116 |#1|) $) NIL) (((-1144) $) NIL (|has| (-116 |#1|) (-1011 (-1144)))) (((-400 (-550)) $) NIL (|has| (-116 |#1|) (-1011 (-550)))) (((-550) $) NIL (|has| (-116 |#1|) (-1011 (-550))))) (-4200 (($ $) NIL) (($ (-550) $) NIL)) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-116 |#1|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-116 |#1|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-116 |#1|))) (|:| |vec| (-1227 (-116 |#1|)))) (-667 $) (-1227 $)) NIL) (((-667 (-116 |#1|)) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-116 |#1|) (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) NIL (|has| (-116 |#1|) (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| (-116 |#1|) (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| (-116 |#1|) (-859 (-372))))) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL)) (-2705 (((-116 |#1|) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1119)))) (-3329 (((-112) $) NIL (|has| (-116 |#1|) (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| (-116 |#1|) (-825)))) (-4164 (($ $ $) NIL (|has| (-116 |#1|) (-825)))) (-3972 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-116 |#1|) (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| (-116 |#1|) (-300)))) (-1608 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-116 |#1|) (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-116 |#1|) (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 (-116 |#1|)) (-623 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-287 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-623 (-287 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-623 (-1144)) (-623 (-116 |#1|))) NIL (|has| (-116 |#1|) (-505 (-1144) (-116 |#1|)))) (($ $ (-1144) (-116 |#1|)) NIL (|has| (-116 |#1|) (-505 (-1144) (-116 |#1|))))) (-3542 (((-749) $) NIL)) (-2680 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-279 (-116 |#1|) (-116 |#1|))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1144)) NIL (|has| (-116 |#1|) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-116 |#1|) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-116 |#1|) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-116 |#1|) (-873 (-1144)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-749)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2639 (($ $) NIL)) (-2715 (((-116 |#1|) $) NIL)) (-4028 (((-865 (-550)) $) NIL (|has| (-116 |#1|) (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| (-116 |#1|) (-596 (-865 (-372))))) (((-526) $) NIL (|has| (-116 |#1|) (-596 (-526)))) (((-372) $) NIL (|has| (-116 |#1|) (-995))) (((-219) $) NIL (|has| (-116 |#1|) (-995)))) (-1325 (((-172 (-400 (-550))) $) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-116 |#1|)) NIL) (($ (-1144)) NIL (|has| (-116 |#1|) (-1011 (-1144))))) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-882))) (|has| (-116 |#1|) (-143))))) (-2390 (((-749)) NIL)) (-1754 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-535)))) (-1345 (((-112) $ $) NIL)) (-2001 (((-400 (-550)) $ (-550)) NIL)) (-1635 (($ $) NIL (|has| (-116 |#1|) (-798)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1144)) NIL (|has| (-116 |#1|) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-116 |#1|) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-116 |#1|) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-116 |#1|) (-873 (-1144)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-749)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2363 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2414 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-965 (-116 |#1|)) (-10 -8 (-15 -2001 ((-400 (-550)) $ (-550))) (-15 -1325 ((-172 (-400 (-550))) $)) (-15 -4200 ($ $)) (-15 -4200 ($ (-550) $)))) (-550)) (T -117)) +((-2001 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-550)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-117 *3)) (-14 *3 (-550)))) (-4200 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-550)))) (-4200 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-965 (-116 |#1|)) (-10 -8 (-15 -2001 ((-400 (-550)) $ (-550))) (-15 -1325 ((-172 (-400 (-550))) $)) (-15 -4200 ($ $)) (-15 -4200 ($ (-550) $)))) +((-1705 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2560 (((-623 $) $) 27)) (-2333 (((-112) $ $) 32)) (-1921 (((-112) |#2| $) 36)) (-2513 (((-623 |#2|) $) 22)) (-3312 (((-112) $) 16)) (-2680 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2136 (((-112) $) 45)) (-1518 (((-836) $) 41)) (-3997 (((-623 $) $) 28)) (-2316 (((-112) $ $) 34)) (-3191 (((-749) $) 43))) +(((-118 |#1| |#2|) (-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -1705 (|#1| |#1| "right" |#1|)) (-15 -1705 (|#1| |#1| "left" |#1|)) (-15 -2680 (|#1| |#1| "right")) (-15 -2680 (|#1| |#1| "left")) (-15 -1705 (|#2| |#1| "value" |#2|)) (-15 -2333 ((-112) |#1| |#1|)) (-15 -2513 ((-623 |#2|) |#1|)) (-15 -2136 ((-112) |#1|)) (-15 -2680 (|#2| |#1| "value")) (-15 -3312 ((-112) |#1|)) (-15 -2560 ((-623 |#1|) |#1|)) (-15 -3997 ((-623 |#1|) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -1921 ((-112) |#2| |#1|)) (-15 -3191 ((-749) |#1|))) (-119 |#2|) (-1181)) (T -118)) +NIL +(-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -1705 (|#1| |#1| "right" |#1|)) (-15 -1705 (|#1| |#1| "left" |#1|)) (-15 -2680 (|#1| |#1| "right")) (-15 -2680 (|#1| |#1| "left")) (-15 -1705 (|#2| |#1| "value" |#2|)) (-15 -2333 ((-112) |#1| |#1|)) (-15 -2513 ((-623 |#2|) |#1|)) (-15 -2136 ((-112) |#1|)) (-15 -2680 (|#2| |#1| "value")) (-15 -3312 ((-112) |#1|)) (-15 -2560 ((-623 |#1|) |#1|)) (-15 -3997 ((-623 |#1|) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -1921 ((-112) |#2| |#1|)) (-15 -3191 ((-749) |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3625 ((|#1| $) 48)) (-4047 (((-112) $ (-749)) 8)) (-2190 ((|#1| $ |#1|) 39 (|has| $ (-6 -4343)))) (-2169 (($ $ $) 52 (|has| $ (-6 -4343)))) (-2254 (($ $ $) 54 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4343))) (($ $ "left" $) 55 (|has| $ (-6 -4343))) (($ $ "right" $) 53 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-3513 (($) 7 T CONST)) (-2682 (($ $) 57)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 50)) (-2333 (((-112) $ $) 42 (|has| |#1| (-1068)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-2671 (($ $) 59)) (-2513 (((-623 |#1|) $) 45)) (-3312 (((-112) $) 49)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2487 (((-550) $ $) 44)) (-2136 (((-112) $) 46)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 51)) (-2413 (((-112) $ $) 43 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-119 |#1|) (-138) (-1181)) (T -119)) +((-2671 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1181)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1181)))) (-2682 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1181)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1181)))) (-1705 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4343)) (-4 *1 (-119 *3)) (-4 *3 (-1181)))) (-2254 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-119 *2)) (-4 *2 (-1181)))) (-1705 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4343)) (-4 *1 (-119 *3)) (-4 *3 (-1181)))) (-2169 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-119 *2)) (-4 *2 (-1181))))) +(-13 (-983 |t#1|) (-10 -8 (-15 -2671 ($ $)) (-15 -2680 ($ $ "left")) (-15 -2682 ($ $)) (-15 -2680 ($ $ "right")) (IF (|has| $ (-6 -4343)) (PROGN (-15 -1705 ($ $ "left" $)) (-15 -2254 ($ $ $)) (-15 -1705 ($ $ "right" $)) (-15 -2169 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-983 |#1|) . T) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-2840 (((-112) |#1|) 24)) (-2404 (((-749) (-749)) 23) (((-749)) 22)) (-2299 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) +(((-120 |#1|) (-10 -7 (-15 -2299 ((-112) |#1|)) (-15 -2299 ((-112) |#1| (-112))) (-15 -2404 ((-749))) (-15 -2404 ((-749) (-749))) (-15 -2840 ((-112) |#1|))) (-1203 (-550))) (T -120)) +((-2840 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550))))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550))))) (-2404 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550))))) (-2299 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550))))) (-2299 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550)))))) +(-10 -7 (-15 -2299 ((-112) |#1|)) (-15 -2299 ((-112) |#1| (-112))) (-15 -2404 ((-749))) (-15 -2404 ((-749) (-749))) (-15 -2840 ((-112) |#1|))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) 15)) (-1716 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4047 (((-112) $ (-749)) NIL)) (-2190 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-2169 (($ $ $) 18 (|has| $ (-6 -4343)))) (-2254 (($ $ $) 20 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) (($ $ "left" $) NIL (|has| $ (-6 -4343))) (($ $ "right" $) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-2682 (($ $) 17)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2925 (($ $ |#1| $) 23)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2671 (($ $) 19)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2949 (($ |#1| $) 24)) (-1886 (($ |#1| $) 10)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 14)) (-3498 (($) 8)) (-2680 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2487 (((-550) $ $) NIL)) (-2136 (((-112) $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3704 (($ (-623 |#1|)) 12)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4343) (-6 -4342) (-15 -3704 ($ (-623 |#1|))) (-15 -1886 ($ |#1| $)) (-15 -2949 ($ |#1| $)) (-15 -1716 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-825)) (T -121)) +((-3704 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-121 *3)))) (-1886 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) (-2949 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) (-1716 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-825))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4343) (-6 -4342) (-15 -3704 ($ (-623 |#1|))) (-15 -1886 ($ |#1| $)) (-15 -2949 ($ |#1| $)) (-15 -1716 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3239 (($ $) 13)) (-3462 (($ $) 11)) (-1406 (($ $ $) 23)) (-2896 (($ $ $) 21)) (-1482 (($ $ $) 19)) (-1466 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -1406 (|#1| |#1| |#1|)) (-15 -2896 (|#1| |#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -1466 (|#1| |#1| |#1|)) (-15 -1482 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -1406 (|#1| |#1| |#1|)) (-15 -2896 (|#1| |#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -1466 (|#1| |#1| |#1|)) (-15 -1482 (|#1| |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3239 (($ $) 103)) (-2678 (($ $ $) 25)) (-3029 (((-1232) $ (-550) (-550)) 66 (|has| $ (-6 -4343)))) (-3654 (((-112) $) 98 (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3491 (($ $) 102 (-12 (|has| (-112) (-825)) (|has| $ (-6 -4343)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4343)))) (-1674 (($ $) 97 (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-4047 (((-112) $ (-749)) 37)) (-1705 (((-112) $ (-1194 (-550)) (-112)) 88 (|has| $ (-6 -4343))) (((-112) $ (-550) (-112)) 54 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4342)))) (-3513 (($) 38 T CONST)) (-2342 (($ $) 100 (|has| $ (-6 -4343)))) (-3243 (($ $) 90)) (-1328 (($ $) 68 (-12 (|has| (-112) (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4342))) (($ (-112) $) 69 (-12 (|has| (-112) (-1068)) (|has| $ (-6 -4342))))) (-2419 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1068)) (|has| $ (-6 -4342))))) (-3245 (((-112) $ (-550) (-112)) 53 (|has| $ (-6 -4343)))) (-3181 (((-112) $ (-550)) 55)) (-2302 (((-550) (-112) $ (-550)) 95 (|has| (-112) (-1068))) (((-550) (-112) $) 94 (|has| (-112) (-1068))) (((-550) (-1 (-112) (-112)) $) 93)) (-3450 (((-623 (-112)) $) 45 (|has| $ (-6 -4342)))) (-3675 (($ $ $) 26)) (-3462 (($ $) 30)) (-1406 (($ $ $) 28)) (-2578 (($ (-749) (-112)) 77)) (-2896 (($ $ $) 29)) (-1859 (((-112) $ (-749)) 36)) (-3195 (((-550) $) 63 (|has| (-550) (-825)))) (-2707 (($ $ $) 13)) (-1832 (($ $ $) 96 (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2689 (((-623 (-112)) $) 46 (|has| $ (-6 -4342)))) (-1921 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 62 (|has| (-550) (-825)))) (-4164 (($ $ $) 14)) (-3234 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-1573 (((-112) $ (-749)) 35)) (-1825 (((-1126) $) 9)) (-2055 (($ $ $ (-550)) 87) (($ (-112) $ (-550)) 86)) (-2325 (((-623 (-550)) $) 60)) (-2400 (((-112) (-550) $) 59)) (-3337 (((-1088) $) 10)) (-1293 (((-112) $) 64 (|has| (-550) (-825)))) (-3321 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3111 (($ $ (-112)) 65 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-112)) (-623 (-112))) 52 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-287 (-112))) 50 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-623 (-287 (-112)))) 49 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068))))) (-4140 (((-112) $ $) 31)) (-2256 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-2477 (((-623 (-112)) $) 58)) (-2902 (((-112) $) 34)) (-3498 (($) 33)) (-2680 (($ $ (-1194 (-550))) 83) (((-112) $ (-550)) 57) (((-112) $ (-550) (-112)) 56)) (-1529 (($ $ (-1194 (-550))) 85) (($ $ (-550)) 84)) (-3350 (((-749) (-112) $) 47 (-12 (|has| (-112) (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4342)))) (-3593 (($ $ $ (-550)) 99 (|has| $ (-6 -4343)))) (-1731 (($ $) 32)) (-4028 (((-526) $) 67 (|has| (-112) (-596 (-526))))) (-1532 (($ (-623 (-112))) 76)) (-3227 (($ (-623 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-1518 (((-836) $) 11)) (-1675 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4342)))) (-1262 (($ $ $) 27)) (-1482 (($ $ $) 105)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (-1466 (($ $ $) 104)) (-3191 (((-749) $) 39 (|has| $ (-6 -4342))))) (((-123) (-138)) (T -123)) -((-3659 (*1 *1 *1) (-4 *1 (-123))) (-1356 (*1 *1 *1 *1) (-4 *1 (-123))) (-1355 (*1 *1 *1 *1) (-4 *1 (-123))) (-3179 (*1 *1 *1 *1) (-4 *1 (-123))) (-3178 (*1 *1 *1 *1) (-4 *1 (-123))) (-3658 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-823) (-638) (-19 (-112)) (-10 -8 (-15 -3659 ($ $)) (-15 -1356 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3179 ($ $ $)) (-15 -3178 ($ $ $)) (-15 -3658 ($ $ $)))) -(((-34) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 #1=(-112)) . T) ((-594 (-524)) |has| (-112) (-594 (-524))) ((-279 #2=(-535) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))) ((-365 #1#) . T) ((-481 #1#) . T) ((-584 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))) ((-627 #1#) . T) ((-638) . T) ((-19 #1#) . T) ((-823) . T) ((-1067) . T) ((-1178) . T)) -((-2067 (($ (-1 |#2| |#2|) $) 22)) (-3742 (($ $) 16)) (-4299 (((-747) $) 24))) -(((-124 |#1| |#2|) (-10 -8 (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -3742 (|#1| |#1|))) (-125 |#2|) (-1067)) (T -124)) -NIL -(-10 -8 (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -3742 (|#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1348 (($ $ $) 52 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 54 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) (($ $ #2="left" $) 55 (|has| $ (-6 -4337))) (($ $ #3="right" $) 53 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-3455 (($ $) 57)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) 60)) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3456 (($ $) 59)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-125 |#1|) (-138) (-1067)) (T -125)) -((-1357 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1067))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -1357 ($ $ |t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-119 |#1|) . T) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 15)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) 19 (|has| $ (-6 -4337)))) (-1348 (($ $ $) 20 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 18 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 21)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3953 (($ |#1| $) 10)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 14)) (-3911 (($) 8)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 17)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1358 (($ (-618 |#1|)) 12)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4337) (-15 -1358 ($ (-618 |#1|))) (-15 -3953 ($ |#1| $)))) (-823)) (T -126)) -((-1358 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-126 *3)))) (-3953 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-823))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4337) (-15 -1358 ($ (-618 |#1|))) (-15 -3953 ($ |#1| $)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 24)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) 26 (|has| $ (-6 -4337)))) (-1348 (($ $ $) 30 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 28 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 20)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) 15)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) 19)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) 21)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 18)) (-3911 (($) 11)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1359 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 10 (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1359 ($ |#1|)) (-15 -1359 ($ $ |#1| $)))) (-1067)) (T -127)) -((-1359 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067)))) (-1359 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067))))) -(-13 (-125 |#1|) (-10 -8 (-15 -1359 ($ |#1|)) (-15 -1359 ($ $ |#1| $)))) -((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 12) (((-747) $) 9) (($ (-747)) 8)) (-1362 (($ (-747)) 7)) (-1360 (($ $ $) 17)) (-1361 (($ $ $) 16)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 14)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 15))) -(((-128) (-13 (-823) (-593 (-747)) (-10 -8 (-15 -1362 ($ (-747))) (-15 -4300 ($ (-747))) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $))))) (T -128)) -((-1362 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-128)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-128)))) (-1361 (*1 *1 *1 *1) (-5 *1 (-128))) (-1360 (*1 *1 *1 *1) (-5 *1 (-128)))) -(-13 (-823) (-593 (-747)) (-10 -8 (-15 -1362 ($ (-747))) (-15 -4300 ($ (-747))) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $)))) -((-2887 (((-112) $ $) NIL (|has| (-128) (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-823)))) (-1841 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-128) (-823))))) (-3230 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-128) $ (-535) (-128)) NIL (|has| $ (-6 -4337))) (((-128) $ (-1191 (-535)) (-128)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067))))) (-3748 (($ (-128) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4336))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-128) $ (-535) (-128)) NIL (|has| $ (-6 -4337)))) (-3431 (((-128) $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) (-128)) $) NIL) (((-535) (-128) $) NIL (|has| (-128) (-1067))) (((-535) (-128) $ (-535)) NIL (|has| (-128) (-1067)))) (-2063 (((-618 (-128)) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-128)) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| (-128) (-823)))) (-3855 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-823)))) (-2502 (((-618 (-128)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-128) (-823)))) (-2067 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| (-128) (-1067)))) (-2373 (($ (-128) $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| (-128) (-1067)))) (-4143 (((-128) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2297 (($ $ (-128)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-128)))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1067)))) (($ $ (-286 (-128))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1067)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1067)))) (($ $ (-618 (-128)) (-618 (-128))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067))))) (-2303 (((-618 (-128)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-128) $ (-535) (-128)) NIL) (((-128) $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336))) (((-747) (-128) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-128) (-594 (-524))))) (-3867 (($ (-618 (-128))) NIL)) (-4144 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| (-128) (-593 (-835))))) (-2066 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| (-128) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-128) (-823)))) (-3375 (((-112) $ $) NIL (|has| (-128) (-1067)))) (-3005 (((-112) $ $) NIL (|has| (-128) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-128) (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-129) (-19 (-128))) (T -129)) -NIL -(-19 (-128)) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15))) +((-3462 (*1 *1 *1) (-4 *1 (-123))) (-2896 (*1 *1 *1 *1) (-4 *1 (-123))) (-1406 (*1 *1 *1 *1) (-4 *1 (-123))) (-1262 (*1 *1 *1 *1) (-4 *1 (-123))) (-3675 (*1 *1 *1 *1) (-4 *1 (-123))) (-2678 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-825) (-639) (-19 (-112)) (-10 -8 (-15 -3462 ($ $)) (-15 -2896 ($ $ $)) (-15 -1406 ($ $ $)) (-15 -1262 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -2678 ($ $ $)))) +(((-34) . T) ((-101) . T) ((-595 (-836)) . T) ((-149 #0=(-112)) . T) ((-596 (-526)) |has| (-112) (-596 (-526))) ((-279 #1=(-550) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068))) ((-366 #0#) . T) ((-481 #0#) . T) ((-586 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068))) ((-629 #0#) . T) ((-639) . T) ((-19 #0#) . T) ((-825) . T) ((-1068) . T) ((-1181) . T)) +((-3234 (($ (-1 |#2| |#2|) $) 22)) (-1731 (($ $) 16)) (-3191 (((-749) $) 24))) +(((-124 |#1| |#2|) (-10 -8 (-15 -3234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3191 ((-749) |#1|)) (-15 -1731 (|#1| |#1|))) (-125 |#2|) (-1068)) (T -124)) +NIL +(-10 -8 (-15 -3234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3191 ((-749) |#1|)) (-15 -1731 (|#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3625 ((|#1| $) 48)) (-4047 (((-112) $ (-749)) 8)) (-2190 ((|#1| $ |#1|) 39 (|has| $ (-6 -4343)))) (-2169 (($ $ $) 52 (|has| $ (-6 -4343)))) (-2254 (($ $ $) 54 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4343))) (($ $ "left" $) 55 (|has| $ (-6 -4343))) (($ $ "right" $) 53 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-3513 (($) 7 T CONST)) (-2682 (($ $) 57)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 50)) (-2333 (((-112) $ $) 42 (|has| |#1| (-1068)))) (-2925 (($ $ |#1| $) 60)) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-2671 (($ $) 59)) (-2513 (((-623 |#1|) $) 45)) (-3312 (((-112) $) 49)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2487 (((-550) $ $) 44)) (-2136 (((-112) $) 46)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 51)) (-2413 (((-112) $ $) 43 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-125 |#1|) (-138) (-1068)) (T -125)) +((-2925 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1068))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4343) (-6 -4342) (-15 -2925 ($ $ |t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-119 |#1|) . T) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-983 |#1|) . T) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) 15)) (-4047 (((-112) $ (-749)) NIL)) (-2190 ((|#1| $ |#1|) 19 (|has| $ (-6 -4343)))) (-2169 (($ $ $) 20 (|has| $ (-6 -4343)))) (-2254 (($ $ $) 18 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) (($ $ "left" $) NIL (|has| $ (-6 -4343))) (($ $ "right" $) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-2682 (($ $) 21)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2925 (($ $ |#1| $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2671 (($ $) NIL)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-1886 (($ |#1| $) 10)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 14)) (-3498 (($) 8)) (-2680 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2487 (((-550) $ $) NIL)) (-2136 (((-112) $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) 17)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3045 (($ (-623 |#1|)) 12)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4343) (-15 -3045 ($ (-623 |#1|))) (-15 -1886 ($ |#1| $)))) (-825)) (T -126)) +((-3045 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-126 *3)))) (-1886 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-825))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4343) (-15 -3045 ($ (-623 |#1|))) (-15 -1886 ($ |#1| $)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) 24)) (-4047 (((-112) $ (-749)) NIL)) (-2190 ((|#1| $ |#1|) 26 (|has| $ (-6 -4343)))) (-2169 (($ $ $) 30 (|has| $ (-6 -4343)))) (-2254 (($ $ $) 28 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) (($ $ "left" $) NIL (|has| $ (-6 -4343))) (($ $ "right" $) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-2682 (($ $) 20)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2925 (($ $ |#1| $) 15)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2671 (($ $) 19)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) 21)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 18)) (-3498 (($) 11)) (-2680 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2487 (((-550) $ $) NIL)) (-2136 (((-112) $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3160 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 10 (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3160 ($ |#1|)) (-15 -3160 ($ $ |#1| $)))) (-1068)) (T -127)) +((-3160 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1068)))) (-3160 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1068))))) +(-13 (-125 |#1|) (-10 -8 (-15 -3160 ($ |#1|)) (-15 -3160 ($ $ |#1| $)))) +((-1504 (((-112) $ $) NIL (|has| (-129) (-1068)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-825)))) (-3491 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| (-129) (-825))))) (-1674 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 (((-129) $ (-550) (-129)) NIL (|has| $ (-6 -4343))) (((-129) $ (-1194 (-550)) (-129)) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-129) (-1068))))) (-3137 (($ (-129) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-129) (-1068)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4342)) (|has| (-129) (-1068)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4342))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4342)))) (-3245 (((-129) $ (-550) (-129)) NIL (|has| $ (-6 -4343)))) (-3181 (((-129) $ (-550)) NIL)) (-2302 (((-550) (-1 (-112) (-129)) $) NIL) (((-550) (-129) $) NIL (|has| (-129) (-1068))) (((-550) (-129) $ (-550)) NIL (|has| (-129) (-1068)))) (-3450 (((-623 (-129)) $) NIL (|has| $ (-6 -4342)))) (-2578 (($ (-749) (-129)) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| (-129) (-825)))) (-1832 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-825)))) (-2689 (((-623 (-129)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-129) (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| (-129) (-825)))) (-3234 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| (-129) (-1068)))) (-2055 (($ (-129) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| (-129) (-1068)))) (-1293 (((-129) $) NIL (|has| (-550) (-825)))) (-3321 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3111 (($ $ (-129)) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-129)))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1068)))) (($ $ (-287 (-129))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1068)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1068)))) (($ $ (-623 (-129)) (-623 (-129))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-129) (-1068))))) (-2477 (((-623 (-129)) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 (((-129) $ (-550) (-129)) NIL) (((-129) $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3350 (((-749) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4342))) (((-749) (-129) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-129) (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-129) (-596 (-526))))) (-1532 (($ (-623 (-129))) NIL)) (-3227 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| (-129) (-595 (-836))))) (-1675 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| (-129) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-129) (-825)))) (-2316 (((-112) $ $) NIL (|has| (-129) (-1068)))) (-2354 (((-112) $ $) NIL (|has| (-129) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-129) (-825)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-128) (-19 (-129))) (T -128)) +NIL +(-19 (-129)) +((-1504 (((-112) $ $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 12) (((-749) $) 9) (($ (-749)) 8)) (-3104 (($ (-749)) 7)) (-1687 (($ $ $) 17)) (-1673 (($ $ $) 16)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 14)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 15))) +(((-129) (-13 (-825) (-595 (-749)) (-10 -8 (-15 -3104 ($ (-749))) (-15 -1518 ($ (-749))) (-15 -1673 ($ $ $)) (-15 -1687 ($ $ $))))) (T -129)) +((-3104 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-129)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-129)))) (-1673 (*1 *1 *1 *1) (-5 *1 (-129))) (-1687 (*1 *1 *1 *1) (-5 *1 (-129)))) +(-13 (-825) (-595 (-749)) (-10 -8 (-15 -3104 ($ (-749))) (-15 -1518 ($ (-749))) (-15 -1673 ($ $ $)) (-15 -1687 ($ $ $)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15))) (((-130) (-138)) (T -130)) -((-1363 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(-13 (-23) (-10 -8 (-15 -1363 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 7)) (-1364 (((-1230) $ (-747)) 19)) (-3761 (((-747) $) 20)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18))) +((-3219 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(-13 (-23) (-10 -8 (-15 -3219 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 7)) (-3702 (((-1232) $ (-749)) 19)) (-2302 (((-749) $) 20)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18))) (((-131) (-138)) (T -131)) -((-3761 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-747)))) (-1364 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-747)) (-5 *2 (-1230))))) -(-13 (-823) (-10 -8 (-15 -3761 ((-747) $)) (-15 -1364 ((-1230) $ (-747))))) -(((-101) . T) ((-593 (-835)) . T) ((-823) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 18) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-618 (-1101)) $) 10)) (-3375 (((-112) $ $) NIL))) -(((-132) (-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $))))) (T -132)) -((-3567 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-132))))) -(-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $)))) -((-2887 (((-112) $ $) 34)) (-3522 (((-112) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-747) "failed") $) 40)) (-3490 (((-747) $) 38)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) 27)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1366 (((-112)) 41)) (-1365 (((-112) (-112)) 43)) (-2852 (((-112) $) 24)) (-1367 (((-112) $) 37)) (-4300 (((-835) $) 22) (($ (-747)) 14)) (-2979 (($) 11 T CONST)) (-2985 (($) 12 T CONST)) (-1368 (($ (-747)) 15)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 25)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 26)) (-4180 (((-3 $ "failed") $ $) 30)) (-4182 (($ $ $) 28)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL) (($ $ $) 36)) (* (($ (-747) $) 33) (($ (-890) $) NIL) (($ $ $) 31))) -(((-133) (-13 (-823) (-23) (-703) (-1009 (-747)) (-10 -8 (-6 (-4338 "*")) (-15 -4180 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1368 ($ (-747))) (-15 -2852 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -1366 ((-112))) (-15 -1365 ((-112) (-112)))))) (T -133)) -((-4180 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-133)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1366 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(-13 (-823) (-23) (-703) (-1009 (-747)) (-10 -8 (-6 (-4338 "*")) (-15 -4180 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1368 ($ (-747))) (-15 -2852 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -1366 ((-112))) (-15 -1365 ((-112) (-112))))) -((-2887 (((-112) $ $) NIL)) (-1369 (($ (-618 |#3|)) 40)) (-3756 (($ $) 99) (($ $ (-535) (-535)) 98)) (-3879 (($) 17)) (-3491 (((-3 |#3| "failed") $) 60)) (-3490 ((|#3| $) NIL)) (-1373 (($ $ (-618 (-535))) 100)) (-1370 (((-618 |#3|) $) 36)) (-3427 (((-747) $) 44)) (-4287 (($ $ $) 93)) (-1371 (($) 43)) (-3576 (((-1124) $) NIL)) (-1372 (($) 16)) (-3577 (((-1086) $) NIL)) (-4142 ((|#3| $) 46) ((|#3| $ (-535)) 47) ((|#3| $ (-535) (-535)) 48) ((|#3| $ (-535) (-535) (-535)) 49) ((|#3| $ (-535) (-535) (-535) (-535)) 50) ((|#3| $ (-618 (-535))) 52)) (-4290 (((-747) $) 45)) (-2100 (($ $ (-535) $ (-535)) 94) (($ $ (-535) (-535)) 96)) (-4300 (((-835) $) 67) (($ |#3|) 68) (($ (-233 |#2| |#3|)) 75) (($ (-1108 |#2| |#3|)) 78) (($ (-618 |#3|)) 53) (($ (-618 $)) 58)) (-2979 (($) 69 T CONST)) (-2985 (($) 70 T CONST)) (-3375 (((-112) $ $) 80)) (-4180 (($ $) 86) (($ $ $) 84)) (-4182 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-535)) 89) (($ (-535) $) 88) (($ $ $) 95))) -(((-134 |#1| |#2| |#3|) (-13 (-457 |#3| (-747)) (-462 (-535) (-747)) (-10 -8 (-15 -4300 ($ (-233 |#2| |#3|))) (-15 -4300 ($ (-1108 |#2| |#3|))) (-15 -4300 ($ (-618 |#3|))) (-15 -4300 ($ (-618 $))) (-15 -3427 ((-747) $)) (-15 -4142 (|#3| $)) (-15 -4142 (|#3| $ (-535))) (-15 -4142 (|#3| $ (-535) (-535))) (-15 -4142 (|#3| $ (-535) (-535) (-535))) (-15 -4142 (|#3| $ (-535) (-535) (-535) (-535))) (-15 -4142 (|#3| $ (-618 (-535)))) (-15 -4287 ($ $ $)) (-15 * ($ $ $)) (-15 -2100 ($ $ (-535) $ (-535))) (-15 -2100 ($ $ (-535) (-535))) (-15 -3756 ($ $)) (-15 -3756 ($ $ (-535) (-535))) (-15 -1373 ($ $ (-618 (-535)))) (-15 -1372 ($)) (-15 -1371 ($)) (-15 -1370 ((-618 |#3|) $)) (-15 -1369 ($ (-618 |#3|))) (-15 -3879 ($)))) (-535) (-747) (-170)) (T -134)) -((-4287 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1108 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)) (-4 *5 (-170)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 *2) (-4 *5 (-170)))) (-4142 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-535)) (-14 *4 (-747)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-4142 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-4142 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-4142 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-618 (-535))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-535)) (-14 *5 (-747)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-2100 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-2100 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-3756 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)) (-4 *5 (-170)))) (-1372 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-1371 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-618 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)) (-4 *5 (-170)))) (-1369 (*1 *1 *2) (-12 (-5 *2 (-618 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)))) (-3879 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170))))) -(-13 (-457 |#3| (-747)) (-462 (-535) (-747)) (-10 -8 (-15 -4300 ($ (-233 |#2| |#3|))) (-15 -4300 ($ (-1108 |#2| |#3|))) (-15 -4300 ($ (-618 |#3|))) (-15 -4300 ($ (-618 $))) (-15 -3427 ((-747) $)) (-15 -4142 (|#3| $)) (-15 -4142 (|#3| $ (-535))) (-15 -4142 (|#3| $ (-535) (-535))) (-15 -4142 (|#3| $ (-535) (-535) (-535))) (-15 -4142 (|#3| $ (-535) (-535) (-535) (-535))) (-15 -4142 (|#3| $ (-618 (-535)))) (-15 -4287 ($ $ $)) (-15 * ($ $ $)) (-15 -2100 ($ $ (-535) $ (-535))) (-15 -2100 ($ $ (-535) (-535))) (-15 -3756 ($ $)) (-15 -3756 ($ $ (-535) (-535))) (-15 -1373 ($ $ (-618 (-535)))) (-15 -1372 ($)) (-15 -1371 ($)) (-15 -1370 ((-618 |#3|) $)) (-15 -1369 ($ (-618 |#3|))) (-15 -3879 ($)))) -((-2496 (((-134 |#1| |#2| |#4|) (-618 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-4301 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-134 |#1| |#2| |#4|) (-618 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4301 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-535) (-747) (-170) (-170)) (T -135)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-535)) (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-535)) (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -2496 ((-134 |#1| |#2| |#4|) (-618 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4301 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) -((-2887 (((-112) $ $) NIL)) (-3865 (((-1101) $) 11)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-136) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))) (T -136)) -((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136))))) -(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-1374 (((-1142) $) 10)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-618 (-1101)) $) 12)) (-3375 (((-112) $ $) NIL))) -(((-137) (-13 (-1049) (-10 -8 (-15 -1374 ((-1142) $)) (-15 -3567 ((-618 (-1101)) $))))) (T -137)) -((-1374 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-137)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-137))))) -(-13 (-1049) (-10 -8 (-15 -1374 ((-1142) $)) (-15 -3567 ((-618 (-1101)) $)))) -((-4300 (((-835) $) 7))) -(((-138) (-593 (-835))) (T -138)) -NIL -(-593 (-835)) -((-2887 (((-112) $ $) NIL)) (-3769 (($) 15 T CONST)) (-1916 (($) NIL (|has| (-142) (-361)))) (-3568 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3570 (($ $ $) NIL)) (-3569 (((-112) $ $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| (-142) (-361)))) (-3573 (($) NIL) (($ (-618 (-142))) NIL)) (-1626 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3747 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (($ (-142) $) 51 (|has| $ (-6 -4336)))) (-3748 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3315 (($) NIL (|has| (-142) (-361)))) (-2063 (((-618 (-142)) $) 60 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3660 (((-142) $) NIL (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3661 (((-142) $) NIL (|has| (-142) (-823)))) (-2067 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) 55)) (-3771 (($) 16 T CONST)) (-2121 (((-890) $) NIL (|has| (-142) (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3572 (($ $ $) 29)) (-1326 (((-142) $) 52)) (-3953 (($ (-142) $) 50)) (-2483 (($ (-890)) NIL (|has| (-142) (-361)))) (-1377 (($) 14 T CONST)) (-3577 (((-1086) $) NIL)) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1327 (((-142) $) 53)) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-142)) (-618 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 48)) (-1378 (($) 13 T CONST)) (-3571 (($ $ $) 31) (($ $ (-142)) NIL)) (-1518 (($ (-618 (-142))) NIL) (($) NIL)) (-2064 (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-1124) $) 36) (((-524) $) NIL (|has| (-142) (-594 (-524)))) (((-618 (-142)) $) 34)) (-3867 (($ (-618 (-142))) NIL)) (-1917 (($ $) 32 (|has| (-142) (-361)))) (-4300 (((-835) $) 46)) (-1379 (($ (-1124)) 12) (($ (-618 (-142))) 43)) (-1918 (((-747) $) NIL)) (-3574 (($) 49) (($ (-618 (-142))) NIL)) (-1328 (($ (-618 (-142))) NIL)) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1375 (($) 19 T CONST)) (-1376 (($) 18 T CONST)) (-3375 (((-112) $ $) 22)) (-4299 (((-747) $) 47 (|has| $ (-6 -4336))))) -(((-139) (-13 (-1067) (-594 (-1124)) (-419 (-142)) (-594 (-618 (-142))) (-10 -8 (-15 -1379 ($ (-1124))) (-15 -1379 ($ (-618 (-142)))) (-15 -1378 ($) -4294) (-15 -1377 ($) -4294) (-15 -3769 ($) -4294) (-15 -3771 ($) -4294) (-15 -1376 ($) -4294) (-15 -1375 ($) -4294)))) (T -139)) -((-1379 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-139)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-618 (-142))) (-5 *1 (-139)))) (-1378 (*1 *1) (-5 *1 (-139))) (-1377 (*1 *1) (-5 *1 (-139))) (-3769 (*1 *1) (-5 *1 (-139))) (-3771 (*1 *1) (-5 *1 (-139))) (-1376 (*1 *1) (-5 *1 (-139))) (-1375 (*1 *1) (-5 *1 (-139)))) -(-13 (-1067) (-594 (-1124)) (-419 (-142)) (-594 (-618 (-142))) (-10 -8 (-15 -1379 ($ (-1124))) (-15 -1379 ($ (-618 (-142)))) (-15 -1378 ($) -4294) (-15 -1377 ($) -4294) (-15 -3769 ($) -4294) (-15 -3771 ($) -4294) (-15 -1376 ($) -4294) (-15 -1375 ($) -4294))) -((-4084 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4082 ((|#1| |#3|) 9)) (-4083 ((|#3| |#3|) 15))) -(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -4082 (|#1| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-542) (-962 |#1|) (-365 |#2|)) (T -140)) -((-4084 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-365 *5)))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *4 (-962 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-365 *4)))) (-4082 (*1 *2 *3) (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-365 *4))))) -(-10 -7 (-15 -4082 (|#1| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1413 (($ $ $) 8)) (-1411 (($ $) 7)) (-3420 (($ $ $) 6))) +((-2302 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-749)))) (-3702 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-749)) (-5 *2 (-1232))))) +(-13 (-825) (-10 -8 (-15 -2302 ((-749) $)) (-15 -3702 ((-1232) $ (-749))))) +(((-101) . T) ((-595 (-836)) . T) ((-825) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 18) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-623 (-1103)) $) 10)) (-2316 (((-112) $ $) NIL))) +(((-132) (-13 (-1051) (-10 -8 (-15 -1925 ((-623 (-1103)) $))))) (T -132)) +((-1925 (*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-132))))) +(-13 (-1051) (-10 -8 (-15 -1925 ((-623 (-1103)) $)))) +((-1504 (((-112) $ $) 34)) (-3433 (((-112) $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-749) "failed") $) 40)) (-2726 (((-749) $) 38)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) 27)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2356 (((-112)) 41)) (-3801 (((-112) (-112)) 43)) (-3385 (((-112) $) 24)) (-3987 (((-112) $) 37)) (-1518 (((-836) $) 22) (($ (-749)) 14)) (-2626 (($) 11 T CONST)) (-2636 (($) 12 T CONST)) (-2968 (($ (-749)) 15)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 25)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 26)) (-2403 (((-3 $ "failed") $ $) 30)) (-2391 (($ $ $) 28)) (** (($ $ (-749)) NIL) (($ $ (-894)) NIL) (($ $ $) 36)) (* (($ (-749) $) 33) (($ (-894) $) NIL) (($ $ $) 31))) +(((-133) (-13 (-825) (-23) (-705) (-1011 (-749)) (-10 -8 (-6 (-4344 "*")) (-15 -2403 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2968 ($ (-749))) (-15 -3385 ((-112) $)) (-15 -3987 ((-112) $)) (-15 -2356 ((-112))) (-15 -3801 ((-112) (-112)))))) (T -133)) +((-2403 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-133)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2356 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(-13 (-825) (-23) (-705) (-1011 (-749)) (-10 -8 (-6 (-4344 "*")) (-15 -2403 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2968 ($ (-749))) (-15 -3385 ((-112) $)) (-15 -3987 ((-112) $)) (-15 -2356 ((-112))) (-15 -3801 ((-112) (-112))))) +((-2202 (((-135 |#1| |#2| |#4|) (-623 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-3972 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) +(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2202 ((-135 |#1| |#2| |#4|) (-623 |#4|) (-135 |#1| |#2| |#3|))) (-15 -3972 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-550) (-749) (-170) (-170)) (T -134)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) +(-10 -7 (-15 -2202 ((-135 |#1| |#2| |#4|) (-623 |#4|) (-135 |#1| |#2| |#3|))) (-15 -3972 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) +((-1504 (((-112) $ $) NIL)) (-3054 (($ (-623 |#3|)) 40)) (-2633 (($ $) 99) (($ $ (-550) (-550)) 98)) (-3513 (($) 17)) (-3880 (((-3 |#3| "failed") $) 60)) (-2726 ((|#3| $) NIL)) (-4068 (($ $ (-623 (-550))) 100)) (-2192 (((-623 |#3|) $) 36)) (-2122 (((-749) $) 44)) (-3838 (($ $ $) 93)) (-3149 (($) 43)) (-1825 (((-1126) $) NIL)) (-3220 (($) 16)) (-3337 (((-1088) $) NIL)) (-2680 ((|#3| $) 46) ((|#3| $ (-550)) 47) ((|#3| $ (-550) (-550)) 48) ((|#3| $ (-550) (-550) (-550)) 49) ((|#3| $ (-550) (-550) (-550) (-550)) 50) ((|#3| $ (-623 (-550))) 52)) (-2970 (((-749) $) 45)) (-1434 (($ $ (-550) $ (-550)) 94) (($ $ (-550) (-550)) 96)) (-1518 (((-836) $) 67) (($ |#3|) 68) (($ (-234 |#2| |#3|)) 75) (($ (-1110 |#2| |#3|)) 78) (($ (-623 |#3|)) 53) (($ (-623 $)) 58)) (-2626 (($) 69 T CONST)) (-2636 (($) 70 T CONST)) (-2316 (((-112) $ $) 80)) (-2403 (($ $) 86) (($ $ $) 84)) (-2391 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-550)) 89) (($ (-550) $) 88) (($ $ $) 95))) +(((-135 |#1| |#2| |#3|) (-13 (-457 |#3| (-749)) (-462 (-550) (-749)) (-10 -8 (-15 -1518 ($ (-234 |#2| |#3|))) (-15 -1518 ($ (-1110 |#2| |#3|))) (-15 -1518 ($ (-623 |#3|))) (-15 -1518 ($ (-623 $))) (-15 -2122 ((-749) $)) (-15 -2680 (|#3| $)) (-15 -2680 (|#3| $ (-550))) (-15 -2680 (|#3| $ (-550) (-550))) (-15 -2680 (|#3| $ (-550) (-550) (-550))) (-15 -2680 (|#3| $ (-550) (-550) (-550) (-550))) (-15 -2680 (|#3| $ (-623 (-550)))) (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 -1434 ($ $ (-550) $ (-550))) (-15 -1434 ($ $ (-550) (-550))) (-15 -2633 ($ $)) (-15 -2633 ($ $ (-550) (-550))) (-15 -4068 ($ $ (-623 (-550)))) (-15 -3220 ($)) (-15 -3149 ($)) (-15 -2192 ((-623 |#3|) $)) (-15 -3054 ($ (-623 |#3|))) (-15 -3513 ($)))) (-550) (-749) (-170)) (T -135)) +((-3838 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-234 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1110 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)) (-4 *5 (-170)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 *2) (-4 *5 (-170)))) (-2680 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-550)) (-14 *4 (-749)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-2680 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-2680 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-2680 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-623 (-550))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-550)) (-14 *5 (-749)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-1434 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-1434 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-2633 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-2633 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-4068 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)) (-4 *5 (-170)))) (-3220 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-3149 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)) (-4 *5 (-170)))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-749)))) (-3513 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) (-4 *4 (-170))))) +(-13 (-457 |#3| (-749)) (-462 (-550) (-749)) (-10 -8 (-15 -1518 ($ (-234 |#2| |#3|))) (-15 -1518 ($ (-1110 |#2| |#3|))) (-15 -1518 ($ (-623 |#3|))) (-15 -1518 ($ (-623 $))) (-15 -2122 ((-749) $)) (-15 -2680 (|#3| $)) (-15 -2680 (|#3| $ (-550))) (-15 -2680 (|#3| $ (-550) (-550))) (-15 -2680 (|#3| $ (-550) (-550) (-550))) (-15 -2680 (|#3| $ (-550) (-550) (-550) (-550))) (-15 -2680 (|#3| $ (-623 (-550)))) (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 -1434 ($ $ (-550) $ (-550))) (-15 -1434 ($ $ (-550) (-550))) (-15 -2633 ($ $)) (-15 -2633 ($ $ (-550) (-550))) (-15 -4068 ($ $ (-623 (-550)))) (-15 -3220 ($)) (-15 -3149 ($)) (-15 -2192 ((-623 |#3|) $)) (-15 -3054 ($ (-623 |#3|))) (-15 -3513 ($)))) +((-1504 (((-112) $ $) NIL)) (-2874 (((-1103) $) 11)) (-2864 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 19) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-136) (-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1103) $))))) (T -136)) +((-2864 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-136)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-136))))) +(-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1103) $)))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3891 (((-1144) $) 10)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 19) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-623 (-1103)) $) 12)) (-2316 (((-112) $ $) NIL))) +(((-137) (-13 (-1051) (-10 -8 (-15 -3891 ((-1144) $)) (-15 -1925 ((-623 (-1103)) $))))) (T -137)) +((-3891 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-137)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-137))))) +(-13 (-1051) (-10 -8 (-15 -3891 ((-1144) $)) (-15 -1925 ((-623 (-1103)) $)))) +((-1518 (((-836) $) 7))) +(((-138) (-595 (-836))) (T -138)) +NIL +(-595 (-836)) +((-1504 (((-112) $ $) NIL)) (-2009 (($) 15 T CONST)) (-1597 (($) NIL (|has| (-142) (-361)))) (-3965 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-1445 (($ $ $) NIL)) (-1467 (((-112) $ $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4319 (((-749)) NIL (|has| (-142) (-361)))) (-2142 (($) NIL) (($ (-623 (-142))) NIL)) (-3378 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-3112 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342))) (($ (-142) $) 51 (|has| $ (-6 -4342)))) (-3137 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-2419 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4342))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4342))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-1741 (($) NIL (|has| (-142) (-361)))) (-3450 (((-623 (-142)) $) 60 (|has| $ (-6 -4342)))) (-1723 (((-112) $ $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-2707 (((-142) $) NIL (|has| (-142) (-825)))) (-2689 (((-623 (-142)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-4164 (((-142) $) NIL (|has| (-142) (-825)))) (-3234 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-142) (-142)) $) 55)) (-3966 (($) 16 T CONST)) (-2253 (((-894) $) NIL (|has| (-142) (-361)))) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-1623 (($ $ $) 29)) (-3638 (((-142) $) 52)) (-1886 (($ (-142) $) 50)) (-2922 (($ (-894)) NIL (|has| (-142) (-361)))) (-1349 (($) 14 T CONST)) (-3337 (((-1088) $) NIL)) (-3321 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3760 (((-142) $) 53)) (-1543 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-142)) (-623 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-623 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 48)) (-1479 (($) 13 T CONST)) (-1525 (($ $ $) 31) (($ $ (-142)) NIL)) (-2729 (($ (-623 (-142))) NIL) (($) NIL)) (-3350 (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068)))) (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-1126) $) 36) (((-526) $) NIL (|has| (-142) (-596 (-526)))) (((-623 (-142)) $) 34)) (-1532 (($ (-623 (-142))) NIL)) (-1696 (($ $) 32 (|has| (-142) (-361)))) (-1518 (((-836) $) 46)) (-3408 (($ (-1126)) 12) (($ (-623 (-142))) 43)) (-1800 (((-749) $) NIL)) (-3578 (($) 49) (($ (-623 (-142))) NIL)) (-3685 (($ (-623 (-142))) NIL)) (-1675 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-4174 (($) 19 T CONST)) (-4301 (($) 18 T CONST)) (-2316 (((-112) $ $) 22)) (-3191 (((-749) $) 47 (|has| $ (-6 -4342))))) +(((-139) (-13 (-1068) (-596 (-1126)) (-418 (-142)) (-596 (-623 (-142))) (-10 -8 (-15 -3408 ($ (-1126))) (-15 -3408 ($ (-623 (-142)))) (-15 -1479 ($) -2258) (-15 -1349 ($) -2258) (-15 -2009 ($) -2258) (-15 -3966 ($) -2258) (-15 -4301 ($) -2258) (-15 -4174 ($) -2258)))) (T -139)) +((-3408 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-139)))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-623 (-142))) (-5 *1 (-139)))) (-1479 (*1 *1) (-5 *1 (-139))) (-1349 (*1 *1) (-5 *1 (-139))) (-2009 (*1 *1) (-5 *1 (-139))) (-3966 (*1 *1) (-5 *1 (-139))) (-4301 (*1 *1) (-5 *1 (-139))) (-4174 (*1 *1) (-5 *1 (-139)))) +(-13 (-1068) (-596 (-1126)) (-418 (-142)) (-596 (-623 (-142))) (-10 -8 (-15 -3408 ($ (-1126))) (-15 -3408 ($ (-623 (-142)))) (-15 -1479 ($) -2258) (-15 -1349 ($) -2258) (-15 -2009 ($) -2258) (-15 -3966 ($) -2258) (-15 -4301 ($) -2258) (-15 -4174 ($) -2258))) +((-2346 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2156 ((|#1| |#3|) 9)) (-2249 ((|#3| |#3|) 15))) +(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -2156 (|#1| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2346 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-542) (-965 |#1|) (-366 |#2|)) (T -140)) +((-2346 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-366 *5)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *4 (-965 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-366 *4)))) (-2156 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-542)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-366 *4))))) +(-10 -7 (-15 -2156 (|#1| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2346 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3388 (($ $ $) 8)) (-1289 (($ $) 7)) (-4224 (($ $ $) 6))) (((-141) (-138)) (T -141)) -((-1413 (*1 *1 *1 *1) (-4 *1 (-141))) (-1411 (*1 *1 *1) (-4 *1 (-141))) (-3420 (*1 *1 *1 *1) (-4 *1 (-141)))) -(-13 (-10 -8 (-15 -3420 ($ $ $)) (-15 -1411 ($ $)) (-15 -1413 ($ $ $)))) -((-2887 (((-112) $ $) NIL)) (-1382 (((-112) $) 30)) (-3769 (($ $) 43)) (-1568 (($) 17)) (-3454 (((-747)) 10)) (-3315 (($) 16)) (-2898 (($) 18)) (-1388 (((-747) $) 14)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-1381 (((-112) $) 32)) (-3771 (($ $) 44)) (-2121 (((-890) $) 15)) (-3576 (((-1124) $) 38)) (-2483 (($ (-890)) 13)) (-1384 (((-112) $) 28)) (-3577 (((-1086) $) NIL)) (-1386 (($) 19)) (-1385 (((-112) $) 26)) (-4300 (((-835) $) 21)) (-1387 (($ (-747)) 11) (($ (-1124)) 42)) (-1380 (((-112) $) 36)) (-1383 (((-112) $) 34)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 7)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 8))) -(((-142) (-13 (-817) (-10 -8 (-15 -1388 ((-747) $)) (-15 -1387 ($ (-747))) (-15 -1387 ($ (-1124))) (-15 -1568 ($)) (-15 -2898 ($)) (-15 -1386 ($)) (-15 -3769 ($ $)) (-15 -3771 ($ $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1383 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1380 ((-112) $))))) (T -142)) -((-1388 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-142)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-142)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-142)))) (-1568 (*1 *1) (-5 *1 (-142))) (-2898 (*1 *1) (-5 *1 (-142))) (-1386 (*1 *1) (-5 *1 (-142))) (-3769 (*1 *1 *1) (-5 *1 (-142))) (-3771 (*1 *1 *1) (-5 *1 (-142))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(-13 (-817) (-10 -8 (-15 -1388 ((-747) $)) (-15 -1387 ($ (-747))) (-15 -1387 ($ (-1124))) (-15 -1568 ($)) (-15 -2898 ($)) (-15 -1386 ($)) (-15 -3769 ($ $)) (-15 -3771 ($ $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1383 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1380 ((-112) $)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3023 (((-3 $ "failed") $) 33)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +((-3388 (*1 *1 *1 *1) (-4 *1 (-141))) (-1289 (*1 *1 *1) (-4 *1 (-141))) (-4224 (*1 *1 *1 *1) (-4 *1 (-141)))) +(-13 (-10 -8 (-15 -4224 ($ $ $)) (-15 -1289 ($ $)) (-15 -3388 ($ $ $)))) +((-1504 (((-112) $ $) NIL)) (-3729 (((-112) $) 30)) (-2009 (($ $) 43)) (-2046 (($) 17)) (-4319 (((-749)) 10)) (-1741 (($) 16)) (-3743 (($) 18)) (-2961 (((-749) $) 14)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3626 (((-112) $) 32)) (-3966 (($ $) 44)) (-2253 (((-894) $) 15)) (-1825 (((-1126) $) 38)) (-2922 (($ (-894)) 13)) (-3905 (((-112) $) 28)) (-3337 (((-1088) $) NIL)) (-2849 (($) 19)) (-4272 (((-112) $) 26)) (-1518 (((-836) $) 21)) (-3835 (($ (-749)) 11) (($ (-1126)) 42)) (-3512 (((-112) $) 36)) (-3825 (((-112) $) 34)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 7)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 8))) +(((-142) (-13 (-819) (-10 -8 (-15 -2961 ((-749) $)) (-15 -3835 ($ (-749))) (-15 -3835 ($ (-1126))) (-15 -2046 ($)) (-15 -3743 ($)) (-15 -2849 ($)) (-15 -2009 ($ $)) (-15 -3966 ($ $)) (-15 -4272 ((-112) $)) (-15 -3905 ((-112) $)) (-15 -3825 ((-112) $)) (-15 -3729 ((-112) $)) (-15 -3626 ((-112) $)) (-15 -3512 ((-112) $))))) (T -142)) +((-2961 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-142)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-142)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-142)))) (-2046 (*1 *1) (-5 *1 (-142))) (-3743 (*1 *1) (-5 *1 (-142))) (-2849 (*1 *1) (-5 *1 (-142))) (-2009 (*1 *1 *1) (-5 *1 (-142))) (-3966 (*1 *1 *1) (-5 *1 (-142))) (-4272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(-13 (-819) (-10 -8 (-15 -2961 ((-749) $)) (-15 -3835 ($ (-749))) (-15 -3835 ($ (-1126))) (-15 -2046 ($)) (-15 -3743 ($)) (-15 -2849 ($)) (-15 -2009 ($ $)) (-15 -3966 ($ $)) (-15 -4272 ((-112) $)) (-15 -3905 ((-112) $)) (-15 -3825 ((-112) $)) (-15 -3729 ((-112) $)) (-15 -3626 ((-112) $)) (-15 -3512 ((-112) $)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-4242 (((-3 $ "failed") $) 33)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-143) (-138)) (T -143)) -((-3023 (*1 *1 *1) (|partial| -4 *1 (-143)))) -(-13 (-1018) (-10 -8 (-15 -3023 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2689 ((|#1| (-665 |#1|) |#1|) 19))) -(((-144 |#1|) (-10 -7 (-15 -2689 (|#1| (-665 |#1|) |#1|))) (-170)) (T -144)) -((-2689 (*1 *2 *3 *2) (-12 (-5 *3 (-665 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))) -(-10 -7 (-15 -2689 (|#1| (-665 |#1|) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +((-4242 (*1 *1 *1) (|partial| -4 *1 (-143)))) +(-13 (-1020) (-10 -8 (-15 -4242 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-2608 ((|#1| (-667 |#1|) |#1|) 19))) +(((-144 |#1|) (-10 -7 (-15 -2608 (|#1| (-667 |#1|) |#1|))) (-170)) (T -144)) +((-2608 (*1 *2 *3 *2) (-12 (-5 *3 (-667 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))) +(-10 -7 (-15 -2608 (|#1| (-667 |#1|) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-145) (-138)) (T -145)) NIL -(-13 (-1018)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-1391 (((-2 (|:| -2484 (-747)) (|:| -4296 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747)) 70)) (-1390 (((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|) 52)) (-1389 (((-2 (|:| -4296 (-400 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1392 ((|#1| |#3| |#3|) 40)) (-4110 ((|#3| |#3| (-400 |#2|) (-400 |#2|)) 19)) (-1393 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|) 49))) -(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1389 ((-2 (|:| -4296 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1390 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|)) (-15 -1391 ((-2 (|:| -2484 (-747)) (|:| -4296 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747))) (-15 -1392 (|#1| |#3| |#3|)) (-15 -4110 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -1393 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|))) (-1183) (-1200 |#1|) (-1200 (-400 |#2|))) (T -146)) -((-1393 (*1 *2 *3 *3) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) (|:| |c2| (-400 *5)) (|:| |deg| (-747)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5))))) (-4110 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1200 *3)))) (-1392 (*1 *2 *3 *3) (-12 (-4 *4 (-1200 *2)) (-4 *2 (-1183)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1200 (-400 *4))))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *6)) (-4 *5 (-1183)) (-4 *6 (-1200 *5)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-747)) (-4 *7 (-1200 *3)))) (-1390 (*1 *2 *3) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-747)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5))))) (-1389 (*1 *2 *3) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -4296 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5)))))) -(-10 -7 (-15 -1389 ((-2 (|:| -4296 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1390 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|)) (-15 -1391 ((-2 (|:| -2484 (-747)) (|:| -4296 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747))) (-15 -1392 (|#1| |#3| |#3|)) (-15 -4110 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -1393 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|))) -((-3025 (((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|)) 32))) -(((-147 |#1| |#2|) (-10 -7 (-15 -3025 ((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|)))) (-534) (-164 |#1|)) (T -147)) -((-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *5))) (-5 *3 (-1136 *5)) (-4 *5 (-164 *4)) (-4 *4 (-534)) (-5 *1 (-147 *4 *5))))) -(-10 -7 (-15 -3025 ((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|)))) -((-4056 (($ (-1 (-112) |#2|) $) 29)) (-1394 (($ $) 36)) (-3748 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4185 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1395 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2065 (((-112) (-1 (-112) |#2|) $) 16)) (-2064 (((-747) (-1 (-112) |#2|) $) 14) (((-747) |#2| $) NIL)) (-2066 (((-112) (-1 (-112) |#2|) $) 15)) (-4299 (((-747) $) 11))) -(((-148 |#1| |#2|) (-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -3748 (|#1| |#2| |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4056 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|))) (-149 |#2|) (-1178)) (T -148)) -NIL -(-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -3748 (|#1| |#2| |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4056 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-4056 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 41 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336))) (($ |#1| $) 42 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 40 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 49)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-149 |#1|) (-138) (-1178)) (T -149)) -((-3867 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-149 *3)))) (-1395 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))) (-4185 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))) (-4185 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))) (-3748 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3)) (-4 *3 (-1178)))) (-4056 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3)) (-4 *3 (-1178)))) (-4185 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))) (-3748 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))) (-1394 (*1 *1 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)) (-4 *2 (-1067))))) -(-13 (-481 |t#1|) (-10 -8 (-15 -3867 ($ (-618 |t#1|))) (-15 -1395 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4336)) (PROGN (-15 -4185 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4185 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3748 ($ (-1 (-112) |t#1|) $)) (-15 -4056 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -4185 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3748 ($ |t#1| $)) (-15 -1394 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) 86)) (-2493 (((-112) $) NIL)) (-3214 (($ |#2| (-618 (-890))) 56)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1396 (($ (-890)) 47)) (-4254 (((-133)) 23)) (-4300 (((-835) $) 69) (($ (-535)) 45) (($ |#2|) 46)) (-4023 ((|#2| $ (-618 (-890))) 59)) (-3444 (((-747)) 20)) (-2979 (($) 40 T CONST)) (-2985 (($) 43 T CONST)) (-3375 (((-112) $ $) 26)) (-4291 (($ $ |#2|) NIL)) (-4180 (($ $) 34) (($ $ $) 32)) (-4182 (($ $ $) 30)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-150 |#1| |#2| |#3|) (-13 (-1018) (-38 |#2|) (-1232 |#2|) (-10 -8 (-15 -1396 ($ (-890))) (-15 -3214 ($ |#2| (-618 (-890)))) (-15 -4023 (|#2| $ (-618 (-890)))) (-15 -3804 ((-3 $ "failed") $)))) (-890) (-356) (-964 |#1| |#2|)) (T -150)) -((-3804 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-356)) (-14 *4 (-964 *2 *3)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) (-14 *5 (-964 *3 *4)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-4 *2 (-356)) (-14 *5 (-964 *4 *2)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-618 (-890))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-14 *5 (-964 *4 *2))))) -(-13 (-1018) (-38 |#2|) (-1232 |#2|) (-10 -8 (-15 -1396 ($ (-890))) (-15 -3214 ($ |#2| (-618 (-890)))) (-15 -4023 (|#2| $ (-618 (-890)))) (-15 -3804 ((-3 $ "failed") $)))) -((-1398 (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))) (-219) (-219) (-219) (-219)) 38)) (-1397 (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535))) 63) (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896)) 64)) (-1560 (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219))))) 67) (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-914 (-219)))) 66) (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535))) 58) (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896)) 59))) -(((-151) (-10 -7 (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535)))) (-15 -1397 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896))) (-15 -1397 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535)))) (-15 -1398 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))) (-219) (-219) (-219) (-219))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-914 (-219))))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))))))) (T -151)) -((-1560 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)) (-5 *3 (-618 (-618 (-914 (-219))))))) (-1560 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)) (-5 *3 (-618 (-914 (-219)))))) (-1398 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-219)) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 *4)))) (|:| |xValues| (-1055 *4)) (|:| |yValues| (-1055 *4)))) (-5 *1 (-151)) (-5 *3 (-618 (-618 (-914 *4)))))) (-1397 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-400 (-535))) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)))) (-1560 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-400 (-535))) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151))))) -(-10 -7 (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535)))) (-15 -1397 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896))) (-15 -1397 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535)))) (-15 -1398 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))) (-219) (-219) (-219) (-219))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-914 (-219))))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219))))))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3515 (((-618 (-1101)) $) 15)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 24) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 9)) (-3375 (((-112) $ $) NIL))) -(((-152) (-13 (-1049) (-10 -8 (-15 -3515 ((-618 (-1101)) $)) (-15 -3567 ((-1101) $))))) (T -152)) -((-3515 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-152)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-152))))) -(-13 (-1049) (-10 -8 (-15 -3515 ((-618 (-1101)) $)) (-15 -3567 ((-1101) $)))) -((-1451 (((-618 (-166 |#2|)) |#1| |#2|) 45))) -(((-153 |#1| |#2|) (-10 -7 (-15 -1451 ((-618 (-166 |#2|)) |#1| |#2|))) (-1200 (-166 (-535))) (-13 (-356) (-821))) (T -153)) -((-1451 (*1 *2 *3 *4) (-12 (-5 *2 (-618 (-166 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1200 (-166 (-535)))) (-4 *4 (-13 (-356) (-821)))))) -(-10 -7 (-15 -1451 ((-618 (-166 |#2|)) |#1| |#2|))) -((-2887 (((-112) $ $) NIL)) (-3865 (((-1179) $) 12)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-154) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1179) $))))) (T -154)) -((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-154)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-154))))) -(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1179) $)))) -((-2887 (((-112) $ $) NIL)) (-1402 (($) 15)) (-1403 (($) 14)) (-1399 (((-890)) 22)) (-3576 (((-1124) $) NIL)) (-3277 (((-535) $) 19)) (-3577 (((-1086) $) NIL)) (-1401 (($) 16)) (-3276 (($ (-535)) 23)) (-4300 (((-835) $) 29)) (-1400 (($) 17)) (-3375 (((-112) $ $) 13)) (-4182 (($ $ $) 11)) (* (($ (-890) $) 21) (($ (-219) $) 8))) -(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-219) $)) (-15 -4182 ($ $ $)) (-15 -1403 ($)) (-15 -1402 ($)) (-15 -1401 ($)) (-15 -1400 ($)) (-15 -3277 ((-535) $)) (-15 -1399 ((-890))) (-15 -3276 ($ (-535)))))) (T -155)) -((-4182 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) (-1403 (*1 *1) (-5 *1 (-155))) (-1402 (*1 *1) (-5 *1 (-155))) (-1401 (*1 *1) (-5 *1 (-155))) (-1400 (*1 *1) (-5 *1 (-155))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-155)))) (-1399 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-155)))) (-3276 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-155))))) -(-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-219) $)) (-15 -4182 ($ $ $)) (-15 -1403 ($)) (-15 -1402 ($)) (-15 -1401 ($)) (-15 -1400 ($)) (-15 -3277 ((-535) $)) (-15 -1399 ((-890))) (-15 -3276 ($ (-535))))) -((-1416 ((|#2| |#2| (-1058 |#2|)) 88) ((|#2| |#2| (-1142)) 68)) (-4287 ((|#2| |#2| (-1058 |#2|)) 87) ((|#2| |#2| (-1142)) 67)) (-1413 ((|#2| |#2| |#2|) 27)) (-3368 (((-113) (-113)) 99)) (-1410 ((|#2| (-618 |#2|)) 117)) (-1407 ((|#2| (-618 |#2|)) 135)) (-1406 ((|#2| (-618 |#2|)) 125)) (-1404 ((|#2| |#2|) 123)) (-1408 ((|#2| (-618 |#2|)) 111)) (-1409 ((|#2| (-618 |#2|)) 112)) (-1405 ((|#2| (-618 |#2|)) 133)) (-1417 ((|#2| |#2| (-1142)) 56) ((|#2| |#2|) 55)) (-1411 ((|#2| |#2|) 23)) (-3420 ((|#2| |#2| |#2|) 26)) (-2329 (((-112) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-156 |#1| |#2|) (-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3420 (|#2| |#2| |#2|)) (-15 -1413 (|#2| |#2| |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -1417 (|#2| |#2| (-1142))) (-15 -1416 (|#2| |#2| (-1142))) (-15 -1416 (|#2| |#2| (-1058 |#2|))) (-15 -4287 (|#2| |#2| (-1142))) (-15 -4287 (|#2| |#2| (-1058 |#2|))) (-15 -1404 (|#2| |#2|)) (-15 -1405 (|#2| (-618 |#2|))) (-15 -1406 (|#2| (-618 |#2|))) (-15 -1407 (|#2| (-618 |#2|))) (-15 -1408 (|#2| (-618 |#2|))) (-15 -1409 (|#2| (-618 |#2|))) (-15 -1410 (|#2| (-618 |#2|)))) (-13 (-823) (-542)) (-414 |#1|)) (T -156)) -((-1410 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1404 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-4287 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)))) (-4287 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1416 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)))) (-1416 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-1411 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-1413 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-3420 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *4)) (-4 *4 (-414 *3)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-414 *4))))) -(-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3420 (|#2| |#2| |#2|)) (-15 -1413 (|#2| |#2| |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -1417 (|#2| |#2| (-1142))) (-15 -1416 (|#2| |#2| (-1142))) (-15 -1416 (|#2| |#2| (-1058 |#2|))) (-15 -4287 (|#2| |#2| (-1142))) (-15 -4287 (|#2| |#2| (-1058 |#2|))) (-15 -1404 (|#2| |#2|)) (-15 -1405 (|#2| (-618 |#2|))) (-15 -1406 (|#2| (-618 |#2|))) (-15 -1407 (|#2| (-618 |#2|))) (-15 -1408 (|#2| (-618 |#2|))) (-15 -1409 (|#2| (-618 |#2|))) (-15 -1410 (|#2| (-618 |#2|)))) -((-1415 ((|#1| |#1| |#1|) 53)) (-1414 ((|#1| |#1| |#1|) 50)) (-1413 ((|#1| |#1| |#1|) 44)) (-3211 ((|#1| |#1|) 35)) (-1412 ((|#1| |#1| (-618 |#1|)) 43)) (-1411 ((|#1| |#1|) 37)) (-3420 ((|#1| |#1| |#1|) 40))) -(((-157 |#1|) (-10 -7 (-15 -3420 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -1412 (|#1| |#1| (-618 |#1|))) (-15 -3211 (|#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|))) (-534)) (T -157)) -((-1415 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1413 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-3211 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1412 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-534)) (-5 *1 (-157 *2)))) (-1411 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-3420 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))) -(-10 -7 (-15 -3420 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -1412 (|#1| |#1| (-618 |#1|))) (-15 -3211 (|#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|))) -((-1416 (($ $ (-1142)) 12) (($ $ (-1058 $)) 11)) (-4287 (($ $ (-1142)) 10) (($ $ (-1058 $)) 9)) (-1413 (($ $ $) 8)) (-1417 (($ $) 14) (($ $ (-1142)) 13)) (-1411 (($ $) 7)) (-3420 (($ $ $) 6))) +(-13 (-1020)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1487 (((-2 (|:| -3521 (-749)) (|:| -2855 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749)) 70)) (-4315 (((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|) 52)) (-1303 (((-2 (|:| -2855 (-400 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3445 ((|#1| |#3| |#3|) 40)) (-3866 ((|#3| |#3| (-400 |#2|) (-400 |#2|)) 19)) (-3582 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|) 49))) +(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1303 ((-2 (|:| -2855 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4315 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|)) (-15 -1487 ((-2 (|:| -3521 (-749)) (|:| -2855 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749))) (-15 -3445 (|#1| |#3| |#3|)) (-15 -3866 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -3582 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|))) (-1185) (-1203 |#1|) (-1203 (-400 |#2|))) (T -146)) +((-3582 (*1 *2 *3 *3) (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) (|:| |c2| (-400 *5)) (|:| |deg| (-749)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1203 (-400 *5))))) (-3866 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1203 *3)))) (-3445 (*1 *2 *3 *3) (-12 (-4 *4 (-1203 *2)) (-4 *2 (-1185)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1203 (-400 *4))))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *6)) (-4 *5 (-1185)) (-4 *6 (-1203 *5)) (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-749)) (-4 *7 (-1203 *3)))) (-4315 (*1 *2 *3) (|partial| -12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-749)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1203 (-400 *5))))) (-1303 (*1 *2 *3) (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-5 *2 (-2 (|:| -2855 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1203 (-400 *5)))))) +(-10 -7 (-15 -1303 ((-2 (|:| -2855 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4315 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|)) (-15 -1487 ((-2 (|:| -3521 (-749)) (|:| -2855 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749))) (-15 -3445 (|#1| |#3| |#3|)) (-15 -3866 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -3582 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|))) +((-3297 (((-3 (-623 (-1140 |#2|)) "failed") (-623 (-1140 |#2|)) (-1140 |#2|)) 32))) +(((-147 |#1| |#2|) (-10 -7 (-15 -3297 ((-3 (-623 (-1140 |#2|)) "failed") (-623 (-1140 |#2|)) (-1140 |#2|)))) (-535) (-164 |#1|)) (T -147)) +((-3297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1140 *5))) (-5 *3 (-1140 *5)) (-4 *5 (-164 *4)) (-4 *4 (-535)) (-5 *1 (-147 *4 *5))))) +(-10 -7 (-15 -3297 ((-3 (-623 (-1140 |#2|)) "failed") (-623 (-1140 |#2|)) (-1140 |#2|)))) +((-4253 (($ (-1 (-112) |#2|) $) 29)) (-1328 (($ $) 36)) (-3137 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2419 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3321 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-1543 (((-112) (-1 (-112) |#2|) $) 16)) (-3350 (((-749) (-1 (-112) |#2|) $) 14) (((-749) |#2| $) NIL)) (-1675 (((-112) (-1 (-112) |#2|) $) 15)) (-3191 (((-749) $) 11))) +(((-148 |#1| |#2|) (-10 -8 (-15 -1328 (|#1| |#1|)) (-15 -3137 (|#1| |#2| |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4253 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3137 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3321 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3350 ((-749) |#2| |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3191 ((-749) |#1|))) (-149 |#2|) (-1181)) (T -148)) +NIL +(-10 -8 (-15 -1328 (|#1| |#1|)) (-15 -3137 (|#1| |#2| |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4253 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3137 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3321 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3350 ((-749) |#2| |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3191 ((-749) |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-4253 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-1328 (($ $) 41 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4342))) (($ |#1| $) 42 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 40 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 49)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-149 |#1|) (-138) (-1181)) (T -149)) +((-1532 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-4 *1 (-149 *3)))) (-3321 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1181)))) (-2419 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) (-4 *2 (-1181)))) (-2419 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) (-4 *2 (-1181)))) (-3137 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *3)) (-4 *3 (-1181)))) (-4253 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *3)) (-4 *3 (-1181)))) (-2419 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1068)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) (-4 *2 (-1181)))) (-3137 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) (-4 *2 (-1181)) (-4 *2 (-1068)))) (-1328 (*1 *1 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) (-4 *2 (-1181)) (-4 *2 (-1068))))) +(-13 (-481 |t#1|) (-10 -8 (-15 -1532 ($ (-623 |t#1|))) (-15 -3321 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4342)) (PROGN (-15 -2419 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2419 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3137 ($ (-1 (-112) |t#1|) $)) (-15 -4253 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -2419 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3137 ($ |t#1| $)) (-15 -1328 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) 86)) (-3102 (((-112) $) NIL)) (-3118 (($ |#2| (-623 (-894))) 56)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-4126 (($ (-894)) 47)) (-2854 (((-133)) 23)) (-1518 (((-836) $) 69) (($ (-550)) 45) (($ |#2|) 46)) (-2510 ((|#2| $ (-623 (-894))) 59)) (-2390 (((-749)) 20)) (-2626 (($) 40 T CONST)) (-2636 (($) 43 T CONST)) (-2316 (((-112) $ $) 26)) (-2414 (($ $ |#2|) NIL)) (-2403 (($ $) 34) (($ $ $) 32)) (-2391 (($ $ $) 30)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-150 |#1| |#2| |#3|) (-13 (-1020) (-38 |#2|) (-1234 |#2|) (-10 -8 (-15 -4126 ($ (-894))) (-15 -3118 ($ |#2| (-623 (-894)))) (-15 -2510 (|#2| $ (-623 (-894)))) (-15 -1386 ((-3 $ "failed") $)))) (-894) (-356) (-966 |#1| |#2|)) (T -150)) +((-1386 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-894)) (-4 *3 (-356)) (-14 *4 (-966 *2 *3)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) (-14 *5 (-966 *3 *4)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-894))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-894)) (-4 *2 (-356)) (-14 *5 (-966 *4 *2)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-623 (-894))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-894)) (-14 *5 (-966 *4 *2))))) +(-13 (-1020) (-38 |#2|) (-1234 |#2|) (-10 -8 (-15 -4126 ($ (-894))) (-15 -3118 ($ |#2| (-623 (-894)))) (-15 -2510 (|#2| $ (-623 (-894)))) (-15 -1386 ((-3 $ "failed") $)))) +((-3698 (((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-623 (-916 (-219)))) (-219) (-219) (-219) (-219)) 38)) (-2185 (((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900) (-400 (-550)) (-400 (-550))) 63) (((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900)) 64)) (-2426 (((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-623 (-916 (-219))))) 67) (((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-916 (-219)))) 66) (((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900) (-400 (-550)) (-400 (-550))) 58) (((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900)) 59))) +(((-151) (-10 -7 (-15 -2426 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900))) (-15 -2426 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900) (-400 (-550)) (-400 (-550)))) (-15 -2185 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900))) (-15 -2185 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900) (-400 (-550)) (-400 (-550)))) (-15 -3698 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-623 (-916 (-219)))) (-219) (-219) (-219) (-219))) (-15 -2426 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-916 (-219))))) (-15 -2426 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-623 (-916 (-219)))))))) (T -151)) +((-2426 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) (-5 *1 (-151)) (-5 *3 (-623 (-623 (-916 (-219))))))) (-2426 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) (-5 *1 (-151)) (-5 *3 (-623 (-916 (-219)))))) (-3698 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-219)) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-916 *4)))) (|:| |xValues| (-1062 *4)) (|:| |yValues| (-1062 *4)))) (-5 *1 (-151)) (-5 *3 (-623 (-623 (-916 *4)))))) (-2185 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-900)) (-5 *4 (-400 (-550))) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) (-5 *1 (-151)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) (-5 *1 (-151)))) (-2426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-900)) (-5 *4 (-400 (-550))) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) (-5 *1 (-151)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) (-5 *1 (-151))))) +(-10 -7 (-15 -2426 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900))) (-15 -2426 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900) (-400 (-550)) (-400 (-550)))) (-15 -2185 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900))) (-15 -2185 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-900) (-400 (-550)) (-400 (-550)))) (-15 -3698 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-623 (-916 (-219)))) (-219) (-219) (-219) (-219))) (-15 -2426 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-916 (-219))))) (-15 -2426 ((-2 (|:| |brans| (-623 (-623 (-916 (-219))))) (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219)))) (-623 (-623 (-916 (-219))))))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-1873 (((-623 (-1103)) $) 15)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 24) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-1103) $) 9)) (-2316 (((-112) $ $) NIL))) +(((-152) (-13 (-1051) (-10 -8 (-15 -1873 ((-623 (-1103)) $)) (-15 -1925 ((-1103) $))))) (T -152)) +((-1873 (*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-152)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-152))))) +(-13 (-1051) (-10 -8 (-15 -1873 ((-623 (-1103)) $)) (-15 -1925 ((-1103) $)))) +((-1304 (((-623 (-167 |#2|)) |#1| |#2|) 45))) +(((-153 |#1| |#2|) (-10 -7 (-15 -1304 ((-623 (-167 |#2|)) |#1| |#2|))) (-1203 (-167 (-550))) (-13 (-356) (-823))) (T -153)) +((-1304 (*1 *2 *3 *4) (-12 (-5 *2 (-623 (-167 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1203 (-167 (-550)))) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -1304 ((-623 (-167 |#2|)) |#1| |#2|))) +((-1504 (((-112) $ $) NIL)) (-2874 (((-1180) $) 12)) (-2864 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 21) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-154) (-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1180) $))))) (T -154)) +((-2864 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-154)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-154))))) +(-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1180) $)))) +((-1504 (((-112) $ $) NIL)) (-1351 (($) 15)) (-1496 (($) 14)) (-1418 (((-894)) 22)) (-1825 (((-1126) $) NIL)) (-3206 (((-550) $) 19)) (-3337 (((-1088) $) NIL)) (-1713 (($) 16)) (-3121 (($ (-550)) 23)) (-1518 (((-836) $) 29)) (-1567 (($) 17)) (-2316 (((-112) $ $) 13)) (-2391 (($ $ $) 11)) (* (($ (-894) $) 21) (($ (-219) $) 8))) +(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-894) $)) (-15 * ($ (-219) $)) (-15 -2391 ($ $ $)) (-15 -1496 ($)) (-15 -1351 ($)) (-15 -1713 ($)) (-15 -1567 ($)) (-15 -3206 ((-550) $)) (-15 -1418 ((-894))) (-15 -3121 ($ (-550)))))) (T -155)) +((-2391 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-894)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) (-1496 (*1 *1) (-5 *1 (-155))) (-1351 (*1 *1) (-5 *1 (-155))) (-1713 (*1 *1) (-5 *1 (-155))) (-1567 (*1 *1) (-5 *1 (-155))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-155)))) (-1418 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-155)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-155))))) +(-13 (-25) (-10 -8 (-15 * ($ (-894) $)) (-15 * ($ (-219) $)) (-15 -2391 ($ $ $)) (-15 -1496 ($)) (-15 -1351 ($)) (-15 -1713 ($)) (-15 -1567 ($)) (-15 -3206 ((-550) $)) (-15 -1418 ((-894))) (-15 -3121 ($ (-550))))) +((-1901 ((|#2| |#2| (-1060 |#2|)) 88) ((|#2| |#2| (-1144)) 68)) (-3838 ((|#2| |#2| (-1060 |#2|)) 87) ((|#2| |#2| (-1144)) 67)) (-3388 ((|#2| |#2| |#2|) 27)) (-2926 (((-114) (-114)) 99)) (-4202 ((|#2| (-623 |#2|)) 117)) (-3817 ((|#2| (-623 |#2|)) 135)) (-1941 ((|#2| (-623 |#2|)) 125)) (-1645 ((|#2| |#2|) 123)) (-3934 ((|#2| (-623 |#2|)) 111)) (-4070 ((|#2| (-623 |#2|)) 112)) (-1799 ((|#2| (-623 |#2|)) 133)) (-2017 ((|#2| |#2| (-1144)) 56) ((|#2| |#2|) 55)) (-1289 ((|#2| |#2|) 23)) (-4224 ((|#2| |#2| |#2|) 26)) (-2222 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-156 |#1| |#2|) (-10 -7 (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -4224 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -1289 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2017 (|#2| |#2| (-1144))) (-15 -1901 (|#2| |#2| (-1144))) (-15 -1901 (|#2| |#2| (-1060 |#2|))) (-15 -3838 (|#2| |#2| (-1144))) (-15 -3838 (|#2| |#2| (-1060 |#2|))) (-15 -1645 (|#2| |#2|)) (-15 -1799 (|#2| (-623 |#2|))) (-15 -1941 (|#2| (-623 |#2|))) (-15 -3817 (|#2| (-623 |#2|))) (-15 -3934 (|#2| (-623 |#2|))) (-15 -4070 (|#2| (-623 |#2|))) (-15 -4202 (|#2| (-623 |#2|)))) (-13 (-825) (-542)) (-423 |#1|)) (T -156)) +((-4202 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-542))))) (-1645 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-3838 (*1 *2 *2 *3) (-12 (-5 *3 (-1060 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)))) (-3838 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1060 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-2017 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-1289 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-4224 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *4)) (-4 *4 (-423 *3)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-423 *4))))) +(-10 -7 (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -4224 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -1289 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2017 (|#2| |#2| (-1144))) (-15 -1901 (|#2| |#2| (-1144))) (-15 -1901 (|#2| |#2| (-1060 |#2|))) (-15 -3838 (|#2| |#2| (-1144))) (-15 -3838 (|#2| |#2| (-1060 |#2|))) (-15 -1645 (|#2| |#2|)) (-15 -1799 (|#2| (-623 |#2|))) (-15 -1941 (|#2| (-623 |#2|))) (-15 -3817 (|#2| (-623 |#2|))) (-15 -3934 (|#2| (-623 |#2|))) (-15 -4070 (|#2| (-623 |#2|))) (-15 -4202 (|#2| (-623 |#2|)))) +((-3647 ((|#1| |#1| |#1|) 53)) (-3518 ((|#1| |#1| |#1|) 50)) (-3388 ((|#1| |#1| |#1|) 44)) (-1459 ((|#1| |#1|) 35)) (-3255 ((|#1| |#1| (-623 |#1|)) 43)) (-1289 ((|#1| |#1|) 37)) (-4224 ((|#1| |#1| |#1|) 40))) +(((-157 |#1|) (-10 -7 (-15 -4224 (|#1| |#1| |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -3255 (|#1| |#1| (-623 |#1|))) (-15 -1459 (|#1| |#1|)) (-15 -3388 (|#1| |#1| |#1|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|))) (-535)) (T -157)) +((-3647 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-3518 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1459 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-3255 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-535)) (-5 *1 (-157 *2)))) (-1289 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-4224 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(-10 -7 (-15 -4224 (|#1| |#1| |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -3255 (|#1| |#1| (-623 |#1|))) (-15 -1459 (|#1| |#1|)) (-15 -3388 (|#1| |#1| |#1|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|))) +((-1901 (($ $ (-1144)) 12) (($ $ (-1060 $)) 11)) (-3838 (($ $ (-1144)) 10) (($ $ (-1060 $)) 9)) (-3388 (($ $ $) 8)) (-2017 (($ $) 14) (($ $ (-1144)) 13)) (-1289 (($ $) 7)) (-4224 (($ $ $) 6))) (((-158) (-138)) (T -158)) -((-1417 (*1 *1 *1) (-4 *1 (-158))) (-1417 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-1416 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158)))) (-4287 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-4287 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158))))) -(-13 (-141) (-10 -8 (-15 -1417 ($ $)) (-15 -1417 ($ $ (-1142))) (-15 -1416 ($ $ (-1142))) (-15 -1416 ($ $ (-1058 $))) (-15 -4287 ($ $ (-1142))) (-15 -4287 ($ $ (-1058 $))))) +((-2017 (*1 *1 *1) (-4 *1 (-158))) (-2017 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1144)))) (-1901 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1144)))) (-1901 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 *1)) (-4 *1 (-158)))) (-3838 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1144)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 *1)) (-4 *1 (-158))))) +(-13 (-141) (-10 -8 (-15 -2017 ($ $)) (-15 -2017 ($ $ (-1144))) (-15 -1901 ($ $ (-1144))) (-15 -1901 ($ $ (-1060 $))) (-15 -3838 ($ $ (-1144))) (-15 -3838 ($ $ (-1060 $))))) (((-141) . T)) -((-2887 (((-112) $ $) NIL)) (-1418 (($ (-535)) 13) (($ $ $) 14)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17)) (-3375 (((-112) $ $) 9))) -(((-159) (-13 (-1067) (-10 -8 (-15 -1418 ($ (-535))) (-15 -1418 ($ $ $))))) (T -159)) -((-1418 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-159)))) (-1418 (*1 *1 *1 *1) (-5 *1 (-159)))) -(-13 (-1067) (-10 -8 (-15 -1418 ($ (-535))) (-15 -1418 ($ $ $)))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-618 (-1101)) $) 9)) (-3375 (((-112) $ $) NIL))) -(((-160) (-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $))))) (T -160)) -((-3567 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-160))))) -(-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $)))) -((-3368 (((-113) (-1142)) 97))) -(((-161) (-10 -7 (-15 -3368 ((-113) (-1142))))) (T -161)) -((-3368 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-113)) (-5 *1 (-161))))) -(-10 -7 (-15 -3368 ((-113) (-1142)))) -((-1650 ((|#3| |#3|) 19))) -(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1650 (|#3| |#3|))) (-1018) (-1200 |#1|) (-1200 |#2|)) (T -162)) -((-1650 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-1200 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1200 *4))))) -(-10 -7 (-15 -1650 (|#3| |#3|))) -((-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 217)) (-3672 ((|#2| $) 96)) (-3829 (($ $) 247)) (-3985 (($ $) 241)) (-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 40)) (-3827 (($ $) 245)) (-3984 (($ $) 239)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#2| $) 139)) (-2883 (($ $ $) 222)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 155) (((-665 |#2|) (-665 $)) 149)) (-4185 (($ (-1136 |#2|)) 119) (((-3 $ "failed") (-400 (-1136 |#2|))) NIL)) (-3804 (((-3 $ "failed") $) 209)) (-3345 (((-3 (-400 (-535)) "failed") $) 199)) (-3344 (((-112) $) 194)) (-3343 (((-400 (-535)) $) 197)) (-3427 (((-890)) 89)) (-2882 (($ $ $) 224)) (-1419 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3973 (($) 236)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 186) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 191)) (-3450 ((|#2| $) 94)) (-2125 (((-1136 |#2|) $) 121)) (-4301 (($ (-1 |#2| |#2|) $) 102)) (-4285 (($ $) 238)) (-3401 (((-1136 |#2|) $) 120)) (-2725 (($ $) 202)) (-1421 (($) 97)) (-3026 (((-398 (-1136 $)) (-1136 $)) 88)) (-3027 (((-398 (-1136 $)) (-1136 $)) 57)) (-3803 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4286 (($ $) 237)) (-1699 (((-747) $) 219)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 229)) (-4100 ((|#2| (-1224 $)) NIL) ((|#2|) 91)) (-4153 (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-3519 (((-1136 |#2|)) 114)) (-3828 (($ $) 246)) (-3980 (($ $) 240)) (-3558 (((-1224 |#2|) $ (-1224 $)) 128) (((-665 |#2|) (-1224 $) (-1224 $)) NIL) (((-1224 |#2|) $) 110) (((-665 |#2|) (-1224 $)) NIL)) (-4313 (((-1224 |#2|) $) NIL) (($ (-1224 |#2|)) NIL) (((-1136 |#2|) $) NIL) (($ (-1136 |#2|)) NIL) (((-861 (-535)) $) 177) (((-861 (-371)) $) 181) (((-166 (-371)) $) 167) (((-166 (-219)) $) 162) (((-524) $) 173)) (-3330 (($ $) 98)) (-4300 (((-835) $) 138) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-400 (-535))) NIL) (($ $) NIL)) (-2689 (((-1136 |#2|) $) 23)) (-3444 (((-747)) 100)) (-3835 (($ $) 250)) (-3823 (($ $) 244)) (-3833 (($ $) 248)) (-3821 (($ $) 242)) (-2309 ((|#2| $) 233)) (-3834 (($ $) 249)) (-3822 (($ $) 243)) (-3725 (($ $) 157)) (-3375 (((-112) $ $) 104)) (-3006 (((-112) $ $) 193)) (-4180 (($ $) 106) (($ $ $) NIL)) (-4182 (($ $ $) 105)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-400 (-535))) 267) (($ $ $) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL))) -(((-163 |#1| |#2|) (-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4300 (|#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -1699 ((-747) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-166 (-219)) |#1|)) (-15 -4313 ((-166 (-371)) |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3973 (|#1|)) (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -1419 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2309 (|#2| |#1|)) (-15 -3725 (|#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3330 (|#1| |#1|)) (-15 -1421 (|#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4185 ((-3 |#1| "failed") (-400 (-1136 |#2|)))) (-15 -3401 ((-1136 |#2|) |#1|)) (-15 -4313 (|#1| (-1136 |#2|))) (-15 -4185 (|#1| (-1136 |#2|))) (-15 -3519 ((-1136 |#2|))) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 ((-1136 |#2|) |#1|)) (-15 -4100 (|#2|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -2125 ((-1136 |#2|) |#1|)) (-15 -2689 ((-1136 |#2|) |#1|)) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -3450 (|#2| |#1|)) (-15 -3672 (|#2| |#1|)) (-15 -3427 ((-890))) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) -((-3444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3427 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-890)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4100 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3519 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1136 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) -(-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4300 (|#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -1699 ((-747) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-166 (-219)) |#1|)) (-15 -4313 ((-166 (-371)) |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3973 (|#1|)) (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -1419 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2309 (|#2| |#1|)) (-15 -3725 (|#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3330 (|#1| |#1|)) (-15 -1421 (|#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4185 ((-3 |#1| "failed") (-400 (-1136 |#2|)))) (-15 -3401 ((-1136 |#2|) |#1|)) (-15 -4313 (|#1| (-1136 |#2|))) (-15 -4185 (|#1| (-1136 |#2|))) (-15 -3519 ((-1136 |#2|))) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 ((-1136 |#2|) |#1|)) (-15 -4100 (|#2|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -2125 ((-1136 |#2|) |#1|)) (-15 -2689 ((-1136 |#2|) |#1|)) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -3450 (|#2| |#1|)) (-15 -3672 (|#2| |#1|)) (-15 -3427 ((-890))) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-2171 (($ $) 92 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-2169 (((-112) $) 94 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-1896 (((-665 |#1|) (-1224 $)) 44) (((-665 |#1|)) 59)) (-3672 ((|#1| $) 50)) (-3829 (($ $) 225 (|has| |#1| (-1164)))) (-3985 (($ $) 208 (|has| |#1| (-1164)))) (-1786 (((-1151 (-890) (-747)) (-535)) 144 (|has| |#1| (-343)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 239 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-4117 (($ $) 111 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-4312 (((-398 $) $) 112 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-3358 (($ $) 238 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 242 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-1700 (((-112) $ $) 102 (|has| |#1| (-300)))) (-3454 (((-747)) 85 (|has| |#1| (-361)))) (-3827 (($ $) 224 (|has| |#1| (-1164)))) (-3984 (($ $) 209 (|has| |#1| (-1164)))) (-3831 (($ $) 223 (|has| |#1| (-1164)))) (-3983 (($ $) 210 (|has| |#1| (-1164)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 166 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 164 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 163)) (-3490 (((-535) $) 167 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 165 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 162)) (-1906 (($ (-1224 |#1|) (-1224 $)) 46) (($ (-1224 |#1|)) 62)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2883 (($ $ $) 106 (|has| |#1| (-300)))) (-1895 (((-665 |#1|) $ (-1224 $)) 51) (((-665 |#1|) $) 57)) (-2353 (((-665 (-535)) (-665 $)) 161 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 160 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 159) (((-665 |#1|) (-665 $)) 158)) (-4185 (($ (-1136 |#1|)) 155) (((-3 $ "failed") (-400 (-1136 |#1|))) 152 (|has| |#1| (-356)))) (-3804 (((-3 $ "failed") $) 32)) (-3989 ((|#1| $) 250)) (-3345 (((-3 (-400 (-535)) "failed") $) 243 (|has| |#1| (-534)))) (-3344 (((-112) $) 245 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 244 (|has| |#1| (-534)))) (-3427 (((-890)) 52)) (-3315 (($) 88 (|has| |#1| (-361)))) (-2882 (($ $ $) 105 (|has| |#1| (-300)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 100 (|has| |#1| (-300)))) (-3154 (($) 146 (|has| |#1| (-343)))) (-1791 (((-112) $) 147 (|has| |#1| (-343)))) (-1881 (($ $ (-747)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-4069 (((-112) $) 113 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-1419 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1164))))) (-3973 (($) 235 (|has| |#1| (-1164)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 258 (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 257 (|has| |#1| (-857 (-371))))) (-4114 (((-890) $) 149 (|has| |#1| (-343))) (((-808 (-890)) $) 135 (|has| |#1| (-343)))) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 237 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-3450 ((|#1| $) 49)) (-3786 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 109 (|has| |#1| (-300)))) (-2125 (((-1136 |#1|) $) 42 (|has| |#1| (-356)))) (-3660 (($ $ $) 204 (|has| |#1| (-823)))) (-3661 (($ $ $) 203 (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) 259)) (-2121 (((-890) $) 87 (|has| |#1| (-361)))) (-4285 (($ $) 232 (|has| |#1| (-1164)))) (-3401 (((-1136 |#1|) $) 153)) (-2008 (($ (-618 $)) 98 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (($ $ $) 97 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 114 (|has| |#1| (-356)))) (-3787 (($) 140 (|has| |#1| (-343)) CONST)) (-2483 (($ (-890)) 86 (|has| |#1| (-361)))) (-1421 (($) 254)) (-3990 ((|#1| $) 251)) (-3577 (((-1086) $) 10)) (-2492 (($) 157)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 99 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3478 (($ (-618 $)) 96 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (($ $ $) 95 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 143 (|has| |#1| (-343)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 241 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-3027 (((-398 (-1136 $)) (-1136 $)) 240 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-4075 (((-398 $) $) 110 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 107 (|has| |#1| (-300)))) (-3803 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 90 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 101 (|has| |#1| (-300)))) (-4286 (($ $) 233 (|has| |#1| (-1164)))) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 265 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 263 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 262 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 261 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 260 (|has| |#1| (-505 (-1142) |#1|)))) (-1699 (((-747) $) 103 (|has| |#1| (-300)))) (-4142 (($ $ |#1|) 266 (|has| |#1| (-279 |#1| |#1|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 104 (|has| |#1| (-300)))) (-4100 ((|#1| (-1224 $)) 45) ((|#1|) 58)) (-1882 (((-747) $) 148 (|has| |#1| (-343))) (((-3 (-747) "failed") $ $) 136 (|has| |#1| (-343)))) (-4153 (($ $ (-1 |#1| |#1|) (-747)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-618 (-1142)) (-618 (-747))) 127 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 128 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 129 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 130 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 132 (-3874 (-3179 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 134 (-3874 (-3179 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3179 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2491 (((-665 |#1|) (-1224 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3519 (((-1136 |#1|)) 156)) (-3832 (($ $) 222 (|has| |#1| (-1164)))) (-3982 (($ $) 211 (|has| |#1| (-1164)))) (-1785 (($) 145 (|has| |#1| (-343)))) (-3830 (($ $) 221 (|has| |#1| (-1164)))) (-3981 (($ $) 212 (|has| |#1| (-1164)))) (-3828 (($ $) 220 (|has| |#1| (-1164)))) (-3980 (($ $) 213 (|has| |#1| (-1164)))) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) 47) (((-1224 |#1|) $) 64) (((-665 |#1|) (-1224 $)) 63)) (-4313 (((-1224 |#1|) $) 61) (($ (-1224 |#1|)) 60) (((-1136 |#1|) $) 168) (($ (-1136 |#1|)) 154) (((-861 (-535)) $) 256 (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) 255 (|has| |#1| (-594 (-861 (-371))))) (((-166 (-371)) $) 207 (|has| |#1| (-991))) (((-166 (-219)) $) 206 (|has| |#1| (-991))) (((-524) $) 205 (|has| |#1| (-594 (-524))))) (-3330 (($ $) 253)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 142 (-3874 (-3179 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))) (|has| |#1| (-343))))) (-1420 (($ |#1| |#1|) 252)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35) (($ (-400 (-535))) 84 (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) 89 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3023 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (-3874 (-3179 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))) (|has| |#1| (-143))))) (-2689 (((-1136 |#1|) $) 43)) (-3444 (((-747)) 28)) (-2123 (((-1224 $)) 65)) (-3835 (($ $) 231 (|has| |#1| (-1164)))) (-3823 (($ $) 219 (|has| |#1| (-1164)))) (-2170 (((-112) $ $) 93 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3833 (($ $) 230 (|has| |#1| (-1164)))) (-3821 (($ $) 218 (|has| |#1| (-1164)))) (-3837 (($ $) 229 (|has| |#1| (-1164)))) (-3825 (($ $) 217 (|has| |#1| (-1164)))) (-2309 ((|#1| $) 247 (|has| |#1| (-1164)))) (-3838 (($ $) 228 (|has| |#1| (-1164)))) (-3826 (($ $) 216 (|has| |#1| (-1164)))) (-3836 (($ $) 227 (|has| |#1| (-1164)))) (-3824 (($ $) 215 (|has| |#1| (-1164)))) (-3834 (($ $) 226 (|has| |#1| (-1164)))) (-3822 (($ $) 214 (|has| |#1| (-1164)))) (-3725 (($ $) 248 (|has| |#1| (-1027)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 |#1| |#1|) (-747)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-618 (-1142)) (-618 (-747))) 123 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 124 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 125 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 126 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 131 (-3874 (-3179 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 133 (-3874 (-3179 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3179 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2885 (((-112) $ $) 201 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 200 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 202 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 199 (|has| |#1| (-823)))) (-4291 (($ $ $) 118 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-400 (-535))) 236 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164)))) (($ $ $) 234 (|has| |#1| (-1164))) (($ $ (-535)) 115 (|has| |#1| (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-535)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-535))) 116 (|has| |#1| (-356))))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 17) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-623 (-1103)) $) 9)) (-2316 (((-112) $ $) NIL))) +(((-159) (-13 (-1051) (-10 -8 (-15 -1925 ((-623 (-1103)) $))))) (T -159)) +((-1925 (*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-159))))) +(-13 (-1051) (-10 -8 (-15 -1925 ((-623 (-1103)) $)))) +((-1504 (((-112) $ $) NIL)) (-3863 (($ (-550)) 13) (($ $ $) 14)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 17)) (-2316 (((-112) $ $) 9))) +(((-160) (-13 (-1068) (-10 -8 (-15 -3863 ($ (-550))) (-15 -3863 ($ $ $))))) (T -160)) +((-3863 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-160)))) (-3863 (*1 *1 *1 *1) (-5 *1 (-160)))) +(-13 (-1068) (-10 -8 (-15 -3863 ($ (-550))) (-15 -3863 ($ $ $)))) +((-2926 (((-114) (-1144)) 97))) +(((-161) (-10 -7 (-15 -2926 ((-114) (-1144))))) (T -161)) +((-2926 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-114)) (-5 *1 (-161))))) +(-10 -7 (-15 -2926 ((-114) (-1144)))) +((-1742 ((|#3| |#3|) 19))) +(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1742 (|#3| |#3|))) (-1020) (-1203 |#1|) (-1203 |#2|)) (T -162)) +((-1742 (*1 *2 *2) (-12 (-4 *3 (-1020)) (-4 *4 (-1203 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1203 *4))))) +(-10 -7 (-15 -1742 (|#3| |#3|))) +((-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 217)) (-2252 ((|#2| $) 96)) (-3123 (($ $) 247)) (-3005 (($ $) 241)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 40)) (-3103 (($ $) 245)) (-2984 (($ $) 239)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2726 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#2| $) 139)) (-3349 (($ $ $) 222)) (-3780 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) 155) (((-667 |#2|) (-667 $)) 149)) (-2419 (($ (-1140 |#2|)) 119) (((-3 $ "failed") (-400 (-1140 |#2|))) NIL)) (-1386 (((-3 $ "failed") $) 209)) (-3207 (((-3 (-400 (-550)) "failed") $) 199)) (-3122 (((-112) $) 194)) (-3042 (((-400 (-550)) $) 197)) (-2122 (((-894)) 89)) (-1519 (($ $ $) 224)) (-3953 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-2734 (($) 236)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 186) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 191)) (-1389 ((|#2| $) 94)) (-1428 (((-1140 |#2|) $) 121)) (-3972 (($ (-1 |#2| |#2|) $) 102)) (-2958 (($ $) 238)) (-2407 (((-1140 |#2|) $) 120)) (-3235 (($ $) 202)) (-4065 (($) 97)) (-3430 (((-411 (-1140 $)) (-1140 $)) 88)) (-3562 (((-411 (-1140 $)) (-1140 $)) 57)) (-1495 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-1812 (($ $) 237)) (-3542 (((-749) $) 219)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 229)) (-3453 ((|#2| (-1227 $)) NIL) ((|#2|) 91)) (-2393 (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-1310 (((-1140 |#2|)) 114)) (-3114 (($ $) 246)) (-2995 (($ $) 240)) (-1373 (((-1227 |#2|) $ (-1227 $)) 128) (((-667 |#2|) (-1227 $) (-1227 $)) NIL) (((-1227 |#2|) $) 110) (((-667 |#2|) (-1227 $)) NIL)) (-4028 (((-1227 |#2|) $) NIL) (($ (-1227 |#2|)) NIL) (((-1140 |#2|) $) NIL) (($ (-1140 |#2|)) NIL) (((-865 (-550)) $) 177) (((-865 (-372)) $) 181) (((-167 (-372)) $) 167) (((-167 (-219)) $) 162) (((-526) $) 173)) (-1270 (($ $) 98)) (-1518 (((-836) $) 138) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-400 (-550))) NIL) (($ $) NIL)) (-2608 (((-1140 |#2|) $) 23)) (-2390 (((-749)) 100)) (-3187 (($ $) 250)) (-3060 (($ $) 244)) (-3167 (($ $) 248)) (-3043 (($ $) 242)) (-2696 ((|#2| $) 233)) (-3176 (($ $) 249)) (-3052 (($ $) 243)) (-1635 (($ $) 157)) (-2316 (((-112) $ $) 104)) (-2335 (((-112) $ $) 193)) (-2403 (($ $) 106) (($ $ $) NIL)) (-2391 (($ $ $) 105)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-400 (-550))) 267) (($ $ $) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL))) +(((-163 |#1| |#2|) (-10 -8 (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -1518 (|#1| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3368 ((-2 (|:| -3090 |#1|) (|:| -4329 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -3542 ((-749) |#1|)) (-15 -1866 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|)) (-15 -3349 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -2335 ((-112) |#1| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -4028 ((-167 (-219)) |#1|)) (-15 -4028 ((-167 (-372)) |#1|)) (-15 -3005 (|#1| |#1|)) (-15 -2984 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3060 (|#1| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3187 (|#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2734 (|#1|)) (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -3562 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3430 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3297 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|))) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -3953 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2696 (|#2| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1270 (|#1| |#1|)) (-15 -4065 (|#1|)) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -4312 ((-862 (-372) |#1|) |#1| (-865 (-372)) (-862 (-372) |#1|))) (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|))) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2419 ((-3 |#1| "failed") (-400 (-1140 |#2|)))) (-15 -2407 ((-1140 |#2|) |#1|)) (-15 -4028 (|#1| (-1140 |#2|))) (-15 -2419 (|#1| (-1140 |#2|))) (-15 -1310 ((-1140 |#2|))) (-15 -3780 ((-667 |#2|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -4028 ((-1140 |#2|) |#1|)) (-15 -3453 (|#2|)) (-15 -4028 (|#1| (-1227 |#2|))) (-15 -4028 ((-1227 |#2|) |#1|)) (-15 -1373 ((-667 |#2|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1|)) (-15 -1428 ((-1140 |#2|) |#1|)) (-15 -2608 ((-1140 |#2|) |#1|)) (-15 -3453 (|#2| (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -1389 (|#2| |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -2122 ((-894))) (-15 -1518 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 -1386 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-894))) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) +((-2390 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-2122 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-894)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3453 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-1310 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1140 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) +(-10 -8 (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -1518 (|#1| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3368 ((-2 (|:| -3090 |#1|) (|:| -4329 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -3542 ((-749) |#1|)) (-15 -1866 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|)) (-15 -3349 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -2335 ((-112) |#1| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -4028 ((-167 (-219)) |#1|)) (-15 -4028 ((-167 (-372)) |#1|)) (-15 -3005 (|#1| |#1|)) (-15 -2984 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3060 (|#1| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3187 (|#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2734 (|#1|)) (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -3562 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3430 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3297 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|))) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -3953 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2696 (|#2| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1270 (|#1| |#1|)) (-15 -4065 (|#1|)) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -4312 ((-862 (-372) |#1|) |#1| (-865 (-372)) (-862 (-372) |#1|))) (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|))) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2419 ((-3 |#1| "failed") (-400 (-1140 |#2|)))) (-15 -2407 ((-1140 |#2|) |#1|)) (-15 -4028 (|#1| (-1140 |#2|))) (-15 -2419 (|#1| (-1140 |#2|))) (-15 -1310 ((-1140 |#2|))) (-15 -3780 ((-667 |#2|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -4028 ((-1140 |#2|) |#1|)) (-15 -3453 (|#2|)) (-15 -4028 (|#1| (-1227 |#2|))) (-15 -4028 ((-1227 |#2|) |#1|)) (-15 -1373 ((-667 |#2|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1|)) (-15 -1428 ((-1140 |#2|) |#1|)) (-15 -2608 ((-1140 |#2|) |#1|)) (-15 -3453 (|#2| (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -1389 (|#2| |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -2122 ((-894))) (-15 -1518 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 -1386 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-894))) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 91 (-1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-1447 (($ $) 92 (-1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-4291 (((-112) $) 94 (-1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-1615 (((-667 |#1|) (-1227 $)) 44) (((-667 |#1|)) 59)) (-2252 ((|#1| $) 50)) (-3123 (($ $) 225 (|has| |#1| (-1166)))) (-3005 (($ $) 208 (|has| |#1| (-1166)))) (-1337 (((-1154 (-894) (-749)) (-550)) 144 (|has| |#1| (-342)))) (-3219 (((-3 $ "failed") $ $) 19)) (-3688 (((-411 (-1140 $)) (-1140 $)) 239 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (-1505 (($ $) 111 (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356))))) (-3564 (((-411 $) $) 112 (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356))))) (-3353 (($ $) 238 (-12 (|has| |#1| (-975)) (|has| |#1| (-1166))))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 242 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (-3631 (((-112) $ $) 102 (|has| |#1| (-300)))) (-4319 (((-749)) 85 (|has| |#1| (-361)))) (-3103 (($ $) 224 (|has| |#1| (-1166)))) (-2984 (($ $) 209 (|has| |#1| (-1166)))) (-3146 (($ $) 223 (|has| |#1| (-1166)))) (-3025 (($ $) 210 (|has| |#1| (-1166)))) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 166 (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 164 (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 163)) (-2726 (((-550) $) 167 (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) 165 (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 162)) (-4110 (($ (-1227 |#1|) (-1227 $)) 46) (($ (-1227 |#1|)) 62)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-342)))) (-3349 (($ $ $) 106 (|has| |#1| (-300)))) (-2677 (((-667 |#1|) $ (-1227 $)) 51) (((-667 |#1|) $) 57)) (-3780 (((-667 (-550)) (-667 $)) 161 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 160 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 159) (((-667 |#1|) (-667 $)) 158)) (-2419 (($ (-1140 |#1|)) 155) (((-3 $ "failed") (-400 (-1140 |#1|))) 152 (|has| |#1| (-356)))) (-1386 (((-3 $ "failed") $) 32)) (-3365 ((|#1| $) 250)) (-3207 (((-3 (-400 (-550)) "failed") $) 243 (|has| |#1| (-535)))) (-3122 (((-112) $) 245 (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) 244 (|has| |#1| (-535)))) (-2122 (((-894)) 52)) (-1741 (($) 88 (|has| |#1| (-361)))) (-1519 (($ $ $) 105 (|has| |#1| (-300)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 100 (|has| |#1| (-300)))) (-3485 (($) 146 (|has| |#1| (-342)))) (-3697 (((-112) $) 147 (|has| |#1| (-342)))) (-3714 (($ $ (-749)) 138 (|has| |#1| (-342))) (($ $) 137 (|has| |#1| (-342)))) (-3933 (((-112) $) 113 (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356))))) (-3953 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1029)) (|has| |#1| (-1166))))) (-2734 (($) 235 (|has| |#1| (-1166)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 258 (|has| |#1| (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 257 (|has| |#1| (-859 (-372))))) (-2475 (((-894) $) 149 (|has| |#1| (-342))) (((-811 (-894)) $) 135 (|has| |#1| (-342)))) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 237 (-12 (|has| |#1| (-975)) (|has| |#1| (-1166))))) (-1389 ((|#1| $) 49)) (-2826 (((-3 $ "failed") $) 139 (|has| |#1| (-342)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 109 (|has| |#1| (-300)))) (-1428 (((-1140 |#1|) $) 42 (|has| |#1| (-356)))) (-2707 (($ $ $) 204 (|has| |#1| (-825)))) (-4164 (($ $ $) 203 (|has| |#1| (-825)))) (-3972 (($ (-1 |#1| |#1|) $) 259)) (-2253 (((-894) $) 87 (|has| |#1| (-361)))) (-2958 (($ $) 232 (|has| |#1| (-1166)))) (-2407 (((-1140 |#1|) $) 153)) (-3106 (($ (-623 $)) 98 (-1561 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (($ $ $) 97 (-1561 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-1825 (((-1126) $) 9)) (-3235 (($ $) 114 (|has| |#1| (-356)))) (-3862 (($) 140 (|has| |#1| (-342)) CONST)) (-2922 (($ (-894)) 86 (|has| |#1| (-361)))) (-4065 (($) 254)) (-3377 ((|#1| $) 251)) (-3337 (((-1088) $) 10)) (-3935 (($) 157)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 99 (-1561 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-3139 (($ (-623 $)) 96 (-1561 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (($ $ $) 95 (-1561 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 143 (|has| |#1| (-342)))) (-3430 (((-411 (-1140 $)) (-1140 $)) 241 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (-3562 (((-411 (-1140 $)) (-1140 $)) 240 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (-3338 (((-411 $) $) 110 (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356))))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 107 (|has| |#1| (-300)))) (-1495 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 90 (-1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 101 (|has| |#1| (-300)))) (-1812 (($ $) 233 (|has| |#1| (-1166)))) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) 265 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 263 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 262 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) 261 (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) 260 (|has| |#1| (-505 (-1144) |#1|)))) (-3542 (((-749) $) 103 (|has| |#1| (-300)))) (-2680 (($ $ |#1|) 266 (|has| |#1| (-279 |#1| |#1|)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 104 (|has| |#1| (-300)))) (-3453 ((|#1| (-1227 $)) 45) ((|#1|) 58)) (-3811 (((-749) $) 148 (|has| |#1| (-342))) (((-3 (-749) "failed") $ $) 136 (|has| |#1| (-342)))) (-2393 (($ $ (-1 |#1| |#1|) (-749)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-623 (-1144)) (-623 (-749))) 127 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 128 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 129 (|has| |#1| (-873 (-1144)))) (($ $ (-1144)) 130 (|has| |#1| (-873 (-1144)))) (($ $ (-749)) 132 (-1561 (-1262 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1262 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 134 (-1561 (-1262 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1262 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-3013 (((-667 |#1|) (-1227 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-1310 (((-1140 |#1|)) 156)) (-3157 (($ $) 222 (|has| |#1| (-1166)))) (-3033 (($ $) 211 (|has| |#1| (-1166)))) (-4288 (($) 145 (|has| |#1| (-342)))) (-3135 (($ $) 221 (|has| |#1| (-1166)))) (-3016 (($ $) 212 (|has| |#1| (-1166)))) (-3114 (($ $) 220 (|has| |#1| (-1166)))) (-2995 (($ $) 213 (|has| |#1| (-1166)))) (-1373 (((-1227 |#1|) $ (-1227 $)) 48) (((-667 |#1|) (-1227 $) (-1227 $)) 47) (((-1227 |#1|) $) 64) (((-667 |#1|) (-1227 $)) 63)) (-4028 (((-1227 |#1|) $) 61) (($ (-1227 |#1|)) 60) (((-1140 |#1|) $) 168) (($ (-1140 |#1|)) 154) (((-865 (-550)) $) 256 (|has| |#1| (-596 (-865 (-550))))) (((-865 (-372)) $) 255 (|has| |#1| (-596 (-865 (-372))))) (((-167 (-372)) $) 207 (|has| |#1| (-995))) (((-167 (-219)) $) 206 (|has| |#1| (-995))) (((-526) $) 205 (|has| |#1| (-596 (-526))))) (-1270 (($ $) 253)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 142 (-1561 (-1262 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))) (|has| |#1| (-342))))) (-2738 (($ |#1| |#1|) 252)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 35) (($ (-400 (-550))) 84 (-1561 (|has| |#1| (-356)) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) 89 (-1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-4242 (($ $) 141 (|has| |#1| (-342))) (((-3 $ "failed") $) 41 (-1561 (-1262 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))) (|has| |#1| (-143))))) (-2608 (((-1140 |#1|) $) 43)) (-2390 (((-749)) 28)) (-2437 (((-1227 $)) 65)) (-3187 (($ $) 231 (|has| |#1| (-1166)))) (-3060 (($ $) 219 (|has| |#1| (-1166)))) (-1345 (((-112) $ $) 93 (-1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882)))))) (-3167 (($ $) 230 (|has| |#1| (-1166)))) (-3043 (($ $) 218 (|has| |#1| (-1166)))) (-3209 (($ $) 229 (|has| |#1| (-1166)))) (-3081 (($ $) 217 (|has| |#1| (-1166)))) (-2696 ((|#1| $) 247 (|has| |#1| (-1166)))) (-3294 (($ $) 228 (|has| |#1| (-1166)))) (-3094 (($ $) 216 (|has| |#1| (-1166)))) (-3198 (($ $) 227 (|has| |#1| (-1166)))) (-3072 (($ $) 215 (|has| |#1| (-1166)))) (-3176 (($ $) 226 (|has| |#1| (-1166)))) (-3052 (($ $) 214 (|has| |#1| (-1166)))) (-1635 (($ $) 248 (|has| |#1| (-1029)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-1 |#1| |#1|) (-749)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-623 (-1144)) (-623 (-749))) 123 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 124 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 125 (|has| |#1| (-873 (-1144)))) (($ $ (-1144)) 126 (|has| |#1| (-873 (-1144)))) (($ $ (-749)) 131 (-1561 (-1262 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1262 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 133 (-1561 (-1262 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1262 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2363 (((-112) $ $) 201 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 200 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 202 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 199 (|has| |#1| (-825)))) (-2414 (($ $ $) 118 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-400 (-550))) 236 (-12 (|has| |#1| (-975)) (|has| |#1| (-1166)))) (($ $ $) 234 (|has| |#1| (-1166))) (($ $ (-550)) 115 (|has| |#1| (-356)))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-550)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-550))) 116 (|has| |#1| (-356))))) (((-164 |#1|) (-138) (-170)) (T -164)) -((-3450 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1421 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3330 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1420 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-3725 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1164)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1027)) (-4 *3 (-1164)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535)))))) -(-13 (-701 |t#1| (-1136 |t#1|)) (-405 |t#1|) (-225 |t#1|) (-331 |t#1|) (-393 |t#1|) (-855 |t#1|) (-370 |t#1|) (-170) (-10 -8 (-6 -1420) (-15 -1421 ($)) (-15 -3330 ($ $)) (-15 -1420 ($ |t#1| |t#1|)) (-15 -3990 (|t#1| $)) (-15 -3989 (|t#1| $)) (-15 -3450 (|t#1| $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-542)) (-15 -3803 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-6 -4335)) (-6 -4335) |%noBranch|) (IF (|has| |t#1| (-6 -4332)) (-6 -4332) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-991)) (PROGN (-6 (-594 (-166 (-219)))) (-6 (-594 (-166 (-371))))) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3725 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1164)) (PROGN (-6 (-1164)) (-15 -2309 (|t#1| $)) (IF (|has| |t#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -1419 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-881)) (IF (|has| |t#1| (-300)) (-6 (-881)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-35) |has| |#1| (-1164)) ((-94) |has| |#1| (-1164)) ((-101) . T) ((-111 #1# #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| |#1| (-343)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 (-166 (-219))) |has| |#1| (-991)) ((-594 (-166 (-371))) |has| |#1| (-991)) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))) ((-594 #2=(-1136 |#1|)) . T) ((-225 |#1|) . T) ((-227) -3874 (|has| |#1| (-343)) (|has| |#1| (-227))) ((-237) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-277) |has| |#1| (-1164)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-300) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-395) |has| |#1| (-343)) ((-361) -3874 (|has| |#1| (-343)) (|has| |#1| (-361))) ((-343) |has| |#1| (-343)) ((-363 |#1| #2#) . T) ((-403 |#1| #2#) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-484) |has| |#1| (-1164)) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-624 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-694 |#1|) . T) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-701 |#1| #2#) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-855 |#1|) . T) ((-881) -12 (|has| |#1| (-300)) (|has| |#1| (-881))) ((-892) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-973) -12 (|has| |#1| (-973)) (|has| |#1| (-1164))) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-343)) ((-1164) |has| |#1| (-1164)) ((-1167) |has| |#1| (-1164)) ((-1178) . T) ((-1183) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) -((-4075 (((-398 |#2|) |#2|) 63))) -(((-165 |#1| |#2|) (-10 -7 (-15 -4075 ((-398 |#2|) |#2|))) (-300) (-1200 (-166 |#1|))) (T -165)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1200 (-166 *4)))))) -(-10 -7 (-15 -4075 ((-398 |#2|) |#2|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 33)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-2171 (($ $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-2169 (((-112) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-1896 (((-665 |#1|) (-1224 $)) NIL) (((-665 |#1|)) NIL)) (-3672 ((|#1| $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-1164)))) (-3985 (($ $) NIL (|has| |#1| (-1164)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-4117 (($ $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-4312 (((-398 $) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-3358 (($ $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-300)))) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3827 (($ $) NIL (|has| |#1| (-1164)))) (-3984 (($ $) NIL (|has| |#1| (-1164)))) (-3831 (($ $) NIL (|has| |#1| (-1164)))) (-3983 (($ $) NIL (|has| |#1| (-1164)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|) (-1224 $)) NIL) (($ (-1224 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2883 (($ $ $) NIL (|has| |#1| (-300)))) (-1895 (((-665 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-4185 (($ (-1136 |#1|)) NIL) (((-3 $ "failed") (-400 (-1136 |#1|))) NIL (|has| |#1| (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-3989 ((|#1| $) 13)) (-3345 (((-3 (-400 (-535)) #3="failed") $) NIL (|has| |#1| (-534)))) (-3344 (((-112) $) NIL (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) NIL (|has| |#1| (-534)))) (-3427 (((-890)) NIL)) (-3315 (($) NIL (|has| |#1| (-361)))) (-2882 (($ $ $) NIL (|has| |#1| (-300)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-300)))) (-3154 (($) NIL (|has| |#1| (-343)))) (-1791 (((-112) $) NIL (|has| |#1| (-343)))) (-1881 (($ $ (-747)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-4069 (((-112) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-1419 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1164))))) (-3973 (($) NIL (|has| |#1| (-1164)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| |#1| (-857 (-371))))) (-4114 (((-890) $) NIL (|has| |#1| (-343))) (((-808 (-890)) $) NIL (|has| |#1| (-343)))) (-2493 (((-112) $) 35)) (-3332 (($ $ (-535)) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-3450 ((|#1| $) 46)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1697 (((-3 (-618 $) #4="failed") (-618 $) $) NIL (|has| |#1| (-300)))) (-2125 (((-1136 |#1|) $) NIL (|has| |#1| (-356)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-4285 (($ $) NIL (|has| |#1| (-1164)))) (-3401 (((-1136 |#1|) $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-3787 (($) NIL (|has| |#1| (-343)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-1421 (($) NIL)) (-3990 ((|#1| $) 15)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-300)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-343)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-4075 (((-398 $) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-300)))) (-3803 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 47 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-300)))) (-4286 (($ $) NIL (|has| |#1| (-1164)))) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-1699 (((-747) $) NIL (|has| |#1| (-300)))) (-4142 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-300)))) (-4100 ((|#1| (-1224 $)) NIL) ((|#1|) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-343))) (((-3 (-747) "failed") $ $) NIL (|has| |#1| (-343)))) (-4153 (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2491 (((-665 |#1|) (-1224 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3519 (((-1136 |#1|)) NIL)) (-3832 (($ $) NIL (|has| |#1| (-1164)))) (-3982 (($ $) NIL (|has| |#1| (-1164)))) (-1785 (($) NIL (|has| |#1| (-343)))) (-3830 (($ $) NIL (|has| |#1| (-1164)))) (-3981 (($ $) NIL (|has| |#1| (-1164)))) (-3828 (($ $) NIL (|has| |#1| (-1164)))) (-3980 (($ $) NIL (|has| |#1| (-1164)))) (-3558 (((-1224 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) (-1224 $) (-1224 $)) NIL) (((-1224 |#1|) $) NIL) (((-665 |#1|) (-1224 $)) NIL)) (-4313 (((-1224 |#1|) $) NIL) (($ (-1224 |#1|)) NIL) (((-1136 |#1|) $) NIL) (($ (-1136 |#1|)) NIL) (((-861 (-535)) $) NIL (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| |#1| (-594 (-861 (-371))))) (((-166 (-371)) $) NIL (|has| |#1| (-991))) (((-166 (-219)) $) NIL (|has| |#1| (-991))) (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3330 (($ $) 45)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-343))))) (-1420 (($ |#1| |#1|) 37)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) 36) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-3023 (($ $) NIL (|has| |#1| (-343))) (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-2689 (((-1136 |#1|) $) NIL)) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL)) (-3835 (($ $) NIL (|has| |#1| (-1164)))) (-3823 (($ $) NIL (|has| |#1| (-1164)))) (-2170 (((-112) $ $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-3833 (($ $) NIL (|has| |#1| (-1164)))) (-3821 (($ $) NIL (|has| |#1| (-1164)))) (-3837 (($ $) NIL (|has| |#1| (-1164)))) (-3825 (($ $) NIL (|has| |#1| (-1164)))) (-2309 ((|#1| $) NIL (|has| |#1| (-1164)))) (-3838 (($ $) NIL (|has| |#1| (-1164)))) (-3826 (($ $) NIL (|has| |#1| (-1164)))) (-3836 (($ $) NIL (|has| |#1| (-1164)))) (-3824 (($ $) NIL (|has| |#1| (-1164)))) (-3834 (($ $) NIL (|has| |#1| (-1164)))) (-3822 (($ $) NIL (|has| |#1| (-1164)))) (-3725 (($ $) NIL (|has| |#1| (-1027)))) (-2979 (($) 28 T CONST)) (-2985 (($) 30 T CONST)) (-2825 (((-1124) $) 23 (|has| |#1| (-797))) (((-1124) $ (-112)) 25 (|has| |#1| (-797))) (((-1230) (-799) $) 26 (|has| |#1| (-797))) (((-1230) (-799) $ (-112)) 27 (|has| |#1| (-797)))) (-2990 (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 39)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-400 (-535))) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164)))) (($ $ $) NIL (|has| |#1| (-1164))) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-535))) NIL (|has| |#1| (-356))))) -(((-166 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) (-170)) (T -166)) -NIL -(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) -((-4301 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) -(((-167 |#1| |#2|) (-10 -7 (-15 -4301 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-170) (-170)) (T -167)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6))))) -(-10 -7 (-15 -4301 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) -((-4313 (((-861 |#1|) |#3|) 22))) -(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-861 |#1|) |#3|))) (-1067) (-13 (-594 (-861 |#1|)) (-170)) (-164 |#2|)) (T -168)) -((-4313 (*1 *2 *3) (-12 (-4 *5 (-13 (-594 *2) (-170))) (-5 *2 (-861 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1067)) (-4 *3 (-164 *5))))) -(-10 -7 (-15 -4313 ((-861 |#1|) |#3|))) -((-2887 (((-112) $ $) NIL)) (-1423 (((-112) $) 9)) (-1422 (((-112) $ (-112)) 11)) (-3960 (($) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3742 (($ $) 13)) (-4300 (((-835) $) 17)) (-4048 (((-112) $) 8)) (-4204 (((-112) $ (-112)) 10)) (-3375 (((-112) $ $) NIL))) -(((-169) (-13 (-1067) (-10 -8 (-15 -3960 ($)) (-15 -4048 ((-112) $)) (-15 -1423 ((-112) $)) (-15 -4204 ((-112) $ (-112))) (-15 -1422 ((-112) $ (-112))) (-15 -3742 ($ $))))) (T -169)) -((-3960 (*1 *1) (-5 *1 (-169))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4204 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1422 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-3742 (*1 *1 *1) (-5 *1 (-169)))) -(-13 (-1067) (-10 -8 (-15 -3960 ($)) (-15 -4048 ((-112) $)) (-15 -1423 ((-112) $)) (-15 -4204 ((-112) $ (-112))) (-15 -1422 ((-112) $ (-112))) (-15 -3742 ($ $)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +((-1389 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4065 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1270 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2738 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1495 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-1635 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1029)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1166)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1029)) (-4 *3 (-1166)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550))))) (-3207 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550)))))) +(-13 (-703 |t#1| (-1140 |t#1|)) (-404 |t#1|) (-225 |t#1|) (-331 |t#1|) (-393 |t#1|) (-857 |t#1|) (-370 |t#1|) (-170) (-10 -8 (-6 -2738) (-15 -4065 ($)) (-15 -1270 ($ $)) (-15 -2738 ($ |t#1| |t#1|)) (-15 -3377 (|t#1| $)) (-15 -3365 (|t#1| $)) (-15 -1389 (|t#1| $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-542)) (-15 -1495 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-6 -4341)) (-6 -4341) |%noBranch|) (IF (|has| |t#1| (-6 -4338)) (-6 -4338) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-995)) (PROGN (-6 (-596 (-167 (-219)))) (-6 (-596 (-167 (-372))))) |%noBranch|) (IF (|has| |t#1| (-1029)) (-15 -1635 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1166)) (PROGN (-6 (-1166)) (-15 -2696 (|t#1| $)) (IF (|has| |t#1| (-975)) (-6 (-975)) |%noBranch|) (IF (|has| |t#1| (-1029)) (-15 -3953 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-882)) (IF (|has| |t#1| (-300)) (-6 (-882)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-35) |has| |#1| (-1166)) ((-94) |has| |#1| (-1166)) ((-101) . T) ((-111 #0# #0#) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1561 (|has| |#1| (-342)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) . T) ((-596 (-167 (-219))) |has| |#1| (-995)) ((-596 (-167 (-372))) |has| |#1| (-995)) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-596 (-865 (-372))) |has| |#1| (-596 (-865 (-372)))) ((-596 (-865 (-550))) |has| |#1| (-596 (-865 (-550)))) ((-596 #1=(-1140 |#1|)) . T) ((-225 |#1|) . T) ((-227) -1561 (|has| |#1| (-342)) (|has| |#1| (-227))) ((-237) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-277) |has| |#1| (-1166)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -1561 (|has| |#1| (-542)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-300) -1561 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-395) |has| |#1| (-342)) ((-361) -1561 (|has| |#1| (-361)) (|has| |#1| (-342))) ((-342) |has| |#1| (-342)) ((-363 |#1| #1#) . T) ((-402 |#1| #1#) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-444) -1561 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-484) |has| |#1| (-1166)) ((-505 (-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-542) -1561 (|has| |#1| (-542)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-626 #0#) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-696 |#1|) . T) ((-696 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-703 |#1| #1#) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-873 (-1144)) |has| |#1| (-873 (-1144))) ((-859 (-372)) |has| |#1| (-859 (-372))) ((-859 (-550)) |has| |#1| (-859 (-550))) ((-857 |#1|) . T) ((-882) -12 (|has| |#1| (-300)) (|has| |#1| (-882))) ((-893) -1561 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-975) -12 (|has| |#1| (-975)) (|has| |#1| (-1166))) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1026 #0#) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1026 |#1|) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) |has| |#1| (-342)) ((-1166) |has| |#1| (-1166)) ((-1169) |has| |#1| (-1166)) ((-1181) . T) ((-1185) -1561 (|has| |#1| (-342)) (|has| |#1| (-356)) (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) +((-3338 (((-411 |#2|) |#2|) 63))) +(((-165 |#1| |#2|) (-10 -7 (-15 -3338 ((-411 |#2|) |#2|))) (-300) (-1203 (-167 |#1|))) (T -165)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1203 (-167 *4)))))) +(-10 -7 (-15 -3338 ((-411 |#2|) |#2|))) +((-3972 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14))) +(((-166 |#1| |#2|) (-10 -7 (-15 -3972 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))) +(-10 -7 (-15 -3972 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 33)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-542))))) (-1447 (($ $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-542))))) (-4291 (((-112) $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-542))))) (-1615 (((-667 |#1|) (-1227 $)) NIL) (((-667 |#1|)) NIL)) (-2252 ((|#1| $) NIL)) (-3123 (($ $) NIL (|has| |#1| (-1166)))) (-3005 (($ $) NIL (|has| |#1| (-1166)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| |#1| (-342)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (-1505 (($ $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356))))) (-3564 (((-411 $) $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356))))) (-3353 (($ $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1166))))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-300)))) (-4319 (((-749)) NIL (|has| |#1| (-361)))) (-3103 (($ $) NIL (|has| |#1| (-1166)))) (-2984 (($ $) NIL (|has| |#1| (-1166)))) (-3146 (($ $) NIL (|has| |#1| (-1166)))) (-3025 (($ $) NIL (|has| |#1| (-1166)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-4110 (($ (-1227 |#1|) (-1227 $)) NIL) (($ (-1227 |#1|)) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-3349 (($ $ $) NIL (|has| |#1| (-300)))) (-2677 (((-667 |#1|) $ (-1227 $)) NIL) (((-667 |#1|) $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-2419 (($ (-1140 |#1|)) NIL) (((-3 $ "failed") (-400 (-1140 |#1|))) NIL (|has| |#1| (-356)))) (-1386 (((-3 $ "failed") $) NIL)) (-3365 ((|#1| $) 13)) (-3207 (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-535)))) (-3122 (((-112) $) NIL (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) NIL (|has| |#1| (-535)))) (-2122 (((-894)) NIL)) (-1741 (($) NIL (|has| |#1| (-361)))) (-1519 (($ $ $) NIL (|has| |#1| (-300)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-300)))) (-3485 (($) NIL (|has| |#1| (-342)))) (-3697 (((-112) $) NIL (|has| |#1| (-342)))) (-3714 (($ $ (-749)) NIL (|has| |#1| (-342))) (($ $) NIL (|has| |#1| (-342)))) (-3933 (((-112) $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356))))) (-3953 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1029)) (|has| |#1| (-1166))))) (-2734 (($) NIL (|has| |#1| (-1166)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| |#1| (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| |#1| (-859 (-372))))) (-2475 (((-894) $) NIL (|has| |#1| (-342))) (((-811 (-894)) $) NIL (|has| |#1| (-342)))) (-3102 (((-112) $) 35)) (-1460 (($ $ (-550)) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1166))))) (-1389 ((|#1| $) 46)) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-300)))) (-1428 (((-1140 |#1|) $) NIL (|has| |#1| (-356)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2253 (((-894) $) NIL (|has| |#1| (-361)))) (-2958 (($ $) NIL (|has| |#1| (-1166)))) (-2407 (((-1140 |#1|) $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-3862 (($) NIL (|has| |#1| (-342)) CONST)) (-2922 (($ (-894)) NIL (|has| |#1| (-361)))) (-4065 (($) NIL)) (-3377 ((|#1| $) 15)) (-3337 (((-1088) $) NIL)) (-3935 (($) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-300)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| |#1| (-342)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-882))))) (-3338 (((-411 $) $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-356))))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-300)))) (-1495 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 47 (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-542))))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-300)))) (-1812 (($ $) NIL (|has| |#1| (-1166)))) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) NIL (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) NIL (|has| |#1| (-505 (-1144) |#1|)))) (-3542 (((-749) $) NIL (|has| |#1| (-300)))) (-2680 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-300)))) (-3453 ((|#1| (-1227 $)) NIL) ((|#1|) NIL)) (-3811 (((-749) $) NIL (|has| |#1| (-342))) (((-3 (-749) "failed") $ $) NIL (|has| |#1| (-342)))) (-2393 (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-3013 (((-667 |#1|) (-1227 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-1310 (((-1140 |#1|)) NIL)) (-3157 (($ $) NIL (|has| |#1| (-1166)))) (-3033 (($ $) NIL (|has| |#1| (-1166)))) (-4288 (($) NIL (|has| |#1| (-342)))) (-3135 (($ $) NIL (|has| |#1| (-1166)))) (-3016 (($ $) NIL (|has| |#1| (-1166)))) (-3114 (($ $) NIL (|has| |#1| (-1166)))) (-2995 (($ $) NIL (|has| |#1| (-1166)))) (-1373 (((-1227 |#1|) $ (-1227 $)) NIL) (((-667 |#1|) (-1227 $) (-1227 $)) NIL) (((-1227 |#1|) $) NIL) (((-667 |#1|) (-1227 $)) NIL)) (-4028 (((-1227 |#1|) $) NIL) (($ (-1227 |#1|)) NIL) (((-1140 |#1|) $) NIL) (($ (-1140 |#1|)) NIL) (((-865 (-550)) $) NIL (|has| |#1| (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| |#1| (-596 (-865 (-372))))) (((-167 (-372)) $) NIL (|has| |#1| (-995))) (((-167 (-219)) $) NIL (|has| |#1| (-995))) (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1270 (($ $) 45)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-342))))) (-2738 (($ |#1| |#1|) 37)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) 36) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-356)) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-542))))) (-4242 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2608 (((-1140 |#1|) $) NIL)) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL)) (-3187 (($ $) NIL (|has| |#1| (-1166)))) (-3060 (($ $) NIL (|has| |#1| (-1166)))) (-1345 (((-112) $ $) NIL (-1561 (-12 (|has| |#1| (-300)) (|has| |#1| (-882))) (|has| |#1| (-542))))) (-3167 (($ $) NIL (|has| |#1| (-1166)))) (-3043 (($ $) NIL (|has| |#1| (-1166)))) (-3209 (($ $) NIL (|has| |#1| (-1166)))) (-3081 (($ $) NIL (|has| |#1| (-1166)))) (-2696 ((|#1| $) NIL (|has| |#1| (-1166)))) (-3294 (($ $) NIL (|has| |#1| (-1166)))) (-3094 (($ $) NIL (|has| |#1| (-1166)))) (-3198 (($ $) NIL (|has| |#1| (-1166)))) (-3072 (($ $) NIL (|has| |#1| (-1166)))) (-3176 (($ $) NIL (|has| |#1| (-1166)))) (-3052 (($ $) NIL (|has| |#1| (-1166)))) (-1635 (($ $) NIL (|has| |#1| (-1029)))) (-2626 (($) 28 T CONST)) (-2636 (($) 30 T CONST)) (-3040 (((-1126) $) 23 (|has| |#1| (-806))) (((-1126) $ (-112)) 25 (|has| |#1| (-806))) (((-1232) (-800) $) 26 (|has| |#1| (-806))) (((-1232) (-800) $ (-112)) 27 (|has| |#1| (-806)))) (-4183 (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ $) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 39)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-400 (-550))) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1166)))) (($ $ $) NIL (|has| |#1| (-1166))) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-550))) NIL (|has| |#1| (-356))))) +(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|))) (-170)) (T -167)) +NIL +(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|))) +((-4028 (((-865 |#1|) |#3|) 22))) +(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -4028 ((-865 |#1|) |#3|))) (-1068) (-13 (-596 (-865 |#1|)) (-170)) (-164 |#2|)) (T -168)) +((-4028 (*1 *2 *3) (-12 (-4 *5 (-13 (-596 *2) (-170))) (-5 *2 (-865 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1068)) (-4 *3 (-164 *5))))) +(-10 -7 (-15 -4028 ((-865 |#1|) |#3|))) +((-1504 (((-112) $ $) NIL)) (-4298 (((-112) $) 9)) (-4170 (((-112) $ (-112)) 11)) (-2578 (($) 12)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1731 (($ $) 13)) (-1518 (((-836) $) 17)) (-2904 (((-112) $) 8)) (-2027 (((-112) $ (-112)) 10)) (-2316 (((-112) $ $) NIL))) +(((-169) (-13 (-1068) (-10 -8 (-15 -2578 ($)) (-15 -2904 ((-112) $)) (-15 -4298 ((-112) $)) (-15 -2027 ((-112) $ (-112))) (-15 -4170 ((-112) $ (-112))) (-15 -1731 ($ $))))) (T -169)) +((-2578 (*1 *1) (-5 *1 (-169))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2027 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4170 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1731 (*1 *1 *1) (-5 *1 (-169)))) +(-13 (-1068) (-10 -8 (-15 -2578 ($)) (-15 -2904 ((-112) $)) (-15 -4298 ((-112) $)) (-15 -2027 ((-112) $ (-112))) (-15 -4170 ((-112) $ (-112))) (-15 -1731 ($ $)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-170) (-138)) (T -170)) NIL -(-13 (-1018) (-111 $ $) (-10 -7 (-6 (-4338 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-1811 (($ $) 6))) +(-13 (-1020) (-111 $ $) (-10 -7 (-6 (-4344 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1951 (($ $) 6))) (((-171) (-138)) (T -171)) -((-1811 (*1 *1 *1) (-4 *1 (-171)))) -(-13 (-10 -8 (-15 -1811 ($ $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 ((|#1| $) 75)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL)) (-1428 (($ $) 19)) (-1432 (($ |#1| (-1119 |#1|)) 48)) (-3804 (((-3 $ "failed") $) 117)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-1429 (((-1119 |#1|) $) 82)) (-1431 (((-1119 |#1|) $) 79)) (-1430 (((-1119 |#1|) $) 80)) (-2493 (((-112) $) NIL)) (-1425 (((-1119 |#1|) $) 88)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-4111 (($ $ (-535)) 91)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1424 (((-1119 |#1|) $) 89)) (-1426 (((-1119 (-400 |#1|)) $) 14)) (-2933 (($ (-400 |#1|)) 17) (($ |#1| (-1119 |#1|) (-1119 |#1|)) 38)) (-3212 (($ $) 93)) (-4300 (((-835) $) 127) (($ (-535)) 51) (($ |#1|) 52) (($ (-400 |#1|)) 36) (($ (-400 (-535))) NIL) (($ $) NIL)) (-3444 (((-747)) 64)) (-2170 (((-112) $ $) NIL)) (-1427 (((-1119 (-400 |#1|)) $) 18)) (-2979 (($) 25 T CONST)) (-2985 (($) 28 T CONST)) (-3375 (((-112) $ $) 35)) (-4291 (($ $ $) 115)) (-4180 (($ $) 106) (($ $ $) 103)) (-4182 (($ $ $) 101)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-400 |#1|) $) 111) (($ $ (-400 |#1|)) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL))) -(((-172 |#1|) (-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2933 ($ (-400 |#1|))) (-15 -2933 ($ |#1| (-1119 |#1|) (-1119 |#1|))) (-15 -1432 ($ |#1| (-1119 |#1|))) (-15 -1431 ((-1119 |#1|) $)) (-15 -1430 ((-1119 |#1|) $)) (-15 -1429 ((-1119 |#1|) $)) (-15 -3447 (|#1| $)) (-15 -1428 ($ $)) (-15 -1427 ((-1119 (-400 |#1|)) $)) (-15 -1426 ((-1119 (-400 |#1|)) $)) (-15 -1425 ((-1119 |#1|) $)) (-15 -1424 ((-1119 |#1|) $)) (-15 -4111 ($ $ (-535))) (-15 -3212 ($ $)))) (-300)) (T -172)) -((-2933 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) (-2933 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1119 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1432 (*1 *1 *2 *3) (-12 (-5 *3 (-1119 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3447 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1428 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1119 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1119 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3212 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) -(-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2933 ($ (-400 |#1|))) (-15 -2933 ($ |#1| (-1119 |#1|) (-1119 |#1|))) (-15 -1432 ($ |#1| (-1119 |#1|))) (-15 -1431 ((-1119 |#1|) $)) (-15 -1430 ((-1119 |#1|) $)) (-15 -1429 ((-1119 |#1|) $)) (-15 -3447 (|#1| $)) (-15 -1428 ($ $)) (-15 -1427 ((-1119 (-400 |#1|)) $)) (-15 -1426 ((-1119 (-400 |#1|)) $)) (-15 -1425 ((-1119 |#1|) $)) (-15 -1424 ((-1119 |#1|) $)) (-15 -4111 ($ $ (-535))) (-15 -3212 ($ $)))) -((-1433 (($ (-108) $) 13)) (-3555 (((-3 (-108) "failed") (-1142) $) 12)) (-4300 (((-835) $) 16)) (-1434 (((-618 (-108)) $) 8))) -(((-173) (-13 (-593 (-835)) (-10 -8 (-15 -1434 ((-618 (-108)) $)) (-15 -1433 ($ (-108) $)) (-15 -3555 ((-3 (-108) "failed") (-1142) $))))) (T -173)) -((-1434 (*1 *2 *1) (-12 (-5 *2 (-618 (-108))) (-5 *1 (-173)))) (-1433 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-3555 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-173))))) -(-13 (-593 (-835)) (-10 -8 (-15 -1434 ((-618 (-108)) $)) (-15 -1433 ($ (-108) $)) (-15 -3555 ((-3 (-108) "failed") (-1142) $)))) -((-1447 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 40)) (-1438 (((-914 |#1|) (-914 |#1|)) 19)) (-1443 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 36)) (-1436 (((-914 |#1|) (-914 |#1|)) 17)) (-1441 (((-914 |#1|) (-914 |#1|)) 25)) (-1440 (((-914 |#1|) (-914 |#1|)) 24)) (-1439 (((-914 |#1|) (-914 |#1|)) 23)) (-1444 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 37)) (-1442 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 35)) (-1754 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 34)) (-1437 (((-914 |#1|) (-914 |#1|)) 18)) (-1448 (((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|) 43)) (-1435 (((-914 |#1|) (-914 |#1|)) 8)) (-1446 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 39)) (-1445 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 38))) -(((-174 |#1|) (-10 -7 (-15 -1435 ((-914 |#1|) (-914 |#1|))) (-15 -1436 ((-914 |#1|) (-914 |#1|))) (-15 -1437 ((-914 |#1|) (-914 |#1|))) (-15 -1438 ((-914 |#1|) (-914 |#1|))) (-15 -1439 ((-914 |#1|) (-914 |#1|))) (-15 -1440 ((-914 |#1|) (-914 |#1|))) (-15 -1441 ((-914 |#1|) (-914 |#1|))) (-15 -1754 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1442 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1443 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1444 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1445 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1446 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1447 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1448 ((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|))) (-13 (-356) (-1164) (-973))) (T -174)) -((-1448 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1446 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1445 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1444 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1754 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1438 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1437 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1435 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3))))) -(-10 -7 (-15 -1435 ((-914 |#1|) (-914 |#1|))) (-15 -1436 ((-914 |#1|) (-914 |#1|))) (-15 -1437 ((-914 |#1|) (-914 |#1|))) (-15 -1438 ((-914 |#1|) (-914 |#1|))) (-15 -1439 ((-914 |#1|) (-914 |#1|))) (-15 -1440 ((-914 |#1|) (-914 |#1|))) (-15 -1441 ((-914 |#1|) (-914 |#1|))) (-15 -1754 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1442 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1443 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1444 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1445 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1446 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1447 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1448 ((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|))) -((-2689 ((|#2| |#3|) 27))) -(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -2689 (|#2| |#3|))) (-170) (-1200 |#1|) (-701 |#1| |#2|)) (T -175)) -((-2689 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1200 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-701 *4 *2))))) -(-10 -7 (-15 -2689 (|#2| |#3|))) -((-3117 (((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)) 47 (|has| (-917 |#2|) (-857 |#1|))))) -(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-917 |#2|) (-857 |#1|)) (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))) |%noBranch|)) (-1067) (-13 (-857 |#1|) (-170)) (-164 |#2|)) (T -176)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *3 (-164 *6)) (-4 (-917 *6) (-857 *5)) (-4 *6 (-13 (-857 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))) -(-10 -7 (IF (|has| (-917 |#2|) (-857 |#1|)) (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))) |%noBranch|)) -((-1450 (((-618 |#1|) (-618 |#1|) |#1|) 38)) (-1449 (((-618 |#1|) |#1| (-618 |#1|)) 19)) (-2190 (((-618 |#1|) (-618 (-618 |#1|)) (-618 |#1|)) 33) ((|#1| (-618 |#1|) (-618 |#1|)) 31))) -(((-177 |#1|) (-10 -7 (-15 -1449 ((-618 |#1|) |#1| (-618 |#1|))) (-15 -2190 (|#1| (-618 |#1|) (-618 |#1|))) (-15 -2190 ((-618 |#1|) (-618 (-618 |#1|)) (-618 |#1|))) (-15 -1450 ((-618 |#1|) (-618 |#1|) |#1|))) (-300)) (T -177)) -((-1450 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))) (-2190 (*1 *2 *3 *2) (-12 (-5 *3 (-618 (-618 *4))) (-5 *2 (-618 *4)) (-4 *4 (-300)) (-5 *1 (-177 *4)))) (-2190 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) (-1449 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) -(-10 -7 (-15 -1449 ((-618 |#1|) |#1| (-618 |#1|))) (-15 -2190 (|#1| (-618 |#1|) (-618 |#1|))) (-15 -2190 ((-618 |#1|) (-618 (-618 |#1|)) (-618 |#1|))) (-15 -1450 ((-618 |#1|) (-618 |#1|) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3652 (((-1179) $) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 10)) (-4300 (((-835) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-178) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))) (T -178)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-178)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-178))))) -(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $)))) -((-1459 (((-2 (|:| |start| |#2|) (|:| -2758 (-398 |#2|))) |#2|) 61)) (-1458 ((|#1| |#1|) 54)) (-1457 (((-166 |#1|) |#2|) 84)) (-1456 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1455 ((|#2| |#2|) 83)) (-1454 (((-398 |#2|) |#2| |#1|) 113) (((-398 |#2|) |#2| |#1| (-112)) 81)) (-3450 ((|#1| |#2|) 112)) (-1453 ((|#2| |#2|) 119)) (-4075 (((-398 |#2|) |#2|) 134) (((-398 |#2|) |#2| |#1|) 32) (((-398 |#2|) |#2| |#1| (-112)) 133)) (-1452 (((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2|) 132) (((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112)) 76)) (-1451 (((-618 (-166 |#1|)) |#2| |#1|) 40) (((-618 (-166 |#1|)) |#2|) 41))) -(((-179 |#1| |#2|) (-10 -7 (-15 -1451 ((-618 (-166 |#1|)) |#2|)) (-15 -1451 ((-618 (-166 |#1|)) |#2| |#1|)) (-15 -1452 ((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112))) (-15 -1452 ((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2|)) (-15 -4075 ((-398 |#2|) |#2| |#1| (-112))) (-15 -4075 ((-398 |#2|) |#2| |#1|)) (-15 -4075 ((-398 |#2|) |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -3450 (|#1| |#2|)) (-15 -1454 ((-398 |#2|) |#2| |#1| (-112))) (-15 -1454 ((-398 |#2|) |#2| |#1|)) (-15 -1455 (|#2| |#2|)) (-15 -1456 (|#1| |#2| |#1|)) (-15 -1456 (|#1| |#2|)) (-15 -1457 ((-166 |#1|) |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -1459 ((-2 (|:| |start| |#2|) (|:| -2758 (-398 |#2|))) |#2|))) (-13 (-356) (-821)) (-1200 (-166 |#1|))) (T -179)) -((-1459 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-2 (|:| |start| *3) (|:| -2758 (-398 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1458 (*1 *2 *2) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1200 (-166 *2))))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-821))) (-4 *3 (-1200 *2)))) (-1456 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1200 (-166 *2))))) (-1456 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1200 (-166 *2))))) (-1455 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1200 (-166 *3))))) (-1454 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-3450 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1200 (-166 *2))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1200 (-166 *3))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-4075 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-4075 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1452 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-2 (|:| -2758 (-618 *3)) (|:| -1651 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1452 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-821))) (-5 *2 (-618 (-2 (|:| -2758 (-618 *3)) (|:| -1651 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1200 (-166 *5))))) (-1451 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1451 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4)))))) -(-10 -7 (-15 -1451 ((-618 (-166 |#1|)) |#2|)) (-15 -1451 ((-618 (-166 |#1|)) |#2| |#1|)) (-15 -1452 ((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112))) (-15 -1452 ((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2|)) (-15 -4075 ((-398 |#2|) |#2| |#1| (-112))) (-15 -4075 ((-398 |#2|) |#2| |#1|)) (-15 -4075 ((-398 |#2|) |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -3450 (|#1| |#2|)) (-15 -1454 ((-398 |#2|) |#2| |#1| (-112))) (-15 -1454 ((-398 |#2|) |#2| |#1|)) (-15 -1455 (|#2| |#2|)) (-15 -1456 (|#1| |#2| |#1|)) (-15 -1456 (|#1| |#2|)) (-15 -1457 ((-166 |#1|) |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -1459 ((-2 (|:| |start| |#2|) (|:| -2758 (-398 |#2|))) |#2|))) -((-1460 (((-3 |#2| "failed") |#2|) 14)) (-1461 (((-747) |#2|) 16)) (-1462 ((|#2| |#2| |#2|) 18))) -(((-180 |#1| |#2|) (-10 -7 (-15 -1460 ((-3 |#2| "failed") |#2|)) (-15 -1461 ((-747) |#2|)) (-15 -1462 (|#2| |#2| |#2|))) (-1178) (-650 |#1|)) (T -180)) -((-1462 (*1 *2 *2 *2) (-12 (-4 *3 (-1178)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))) (-1461 (*1 *2 *3) (-12 (-4 *4 (-1178)) (-5 *2 (-747)) (-5 *1 (-180 *4 *3)) (-4 *3 (-650 *4)))) (-1460 (*1 *2 *2) (|partial| -12 (-4 *3 (-1178)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3))))) -(-10 -7 (-15 -1460 ((-3 |#2| "failed") |#2|)) (-15 -1461 ((-747) |#2|)) (-15 -1462 (|#2| |#2| |#2|))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1464 (((-1142) $) 10)) (-4300 (((-835) $) 17)) (-1463 (((-618 (-1147)) $) 12)) (-3375 (((-112) $ $) 15))) -(((-181) (-13 (-1067) (-10 -8 (-15 -1464 ((-1142) $)) (-15 -1463 ((-618 (-1147)) $))))) (T -181)) -((-1464 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-181)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-181))))) -(-13 (-1067) (-10 -8 (-15 -1464 ((-1142) $)) (-15 -1463 ((-618 (-1147)) $)))) -((-3988 ((|#2| |#2|) 28)) (-3991 (((-112) |#2|) 19)) (-3989 (((-307 |#1|) |#2|) 12)) (-3990 (((-307 |#1|) |#2|) 14)) (-3986 ((|#2| |#2| (-1142)) 68) ((|#2| |#2|) 69)) (-3992 (((-166 (-307 |#1|)) |#2|) 10)) (-3987 ((|#2| |#2| (-1142)) 65) ((|#2| |#2|) 59))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3986 (|#2| |#2|)) (-15 -3986 (|#2| |#2| (-1142))) (-15 -3987 (|#2| |#2|)) (-15 -3987 (|#2| |#2| (-1142))) (-15 -3989 ((-307 |#1|) |#2|)) (-15 -3990 ((-307 |#1|) |#2|)) (-15 -3991 ((-112) |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3992 ((-166 (-307 |#1|)) |#2|))) (-13 (-542) (-823) (-1009 (-535))) (-13 (-27) (-1164) (-414 (-166 |#1|)))) (T -182)) -((-3992 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-166 (-307 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3)))))) (-3991 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-112)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3990 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-307 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3989 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-307 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3987 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3)))))) (-3986 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3))))))) -(-10 -7 (-15 -3986 (|#2| |#2|)) (-15 -3986 (|#2| |#2| (-1142))) (-15 -3987 (|#2| |#2|)) (-15 -3987 (|#2| |#2| (-1142))) (-15 -3989 ((-307 |#1|) |#2|)) (-15 -3990 ((-307 |#1|) |#2|)) (-15 -3991 ((-112) |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3992 ((-166 (-307 |#1|)) |#2|))) -((-1465 (((-1224 (-665 (-917 |#1|))) (-1224 (-665 |#1|))) 24)) (-4300 (((-1224 (-665 (-400 (-917 |#1|)))) (-1224 (-665 |#1|))) 33))) -(((-183 |#1|) (-10 -7 (-15 -1465 ((-1224 (-665 (-917 |#1|))) (-1224 (-665 |#1|)))) (-15 -4300 ((-1224 (-665 (-400 (-917 |#1|)))) (-1224 (-665 |#1|))))) (-170)) (T -183)) -((-4300 (*1 *2 *3) (-12 (-5 *3 (-1224 (-665 *4))) (-4 *4 (-170)) (-5 *2 (-1224 (-665 (-400 (-917 *4))))) (-5 *1 (-183 *4)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1224 (-665 *4))) (-4 *4 (-170)) (-5 *2 (-1224 (-665 (-917 *4)))) (-5 *1 (-183 *4))))) -(-10 -7 (-15 -1465 ((-1224 (-665 (-917 |#1|))) (-1224 (-665 |#1|)))) (-15 -4300 ((-1224 (-665 (-400 (-917 |#1|)))) (-1224 (-665 |#1|))))) -((-1473 (((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535)))) 66)) (-1475 (((-1144 (-400 (-535))) (-618 (-535)) (-618 (-535))) 75)) (-1466 (((-1144 (-400 (-535))) (-535)) 40)) (-4197 (((-1144 (-400 (-535))) (-535)) 52)) (-4110 (((-400 (-535)) (-1144 (-400 (-535)))) 62)) (-1467 (((-1144 (-400 (-535))) (-535)) 32)) (-1470 (((-1144 (-400 (-535))) (-535)) 48)) (-1469 (((-1144 (-400 (-535))) (-535)) 46)) (-1472 (((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535)))) 60)) (-3212 (((-1144 (-400 (-535))) (-535)) 25)) (-1471 (((-400 (-535)) (-1144 (-400 (-535))) (-1144 (-400 (-535)))) 64)) (-1468 (((-1144 (-400 (-535))) (-535)) 30)) (-1474 (((-1144 (-400 (-535))) (-618 (-535))) 72))) -(((-184) (-10 -7 (-15 -3212 ((-1144 (-400 (-535))) (-535))) (-15 -1466 ((-1144 (-400 (-535))) (-535))) (-15 -1467 ((-1144 (-400 (-535))) (-535))) (-15 -1468 ((-1144 (-400 (-535))) (-535))) (-15 -1469 ((-1144 (-400 (-535))) (-535))) (-15 -1470 ((-1144 (-400 (-535))) (-535))) (-15 -4197 ((-1144 (-400 (-535))) (-535))) (-15 -1471 ((-400 (-535)) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -1472 ((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -4110 ((-400 (-535)) (-1144 (-400 (-535))))) (-15 -1473 ((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -1474 ((-1144 (-400 (-535))) (-618 (-535)))) (-15 -1475 ((-1144 (-400 (-535))) (-618 (-535)) (-618 (-535)))))) (T -184)) -((-1475 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))) (-1474 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))) (-1473 (*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-1144 (-400 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-184)))) (-1472 (*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))) (-1471 (*1 *2 *3 *3) (-12 (-5 *3 (-1144 (-400 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-184)))) (-4197 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1469 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1468 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1467 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1466 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-3212 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535))))) -(-10 -7 (-15 -3212 ((-1144 (-400 (-535))) (-535))) (-15 -1466 ((-1144 (-400 (-535))) (-535))) (-15 -1467 ((-1144 (-400 (-535))) (-535))) (-15 -1468 ((-1144 (-400 (-535))) (-535))) (-15 -1469 ((-1144 (-400 (-535))) (-535))) (-15 -1470 ((-1144 (-400 (-535))) (-535))) (-15 -4197 ((-1144 (-400 (-535))) (-535))) (-15 -1471 ((-400 (-535)) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -1472 ((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -4110 ((-400 (-535)) (-1144 (-400 (-535))))) (-15 -1473 ((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -1474 ((-1144 (-400 (-535))) (-618 (-535)))) (-15 -1475 ((-1144 (-400 (-535))) (-618 (-535)) (-618 (-535))))) -((-1477 (((-398 (-1136 (-535))) (-535)) 28)) (-1476 (((-618 (-1136 (-535))) (-535)) 23)) (-3122 (((-1136 (-535)) (-535)) 21))) -(((-185) (-10 -7 (-15 -1476 ((-618 (-1136 (-535))) (-535))) (-15 -3122 ((-1136 (-535)) (-535))) (-15 -1477 ((-398 (-1136 (-535))) (-535))))) (T -185)) -((-1477 (*1 *2 *3) (-12 (-5 *2 (-398 (-1136 (-535)))) (-5 *1 (-185)) (-5 *3 (-535)))) (-3122 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-185)) (-5 *3 (-535)))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-618 (-1136 (-535)))) (-5 *1 (-185)) (-5 *3 (-535))))) -(-10 -7 (-15 -1476 ((-618 (-1136 (-535))) (-535))) (-15 -3122 ((-1136 (-535)) (-535))) (-15 -1477 ((-398 (-1136 (-535))) (-535)))) -((-1663 (((-1119 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 105)) (-1684 (((-618 (-1124)) (-1119 (-219))) NIL)) (-1478 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 81)) (-1661 (((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219)))) NIL)) (-1683 (((-618 (-1124)) (-618 (-219))) NIL)) (-1685 (((-219) (-1055 (-815 (-219)))) 24)) (-1686 (((-219) (-1055 (-815 (-219)))) 25)) (-1480 (((-371) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 98)) (-1479 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1681 (((-1124) (-219)) NIL)) (-2890 (((-1124) (-618 (-1124))) 20)) (-1481 (((-1006) (-1142) (-1142) (-1006)) 13))) -(((-186) (-10 -7 (-15 -1478 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1479 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -1480 ((-371) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))) (-15 -2890 ((-1124) (-618 (-1124)))) (-15 -1481 ((-1006) (-1142) (-1142) (-1006))))) (T -186)) -((-1481 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-186)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-186)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-186)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-186)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-186)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-186)))) (-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-186)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-186)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-186)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-186))))) -(-10 -7 (-15 -1478 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1479 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -1480 ((-371) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))) (-15 -2890 ((-1124) (-618 (-1124)))) (-15 -1481 ((-1006) (-1142) (-1142) (-1006)))) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 55) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-187) (-763)) (T -187)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 60) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-188) (-763)) (T -188)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 69) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-189) (-763)) (T -189)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 56) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-190) (-763)) (T -190)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 67) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 38) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-191) (-763)) (T -191)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 73) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-192) (-763)) (T -192)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 80) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 44) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-193) (-763)) (T -193)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 70) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-194) (-763)) (T -194)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 66)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-195) (-763)) (T -195)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 63)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-196) (-763)) (T -196)) -NIL -(-763) -((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 90) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 78) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-197) (-763)) (T -197)) -NIL -(-763) -((-1482 (((-3 (-2 (|:| -2827 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 85)) (-1484 (((-535) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1483 (((-3 (-618 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 73))) -(((-198) (-10 -7 (-15 -1482 ((-3 (-2 (|:| -2827 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1483 ((-3 (-618 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1484 ((-535) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -198)) -((-1484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-535)) (-5 *1 (-198)))) (-1483 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-198)))) (-1482 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2827 (-113)) (|:| |w| (-219)))) (-5 *1 (-198))))) -(-10 -7 (-15 -1482 ((-3 (-2 (|:| -2827 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1483 ((-3 (-618 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1484 ((-535) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-1489 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-1488 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 130)) (-1487 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-665 (-307 (-219)))) 89)) (-1486 (((-371) (-665 (-307 (-219)))) 113)) (-2443 (((-665 (-307 (-219))) (-1224 (-307 (-219))) (-618 (-1142))) 110)) (-1492 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 30)) (-1490 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 43)) (-4110 (((-665 (-307 (-219))) (-665 (-307 (-219))) (-618 (-1142)) (-1224 (-307 (-219)))) 102)) (-1485 (((-371) (-371) (-618 (-371))) 107) (((-371) (-371) (-371)) 105)) (-1491 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36))) -(((-199) (-10 -7 (-15 -1485 ((-371) (-371) (-371))) (-15 -1485 ((-371) (-371) (-618 (-371)))) (-15 -1486 ((-371) (-665 (-307 (-219))))) (-15 -2443 ((-665 (-307 (-219))) (-1224 (-307 (-219))) (-618 (-1142)))) (-15 -4110 ((-665 (-307 (-219))) (-665 (-307 (-219))) (-618 (-1142)) (-1224 (-307 (-219))))) (-15 -1487 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-665 (-307 (-219))))) (-15 -1488 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1489 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1490 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1491 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1492 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -199)) -((-1492 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-199)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-665 (-307 (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-199)))) (-4110 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-665 (-307 (-219)))) (-5 *3 (-618 (-1142))) (-5 *4 (-1224 (-307 (-219)))) (-5 *1 (-199)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *4 (-618 (-1142))) (-5 *2 (-665 (-307 (-219)))) (-5 *1 (-199)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-665 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1485 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-371))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1485 (*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-199))))) -(-10 -7 (-15 -1485 ((-371) (-371) (-371))) (-15 -1485 ((-371) (-371) (-618 (-371)))) (-15 -1486 ((-371) (-665 (-307 (-219))))) (-15 -2443 ((-665 (-307 (-219))) (-1224 (-307 (-219))) (-618 (-1142)))) (-15 -4110 ((-665 (-307 (-219))) (-665 (-307 (-219))) (-618 (-1142)) (-1224 (-307 (-219))))) (-15 -1487 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-665 (-307 (-219))))) (-15 -1488 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1489 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1490 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1491 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1492 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 64)) (-3375 (((-112) $ $) NIL))) -(((-200) (-776)) (T -200)) -NIL -(-776) -((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 62)) (-3375 (((-112) $ $) NIL))) -(((-201) (-776)) (T -201)) -NIL -(-776) -((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 66)) (-3375 (((-112) $ $) NIL))) -(((-202) (-776)) (T -202)) -NIL -(-776) -((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 46)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 75)) (-3375 (((-112) $ $) NIL))) -(((-203) (-776)) (T -203)) -NIL -(-776) -((-4277 (((-618 (-1142)) (-1142) (-747)) 23)) (-1493 (((-307 (-219)) (-307 (-219))) 31)) (-1495 (((-112) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 74)) (-1494 (((-112) (-219) (-219) (-618 (-307 (-219)))) 45))) -(((-204) (-10 -7 (-15 -4277 ((-618 (-1142)) (-1142) (-747))) (-15 -1493 ((-307 (-219)) (-307 (-219)))) (-15 -1494 ((-112) (-219) (-219) (-618 (-307 (-219))))) (-15 -1495 ((-112) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))))) (T -204)) -((-1495 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-112)) (-5 *1 (-204)))) (-1494 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-618 (-307 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-204)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-204)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-618 (-1142))) (-5 *1 (-204)) (-5 *3 (-1142))))) -(-10 -7 (-15 -4277 ((-618 (-1142)) (-1142) (-747))) (-15 -1493 ((-307 (-219)) (-307 (-219)))) (-15 -1494 ((-112) (-219) (-219) (-618 (-307 (-219))))) (-15 -1495 ((-112) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))))) -((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 26)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2986 (((-1006) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 57)) (-3375 (((-112) $ $) NIL))) -(((-205) (-866)) (T -205)) -NIL -(-866) -((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 21)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2986 (((-1006) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) NIL)) (-3375 (((-112) $ $) NIL))) -(((-206) (-866)) (T -206)) -NIL -(-866) -((-2887 (((-112) $ $) NIL)) (-4130 ((|#2| $ (-747) |#2|) 11)) (-3960 (($) 8)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4142 ((|#2| $ (-747)) 10)) (-4300 (((-835) $) 18)) (-3375 (((-112) $ $) 13))) -(((-207 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3960 ($)) (-15 -4142 (|#2| $ (-747))) (-15 -4130 (|#2| $ (-747) |#2|)))) (-890) (-1067)) (T -207)) -((-3960 (*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1067)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *2 (-1067)) (-5 *1 (-207 *4 *2)) (-14 *4 (-890)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-207 *4 *2)) (-14 *4 (-890)) (-4 *2 (-1067))))) -(-13 (-1067) (-10 -8 (-15 -3960 ($)) (-15 -4142 (|#2| $ (-747))) (-15 -4130 (|#2| $ (-747) |#2|)))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2082 (((-1230) $) 36) (((-1230) $ (-890) (-890)) 38)) (-4142 (($ $ (-960)) 19) (((-239 (-1124)) $ (-1142)) 15)) (-3963 (((-1230) $) 34)) (-4300 (((-835) $) 31) (($ (-618 |#1|)) 8)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $ $) 27)) (-4182 (($ $ $) 22))) -(((-208 |#1|) (-13 (-1067) (-10 -8 (-15 -4142 ($ $ (-960))) (-15 -4142 ((-239 (-1124)) $ (-1142))) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4300 ($ (-618 |#1|))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $)) (-15 -2082 ((-1230) $ (-890) (-890))))) (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))) (T -208)) -((-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-960)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-239 (-1124))) (-5 *1 (-208 *4)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ *3)) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))))) (-4182 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))))) (-4180 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))) (-5 *1 (-208 *3)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) (-15 -2082 (*2 $))))))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) (-15 -2082 (*2 $))))))) (-2082 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-208 *4)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) (-15 -2082 (*2 $)))))))) -(-13 (-1067) (-10 -8 (-15 -4142 ($ $ (-960))) (-15 -4142 ((-239 (-1124)) $ (-1142))) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4300 ($ (-618 |#1|))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $)) (-15 -2082 ((-1230) $ (-890) (-890))))) -((-1496 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1496 (|#2| |#4| (-1 |#2| |#2|)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -209)) -((-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1200 (-400 *2))) (-4 *2 (-1200 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6))))) -(-10 -7 (-15 -1496 (|#2| |#4| (-1 |#2| |#2|)))) -((-1500 ((|#2| |#2| (-747) |#2|) 42)) (-1499 ((|#2| |#2| (-747) |#2|) 38)) (-2449 (((-618 |#2|) (-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|)))) 57)) (-1498 (((-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))) |#2|) 53)) (-1501 (((-112) |#2|) 50)) (-4076 (((-398 |#2|) |#2|) 77)) (-4075 (((-398 |#2|) |#2|) 76)) (-2450 ((|#2| |#2| (-747) |#2|) 36)) (-1497 (((-2 (|:| |cont| |#1|) (|:| -2758 (-618 (-2 (|:| |irr| |#2|) (|:| -2478 (-535)))))) |#2| (-112)) 69))) -(((-210 |#1| |#2|) (-10 -7 (-15 -4075 ((-398 |#2|) |#2|)) (-15 -4076 ((-398 |#2|) |#2|)) (-15 -1497 ((-2 (|:| |cont| |#1|) (|:| -2758 (-618 (-2 (|:| |irr| |#2|) (|:| -2478 (-535)))))) |#2| (-112))) (-15 -1498 ((-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))) |#2|)) (-15 -2449 ((-618 |#2|) (-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))))) (-15 -2450 (|#2| |#2| (-747) |#2|)) (-15 -1499 (|#2| |#2| (-747) |#2|)) (-15 -1500 (|#2| |#2| (-747) |#2|)) (-15 -1501 ((-112) |#2|))) (-343) (-1200 |#1|)) (T -210)) -((-1501 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))) (-1500 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))) (-1499 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))) (-2450 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| |deg| (-747)) (|:| -2894 *5)))) (-4 *5 (-1200 *4)) (-4 *4 (-343)) (-5 *2 (-618 *5)) (-5 *1 (-210 *4 *5)))) (-1498 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-618 (-2 (|:| |deg| (-747)) (|:| -2894 *3)))) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) (-5 *1 (-210 *5 *3)) (-4 *3 (-1200 *5)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -4075 ((-398 |#2|) |#2|)) (-15 -4076 ((-398 |#2|) |#2|)) (-15 -1497 ((-2 (|:| |cont| |#1|) (|:| -2758 (-618 (-2 (|:| |irr| |#2|) (|:| -2478 (-535)))))) |#2| (-112))) (-15 -1498 ((-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))) |#2|)) (-15 -2449 ((-618 |#2|) (-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))))) (-15 -2450 (|#2| |#2| (-747) |#2|)) (-15 -1499 (|#2| |#2| (-747) |#2|)) (-15 -1500 (|#2| |#2| (-747) |#2|)) (-15 -1501 ((-112) |#2|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-535) $) NIL (|has| (-535) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-535) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-535) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-535) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-535) (-1009 (-535))))) (-3490 (((-535) $) NIL) (((-1142) $) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-535) (-1009 (-535)))) (((-535) $) NIL (|has| (-535) (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-535) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-535) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-535) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-535) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-535) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-535) (-1117)))) (-3521 (((-112) $) NIL (|has| (-535) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-535) (-823)))) (-4301 (($ (-1 (-535) (-535)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-535) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-535) (-300))) (((-400 (-535)) $) NIL)) (-3448 (((-535) $) NIL (|has| (-535) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-535)) (-618 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-535) (-535)) NIL (|has| (-535) (-302 (-535)))) (($ $ (-286 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-286 (-535)))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-1142)) (-618 (-535))) NIL (|has| (-535) (-505 (-1142) (-535)))) (($ $ (-1142) (-535)) NIL (|has| (-535) (-505 (-1142) (-535))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-535)) NIL (|has| (-535) (-279 (-535) (-535))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-535) $) NIL)) (-1502 (($ (-400 (-535))) 9)) (-4313 (((-861 (-535)) $) NIL (|has| (-535) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-535) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-535) (-594 (-524)))) (((-371) $) NIL (|has| (-535) (-991))) (((-219) $) NIL (|has| (-535) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-535) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 8) (($ (-535)) NIL) (($ (-1142)) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL) (((-975 10) $) 10)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-535) (-881))) (|has| (-535) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-535) $) NIL (|has| (-535) (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-535) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-535) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-535) (-823)))) (-4291 (($ $ $) NIL) (($ (-535) (-535)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-535) $) NIL) (($ $ (-535)) NIL))) -(((-211) (-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 10) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -1502 ($ (-400 (-535))))))) (T -211)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-975 10)) (-5 *1 (-211)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211)))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211))))) -(-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 10) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -1502 ($ (-400 (-535)))))) -((-2887 (((-112) $ $) NIL)) (-3653 (((-1081) $) 13)) (-3576 (((-1124) $) NIL)) (-3512 (((-475) $) 10)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 25) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 15)) (-3375 (((-112) $ $) NIL))) -(((-212) (-13 (-1049) (-10 -8 (-15 -3512 ((-475) $)) (-15 -3653 ((-1081) $)) (-15 -3567 ((-1101) $))))) (T -212)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-212)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-212))))) -(-13 (-1049) (-10 -8 (-15 -3512 ((-475) $)) (-15 -3653 ((-1081) $)) (-15 -3567 ((-1101) $)))) -((-4155 (((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1058 (-815 |#2|)) (-1124)) 28) (((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1058 (-815 |#2|))) 24)) (-1503 (((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1142) (-815 |#2|) (-815 |#2|) (-112)) 17))) -(((-213 |#1| |#2|) (-10 -7 (-15 -4155 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1058 (-815 |#2|)))) (-15 -4155 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1058 (-815 |#2|)) (-1124))) (-15 -1503 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1142) (-815 |#2|) (-815 |#2|) (-112)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-931) (-29 |#1|))) (T -213)) -((-1503 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1142)) (-5 *6 (-112)) (-4 *7 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-4 *3 (-13 (-1164) (-931) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-213 *7 *3)) (-5 *5 (-815 *3)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-815 *3))) (-5 *5 (-1124)) (-4 *3 (-13 (-1164) (-931) (-29 *6))) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-213 *6 *3)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-815 *3))) (-4 *3 (-13 (-1164) (-931) (-29 *5))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-213 *5 *3))))) -(-10 -7 (-15 -4155 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1058 (-815 |#2|)))) (-15 -4155 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1058 (-815 |#2|)) (-1124))) (-15 -1503 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1142) (-815 |#2|) (-815 |#2|) (-112)))) -((-4155 (((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))) (-1124)) 46) (((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|))))) 43) (((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))) (-1124)) 47) (((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|)))) 20))) -(((-214 |#1|) (-10 -7 (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))) (-1124))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))) (-1124)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (T -214)) -((-4155 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-815 (-400 (-917 *6))))) (-5 *5 (-1124)) (-5 *3 (-400 (-917 *6))) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 (-307 *6))) (|:| |f2| (-618 (-815 (-307 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-214 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-815 (-400 (-917 *5))))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 (-307 *5))) (|:| |f2| (-618 (-815 (-307 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *5)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-400 (-917 *6))) (-5 *4 (-1058 (-815 (-307 *6)))) (-5 *5 (-1124)) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 (-307 *6))) (|:| |f2| (-618 (-815 (-307 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1058 (-815 (-307 *5)))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 (-307 *5))) (|:| |f2| (-618 (-815 (-307 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *5))))) -(-10 -7 (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))) (-1124))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))) (-1124)))) -((-4185 (((-2 (|:| -2115 (-1136 |#1|)) (|:| |deg| (-890))) (-1136 |#1|)) 21)) (-4306 (((-618 (-307 |#2|)) (-307 |#2|) (-890)) 42))) -(((-215 |#1| |#2|) (-10 -7 (-15 -4185 ((-2 (|:| -2115 (-1136 |#1|)) (|:| |deg| (-890))) (-1136 |#1|))) (-15 -4306 ((-618 (-307 |#2|)) (-307 |#2|) (-890)))) (-1018) (-13 (-542) (-823))) (T -215)) -((-4306 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *6 (-13 (-542) (-823))) (-5 *2 (-618 (-307 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1018)))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-2 (|:| -2115 (-1136 *4)) (|:| |deg| (-890)))) (-5 *1 (-215 *4 *5)) (-5 *3 (-1136 *4)) (-4 *5 (-13 (-542) (-823)))))) -(-10 -7 (-15 -4185 ((-2 (|:| -2115 (-1136 |#1|)) (|:| |deg| (-890))) (-1136 |#1|))) (-15 -4306 ((-618 (-307 |#2|)) (-307 |#2|) (-890)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1545 ((|#1| $) NIL)) (-3666 ((|#1| $) 25)) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3323 (($ $) NIL)) (-2368 (($ $) 31)) (-3668 ((|#1| |#1| $) NIL)) (-3667 ((|#1| $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-4176 (((-747) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) NIL)) (-1543 ((|#1| |#1| $) 28)) (-1542 ((|#1| |#1| $) 30)) (-3953 (($ |#1| $) NIL)) (-2922 (((-747) $) 27)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-3322 ((|#1| $) NIL)) (-1541 ((|#1| $) 26)) (-1540 ((|#1| $) 24)) (-1327 ((|#1| $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3325 ((|#1| |#1| $) NIL)) (-3745 (((-112) $) 9)) (-3911 (($) NIL)) (-3324 ((|#1| $) NIL)) (-1546 (($) NIL) (($ (-618 |#1|)) 16)) (-3665 (((-747) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-1544 ((|#1| $) 13)) (-1328 (($ (-618 |#1|)) NIL)) (-3321 ((|#1| $) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-216 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -1546 ($ (-618 |#1|))))) (-1067)) (T -216)) -((-1546 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-216 *3))))) -(-13 (-247 |#1|) (-10 -8 (-15 -1546 ($ (-618 |#1|))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1505 (($ (-307 |#1|)) 23)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2983 (((-112) $) NIL)) (-3491 (((-3 (-307 |#1|) "failed") $) NIL)) (-3490 (((-307 |#1|) $) NIL)) (-4302 (($ $) 31)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-4301 (($ (-1 (-307 |#1|) (-307 |#1|)) $) NIL)) (-3508 (((-307 |#1|) $) NIL)) (-1507 (($ $) 30)) (-3576 (((-1124) $) NIL)) (-1506 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($ (-747)) NIL)) (-1504 (($ $) 32)) (-4290 (((-535) $) NIL)) (-4300 (((-835) $) 57) (($ (-535)) NIL) (($ (-307 |#1|)) NIL)) (-4023 (((-307 |#1|) $ $) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) 25 T CONST)) (-2985 (($) 50 T CONST)) (-3375 (((-112) $ $) 28)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 24) (($ (-307 |#1|) $) 18))) -(((-217 |#1| |#2|) (-13 (-599 (-307 |#1|)) (-1009 (-307 |#1|)) (-10 -8 (-15 -3508 ((-307 |#1|) $)) (-15 -1507 ($ $)) (-15 -4302 ($ $)) (-15 -4023 ((-307 |#1|) $ $)) (-15 -2492 ($ (-747))) (-15 -1506 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -4290 ((-535) $)) (-15 -4301 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -1505 ($ (-307 |#1|))) (-15 -1504 ($ $)))) (-13 (-1018) (-823)) (-618 (-1142))) (T -217)) -((-3508 (*1 *2 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-1507 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-618 (-1142))))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-618 (-1142))))) (-4023 (*1 *2 *1 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) (-14 *4 (-618 (-1142))))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) (-14 *4 (-618 (-1142))))) (-1504 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-618 (-1142)))))) -(-13 (-599 (-307 |#1|)) (-1009 (-307 |#1|)) (-10 -8 (-15 -3508 ((-307 |#1|) $)) (-15 -1507 ($ $)) (-15 -4302 ($ $)) (-15 -4023 ((-307 |#1|) $ $)) (-15 -2492 ($ (-747))) (-15 -1506 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -4290 ((-535) $)) (-15 -4301 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -1505 ($ (-307 |#1|))) (-15 -1504 ($ $)))) -((-1508 (((-112) (-1124)) 22)) (-1509 (((-3 (-815 |#2|) "failed") (-591 |#2|) |#2| (-815 |#2|) (-815 |#2|) (-112)) 32)) (-1510 (((-3 (-112) "failed") (-1136 |#2|) (-815 |#2|) (-815 |#2|) (-112)) 73) (((-3 (-112) "failed") (-917 |#1|) (-1142) (-815 |#2|) (-815 |#2|) (-112)) 74))) -(((-218 |#1| |#2|) (-10 -7 (-15 -1508 ((-112) (-1124))) (-15 -1509 ((-3 (-815 |#2|) "failed") (-591 |#2|) |#2| (-815 |#2|) (-815 |#2|) (-112))) (-15 -1510 ((-3 (-112) "failed") (-917 |#1|) (-1142) (-815 |#2|) (-815 |#2|) (-112))) (-15 -1510 ((-3 (-112) "failed") (-1136 |#2|) (-815 |#2|) (-815 |#2|) (-112)))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-29 |#1|))) (T -218)) -((-1510 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1136 *6)) (-5 *4 (-815 *6)) (-4 *6 (-13 (-1164) (-29 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-218 *5 *6)))) (-1510 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-917 *6)) (-5 *4 (-1142)) (-5 *5 (-815 *7)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-4 *7 (-13 (-1164) (-29 *6))) (-5 *1 (-218 *6 *7)))) (-1509 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-815 *4)) (-5 *3 (-591 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1164) (-29 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-218 *6 *4)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1164) (-29 *4)))))) -(-10 -7 (-15 -1508 ((-112) (-1124))) (-15 -1509 ((-3 (-815 |#2|) "failed") (-591 |#2|) |#2| (-815 |#2|) (-815 |#2|) (-112))) (-15 -1510 ((-3 (-112) "failed") (-917 |#1|) (-1142) (-815 |#2|) (-815 |#2|) (-112))) (-15 -1510 ((-3 (-112) "failed") (-1136 |#2|) (-815 |#2|) (-815 |#2|) (-112)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 89)) (-3447 (((-535) $) 100)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4113 (($ $) NIL)) (-3829 (($ $) 77)) (-3985 (($ $) 65)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) 56)) (-1700 (((-112) $ $) NIL)) (-3827 (($ $) 75)) (-3984 (($ $) 63)) (-3969 (((-535) $) 117)) (-3831 (($ $) 80)) (-3983 (($ $) 67)) (-3879 (($) NIL T CONST)) (-3445 (($ $) NIL)) (-3491 (((-3 (-535) #1="failed") $) 116) (((-3 (-400 (-535)) #1#) $) 113)) (-3490 (((-535) $) 114) (((-400 (-535)) $) 111)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) 93)) (-1855 (((-400 (-535)) $ (-747)) 109) (((-400 (-535)) $ (-747) (-747)) 108)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2457 (((-890)) 29) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-3520 (((-112) $) NIL)) (-3973 (($) 39)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL)) (-4114 (((-535) $) 35)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL)) (-3450 (($ $) NIL)) (-3521 (((-112) $) 88)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-3660 (($ $ $) 53) (($) 34 (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-3661 (($ $ $) 52) (($) 33 (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-2458 (((-535) $) 27)) (-1854 (($ $) 30)) (-1853 (($ $) 57)) (-4285 (($ $) 62)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-1884 (((-890) (-535)) NIL (|has| $ (-6 -4327)))) (-3577 (((-1086) $) 91)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL)) (-3448 (($ $) NIL)) (-3588 (($ (-535) (-535)) NIL) (($ (-535) (-535) (-890)) 101)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2484 (((-535) $) 28)) (-1852 (($) 38)) (-4286 (($ $) 61)) (-1699 (((-747) $) NIL)) (-1511 (((-1124) (-1124)) 8)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2932 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-4153 (($ $ (-747)) NIL) (($ $) 94)) (-1883 (((-890) (-535)) NIL (|has| $ (-6 -4327)))) (-3832 (($ $) 78)) (-3982 (($ $) 68)) (-3830 (($ $) 79)) (-3981 (($ $) 66)) (-3828 (($ $) 76)) (-3980 (($ $) 64)) (-4313 (((-371) $) 105) (((-219) $) 102) (((-861 (-371)) $) NIL) (((-524) $) 45)) (-4300 (((-835) $) 42) (($ (-535)) 60) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-535)) 60) (($ (-400 (-535))) NIL)) (-3444 (((-747)) NIL)) (-3449 (($ $) NIL)) (-1885 (((-890)) 32) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-3015 (((-890)) 25)) (-3835 (($ $) 83)) (-3823 (($ $) 71) (($ $ $) 110)) (-2170 (((-112) $ $) NIL)) (-3833 (($ $) 81)) (-3821 (($ $) 69)) (-3837 (($ $) 86)) (-3825 (($ $) 74)) (-3838 (($ $) 84)) (-3826 (($ $) 72)) (-3836 (($ $) 85)) (-3824 (($ $) 73)) (-3834 (($ $) 82)) (-3822 (($ $) 70)) (-3725 (($ $) 118)) (-2979 (($) 36 T CONST)) (-2985 (($) 37 T CONST)) (-2825 (((-1124) $) 19) (((-1124) $ (-112)) 21) (((-1230) (-799) $) 22) (((-1230) (-799) $ (-112)) 23)) (-3729 (($ $) 97)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3726 (($ $ $) 99)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 54)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 46)) (-4291 (($ $ $) 87) (($ $ (-535)) 55)) (-4180 (($ $) 47) (($ $ $) 49)) (-4182 (($ $ $) 48)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 58) (($ $ (-400 (-535))) 130) (($ $ $) 59)) (* (($ (-890) $) 31) (($ (-747) $) NIL) (($ (-535) $) 51) (($ $ $) 50) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL))) -(((-219) (-13 (-397) (-227) (-797) (-1164) (-594 (-524)) (-10 -8 (-15 -4291 ($ $ (-535))) (-15 ** ($ $ $)) (-15 -1852 ($)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -3823 ($ $ $)) (-15 -3729 ($ $)) (-15 -3726 ($ $ $)) (-15 -1511 ((-1124) (-1124))) (-15 -1855 ((-400 (-535)) $ (-747))) (-15 -1855 ((-400 (-535)) $ (-747) (-747)))))) (T -219)) -((** (*1 *1 *1 *1) (-5 *1 (-219))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-219)))) (-1852 (*1 *1) (-5 *1 (-219))) (-1854 (*1 *1 *1) (-5 *1 (-219))) (-1853 (*1 *1 *1) (-5 *1 (-219))) (-3823 (*1 *1 *1 *1) (-5 *1 (-219))) (-3729 (*1 *1 *1) (-5 *1 (-219))) (-3726 (*1 *1 *1 *1) (-5 *1 (-219))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-219)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-219)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-219))))) -(-13 (-397) (-227) (-797) (-1164) (-594 (-524)) (-10 -8 (-15 -4291 ($ $ (-535))) (-15 ** ($ $ $)) (-15 -1852 ($)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -3823 ($ $ $)) (-15 -3729 ($ $)) (-15 -3726 ($ $ $)) (-15 -1511 ((-1124) (-1124))) (-15 -1855 ((-400 (-535)) $ (-747))) (-15 -1855 ((-400 (-535)) $ (-747) (-747))))) -((-3728 (((-166 (-219)) (-747) (-166 (-219))) 11) (((-219) (-747) (-219)) 12)) (-1512 (((-166 (-219)) (-166 (-219))) 13) (((-219) (-219)) 14)) (-1513 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 19) (((-219) (-219) (-219)) 22)) (-3727 (((-166 (-219)) (-166 (-219))) 25) (((-219) (-219)) 24)) (-3731 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 43) (((-219) (-219) (-219)) 35)) (-3733 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 48) (((-219) (-219) (-219)) 45)) (-3730 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 15) (((-219) (-219) (-219)) 16)) (-3732 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 17) (((-219) (-219) (-219)) 18)) (-3735 (((-166 (-219)) (-166 (-219))) 60) (((-219) (-219)) 59)) (-3734 (((-219) (-219)) 54) (((-166 (-219)) (-166 (-219))) 58)) (-3729 (((-166 (-219)) (-166 (-219))) 8) (((-219) (-219)) 9)) (-3726 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 30) (((-219) (-219) (-219)) 26))) -(((-220) (-10 -7 (-15 -3729 ((-219) (-219))) (-15 -3729 ((-166 (-219)) (-166 (-219)))) (-15 -3726 ((-219) (-219) (-219))) (-15 -3726 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -1512 ((-219) (-219))) (-15 -1512 ((-166 (-219)) (-166 (-219)))) (-15 -3727 ((-219) (-219))) (-15 -3727 ((-166 (-219)) (-166 (-219)))) (-15 -3728 ((-219) (-747) (-219))) (-15 -3728 ((-166 (-219)) (-747) (-166 (-219)))) (-15 -3730 ((-219) (-219) (-219))) (-15 -3730 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3731 ((-219) (-219) (-219))) (-15 -3731 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3732 ((-219) (-219) (-219))) (-15 -3732 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3733 ((-219) (-219) (-219))) (-15 -3733 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3734 ((-166 (-219)) (-166 (-219)))) (-15 -3734 ((-219) (-219))) (-15 -3735 ((-219) (-219))) (-15 -3735 ((-166 (-219)) (-166 (-219)))) (-15 -1513 ((-219) (-219) (-219))) (-15 -1513 ((-166 (-219)) (-166 (-219)) (-166 (-219)))))) (T -220)) -((-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3734 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3734 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3733 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3733 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3732 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3732 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3731 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3731 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3730 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3730 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3728 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-219))) (-5 *3 (-747)) (-5 *1 (-220)))) (-3728 (*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-747)) (-5 *1 (-220)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3726 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3726 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))) -(-10 -7 (-15 -3729 ((-219) (-219))) (-15 -3729 ((-166 (-219)) (-166 (-219)))) (-15 -3726 ((-219) (-219) (-219))) (-15 -3726 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -1512 ((-219) (-219))) (-15 -1512 ((-166 (-219)) (-166 (-219)))) (-15 -3727 ((-219) (-219))) (-15 -3727 ((-166 (-219)) (-166 (-219)))) (-15 -3728 ((-219) (-747) (-219))) (-15 -3728 ((-166 (-219)) (-747) (-166 (-219)))) (-15 -3730 ((-219) (-219) (-219))) (-15 -3730 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3731 ((-219) (-219) (-219))) (-15 -3731 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3732 ((-219) (-219) (-219))) (-15 -3732 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3733 ((-219) (-219) (-219))) (-15 -3733 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3734 ((-166 (-219)) (-166 (-219)))) (-15 -3734 ((-219) (-219))) (-15 -3735 ((-219) (-219))) (-15 -3735 ((-166 (-219)) (-166 (-219)))) (-15 -1513 ((-219) (-219) (-219))) (-15 -1513 ((-166 (-219)) (-166 (-219)) (-166 (-219))))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747) (-747)) NIL)) (-2422 (($ $ $) NIL)) (-3756 (($ (-1224 |#1|)) NIL) (($ $) NIL)) (-4216 (($ |#1| |#1| |#1|) 32)) (-3439 (((-112) $) NIL)) (-2421 (($ $ (-535) (-535)) NIL)) (-2420 (($ $ (-535) (-535)) NIL)) (-2419 (($ $ (-535) (-535) (-535) (-535)) NIL)) (-2424 (($ $) NIL)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-2418 (($ $ (-535) (-535) $) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535)) $) NIL)) (-1302 (($ $ (-535) (-1224 |#1|)) NIL)) (-1301 (($ $ (-535) (-1224 |#1|)) NIL)) (-4190 (($ |#1| |#1| |#1|) 31)) (-3675 (($ (-747) |#1|) NIL)) (-3879 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| |#1| (-300)))) (-3430 (((-1224 |#1|) $ (-535)) NIL)) (-1514 (($ |#1|) 30)) (-1515 (($ |#1|) 29)) (-1516 (($ |#1|) 28)) (-3427 (((-747) $) NIL (|has| |#1| (-542)))) (-1632 ((|#1| $ (-535) (-535) |#1|) NIL)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3426 (((-747) $) NIL (|has| |#1| (-542)))) (-3425 (((-618 (-1224 |#1|)) $) NIL (|has| |#1| (-542)))) (-3433 (((-747) $) NIL)) (-3960 (($ (-747) (-747) |#1|) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#1| $) NIL (|has| |#1| (-6 (-4338 #1="*"))))) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#1|))) 11)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3939 (((-618 (-618 |#1|)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3935 (((-3 $ #2="failed") $) NIL (|has| |#1| (-356)))) (-1517 (($) 12)) (-2423 (($ $ $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-3803 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-542)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535))) NIL)) (-3674 (($ (-618 |#1|)) NIL) (($ (-618 $)) NIL)) (-3440 (((-112) $) NIL)) (-3670 ((|#1| $) NIL (|has| |#1| (-6 (-4338 #1#))))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 (((-1224 |#1|) $ (-535)) NIL)) (-4300 (($ (-1224 |#1|)) NIL) (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-535) $) NIL) (((-1224 |#1|) $ (-1224 |#1|)) 15) (((-1224 |#1|) (-1224 |#1|) $) NIL) (((-914 |#1|) $ (-914 |#1|)) 20)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-221 |#1|) (-13 (-662 |#1| (-1224 |#1|) (-1224 |#1|)) (-10 -8 (-15 * ((-914 |#1|) $ (-914 |#1|))) (-15 -1517 ($)) (-15 -1516 ($ |#1|)) (-15 -1515 ($ |#1|)) (-15 -1514 ($ |#1|)) (-15 -4190 ($ |#1| |#1| |#1|)) (-15 -4216 ($ |#1| |#1| |#1|)))) (-13 (-356) (-1164))) (T -221)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164))) (-5 *1 (-221 *3)))) (-1517 (*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-1516 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-1515 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-1514 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-4190 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-4216 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))) -(-13 (-662 |#1| (-1224 |#1|) (-1224 |#1|)) (-10 -8 (-15 * ((-914 |#1|) $ (-914 |#1|))) (-15 -1517 ($)) (-15 -1516 ($ |#1|)) (-15 -1515 ($ |#1|)) (-15 -1514 ($ |#1|)) (-15 -4190 ($ |#1| |#1| |#1|)) (-15 -4216 ($ |#1| |#1| |#1|)))) -((-1626 (($ (-1 (-112) |#2|) $) 16)) (-3747 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-1518 (($) NIL) (($ (-618 |#2|)) 11)) (-3375 (((-112) $ $) 23))) -(((-222 |#1| |#2|) (-10 -8 (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -1518 (|#1| (-618 |#2|))) (-15 -1518 (|#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-223 |#2|) (-1067)) (T -222)) -NIL -(-10 -8 (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -1518 (|#1| (-618 |#2|))) (-15 -1518 (|#1|)) (-15 -3375 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-223 |#1|) (-138) (-1067)) (T -223)) +((-1951 (*1 *1 *1) (-4 *1 (-171)))) +(-13 (-10 -8 (-15 -1951 ($ $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 ((|#1| $) 75)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-3349 (($ $ $) NIL)) (-3591 (($ $) 19)) (-2856 (($ |#1| (-1124 |#1|)) 48)) (-1386 (((-3 $ "failed") $) 117)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-3715 (((-1124 |#1|) $) 82)) (-2745 (((-1124 |#1|) $) 79)) (-2652 (((-1124 |#1|) $) 80)) (-3102 (((-112) $) NIL)) (-3274 (((-1124 |#1|) $) 88)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3106 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ (-623 $)) NIL) (($ $ $) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL)) (-2272 (($ $ (-550)) 91)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-1334 (((-1124 |#1|) $) 89)) (-3382 (((-1124 (-400 |#1|)) $) 14)) (-1325 (($ (-400 |#1|)) 17) (($ |#1| (-1124 |#1|) (-1124 |#1|)) 38)) (-3380 (($ $) 93)) (-1518 (((-836) $) 127) (($ (-550)) 51) (($ |#1|) 52) (($ (-400 |#1|)) 36) (($ (-400 (-550))) NIL) (($ $) NIL)) (-2390 (((-749)) 64)) (-1345 (((-112) $ $) NIL)) (-3469 (((-1124 (-400 |#1|)) $) 18)) (-2626 (($) 25 T CONST)) (-2636 (($) 28 T CONST)) (-2316 (((-112) $ $) 35)) (-2414 (($ $ $) 115)) (-2403 (($ $) 106) (($ $ $) 103)) (-2391 (($ $ $) 101)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-400 |#1|) $) 111) (($ $ (-400 |#1|)) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL))) +(((-172 |#1|) (-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -1325 ($ (-400 |#1|))) (-15 -1325 ($ |#1| (-1124 |#1|) (-1124 |#1|))) (-15 -2856 ($ |#1| (-1124 |#1|))) (-15 -2745 ((-1124 |#1|) $)) (-15 -2652 ((-1124 |#1|) $)) (-15 -3715 ((-1124 |#1|) $)) (-15 -1453 (|#1| $)) (-15 -3591 ($ $)) (-15 -3469 ((-1124 (-400 |#1|)) $)) (-15 -3382 ((-1124 (-400 |#1|)) $)) (-15 -3274 ((-1124 |#1|) $)) (-15 -1334 ((-1124 |#1|) $)) (-15 -2272 ($ $ (-550))) (-15 -3380 ($ $)))) (-300)) (T -172)) +((-1325 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) (-1325 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-2856 (*1 *1 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1453 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-3591 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3274 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-2272 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3380 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) +(-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -1325 ($ (-400 |#1|))) (-15 -1325 ($ |#1| (-1124 |#1|) (-1124 |#1|))) (-15 -2856 ($ |#1| (-1124 |#1|))) (-15 -2745 ((-1124 |#1|) $)) (-15 -2652 ((-1124 |#1|) $)) (-15 -3715 ((-1124 |#1|) $)) (-15 -1453 (|#1| $)) (-15 -3591 ($ $)) (-15 -3469 ((-1124 (-400 |#1|)) $)) (-15 -3382 ((-1124 (-400 |#1|)) $)) (-15 -3274 ((-1124 |#1|) $)) (-15 -1334 ((-1124 |#1|) $)) (-15 -2272 ($ $ (-550))) (-15 -3380 ($ $)))) +((-2956 (($ (-108) $) 13)) (-4089 (((-3 (-108) "failed") (-1144) $) 12)) (-1518 (((-836) $) 16)) (-3044 (((-623 (-108)) $) 8))) +(((-173) (-13 (-595 (-836)) (-10 -8 (-15 -3044 ((-623 (-108)) $)) (-15 -2956 ($ (-108) $)) (-15 -4089 ((-3 (-108) "failed") (-1144) $))))) (T -173)) +((-3044 (*1 *2 *1) (-12 (-5 *2 (-623 (-108))) (-5 *1 (-173)))) (-2956 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-4089 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1144)) (-5 *2 (-108)) (-5 *1 (-173))))) +(-13 (-595 (-836)) (-10 -8 (-15 -3044 ((-623 (-108)) $)) (-15 -2956 ($ (-108) $)) (-15 -4089 ((-3 (-108) "failed") (-1144) $)))) +((-3906 (((-1 (-916 |#1|) (-916 |#1|)) |#1|) 40)) (-2355 (((-916 |#1|) (-916 |#1|)) 19)) (-1709 (((-1 (-916 |#1|) (-916 |#1|)) |#1|) 36)) (-2165 (((-916 |#1|) (-916 |#1|)) 17)) (-1457 (((-916 |#1|) (-916 |#1|)) 25)) (-2552 (((-916 |#1|) (-916 |#1|)) 24)) (-2459 (((-916 |#1|) (-916 |#1|)) 23)) (-1838 (((-1 (-916 |#1|) (-916 |#1|)) |#1|) 37)) (-1587 (((-1 (-916 |#1|) (-916 |#1|)) |#1|) 35)) (-3959 (((-1 (-916 |#1|) (-916 |#1|)) |#1|) 34)) (-2259 (((-916 |#1|) (-916 |#1|)) 18)) (-4015 (((-1 (-916 |#1|) (-916 |#1|)) |#1| |#1|) 43)) (-3158 (((-916 |#1|) (-916 |#1|)) 8)) (-2064 (((-1 (-916 |#1|) (-916 |#1|)) |#1|) 39)) (-1953 (((-1 (-916 |#1|) (-916 |#1|)) |#1|) 38))) +(((-174 |#1|) (-10 -7 (-15 -3158 ((-916 |#1|) (-916 |#1|))) (-15 -2165 ((-916 |#1|) (-916 |#1|))) (-15 -2259 ((-916 |#1|) (-916 |#1|))) (-15 -2355 ((-916 |#1|) (-916 |#1|))) (-15 -2459 ((-916 |#1|) (-916 |#1|))) (-15 -2552 ((-916 |#1|) (-916 |#1|))) (-15 -1457 ((-916 |#1|) (-916 |#1|))) (-15 -3959 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -1587 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -1709 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -1838 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -1953 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -2064 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -3906 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -4015 ((-1 (-916 |#1|) (-916 |#1|)) |#1| |#1|))) (-13 (-356) (-1166) (-975))) (T -174)) +((-4015 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1166) (-975))))) (-3906 (*1 *2 *3) (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1166) (-975))))) (-2064 (*1 *2 *3) (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1166) (-975))))) (-1953 (*1 *2 *3) (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1166) (-975))))) (-1838 (*1 *2 *3) (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1166) (-975))))) (-1709 (*1 *2 *3) (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1166) (-975))))) (-1587 (*1 *2 *3) (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1166) (-975))))) (-3959 (*1 *2 *3) (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1166) (-975))))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) (-5 *1 (-174 *3)))) (-2552 (*1 *2 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) (-5 *1 (-174 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) (-5 *1 (-174 *3)))) (-2355 (*1 *2 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) (-5 *1 (-174 *3)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) (-5 *1 (-174 *3)))) (-2165 (*1 *2 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) (-5 *1 (-174 *3)))) (-3158 (*1 *2 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) (-5 *1 (-174 *3))))) +(-10 -7 (-15 -3158 ((-916 |#1|) (-916 |#1|))) (-15 -2165 ((-916 |#1|) (-916 |#1|))) (-15 -2259 ((-916 |#1|) (-916 |#1|))) (-15 -2355 ((-916 |#1|) (-916 |#1|))) (-15 -2459 ((-916 |#1|) (-916 |#1|))) (-15 -2552 ((-916 |#1|) (-916 |#1|))) (-15 -1457 ((-916 |#1|) (-916 |#1|))) (-15 -3959 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -1587 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -1709 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -1838 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -1953 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -2064 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -3906 ((-1 (-916 |#1|) (-916 |#1|)) |#1|)) (-15 -4015 ((-1 (-916 |#1|) (-916 |#1|)) |#1| |#1|))) +((-2608 ((|#2| |#3|) 27))) +(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -2608 (|#2| |#3|))) (-170) (-1203 |#1|) (-703 |#1| |#2|)) (T -175)) +((-2608 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1203 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-703 *4 *2))))) +(-10 -7 (-15 -2608 (|#2| |#3|))) +((-4312 (((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)) 47 (|has| (-925 |#2|) (-859 |#1|))))) +(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-925 |#2|) (-859 |#1|)) (-15 -4312 ((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|))) |%noBranch|)) (-1068) (-13 (-859 |#1|) (-170)) (-164 |#2|)) (T -176)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) (-4 *3 (-164 *6)) (-4 (-925 *6) (-859 *5)) (-4 *6 (-13 (-859 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))) +(-10 -7 (IF (|has| (-925 |#2|) (-859 |#1|)) (-15 -4312 ((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|))) |%noBranch|)) +((-4243 (((-623 |#1|) (-623 |#1|) |#1|) 38)) (-4123 (((-623 |#1|) |#1| (-623 |#1|)) 19)) (-2559 (((-623 |#1|) (-623 (-623 |#1|)) (-623 |#1|)) 33) ((|#1| (-623 |#1|) (-623 |#1|)) 31))) +(((-177 |#1|) (-10 -7 (-15 -4123 ((-623 |#1|) |#1| (-623 |#1|))) (-15 -2559 (|#1| (-623 |#1|) (-623 |#1|))) (-15 -2559 ((-623 |#1|) (-623 (-623 |#1|)) (-623 |#1|))) (-15 -4243 ((-623 |#1|) (-623 |#1|) |#1|))) (-300)) (T -177)) +((-4243 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))) (-2559 (*1 *2 *3 *2) (-12 (-5 *3 (-623 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-300)) (-5 *1 (-177 *4)))) (-2559 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) (-4123 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) +(-10 -7 (-15 -4123 ((-623 |#1|) |#1| (-623 |#1|))) (-15 -2559 (|#1| (-623 |#1|) (-623 |#1|))) (-15 -2559 ((-623 |#1|) (-623 (-623 |#1|)) (-623 |#1|))) (-15 -4243 ((-623 |#1|) (-623 |#1|) |#1|))) +((-1504 (((-112) $ $) NIL)) (-1551 (((-1180) $) 13)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2802 (((-1103) $) 10)) (-1518 (((-836) $) 22) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-178) (-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)) (-15 -1551 ((-1180) $))))) (T -178)) +((-2802 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-178)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-178))))) +(-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)) (-15 -1551 ((-1180) $)))) +((-2861 (((-2 (|:| |start| |#2|) (|:| -1877 (-411 |#2|))) |#2|) 61)) (-2740 ((|#1| |#1|) 54)) (-2648 (((-167 |#1|) |#2|) 84)) (-3711 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3586 ((|#2| |#2|) 83)) (-3465 (((-411 |#2|) |#2| |#1|) 113) (((-411 |#2|) |#2| |#1| (-112)) 81)) (-1389 ((|#1| |#2|) 112)) (-3343 ((|#2| |#2|) 119)) (-3338 (((-411 |#2|) |#2|) 134) (((-411 |#2|) |#2| |#1|) 32) (((-411 |#2|) |#2| |#1| (-112)) 133)) (-3250 (((-623 (-2 (|:| -1877 (-623 |#2|)) (|:| -2478 |#1|))) |#2| |#2|) 132) (((-623 (-2 (|:| -1877 (-623 |#2|)) (|:| -2478 |#1|))) |#2| |#2| (-112)) 76)) (-1304 (((-623 (-167 |#1|)) |#2| |#1|) 40) (((-623 (-167 |#1|)) |#2|) 41))) +(((-179 |#1| |#2|) (-10 -7 (-15 -1304 ((-623 (-167 |#1|)) |#2|)) (-15 -1304 ((-623 (-167 |#1|)) |#2| |#1|)) (-15 -3250 ((-623 (-2 (|:| -1877 (-623 |#2|)) (|:| -2478 |#1|))) |#2| |#2| (-112))) (-15 -3250 ((-623 (-2 (|:| -1877 (-623 |#2|)) (|:| -2478 |#1|))) |#2| |#2|)) (-15 -3338 ((-411 |#2|) |#2| |#1| (-112))) (-15 -3338 ((-411 |#2|) |#2| |#1|)) (-15 -3338 ((-411 |#2|) |#2|)) (-15 -3343 (|#2| |#2|)) (-15 -1389 (|#1| |#2|)) (-15 -3465 ((-411 |#2|) |#2| |#1| (-112))) (-15 -3465 ((-411 |#2|) |#2| |#1|)) (-15 -3586 (|#2| |#2|)) (-15 -3711 (|#1| |#2| |#1|)) (-15 -3711 (|#1| |#2|)) (-15 -2648 ((-167 |#1|) |#2|)) (-15 -2740 (|#1| |#1|)) (-15 -2861 ((-2 (|:| |start| |#2|) (|:| -1877 (-411 |#2|))) |#2|))) (-13 (-356) (-823)) (-1203 (-167 |#1|))) (T -179)) +((-2861 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-2 (|:| |start| *3) (|:| -1877 (-411 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) (-2740 (*1 *2 *2) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1203 (-167 *2))))) (-2648 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-823))) (-4 *3 (-1203 *2)))) (-3711 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1203 (-167 *2))))) (-3711 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1203 (-167 *2))))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1203 (-167 *3))))) (-3465 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) (-1389 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1203 (-167 *2))))) (-3343 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1203 (-167 *3))))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) (-3338 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) (-3338 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) (-3250 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-2 (|:| -1877 (-623 *3)) (|:| -2478 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) (-3250 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-823))) (-5 *2 (-623 (-2 (|:| -1877 (-623 *3)) (|:| -2478 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1203 (-167 *5))))) (-1304 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) (-1304 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4)))))) +(-10 -7 (-15 -1304 ((-623 (-167 |#1|)) |#2|)) (-15 -1304 ((-623 (-167 |#1|)) |#2| |#1|)) (-15 -3250 ((-623 (-2 (|:| -1877 (-623 |#2|)) (|:| -2478 |#1|))) |#2| |#2| (-112))) (-15 -3250 ((-623 (-2 (|:| -1877 (-623 |#2|)) (|:| -2478 |#1|))) |#2| |#2|)) (-15 -3338 ((-411 |#2|) |#2| |#1| (-112))) (-15 -3338 ((-411 |#2|) |#2| |#1|)) (-15 -3338 ((-411 |#2|) |#2|)) (-15 -3343 (|#2| |#2|)) (-15 -1389 (|#1| |#2|)) (-15 -3465 ((-411 |#2|) |#2| |#1| (-112))) (-15 -3465 ((-411 |#2|) |#2| |#1|)) (-15 -3586 (|#2| |#2|)) (-15 -3711 (|#1| |#2| |#1|)) (-15 -3711 (|#1| |#2|)) (-15 -2648 ((-167 |#1|) |#2|)) (-15 -2740 (|#1| |#1|)) (-15 -2861 ((-2 (|:| |start| |#2|) (|:| -1877 (-411 |#2|))) |#2|))) +((-2971 (((-3 |#2| "failed") |#2|) 14)) (-3066 (((-749) |#2|) 16)) (-3173 ((|#2| |#2| |#2|) 18))) +(((-180 |#1| |#2|) (-10 -7 (-15 -2971 ((-3 |#2| "failed") |#2|)) (-15 -3066 ((-749) |#2|)) (-15 -3173 (|#2| |#2| |#2|))) (-1181) (-652 |#1|)) (T -180)) +((-3173 (*1 *2 *2 *2) (-12 (-4 *3 (-1181)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3)))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-1181)) (-5 *2 (-749)) (-5 *1 (-180 *4 *3)) (-4 *3 (-652 *4)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *3 (-1181)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) +(-10 -7 (-15 -2971 ((-3 |#2| "failed") |#2|)) (-15 -3066 ((-749) |#2|)) (-15 -3173 (|#2| |#2| |#2|))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2661 (((-1144) $) 10)) (-1518 (((-836) $) 17)) (-2899 (((-623 (-1149)) $) 12)) (-2316 (((-112) $ $) 15))) +(((-181) (-13 (-1068) (-10 -8 (-15 -2661 ((-1144) $)) (-15 -2899 ((-623 (-1149)) $))))) (T -181)) +((-2661 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-181)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-623 (-1149))) (-5 *1 (-181))))) +(-13 (-1068) (-10 -8 (-15 -2661 ((-1144) $)) (-15 -2899 ((-623 (-1149)) $)))) +((-2369 ((|#2| |#2|) 28)) (-2447 (((-112) |#2|) 19)) (-3365 (((-309 |#1|) |#2|) 12)) (-3377 (((-309 |#1|) |#2|) 14)) (-2219 ((|#2| |#2| (-1144)) 68) ((|#2| |#2|) 69)) (-2523 (((-167 (-309 |#1|)) |#2|) 10)) (-2296 ((|#2| |#2| (-1144)) 65) ((|#2| |#2|) 59))) +(((-182 |#1| |#2|) (-10 -7 (-15 -2219 (|#2| |#2|)) (-15 -2219 (|#2| |#2| (-1144))) (-15 -2296 (|#2| |#2|)) (-15 -2296 (|#2| |#2| (-1144))) (-15 -3365 ((-309 |#1|) |#2|)) (-15 -3377 ((-309 |#1|) |#2|)) (-15 -2447 ((-112) |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2523 ((-167 (-309 |#1|)) |#2|))) (-13 (-542) (-825) (-1011 (-550))) (-13 (-27) (-1166) (-423 (-167 |#1|)))) (T -182)) +((-2523 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-167 (-309 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 (-167 *4)))))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 (-167 *3)))))) (-2447 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-112)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 (-167 *4)))))) (-3377 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-309 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 (-167 *4)))))) (-3365 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-309 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 (-167 *4)))))) (-2296 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 (-167 *4)))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 (-167 *3)))))) (-2219 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 (-167 *4)))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 (-167 *3))))))) +(-10 -7 (-15 -2219 (|#2| |#2|)) (-15 -2219 (|#2| |#2| (-1144))) (-15 -2296 (|#2| |#2|)) (-15 -2296 (|#2| |#2| (-1144))) (-15 -3365 ((-309 |#1|) |#2|)) (-15 -3377 ((-309 |#1|) |#2|)) (-15 -2447 ((-112) |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2523 ((-167 (-309 |#1|)) |#2|))) +((-2187 (((-1227 (-667 (-925 |#1|))) (-1227 (-667 |#1|))) 24)) (-1518 (((-1227 (-667 (-400 (-925 |#1|)))) (-1227 (-667 |#1|))) 33))) +(((-183 |#1|) (-10 -7 (-15 -2187 ((-1227 (-667 (-925 |#1|))) (-1227 (-667 |#1|)))) (-15 -1518 ((-1227 (-667 (-400 (-925 |#1|)))) (-1227 (-667 |#1|))))) (-170)) (T -183)) +((-1518 (*1 *2 *3) (-12 (-5 *3 (-1227 (-667 *4))) (-4 *4 (-170)) (-5 *2 (-1227 (-667 (-400 (-925 *4))))) (-5 *1 (-183 *4)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-1227 (-667 *4))) (-4 *4 (-170)) (-5 *2 (-1227 (-667 (-925 *4)))) (-5 *1 (-183 *4))))) +(-10 -7 (-15 -2187 ((-1227 (-667 (-925 |#1|))) (-1227 (-667 |#1|)))) (-15 -1518 ((-1227 (-667 (-400 (-925 |#1|)))) (-1227 (-667 |#1|))))) +((-1959 (((-1146 (-400 (-550))) (-1146 (-400 (-550))) (-1146 (-400 (-550)))) 66)) (-1985 (((-1146 (-400 (-550))) (-623 (-550)) (-623 (-550))) 75)) (-2287 (((-1146 (-400 (-550))) (-550)) 40)) (-2235 (((-1146 (-400 (-550))) (-550)) 52)) (-3866 (((-400 (-550)) (-1146 (-400 (-550)))) 62)) (-2386 (((-1146 (-400 (-550))) (-550)) 32)) (-1528 (((-1146 (-400 (-550))) (-550)) 48)) (-2592 (((-1146 (-400 (-550))) (-550)) 46)) (-1818 (((-1146 (-400 (-550))) (-1146 (-400 (-550))) (-1146 (-400 (-550)))) 60)) (-3380 (((-1146 (-400 (-550))) (-550)) 25)) (-1661 (((-400 (-550)) (-1146 (-400 (-550))) (-1146 (-400 (-550)))) 64)) (-2495 (((-1146 (-400 (-550))) (-550)) 30)) (-2080 (((-1146 (-400 (-550))) (-623 (-550))) 72))) +(((-184) (-10 -7 (-15 -3380 ((-1146 (-400 (-550))) (-550))) (-15 -2287 ((-1146 (-400 (-550))) (-550))) (-15 -2386 ((-1146 (-400 (-550))) (-550))) (-15 -2495 ((-1146 (-400 (-550))) (-550))) (-15 -2592 ((-1146 (-400 (-550))) (-550))) (-15 -1528 ((-1146 (-400 (-550))) (-550))) (-15 -2235 ((-1146 (-400 (-550))) (-550))) (-15 -1661 ((-400 (-550)) (-1146 (-400 (-550))) (-1146 (-400 (-550))))) (-15 -1818 ((-1146 (-400 (-550))) (-1146 (-400 (-550))) (-1146 (-400 (-550))))) (-15 -3866 ((-400 (-550)) (-1146 (-400 (-550))))) (-15 -1959 ((-1146 (-400 (-550))) (-1146 (-400 (-550))) (-1146 (-400 (-550))))) (-15 -2080 ((-1146 (-400 (-550))) (-623 (-550)))) (-15 -1985 ((-1146 (-400 (-550))) (-623 (-550)) (-623 (-550)))))) (T -184)) +((-1985 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)))) (-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-1146 (-400 (-550)))) (-5 *2 (-400 (-550))) (-5 *1 (-184)))) (-1818 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)))) (-1661 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 (-400 (-550)))) (-5 *2 (-400 (-550))) (-5 *1 (-184)))) (-2235 (*1 *2 *3) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-1528 (*1 *2 *3) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-2592 (*1 *2 *3) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-2495 (*1 *2 *3) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-2386 (*1 *2 *3) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-2287 (*1 *2 *3) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) (-3380 (*1 *2 *3) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) +(-10 -7 (-15 -3380 ((-1146 (-400 (-550))) (-550))) (-15 -2287 ((-1146 (-400 (-550))) (-550))) (-15 -2386 ((-1146 (-400 (-550))) (-550))) (-15 -2495 ((-1146 (-400 (-550))) (-550))) (-15 -2592 ((-1146 (-400 (-550))) (-550))) (-15 -1528 ((-1146 (-400 (-550))) (-550))) (-15 -2235 ((-1146 (-400 (-550))) (-550))) (-15 -1661 ((-400 (-550)) (-1146 (-400 (-550))) (-1146 (-400 (-550))))) (-15 -1818 ((-1146 (-400 (-550))) (-1146 (-400 (-550))) (-1146 (-400 (-550))))) (-15 -3866 ((-400 (-550)) (-1146 (-400 (-550))))) (-15 -1959 ((-1146 (-400 (-550))) (-1146 (-400 (-550))) (-1146 (-400 (-550))))) (-15 -2080 ((-1146 (-400 (-550))) (-623 (-550)))) (-15 -1985 ((-1146 (-400 (-550))) (-623 (-550)) (-623 (-550))))) +((-2163 (((-411 (-1140 (-550))) (-550)) 28)) (-2082 (((-623 (-1140 (-550))) (-550)) 23)) (-3362 (((-1140 (-550)) (-550)) 21))) +(((-185) (-10 -7 (-15 -2082 ((-623 (-1140 (-550))) (-550))) (-15 -3362 ((-1140 (-550)) (-550))) (-15 -2163 ((-411 (-1140 (-550))) (-550))))) (T -185)) +((-2163 (*1 *2 *3) (-12 (-5 *2 (-411 (-1140 (-550)))) (-5 *1 (-185)) (-5 *3 (-550)))) (-3362 (*1 *2 *3) (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-185)) (-5 *3 (-550)))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-623 (-1140 (-550)))) (-5 *1 (-185)) (-5 *3 (-550))))) +(-10 -7 (-15 -2082 ((-623 (-1140 (-550))) (-550))) (-15 -3362 ((-1140 (-550)) (-550))) (-15 -2163 ((-411 (-1140 (-550))) (-550)))) +((-3323 (((-1124 (-219)) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 105)) (-1624 (((-623 (-1126)) (-1124 (-219))) NIL)) (-4000 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 81)) (-4117 (((-623 (-219)) (-309 (-219)) (-1144) (-1062 (-818 (-219)))) NIL)) (-1526 (((-623 (-1126)) (-623 (-219))) NIL)) (-1725 (((-219) (-1062 (-818 (-219)))) 24)) (-1827 (((-219) (-1062 (-818 (-219)))) 25)) (-4225 (((-372) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 98)) (-4109 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-2543 (((-1126) (-219)) NIL)) (-4246 (((-1126) (-623 (-1126))) 20)) (-1301 (((-1008) (-1144) (-1144) (-1008)) 13))) +(((-186) (-10 -7 (-15 -4000 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4109 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1725 ((-219) (-1062 (-818 (-219))))) (-15 -1827 ((-219) (-1062 (-818 (-219))))) (-15 -4225 ((-372) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4117 ((-623 (-219)) (-309 (-219)) (-1144) (-1062 (-818 (-219))))) (-15 -3323 ((-1124 (-219)) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2543 ((-1126) (-219))) (-15 -1526 ((-623 (-1126)) (-623 (-219)))) (-15 -1624 ((-623 (-1126)) (-1124 (-219)))) (-15 -4246 ((-1126) (-623 (-1126)))) (-15 -1301 ((-1008) (-1144) (-1144) (-1008))))) (T -186)) +((-1301 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1008)) (-5 *3 (-1144)) (-5 *1 (-186)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-1126)) (-5 *1 (-186)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-186)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-186)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1126)) (-5 *1 (-186)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-186)))) (-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1144)) (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-186)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-186)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-186)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-186))))) +(-10 -7 (-15 -4000 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4109 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1725 ((-219) (-1062 (-818 (-219))))) (-15 -1827 ((-219) (-1062 (-818 (-219))))) (-15 -4225 ((-372) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4117 ((-623 (-219)) (-309 (-219)) (-1144) (-1062 (-818 (-219))))) (-15 -3323 ((-1124 (-219)) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2543 ((-1126) (-219))) (-15 -1526 ((-623 (-1126)) (-623 (-219)))) (-15 -1624 ((-623 (-1126)) (-1124 (-219)))) (-15 -4246 ((-1126) (-623 (-1126)))) (-15 -1301 ((-1008) (-1144) (-1144) (-1008)))) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 55) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-187) (-765)) (T -187)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 60) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-188) (-765)) (T -188)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 69) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-189) (-765)) (T -189)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 56) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-190) (-765)) (T -190)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 67) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 38) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-191) (-765)) (T -191)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 73) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-192) (-765)) (T -192)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 80) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 44) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-193) (-765)) (T -193)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 70) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-194) (-765)) (T -194)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 66)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-195) (-765)) (T -195)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 63)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-196) (-765)) (T -196)) +NIL +(-765) +((-1504 (((-112) $ $) NIL)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 90) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 78) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-197) (-765)) (T -197)) +NIL +(-765) +((-1409 (((-3 (-2 (|:| -3903 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 85)) (-3449 (((-550) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-3334 (((-3 (-623 (-219)) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 73))) +(((-198) (-10 -7 (-15 -1409 ((-3 (-2 (|:| -3903 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3334 ((-3 (-623 (-219)) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3449 ((-550) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -198)) +((-3449 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-550)) (-5 *1 (-198)))) (-3334 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-198)))) (-1409 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3903 (-114)) (|:| |w| (-219)))) (-5 *1 (-198))))) +(-10 -7 (-15 -1409 ((-3 (-2 (|:| -3903 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3334 ((-3 (-623 (-219)) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3449 ((-550) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) +((-2748 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-3848 (((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 130)) (-3749 (((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-667 (-309 (-219)))) 89)) (-3645 (((-372) (-667 (-309 (-219)))) 113)) (-1855 (((-667 (-309 (-219))) (-1227 (-309 (-219))) (-623 (-1144))) 110)) (-4252 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 30)) (-2870 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 43)) (-3866 (((-667 (-309 (-219))) (-667 (-309 (-219))) (-623 (-1144)) (-1227 (-309 (-219)))) 102)) (-3537 (((-372) (-372) (-623 (-372))) 107) (((-372) (-372) (-372)) 105)) (-3908 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36))) +(((-199) (-10 -7 (-15 -3537 ((-372) (-372) (-372))) (-15 -3537 ((-372) (-372) (-623 (-372)))) (-15 -3645 ((-372) (-667 (-309 (-219))))) (-15 -1855 ((-667 (-309 (-219))) (-1227 (-309 (-219))) (-623 (-1144)))) (-15 -3866 ((-667 (-309 (-219))) (-667 (-309 (-219))) (-623 (-1144)) (-1227 (-309 (-219))))) (-15 -3749 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-667 (-309 (-219))))) (-15 -3848 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2748 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2870 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3908 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4252 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -199)) +((-4252 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) (-5 *1 (-199)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-667 (-309 (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) (-5 *1 (-199)))) (-3866 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-667 (-309 (-219)))) (-5 *3 (-623 (-1144))) (-5 *4 (-1227 (-309 (-219)))) (-5 *1 (-199)))) (-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *4 (-623 (-1144))) (-5 *2 (-667 (-309 (-219)))) (-5 *1 (-199)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-667 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3537 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-372))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3537 (*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-199))))) +(-10 -7 (-15 -3537 ((-372) (-372) (-372))) (-15 -3537 ((-372) (-372) (-623 (-372)))) (-15 -3645 ((-372) (-667 (-309 (-219))))) (-15 -1855 ((-667 (-309 (-219))) (-1227 (-309 (-219))) (-623 (-1144)))) (-15 -3866 ((-667 (-309 (-219))) (-667 (-309 (-219))) (-623 (-1144)) (-1227 (-309 (-219))))) (-15 -3749 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-667 (-309 (-219))))) (-15 -3848 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2748 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2870 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3908 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4252 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) +((-1504 (((-112) $ $) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-1703 (((-1008) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 64)) (-2316 (((-112) $ $) NIL))) +(((-200) (-778)) (T -200)) +NIL +(-778) +((-1504 (((-112) $ $) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-1703 (((-1008) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 62)) (-2316 (((-112) $ $) NIL))) +(((-201) (-778)) (T -201)) +NIL +(-778) +((-1504 (((-112) $ $) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-1703 (((-1008) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 66)) (-2316 (((-112) $ $) NIL))) +(((-202) (-778)) (T -202)) +NIL +(-778) +((-1504 (((-112) $ $) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 46)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-1703 (((-1008) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 75)) (-2316 (((-112) $ $) NIL))) +(((-203) (-778)) (T -203)) +NIL +(-778) +((-1540 (((-623 (-1144)) (-1144) (-749)) 23)) (-1329 (((-309 (-219)) (-309 (-219))) 31)) (-3516 (((-112) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) 74)) (-3386 (((-112) (-219) (-219) (-623 (-309 (-219)))) 45))) +(((-204) (-10 -7 (-15 -1540 ((-623 (-1144)) (-1144) (-749))) (-15 -1329 ((-309 (-219)) (-309 (-219)))) (-15 -3386 ((-112) (-219) (-219) (-623 (-309 (-219))))) (-15 -3516 ((-112) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219))))))) (T -204)) +((-3516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) (-5 *2 (-112)) (-5 *1 (-204)))) (-3386 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-623 (-309 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-204)))) (-1329 (*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-204)))) (-1540 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-623 (-1144))) (-5 *1 (-204)) (-5 *3 (-1144))))) +(-10 -7 (-15 -1540 ((-623 (-1144)) (-1144) (-749))) (-15 -1329 ((-309 (-219)) (-309 (-219)))) (-15 -3386 ((-112) (-219) (-219) (-623 (-309 (-219))))) (-15 -3516 ((-112) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))))) +((-1504 (((-112) $ $) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) 26)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-1285 (((-1008) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) 57)) (-2316 (((-112) $ $) NIL))) +(((-205) (-868)) (T -205)) +NIL +(-868) +((-1504 (((-112) $ $) NIL)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) 21)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-1285 (((-1008) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) NIL)) (-2316 (((-112) $ $) NIL))) +(((-206) (-868)) (T -206)) +NIL +(-868) +((-1504 (((-112) $ $) NIL)) (-1705 ((|#2| $ (-749) |#2|) 11)) (-2578 (($) 8)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2680 ((|#2| $ (-749)) 10)) (-1518 (((-836) $) 18)) (-2316 (((-112) $ $) 13))) +(((-207 |#1| |#2|) (-13 (-1068) (-10 -8 (-15 -2578 ($)) (-15 -2680 (|#2| $ (-749))) (-15 -1705 (|#2| $ (-749) |#2|)))) (-894) (-1068)) (T -207)) +((-2578 (*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1068)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *2 (-1068)) (-5 *1 (-207 *4 *2)) (-14 *4 (-894)))) (-1705 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-207 *4 *2)) (-14 *4 (-894)) (-4 *2 (-1068))))) +(-13 (-1068) (-10 -8 (-15 -2578 ($)) (-15 -2680 (|#2| $ (-749))) (-15 -1705 (|#2| $ (-749) |#2|)))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3656 (((-1232) $) 36) (((-1232) $ (-894) (-894)) 38)) (-2680 (($ $ (-962)) 19) (((-239 (-1126)) $ (-1144)) 15)) (-2048 (((-1232) $) 34)) (-1518 (((-836) $) 31) (($ (-623 |#1|)) 8)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $ $) 27)) (-2391 (($ $ $) 22))) +(((-208 |#1|) (-13 (-1068) (-10 -8 (-15 -2680 ($ $ (-962))) (-15 -2680 ((-239 (-1126)) $ (-1144))) (-15 -2391 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -1518 ($ (-623 |#1|))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $)) (-15 -3656 ((-1232) $ (-894) (-894))))) (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $))))) (T -208)) +((-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-962)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $))))))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-239 (-1126))) (-5 *1 (-208 *4)) (-4 *4 (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ *3)) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $))))))) (-2391 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $))))))) (-2403 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $))))))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $))))) (-5 *1 (-208 *3)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 (*2 $)) (-15 -3656 (*2 $))))))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 (*2 $)) (-15 -3656 (*2 $))))))) (-3656 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1232)) (-5 *1 (-208 *4)) (-4 *4 (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 (*2 $)) (-15 -3656 (*2 $)))))))) +(-13 (-1068) (-10 -8 (-15 -2680 ($ $ (-962))) (-15 -2680 ((-239 (-1126)) $ (-1144))) (-15 -2391 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -1518 ($ (-623 |#1|))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $)) (-15 -3656 ((-1232) $ (-894) (-894))))) +((-2150 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2150 (|#2| |#4| (-1 |#2| |#2|)))) (-356) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -209)) +((-2150 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1203 (-400 *2))) (-4 *2 (-1203 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6))))) +(-10 -7 (-15 -2150 (|#2| |#4| (-1 |#2| |#2|)))) +((-1492 ((|#2| |#2| (-749) |#2|) 42)) (-2482 ((|#2| |#2| (-749) |#2|) 38)) (-4247 (((-623 |#2|) (-623 (-2 (|:| |deg| (-749)) (|:| -3393 |#2|)))) 57)) (-4322 (((-623 (-2 (|:| |deg| (-749)) (|:| -3393 |#2|))) |#2|) 53)) (-1638 (((-112) |#2|) 50)) (-1338 (((-411 |#2|) |#2|) 77)) (-3338 (((-411 |#2|) |#2|) 76)) (-1284 ((|#2| |#2| (-749) |#2|) 36)) (-3325 (((-2 (|:| |cont| |#1|) (|:| -1877 (-623 (-2 (|:| |irr| |#2|) (|:| -4245 (-550)))))) |#2| (-112)) 69))) +(((-210 |#1| |#2|) (-10 -7 (-15 -3338 ((-411 |#2|) |#2|)) (-15 -1338 ((-411 |#2|) |#2|)) (-15 -3325 ((-2 (|:| |cont| |#1|) (|:| -1877 (-623 (-2 (|:| |irr| |#2|) (|:| -4245 (-550)))))) |#2| (-112))) (-15 -4322 ((-623 (-2 (|:| |deg| (-749)) (|:| -3393 |#2|))) |#2|)) (-15 -4247 ((-623 |#2|) (-623 (-2 (|:| |deg| (-749)) (|:| -3393 |#2|))))) (-15 -1284 (|#2| |#2| (-749) |#2|)) (-15 -2482 (|#2| |#2| (-749) |#2|)) (-15 -1492 (|#2| |#2| (-749) |#2|)) (-15 -1638 ((-112) |#2|))) (-342) (-1203 |#1|)) (T -210)) +((-1638 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1203 *4)))) (-1492 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1203 *4)))) (-2482 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1203 *4)))) (-1284 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1203 *4)))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| |deg| (-749)) (|:| -3393 *5)))) (-4 *5 (-1203 *4)) (-4 *4 (-342)) (-5 *2 (-623 *5)) (-5 *1 (-210 *4 *5)))) (-4322 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-623 (-2 (|:| |deg| (-749)) (|:| -3393 *3)))) (-5 *1 (-210 *4 *3)) (-4 *3 (-1203 *4)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-342)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1877 (-623 (-2 (|:| |irr| *3) (|:| -4245 (-550))))))) (-5 *1 (-210 *5 *3)) (-4 *3 (-1203 *5)))) (-1338 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1203 *4)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -3338 ((-411 |#2|) |#2|)) (-15 -1338 ((-411 |#2|) |#2|)) (-15 -3325 ((-2 (|:| |cont| |#1|) (|:| -1877 (-623 (-2 (|:| |irr| |#2|) (|:| -4245 (-550)))))) |#2| (-112))) (-15 -4322 ((-623 (-2 (|:| |deg| (-749)) (|:| -3393 |#2|))) |#2|)) (-15 -4247 ((-623 |#2|) (-623 (-2 (|:| |deg| (-749)) (|:| -3393 |#2|))))) (-15 -1284 (|#2| |#2| (-749) |#2|)) (-15 -2482 (|#2| |#2| (-749) |#2|)) (-15 -1492 (|#2| |#2| (-749) |#2|)) (-15 -1638 ((-112) |#2|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 (((-550) $) NIL (|has| (-550) (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| (-550) (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL (|has| (-550) (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-550) (-1011 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-550) (-1011 (-550))))) (-2726 (((-550) $) NIL) (((-1144) $) NIL (|has| (-550) (-1011 (-1144)))) (((-400 (-550)) $) NIL (|has| (-550) (-1011 (-550)))) (((-550) $) NIL (|has| (-550) (-1011 (-550))))) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-550) (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) NIL (|has| (-550) (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| (-550) (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| (-550) (-859 (-372))))) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL)) (-2705 (((-550) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| (-550) (-1119)))) (-3329 (((-112) $) NIL (|has| (-550) (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| (-550) (-825)))) (-3972 (($ (-1 (-550) (-550)) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-550) (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| (-550) (-300))) (((-400 (-550)) $) NIL)) (-1608 (((-550) $) NIL (|has| (-550) (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 (-550)) (-623 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-302 (-550)))) (($ $ (-287 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-287 (-550)))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-1144)) (-623 (-550))) NIL (|has| (-550) (-505 (-1144) (-550)))) (($ $ (-1144) (-550)) NIL (|has| (-550) (-505 (-1144) (-550))))) (-3542 (((-749) $) NIL)) (-2680 (($ $ (-550)) NIL (|has| (-550) (-279 (-550) (-550))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1144)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2639 (($ $) NIL)) (-2715 (((-550) $) NIL)) (-1795 (($ (-400 (-550))) 9)) (-4028 (((-865 (-550)) $) NIL (|has| (-550) (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| (-550) (-596 (-865 (-372))))) (((-526) $) NIL (|has| (-550) (-596 (-526)))) (((-372) $) NIL (|has| (-550) (-995))) (((-219) $) NIL (|has| (-550) (-995)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-550) (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 8) (($ (-550)) NIL) (($ (-1144)) NIL (|has| (-550) (-1011 (-1144)))) (((-400 (-550)) $) NIL) (((-977 10) $) 10)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-550) (-882))) (|has| (-550) (-143))))) (-2390 (((-749)) NIL)) (-1754 (((-550) $) NIL (|has| (-550) (-535)))) (-1345 (((-112) $ $) NIL)) (-1635 (($ $) NIL (|has| (-550) (-798)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1144)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2363 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2414 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) +(((-211) (-13 (-965 (-550)) (-10 -8 (-15 -1518 ((-400 (-550)) $)) (-15 -1518 ((-977 10) $)) (-15 -3948 ((-400 (-550)) $)) (-15 -1795 ($ (-400 (-550))))))) (T -211)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-977 10)) (-5 *1 (-211)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211)))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211))))) +(-13 (-965 (-550)) (-10 -8 (-15 -1518 ((-400 (-550)) $)) (-15 -1518 ((-977 10) $)) (-15 -3948 ((-400 (-550)) $)) (-15 -1795 ($ (-400 (-550)))))) +((-1504 (((-112) $ $) NIL)) (-2838 (((-1086) $) 13)) (-1825 (((-1126) $) NIL)) (-2026 (((-475) $) 10)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 25) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-1103) $) 15)) (-2316 (((-112) $ $) NIL))) +(((-212) (-13 (-1051) (-10 -8 (-15 -2026 ((-475) $)) (-15 -2838 ((-1086) $)) (-15 -1925 ((-1103) $))))) (T -212)) +((-2026 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-212)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-212))))) +(-13 (-1051) (-10 -8 (-15 -2026 ((-475) $)) (-15 -2838 ((-1086) $)) (-15 -1925 ((-1103) $)))) +((-1489 (((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1060 (-818 |#2|)) (-1126)) 28) (((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1060 (-818 |#2|))) 24)) (-1423 (((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1144) (-818 |#2|) (-818 |#2|) (-112)) 17))) +(((-213 |#1| |#2|) (-10 -7 (-15 -1489 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1060 (-818 |#2|)))) (-15 -1489 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1060 (-818 |#2|)) (-1126))) (-15 -1423 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1144) (-818 |#2|) (-818 |#2|) (-112)))) (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550))) (-13 (-1166) (-932) (-29 |#1|))) (T -213)) +((-1423 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1144)) (-5 *6 (-112)) (-4 *7 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-4 *3 (-13 (-1166) (-932) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *7 *3)) (-5 *5 (-818 *3)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1060 (-818 *3))) (-5 *5 (-1126)) (-4 *3 (-13 (-1166) (-932) (-29 *6))) (-4 *6 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *6 *3)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1060 (-818 *3))) (-4 *3 (-13 (-1166) (-932) (-29 *5))) (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *5 *3))))) +(-10 -7 (-15 -1489 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1060 (-818 |#2|)))) (-15 -1489 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1060 (-818 |#2|)) (-1126))) (-15 -1423 ((-3 (|:| |f1| (-818 |#2|)) (|:| |f2| (-623 (-818 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1144) (-818 |#2|) (-818 |#2|) (-112)))) +((-1489 (((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-400 (-925 |#1|)))) (-1126)) 46) (((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-400 (-925 |#1|))))) 43) (((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-309 |#1|))) (-1126)) 47) (((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-309 |#1|)))) 20))) +(((-214 |#1|) (-10 -7 (-15 -1489 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-309 |#1|))))) (-15 -1489 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-309 |#1|))) (-1126))) (-15 -1489 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-400 (-925 |#1|)))))) (-15 -1489 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-400 (-925 |#1|)))) (-1126)))) (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (T -214)) +((-1489 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1060 (-818 (-400 (-925 *6))))) (-5 *5 (-1126)) (-5 *3 (-400 (-925 *6))) (-4 *6 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 (-309 *6))) (|:| |f2| (-623 (-818 (-309 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1060 (-818 (-400 (-925 *5))))) (-5 *3 (-400 (-925 *5))) (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 (-309 *5))) (|:| |f2| (-623 (-818 (-309 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-400 (-925 *6))) (-5 *4 (-1060 (-818 (-309 *6)))) (-5 *5 (-1126)) (-4 *6 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 (-309 *6))) (|:| |f2| (-623 (-818 (-309 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1060 (-818 (-309 *5)))) (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |f1| (-818 (-309 *5))) (|:| |f2| (-623 (-818 (-309 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5))))) +(-10 -7 (-15 -1489 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-309 |#1|))))) (-15 -1489 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-309 |#1|))) (-1126))) (-15 -1489 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-400 (-925 |#1|)))))) (-15 -1489 ((-3 (|:| |f1| (-818 (-309 |#1|))) (|:| |f2| (-623 (-818 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-925 |#1|)) (-1060 (-818 (-400 (-925 |#1|)))) (-1126)))) +((-2419 (((-2 (|:| -2739 (-1140 |#1|)) (|:| |deg| (-894))) (-1140 |#1|)) 21)) (-4214 (((-623 (-309 |#2|)) (-309 |#2|) (-894)) 42))) +(((-215 |#1| |#2|) (-10 -7 (-15 -2419 ((-2 (|:| -2739 (-1140 |#1|)) (|:| |deg| (-894))) (-1140 |#1|))) (-15 -4214 ((-623 (-309 |#2|)) (-309 |#2|) (-894)))) (-1020) (-13 (-542) (-825))) (T -215)) +((-4214 (*1 *2 *3 *4) (-12 (-5 *4 (-894)) (-4 *6 (-13 (-542) (-825))) (-5 *2 (-623 (-309 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-309 *6)) (-4 *5 (-1020)))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-2 (|:| -2739 (-1140 *4)) (|:| |deg| (-894)))) (-5 *1 (-215 *4 *5)) (-5 *3 (-1140 *4)) (-4 *5 (-13 (-542) (-825)))))) +(-10 -7 (-15 -2419 ((-2 (|:| -2739 (-1140 |#1|)) (|:| |deg| (-894))) (-1140 |#1|))) (-15 -4214 ((-623 (-309 |#2|)) (-309 |#2|) (-894)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3623 ((|#1| $) NIL)) (-2038 ((|#1| $) 25)) (-4047 (((-112) $ (-749)) NIL)) (-3513 (($) NIL T CONST)) (-1945 (($ $) NIL)) (-2342 (($ $) 31)) (-2094 ((|#1| |#1| $) NIL)) (-2006 ((|#1| $) NIL)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-3772 (((-749) $) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3638 ((|#1| $) NIL)) (-3436 ((|#1| |#1| $) 28)) (-3344 ((|#1| |#1| $) 30)) (-1886 (($ |#1| $) NIL)) (-3142 (((-749) $) 27)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1854 ((|#1| $) NIL)) (-3265 ((|#1| $) 26)) (-1335 ((|#1| $) 24)) (-3760 ((|#1| $) NIL)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2131 ((|#1| |#1| $) NIL)) (-2902 (((-112) $) 9)) (-3498 (($) NIL)) (-2047 ((|#1| $) NIL)) (-3686 (($) NIL) (($ (-623 |#1|)) 16)) (-2775 (((-749) $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-3524 ((|#1| $) 13)) (-3685 (($ (-623 |#1|)) NIL)) (-1752 ((|#1| $) NIL)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-216 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -3686 ($ (-623 |#1|))))) (-1068)) (T -216)) +((-3686 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-216 *3))))) +(-13 (-247 |#1|) (-10 -8 (-15 -3686 ($ (-623 |#1|))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1720 (($ (-309 |#1|)) 23)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-4118 (((-112) $) NIL)) (-3880 (((-3 (-309 |#1|) "failed") $) NIL)) (-2726 (((-309 |#1|) $) NIL)) (-3295 (($ $) 31)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-3972 (($ (-1 (-309 |#1|) (-309 |#1|)) $) NIL)) (-3277 (((-309 |#1|) $) NIL)) (-3759 (($ $) 30)) (-1825 (((-1126) $) NIL)) (-1874 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-3935 (($ (-749)) NIL)) (-1575 (($ $) 32)) (-2970 (((-550) $) NIL)) (-1518 (((-836) $) 57) (($ (-550)) NIL) (($ (-309 |#1|)) NIL)) (-2510 (((-309 |#1|) $ $) NIL)) (-2390 (((-749)) NIL)) (-2626 (($) 25 T CONST)) (-2636 (($) 50 T CONST)) (-2316 (((-112) $ $) 28)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 19)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 24) (($ (-309 |#1|) $) 18))) +(((-217 |#1| |#2|) (-13 (-600 (-309 |#1|)) (-1011 (-309 |#1|)) (-10 -8 (-15 -3277 ((-309 |#1|) $)) (-15 -3759 ($ $)) (-15 -3295 ($ $)) (-15 -2510 ((-309 |#1|) $ $)) (-15 -3935 ($ (-749))) (-15 -1874 ((-112) $)) (-15 -4118 ((-112) $)) (-15 -2970 ((-550) $)) (-15 -3972 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -1720 ($ (-309 |#1|))) (-15 -1575 ($ $)))) (-13 (-1020) (-825)) (-623 (-1144))) (T -217)) +((-3277 (*1 *2 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) (-14 *4 (-623 (-1144))))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1020) (-825))) (-14 *3 (-623 (-1144))))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1020) (-825))) (-14 *3 (-623 (-1144))))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) (-14 *4 (-623 (-1144))))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) (-14 *4 (-623 (-1144))))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) (-14 *4 (-623 (-1144))))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) (-14 *4 (-623 (-1144))))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) (-14 *4 (-623 (-1144))))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1020) (-825))) (-5 *1 (-217 *3 *4)) (-14 *4 (-623 (-1144))))) (-1720 (*1 *1 *2) (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1020) (-825))) (-5 *1 (-217 *3 *4)) (-14 *4 (-623 (-1144))))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1020) (-825))) (-14 *3 (-623 (-1144)))))) +(-13 (-600 (-309 |#1|)) (-1011 (-309 |#1|)) (-10 -8 (-15 -3277 ((-309 |#1|) $)) (-15 -3759 ($ $)) (-15 -3295 ($ $)) (-15 -2510 ((-309 |#1|) $ $)) (-15 -3935 ($ (-749))) (-15 -1874 ((-112) $)) (-15 -4118 ((-112) $)) (-15 -2970 ((-550) $)) (-15 -3972 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -1720 ($ (-309 |#1|))) (-15 -1575 ($ $)))) +((-3878 (((-112) (-1126)) 22)) (-4002 (((-3 (-818 |#2|) "failed") (-594 |#2|) |#2| (-818 |#2|) (-818 |#2|) (-112)) 32)) (-4132 (((-3 (-112) "failed") (-1140 |#2|) (-818 |#2|) (-818 |#2|) (-112)) 73) (((-3 (-112) "failed") (-925 |#1|) (-1144) (-818 |#2|) (-818 |#2|) (-112)) 74))) +(((-218 |#1| |#2|) (-10 -7 (-15 -3878 ((-112) (-1126))) (-15 -4002 ((-3 (-818 |#2|) "failed") (-594 |#2|) |#2| (-818 |#2|) (-818 |#2|) (-112))) (-15 -4132 ((-3 (-112) "failed") (-925 |#1|) (-1144) (-818 |#2|) (-818 |#2|) (-112))) (-15 -4132 ((-3 (-112) "failed") (-1140 |#2|) (-818 |#2|) (-818 |#2|) (-112)))) (-13 (-444) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-1166) (-29 |#1|))) (T -218)) +((-4132 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1140 *6)) (-5 *4 (-818 *6)) (-4 *6 (-13 (-1166) (-29 *5))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-218 *5 *6)))) (-4132 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-925 *6)) (-5 *4 (-1144)) (-5 *5 (-818 *7)) (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-4 *7 (-13 (-1166) (-29 *6))) (-5 *1 (-218 *6 *7)))) (-4002 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-818 *4)) (-5 *3 (-594 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1166) (-29 *6))) (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-218 *6 *4)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1166) (-29 *4)))))) +(-10 -7 (-15 -3878 ((-112) (-1126))) (-15 -4002 ((-3 (-818 |#2|) "failed") (-594 |#2|) |#2| (-818 |#2|) (-818 |#2|) (-112))) (-15 -4132 ((-3 (-112) "failed") (-925 |#1|) (-1144) (-818 |#2|) (-818 |#2|) (-112))) (-15 -4132 ((-3 (-112) "failed") (-1140 |#2|) (-818 |#2|) (-818 |#2|) (-112)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 89)) (-1453 (((-550) $) 100)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-2370 (($ $) NIL)) (-3123 (($ $) 77)) (-3005 (($ $) 65)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3353 (($ $) 56)) (-3631 (((-112) $ $) NIL)) (-3103 (($ $) 75)) (-2984 (($ $) 63)) (-3712 (((-550) $) 117)) (-3146 (($ $) 80)) (-3025 (($ $) 67)) (-3513 (($) NIL T CONST)) (-3364 (($ $) NIL)) (-3880 (((-3 (-550) "failed") $) 116) (((-3 (-400 (-550)) "failed") $) 113)) (-2726 (((-550) $) 114) (((-400 (-550)) $) 111)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) 93)) (-2300 (((-400 (-550)) $ (-749)) 109) (((-400 (-550)) $ (-749) (-749)) 108)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-2236 (((-894)) 29) (((-894) (-894)) NIL (|has| $ (-6 -4333)))) (-1416 (((-112) $) NIL)) (-2734 (($) 39)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL)) (-2475 (((-550) $) 35)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL)) (-1389 (($ $) NIL)) (-3329 (((-112) $) 88)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) 53) (($) 34 (-12 (-3462 (|has| $ (-6 -4325))) (-3462 (|has| $ (-6 -4333)))))) (-4164 (($ $ $) 52) (($) 33 (-12 (-3462 (|has| $ (-6 -4325))) (-3462 (|has| $ (-6 -4333)))))) (-3357 (((-550) $) 27)) (-2223 (($ $) 30)) (-1664 (($ $) 57)) (-2958 (($ $) 62)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-2822 (((-894) (-550)) NIL (|has| $ (-6 -4333)))) (-3337 (((-1088) $) 91)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL)) (-1608 (($ $) NIL)) (-2708 (($ (-550) (-550)) NIL) (($ (-550) (-550) (-894)) 101)) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3521 (((-550) $) 28)) (-3246 (($) 38)) (-1812 (($ $) 61)) (-3542 (((-749) $) NIL)) (-4278 (((-1126) (-1126)) 8)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-4302 (((-894)) NIL) (((-894) (-894)) NIL (|has| $ (-6 -4333)))) (-2393 (($ $ (-749)) NIL) (($ $) 94)) (-2723 (((-894) (-550)) NIL (|has| $ (-6 -4333)))) (-3157 (($ $) 78)) (-3033 (($ $) 68)) (-3135 (($ $) 79)) (-3016 (($ $) 66)) (-3114 (($ $) 76)) (-2995 (($ $) 64)) (-4028 (((-372) $) 105) (((-219) $) 102) (((-865 (-372)) $) NIL) (((-526) $) 45)) (-1518 (((-836) $) 42) (($ (-550)) 60) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-550)) 60) (($ (-400 (-550))) NIL)) (-2390 (((-749)) NIL)) (-1754 (($ $) NIL)) (-2913 (((-894)) 32) (((-894) (-894)) NIL (|has| $ (-6 -4333)))) (-1860 (((-894)) 25)) (-3187 (($ $) 83)) (-3060 (($ $) 71) (($ $ $) 110)) (-1345 (((-112) $ $) NIL)) (-3167 (($ $) 81)) (-3043 (($ $) 69)) (-3209 (($ $) 86)) (-3081 (($ $) 74)) (-3294 (($ $) 84)) (-3094 (($ $) 72)) (-3198 (($ $) 85)) (-3072 (($ $) 73)) (-3176 (($ $) 82)) (-3052 (($ $) 70)) (-1635 (($ $) 118)) (-2626 (($) 36 T CONST)) (-2636 (($) 37 T CONST)) (-3040 (((-1126) $) 19) (((-1126) $ (-112)) 21) (((-1232) (-800) $) 22) (((-1232) (-800) $ (-112)) 23)) (-3851 (($ $) 97)) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-1763 (($ $ $) 99)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 54)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 46)) (-2414 (($ $ $) 87) (($ $ (-550)) 55)) (-2403 (($ $) 47) (($ $ $) 49)) (-2391 (($ $ $) 48)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 58) (($ $ (-400 (-550))) 130) (($ $ $) 59)) (* (($ (-894) $) 31) (($ (-749) $) NIL) (($ (-550) $) 51) (($ $ $) 50) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) +(((-219) (-13 (-397) (-227) (-806) (-1166) (-596 (-526)) (-10 -8 (-15 -2414 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -3246 ($)) (-15 -2223 ($ $)) (-15 -1664 ($ $)) (-15 -3060 ($ $ $)) (-15 -3851 ($ $)) (-15 -1763 ($ $ $)) (-15 -4278 ((-1126) (-1126))) (-15 -2300 ((-400 (-550)) $ (-749))) (-15 -2300 ((-400 (-550)) $ (-749) (-749)))))) (T -219)) +((** (*1 *1 *1 *1) (-5 *1 (-219))) (-2414 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-219)))) (-3246 (*1 *1) (-5 *1 (-219))) (-2223 (*1 *1 *1) (-5 *1 (-219))) (-1664 (*1 *1 *1) (-5 *1 (-219))) (-3060 (*1 *1 *1 *1) (-5 *1 (-219))) (-3851 (*1 *1 *1) (-5 *1 (-219))) (-1763 (*1 *1 *1 *1) (-5 *1 (-219))) (-4278 (*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-219)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-219)))) (-2300 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-219))))) +(-13 (-397) (-227) (-806) (-1166) (-596 (-526)) (-10 -8 (-15 -2414 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -3246 ($)) (-15 -2223 ($ $)) (-15 -1664 ($ $)) (-15 -3060 ($ $ $)) (-15 -3851 ($ $)) (-15 -1763 ($ $ $)) (-15 -4278 ((-1126) (-1126))) (-15 -2300 ((-400 (-550)) $ (-749))) (-15 -2300 ((-400 (-550)) $ (-749) (-749))))) +((-2003 (((-167 (-219)) (-749) (-167 (-219))) 11) (((-219) (-749) (-219)) 12)) (-3193 (((-167 (-219)) (-167 (-219))) 13) (((-219) (-219)) 14)) (-3316 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 19) (((-219) (-219) (-219)) 22)) (-1885 (((-167 (-219)) (-167 (-219))) 25) (((-219) (-219)) 24)) (-4061 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 43) (((-219) (-219) (-219)) 35)) (-4293 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 48) (((-219) (-219) (-219)) 45)) (-3950 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 15) (((-219) (-219) (-219)) 16)) (-4165 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 17) (((-219) (-219) (-219)) 18)) (-3290 (((-167 (-219)) (-167 (-219))) 60) (((-219) (-219)) 59)) (-1355 (((-219) (-219)) 54) (((-167 (-219)) (-167 (-219))) 58)) (-3851 (((-167 (-219)) (-167 (-219))) 8) (((-219) (-219)) 9)) (-1763 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 30) (((-219) (-219) (-219)) 26))) +(((-220) (-10 -7 (-15 -3851 ((-219) (-219))) (-15 -3851 ((-167 (-219)) (-167 (-219)))) (-15 -1763 ((-219) (-219) (-219))) (-15 -1763 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3193 ((-219) (-219))) (-15 -3193 ((-167 (-219)) (-167 (-219)))) (-15 -1885 ((-219) (-219))) (-15 -1885 ((-167 (-219)) (-167 (-219)))) (-15 -2003 ((-219) (-749) (-219))) (-15 -2003 ((-167 (-219)) (-749) (-167 (-219)))) (-15 -3950 ((-219) (-219) (-219))) (-15 -3950 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -4061 ((-219) (-219) (-219))) (-15 -4061 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -4165 ((-219) (-219) (-219))) (-15 -4165 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -4293 ((-219) (-219) (-219))) (-15 -4293 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1355 ((-167 (-219)) (-167 (-219)))) (-15 -1355 ((-219) (-219))) (-15 -3290 ((-219) (-219))) (-15 -3290 ((-167 (-219)) (-167 (-219)))) (-15 -3316 ((-219) (-219) (-219))) (-15 -3316 ((-167 (-219)) (-167 (-219)) (-167 (-219)))))) (T -220)) +((-3316 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3316 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-4293 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-4293 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-4165 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-4165 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-4061 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-4061 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-2003 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-219))) (-5 *3 (-749)) (-5 *1 (-220)))) (-2003 (*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-749)) (-5 *1 (-220)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1763 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1763 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))) +(-10 -7 (-15 -3851 ((-219) (-219))) (-15 -3851 ((-167 (-219)) (-167 (-219)))) (-15 -1763 ((-219) (-219) (-219))) (-15 -1763 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3193 ((-219) (-219))) (-15 -3193 ((-167 (-219)) (-167 (-219)))) (-15 -1885 ((-219) (-219))) (-15 -1885 ((-167 (-219)) (-167 (-219)))) (-15 -2003 ((-219) (-749) (-219))) (-15 -2003 ((-167 (-219)) (-749) (-167 (-219)))) (-15 -3950 ((-219) (-219) (-219))) (-15 -3950 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -4061 ((-219) (-219) (-219))) (-15 -4061 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -4165 ((-219) (-219) (-219))) (-15 -4165 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -4293 ((-219) (-219) (-219))) (-15 -4293 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1355 ((-167 (-219)) (-167 (-219)))) (-15 -1355 ((-219) (-219))) (-15 -3290 ((-219) (-219))) (-15 -3290 ((-167 (-219)) (-167 (-219)))) (-15 -3316 ((-219) (-219) (-219))) (-15 -3316 ((-167 (-219)) (-167 (-219)) (-167 (-219))))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2584 (($ (-749) (-749)) NIL)) (-3152 (($ $ $) NIL)) (-2633 (($ (-1227 |#1|)) NIL) (($ $) NIL)) (-3594 (($ |#1| |#1| |#1|) 32)) (-1294 (((-112) $) NIL)) (-4229 (($ $ (-550) (-550)) NIL)) (-4090 (($ $ (-550) (-550)) NIL)) (-3958 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-3410 (($ $) NIL)) (-3483 (((-112) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-3839 (($ $ (-550) (-550) $) NIL)) (-1705 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550)) $) NIL)) (-1396 (($ $ (-550) (-1227 |#1|)) NIL)) (-3693 (($ $ (-550) (-1227 |#1|)) NIL)) (-2720 (($ |#1| |#1| |#1|) 31)) (-1333 (($ (-749) |#1|) NIL)) (-3513 (($) NIL T CONST)) (-3707 (($ $) NIL (|has| |#1| (-300)))) (-3719 (((-1227 |#1|) $ (-550)) NIL)) (-3451 (($ |#1|) 30)) (-3585 (($ |#1|) 29)) (-3710 (($ |#1|) 28)) (-2122 (((-749) $) NIL (|has| |#1| (-542)))) (-3245 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3181 ((|#1| $ (-550) (-550)) NIL)) (-3450 (((-623 |#1|) $) NIL)) (-3613 (((-749) $) NIL (|has| |#1| (-542)))) (-3525 (((-623 (-1227 |#1|)) $) NIL (|has| |#1| (-542)))) (-2115 (((-749) $) NIL)) (-2578 (($ (-749) (-749) |#1|) NIL)) (-2124 (((-749) $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3928 ((|#1| $) NIL (|has| |#1| (-6 (-4344 "*"))))) (-2938 (((-550) $) NIL)) (-3895 (((-550) $) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2828 (((-550) $) NIL)) (-3816 (((-550) $) NIL)) (-2458 (($ (-623 (-623 |#1|))) 11)) (-3234 (($ (-1 |#1| |#1|) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4048 (((-623 (-623 |#1|)) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2031 (((-3 $ "failed") $) NIL (|has| |#1| (-356)))) (-2640 (($) 12)) (-3278 (($ $ $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3111 (($ $ |#1|) NIL)) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550))) NIL)) (-4296 (($ (-623 |#1|)) NIL) (($ (-623 $)) NIL)) (-1829 (((-112) $) NIL)) (-4017 ((|#1| $) NIL (|has| |#1| (-6 (-4344 "*"))))) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-3615 (((-1227 |#1|) $ (-550)) NIL)) (-1518 (($ (-1227 |#1|)) NIL) (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-1295 (((-112) $) NIL)) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $ $) NIL) (($ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-1227 |#1|) $ (-1227 |#1|)) 15) (((-1227 |#1|) (-1227 |#1|) $) NIL) (((-916 |#1|) $ (-916 |#1|)) 20)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-221 |#1|) (-13 (-665 |#1| (-1227 |#1|) (-1227 |#1|)) (-10 -8 (-15 * ((-916 |#1|) $ (-916 |#1|))) (-15 -2640 ($)) (-15 -3710 ($ |#1|)) (-15 -3585 ($ |#1|)) (-15 -3451 ($ |#1|)) (-15 -2720 ($ |#1| |#1| |#1|)) (-15 -3594 ($ |#1| |#1| |#1|)))) (-13 (-356) (-1166))) (T -221)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166))) (-5 *1 (-221 *3)))) (-2640 (*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166))))) (-3710 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166))))) (-3585 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166))))) (-3451 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166))))) (-2720 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166))))) (-3594 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166)))))) +(-13 (-665 |#1| (-1227 |#1|) (-1227 |#1|)) (-10 -8 (-15 * ((-916 |#1|) $ (-916 |#1|))) (-15 -2640 ($)) (-15 -3710 ($ |#1|)) (-15 -3585 ($ |#1|)) (-15 -3451 ($ |#1|)) (-15 -2720 ($ |#1| |#1| |#1|)) (-15 -3594 ($ |#1| |#1| |#1|)))) +((-3378 (($ (-1 (-112) |#2|) $) 16)) (-3112 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-2729 (($) NIL) (($ (-623 |#2|)) 11)) (-2316 (((-112) $ $) 23))) +(((-222 |#1| |#2|) (-10 -8 (-15 -3378 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3112 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3112 (|#1| |#2| |#1|)) (-15 -2729 (|#1| (-623 |#2|))) (-15 -2729 (|#1|)) (-15 -2316 ((-112) |#1| |#1|))) (-223 |#2|) (-1068)) (T -222)) +NIL +(-10 -8 (-15 -3378 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3112 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3112 (|#1| |#2| |#1|)) (-15 -2729 (|#1| (-623 |#2|))) (-15 -2729 (|#1|)) (-15 -2316 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-3378 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-1328 (($ $) 58 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ |#1| $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4342)))) (-3137 (($ |#1| $) 57 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4342)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2729 (($) 49) (($ (-623 |#1|)) 48)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 50)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-223 |#1|) (-138) (-1068)) (T -223)) NIL (-13 (-229 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-4153 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) 11) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) 19) (($ $ (-747)) NIL) (($ $) 16)) (-2990 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-747)) 14) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL))) -(((-224 |#1| |#2|) (-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -2990 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2990 (|#1| |#1| (-1142))) (-15 -2990 (|#1| |#1| (-618 (-1142)))) (-15 -2990 (|#1| |#1| (-1142) (-747))) (-15 -2990 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2990 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2990 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1018)) (T -224)) -NIL -(-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -2990 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2990 (|#1| |#1| (-1142))) (-15 -2990 (|#1| |#1| (-618 (-1142)))) (-15 -2990 (|#1| |#1| (-1142) (-747))) (-15 -2990 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2990 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2990 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4153 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-747)) 49) (($ $ (-618 (-1142)) (-618 (-747))) 42 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 41 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 40 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 39 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 37 (|has| |#1| (-227))) (($ $) 35 (|has| |#1| (-227)))) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-747)) 47) (($ $ (-618 (-1142)) (-618 (-747))) 46 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 45 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 44 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 43 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 38 (|has| |#1| (-227))) (($ $) 36 (|has| |#1| (-227)))) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-225 |#1|) (-138) (-1018)) (T -225)) -((-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) (-4153 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) (-2990 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018))))) -(-13 (-1018) (-10 -8 (-15 -4153 ($ $ (-1 |t#1| |t#1|))) (-15 -4153 ($ $ (-1 |t#1| |t#1|) (-747))) (-15 -2990 ($ $ (-1 |t#1| |t#1|))) (-15 -2990 ($ $ (-1 |t#1| |t#1|) (-747))) (IF (|has| |t#1| (-227)) (-6 (-227)) |%noBranch|) (IF (|has| |t#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-227) |has| |#1| (-227)) ((-624 $) . T) ((-703) . T) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-4153 (($ $) NIL) (($ $ (-747)) 10)) (-2990 (($ $) 8) (($ $ (-747)) 12))) -(((-226 |#1|) (-10 -8 (-15 -2990 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-747))) (-15 -2990 (|#1| |#1|)) (-15 -4153 (|#1| |#1|))) (-227)) (T -226)) -NIL -(-10 -8 (-15 -2990 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-747))) (-15 -2990 (|#1| |#1|)) (-15 -4153 (|#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4153 (($ $) 36) (($ $ (-747)) 34)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $) 35) (($ $ (-747)) 33)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-2393 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) 11) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) 19) (($ $ (-749)) NIL) (($ $) 16)) (-4183 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-749)) 14) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) NIL) (($ $ (-749)) NIL) (($ $) NIL))) +(((-224 |#1| |#2|) (-10 -8 (-15 -2393 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -4183 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -4183 (|#1| |#1| (-1144))) (-15 -4183 (|#1| |#1| (-623 (-1144)))) (-15 -4183 (|#1| |#1| (-1144) (-749))) (-15 -4183 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -4183 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4183 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1020)) (T -224)) +NIL +(-10 -8 (-15 -2393 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -4183 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -4183 (|#1| |#1| (-1144))) (-15 -4183 (|#1| |#1| (-623 (-1144)))) (-15 -4183 (|#1| |#1| (-1144) (-749))) (-15 -4183 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -4183 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4183 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2393 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-749)) 49) (($ $ (-623 (-1144)) (-623 (-749))) 42 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 41 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 40 (|has| |#1| (-873 (-1144)))) (($ $ (-1144)) 39 (|has| |#1| (-873 (-1144)))) (($ $ (-749)) 37 (|has| |#1| (-227))) (($ $) 35 (|has| |#1| (-227)))) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-749)) 47) (($ $ (-623 (-1144)) (-623 (-749))) 46 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 45 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 44 (|has| |#1| (-873 (-1144)))) (($ $ (-1144)) 43 (|has| |#1| (-873 (-1144)))) (($ $ (-749)) 38 (|has| |#1| (-227))) (($ $) 36 (|has| |#1| (-227)))) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-225 |#1|) (-138) (-1020)) (T -225)) +((-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1020)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1020)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1020)))) (-4183 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1020))))) +(-13 (-1020) (-10 -8 (-15 -2393 ($ $ (-1 |t#1| |t#1|))) (-15 -2393 ($ $ (-1 |t#1| |t#1|) (-749))) (-15 -4183 ($ $ (-1 |t#1| |t#1|))) (-15 -4183 ($ $ (-1 |t#1| |t#1|) (-749))) (IF (|has| |t#1| (-227)) (-6 (-227)) |%noBranch|) (IF (|has| |t#1| (-873 (-1144))) (-6 (-873 (-1144))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-227) |has| |#1| (-227)) ((-626 $) . T) ((-705) . T) ((-873 (-1144)) |has| |#1| (-873 (-1144))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-2393 (($ $) NIL) (($ $ (-749)) 10)) (-4183 (($ $) 8) (($ $ (-749)) 12))) +(((-226 |#1|) (-10 -8 (-15 -4183 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-749))) (-15 -4183 (|#1| |#1|)) (-15 -2393 (|#1| |#1|))) (-227)) (T -226)) +NIL +(-10 -8 (-15 -4183 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-749))) (-15 -4183 (|#1| |#1|)) (-15 -2393 (|#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2393 (($ $) 36) (($ $ (-749)) 34)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $) 35) (($ $ (-749)) 33)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-227) (-138)) (T -227)) -((-4153 (*1 *1 *1) (-4 *1 (-227))) (-2990 (*1 *1 *1) (-4 *1 (-227))) (-4153 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))) (-2990 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747))))) -(-13 (-1018) (-10 -8 (-15 -4153 ($ $)) (-15 -2990 ($ $)) (-15 -4153 ($ $ (-747))) (-15 -2990 ($ $ (-747))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-1518 (($) 12) (($ (-618 |#2|)) NIL)) (-3742 (($ $) 14)) (-3867 (($ (-618 |#2|)) 10)) (-4300 (((-835) $) 21))) -(((-228 |#1| |#2|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -1518 (|#1| (-618 |#2|))) (-15 -1518 (|#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -3742 (|#1| |#1|))) (-229 |#2|) (-1067)) (T -228)) -NIL -(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -1518 (|#1| (-618 |#2|))) (-15 -1518 (|#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -3742 (|#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-229 |#1|) (-138) (-1067)) (T -229)) -((-1518 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1067)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-229 *3)))) (-3747 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-229 *2)) (-4 *2 (-1067)))) (-3747 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3)) (-4 *3 (-1067)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3)) (-4 *3 (-1067))))) -(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -1518 ($)) (-15 -1518 ($ (-618 |t#1|))) (IF (|has| $ (-6 -4336)) (PROGN (-15 -3747 ($ |t#1| $)) (-15 -3747 ($ (-1 (-112) |t#1|) $)) (-15 -1626 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-1519 (((-2 (|:| |varOrder| (-618 (-1142))) (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) (|:| |hom| (-618 (-1224 (-747))))) (-286 (-917 (-535)))) 27))) -(((-230) (-10 -7 (-15 -1519 ((-2 (|:| |varOrder| (-618 (-1142))) (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) (|:| |hom| (-618 (-1224 (-747))))) (-286 (-917 (-535))))))) (T -230)) -((-1519 (*1 *2 *3) (-12 (-5 *3 (-286 (-917 (-535)))) (-5 *2 (-2 (|:| |varOrder| (-618 (-1142))) (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) (|:| |hom| (-618 (-1224 (-747)))))) (-5 *1 (-230))))) -(-10 -7 (-15 -1519 ((-2 (|:| |varOrder| (-618 (-1142))) (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) (|:| |hom| (-618 (-1224 (-747))))) (-286 (-917 (-535)))))) -((-3454 (((-747)) 51)) (-2353 (((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 $) (-1224 $)) 49) (((-665 |#3|) (-665 $)) 41) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-4254 (((-133)) 57)) (-4153 (($ $ (-1 |#3| |#3|) (-747)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-4300 (((-1224 |#3|) $) NIL) (($ |#3|) NIL) (((-835) $) NIL) (($ (-535)) 12) (($ (-400 (-535))) NIL)) (-3444 (((-747)) 15)) (-4291 (($ $ |#3|) 54))) -(((-231 |#1| |#2| |#3|) (-10 -8 (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)) (-15 -3444 ((-747))) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -4300 (|#1| |#3|)) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -2353 ((-665 |#3|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 |#1|) (-1224 |#1|))) (-15 -3454 ((-747))) (-15 -4291 (|#1| |#1| |#3|)) (-15 -4254 ((-133))) (-15 -4300 ((-1224 |#3|) |#1|))) (-232 |#2| |#3|) (-747) (-1178)) (T -231)) -((-4254 (*1 *2) (-12 (-14 *4 (-747)) (-4 *5 (-1178)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3454 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1178)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3444 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1178)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))) -(-10 -8 (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)) (-15 -3444 ((-747))) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -4300 (|#1| |#3|)) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -2353 ((-665 |#3|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 |#1|) (-1224 |#1|))) (-15 -3454 ((-747))) (-15 -4291 (|#1| |#1| |#3|)) (-15 -4254 ((-133))) (-15 -4300 ((-1224 |#3|) |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#2| (-1067)))) (-3522 (((-112) $) 72 (|has| |#2| (-130)))) (-4053 (($ (-890)) 125 (|has| |#2| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-2724 (($ $ $) 121 (|has| |#2| (-769)))) (-1363 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1264 (((-112) $ (-747)) 8)) (-3454 (((-747)) 107 (|has| |#2| (-361)))) (-3969 (((-535) $) 119 (|has| |#2| (-821)))) (-4130 ((|#2| $ (-535) |#2|) 52 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 67 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-3 (-400 (-535)) #1#) $) 64 (-3179 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1067)))) (-3490 (((-535) $) 68 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-400 (-535)) $) 65 (-3179 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) ((|#2| $) 60 (|has| |#2| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) 106 (-3179 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 105 (-3179 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 104 (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) 103 (|has| |#2| (-1018)))) (-3804 (((-3 $ "failed") $) 79 (|has| |#2| (-703)))) (-3315 (($) 110 (|has| |#2| (-361)))) (-1632 ((|#2| $ (-535) |#2|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ (-535)) 51)) (-3520 (((-112) $) 117 (|has| |#2| (-821)))) (-2063 (((-618 |#2|) $) 30 (|has| $ (-6 -4336)))) (-2493 (((-112) $) 81 (|has| |#2| (-703)))) (-3521 (((-112) $) 118 (|has| |#2| (-821)))) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 116 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2502 (((-618 |#2|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 115 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2067 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) 35)) (-2121 (((-890) $) 109 (|has| |#2| (-361)))) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#2| (-1067)))) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-2483 (($ (-890)) 108 (|has| |#2| (-361)))) (-3577 (((-1086) $) 21 (|has| |#2| (-1067)))) (-4143 ((|#2| $) 42 (|has| (-535) (-823)))) (-2297 (($ $ |#2|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#2| $ (-535) |#2|) 50) ((|#2| $ (-535)) 49)) (-4179 ((|#2| $ $) 124 (|has| |#2| (-1018)))) (-1520 (($ (-1224 |#2|)) 126)) (-4254 (((-133)) 123 (|has| |#2| (-356)))) (-4153 (($ $) 98 (-3179 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) 96 (-3179 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) 94 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) 93 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) 92 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) 91 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) 84 (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1018)))) (-2064 (((-747) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4336))) (((-747) |#2| $) 28 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-1224 |#2|) $) 127) (($ (-535)) 66 (-3874 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-535))) 63 (-3179 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (($ |#2|) 62 (|has| |#2| (-1067))) (((-835) $) 18 (|has| |#2| (-593 (-835))))) (-3444 (((-747)) 102 (|has| |#2| (-1018)))) (-2066 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4336)))) (-3725 (($ $) 120 (|has| |#2| (-821)))) (-2979 (($) 71 (|has| |#2| (-130)) CONST)) (-2985 (($) 82 (|has| |#2| (-703)) CONST)) (-2990 (($ $) 97 (-3179 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) 95 (-3179 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) 90 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) 89 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) 88 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) 87 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) 86 (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1018)))) (-2885 (((-112) $ $) 113 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2886 (((-112) $ $) 112 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-3375 (((-112) $ $) 20 (|has| |#2| (-1067)))) (-3005 (((-112) $ $) 114 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-3006 (((-112) $ $) 111 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-4291 (($ $ |#2|) 122 (|has| |#2| (-356)))) (-4180 (($ $ $) 100 (|has| |#2| (-1018))) (($ $) 99 (|has| |#2| (-1018)))) (-4182 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-747)) 80 (|has| |#2| (-703))) (($ $ (-890)) 77 (|has| |#2| (-703)))) (* (($ (-535) $) 101 (|has| |#2| (-1018))) (($ $ $) 78 (|has| |#2| (-703))) (($ $ |#2|) 76 (|has| |#2| (-703))) (($ |#2| $) 75 (|has| |#2| (-703))) (($ (-747) $) 73 (|has| |#2| (-130))) (($ (-890) $) 70 (|has| |#2| (-25)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-232 |#1| |#2|) (-138) (-747) (-1178)) (T -232)) -((-1520 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1178)) (-4 *1 (-232 *3 *4)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1018)) (-4 *4 (-1178)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-703))))) -(-13 (-584 (-535) |t#2|) (-593 (-1224 |t#2|)) (-10 -8 (-6 -4336) (-15 -1520 ($ (-1224 |t#2|))) (IF (|has| |t#2| (-1067)) (-6 (-405 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1018)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-225 |t#2|)) (-6 (-370 |t#2|)) (-15 -4053 ($ (-890))) (-15 -4179 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-703)) (PROGN (-6 (-703)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |t#2| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#2| (-769)) (-6 (-769)) |%noBranch|) (IF (|has| |t#2| (-356)) (-6 (-1232 |t#2|)) |%noBranch|))) -(((-21) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-23) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -3874 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3874 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-593 (-835)) -3874 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-593 (-835))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-593 (-1224 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-225 |#2|) |has| |#2| (-1018)) ((-227) -12 (|has| |#2| (-227)) (|has| |#2| (-1018))) ((-279 #1=(-535) |#2|) . T) ((-281 #1# |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-361) |has| |#2| (-361)) ((-370 |#2|) |has| |#2| (-1018)) ((-405 |#2|) |has| |#2| (-1067)) ((-481 |#2|) . T) ((-584 #1# |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-624 |#2|) -3874 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-624 $) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-617 (-535)) -12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018))) ((-617 |#2|) |has| |#2| (-1018)) ((-694 |#2|) -3874 (|has| |#2| (-356)) (|has| |#2| (-170))) ((-703) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-703)) (|has| |#2| (-170))) ((-767) |has| |#2| (-821)) ((-768) -3874 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-769) |has| |#2| (-769)) ((-770) -3874 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-773) -3874 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-821) |has| |#2| (-821)) ((-823) -3874 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-871 (-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018))) ((-1009 (-400 (-535))) -12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067))) ((-1009 (-535)) -12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) ((-1009 |#2|) |has| |#2| (-1067)) ((-1024 |#2|) -3874 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-1024 $) |has| |#2| (-170)) ((-1018) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-1025) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-1078) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-703)) (|has| |#2| (-170))) ((-1067) -3874 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1178) . T) ((-1232 |#2|) |has| |#2| (-356))) -((-2887 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3522 (((-112) $) NIL (|has| |#2| (-130)))) (-4053 (($ (-890)) 56 (|has| |#2| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) 60 (|has| |#2| (-769)))) (-1363 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1264 (((-112) $ (-747)) 17)) (-3454 (((-747)) NIL (|has| |#2| (-361)))) (-3969 (((-535) $) NIL (|has| |#2| (-821)))) (-4130 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1067)))) (-3490 (((-535) $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) ((|#2| $) 27 (|has| |#2| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3804 (((-3 $ "failed") $) 53 (|has| |#2| (-703)))) (-3315 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ (-535)) 51)) (-3520 (((-112) $) NIL (|has| |#2| (-821)))) (-2063 (((-618 |#2|) $) 15 (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (|has| |#2| (-703)))) (-3521 (((-112) $) NIL (|has| |#2| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 20 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 (((-535) $) 50 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) 41)) (-2121 (((-890) $) NIL (|has| |#2| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#2| (-1067)))) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#2| (-361)))) (-3577 (((-1086) $) NIL (|has| |#2| (-1067)))) (-4143 ((|#2| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-535)) 21)) (-4179 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-1520 (($ (-1224 |#2|)) 18)) (-4254 (((-133)) NIL (|has| |#2| (-356)))) (-4153 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#2|) $) 10) (($ (-535)) NIL (-3874 (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (($ |#2|) 13 (|has| |#2| (-1067))) (((-835) $) NIL (|has| |#2| (-593 (-835))))) (-3444 (((-747)) NIL (|has| |#2| (-1018)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#2| (-821)))) (-2979 (($) 35 (|has| |#2| (-130)) CONST)) (-2985 (($) 38 (|has| |#2| (-703)) CONST)) (-2990 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3375 (((-112) $ $) 26 (|has| |#2| (-1067)))) (-3005 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3006 (((-112) $ $) 58 (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-4182 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-890)) NIL (|has| |#2| (-703)))) (* (($ (-535) $) NIL (|has| |#2| (-1018))) (($ $ $) 44 (|has| |#2| (-703))) (($ $ |#2|) 42 (|has| |#2| (-703))) (($ |#2| $) 43 (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-233 |#1| |#2|) (-232 |#1| |#2|) (-747) (-1178)) (T -233)) +((-2393 (*1 *1 *1) (-4 *1 (-227))) (-4183 (*1 *1 *1) (-4 *1 (-227))) (-2393 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) (-4183 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749))))) +(-13 (-1020) (-10 -8 (-15 -2393 ($ $)) (-15 -4183 ($ $)) (-15 -2393 ($ $ (-749))) (-15 -4183 ($ $ (-749))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-2729 (($) 12) (($ (-623 |#2|)) NIL)) (-1731 (($ $) 14)) (-1532 (($ (-623 |#2|)) 10)) (-1518 (((-836) $) 21))) +(((-228 |#1| |#2|) (-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -2729 (|#1| (-623 |#2|))) (-15 -2729 (|#1|)) (-15 -1532 (|#1| (-623 |#2|))) (-15 -1731 (|#1| |#1|))) (-229 |#2|) (-1068)) (T -228)) +NIL +(-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -2729 (|#1| (-623 |#2|))) (-15 -2729 (|#1|)) (-15 -1532 (|#1| (-623 |#2|))) (-15 -1731 (|#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-3378 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-1328 (($ $) 58 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ |#1| $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4342)))) (-3137 (($ |#1| $) 57 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4342)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2729 (($) 49) (($ (-623 |#1|)) 48)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 50)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-229 |#1|) (-138) (-1068)) (T -229)) +((-2729 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1068)))) (-2729 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-4 *1 (-229 *3)))) (-3112 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-229 *2)) (-4 *2 (-1068)))) (-3112 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4342)) (-4 *1 (-229 *3)) (-4 *3 (-1068)))) (-3378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4342)) (-4 *1 (-229 *3)) (-4 *3 (-1068))))) +(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -2729 ($)) (-15 -2729 ($ (-623 |t#1|))) (IF (|has| $ (-6 -4342)) (PROGN (-15 -3112 ($ |t#1| $)) (-15 -3112 ($ (-1 (-112) |t#1|) $)) (-15 -3378 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-2841 (((-2 (|:| |varOrder| (-623 (-1144))) (|:| |inhom| (-3 (-623 (-1227 (-749))) "failed")) (|:| |hom| (-623 (-1227 (-749))))) (-287 (-925 (-550)))) 27))) +(((-230) (-10 -7 (-15 -2841 ((-2 (|:| |varOrder| (-623 (-1144))) (|:| |inhom| (-3 (-623 (-1227 (-749))) "failed")) (|:| |hom| (-623 (-1227 (-749))))) (-287 (-925 (-550))))))) (T -230)) +((-2841 (*1 *2 *3) (-12 (-5 *3 (-287 (-925 (-550)))) (-5 *2 (-2 (|:| |varOrder| (-623 (-1144))) (|:| |inhom| (-3 (-623 (-1227 (-749))) "failed")) (|:| |hom| (-623 (-1227 (-749)))))) (-5 *1 (-230))))) +(-10 -7 (-15 -2841 ((-2 (|:| |varOrder| (-623 (-1144))) (|:| |inhom| (-3 (-623 (-1227 (-749))) "failed")) (|:| |hom| (-623 (-1227 (-749))))) (-287 (-925 (-550)))))) +((-4319 (((-749)) 51)) (-3780 (((-2 (|:| -1340 (-667 |#3|)) (|:| |vec| (-1227 |#3|))) (-667 $) (-1227 $)) 49) (((-667 |#3|) (-667 $)) 41) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-2854 (((-133)) 57)) (-2393 (($ $ (-1 |#3| |#3|) (-749)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-1518 (((-1227 |#3|) $) NIL) (($ |#3|) NIL) (((-836) $) NIL) (($ (-550)) 12) (($ (-400 (-550))) NIL)) (-2390 (((-749)) 15)) (-2414 (($ $ |#3|) 54))) +(((-231 |#1| |#2| |#3|) (-10 -8 (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|)) (-15 -2390 ((-749))) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -1518 (|#1| |#3|)) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -3780 ((-667 |#3|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#3|)) (|:| |vec| (-1227 |#3|))) (-667 |#1|) (-1227 |#1|))) (-15 -4319 ((-749))) (-15 -2414 (|#1| |#1| |#3|)) (-15 -2854 ((-133))) (-15 -1518 ((-1227 |#3|) |#1|))) (-232 |#2| |#3|) (-749) (-1181)) (T -231)) +((-2854 (*1 *2) (-12 (-14 *4 (-749)) (-4 *5 (-1181)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-4319 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1181)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-2390 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1181)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))) +(-10 -8 (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|)) (-15 -2390 ((-749))) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -1518 (|#1| |#3|)) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -3780 ((-667 |#3|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#3|)) (|:| |vec| (-1227 |#3|))) (-667 |#1|) (-1227 |#1|))) (-15 -4319 ((-749))) (-15 -2414 (|#1| |#1| |#3|)) (-15 -2854 ((-133))) (-15 -1518 ((-1227 |#3|) |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#2| (-1068)))) (-3433 (((-112) $) 72 (|has| |#2| (-130)))) (-3230 (($ (-894)) 125 (|has| |#2| (-1020)))) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-2270 (($ $ $) 121 (|has| |#2| (-771)))) (-3219 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-4047 (((-112) $ (-749)) 8)) (-4319 (((-749)) 107 (|has| |#2| (-361)))) (-3712 (((-550) $) 119 (|has| |#2| (-823)))) (-1705 ((|#2| $ (-550) |#2|) 52 (|has| $ (-6 -4343)))) (-3513 (($) 7 T CONST)) (-3880 (((-3 (-550) "failed") $) 67 (-1262 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068)))) (((-3 (-400 (-550)) "failed") $) 64 (-1262 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1068)))) (-2726 (((-550) $) 68 (-1262 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068)))) (((-400 (-550)) $) 65 (-1262 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) ((|#2| $) 60 (|has| |#2| (-1068)))) (-3780 (((-667 (-550)) (-667 $)) 106 (-1262 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 105 (-1262 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) 104 (|has| |#2| (-1020))) (((-667 |#2|) (-667 $)) 103 (|has| |#2| (-1020)))) (-1386 (((-3 $ "failed") $) 79 (|has| |#2| (-705)))) (-1741 (($) 110 (|has| |#2| (-361)))) (-3245 ((|#2| $ (-550) |#2|) 53 (|has| $ (-6 -4343)))) (-3181 ((|#2| $ (-550)) 51)) (-1416 (((-112) $) 117 (|has| |#2| (-823)))) (-3450 (((-623 |#2|) $) 30 (|has| $ (-6 -4342)))) (-3102 (((-112) $) 81 (|has| |#2| (-705)))) (-3329 (((-112) $) 118 (|has| |#2| (-823)))) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-2707 (($ $ $) 116 (-1561 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2689 (((-623 |#2|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-4164 (($ $ $) 115 (-1561 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-3234 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#2| |#2|) $) 35)) (-2253 (((-894) $) 109 (|has| |#2| (-361)))) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#2| (-1068)))) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-2922 (($ (-894)) 108 (|has| |#2| (-361)))) (-3337 (((-1088) $) 21 (|has| |#2| (-1068)))) (-1293 ((|#2| $) 42 (|has| (-550) (-825)))) (-3111 (($ $ |#2|) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#2| $ (-550) |#2|) 50) ((|#2| $ (-550)) 49)) (-3440 ((|#2| $ $) 124 (|has| |#2| (-1020)))) (-3389 (($ (-1227 |#2|)) 126)) (-2854 (((-133)) 123 (|has| |#2| (-356)))) (-2393 (($ $) 98 (-1262 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-749)) 96 (-1262 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-1144)) 94 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144))) 93 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1144) (-749)) 92 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) 91 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1 |#2| |#2|) (-749)) 84 (|has| |#2| (-1020))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1020)))) (-3350 (((-749) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4342))) (((-749) |#2| $) 28 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-1227 |#2|) $) 127) (($ (-550)) 66 (-1561 (-1262 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068))) (|has| |#2| (-1020)))) (($ (-400 (-550))) 63 (-1262 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (($ |#2|) 62 (|has| |#2| (-1068))) (((-836) $) 18 (|has| |#2| (-595 (-836))))) (-2390 (((-749)) 102 (|has| |#2| (-1020)))) (-1675 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4342)))) (-1635 (($ $) 120 (|has| |#2| (-823)))) (-2626 (($) 71 (|has| |#2| (-130)) CONST)) (-2636 (($) 82 (|has| |#2| (-705)) CONST)) (-4183 (($ $) 97 (-1262 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-749)) 95 (-1262 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-1144)) 90 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144))) 89 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1144) (-749)) 88 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) 87 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1 |#2| |#2|) (-749)) 86 (|has| |#2| (-1020))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1020)))) (-2363 (((-112) $ $) 113 (-1561 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2345 (((-112) $ $) 112 (-1561 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2316 (((-112) $ $) 20 (|has| |#2| (-1068)))) (-2354 (((-112) $ $) 114 (-1561 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2335 (((-112) $ $) 111 (-1561 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2414 (($ $ |#2|) 122 (|has| |#2| (-356)))) (-2403 (($ $ $) 100 (|has| |#2| (-1020))) (($ $) 99 (|has| |#2| (-1020)))) (-2391 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-749)) 80 (|has| |#2| (-705))) (($ $ (-894)) 77 (|has| |#2| (-705)))) (* (($ (-550) $) 101 (|has| |#2| (-1020))) (($ $ $) 78 (|has| |#2| (-705))) (($ $ |#2|) 76 (|has| |#2| (-705))) (($ |#2| $) 75 (|has| |#2| (-705))) (($ (-749) $) 73 (|has| |#2| (-130))) (($ (-894) $) 70 (|has| |#2| (-25)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-232 |#1| |#2|) (-138) (-749) (-1181)) (T -232)) +((-3389 (*1 *1 *2) (-12 (-5 *2 (-1227 *4)) (-4 *4 (-1181)) (-4 *1 (-232 *3 *4)))) (-3230 (*1 *1 *2) (-12 (-5 *2 (-894)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1020)) (-4 *4 (-1181)))) (-3440 (*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1181)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1181)) (-4 *2 (-705)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1181)) (-4 *2 (-705))))) +(-13 (-586 (-550) |t#2|) (-595 (-1227 |t#2|)) (-10 -8 (-6 -4342) (-15 -3389 ($ (-1227 |t#2|))) (IF (|has| |t#2| (-1068)) (-6 (-404 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1020)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-225 |t#2|)) (-6 (-370 |t#2|)) (-15 -3230 ($ (-894))) (-15 -3440 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-705)) (PROGN (-6 (-705)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4339)) (-6 -4339) |%noBranch|) (IF (|has| |t#2| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#2| (-771)) (-6 (-771)) |%noBranch|) (IF (|has| |t#2| (-356)) (-6 (-1234 |t#2|)) |%noBranch|))) +(((-21) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-23) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -1561 (|has| |#2| (-1068)) (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1561 (|has| |#2| (-1020)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-595 (-836)) -1561 (|has| |#2| (-1068)) (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-595 (-836))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-595 (-1227 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-225 |#2|) |has| |#2| (-1020)) ((-227) -12 (|has| |#2| (-227)) (|has| |#2| (-1020))) ((-279 #0=(-550) |#2|) . T) ((-281 #0# |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-361) |has| |#2| (-361)) ((-370 |#2|) |has| |#2| (-1020)) ((-404 |#2|) |has| |#2| (-1068)) ((-481 |#2|) . T) ((-586 #0# |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-626 |#2|) -1561 (|has| |#2| (-1020)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-626 $) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-619 (-550)) -12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020))) ((-619 |#2|) |has| |#2| (-1020)) ((-696 |#2|) -1561 (|has| |#2| (-356)) (|has| |#2| (-170))) ((-705) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-705)) (|has| |#2| (-170))) ((-769) |has| |#2| (-823)) ((-770) -1561 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-771) |has| |#2| (-771)) ((-772) -1561 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-773) -1561 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-823) |has| |#2| (-823)) ((-825) -1561 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-873 (-1144)) -12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020))) ((-1011 (-400 (-550))) -12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068))) ((-1011 (-550)) -12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068))) ((-1011 |#2|) |has| |#2| (-1068)) ((-1026 |#2|) -1561 (|has| |#2| (-1020)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-1026 $) |has| |#2| (-170)) ((-1020) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-1027) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-1080) -1561 (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-705)) (|has| |#2| (-170))) ((-1068) -1561 (|has| |#2| (-1068)) (|has| |#2| (-1020)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1181) . T) ((-1234 |#2|) |has| |#2| (-356))) +((-3572 (((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|) 21)) (-2419 ((|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|) 23)) (-3972 (((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)) 18))) +(((-233 |#1| |#2| |#3|) (-10 -7 (-15 -3572 ((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2419 (|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -3972 ((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)))) (-749) (-1181) (-1181)) (T -233)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-234 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1181)) (-4 *7 (-1181)) (-5 *2 (-234 *5 *7)) (-5 *1 (-233 *5 *6 *7)))) (-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-234 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1181)) (-4 *2 (-1181)) (-5 *1 (-233 *5 *6 *2)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-234 *6 *7)) (-14 *6 (-749)) (-4 *7 (-1181)) (-4 *5 (-1181)) (-5 *2 (-234 *6 *5)) (-5 *1 (-233 *6 *7 *5))))) +(-10 -7 (-15 -3572 ((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2419 (|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -3972 ((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)))) +((-1504 (((-112) $ $) NIL (|has| |#2| (-1068)))) (-3433 (((-112) $) NIL (|has| |#2| (-130)))) (-3230 (($ (-894)) 56 (|has| |#2| (-1020)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-2270 (($ $ $) 60 (|has| |#2| (-771)))) (-3219 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-4047 (((-112) $ (-749)) 17)) (-4319 (((-749)) NIL (|has| |#2| (-361)))) (-3712 (((-550) $) NIL (|has| |#2| (-823)))) (-1705 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1068)))) (-2726 (((-550) $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068)))) (((-400 (-550)) $) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) ((|#2| $) 27 (|has| |#2| (-1068)))) (-3780 (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL (|has| |#2| (-1020))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1020)))) (-1386 (((-3 $ "failed") $) 53 (|has| |#2| (-705)))) (-1741 (($) NIL (|has| |#2| (-361)))) (-3245 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ (-550)) 51)) (-1416 (((-112) $) NIL (|has| |#2| (-823)))) (-3450 (((-623 |#2|) $) 15 (|has| $ (-6 -4342)))) (-3102 (((-112) $) NIL (|has| |#2| (-705)))) (-3329 (((-112) $) NIL (|has| |#2| (-823)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) 20 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2689 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 (((-550) $) 50 (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3234 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#2| |#2|) $) 41)) (-2253 (((-894) $) NIL (|has| |#2| (-361)))) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#2| (-1068)))) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-2922 (($ (-894)) NIL (|has| |#2| (-361)))) (-3337 (((-1088) $) NIL (|has| |#2| (-1068)))) (-1293 ((|#2| $) NIL (|has| (-550) (-825)))) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) 21)) (-3440 ((|#2| $ $) NIL (|has| |#2| (-1020)))) (-3389 (($ (-1227 |#2|)) 18)) (-2854 (((-133)) NIL (|has| |#2| (-356)))) (-2393 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1020))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1020)))) (-3350 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-1227 |#2|) $) 10) (($ (-550)) NIL (-1561 (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068))) (|has| |#2| (-1020)))) (($ (-400 (-550))) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (($ |#2|) 13 (|has| |#2| (-1068))) (((-836) $) NIL (|has| |#2| (-595 (-836))))) (-2390 (((-749)) NIL (|has| |#2| (-1020)))) (-1675 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1635 (($ $) NIL (|has| |#2| (-823)))) (-2626 (($) 35 (|has| |#2| (-130)) CONST)) (-2636 (($) 38 (|has| |#2| (-705)) CONST)) (-4183 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1020))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1020)))) (-2363 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2345 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2316 (((-112) $ $) 26 (|has| |#2| (-1068)))) (-2354 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2335 (((-112) $ $) 58 (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $ $) NIL (|has| |#2| (-1020))) (($ $) NIL (|has| |#2| (-1020)))) (-2391 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-894)) NIL (|has| |#2| (-705)))) (* (($ (-550) $) NIL (|has| |#2| (-1020))) (($ $ $) 44 (|has| |#2| (-705))) (($ $ |#2|) 42 (|has| |#2| (-705))) (($ |#2| $) 43 (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-894) $) NIL (|has| |#2| (-25)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-234 |#1| |#2|) (-232 |#1| |#2|) (-749) (-1181)) (T -234)) NIL (-232 |#1| |#2|) -((-4184 (((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 21)) (-4185 ((|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 23)) (-4301 (((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)) 18))) -(((-234 |#1| |#2| |#3|) (-10 -7 (-15 -4184 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4185 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4301 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) (-747) (-1178) (-1178)) (T -234)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-5 *2 (-233 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1178)) (-4 *2 (-1178)) (-5 *1 (-234 *5 *6 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-747)) (-4 *7 (-1178)) (-4 *5 (-1178)) (-5 *2 (-233 *6 *5)) (-5 *1 (-234 *6 *7 *5))))) -(-10 -7 (-15 -4184 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4185 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4301 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) -((-1524 (((-535) (-618 (-1124))) 24) (((-535) (-1124)) 19)) (-1523 (((-1230) (-618 (-1124))) 29) (((-1230) (-1124)) 28)) (-1521 (((-1124)) 14)) (-1522 (((-1124) (-535) (-1124)) 16)) (-4115 (((-618 (-1124)) (-618 (-1124)) (-535) (-1124)) 25) (((-1124) (-1124) (-535) (-1124)) 23)) (-2937 (((-618 (-1124)) (-618 (-1124))) 13) (((-618 (-1124)) (-1124)) 11))) -(((-235) (-10 -7 (-15 -2937 ((-618 (-1124)) (-1124))) (-15 -2937 ((-618 (-1124)) (-618 (-1124)))) (-15 -1521 ((-1124))) (-15 -1522 ((-1124) (-535) (-1124))) (-15 -4115 ((-1124) (-1124) (-535) (-1124))) (-15 -4115 ((-618 (-1124)) (-618 (-1124)) (-535) (-1124))) (-15 -1523 ((-1230) (-1124))) (-15 -1523 ((-1230) (-618 (-1124)))) (-15 -1524 ((-535) (-1124))) (-15 -1524 ((-535) (-618 (-1124)))))) (T -235)) -((-1524 (*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-535)) (-5 *1 (-235)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-535)) (-5 *1 (-235)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1230)) (-5 *1 (-235)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-235)))) (-4115 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-618 (-1124))) (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *1 (-235)))) (-4115 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-235)))) (-1522 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-235)))) (-1521 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-235)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-235)))) (-2937 (*1 *2 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-235)) (-5 *3 (-1124))))) -(-10 -7 (-15 -2937 ((-618 (-1124)) (-1124))) (-15 -2937 ((-618 (-1124)) (-618 (-1124)))) (-15 -1521 ((-1124))) (-15 -1522 ((-1124) (-535) (-1124))) (-15 -4115 ((-1124) (-1124) (-535) (-1124))) (-15 -4115 ((-618 (-1124)) (-618 (-1124)) (-535) (-1124))) (-15 -1523 ((-1230) (-1124))) (-15 -1523 ((-1230) (-618 (-1124)))) (-15 -1524 ((-535) (-1124))) (-15 -1524 ((-535) (-618 (-1124))))) -((** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 16)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ (-400 (-535)) $) 23) (($ $ (-400 (-535))) NIL))) -(((-236 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-535))) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-237)) (T -236)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-535))) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 37)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 41)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 38)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ (-400 (-535)) $) 40) (($ $ (-400 (-535))) 39))) +((-2059 (((-550) (-623 (-1126))) 24) (((-550) (-1126)) 19)) (-3222 (((-1232) (-623 (-1126))) 29) (((-1232) (-1126)) 28)) (-2939 (((-1126)) 14)) (-3038 (((-1126) (-550) (-1126)) 16)) (-3335 (((-623 (-1126)) (-623 (-1126)) (-550) (-1126)) 25) (((-1126) (-1126) (-550) (-1126)) 23)) (-1452 (((-623 (-1126)) (-623 (-1126))) 13) (((-623 (-1126)) (-1126)) 11))) +(((-235) (-10 -7 (-15 -1452 ((-623 (-1126)) (-1126))) (-15 -1452 ((-623 (-1126)) (-623 (-1126)))) (-15 -2939 ((-1126))) (-15 -3038 ((-1126) (-550) (-1126))) (-15 -3335 ((-1126) (-1126) (-550) (-1126))) (-15 -3335 ((-623 (-1126)) (-623 (-1126)) (-550) (-1126))) (-15 -3222 ((-1232) (-1126))) (-15 -3222 ((-1232) (-623 (-1126)))) (-15 -2059 ((-550) (-1126))) (-15 -2059 ((-550) (-623 (-1126)))))) (T -235)) +((-2059 (*1 *2 *3) (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-550)) (-5 *1 (-235)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-550)) (-5 *1 (-235)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-1232)) (-5 *1 (-235)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-235)))) (-3335 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-1126))) (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *1 (-235)))) (-3335 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1126)) (-5 *3 (-550)) (-5 *1 (-235)))) (-3038 (*1 *2 *3 *2) (-12 (-5 *2 (-1126)) (-5 *3 (-550)) (-5 *1 (-235)))) (-2939 (*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-235)))) (-1452 (*1 *2 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-235)))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-235)) (-5 *3 (-1126))))) +(-10 -7 (-15 -1452 ((-623 (-1126)) (-1126))) (-15 -1452 ((-623 (-1126)) (-623 (-1126)))) (-15 -2939 ((-1126))) (-15 -3038 ((-1126) (-550) (-1126))) (-15 -3335 ((-1126) (-1126) (-550) (-1126))) (-15 -3335 ((-623 (-1126)) (-623 (-1126)) (-550) (-1126))) (-15 -3222 ((-1232) (-1126))) (-15 -3222 ((-1232) (-623 (-1126)))) (-15 -2059 ((-550) (-1126))) (-15 -2059 ((-550) (-623 (-1126))))) +((** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 16)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ (-400 (-550)) $) 23) (($ $ (-400 (-550))) NIL))) +(((-236 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-894))) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) (-237)) (T -236)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-894))) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 37)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 41)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 38)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ (-400 (-550)) $) 40) (($ $ (-400 (-550))) 39))) (((-237) (-138)) (T -237)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-535)))) (-2725 (*1 *1 *1) (-4 *1 (-237)))) -(-13 (-283) (-38 (-400 (-535))) (-10 -8 (-15 ** ($ $ (-535))) (-15 -2725 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-283) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-703) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4139 (($ $) 57)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1526 (($ $ $) 53 (|has| $ (-6 -4337)))) (-1525 (($ $ $) 52 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-1528 (($ $) 56)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-1527 (($ $) 55)) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 59)) (-3512 (($ $) 58)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4133 (($ $ $) 54 (|has| $ (-6 -4337)))) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-238 |#1|) (-138) (-1178)) (T -238)) -((-4140 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-3512 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-4139 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-1527 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-4133 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-1526 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-1525 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178))))) -(-13 (-981 |t#1|) (-10 -8 (-15 -4140 (|t#1| $)) (-15 -3512 ($ $)) (-15 -4139 ($ $)) (-15 -1528 ($ $)) (-15 -1527 ($ $)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -4133 ($ $ $)) (-15 -1526 ($ $ $)) (-15 -1525 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-4137 ((|#1| $) NIL)) (-4139 (($ $) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-3230 (($ $) 10 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) NIL (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4138 ((|#1| $) NIL)) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-4141 (($ $) NIL) (($ $ (-747)) NIL)) (-2446 (($ $) NIL (|has| |#1| (-1067)))) (-1394 (($ $) 7 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3748 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-3761 (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067))) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) (-1 (-112) |#1|) $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3880 (($ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-4140 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-3953 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3785 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1191 (-535))) NIL) ((|#1| $ (-535)) NIL) ((|#1| $ (-535) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-747) $ "count") 16)) (-3350 (((-535) $ $) NIL)) (-1627 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-1529 (($ (-618 |#1|)) 22)) (-3979 (((-112) $) NIL)) (-4134 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4133 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4144 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-618 $)) NIL) (($ $ |#1|) NIL)) (-4300 (($ (-618 |#1|)) 17) (((-618 |#1|) $) 18) (((-835) $) 21 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 14 (|has| $ (-6 -4336))))) -(((-239 |#1|) (-13 (-642 |#1|) (-10 -8 (-15 -4300 ($ (-618 |#1|))) (-15 -4300 ((-618 |#1|) $)) (-15 -1529 ($ (-618 |#1|))) (-15 -4142 ($ $ "unique")) (-15 -4142 ($ $ "sort")) (-15 -4142 ((-747) $ "count")))) (-823)) (T -239)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-747)) (-5 *1 (-239 *4)) (-4 *4 (-823))))) -(-13 (-642 |#1|) (-10 -8 (-15 -4300 ($ (-618 |#1|))) (-15 -4300 ((-618 |#1|) $)) (-15 -1529 ($ (-618 |#1|))) (-15 -4142 ($ $ "unique")) (-15 -4142 ($ $ "sort")) (-15 -4142 ((-747) $ "count")))) -((-1530 (((-3 (-747) "failed") |#1| |#1| (-747)) 27))) -(((-240 |#1|) (-10 -7 (-15 -1530 ((-3 (-747) "failed") |#1| |#1| (-747)))) (-13 (-703) (-361) (-10 -7 (-15 ** (|#1| |#1| (-535)))))) (T -240)) -((-1530 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-747)) (-4 *3 (-13 (-703) (-361) (-10 -7 (-15 ** (*3 *3 (-535)))))) (-5 *1 (-240 *3))))) -(-10 -7 (-15 -1530 ((-3 (-747) "failed") |#1| |#1| (-747)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-836 |#1|)) $) NIL)) (-3407 (((-1136 $) $ (-836 |#1|)) NIL) (((-1136 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-836 |#1|))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-836 |#1|) #2#) $) NIL)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-836 |#1|) $) NIL)) (-4099 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-618 (-535))) NIL)) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| (-233 (-4299 |#1|) (-747)) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#2|) (-836 |#1|)) NIL) (($ (-1136 $) (-836 |#1|)) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#2| (-233 (-4299 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-836 |#1|)) NIL)) (-3141 (((-233 (-4299 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 (-233 (-4299 |#1|) (-747)) (-233 (-4299 |#1|) (-747))) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-3406 (((-3 (-836 |#1|) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-618 (-836 |#1|)) (-618 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-618 (-836 |#1|)) (-618 $)) NIL)) (-4100 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4290 (((-233 (-4299 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-836 |#1|) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#2| (-542)))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-233 (-4299 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-241 |#1| |#2|) (-13 (-921 |#2| (-233 (-4299 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) (-618 (-1142)) (-1018)) (T -241)) -((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-241 *3 *4)) (-14 *3 (-618 (-1142))) (-4 *4 (-1018))))) -(-13 (-921 |#2| (-233 (-4299 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) -((-2887 (((-112) $ $) NIL)) (-1531 (((-1230) $) 15)) (-1533 (((-181) $) 9)) (-1532 (($ (-181)) 10)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 7)) (-3375 (((-112) $ $) 13))) -(((-242) (-13 (-1067) (-10 -8 (-15 -1533 ((-181) $)) (-15 -1532 ($ (-181))) (-15 -1531 ((-1230) $))))) (T -242)) -((-1533 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-242))))) -(-13 (-1067) (-10 -8 (-15 -1533 ((-181) $)) (-15 -1532 ($ (-181))) (-15 -1531 ((-1230) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4053 (($ (-890)) NIL (|has| |#4| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#4| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#4| (-361)))) (-3969 (((-535) $) NIL (|has| |#4| (-821)))) (-4130 ((|#4| $ (-535) |#4|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1067))) (((-3 (-535) #1#) $) NIL (-12 (|has| |#4| (-1009 (-535))) (|has| |#4| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#4| (-1009 (-400 (-535)))) (|has| |#4| (-1067))))) (-3490 ((|#4| $) NIL (|has| |#4| (-1067))) (((-535) $) NIL (-12 (|has| |#4| (-1009 (-535))) (|has| |#4| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#4| (-1009 (-400 (-535)))) (|has| |#4| (-1067))))) (-2353 (((-2 (|:| -1695 (-665 |#4|)) (|:| |vec| (-1224 |#4|))) (-665 $) (-1224 $)) NIL (|has| |#4| (-1018))) (((-665 |#4|) (-665 $)) NIL (|has| |#4| (-1018))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))))) (-3804 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-3315 (($) NIL (|has| |#4| (-361)))) (-1632 ((|#4| $ (-535) |#4|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#4| $ (-535)) NIL)) (-3520 (((-112) $) NIL (|has| |#4| (-821)))) (-2063 (((-618 |#4|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-3521 (((-112) $) NIL (|has| |#4| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2502 (((-618 |#4|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2067 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#4| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#4| (-361)))) (-3577 (((-1086) $) NIL)) (-4143 ((|#4| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#4|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2303 (((-618 |#4|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#4| $ (-535) |#4|) NIL) ((|#4| $ (-535)) 12)) (-4179 ((|#4| $ $) NIL (|has| |#4| (-1018)))) (-1520 (($ (-1224 |#4|)) NIL)) (-4254 (((-133)) NIL (|has| |#4| (-356)))) (-4153 (($ $ (-1 |#4| |#4|) (-747)) NIL (|has| |#4| (-1018))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))))) (-2064 (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#4|) $) NIL) (((-835) $) NIL) (($ |#4|) NIL (|has| |#4| (-1067))) (($ (-535)) NIL (-3874 (-12 (|has| |#4| (-1009 (-535))) (|has| |#4| (-1067))) (|has| |#4| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#4| (-1009 (-400 (-535)))) (|has| |#4| (-1067))))) (-3444 (((-747)) NIL (|has| |#4| (-1018)))) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#4| (-821)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) CONST)) (-2990 (($ $ (-1 |#4| |#4|) (-747)) NIL (|has| |#4| (-1018))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-3006 (((-112) $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-4291 (($ $ |#4|) NIL (|has| |#4| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018))))) (($ $ (-890)) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (* (($ |#2| $) 14) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-703))) (($ |#4| $) NIL (|has| |#4| (-703))) (($ $ $) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-243 |#1| |#2| |#3| |#4|) (-13 (-232 |#1| |#4|) (-624 |#2|) (-624 |#3|)) (-890) (-1018) (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-624 |#2|)) (T -243)) -NIL -(-13 (-232 |#1| |#4|) (-624 |#2|) (-624 |#3|)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4053 (($ (-890)) NIL (|has| |#3| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#3| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#3| (-361)))) (-3969 (((-535) $) NIL (|has| |#3| (-821)))) (-4130 ((|#3| $ (-535) |#3|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1067))) (((-3 (-535) #1#) $) NIL (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067))))) (-3490 ((|#3| $) NIL (|has| |#3| (-1067))) (((-535) $) NIL (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067))))) (-2353 (((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 $) (-1224 $)) NIL (|has| |#3| (-1018))) (((-665 |#3|) (-665 $)) NIL (|has| |#3| (-1018))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))))) (-3804 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-3315 (($) NIL (|has| |#3| (-361)))) (-1632 ((|#3| $ (-535) |#3|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#3| $ (-535)) NIL)) (-3520 (((-112) $) NIL (|has| |#3| (-821)))) (-2063 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-3521 (((-112) $) NIL (|has| |#3| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2502 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#3| |#3|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#3| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#3| (-361)))) (-3577 (((-1086) $) NIL)) (-4143 ((|#3| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#3|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-618 |#3|) (-618 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-2303 (((-618 |#3|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#3| $ (-535) |#3|) NIL) ((|#3| $ (-535)) 11)) (-4179 ((|#3| $ $) NIL (|has| |#3| (-1018)))) (-1520 (($ (-1224 |#3|)) NIL)) (-4254 (((-133)) NIL (|has| |#3| (-356)))) (-4153 (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))))) (-2064 (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336))) (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#3|) $) NIL) (((-835) $) NIL) (($ |#3|) NIL (|has| |#3| (-1067))) (($ (-535)) NIL (-3874 (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067))) (|has| |#3| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067))))) (-3444 (((-747)) NIL (|has| |#3| (-1018)))) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#3| (-821)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) CONST)) (-2990 (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-3006 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-4291 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018))))) (($ $ (-890)) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (* (($ |#2| $) 13) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-703))) (($ |#3| $) NIL (|has| |#3| (-703))) (($ $ $) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-244 |#1| |#2| |#3|) (-13 (-232 |#1| |#3|) (-624 |#2|)) (-747) (-1018) (-624 |#2|)) (T -244)) -NIL -(-13 (-232 |#1| |#3|) (-624 |#2|)) -((-1538 (((-618 (-747)) $) 47) (((-618 (-747)) $ |#3|) 50)) (-1572 (((-747) $) 49) (((-747) $ |#3|) 52)) (-1534 (($ $) 65)) (-3491 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4114 (((-747) $ |#3|) 39) (((-747) $) 36)) (-1573 (((-1 $ (-747)) |#3|) 15) (((-1 $ (-747)) $) 77)) (-1536 ((|#4| $) 58)) (-1537 (((-112) $) 56)) (-1535 (($ $) 64)) (-4110 (($ $ (-618 (-286 $))) 97) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-618 |#4|) (-618 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-618 |#4|) (-618 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-618 |#3|) (-618 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-618 |#3|) (-618 |#2|)) 84)) (-4153 (($ $ |#4|) NIL) (($ $ (-618 |#4|)) NIL) (($ $ |#4| (-747)) NIL) (($ $ (-618 |#4|) (-618 (-747))) NIL) (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1539 (((-618 |#3|) $) 75)) (-4290 ((|#5| $) NIL) (((-747) $ |#4|) NIL) (((-618 (-747)) $ (-618 |#4|)) NIL) (((-747) $ |#3|) 44)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-400 (-535))) NIL) (($ $) NIL))) -(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4110 (|#1| |#1| (-618 |#3|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#3| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#3|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#3| |#1|)) (-15 -1573 ((-1 |#1| (-747)) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 -1536 (|#4| |#1|)) (-15 -1537 ((-112) |#1|)) (-15 -1572 ((-747) |#1| |#3|)) (-15 -1538 ((-618 (-747)) |#1| |#3|)) (-15 -1572 ((-747) |#1|)) (-15 -1538 ((-618 (-747)) |#1|)) (-15 -4290 ((-747) |#1| |#3|)) (-15 -4114 ((-747) |#1|)) (-15 -4114 ((-747) |#1| |#3|)) (-15 -1539 ((-618 |#3|) |#1|)) (-15 -1573 ((-1 |#1| (-747)) |#3|)) (-15 -3491 ((-3 |#3| #1="failed") |#1|)) (-15 -4300 (|#1| |#3|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -4290 ((-618 (-747)) |#1| (-618 |#4|))) (-15 -4290 ((-747) |#1| |#4|)) (-15 -3491 ((-3 |#4| #1#) |#1|)) (-15 -4300 (|#1| |#4|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#4| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#4| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4290 (|#5| |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4153 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -4153 (|#1| |#1| |#4| (-747))) (-15 -4153 (|#1| |#1| (-618 |#4|))) (-15 -4153 (|#1| |#1| |#4|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1018) (-823) (-259 |#3|) (-769)) (T -245)) -NIL -(-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4110 (|#1| |#1| (-618 |#3|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#3| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#3|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#3| |#1|)) (-15 -1573 ((-1 |#1| (-747)) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 -1536 (|#4| |#1|)) (-15 -1537 ((-112) |#1|)) (-15 -1572 ((-747) |#1| |#3|)) (-15 -1538 ((-618 (-747)) |#1| |#3|)) (-15 -1572 ((-747) |#1|)) (-15 -1538 ((-618 (-747)) |#1|)) (-15 -4290 ((-747) |#1| |#3|)) (-15 -4114 ((-747) |#1|)) (-15 -4114 ((-747) |#1| |#3|)) (-15 -1539 ((-618 |#3|) |#1|)) (-15 -1573 ((-1 |#1| (-747)) |#3|)) (-15 -3491 ((-3 |#3| #1="failed") |#1|)) (-15 -4300 (|#1| |#3|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -4290 ((-618 (-747)) |#1| (-618 |#4|))) (-15 -4290 ((-747) |#1| |#4|)) (-15 -3491 ((-3 |#4| #1#) |#1|)) (-15 -4300 (|#1| |#4|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#4| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#4| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4290 (|#5| |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4153 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -4153 (|#1| |#1| |#4| (-747))) (-15 -4153 (|#1| |#1| (-618 |#4|))) (-15 -4153 (|#1| |#1| |#4|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1538 (((-618 (-747)) $) 212) (((-618 (-747)) $ |#2|) 210)) (-1572 (((-747) $) 211) (((-747) $ |#2|) 209)) (-3405 (((-618 |#3|) $) 108)) (-3407 (((-1136 $) $ |#3|) 123) (((-1136 |#1|) $) 122)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-2171 (($ $) 86 (|has| |#1| (-542)))) (-2169 (((-112) $) 88 (|has| |#1| (-542)))) (-3140 (((-747) $) 110) (((-747) $ (-618 |#3|)) 109)) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 98 (|has| |#1| (-881)))) (-4117 (($ $) 96 (|has| |#1| (-444)))) (-4312 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 101 (|has| |#1| (-881)))) (-1534 (($ $) 205)) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-535)) #2#) $) 160 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) 158 (|has| |#1| (-1009 (-535)))) (((-3 |#3| #2#) $) 134) (((-3 |#2| #2#) $) 219)) (-3490 ((|#1| $) 163) (((-400 (-535)) $) 159 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 157 (|has| |#1| (-1009 (-535)))) ((|#3| $) 133) ((|#2| $) 218)) (-4099 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4302 (($ $) 152)) (-2353 (((-665 (-535)) (-665 $)) 132 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 131 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3139 (((-618 $) $) 107)) (-4069 (((-112) $) 94 (|has| |#1| (-881)))) (-1716 (($ $ |#1| |#4| $) 170)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 82 (-12 (|has| |#3| (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 81 (-12 (|has| |#3| (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ |#2|) 215) (((-747) $) 214)) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 167)) (-3408 (($ (-1136 |#1|) |#3|) 115) (($ (-1136 $) |#3|) 114)) (-3142 (((-618 $) $) 124)) (-4280 (((-112) $) 150)) (-3214 (($ |#1| |#4|) 151) (($ $ |#3| (-747)) 117) (($ $ (-618 |#3|) (-618 (-747))) 116)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) 118)) (-3141 ((|#4| $) 168) (((-747) $ |#3|) 120) (((-618 (-747)) $ (-618 |#3|)) 119)) (-3660 (($ $ $) 77 (|has| |#1| (-823)))) (-3661 (($ $ $) 76 (|has| |#1| (-823)))) (-1717 (($ (-1 |#4| |#4|) $) 169)) (-4301 (($ (-1 |#1| |#1|) $) 149)) (-1573 (((-1 $ (-747)) |#2|) 217) (((-1 $ (-747)) $) 204 (|has| |#1| (-227)))) (-3406 (((-3 |#3| #3="failed") $) 121)) (-3215 (($ $) 147)) (-3508 ((|#1| $) 146)) (-1536 ((|#3| $) 207)) (-2008 (($ (-618 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3576 (((-1124) $) 9)) (-1537 (((-112) $) 208)) (-3144 (((-3 (-618 $) #3#) $) 112)) (-3143 (((-3 (-618 $) #3#) $) 113)) (-3145 (((-3 (-2 (|:| |var| |#3|) (|:| -2484 (-747))) #3#) $) 111)) (-1535 (($ $) 206)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 100 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 99 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 97 (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-618 $) (-618 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-618 |#3|) (-618 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-618 |#3|) (-618 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-227))) (($ $ (-618 |#2|) (-618 $)) 202 (|has| |#1| (-227))) (($ $ |#2| |#1|) 201 (|has| |#1| (-227))) (($ $ (-618 |#2|) (-618 |#1|)) 200 (|has| |#1| (-227)))) (-4100 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4153 (($ $ |#3|) 40) (($ $ (-618 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-618 |#3|) (-618 (-747))) 37) (($ $) 236 (|has| |#1| (-227))) (($ $ (-747)) 234 (|has| |#1| (-227))) (($ $ (-1142)) 232 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 231 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 230 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 229 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1539 (((-618 |#2|) $) 216)) (-4290 ((|#4| $) 148) (((-747) $ |#3|) 128) (((-618 (-747)) $ (-618 |#3|)) 127) (((-747) $ |#2|) 213)) (-4313 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) 79 (-12 (|has| |#3| (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) 78 (-12 (|has| |#3| (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 102 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-400 (-535))) 70 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535)))))) (($ $) 83 (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) 166)) (-4023 ((|#1| $ |#4|) 153) (($ $ |#3| (-747)) 126) (($ $ (-618 |#3|) (-618 (-747))) 125)) (-3023 (((-3 $ #1#) $) 71 (-3874 (-3179 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ |#3|) 36) (($ $ (-618 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-618 |#3|) (-618 (-747))) 33) (($ $) 235 (|has| |#1| (-227))) (($ $ (-747)) 233 (|has| |#1| (-227))) (($ $ (-1142)) 228 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 227 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 226 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 225 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2885 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 73 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 75 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 72 (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 156 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 155 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-246 |#1| |#2| |#3| |#4|) (-138) (-1018) (-823) (-259 |t#2|) (-769)) (T -246)) -((-1573 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *4 *3 *5 *6)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-618 *4)))) (-4114 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) (-4290 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-618 (-747))))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) (-1538 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-618 (-747))))) (-1572 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-112)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-4 *2 (-259 *4)))) (-1535 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-259 *3)) (-4 *5 (-769)))) (-1534 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-259 *3)) (-4 *5 (-769)))) (-1573 (*1 *2 *1) (-12 (-4 *3 (-227)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *3 *4 *5 *6))))) -(-13 (-921 |t#1| |t#4| |t#3|) (-225 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -1573 ((-1 $ (-747)) |t#2|)) (-15 -1539 ((-618 |t#2|) $)) (-15 -4114 ((-747) $ |t#2|)) (-15 -4114 ((-747) $)) (-15 -4290 ((-747) $ |t#2|)) (-15 -1538 ((-618 (-747)) $)) (-15 -1572 ((-747) $)) (-15 -1538 ((-618 (-747)) $ |t#2|)) (-15 -1572 ((-747) $ |t#2|)) (-15 -1537 ((-112) $)) (-15 -1536 (|t#3| $)) (-15 -1535 ($ $)) (-15 -1534 ($ $)) (IF (|has| |t#1| (-227)) (PROGN (-6 (-505 |t#2| |t#1|)) (-6 (-505 |t#2| $)) (-6 (-302 $)) (-15 -1573 ((-1 $ (-747)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535))))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-283) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#4|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-881)) (|has| |#1| (-444))) ((-505 |#2| |#1|) |has| |#1| (-227)) ((-505 |#2| $) |has| |#1| (-227)) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-871 |#3|) . T) ((-857 (-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))) ((-921 |#1| |#4| |#3|) . T) ((-881) |has| |#1| (-881)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1009 |#2|) . T) ((-1009 |#3|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) |has| |#1| (-881))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1545 ((|#1| $) 54)) (-3666 ((|#1| $) 44)) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-3323 (($ $) 60)) (-2368 (($ $) 48)) (-3668 ((|#1| |#1| $) 46)) (-3667 ((|#1| $) 45)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-4176 (((-747) $) 61)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-1543 ((|#1| |#1| $) 52)) (-1542 ((|#1| |#1| $) 51)) (-3953 (($ |#1| $) 40)) (-2922 (((-747) $) 55)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-3322 ((|#1| $) 62)) (-1541 ((|#1| $) 50)) (-1540 ((|#1| $) 49)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3325 ((|#1| |#1| $) 58)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3324 ((|#1| $) 59)) (-1546 (($) 57) (($ (-618 |#1|)) 56)) (-3665 (((-747) $) 43)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1544 ((|#1| $) 53)) (-1328 (($ (-618 |#1|)) 42)) (-3321 ((|#1| $) 63)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-247 |#1|) (-138) (-1178)) (T -247)) -((-1546 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-247 *3)))) (-2922 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1543 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1542 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))) -(-13 (-1087 |t#1|) (-966 |t#1|) (-10 -8 (-15 -1546 ($)) (-15 -1546 ($ (-618 |t#1|))) (-15 -2922 ((-747) $)) (-15 -1545 (|t#1| $)) (-15 -1544 (|t#1| $)) (-15 -1543 (|t#1| |t#1| $)) (-15 -1542 (|t#1| |t#1| $)) (-15 -1541 (|t#1| $)) (-15 -1540 (|t#1| $)) (-15 -2368 ($ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-966 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1087 |#1|) . T) ((-1178) . T)) -((-1547 (((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371))) 71) (((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254))) 70) (((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371))) 61) (((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254))) 60) (((-1099 (-219)) (-850 |#1|) (-1058 (-371))) 52) (((-1099 (-219)) (-850 |#1|) (-1058 (-371)) (-618 (-254))) 51)) (-1554 (((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371))) 74) (((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254))) 73) (((-1228) |#1| (-1058 (-371)) (-1058 (-371))) 64) (((-1228) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254))) 63) (((-1228) (-850 |#1|) (-1058 (-371))) 56) (((-1228) (-850 |#1|) (-1058 (-371)) (-618 (-254))) 55) (((-1227) (-848 |#1|) (-1058 (-371))) 43) (((-1227) (-848 |#1|) (-1058 (-371)) (-618 (-254))) 42) (((-1227) |#1| (-1058 (-371))) 35) (((-1227) |#1| (-1058 (-371)) (-618 (-254))) 34))) -(((-248 |#1|) (-10 -7 (-15 -1554 ((-1227) |#1| (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) |#1| (-1058 (-371)))) (-15 -1554 ((-1227) (-848 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-848 |#1|) (-1058 (-371)))) (-15 -1554 ((-1228) (-850 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-850 |#1|) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) (-850 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-850 |#1|) (-1058 (-371)))) (-15 -1554 ((-1228) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) |#1| (-1058 (-371)) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)))) (-15 -1554 ((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371))))) (-13 (-594 (-524)) (-1067))) (T -248)) -((-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *5)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *6)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1228)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *5)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1227)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067)))))) -(-10 -7 (-15 -1554 ((-1227) |#1| (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) |#1| (-1058 (-371)))) (-15 -1554 ((-1227) (-848 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-848 |#1|) (-1058 (-371)))) (-15 -1554 ((-1228) (-850 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-850 |#1|) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) (-850 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-850 |#1|) (-1058 (-371)))) (-15 -1554 ((-1228) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) |#1| (-1058 (-371)) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)))) (-15 -1554 ((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371))))) -((-1548 (((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 139)) (-1547 (((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371))) 160) (((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 158) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371))) 163) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 159) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371))) 150) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 149) (((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371))) 129) (((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254))) 127) (((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371))) 128) (((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254))) 125)) (-1554 (((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371))) 162) (((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 161) (((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371))) 165) (((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 164) (((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371))) 152) (((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 151) (((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371))) 135) (((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254))) 134) (((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371))) 133) (((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254))) 132) (((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371))) 100) (((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254))) 99) (((-1227) (-1 (-219) (-219)) (-1055 (-371))) 96) (((-1227) (-1 (-219) (-219)) (-1055 (-371)) (-618 (-254))) 95))) -(((-249) (-10 -7 (-15 -1554 ((-1227) (-1 (-219) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-1 (-219) (-219)) (-1055 (-371)))) (-15 -1554 ((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1554 ((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1554 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)))) (-15 -1548 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -249)) -((-1548 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1227)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1227)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-249))))) -(-10 -7 (-15 -1554 ((-1227) (-1 (-219) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-1 (-219) (-219)) (-1055 (-371)))) (-15 -1554 ((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1554 ((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1554 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)))) (-15 -1548 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) -((-1554 (((-1227) (-286 |#2|) (-1142) (-1142) (-618 (-254))) 96))) -(((-250 |#1| |#2|) (-10 -7 (-15 -1554 ((-1227) (-286 |#2|) (-1142) (-1142) (-618 (-254))))) (-13 (-542) (-823) (-1009 (-535))) (-414 |#1|)) (T -250)) -((-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-1142)) (-5 *5 (-618 (-254))) (-4 *7 (-414 *6)) (-4 *6 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-1227)) (-5 *1 (-250 *6 *7))))) -(-10 -7 (-15 -1554 ((-1227) (-286 |#2|) (-1142) (-1142) (-618 (-254))))) -((-1551 (((-535) (-535)) 50)) (-1552 (((-535) (-535)) 51)) (-1553 (((-219) (-219)) 52)) (-1550 (((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219))) 49)) (-1549 (((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)) (-112)) 47))) -(((-251) (-10 -7 (-15 -1549 ((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)) (-112))) (-15 -1550 ((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)))) (-15 -1551 ((-535) (-535))) (-15 -1552 ((-535) (-535))) (-15 -1553 ((-219) (-219))))) (T -251)) -((-1553 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-251)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-251)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-251)))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1055 (-219))) (-5 *2 (-1228)) (-5 *1 (-251)))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1055 (-219))) (-5 *5 (-112)) (-5 *2 (-1228)) (-5 *1 (-251))))) -(-10 -7 (-15 -1549 ((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)) (-112))) (-15 -1550 ((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)))) (-15 -1551 ((-535) (-535))) (-15 -1552 ((-535) (-535))) (-15 -1553 ((-219) (-219)))) -((-4300 (((-1058 (-371)) (-1058 (-307 |#1|))) 16))) -(((-252 |#1|) (-10 -7 (-15 -4300 ((-1058 (-371)) (-1058 (-307 |#1|))))) (-13 (-823) (-542) (-594 (-371)))) (T -252)) -((-4300 (*1 *2 *3) (-12 (-5 *3 (-1058 (-307 *4))) (-4 *4 (-13 (-823) (-542) (-594 (-371)))) (-5 *2 (-1058 (-371))) (-5 *1 (-252 *4))))) -(-10 -7 (-15 -4300 ((-1058 (-371)) (-1058 (-307 |#1|))))) -((-1554 (((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)) (-618 (-254))) 23) (((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219))) 24) (((-1227) (-618 (-914 (-219))) (-618 (-254))) 16) (((-1227) (-618 (-914 (-219)))) 17) (((-1227) (-618 (-219)) (-618 (-219)) (-618 (-254))) 20) (((-1227) (-618 (-219)) (-618 (-219))) 21))) -(((-253) (-10 -7 (-15 -1554 ((-1227) (-618 (-219)) (-618 (-219)))) (-15 -1554 ((-1227) (-618 (-219)) (-618 (-219)) (-618 (-254)))) (-15 -1554 ((-1227) (-618 (-914 (-219))))) (-15 -1554 ((-1227) (-618 (-914 (-219))) (-618 (-254)))) (-15 -1554 ((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)))) (-15 -1554 ((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)) (-618 (-254)))))) (T -253)) -((-1554 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-618 (-219))) (-5 *4 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *4 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-618 (-219))) (-5 *4 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1227)) (-5 *1 (-253))))) -(-10 -7 (-15 -1554 ((-1227) (-618 (-219)) (-618 (-219)))) (-15 -1554 ((-1227) (-618 (-219)) (-618 (-219)) (-618 (-254)))) (-15 -1554 ((-1227) (-618 (-914 (-219))))) (-15 -1554 ((-1227) (-618 (-914 (-219))) (-618 (-254)))) (-15 -1554 ((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)))) (-15 -1554 ((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)) (-618 (-254))))) -((-2887 (((-112) $ $) NIL)) (-4224 (($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 15)) (-1567 (($ (-890)) 76)) (-1566 (($ (-890)) 75)) (-1887 (($ (-618 (-371))) 82)) (-1570 (($ (-371)) 58)) (-1569 (($ (-890)) 77)) (-1563 (($ (-112)) 23)) (-4226 (($ (-1124)) 18)) (-1562 (($ (-1124)) 19)) (-1568 (($ (-1099 (-219))) 71)) (-2045 (($ (-618 (-1055 (-371)))) 67)) (-1556 (($ (-618 (-1055 (-371)))) 59) (($ (-618 (-1055 (-400 (-535))))) 66)) (-1559 (($ (-371)) 29) (($ (-845)) 33)) (-1555 (((-112) (-618 $) (-1142)) 91)) (-1571 (((-3 (-51) "failed") (-618 $) (-1142)) 93)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1558 (($ (-371)) 34) (($ (-845)) 35)) (-3558 (($ (-1 (-914 (-219)) (-914 (-219)))) 57)) (-2341 (($ (-1 (-914 (-219)) (-914 (-219)))) 78)) (-1557 (($ (-1 (-219) (-219))) 39) (($ (-1 (-219) (-219) (-219))) 43) (($ (-1 (-219) (-219) (-219) (-219))) 47)) (-4300 (((-835) $) 87)) (-1560 (($ (-112)) 24) (($ (-618 (-1055 (-371)))) 52)) (-2040 (($ (-112)) 25)) (-3375 (((-112) $ $) 89))) -(((-254) (-13 (-1067) (-10 -8 (-15 -2040 ($ (-112))) (-15 -1560 ($ (-112))) (-15 -4224 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4226 ($ (-1124))) (-15 -1562 ($ (-1124))) (-15 -1563 ($ (-112))) (-15 -1560 ($ (-618 (-1055 (-371))))) (-15 -3558 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -1559 ($ (-371))) (-15 -1559 ($ (-845))) (-15 -1558 ($ (-371))) (-15 -1558 ($ (-845))) (-15 -1557 ($ (-1 (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1570 ($ (-371))) (-15 -1556 ($ (-618 (-1055 (-371))))) (-15 -1556 ($ (-618 (-1055 (-400 (-535)))))) (-15 -2045 ($ (-618 (-1055 (-371))))) (-15 -1568 ($ (-1099 (-219)))) (-15 -1566 ($ (-890))) (-15 -1567 ($ (-890))) (-15 -1569 ($ (-890))) (-15 -2341 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -1887 ($ (-618 (-371)))) (-15 -1571 ((-3 (-51) "failed") (-618 $) (-1142))) (-15 -1555 ((-112) (-618 $) (-1142)))))) (T -254)) -((-2040 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-254)))) (-4226 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-254)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-254)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-254)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-254)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-254)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-400 (-535))))) (-5 *1 (-254)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-254)))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-254)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-254)))) (-1571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *2 (-51)) (-5 *1 (-254)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-254))))) -(-13 (-1067) (-10 -8 (-15 -2040 ($ (-112))) (-15 -1560 ($ (-112))) (-15 -4224 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4226 ($ (-1124))) (-15 -1562 ($ (-1124))) (-15 -1563 ($ (-112))) (-15 -1560 ($ (-618 (-1055 (-371))))) (-15 -3558 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -1559 ($ (-371))) (-15 -1559 ($ (-845))) (-15 -1558 ($ (-371))) (-15 -1558 ($ (-845))) (-15 -1557 ($ (-1 (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1570 ($ (-371))) (-15 -1556 ($ (-618 (-1055 (-371))))) (-15 -1556 ($ (-618 (-1055 (-400 (-535)))))) (-15 -2045 ($ (-618 (-1055 (-371))))) (-15 -1568 ($ (-1099 (-219)))) (-15 -1566 ($ (-890))) (-15 -1567 ($ (-890))) (-15 -1569 ($ (-890))) (-15 -2341 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -1887 ($ (-618 (-371)))) (-15 -1571 ((-3 (-51) "failed") (-618 $) (-1142))) (-15 -1555 ((-112) (-618 $) (-1142))))) -((-4224 (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-618 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 26)) (-1567 (((-890) (-618 (-254)) (-890)) 53)) (-1566 (((-890) (-618 (-254)) (-890)) 52)) (-4194 (((-618 (-371)) (-618 (-254)) (-618 (-371))) 69)) (-1570 (((-371) (-618 (-254)) (-371)) 58)) (-1569 (((-890) (-618 (-254)) (-890)) 54)) (-1563 (((-112) (-618 (-254)) (-112)) 28)) (-4226 (((-1124) (-618 (-254)) (-1124)) 20)) (-1562 (((-1124) (-618 (-254)) (-1124)) 27)) (-1568 (((-1099 (-219)) (-618 (-254))) 47)) (-2045 (((-618 (-1055 (-371))) (-618 (-254)) (-618 (-1055 (-371)))) 41)) (-1564 (((-845) (-618 (-254)) (-845)) 33)) (-1565 (((-845) (-618 (-254)) (-845)) 34)) (-2341 (((-1 (-914 (-219)) (-914 (-219))) (-618 (-254)) (-1 (-914 (-219)) (-914 (-219)))) 64)) (-1561 (((-112) (-618 (-254)) (-112)) 16)) (-2040 (((-112) (-618 (-254)) (-112)) 15))) -(((-255) (-10 -7 (-15 -2040 ((-112) (-618 (-254)) (-112))) (-15 -1561 ((-112) (-618 (-254)) (-112))) (-15 -4224 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-618 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4226 ((-1124) (-618 (-254)) (-1124))) (-15 -1562 ((-1124) (-618 (-254)) (-1124))) (-15 -1563 ((-112) (-618 (-254)) (-112))) (-15 -1564 ((-845) (-618 (-254)) (-845))) (-15 -1565 ((-845) (-618 (-254)) (-845))) (-15 -2045 ((-618 (-1055 (-371))) (-618 (-254)) (-618 (-1055 (-371))))) (-15 -1566 ((-890) (-618 (-254)) (-890))) (-15 -1567 ((-890) (-618 (-254)) (-890))) (-15 -1568 ((-1099 (-219)) (-618 (-254)))) (-15 -1569 ((-890) (-618 (-254)) (-890))) (-15 -1570 ((-371) (-618 (-254)) (-371))) (-15 -2341 ((-1 (-914 (-219)) (-914 (-219))) (-618 (-254)) (-1 (-914 (-219)) (-914 (-219))))) (-15 -4194 ((-618 (-371)) (-618 (-254)) (-618 (-371)))))) (T -255)) -((-4194 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-371))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-2341 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1570 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1569 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-255)))) (-1567 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1566 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1565 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1564 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1562 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-4226 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-4224 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1561 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-2040 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(-10 -7 (-15 -2040 ((-112) (-618 (-254)) (-112))) (-15 -1561 ((-112) (-618 (-254)) (-112))) (-15 -4224 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-618 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4226 ((-1124) (-618 (-254)) (-1124))) (-15 -1562 ((-1124) (-618 (-254)) (-1124))) (-15 -1563 ((-112) (-618 (-254)) (-112))) (-15 -1564 ((-845) (-618 (-254)) (-845))) (-15 -1565 ((-845) (-618 (-254)) (-845))) (-15 -2045 ((-618 (-1055 (-371))) (-618 (-254)) (-618 (-1055 (-371))))) (-15 -1566 ((-890) (-618 (-254)) (-890))) (-15 -1567 ((-890) (-618 (-254)) (-890))) (-15 -1568 ((-1099 (-219)) (-618 (-254)))) (-15 -1569 ((-890) (-618 (-254)) (-890))) (-15 -1570 ((-371) (-618 (-254)) (-371))) (-15 -2341 ((-1 (-914 (-219)) (-914 (-219))) (-618 (-254)) (-1 (-914 (-219)) (-914 (-219))))) (-15 -4194 ((-618 (-371)) (-618 (-254)) (-618 (-371))))) -((-1571 (((-3 |#1| "failed") (-618 (-254)) (-1142)) 17))) -(((-256 |#1|) (-10 -7 (-15 -1571 ((-3 |#1| "failed") (-618 (-254)) (-1142)))) (-1178)) (T -256)) -((-1571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *1 (-256 *2)) (-4 *2 (-1178))))) -(-10 -7 (-15 -1571 ((-3 |#1| "failed") (-618 (-254)) (-1142)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1538 (((-618 (-747)) $) NIL) (((-618 (-747)) $ |#2|) NIL)) (-1572 (((-747) $) NIL) (((-747) $ |#2|) NIL)) (-3405 (((-618 |#3|) $) NIL)) (-3407 (((-1136 $) $ |#3|) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 |#3|)) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1534 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1091 |#1| |#2|) #2#) $) 21)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1091 |#1| |#2|) $) NIL)) (-4099 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 |#3|) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))))) (-4114 (((-747) $ |#2|) NIL) (((-747) $) 10)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#1|) |#3|) NIL) (($ (-1136 $) |#3|) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-618 |#3|) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) NIL)) (-3141 (((-521 |#3|) $) NIL) (((-747) $ |#3|) NIL) (((-618 (-747)) $ (-618 |#3|)) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 |#3|) (-521 |#3|)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-747)) |#2|) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-3406 (((-3 |#3| #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-1536 ((|#3| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-1537 (((-112) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| |#3|) (|:| -2484 (-747))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-618 |#3|) (-618 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-618 |#3|) (-618 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-227))) (($ $ (-618 |#2|) (-618 $)) NIL (|has| |#1| (-227))) (($ $ |#2| |#1|) NIL (|has| |#1| (-227))) (($ $ (-618 |#2|) (-618 |#1|)) NIL (|has| |#1| (-227)))) (-4100 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-4153 (($ $ |#3|) NIL) (($ $ (-618 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-618 |#3|) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-618 |#2|) $) NIL)) (-4290 (((-521 |#3|) $) NIL) (((-747) $ |#3|) NIL) (((-618 (-747)) $ (-618 |#3|)) NIL) (((-747) $ |#2|) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1091 |#1| |#2|)) 30) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-618 |#3|) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ |#3|) NIL) (($ $ (-618 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-618 |#3|) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-257 |#1| |#2| |#3|) (-13 (-246 |#1| |#2| |#3| (-521 |#3|)) (-1009 (-1091 |#1| |#2|))) (-1018) (-823) (-259 |#2|)) (T -257)) -NIL -(-13 (-246 |#1| |#2| |#3| (-521 |#3|)) (-1009 (-1091 |#1| |#2|))) -((-1572 (((-747) $) 30)) (-3491 (((-3 |#2| "failed") $) 17)) (-3490 ((|#2| $) 27)) (-4153 (($ $) 12) (($ $ (-747)) 15)) (-4300 (((-835) $) 26) (($ |#2|) 10)) (-3375 (((-112) $ $) 20)) (-3006 (((-112) $ $) 29))) -(((-258 |#1| |#2|) (-10 -8 (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -1572 ((-747) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| "failed") |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-259 |#2|) (-823)) (T -258)) -NIL -(-10 -8 (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -1572 ((-747) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| "failed") |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-1572 (((-747) $) 22)) (-4174 ((|#1| $) 23)) (-3491 (((-3 |#1| "failed") $) 27)) (-3490 ((|#1| $) 26)) (-4114 (((-747) $) 24)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-1573 (($ |#1| (-747)) 25)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4153 (($ $) 21) (($ $ (-747)) 20)) (-4300 (((-835) $) 11) (($ |#1|) 28)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18))) -(((-259 |#1|) (-138) (-823)) (T -259)) -((-4300 (*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-1573 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) (-4153 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-259 *3)) (-4 *3 (-823))))) -(-13 (-823) (-1009 |t#1|) (-10 -8 (-15 -1573 ($ |t#1| (-747))) (-15 -4114 ((-747) $)) (-15 -4174 (|t#1| $)) (-15 -1572 ((-747) $)) (-15 -4153 ($ $)) (-15 -4153 ($ $ (-747))) (-15 -4300 ($ |t#1|)))) -(((-101) . T) ((-593 (-835)) . T) ((-823) . T) ((-1009 |#1|) . T) ((-1067) . T)) -((-3405 (((-618 (-1142)) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 41)) (-4277 (((-618 (-1142)) (-307 (-219)) (-747)) 80)) (-1576 (((-3 (-307 (-219)) "failed") (-307 (-219))) 51)) (-1577 (((-307 (-219)) (-307 (-219))) 67)) (-1575 (((-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 26)) (-1578 (((-112) (-618 (-307 (-219)))) 84)) (-1582 (((-112) (-307 (-219))) 24)) (-1584 (((-618 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) 106)) (-1581 (((-618 (-307 (-219))) (-618 (-307 (-219)))) 88)) (-1580 (((-618 (-307 (-219))) (-618 (-307 (-219)))) 86)) (-1579 (((-665 (-219)) (-618 (-307 (-219))) (-747)) 95)) (-3248 (((-112) (-307 (-219))) 20) (((-112) (-618 (-307 (-219)))) 85)) (-1574 (((-618 (-219)) (-618 (-815 (-219))) (-219)) 14)) (-1672 (((-371) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 101)) (-1583 (((-1006) (-1142) (-1006)) 34))) -(((-260) (-10 -7 (-15 -1574 ((-618 (-219)) (-618 (-815 (-219))) (-219))) (-15 -1575 ((-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -1576 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1577 ((-307 (-219)) (-307 (-219)))) (-15 -1578 ((-112) (-618 (-307 (-219))))) (-15 -3248 ((-112) (-618 (-307 (-219))))) (-15 -3248 ((-112) (-307 (-219)))) (-15 -1579 ((-665 (-219)) (-618 (-307 (-219))) (-747))) (-15 -1580 ((-618 (-307 (-219))) (-618 (-307 (-219))))) (-15 -1581 ((-618 (-307 (-219))) (-618 (-307 (-219))))) (-15 -1582 ((-112) (-307 (-219)))) (-15 -3405 ((-618 (-1142)) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -4277 ((-618 (-1142)) (-307 (-219)) (-747))) (-15 -1583 ((-1006) (-1142) (-1006))) (-15 -1672 ((-371) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -1584 ((-618 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))))) (T -260)) -((-1584 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) (-5 *2 (-618 (-1124))) (-5 *1 (-260)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *2 (-371)) (-5 *1 (-260)))) (-1583 (*1 *2 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-260)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-747)) (-5 *2 (-618 (-1142))) (-5 *1 (-260)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *2 (-618 (-1142))) (-5 *1 (-260)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-618 (-307 (-219)))) (-5 *1 (-260)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-618 (-307 (-219)))) (-5 *1 (-260)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) (-5 *1 (-260)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))) (-1576 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (-5 *1 (-260)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-815 (-219)))) (-5 *4 (-219)) (-5 *2 (-618 *4)) (-5 *1 (-260))))) -(-10 -7 (-15 -1574 ((-618 (-219)) (-618 (-815 (-219))) (-219))) (-15 -1575 ((-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -1576 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1577 ((-307 (-219)) (-307 (-219)))) (-15 -1578 ((-112) (-618 (-307 (-219))))) (-15 -3248 ((-112) (-618 (-307 (-219))))) (-15 -3248 ((-112) (-307 (-219)))) (-15 -1579 ((-665 (-219)) (-618 (-307 (-219))) (-747))) (-15 -1580 ((-618 (-307 (-219))) (-618 (-307 (-219))))) (-15 -1581 ((-618 (-307 (-219))) (-618 (-307 (-219))))) (-15 -1582 ((-112) (-307 (-219)))) (-15 -3405 ((-618 (-1142)) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -4277 ((-618 (-1142)) (-307 (-219)) (-747))) (-15 -1583 ((-1006) (-1142) (-1006))) (-15 -1672 ((-371) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -1584 ((-618 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))))) -((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 44)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 26) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-261) (-812)) (T -261)) -NIL -(-812) -((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 58) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 54)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 34) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 36)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-262) (-812)) (T -262)) -NIL -(-812) -((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 76) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 73)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 44) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 55)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-263) (-812)) (T -263)) -NIL -(-812) -((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 50)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 31) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-264) (-812)) (T -264)) -NIL -(-812) -((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 50)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 28) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-265) (-812)) (T -265)) -NIL -(-812) -((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 73)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 28) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-266) (-812)) (T -266)) -NIL -(-812) -((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 77)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 25) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-267) (-812)) (T -267)) -NIL -(-812) -((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1586 (((-618 (-535)) $) 19)) (-4290 (((-747) $) 17)) (-4300 (((-835) $) 23) (($ (-618 (-535))) 15)) (-1585 (($ (-747)) 20)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 9)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 11))) -(((-268) (-13 (-823) (-10 -8 (-15 -4300 ($ (-618 (-535)))) (-15 -4290 ((-747) $)) (-15 -1586 ((-618 (-535)) $)) (-15 -1585 ($ (-747)))))) (T -268)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-268)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-268)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-268)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-268))))) -(-13 (-823) (-10 -8 (-15 -4300 ($ (-618 (-535)))) (-15 -4290 ((-747) $)) (-15 -1586 ((-618 (-535)) $)) (-15 -1585 ($ (-747))))) -((-3829 ((|#2| |#2|) 77)) (-3985 ((|#2| |#2|) 65)) (-1615 (((-3 |#2| "failed") |#2| (-618 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3827 ((|#2| |#2|) 75)) (-3984 ((|#2| |#2|) 63)) (-3831 ((|#2| |#2|) 79)) (-3983 ((|#2| |#2|) 67)) (-3973 ((|#2|) 46)) (-3368 (((-113) (-113)) 95)) (-4285 ((|#2| |#2|) 61)) (-1616 (((-112) |#2|) 134)) (-1605 ((|#2| |#2|) 181)) (-1593 ((|#2| |#2|) 157)) (-1588 ((|#2|) 59)) (-1587 ((|#2|) 58)) (-1603 ((|#2| |#2|) 177)) (-1591 ((|#2| |#2|) 153)) (-1607 ((|#2| |#2|) 185)) (-1595 ((|#2| |#2|) 161)) (-1590 ((|#2| |#2|) 149)) (-1589 ((|#2| |#2|) 151)) (-1608 ((|#2| |#2|) 187)) (-1596 ((|#2| |#2|) 163)) (-1606 ((|#2| |#2|) 183)) (-1594 ((|#2| |#2|) 159)) (-1604 ((|#2| |#2|) 179)) (-1592 ((|#2| |#2|) 155)) (-1611 ((|#2| |#2|) 193)) (-1599 ((|#2| |#2|) 169)) (-1609 ((|#2| |#2|) 189)) (-1597 ((|#2| |#2|) 165)) (-1613 ((|#2| |#2|) 197)) (-1601 ((|#2| |#2|) 173)) (-1614 ((|#2| |#2|) 199)) (-1602 ((|#2| |#2|) 175)) (-1612 ((|#2| |#2|) 195)) (-1600 ((|#2| |#2|) 171)) (-1610 ((|#2| |#2|) 191)) (-1598 ((|#2| |#2|) 167)) (-4286 ((|#2| |#2|) 62)) (-3832 ((|#2| |#2|) 80)) (-3982 ((|#2| |#2|) 68)) (-3830 ((|#2| |#2|) 78)) (-3981 ((|#2| |#2|) 66)) (-3828 ((|#2| |#2|) 76)) (-3980 ((|#2| |#2|) 64)) (-2329 (((-112) (-113)) 93)) (-3835 ((|#2| |#2|) 83)) (-3823 ((|#2| |#2|) 71)) (-3833 ((|#2| |#2|) 81)) (-3821 ((|#2| |#2|) 69)) (-3837 ((|#2| |#2|) 85)) (-3825 ((|#2| |#2|) 73)) (-3838 ((|#2| |#2|) 86)) (-3826 ((|#2| |#2|) 74)) (-3836 ((|#2| |#2|) 84)) (-3824 ((|#2| |#2|) 72)) (-3834 ((|#2| |#2|) 82)) (-3822 ((|#2| |#2|) 70))) -(((-269 |#1| |#2|) (-10 -7 (-15 -4286 (|#2| |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (-15 -3831 (|#2| |#2|)) (-15 -3832 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3973 (|#2|)) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1587 (|#2|)) (-15 -1588 (|#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 ((-3 |#2| "failed") |#2| (-618 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1616 ((-112) |#2|))) (-13 (-823) (-542)) (-13 (-414 |#1|) (-973))) (T -269)) -((-1616 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-414 *4) (-973))))) (-1615 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-618 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-414 *4) (-973))) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-269 *4 *2)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1611 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1602 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1588 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-542))))) (-1587 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-542))))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *4)) (-4 *4 (-13 (-414 *3) (-973))))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-414 *4) (-973))))) (-3973 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-542))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973)))))) -(-10 -7 (-15 -4286 (|#2| |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (-15 -3831 (|#2| |#2|)) (-15 -3832 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3973 (|#2|)) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1587 (|#2|)) (-15 -1588 (|#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 ((-3 |#2| "failed") |#2| (-618 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1616 ((-112) |#2|))) -((-1619 (((-3 |#2| "failed") (-618 (-591 |#2|)) |#2| (-1142)) 135)) (-1621 ((|#2| (-400 (-535)) |#2|) 51)) (-1620 ((|#2| |#2| (-591 |#2|)) 128)) (-1617 (((-2 (|:| |func| |#2|) (|:| |kers| (-618 (-591 |#2|))) (|:| |vals| (-618 |#2|))) |#2| (-1142)) 127)) (-1618 ((|#2| |#2| (-1142)) 20) ((|#2| |#2|) 23)) (-2683 ((|#2| |#2| (-1142)) 141) ((|#2| |#2|) 139))) -(((-270 |#1| |#2|) (-10 -7 (-15 -2683 (|#2| |#2|)) (-15 -2683 (|#2| |#2| (-1142))) (-15 -1617 ((-2 (|:| |func| |#2|) (|:| |kers| (-618 (-591 |#2|))) (|:| |vals| (-618 |#2|))) |#2| (-1142))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1142))) (-15 -1619 ((-3 |#2| "failed") (-618 (-591 |#2|)) |#2| (-1142))) (-15 -1620 (|#2| |#2| (-591 |#2|))) (-15 -1621 (|#2| (-400 (-535)) |#2|))) (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -270)) -((-1621 (*1 *2 *3 *2) (-12 (-5 *3 (-400 (-535))) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-1620 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *4 *2)))) (-1619 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-618 (-591 *2))) (-5 *4 (-1142)) (-4 *2 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *5 *2)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-1617 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-618 (-591 *3))) (|:| |vals| (-618 *3)))) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2683 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))) -(-10 -7 (-15 -2683 (|#2| |#2|)) (-15 -2683 (|#2| |#2| (-1142))) (-15 -1617 ((-2 (|:| |func| |#2|) (|:| |kers| (-618 (-591 |#2|))) (|:| |vals| (-618 |#2|))) |#2| (-1142))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1142))) (-15 -1619 ((-3 |#2| "failed") (-618 (-591 |#2|)) |#2| (-1142))) (-15 -1620 (|#2| |#2| (-591 |#2|))) (-15 -1621 (|#2| (-400 (-535)) |#2|))) -((-3296 (((-3 |#3| #1="failed") |#3|) 110)) (-3829 ((|#3| |#3|) 131)) (-3284 (((-3 |#3| #1#) |#3|) 82)) (-3985 ((|#3| |#3|) 121)) (-3294 (((-3 |#3| #1#) |#3|) 58)) (-3827 ((|#3| |#3|) 129)) (-3282 (((-3 |#3| #1#) |#3|) 46)) (-3984 ((|#3| |#3|) 119)) (-3298 (((-3 |#3| #1#) |#3|) 112)) (-3831 ((|#3| |#3|) 133)) (-3286 (((-3 |#3| #1#) |#3|) 84)) (-3983 ((|#3| |#3|) 123)) (-3279 (((-3 |#3| #1#) |#3| (-747)) 36)) (-3281 (((-3 |#3| #1#) |#3|) 74)) (-4285 ((|#3| |#3|) 118)) (-3280 (((-3 |#3| #1#) |#3|) 44)) (-4286 ((|#3| |#3|) 117)) (-3299 (((-3 |#3| #1#) |#3|) 113)) (-3832 ((|#3| |#3|) 134)) (-3287 (((-3 |#3| #1#) |#3|) 85)) (-3982 ((|#3| |#3|) 124)) (-3297 (((-3 |#3| #1#) |#3|) 111)) (-3830 ((|#3| |#3|) 132)) (-3285 (((-3 |#3| #1#) |#3|) 83)) (-3981 ((|#3| |#3|) 122)) (-3295 (((-3 |#3| #1#) |#3|) 60)) (-3828 ((|#3| |#3|) 130)) (-3283 (((-3 |#3| #1#) |#3|) 48)) (-3980 ((|#3| |#3|) 120)) (-3302 (((-3 |#3| #1#) |#3|) 66)) (-3835 ((|#3| |#3|) 137)) (-3290 (((-3 |#3| #1#) |#3|) 104)) (-3823 ((|#3| |#3|) 142)) (-3300 (((-3 |#3| #1#) |#3|) 62)) (-3833 ((|#3| |#3|) 135)) (-3288 (((-3 |#3| #1#) |#3|) 50)) (-3821 ((|#3| |#3|) 125)) (-3304 (((-3 |#3| #1#) |#3|) 70)) (-3837 ((|#3| |#3|) 139)) (-3292 (((-3 |#3| #1#) |#3|) 54)) (-3825 ((|#3| |#3|) 127)) (-3305 (((-3 |#3| #1#) |#3|) 72)) (-3838 ((|#3| |#3|) 140)) (-3293 (((-3 |#3| #1#) |#3|) 56)) (-3826 ((|#3| |#3|) 128)) (-3303 (((-3 |#3| #1#) |#3|) 68)) (-3836 ((|#3| |#3|) 138)) (-3291 (((-3 |#3| #1#) |#3|) 107)) (-3824 ((|#3| |#3|) 143)) (-3301 (((-3 |#3| #1#) |#3|) 64)) (-3834 ((|#3| |#3|) 136)) (-3289 (((-3 |#3| #1#) |#3|) 52)) (-3822 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-400 (-535))) 40 (|has| |#1| (-356))))) -(((-271 |#1| |#2| |#3|) (-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-535)))) |%noBranch|) (-15 -4286 (|#3| |#3|)) (-15 -4285 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3980 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3824 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3830 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3832 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)))) (-38 (-400 (-535))) (-1217 |#1|) (-1188 |#1| |#2|)) (T -271)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-535))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1217 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1188 *4 *5)))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))) -(-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-535)))) |%noBranch|) (-15 -4286 (|#3| |#3|)) (-15 -4285 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3980 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3824 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3830 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3832 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)))) -((-3296 (((-3 |#3| #1="failed") |#3|) 66)) (-3829 ((|#3| |#3|) 129)) (-3284 (((-3 |#3| #1#) |#3|) 50)) (-3985 ((|#3| |#3|) 117)) (-3294 (((-3 |#3| #1#) |#3|) 62)) (-3827 ((|#3| |#3|) 127)) (-3282 (((-3 |#3| #1#) |#3|) 46)) (-3984 ((|#3| |#3|) 115)) (-3298 (((-3 |#3| #1#) |#3|) 70)) (-3831 ((|#3| |#3|) 131)) (-3286 (((-3 |#3| #1#) |#3|) 54)) (-3983 ((|#3| |#3|) 119)) (-3279 (((-3 |#3| #1#) |#3| (-747)) 35)) (-3281 (((-3 |#3| #1#) |#3|) 44)) (-4285 ((|#3| |#3|) 104)) (-3280 (((-3 |#3| #1#) |#3|) 42)) (-4286 ((|#3| |#3|) 114)) (-3299 (((-3 |#3| #1#) |#3|) 72)) (-3832 ((|#3| |#3|) 132)) (-3287 (((-3 |#3| #1#) |#3|) 56)) (-3982 ((|#3| |#3|) 120)) (-3297 (((-3 |#3| #1#) |#3|) 68)) (-3830 ((|#3| |#3|) 130)) (-3285 (((-3 |#3| #1#) |#3|) 52)) (-3981 ((|#3| |#3|) 118)) (-3295 (((-3 |#3| #1#) |#3|) 64)) (-3828 ((|#3| |#3|) 128)) (-3283 (((-3 |#3| #1#) |#3|) 48)) (-3980 ((|#3| |#3|) 116)) (-3302 (((-3 |#3| #1#) |#3|) 74)) (-3835 ((|#3| |#3|) 135)) (-3290 (((-3 |#3| #1#) |#3|) 58)) (-3823 ((|#3| |#3|) 123)) (-3300 (((-3 |#3| #1#) |#3|) 105)) (-3833 ((|#3| |#3|) 133)) (-3288 (((-3 |#3| #1#) |#3|) 94)) (-3821 ((|#3| |#3|) 121)) (-3304 (((-3 |#3| #1#) |#3|) 109)) (-3837 ((|#3| |#3|) 137)) (-3292 (((-3 |#3| #1#) |#3|) 101)) (-3825 ((|#3| |#3|) 125)) (-3305 (((-3 |#3| #1#) |#3|) 110)) (-3838 ((|#3| |#3|) 138)) (-3293 (((-3 |#3| #1#) |#3|) 103)) (-3826 ((|#3| |#3|) 126)) (-3303 (((-3 |#3| #1#) |#3|) 76)) (-3836 ((|#3| |#3|) 136)) (-3291 (((-3 |#3| #1#) |#3|) 60)) (-3824 ((|#3| |#3|) 124)) (-3301 (((-3 |#3| #1#) |#3|) 106)) (-3834 ((|#3| |#3|) 134)) (-3289 (((-3 |#3| #1#) |#3|) 97)) (-3822 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-400 (-535))) 40 (|has| |#1| (-356))))) -(((-272 |#1| |#2| |#3| |#4|) (-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-535)))) |%noBranch|) (-15 -4286 (|#3| |#3|)) (-15 -4285 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3980 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3824 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3830 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3832 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)))) (-38 (-400 (-535))) (-1186 |#1|) (-1209 |#1| |#2|) (-954 |#2|)) (T -272)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-535))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1186 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1209 *4 *5)) (-4 *6 (-954 *5)))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))) -(-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-535)))) |%noBranch|) (-15 -4286 (|#3| |#3|)) (-15 -4285 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3980 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3824 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3830 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3832 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)))) -((-3173 (((-112) $) 19)) (-1625 (((-181) $) 7)) (-3915 (((-3 (-1142) "failed") $) 14)) (-3914 (((-3 (-618 $) "failed") $) NIL)) (-1623 (((-3 (-1142) "failed") $) 21)) (-1624 (((-3 (-1069) "failed") $) 17)) (-4295 (((-112) $) 15)) (-4300 (((-835) $) NIL)) (-1622 (((-112) $) 9))) -(((-273) (-13 (-593 (-835)) (-10 -8 (-15 -1625 ((-181) $)) (-15 -4295 ((-112) $)) (-15 -1624 ((-3 (-1069) "failed") $)) (-15 -3173 ((-112) $)) (-15 -1623 ((-3 (-1142) "failed") $)) (-15 -1622 ((-112) $)) (-15 -3915 ((-3 (-1142) "failed") $)) (-15 -3914 ((-3 (-618 $) "failed") $))))) (T -273)) -((-1625 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069)) (-5 *1 (-273)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3915 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))) (-3914 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-273))) (-5 *1 (-273))))) -(-13 (-593 (-835)) (-10 -8 (-15 -1625 ((-181) $)) (-15 -4295 ((-112) $)) (-15 -1624 ((-3 (-1069) "failed") $)) (-15 -3173 ((-112) $)) (-15 -1623 ((-3 (-1142) "failed") $)) (-15 -1622 ((-112) $)) (-15 -3915 ((-3 (-1142) "failed") $)) (-15 -3914 ((-3 (-618 $) "failed") $)))) -((-4056 (($ (-1 (-112) |#2|) $) 24)) (-1394 (($ $) 36)) (-3747 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3748 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3180 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2373 (($ |#2| $ (-535)) 20) (($ $ $ (-535)) 22)) (-2374 (($ $ (-535)) 11) (($ $ (-1191 (-535))) 14)) (-4133 (($ $ |#2|) 30) (($ $ $) NIL)) (-4144 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-618 $)) NIL))) -(((-274 |#1| |#2|) (-10 -8 (-15 -3180 (|#1| |#1| |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4133 (|#1| |#1| |#2|)) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -3748 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4056 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| |#2| |#1|)) (-15 -1394 (|#1| |#1|))) (-275 |#2|) (-1178)) (T -274)) -NIL -(-10 -8 (-15 -3180 (|#1| |#1| |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4133 (|#1| |#1| |#2|)) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -3748 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4056 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| |#2| |#1|)) (-15 -1394 (|#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) 85)) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2446 (($ $) 83 (|has| |#1| (-1067)))) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1067)))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3180 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3953 (($ |#1| $ (-535)) 88) (($ $ $ (-535)) 87)) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-1627 (($ $ (-535)) 91) (($ $ (-1191 (-535))) 90)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4133 (($ $ |#1|) 93) (($ $ $) 92)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-275 |#1|) (-138) (-1178)) (T -275)) -((-4133 (*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)))) (-4133 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-3747 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-3953 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-275 *2)) (-4 *2 (-1178)))) (-3953 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-3180 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-3747 (*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))) (-2446 (*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))) (-3180 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-823))))) -(-13 (-627 |t#1|) (-10 -8 (-6 -4337) (-15 -4133 ($ $ |t#1|)) (-15 -4133 ($ $ $)) (-15 -1627 ($ $ (-535))) (-15 -1627 ($ $ (-1191 (-535)))) (-15 -3747 ($ (-1 (-112) |t#1|) $)) (-15 -3953 ($ |t#1| $ (-535))) (-15 -3953 ($ $ $ (-535))) (-15 -3180 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1626 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -3747 ($ |t#1| $)) (-15 -2446 ($ $))) |%noBranch|) (IF (|has| |t#1| (-823)) (-15 -3180 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-550)))) (-3235 (*1 *1 *1) (-4 *1 (-237)))) +(-13 (-283) (-38 (-400 (-550))) (-10 -8 (-15 ** ($ $ (-550))) (-15 -3235 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-283) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-705) . T) ((-1026 #0#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3625 ((|#1| $) 48)) (-4180 (($ $) 57)) (-4047 (((-112) $ (-749)) 8)) (-2190 ((|#1| $ |#1|) 39 (|has| $ (-6 -4343)))) (-2243 (($ $ $) 53 (|has| $ (-6 -4343)))) (-2151 (($ $ $) 52 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-3513 (($) 7 T CONST)) (-1987 (($ $) 56)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 50)) (-2333 (((-112) $ $) 42 (|has| |#1| (-1068)))) (-1902 (($ $) 55)) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-2513 (((-623 |#1|) $) 45)) (-3312 (((-112) $) 49)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3159 ((|#1| $) 59)) (-2026 (($ $) 58)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ "value") 47)) (-2487 (((-550) $ $) 44)) (-2136 (((-112) $) 46)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-3547 (($ $ $) 54 (|has| $ (-6 -4343)))) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 51)) (-2413 (((-112) $ $) 43 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-238 |#1|) (-138) (-1181)) (T -238)) +((-3159 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181)))) (-2026 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181)))) (-1987 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181)))) (-1902 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181)))) (-3547 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-238 *2)) (-4 *2 (-1181)))) (-2243 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-238 *2)) (-4 *2 (-1181)))) (-2151 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-238 *2)) (-4 *2 (-1181))))) +(-13 (-983 |t#1|) (-10 -8 (-15 -3159 (|t#1| $)) (-15 -2026 ($ $)) (-15 -4180 ($ $)) (-15 -1987 ($ $)) (-15 -1902 ($ $)) (IF (|has| $ (-6 -4343)) (PROGN (-15 -3547 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2151 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-983 |#1|) . T) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) NIL)) (-3996 ((|#1| $) NIL)) (-4180 (($ $) NIL)) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3491 (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-1674 (($ $) 10 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-2190 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-1431 (($ $ $) NIL (|has| $ (-6 -4343)))) (-1300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-3373 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4343))) (($ $ "rest" $) NIL (|has| $ (-6 -4343))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-3378 (($ (-1 (-112) |#1|) $) NIL)) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3985 ((|#1| $) NIL)) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1308 (($ $) NIL) (($ $ (-749)) NIL)) (-3912 (($ $) NIL (|has| |#1| (-1068)))) (-1328 (($ $) 7 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3112 (($ |#1| $) NIL (|has| |#1| (-1068))) (($ (-1 (-112) |#1|) $) NIL)) (-3137 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-3815 (((-112) $) NIL)) (-2302 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068))) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) (-1 (-112) |#1|) $) NIL)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2578 (($ (-749) |#1|) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-3884 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1832 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4218 (($ |#1|) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3159 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1886 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2055 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-2719 (((-112) $) NIL)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1194 (-550))) NIL) ((|#1| $ (-550)) NIL) ((|#1| $ (-550) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-749) $ "count") 16)) (-2487 (((-550) $ $) NIL)) (-3476 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-1529 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-2077 (($ (-623 |#1|)) 22)) (-2136 (((-112) $) NIL)) (-3635 (($ $) NIL)) (-3472 (($ $) NIL (|has| $ (-6 -4343)))) (-3728 (((-749) $) NIL)) (-3786 (($ $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-3547 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3227 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-623 $)) NIL) (($ $ |#1|) NIL)) (-1518 (($ (-623 |#1|)) 17) (((-623 |#1|) $) 18) (((-836) $) 21 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3191 (((-749) $) 14 (|has| $ (-6 -4342))))) +(((-239 |#1|) (-13 (-644 |#1|) (-10 -8 (-15 -1518 ($ (-623 |#1|))) (-15 -1518 ((-623 |#1|) $)) (-15 -2077 ($ (-623 |#1|))) (-15 -2680 ($ $ "unique")) (-15 -2680 ($ $ "sort")) (-15 -2680 ((-749) $ "count")))) (-825)) (T -239)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-2077 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-749)) (-5 *1 (-239 *4)) (-4 *4 (-825))))) +(-13 (-644 |#1|) (-10 -8 (-15 -1518 ($ (-623 |#1|))) (-15 -1518 ((-623 |#1|) $)) (-15 -2077 ($ (-623 |#1|))) (-15 -2680 ($ $ "unique")) (-15 -2680 ($ $ "sort")) (-15 -2680 ((-749) $ "count")))) +((-2330 (((-3 (-749) "failed") |#1| |#1| (-749)) 27))) +(((-240 |#1|) (-10 -7 (-15 -2330 ((-3 (-749) "failed") |#1| |#1| (-749)))) (-13 (-705) (-361) (-10 -7 (-15 ** (|#1| |#1| (-550)))))) (T -240)) +((-2330 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-749)) (-4 *3 (-13 (-705) (-361) (-10 -7 (-15 ** (*3 *3 (-550)))))) (-5 *1 (-240 *3))))) +(-10 -7 (-15 -2330 ((-3 (-749) "failed") |#1| |#1| (-749)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-838 |#1|)) $) NIL)) (-3306 (((-1140 $) $ (-838 |#1|)) NIL) (((-1140 |#2|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-1447 (($ $) NIL (|has| |#2| (-542)))) (-4291 (((-112) $) NIL (|has| |#2| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-838 |#1|))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-1505 (($ $) NIL (|has| |#2| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#2| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-838 |#1|) "failed") $) NIL)) (-2726 ((|#2| $) NIL) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1011 (-550)))) (((-838 |#1|) $) NIL)) (-3340 (($ $ $ (-838 |#1|)) NIL (|has| |#2| (-170)))) (-2980 (($ $ (-623 (-550))) NIL)) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#2| (-444))) (($ $ (-838 |#1|)) NIL (|has| |#2| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#2| (-882)))) (-2613 (($ $ |#2| (-234 (-3191 |#1|) (-749)) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-838 |#1|) (-859 (-372))) (|has| |#2| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-838 |#1|) (-859 (-550))) (|has| |#2| (-859 (-550)))))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3129 (($ (-1140 |#2|) (-838 |#1|)) NIL) (($ (-1140 $) (-838 |#1|)) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#2| (-234 (-3191 |#1|) (-749))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-838 |#1|)) NIL)) (-1667 (((-234 (-3191 |#1|) (-749)) $) NIL) (((-749) $ (-838 |#1|)) NIL) (((-623 (-749)) $ (-623 (-838 |#1|))) NIL)) (-2707 (($ $ $) NIL (|has| |#2| (-825)))) (-4164 (($ $ $) NIL (|has| |#2| (-825)))) (-2688 (($ (-1 (-234 (-3191 |#1|) (-749)) (-234 (-3191 |#1|) (-749))) $) NIL)) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-2558 (((-3 (-838 |#1|) "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#2| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1825 (((-1126) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-838 |#1|)) (|:| -3521 (-749))) "failed") $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#2| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#2| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#2| (-882)))) (-1495 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-838 |#1|) |#2|) NIL) (($ $ (-623 (-838 |#1|)) (-623 |#2|)) NIL) (($ $ (-838 |#1|) $) NIL) (($ $ (-623 (-838 |#1|)) (-623 $)) NIL)) (-3453 (($ $ (-838 |#1|)) NIL (|has| |#2| (-170)))) (-2393 (($ $ (-838 |#1|)) NIL) (($ $ (-623 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2970 (((-234 (-3191 |#1|) (-749)) $) NIL) (((-749) $ (-838 |#1|)) NIL) (((-623 (-749)) $ (-623 (-838 |#1|))) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-838 |#1|) (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-838 |#1|) (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-838 |#1|) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-2503 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-838 |#1|)) NIL (|has| |#2| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-838 |#1|)) NIL) (($ (-400 (-550))) NIL (-1561 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#2| (-542)))) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ (-234 (-3191 |#1|) (-749))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#2| (-882))) (|has| |#2| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-838 |#1|)) NIL) (($ $ (-623 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2363 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-241 |#1| |#2|) (-13 (-922 |#2| (-234 (-3191 |#1|) (-749)) (-838 |#1|)) (-10 -8 (-15 -2980 ($ $ (-623 (-550)))))) (-623 (-1144)) (-1020)) (T -241)) +((-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-241 *3 *4)) (-14 *3 (-623 (-1144))) (-4 *4 (-1020))))) +(-13 (-922 |#2| (-234 (-3191 |#1|) (-749)) (-838 |#1|)) (-10 -8 (-15 -2980 ($ $ (-623 (-550)))))) +((-1504 (((-112) $ $) NIL)) (-2191 (((-1232) $) 15)) (-2521 (((-181) $) 9)) (-2428 (($ (-181)) 10)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 7)) (-2316 (((-112) $ $) 13))) +(((-242) (-13 (-1068) (-10 -8 (-15 -2521 ((-181) $)) (-15 -2428 ($ (-181))) (-15 -2191 ((-1232) $))))) (T -242)) +((-2521 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-2428 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-242))))) +(-13 (-1068) (-10 -8 (-15 -2521 ((-181) $)) (-15 -2428 ($ (-181))) (-15 -2191 ((-1232) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3230 (($ (-894)) NIL (|has| |#4| (-1020)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-2270 (($ $ $) NIL (|has| |#4| (-771)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4319 (((-749)) NIL (|has| |#4| (-361)))) (-3712 (((-550) $) NIL (|has| |#4| (-823)))) (-1705 ((|#4| $ (-550) |#4|) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1068))) (((-3 (-550) "failed") $) NIL (-12 (|has| |#4| (-1011 (-550))) (|has| |#4| (-1068)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#4| (-1011 (-400 (-550)))) (|has| |#4| (-1068))))) (-2726 ((|#4| $) NIL (|has| |#4| (-1068))) (((-550) $) NIL (-12 (|has| |#4| (-1011 (-550))) (|has| |#4| (-1068)))) (((-400 (-550)) $) NIL (-12 (|has| |#4| (-1011 (-400 (-550)))) (|has| |#4| (-1068))))) (-3780 (((-2 (|:| -1340 (-667 |#4|)) (|:| |vec| (-1227 |#4|))) (-667 $) (-1227 $)) NIL (|has| |#4| (-1020))) (((-667 |#4|) (-667 $)) NIL (|has| |#4| (-1020))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020))))) (-1386 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#4| (-227)) (|has| |#4| (-1020))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020))) (|has| |#4| (-705)) (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))))) (-1741 (($) NIL (|has| |#4| (-361)))) (-3245 ((|#4| $ (-550) |#4|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#4| $ (-550)) NIL)) (-1416 (((-112) $) NIL (|has| |#4| (-823)))) (-3450 (((-623 |#4|) $) NIL (|has| $ (-6 -4342)))) (-3102 (((-112) $) NIL (-1561 (-12 (|has| |#4| (-227)) (|has| |#4| (-1020))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020))) (|has| |#4| (-705)) (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))))) (-3329 (((-112) $) NIL (|has| |#4| (-823)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (-1561 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2689 (((-623 |#4|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (-1561 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-3234 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) NIL)) (-2253 (((-894) $) NIL (|has| |#4| (-361)))) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-2922 (($ (-894)) NIL (|has| |#4| (-361)))) (-3337 (((-1088) $) NIL)) (-1293 ((|#4| $) NIL (|has| (-550) (-825)))) (-3111 (($ $ |#4|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-2477 (((-623 |#4|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#4| $ (-550) |#4|) NIL) ((|#4| $ (-550)) 12)) (-3440 ((|#4| $ $) NIL (|has| |#4| (-1020)))) (-3389 (($ (-1227 |#4|)) NIL)) (-2854 (((-133)) NIL (|has| |#4| (-356)))) (-2393 (($ $ (-1 |#4| |#4|) (-749)) NIL (|has| |#4| (-1020))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1020))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1020)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1020))))) (-3350 (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342))) (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-1227 |#4|) $) NIL) (((-836) $) NIL) (($ |#4|) NIL (|has| |#4| (-1068))) (($ (-550)) NIL (-1561 (-12 (|has| |#4| (-1011 (-550))) (|has| |#4| (-1068))) (|has| |#4| (-1020)))) (($ (-400 (-550))) NIL (-12 (|has| |#4| (-1011 (-400 (-550)))) (|has| |#4| (-1068))))) (-2390 (((-749)) NIL (|has| |#4| (-1020)))) (-1675 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1635 (($ $) NIL (|has| |#4| (-823)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL (-1561 (-12 (|has| |#4| (-227)) (|has| |#4| (-1020))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020))) (|has| |#4| (-705)) (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) CONST)) (-4183 (($ $ (-1 |#4| |#4|) (-749)) NIL (|has| |#4| (-1020))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1020))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1020)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1020))))) (-2363 (((-112) $ $) NIL (-1561 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2345 (((-112) $ $) NIL (-1561 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (-1561 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2335 (((-112) $ $) NIL (-1561 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2414 (($ $ |#4|) NIL (|has| |#4| (-356)))) (-2403 (($ $ $) NIL) (($ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) NIL (-1561 (-12 (|has| |#4| (-227)) (|has| |#4| (-1020))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020))) (|has| |#4| (-705)) (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020))))) (($ $ (-894)) NIL (-1561 (-12 (|has| |#4| (-227)) (|has| |#4| (-1020))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020))) (|has| |#4| (-705)) (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))))) (* (($ |#2| $) 14) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-894) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-705))) (($ |#4| $) NIL (|has| |#4| (-705))) (($ $ $) NIL (-1561 (-12 (|has| |#4| (-227)) (|has| |#4| (-1020))) (-12 (|has| |#4| (-619 (-550))) (|has| |#4| (-1020))) (|has| |#4| (-705)) (-12 (|has| |#4| (-873 (-1144))) (|has| |#4| (-1020)))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-243 |#1| |#2| |#3| |#4|) (-13 (-232 |#1| |#4|) (-626 |#2|) (-626 |#3|)) (-894) (-1020) (-1091 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-626 |#2|)) (T -243)) +NIL +(-13 (-232 |#1| |#4|) (-626 |#2|) (-626 |#3|)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3230 (($ (-894)) NIL (|has| |#3| (-1020)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-2270 (($ $ $) NIL (|has| |#3| (-771)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4319 (((-749)) NIL (|has| |#3| (-361)))) (-3712 (((-550) $) NIL (|has| |#3| (-823)))) (-1705 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1068))) (((-3 (-550) "failed") $) NIL (-12 (|has| |#3| (-1011 (-550))) (|has| |#3| (-1068)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#3| (-1011 (-400 (-550)))) (|has| |#3| (-1068))))) (-2726 ((|#3| $) NIL (|has| |#3| (-1068))) (((-550) $) NIL (-12 (|has| |#3| (-1011 (-550))) (|has| |#3| (-1068)))) (((-400 (-550)) $) NIL (-12 (|has| |#3| (-1011 (-400 (-550)))) (|has| |#3| (-1068))))) (-3780 (((-2 (|:| -1340 (-667 |#3|)) (|:| |vec| (-1227 |#3|))) (-667 $) (-1227 $)) NIL (|has| |#3| (-1020))) (((-667 |#3|) (-667 $)) NIL (|has| |#3| (-1020))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020))))) (-1386 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#3| (-227)) (|has| |#3| (-1020))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020))) (|has| |#3| (-705)) (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))))) (-1741 (($) NIL (|has| |#3| (-361)))) (-3245 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#3| $ (-550)) NIL)) (-1416 (((-112) $) NIL (|has| |#3| (-823)))) (-3450 (((-623 |#3|) $) NIL (|has| $ (-6 -4342)))) (-3102 (((-112) $) NIL (-1561 (-12 (|has| |#3| (-227)) (|has| |#3| (-1020))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020))) (|has| |#3| (-705)) (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))))) (-3329 (((-112) $) NIL (|has| |#3| (-823)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2689 (((-623 |#3|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#3| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3234 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#3| |#3|) $) NIL)) (-2253 (((-894) $) NIL (|has| |#3| (-361)))) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-2922 (($ (-894)) NIL (|has| |#3| (-361)))) (-3337 (((-1088) $) NIL)) (-1293 ((|#3| $) NIL (|has| (-550) (-825)))) (-3111 (($ $ |#3|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ (-623 |#3|) (-623 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#3| (-1068))))) (-2477 (((-623 |#3|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#3| $ (-550) |#3|) NIL) ((|#3| $ (-550)) 11)) (-3440 ((|#3| $ $) NIL (|has| |#3| (-1020)))) (-3389 (($ (-1227 |#3|)) NIL)) (-2854 (((-133)) NIL (|has| |#3| (-356)))) (-2393 (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1020))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1020))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1020)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1020))))) (-3350 (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342))) (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#3| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-1227 |#3|) $) NIL) (((-836) $) NIL) (($ |#3|) NIL (|has| |#3| (-1068))) (($ (-550)) NIL (-1561 (-12 (|has| |#3| (-1011 (-550))) (|has| |#3| (-1068))) (|has| |#3| (-1020)))) (($ (-400 (-550))) NIL (-12 (|has| |#3| (-1011 (-400 (-550)))) (|has| |#3| (-1068))))) (-2390 (((-749)) NIL (|has| |#3| (-1020)))) (-1675 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342)))) (-1635 (($ $) NIL (|has| |#3| (-823)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL (-1561 (-12 (|has| |#3| (-227)) (|has| |#3| (-1020))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020))) (|has| |#3| (-705)) (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) CONST)) (-4183 (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1020))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1020))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1020)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1020))))) (-2363 (((-112) $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2345 (((-112) $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2335 (((-112) $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2414 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2403 (($ $ $) NIL) (($ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) NIL (-1561 (-12 (|has| |#3| (-227)) (|has| |#3| (-1020))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020))) (|has| |#3| (-705)) (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020))))) (($ $ (-894)) NIL (-1561 (-12 (|has| |#3| (-227)) (|has| |#3| (-1020))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020))) (|has| |#3| (-705)) (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))))) (* (($ |#2| $) 13) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-894) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-705))) (($ |#3| $) NIL (|has| |#3| (-705))) (($ $ $) NIL (-1561 (-12 (|has| |#3| (-227)) (|has| |#3| (-1020))) (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020))) (|has| |#3| (-705)) (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-244 |#1| |#2| |#3|) (-13 (-232 |#1| |#3|) (-626 |#2|)) (-749) (-1020) (-626 |#2|)) (T -244)) +NIL +(-13 (-232 |#1| |#3|) (-626 |#2|)) +((-1662 (((-623 (-749)) $) 47) (((-623 (-749)) $ |#3|) 50)) (-4073 (((-749) $) 49) (((-749) $ |#3|) 52)) (-1417 (($ $) 65)) (-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2475 (((-749) $ |#3|) 39) (((-749) $) 36)) (-4167 (((-1 $ (-749)) |#3|) 15) (((-1 $ (-749)) $) 77)) (-1970 ((|#4| $) 58)) (-1539 (((-112) $) 56)) (-3083 (($ $) 64)) (-3866 (($ $ (-623 (-287 $))) 97) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-623 |#4|) (-623 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-623 |#4|) (-623 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-623 |#3|) (-623 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-623 |#3|) (-623 |#2|)) 84)) (-2393 (($ $ |#4|) NIL) (($ $ (-623 |#4|)) NIL) (($ $ |#4| (-749)) NIL) (($ $ (-623 |#4|) (-623 (-749))) NIL) (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1144)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4299 (((-623 |#3|) $) 75)) (-2970 ((|#5| $) NIL) (((-749) $ |#4|) NIL) (((-623 (-749)) $ (-623 |#4|)) NIL) (((-749) $ |#3|) 44)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-400 (-550))) NIL) (($ $) NIL))) +(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1518 (|#1| |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3866 (|#1| |#1| (-623 |#3|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#3| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#3|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#3| |#1|)) (-15 -4167 ((-1 |#1| (-749)) |#1|)) (-15 -1417 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -1970 (|#4| |#1|)) (-15 -1539 ((-112) |#1|)) (-15 -4073 ((-749) |#1| |#3|)) (-15 -1662 ((-623 (-749)) |#1| |#3|)) (-15 -4073 ((-749) |#1|)) (-15 -1662 ((-623 (-749)) |#1|)) (-15 -2970 ((-749) |#1| |#3|)) (-15 -2475 ((-749) |#1|)) (-15 -2475 ((-749) |#1| |#3|)) (-15 -4299 ((-623 |#3|) |#1|)) (-15 -4167 ((-1 |#1| (-749)) |#3|)) (-15 -3880 ((-3 |#3| "failed") |#1|)) (-15 -1518 (|#1| |#3|)) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1|)) (-15 -2970 ((-623 (-749)) |#1| (-623 |#4|))) (-15 -2970 ((-749) |#1| |#4|)) (-15 -3880 ((-3 |#4| "failed") |#1|)) (-15 -1518 (|#1| |#4|)) (-15 -3866 (|#1| |#1| (-623 |#4|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#4| |#1|)) (-15 -3866 (|#1| |#1| (-623 |#4|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#4| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -2970 (|#5| |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2393 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -2393 (|#1| |#1| |#4| (-749))) (-15 -2393 (|#1| |#1| (-623 |#4|))) (-15 -2393 (|#1| |#1| |#4|)) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1020) (-825) (-259 |#3|) (-771)) (T -245)) +NIL +(-10 -8 (-15 -1518 (|#1| |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3866 (|#1| |#1| (-623 |#3|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#3| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#3|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#3| |#1|)) (-15 -4167 ((-1 |#1| (-749)) |#1|)) (-15 -1417 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -1970 (|#4| |#1|)) (-15 -1539 ((-112) |#1|)) (-15 -4073 ((-749) |#1| |#3|)) (-15 -1662 ((-623 (-749)) |#1| |#3|)) (-15 -4073 ((-749) |#1|)) (-15 -1662 ((-623 (-749)) |#1|)) (-15 -2970 ((-749) |#1| |#3|)) (-15 -2475 ((-749) |#1|)) (-15 -2475 ((-749) |#1| |#3|)) (-15 -4299 ((-623 |#3|) |#1|)) (-15 -4167 ((-1 |#1| (-749)) |#3|)) (-15 -3880 ((-3 |#3| "failed") |#1|)) (-15 -1518 (|#1| |#3|)) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1|)) (-15 -2970 ((-623 (-749)) |#1| (-623 |#4|))) (-15 -2970 ((-749) |#1| |#4|)) (-15 -3880 ((-3 |#4| "failed") |#1|)) (-15 -1518 (|#1| |#4|)) (-15 -3866 (|#1| |#1| (-623 |#4|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#4| |#1|)) (-15 -3866 (|#1| |#1| (-623 |#4|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#4| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -2970 (|#5| |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2393 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -2393 (|#1| |#1| |#4| (-749))) (-15 -2393 (|#1| |#1| (-623 |#4|))) (-15 -2393 (|#1| |#1| |#4|)) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1662 (((-623 (-749)) $) 212) (((-623 (-749)) $ |#2|) 210)) (-4073 (((-749) $) 211) (((-749) $ |#2|) 209)) (-3141 (((-623 |#3|) $) 108)) (-3306 (((-1140 $) $ |#3|) 123) (((-1140 |#1|) $) 122)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-1447 (($ $) 86 (|has| |#1| (-542)))) (-4291 (((-112) $) 88 (|has| |#1| (-542)))) (-1520 (((-749) $) 110) (((-749) $ (-623 |#3|)) 109)) (-3219 (((-3 $ "failed") $ $) 19)) (-3688 (((-411 (-1140 $)) (-1140 $)) 98 (|has| |#1| (-882)))) (-1505 (($ $) 96 (|has| |#1| (-444)))) (-3564 (((-411 $) $) 95 (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 101 (|has| |#1| (-882)))) (-1417 (($ $) 205)) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-550)) "failed") $) 160 (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) 158 (|has| |#1| (-1011 (-550)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2726 ((|#1| $) 163) (((-400 (-550)) $) 159 (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) 157 (|has| |#1| (-1011 (-550)))) ((|#3| $) 133) ((|#2| $) 218)) (-3340 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-3295 (($ $) 152)) (-3780 (((-667 (-550)) (-667 $)) 132 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 131 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-1386 (((-3 $ "failed") $) 32)) (-2674 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3287 (((-623 $) $) 107)) (-3933 (((-112) $) 94 (|has| |#1| (-882)))) (-2613 (($ $ |#1| |#4| $) 170)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 82 (-12 (|has| |#3| (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 81 (-12 (|has| |#3| (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-2475 (((-749) $ |#2|) 215) (((-749) $) 214)) (-3102 (((-112) $) 30)) (-2603 (((-749) $) 167)) (-3129 (($ (-1140 |#1|) |#3|) 115) (($ (-1140 $) |#3|) 114)) (-1822 (((-623 $) $) 124)) (-3439 (((-112) $) 150)) (-3118 (($ |#1| |#4|) 151) (($ $ |#3| (-749)) 117) (($ $ (-623 |#3|) (-623 (-749))) 116)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ |#3|) 118)) (-1667 ((|#4| $) 168) (((-749) $ |#3|) 120) (((-623 (-749)) $ (-623 |#3|)) 119)) (-2707 (($ $ $) 77 (|has| |#1| (-825)))) (-4164 (($ $ $) 76 (|has| |#1| (-825)))) (-2688 (($ (-1 |#4| |#4|) $) 169)) (-3972 (($ (-1 |#1| |#1|) $) 149)) (-4167 (((-1 $ (-749)) |#2|) 217) (((-1 $ (-749)) $) 204 (|has| |#1| (-227)))) (-2558 (((-3 |#3| "failed") $) 121)) (-3267 (($ $) 147)) (-3277 ((|#1| $) 146)) (-1970 ((|#3| $) 207)) (-3106 (($ (-623 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-1825 (((-1126) $) 9)) (-1539 (((-112) $) 208)) (-1598 (((-3 (-623 $) "failed") $) 112)) (-1444 (((-3 (-623 $) "failed") $) 113)) (-1748 (((-3 (-2 (|:| |var| |#3|) (|:| -3521 (-749))) "failed") $) 111)) (-3083 (($ $) 206)) (-3337 (((-1088) $) 10)) (-3248 (((-112) $) 164)) (-3256 ((|#1| $) 165)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 93 (|has| |#1| (-444)))) (-3139 (($ (-623 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) 100 (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) 99 (|has| |#1| (-882)))) (-3338 (((-411 $) $) 97 (|has| |#1| (-882)))) (-1495 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-623 $) (-623 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-623 |#3|) (-623 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-623 |#3|) (-623 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-227))) (($ $ (-623 |#2|) (-623 $)) 202 (|has| |#1| (-227))) (($ $ |#2| |#1|) 201 (|has| |#1| (-227))) (($ $ (-623 |#2|) (-623 |#1|)) 200 (|has| |#1| (-227)))) (-3453 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2393 (($ $ |#3|) 40) (($ $ (-623 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-623 |#3|) (-623 (-749))) 37) (($ $) 236 (|has| |#1| (-227))) (($ $ (-749)) 234 (|has| |#1| (-227))) (($ $ (-1144)) 232 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 231 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 230 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) 229 (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-4299 (((-623 |#2|) $) 216)) (-2970 ((|#4| $) 148) (((-749) $ |#3|) 128) (((-623 (-749)) $ (-623 |#3|)) 127) (((-749) $ |#2|) 213)) (-4028 (((-865 (-372)) $) 80 (-12 (|has| |#3| (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) 79 (-12 (|has| |#3| (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) 78 (-12 (|has| |#3| (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 102 (-1262 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-400 (-550))) 70 (-1561 (|has| |#1| (-1011 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550)))))) (($ $) 83 (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) 166)) (-2510 ((|#1| $ |#4|) 153) (($ $ |#3| (-749)) 126) (($ $ (-623 |#3|) (-623 (-749))) 125)) (-4242 (((-3 $ "failed") $) 71 (-1561 (-1262 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) 28)) (-2540 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-1345 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ |#3|) 36) (($ $ (-623 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-623 |#3|) (-623 (-749))) 33) (($ $) 235 (|has| |#1| (-227))) (($ $ (-749)) 233 (|has| |#1| (-227))) (($ $ (-1144)) 228 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 227 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 226 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) 225 (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2363 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 73 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 75 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 72 (|has| |#1| (-825)))) (-2414 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 156 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 155 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-246 |#1| |#2| |#3| |#4|) (-138) (-1020) (-825) (-259 |t#2|) (-771)) (T -246)) +((-4167 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *4 *3 *5 *6)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-623 *4)))) (-2475 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1020)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) (-2970 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1020)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1662 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-623 (-749))))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1662 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1020)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-623 (-749))))) (-4073 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1020)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-112)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-771)) (-4 *2 (-259 *4)))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1020)) (-4 *3 (-825)) (-4 *4 (-259 *3)) (-4 *5 (-771)))) (-1417 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1020)) (-4 *3 (-825)) (-4 *4 (-259 *3)) (-4 *5 (-771)))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-227)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *3 *4 *5 *6))))) +(-13 (-922 |t#1| |t#4| |t#3|) (-225 |t#1|) (-1011 |t#2|) (-10 -8 (-15 -4167 ((-1 $ (-749)) |t#2|)) (-15 -4299 ((-623 |t#2|) $)) (-15 -2475 ((-749) $ |t#2|)) (-15 -2475 ((-749) $)) (-15 -2970 ((-749) $ |t#2|)) (-15 -1662 ((-623 (-749)) $)) (-15 -4073 ((-749) $)) (-15 -1662 ((-623 (-749)) $ |t#2|)) (-15 -4073 ((-749) $ |t#2|)) (-15 -1539 ((-112) $)) (-15 -1970 (|t#3| $)) (-15 -3083 ($ $)) (-15 -1417 ($ $)) (IF (|has| |t#1| (-227)) (PROGN (-6 (-505 |t#2| |t#1|)) (-6 (-505 |t#2| $)) (-6 (-302 $)) (-15 -4167 ((-1 $ (-749)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526)))) ((-596 (-865 (-372))) -12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#3| (-596 (-865 (-372))))) ((-596 (-865 (-550))) -12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#3| (-596 (-865 (-550))))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-283) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#4|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1561 (|has| |#1| (-882)) (|has| |#1| (-444))) ((-505 |#2| |#1|) |has| |#1| (-227)) ((-505 |#2| $) |has| |#1| (-227)) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-873 (-1144)) |has| |#1| (-873 (-1144))) ((-873 |#3|) . T) ((-859 (-372)) -12 (|has| |#1| (-859 (-372))) (|has| |#3| (-859 (-372)))) ((-859 (-550)) -12 (|has| |#1| (-859 (-550))) (|has| |#3| (-859 (-550)))) ((-922 |#1| |#4| |#3|) . T) ((-882) |has| |#1| (-882)) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1011 |#2|) . T) ((-1011 |#3|) . T) ((-1026 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) |has| |#1| (-882))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3623 ((|#1| $) 54)) (-2038 ((|#1| $) 44)) (-4047 (((-112) $ (-749)) 8)) (-3513 (($) 7 T CONST)) (-1945 (($ $) 60)) (-2342 (($ $) 48)) (-2094 ((|#1| |#1| $) 46)) (-2006 ((|#1| $) 45)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-3772 (((-749) $) 61)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3638 ((|#1| $) 39)) (-3436 ((|#1| |#1| $) 52)) (-3344 ((|#1| |#1| $) 51)) (-1886 (($ |#1| $) 40)) (-3142 (((-749) $) 55)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1854 ((|#1| $) 62)) (-3265 ((|#1| $) 50)) (-1335 ((|#1| $) 49)) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2131 ((|#1| |#1| $) 58)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2047 ((|#1| $) 59)) (-3686 (($) 57) (($ (-623 |#1|)) 56)) (-2775 (((-749) $) 43)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3524 ((|#1| $) 53)) (-3685 (($ (-623 |#1|)) 42)) (-1752 ((|#1| $) 63)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-247 |#1|) (-138) (-1181)) (T -247)) +((-3686 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-4 *1 (-247 *3)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1181)) (-5 *2 (-749)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181)))) (-3436 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181)))) (-3344 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181)))) (-2342 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181))))) +(-13 (-1089 |t#1|) (-968 |t#1|) (-10 -8 (-15 -3686 ($)) (-15 -3686 ($ (-623 |t#1|))) (-15 -3142 ((-749) $)) (-15 -3623 (|t#1| $)) (-15 -3524 (|t#1| $)) (-15 -3436 (|t#1| |t#1| $)) (-15 -3344 (|t#1| |t#1| $)) (-15 -3265 (|t#1| $)) (-15 -1335 (|t#1| $)) (-15 -2342 ($ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-968 |#1|) . T) ((-1068) |has| |#1| (-1068)) ((-1089 |#1|) . T) ((-1181) . T)) +((-3766 (((-1 (-916 (-219)) (-219) (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 139)) (-2835 (((-1101 (-219)) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372))) 160) (((-1101 (-219)) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)) (-623 (-256))) 158) (((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372))) 163) (((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256))) 159) (((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372))) 150) (((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256))) 149) (((-1101 (-219)) (-1 (-916 (-219)) (-219)) (-1062 (-372))) 129) (((-1101 (-219)) (-1 (-916 (-219)) (-219)) (-1062 (-372)) (-623 (-256))) 127) (((-1101 (-219)) (-852 (-1 (-219) (-219))) (-1062 (-372))) 128) (((-1101 (-219)) (-852 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256))) 125)) (-2787 (((-1229) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372))) 162) (((-1229) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)) (-623 (-256))) 161) (((-1229) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372))) 165) (((-1229) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256))) 164) (((-1229) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372))) 152) (((-1229) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256))) 151) (((-1229) (-1 (-916 (-219)) (-219)) (-1062 (-372))) 135) (((-1229) (-1 (-916 (-219)) (-219)) (-1062 (-372)) (-623 (-256))) 134) (((-1229) (-852 (-1 (-219) (-219))) (-1062 (-372))) 133) (((-1229) (-852 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256))) 132) (((-1228) (-850 (-1 (-219) (-219))) (-1062 (-372))) 100) (((-1228) (-850 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256))) 99) (((-1228) (-1 (-219) (-219)) (-1062 (-372))) 96) (((-1228) (-1 (-219) (-219)) (-1062 (-372)) (-623 (-256))) 95))) +(((-248) (-10 -7 (-15 -2787 ((-1228) (-1 (-219) (-219)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1228) (-1 (-219) (-219)) (-1062 (-372)))) (-15 -2787 ((-1228) (-850 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1228) (-850 (-1 (-219) (-219))) (-1062 (-372)))) (-15 -2787 ((-1229) (-852 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-852 (-1 (-219) (-219))) (-1062 (-372)))) (-15 -2787 ((-1229) (-1 (-916 (-219)) (-219)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-1 (-916 (-219)) (-219)) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-852 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-852 (-1 (-219) (-219))) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-1 (-916 (-219)) (-219)) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-1 (-916 (-219)) (-219)) (-1062 (-372)))) (-15 -2787 ((-1229) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)))) (-15 -2787 ((-1229) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)))) (-15 -2787 ((-1229) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)))) (-15 -3766 ((-1 (-916 (-219)) (-219) (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -248)) +((-3766 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-916 (-219)) (-219) (-219))) (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-855 (-1 (-219) (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-855 (-1 (-219) (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-855 (-1 (-219) (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-855 (-1 (-219) (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-916 (-219)) (-219))) (-5 *4 (-1062 (-372))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-916 (-219)) (-219))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-852 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-852 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-916 (-219)) (-219))) (-5 *4 (-1062 (-372))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-916 (-219)) (-219))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-852 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-852 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1062 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-248))))) +(-10 -7 (-15 -2787 ((-1228) (-1 (-219) (-219)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1228) (-1 (-219) (-219)) (-1062 (-372)))) (-15 -2787 ((-1228) (-850 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1228) (-850 (-1 (-219) (-219))) (-1062 (-372)))) (-15 -2787 ((-1229) (-852 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-852 (-1 (-219) (-219))) (-1062 (-372)))) (-15 -2787 ((-1229) (-1 (-916 (-219)) (-219)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-1 (-916 (-219)) (-219)) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-852 (-1 (-219) (-219))) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-852 (-1 (-219) (-219))) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-1 (-916 (-219)) (-219)) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-1 (-916 (-219)) (-219)) (-1062 (-372)))) (-15 -2787 ((-1229) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1062 (-372)) (-1062 (-372)))) (-15 -2787 ((-1229) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-372)) (-1062 (-372)))) (-15 -2787 ((-1229) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)))) (-15 -2835 ((-1101 (-219)) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-855 (-1 (-219) (-219) (-219))) (-1062 (-372)) (-1062 (-372)))) (-15 -3766 ((-1 (-916 (-219)) (-219) (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) +((-2787 (((-1228) (-287 |#2|) (-1144) (-1144) (-623 (-256))) 96))) +(((-249 |#1| |#2|) (-10 -7 (-15 -2787 ((-1228) (-287 |#2|) (-1144) (-1144) (-623 (-256))))) (-13 (-542) (-825) (-1011 (-550))) (-423 |#1|)) (T -249)) +((-2787 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-1144)) (-5 *5 (-623 (-256))) (-4 *7 (-423 *6)) (-4 *6 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-1228)) (-5 *1 (-249 *6 *7))))) +(-10 -7 (-15 -2787 ((-1228) (-287 |#2|) (-1144) (-1144) (-623 (-256))))) +((-2812 (((-550) (-550)) 50)) (-2907 (((-550) (-550)) 51)) (-2986 (((-219) (-219)) 52)) (-2728 (((-1229) (-1 (-167 (-219)) (-167 (-219))) (-1062 (-219)) (-1062 (-219))) 49)) (-3846 (((-1229) (-1 (-167 (-219)) (-167 (-219))) (-1062 (-219)) (-1062 (-219)) (-112)) 47))) +(((-250) (-10 -7 (-15 -3846 ((-1229) (-1 (-167 (-219)) (-167 (-219))) (-1062 (-219)) (-1062 (-219)) (-112))) (-15 -2728 ((-1229) (-1 (-167 (-219)) (-167 (-219))) (-1062 (-219)) (-1062 (-219)))) (-15 -2812 ((-550) (-550))) (-15 -2907 ((-550) (-550))) (-15 -2986 ((-219) (-219))))) (T -250)) +((-2986 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-250)))) (-2907 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-250)))) (-2812 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-250)))) (-2728 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1062 (-219))) (-5 *2 (-1229)) (-5 *1 (-250)))) (-3846 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1062 (-219))) (-5 *5 (-112)) (-5 *2 (-1229)) (-5 *1 (-250))))) +(-10 -7 (-15 -3846 ((-1229) (-1 (-167 (-219)) (-167 (-219))) (-1062 (-219)) (-1062 (-219)) (-112))) (-15 -2728 ((-1229) (-1 (-167 (-219)) (-167 (-219))) (-1062 (-219)) (-1062 (-219)))) (-15 -2812 ((-550) (-550))) (-15 -2907 ((-550) (-550))) (-15 -2986 ((-219) (-219)))) +((-1518 (((-1060 (-372)) (-1060 (-309 |#1|))) 16))) +(((-251 |#1|) (-10 -7 (-15 -1518 ((-1060 (-372)) (-1060 (-309 |#1|))))) (-13 (-825) (-542) (-596 (-372)))) (T -251)) +((-1518 (*1 *2 *3) (-12 (-5 *3 (-1060 (-309 *4))) (-4 *4 (-13 (-825) (-542) (-596 (-372)))) (-5 *2 (-1060 (-372))) (-5 *1 (-251 *4))))) +(-10 -7 (-15 -1518 ((-1060 (-372)) (-1060 (-309 |#1|))))) +((-2835 (((-1101 (-219)) (-855 |#1|) (-1060 (-372)) (-1060 (-372))) 71) (((-1101 (-219)) (-855 |#1|) (-1060 (-372)) (-1060 (-372)) (-623 (-256))) 70) (((-1101 (-219)) |#1| (-1060 (-372)) (-1060 (-372))) 61) (((-1101 (-219)) |#1| (-1060 (-372)) (-1060 (-372)) (-623 (-256))) 60) (((-1101 (-219)) (-852 |#1|) (-1060 (-372))) 52) (((-1101 (-219)) (-852 |#1|) (-1060 (-372)) (-623 (-256))) 51)) (-2787 (((-1229) (-855 |#1|) (-1060 (-372)) (-1060 (-372))) 74) (((-1229) (-855 |#1|) (-1060 (-372)) (-1060 (-372)) (-623 (-256))) 73) (((-1229) |#1| (-1060 (-372)) (-1060 (-372))) 64) (((-1229) |#1| (-1060 (-372)) (-1060 (-372)) (-623 (-256))) 63) (((-1229) (-852 |#1|) (-1060 (-372))) 56) (((-1229) (-852 |#1|) (-1060 (-372)) (-623 (-256))) 55) (((-1228) (-850 |#1|) (-1060 (-372))) 43) (((-1228) (-850 |#1|) (-1060 (-372)) (-623 (-256))) 42) (((-1228) |#1| (-1060 (-372))) 35) (((-1228) |#1| (-1060 (-372)) (-623 (-256))) 34))) +(((-252 |#1|) (-10 -7 (-15 -2787 ((-1228) |#1| (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1228) |#1| (-1060 (-372)))) (-15 -2787 ((-1228) (-850 |#1|) (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1228) (-850 |#1|) (-1060 (-372)))) (-15 -2787 ((-1229) (-852 |#1|) (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-852 |#1|) (-1060 (-372)))) (-15 -2835 ((-1101 (-219)) (-852 |#1|) (-1060 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-852 |#1|) (-1060 (-372)))) (-15 -2787 ((-1229) |#1| (-1060 (-372)) (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) |#1| (-1060 (-372)) (-1060 (-372)))) (-15 -2835 ((-1101 (-219)) |#1| (-1060 (-372)) (-1060 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) |#1| (-1060 (-372)) (-1060 (-372)))) (-15 -2787 ((-1229) (-855 |#1|) (-1060 (-372)) (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-855 |#1|) (-1060 (-372)) (-1060 (-372)))) (-15 -2835 ((-1101 (-219)) (-855 |#1|) (-1060 (-372)) (-1060 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-855 |#1|) (-1060 (-372)) (-1060 (-372))))) (-13 (-596 (-526)) (-1068))) (T -252)) +((-2835 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1060 (-372))) (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1101 (-219))) (-5 *1 (-252 *5)))) (-2835 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1101 (-219))) (-5 *1 (-252 *6)))) (-2787 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1060 (-372))) (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1229)) (-5 *1 (-252 *5)))) (-2787 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1229)) (-5 *1 (-252 *6)))) (-2835 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1060 (-372))) (-5 *2 (-1101 (-219))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1068))))) (-2835 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1068))))) (-2787 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1060 (-372))) (-5 *2 (-1229)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1068))))) (-2787 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1068))))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-852 *5)) (-5 *4 (-1060 (-372))) (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1101 (-219))) (-5 *1 (-252 *5)))) (-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-852 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1101 (-219))) (-5 *1 (-252 *6)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-852 *5)) (-5 *4 (-1060 (-372))) (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1229)) (-5 *1 (-252 *5)))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-852 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1229)) (-5 *1 (-252 *6)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1060 (-372))) (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1228)) (-5 *1 (-252 *5)))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1228)) (-5 *1 (-252 *6)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *4 (-1060 (-372))) (-5 *2 (-1228)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1068))))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1068)))))) +(-10 -7 (-15 -2787 ((-1228) |#1| (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1228) |#1| (-1060 (-372)))) (-15 -2787 ((-1228) (-850 |#1|) (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1228) (-850 |#1|) (-1060 (-372)))) (-15 -2787 ((-1229) (-852 |#1|) (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-852 |#1|) (-1060 (-372)))) (-15 -2835 ((-1101 (-219)) (-852 |#1|) (-1060 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-852 |#1|) (-1060 (-372)))) (-15 -2787 ((-1229) |#1| (-1060 (-372)) (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) |#1| (-1060 (-372)) (-1060 (-372)))) (-15 -2835 ((-1101 (-219)) |#1| (-1060 (-372)) (-1060 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) |#1| (-1060 (-372)) (-1060 (-372)))) (-15 -2787 ((-1229) (-855 |#1|) (-1060 (-372)) (-1060 (-372)) (-623 (-256)))) (-15 -2787 ((-1229) (-855 |#1|) (-1060 (-372)) (-1060 (-372)))) (-15 -2835 ((-1101 (-219)) (-855 |#1|) (-1060 (-372)) (-1060 (-372)) (-623 (-256)))) (-15 -2835 ((-1101 (-219)) (-855 |#1|) (-1060 (-372)) (-1060 (-372))))) +((-2787 (((-1229) (-623 (-219)) (-623 (-219)) (-623 (-219)) (-623 (-256))) 23) (((-1229) (-623 (-219)) (-623 (-219)) (-623 (-219))) 24) (((-1228) (-623 (-916 (-219))) (-623 (-256))) 16) (((-1228) (-623 (-916 (-219)))) 17) (((-1228) (-623 (-219)) (-623 (-219)) (-623 (-256))) 20) (((-1228) (-623 (-219)) (-623 (-219))) 21))) +(((-253) (-10 -7 (-15 -2787 ((-1228) (-623 (-219)) (-623 (-219)))) (-15 -2787 ((-1228) (-623 (-219)) (-623 (-219)) (-623 (-256)))) (-15 -2787 ((-1228) (-623 (-916 (-219))))) (-15 -2787 ((-1228) (-623 (-916 (-219))) (-623 (-256)))) (-15 -2787 ((-1229) (-623 (-219)) (-623 (-219)) (-623 (-219)))) (-15 -2787 ((-1229) (-623 (-219)) (-623 (-219)) (-623 (-219)) (-623 (-256)))))) (T -253)) +((-2787 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-623 (-219))) (-5 *4 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-253)))) (-2787 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1229)) (-5 *1 (-253)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-916 (-219)))) (-5 *4 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-623 (-916 (-219)))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-2787 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-623 (-219))) (-5 *4 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-2787 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1228)) (-5 *1 (-253))))) +(-10 -7 (-15 -2787 ((-1228) (-623 (-219)) (-623 (-219)))) (-15 -2787 ((-1228) (-623 (-219)) (-623 (-219)) (-623 (-256)))) (-15 -2787 ((-1228) (-623 (-916 (-219))))) (-15 -2787 ((-1228) (-623 (-916 (-219))) (-623 (-256)))) (-15 -2787 ((-1229) (-623 (-219)) (-623 (-219)) (-623 (-219)))) (-15 -2787 ((-1229) (-623 (-219)) (-623 (-219)) (-623 (-219)) (-623 (-256))))) +((-2725 (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-623 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 26)) (-1944 (((-894) (-623 (-256)) (-894)) 53)) (-1840 (((-894) (-623 (-256)) (-894)) 52)) (-1476 (((-623 (-372)) (-623 (-256)) (-623 (-372))) 69)) (-3973 (((-372) (-623 (-256)) (-372)) 58)) (-2130 (((-894) (-623 (-256)) (-894)) 54)) (-1499 (((-112) (-623 (-256)) (-112)) 28)) (-4098 (((-1126) (-623 (-256)) (-1126)) 20)) (-2589 (((-1126) (-623 (-256)) (-1126)) 27)) (-2046 (((-1101 (-219)) (-623 (-256))) 47)) (-1316 (((-623 (-1062 (-372))) (-623 (-256)) (-623 (-1062 (-372)))) 41)) (-1609 (((-847) (-623 (-256)) (-847)) 33)) (-1724 (((-847) (-623 (-256)) (-847)) 34)) (-2023 (((-1 (-916 (-219)) (-916 (-219))) (-623 (-256)) (-1 (-916 (-219)) (-916 (-219)))) 64)) (-2509 (((-112) (-623 (-256)) (-112)) 16)) (-2073 (((-112) (-623 (-256)) (-112)) 15))) +(((-254) (-10 -7 (-15 -2073 ((-112) (-623 (-256)) (-112))) (-15 -2509 ((-112) (-623 (-256)) (-112))) (-15 -2725 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-623 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4098 ((-1126) (-623 (-256)) (-1126))) (-15 -2589 ((-1126) (-623 (-256)) (-1126))) (-15 -1499 ((-112) (-623 (-256)) (-112))) (-15 -1609 ((-847) (-623 (-256)) (-847))) (-15 -1724 ((-847) (-623 (-256)) (-847))) (-15 -1316 ((-623 (-1062 (-372))) (-623 (-256)) (-623 (-1062 (-372))))) (-15 -1840 ((-894) (-623 (-256)) (-894))) (-15 -1944 ((-894) (-623 (-256)) (-894))) (-15 -2046 ((-1101 (-219)) (-623 (-256)))) (-15 -2130 ((-894) (-623 (-256)) (-894))) (-15 -3973 ((-372) (-623 (-256)) (-372))) (-15 -2023 ((-1 (-916 (-219)) (-916 (-219))) (-623 (-256)) (-1 (-916 (-219)) (-916 (-219))))) (-15 -1476 ((-623 (-372)) (-623 (-256)) (-623 (-372)))))) (T -254)) +((-1476 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-372))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2023 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-916 (-219)) (-916 (-219)))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-3973 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2130 (*1 *2 *3 *2) (-12 (-5 *2 (-894)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-254)))) (-1944 (*1 *2 *3 *2) (-12 (-5 *2 (-894)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1840 (*1 *2 *3 *2) (-12 (-5 *2 (-894)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1316 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1724 (*1 *2 *3 *2) (-12 (-5 *2 (-847)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1609 (*1 *2 *3 *2) (-12 (-5 *2 (-847)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-1499 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2589 (*1 *2 *3 *2) (-12 (-5 *2 (-1126)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-4098 (*1 *2 *3 *2) (-12 (-5 *2 (-1126)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2725 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2509 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) (-2073 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254))))) +(-10 -7 (-15 -2073 ((-112) (-623 (-256)) (-112))) (-15 -2509 ((-112) (-623 (-256)) (-112))) (-15 -2725 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-623 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4098 ((-1126) (-623 (-256)) (-1126))) (-15 -2589 ((-1126) (-623 (-256)) (-1126))) (-15 -1499 ((-112) (-623 (-256)) (-112))) (-15 -1609 ((-847) (-623 (-256)) (-847))) (-15 -1724 ((-847) (-623 (-256)) (-847))) (-15 -1316 ((-623 (-1062 (-372))) (-623 (-256)) (-623 (-1062 (-372))))) (-15 -1840 ((-894) (-623 (-256)) (-894))) (-15 -1944 ((-894) (-623 (-256)) (-894))) (-15 -2046 ((-1101 (-219)) (-623 (-256)))) (-15 -2130 ((-894) (-623 (-256)) (-894))) (-15 -3973 ((-372) (-623 (-256)) (-372))) (-15 -2023 ((-1 (-916 (-219)) (-916 (-219))) (-623 (-256)) (-1 (-916 (-219)) (-916 (-219))))) (-15 -1476 ((-623 (-372)) (-623 (-256)) (-623 (-372))))) +((-2940 (((-3 |#1| "failed") (-623 (-256)) (-1144)) 17))) +(((-255 |#1|) (-10 -7 (-15 -2940 ((-3 |#1| "failed") (-623 (-256)) (-1144)))) (-1181)) (T -255)) +((-2940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 (-256))) (-5 *4 (-1144)) (-5 *1 (-255 *2)) (-4 *2 (-1181))))) +(-10 -7 (-15 -2940 ((-3 |#1| "failed") (-623 (-256)) (-1144)))) +((-1504 (((-112) $ $) NIL)) (-2725 (($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 15)) (-1944 (($ (-894)) 76)) (-1840 (($ (-894)) 75)) (-3090 (($ (-623 (-372))) 82)) (-3973 (($ (-372)) 58)) (-2130 (($ (-894)) 77)) (-1499 (($ (-112)) 23)) (-4098 (($ (-1126)) 18)) (-2589 (($ (-1126)) 19)) (-2046 (($ (-1101 (-219))) 71)) (-1316 (($ (-623 (-1062 (-372)))) 67)) (-3170 (($ (-623 (-1062 (-372)))) 59) (($ (-623 (-1062 (-400 (-550))))) 66)) (-2337 (($ (-372)) 29) (($ (-847)) 33)) (-3055 (((-112) (-623 $) (-1144)) 91)) (-2940 (((-3 (-52) "failed") (-623 $) (-1144)) 93)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2248 (($ (-372)) 34) (($ (-847)) 35)) (-1373 (($ (-1 (-916 (-219)) (-916 (-219)))) 57)) (-2023 (($ (-1 (-916 (-219)) (-916 (-219)))) 78)) (-2174 (($ (-1 (-219) (-219))) 39) (($ (-1 (-219) (-219) (-219))) 43) (($ (-1 (-219) (-219) (-219) (-219))) 47)) (-1518 (((-836) $) 87)) (-2426 (($ (-112)) 24) (($ (-623 (-1062 (-372)))) 52)) (-2073 (($ (-112)) 25)) (-2316 (((-112) $ $) 89))) +(((-256) (-13 (-1068) (-10 -8 (-15 -2073 ($ (-112))) (-15 -2426 ($ (-112))) (-15 -2725 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4098 ($ (-1126))) (-15 -2589 ($ (-1126))) (-15 -1499 ($ (-112))) (-15 -2426 ($ (-623 (-1062 (-372))))) (-15 -1373 ($ (-1 (-916 (-219)) (-916 (-219))))) (-15 -2337 ($ (-372))) (-15 -2337 ($ (-847))) (-15 -2248 ($ (-372))) (-15 -2248 ($ (-847))) (-15 -2174 ($ (-1 (-219) (-219)))) (-15 -2174 ($ (-1 (-219) (-219) (-219)))) (-15 -2174 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -3973 ($ (-372))) (-15 -3170 ($ (-623 (-1062 (-372))))) (-15 -3170 ($ (-623 (-1062 (-400 (-550)))))) (-15 -1316 ($ (-623 (-1062 (-372))))) (-15 -2046 ($ (-1101 (-219)))) (-15 -1840 ($ (-894))) (-15 -1944 ($ (-894))) (-15 -2130 ($ (-894))) (-15 -2023 ($ (-1 (-916 (-219)) (-916 (-219))))) (-15 -3090 ($ (-623 (-372)))) (-15 -2940 ((-3 (-52) "failed") (-623 $) (-1144))) (-15 -3055 ((-112) (-623 $) (-1144)))))) (T -256)) +((-2073 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-2426 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-256)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-256)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-256)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-2426 (*1 *1 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-256)))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-1 (-916 (-219)) (-916 (-219)))) (-5 *1 (-256)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-256)))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-256)))) (-2174 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-256)))) (-2174 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-256)))) (-2174 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-256)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-256)))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-623 (-1062 (-400 (-550))))) (-5 *1 (-256)))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-256)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-1101 (-219))) (-5 *1 (-256)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-256)))) (-1944 (*1 *1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-256)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-256)))) (-2023 (*1 *1 *2) (-12 (-5 *2 (-1 (-916 (-219)) (-916 (-219)))) (-5 *1 (-256)))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-256)))) (-2940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 (-256))) (-5 *4 (-1144)) (-5 *2 (-52)) (-5 *1 (-256)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-256))) (-5 *4 (-1144)) (-5 *2 (-112)) (-5 *1 (-256))))) +(-13 (-1068) (-10 -8 (-15 -2073 ($ (-112))) (-15 -2426 ($ (-112))) (-15 -2725 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4098 ($ (-1126))) (-15 -2589 ($ (-1126))) (-15 -1499 ($ (-112))) (-15 -2426 ($ (-623 (-1062 (-372))))) (-15 -1373 ($ (-1 (-916 (-219)) (-916 (-219))))) (-15 -2337 ($ (-372))) (-15 -2337 ($ (-847))) (-15 -2248 ($ (-372))) (-15 -2248 ($ (-847))) (-15 -2174 ($ (-1 (-219) (-219)))) (-15 -2174 ($ (-1 (-219) (-219) (-219)))) (-15 -2174 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -3973 ($ (-372))) (-15 -3170 ($ (-623 (-1062 (-372))))) (-15 -3170 ($ (-623 (-1062 (-400 (-550)))))) (-15 -1316 ($ (-623 (-1062 (-372))))) (-15 -2046 ($ (-1101 (-219)))) (-15 -1840 ($ (-894))) (-15 -1944 ($ (-894))) (-15 -2130 ($ (-894))) (-15 -2023 ($ (-1 (-916 (-219)) (-916 (-219))))) (-15 -3090 ($ (-623 (-372)))) (-15 -2940 ((-3 (-52) "failed") (-623 $) (-1144))) (-15 -3055 ((-112) (-623 $) (-1144))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1662 (((-623 (-749)) $) NIL) (((-623 (-749)) $ |#2|) NIL)) (-4073 (((-749) $) NIL) (((-749) $ |#2|) NIL)) (-3141 (((-623 |#3|) $) NIL)) (-3306 (((-1140 $) $ |#3|) NIL) (((-1140 |#1|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 |#3|)) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1417 (($ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1093 |#1| |#2|) "failed") $) 21)) (-2726 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1093 |#1| |#2|) $) NIL)) (-3340 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-2613 (($ $ |#1| (-522 |#3|) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| |#1| (-859 (-372))) (|has| |#3| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| |#1| (-859 (-550))) (|has| |#3| (-859 (-550)))))) (-2475 (((-749) $ |#2|) NIL) (((-749) $) 10)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3129 (($ (-1140 |#1|) |#3|) NIL) (($ (-1140 $) |#3|) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-522 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-623 |#3|) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ |#3|) NIL)) (-1667 (((-522 |#3|) $) NIL) (((-749) $ |#3|) NIL) (((-623 (-749)) $ (-623 |#3|)) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-522 |#3|) (-522 |#3|)) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-4167 (((-1 $ (-749)) |#2|) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-2558 (((-3 |#3| "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1970 ((|#3| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1825 (((-1126) $) NIL)) (-1539 (((-112) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| |#3|) (|:| -3521 (-749))) "failed") $) NIL)) (-3083 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-882)))) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-623 |#3|) (-623 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-623 |#3|) (-623 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-227))) (($ $ (-623 |#2|) (-623 $)) NIL (|has| |#1| (-227))) (($ $ |#2| |#1|) NIL (|has| |#1| (-227))) (($ $ (-623 |#2|) (-623 |#1|)) NIL (|has| |#1| (-227)))) (-3453 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-2393 (($ $ |#3|) NIL) (($ $ (-623 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-623 |#3|) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4299 (((-623 |#2|) $) NIL)) (-2970 (((-522 |#3|) $) NIL) (((-749) $ |#3|) NIL) (((-623 (-749)) $ (-623 |#3|)) NIL) (((-749) $ |#2|) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#3| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#3| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526)))))) (-2503 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1093 |#1| |#2|)) 30) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-522 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-623 |#3|) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ |#3|) NIL) (($ $ (-623 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-623 |#3|) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-257 |#1| |#2| |#3|) (-13 (-246 |#1| |#2| |#3| (-522 |#3|)) (-1011 (-1093 |#1| |#2|))) (-1020) (-825) (-259 |#2|)) (T -257)) +NIL +(-13 (-246 |#1| |#2| |#3| (-522 |#3|)) (-1011 (-1093 |#1| |#2|))) +((-4073 (((-749) $) 30)) (-3880 (((-3 |#2| "failed") $) 17)) (-2726 ((|#2| $) 27)) (-2393 (($ $) 12) (($ $ (-749)) 15)) (-1518 (((-836) $) 26) (($ |#2|) 10)) (-2316 (((-112) $ $) 20)) (-2335 (((-112) $ $) 29))) +(((-258 |#1| |#2|) (-10 -8 (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1|)) (-15 -4073 ((-749) |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -2335 ((-112) |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) (-259 |#2|) (-825)) (T -258)) +NIL +(-10 -8 (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1|)) (-15 -4073 ((-749) |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -2335 ((-112) |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-4073 (((-749) $) 22)) (-1861 ((|#1| $) 23)) (-3880 (((-3 |#1| "failed") $) 27)) (-2726 ((|#1| $) 26)) (-2475 (((-749) $) 24)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-4167 (($ |#1| (-749)) 25)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2393 (($ $) 21) (($ $ (-749)) 20)) (-1518 (((-836) $) 11) (($ |#1|) 28)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18))) +(((-259 |#1|) (-138) (-825)) (T -259)) +((-1518 (*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-4167 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-259 *3)) (-4 *3 (-825))))) +(-13 (-825) (-1011 |t#1|) (-10 -8 (-15 -4167 ($ |t#1| (-749))) (-15 -2475 ((-749) $)) (-15 -1861 (|t#1| $)) (-15 -4073 ((-749) $)) (-15 -2393 ($ $)) (-15 -2393 ($ $ (-749))) (-15 -1518 ($ |t#1|)))) +(((-101) . T) ((-595 (-836)) . T) ((-825) . T) ((-1011 |#1|) . T) ((-1068) . T)) +((-3141 (((-623 (-1144)) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 41)) (-1540 (((-623 (-1144)) (-309 (-219)) (-749)) 80)) (-1437 (((-3 (-309 (-219)) "failed") (-309 (-219))) 51)) (-3354 (((-309 (-219)) (-309 (-219))) 67)) (-1332 (((-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 26)) (-3454 (((-112) (-623 (-309 (-219)))) 84)) (-3852 (((-112) (-309 (-219))) 24)) (-2865 (((-623 (-1126)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))))) 106)) (-3752 (((-623 (-309 (-219))) (-623 (-309 (-219)))) 88)) (-3651 (((-623 (-309 (-219))) (-623 (-309 (-219)))) 86)) (-3553 (((-667 (-219)) (-623 (-309 (-219))) (-749)) 95)) (-4289 (((-112) (-309 (-219))) 20) (((-112) (-623 (-309 (-219)))) 85)) (-4279 (((-623 (-219)) (-623 (-818 (-219))) (-219)) 14)) (-2916 (((-372) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 101)) (-2764 (((-1008) (-1144) (-1008)) 34))) +(((-260) (-10 -7 (-15 -4279 ((-623 (-219)) (-623 (-818 (-219))) (-219))) (-15 -1332 ((-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -1437 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -3354 ((-309 (-219)) (-309 (-219)))) (-15 -3454 ((-112) (-623 (-309 (-219))))) (-15 -4289 ((-112) (-623 (-309 (-219))))) (-15 -4289 ((-112) (-309 (-219)))) (-15 -3553 ((-667 (-219)) (-623 (-309 (-219))) (-749))) (-15 -3651 ((-623 (-309 (-219))) (-623 (-309 (-219))))) (-15 -3752 ((-623 (-309 (-219))) (-623 (-309 (-219))))) (-15 -3852 ((-112) (-309 (-219)))) (-15 -3141 ((-623 (-1144)) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) (-15 -1540 ((-623 (-1144)) (-309 (-219)) (-749))) (-15 -2764 ((-1008) (-1144) (-1008))) (-15 -2916 ((-372) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) (-15 -2865 ((-623 (-1126)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))))))) (T -260)) +((-2865 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))))) (-5 *2 (-623 (-1126))) (-5 *1 (-260)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) (-5 *2 (-372)) (-5 *1 (-260)))) (-2764 (*1 *2 *3 *2) (-12 (-5 *2 (-1008)) (-5 *3 (-1144)) (-5 *1 (-260)))) (-1540 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-749)) (-5 *2 (-623 (-1144))) (-5 *1 (-260)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) (-5 *2 (-623 (-1144))) (-5 *1 (-260)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-623 (-309 (-219)))) (-5 *1 (-260)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-623 (-309 (-219)))) (-5 *1 (-260)))) (-3553 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) (-5 *1 (-260)))) (-4289 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-4289 (*1 *2 *3) (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3354 (*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))) (-1437 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (-5 *1 (-260)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-818 (-219)))) (-5 *4 (-219)) (-5 *2 (-623 *4)) (-5 *1 (-260))))) +(-10 -7 (-15 -4279 ((-623 (-219)) (-623 (-818 (-219))) (-219))) (-15 -1332 ((-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -1437 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -3354 ((-309 (-219)) (-309 (-219)))) (-15 -3454 ((-112) (-623 (-309 (-219))))) (-15 -4289 ((-112) (-623 (-309 (-219))))) (-15 -4289 ((-112) (-309 (-219)))) (-15 -3553 ((-667 (-219)) (-623 (-309 (-219))) (-749))) (-15 -3651 ((-623 (-309 (-219))) (-623 (-309 (-219))))) (-15 -3752 ((-623 (-309 (-219))) (-623 (-309 (-219))))) (-15 -3852 ((-112) (-309 (-219)))) (-15 -3141 ((-623 (-1144)) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) (-15 -1540 ((-623 (-1144)) (-309 (-219)) (-749))) (-15 -2764 ((-1008) (-1144) (-1008))) (-15 -2916 ((-372) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) (-15 -2865 ((-623 (-1126)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))))))) +((-1504 (((-112) $ $) NIL)) (-4236 (((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 44)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 26) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-261) (-814)) (T -261)) +NIL +(-814) +((-1504 (((-112) $ $) NIL)) (-4236 (((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 58) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 54)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 34) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 36)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-262) (-814)) (T -262)) +NIL +(-814) +((-1504 (((-112) $ $) NIL)) (-4236 (((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 76) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 73)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 44) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 55)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-263) (-814)) (T -263)) +NIL +(-814) +((-1504 (((-112) $ $) NIL)) (-4236 (((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 50)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 31) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-264) (-814)) (T -264)) +NIL +(-814) +((-1504 (((-112) $ $) NIL)) (-4236 (((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 50)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 28) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-265) (-814)) (T -265)) +NIL +(-814) +((-1504 (((-112) $ $) NIL)) (-4236 (((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 73)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 28) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-266) (-814)) (T -266)) +NIL +(-814) +((-1504 (((-112) $ $) NIL)) (-4236 (((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 77)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 25) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-267) (-814)) (T -267)) +NIL +(-814) +((-1504 (((-112) $ $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3039 (((-623 (-550)) $) 19)) (-2970 (((-749) $) 17)) (-1518 (((-836) $) 23) (($ (-623 (-550))) 15)) (-2954 (($ (-749)) 20)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 9)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 11))) +(((-268) (-13 (-825) (-10 -8 (-15 -1518 ($ (-623 (-550)))) (-15 -2970 ((-749) $)) (-15 -3039 ((-623 (-550)) $)) (-15 -2954 ($ (-749)))))) (T -268)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-268)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-268)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-268)))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-268))))) +(-13 (-825) (-10 -8 (-15 -1518 ($ (-623 (-550)))) (-15 -2970 ((-749) $)) (-15 -3039 ((-623 (-550)) $)) (-15 -2954 ($ (-749))))) +((-3123 ((|#2| |#2|) 77)) (-3005 ((|#2| |#2|) 65)) (-1839 (((-3 |#2| "failed") |#2| (-623 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3103 ((|#2| |#2|) 75)) (-2984 ((|#2| |#2|) 63)) (-3146 ((|#2| |#2|) 79)) (-3025 ((|#2| |#2|) 67)) (-2734 ((|#2|) 46)) (-2926 (((-114) (-114)) 95)) (-2958 ((|#2| |#2|) 61)) (-1942 (((-112) |#2|) 134)) (-4058 ((|#2| |#2|) 181)) (-2549 ((|#2| |#2|) 157)) (-3228 ((|#2|) 59)) (-3130 ((|#2|) 58)) (-2147 ((|#2| |#2|) 177)) (-2379 ((|#2| |#2|) 153)) (-4263 ((|#2| |#2|) 185)) (-1555 ((|#2| |#2|) 161)) (-2297 ((|#2| |#2|) 149)) (-2220 ((|#2| |#2|) 151)) (-1287 ((|#2| |#2|) 187)) (-1663 ((|#2| |#2|) 163)) (-4151 ((|#2| |#2|) 183)) (-2631 ((|#2| |#2|) 159)) (-3978 ((|#2| |#2|) 179)) (-2467 ((|#2| |#2|) 155)) (-1458 ((|#2| |#2|) 193)) (-1806 ((|#2| |#2|) 169)) (-1388 ((|#2| |#2|) 189)) (-1780 ((|#2| |#2|) 165)) (-1634 ((|#2| |#2|) 197)) (-1986 ((|#2| |#2|) 173)) (-1736 ((|#2| |#2|) 199)) (-2071 ((|#2| |#2|) 175)) (-1535 ((|#2| |#2|) 195)) (-1905 ((|#2| |#2|) 171)) (-1481 ((|#2| |#2|) 191)) (-1706 ((|#2| |#2|) 167)) (-1812 ((|#2| |#2|) 62)) (-3157 ((|#2| |#2|) 80)) (-3033 ((|#2| |#2|) 68)) (-3135 ((|#2| |#2|) 78)) (-3016 ((|#2| |#2|) 66)) (-3114 ((|#2| |#2|) 76)) (-2995 ((|#2| |#2|) 64)) (-2222 (((-112) (-114)) 93)) (-3187 ((|#2| |#2|) 83)) (-3060 ((|#2| |#2|) 71)) (-3167 ((|#2| |#2|) 81)) (-3043 ((|#2| |#2|) 69)) (-3209 ((|#2| |#2|) 85)) (-3081 ((|#2| |#2|) 73)) (-3294 ((|#2| |#2|) 86)) (-3094 ((|#2| |#2|) 74)) (-3198 ((|#2| |#2|) 84)) (-3072 ((|#2| |#2|) 72)) (-3176 ((|#2| |#2|) 82)) (-3052 ((|#2| |#2|) 70))) +(((-269 |#1| |#2|) (-10 -7 (-15 -1812 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -3005 (|#2| |#2|)) (-15 -3016 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -3052 (|#2| |#2|)) (-15 -3060 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -3094 (|#2| |#2|)) (-15 -3103 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -3123 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3198 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -3294 (|#2| |#2|)) (-15 -2734 (|#2|)) (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -3130 (|#2|)) (-15 -3228 (|#2|)) (-15 -2220 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1905 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2071 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4263 (|#2| |#2|)) (-15 -1287 (|#2| |#2|)) (-15 -1388 (|#2| |#2|)) (-15 -1481 (|#2| |#2|)) (-15 -1458 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -1736 (|#2| |#2|)) (-15 -1839 ((-3 |#2| "failed") |#2| (-623 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1942 ((-112) |#2|))) (-13 (-825) (-542)) (-13 (-423 |#1|) (-975))) (T -269)) +((-1942 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-423 *4) (-975))))) (-1839 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-623 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-423 *4) (-975))) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-269 *4 *2)))) (-1736 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1634 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1458 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1481 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1388 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1287 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-4263 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2147 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2071 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1905 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2631 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3228 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-975))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-542))))) (-3130 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-975))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-542))))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *4)) (-4 *4 (-13 (-423 *3) (-975))))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-423 *4) (-975))))) (-2734 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-975))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-542))))) (-3294 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3198 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3123 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3103 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3094 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3060 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3016 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975))))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-975)))))) +(-10 -7 (-15 -1812 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -3005 (|#2| |#2|)) (-15 -3016 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -3052 (|#2| |#2|)) (-15 -3060 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -3094 (|#2| |#2|)) (-15 -3103 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -3123 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3198 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -3294 (|#2| |#2|)) (-15 -2734 (|#2|)) (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -3130 (|#2|)) (-15 -3228 (|#2|)) (-15 -2220 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1905 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2071 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4263 (|#2| |#2|)) (-15 -1287 (|#2| |#2|)) (-15 -1388 (|#2| |#2|)) (-15 -1481 (|#2| |#2|)) (-15 -1458 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -1736 (|#2| |#2|)) (-15 -1839 ((-3 |#2| "failed") |#2| (-623 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1942 ((-112) |#2|))) +((-3969 (((-3 |#2| "failed") (-623 (-594 |#2|)) |#2| (-1144)) 135)) (-4177 ((|#2| (-400 (-550)) |#2|) 51)) (-4071 ((|#2| |#2| (-594 |#2|)) 128)) (-2044 (((-2 (|:| |func| |#2|) (|:| |kers| (-623 (-594 |#2|))) (|:| |vals| (-623 |#2|))) |#2| (-1144)) 127)) (-3879 ((|#2| |#2| (-1144)) 20) ((|#2| |#2|) 23)) (-3748 ((|#2| |#2| (-1144)) 141) ((|#2| |#2|) 139))) +(((-270 |#1| |#2|) (-10 -7 (-15 -3748 (|#2| |#2|)) (-15 -3748 (|#2| |#2| (-1144))) (-15 -2044 ((-2 (|:| |func| |#2|) (|:| |kers| (-623 (-594 |#2|))) (|:| |vals| (-623 |#2|))) |#2| (-1144))) (-15 -3879 (|#2| |#2|)) (-15 -3879 (|#2| |#2| (-1144))) (-15 -3969 ((-3 |#2| "failed") (-623 (-594 |#2|)) |#2| (-1144))) (-15 -4071 (|#2| |#2| (-594 |#2|))) (-15 -4177 (|#2| (-400 (-550)) |#2|))) (-13 (-542) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|))) (T -270)) +((-4177 (*1 *2 *3 *2) (-12 (-5 *3 (-400 (-550))) (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))))) (-4071 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))) (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-270 *4 *2)))) (-3969 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-623 (-594 *2))) (-5 *4 (-1144)) (-4 *2 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-270 *5 *2)))) (-3879 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) (-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-623 (-594 *3))) (|:| |vals| (-623 *3)))) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-3748 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))))) (-3748 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3)))))) +(-10 -7 (-15 -3748 (|#2| |#2|)) (-15 -3748 (|#2| |#2| (-1144))) (-15 -2044 ((-2 (|:| |func| |#2|) (|:| |kers| (-623 (-594 |#2|))) (|:| |vals| (-623 |#2|))) |#2| (-1144))) (-15 -3879 (|#2| |#2|)) (-15 -3879 (|#2| |#2| (-1144))) (-15 -3969 ((-3 |#2| "failed") (-623 (-594 |#2|)) |#2| (-1144))) (-15 -4071 (|#2| |#2| (-594 |#2|))) (-15 -4177 (|#2| (-400 (-550)) |#2|))) +((-1263 (((-3 |#3| "failed") |#3|) 110)) (-3123 ((|#3| |#3|) 131)) (-1463 (((-3 |#3| "failed") |#3|) 82)) (-3005 ((|#3| |#3|) 121)) (-4139 (((-3 |#3| "failed") |#3|) 58)) (-3103 ((|#3| |#3|) 129)) (-2505 (((-3 |#3| "failed") |#3|) 46)) (-2984 ((|#3| |#3|) 119)) (-3286 (((-3 |#3| "failed") |#3|) 112)) (-3146 ((|#3| |#3|) 133)) (-1665 (((-3 |#3| "failed") |#3|) 84)) (-3025 ((|#3| |#3|) 123)) (-2280 (((-3 |#3| "failed") |#3| (-749)) 36)) (-2429 (((-3 |#3| "failed") |#3|) 74)) (-2958 ((|#3| |#3|) 118)) (-2350 (((-3 |#3| "failed") |#3|) 44)) (-1812 ((|#3| |#3|) 117)) (-3372 (((-3 |#3| "failed") |#3|) 113)) (-3157 ((|#3| |#3|) 134)) (-1770 (((-3 |#3| "failed") |#3|) 85)) (-3033 ((|#3| |#3|) 124)) (-1359 (((-3 |#3| "failed") |#3|) 111)) (-3135 ((|#3| |#3|) 132)) (-1571 (((-3 |#3| "failed") |#3|) 83)) (-3016 ((|#3| |#3|) 122)) (-4223 (((-3 |#3| "failed") |#3|) 60)) (-3114 ((|#3| |#3|) 130)) (-2574 (((-3 |#3| "failed") |#3|) 48)) (-2995 ((|#3| |#3|) 120)) (-3847 (((-3 |#3| "failed") |#3|) 66)) (-3187 ((|#3| |#3|) 137)) (-2050 (((-3 |#3| "failed") |#3|) 104)) (-3060 ((|#3| |#3|) 142)) (-3460 (((-3 |#3| "failed") |#3|) 62)) (-3167 ((|#3| |#3|) 135)) (-1868 (((-3 |#3| "failed") |#3|) 50)) (-3043 ((|#3| |#3|) 125)) (-2869 (((-3 |#3| "failed") |#3|) 70)) (-3209 ((|#3| |#3|) 139)) (-3955 (((-3 |#3| "failed") |#3|) 54)) (-3081 ((|#3| |#3|) 127)) (-2937 (((-3 |#3| "failed") |#3|) 72)) (-3294 ((|#3| |#3|) 140)) (-4057 (((-3 |#3| "failed") |#3|) 56)) (-3094 ((|#3| |#3|) 128)) (-2757 (((-3 |#3| "failed") |#3|) 68)) (-3198 ((|#3| |#3|) 138)) (-3876 (((-3 |#3| "failed") |#3|) 107)) (-3072 ((|#3| |#3|) 143)) (-3558 (((-3 |#3| "failed") |#3|) 64)) (-3176 ((|#3| |#3|) 136)) (-1960 (((-3 |#3| "failed") |#3|) 52)) (-3052 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-400 (-550))) 40 (|has| |#1| (-356))))) +(((-271 |#1| |#2| |#3|) (-13 (-956 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-550)))) |%noBranch|) (-15 -1812 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2984 (|#3| |#3|)) (-15 -2995 (|#3| |#3|)) (-15 -3005 (|#3| |#3|)) (-15 -3016 (|#3| |#3|)) (-15 -3025 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3060 (|#3| |#3|)) (-15 -3072 (|#3| |#3|)) (-15 -3081 (|#3| |#3|)) (-15 -3094 (|#3| |#3|)) (-15 -3103 (|#3| |#3|)) (-15 -3114 (|#3| |#3|)) (-15 -3123 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3167 (|#3| |#3|)) (-15 -3176 (|#3| |#3|)) (-15 -3187 (|#3| |#3|)) (-15 -3198 (|#3| |#3|)) (-15 -3209 (|#3| |#3|)) (-15 -3294 (|#3| |#3|)))) (-38 (-400 (-550))) (-1218 |#1|) (-1189 |#1| |#2|)) (T -271)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-550))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1218 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1189 *4 *5)))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3016 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3060 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3094 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3103 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3123 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3198 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) (-3294 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4))))) +(-13 (-956 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-550)))) |%noBranch|) (-15 -1812 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2984 (|#3| |#3|)) (-15 -2995 (|#3| |#3|)) (-15 -3005 (|#3| |#3|)) (-15 -3016 (|#3| |#3|)) (-15 -3025 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3060 (|#3| |#3|)) (-15 -3072 (|#3| |#3|)) (-15 -3081 (|#3| |#3|)) (-15 -3094 (|#3| |#3|)) (-15 -3103 (|#3| |#3|)) (-15 -3114 (|#3| |#3|)) (-15 -3123 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3167 (|#3| |#3|)) (-15 -3176 (|#3| |#3|)) (-15 -3187 (|#3| |#3|)) (-15 -3198 (|#3| |#3|)) (-15 -3209 (|#3| |#3|)) (-15 -3294 (|#3| |#3|)))) +((-1263 (((-3 |#3| "failed") |#3|) 66)) (-3123 ((|#3| |#3|) 129)) (-1463 (((-3 |#3| "failed") |#3|) 50)) (-3005 ((|#3| |#3|) 117)) (-4139 (((-3 |#3| "failed") |#3|) 62)) (-3103 ((|#3| |#3|) 127)) (-2505 (((-3 |#3| "failed") |#3|) 46)) (-2984 ((|#3| |#3|) 115)) (-3286 (((-3 |#3| "failed") |#3|) 70)) (-3146 ((|#3| |#3|) 131)) (-1665 (((-3 |#3| "failed") |#3|) 54)) (-3025 ((|#3| |#3|) 119)) (-2280 (((-3 |#3| "failed") |#3| (-749)) 35)) (-2429 (((-3 |#3| "failed") |#3|) 44)) (-2958 ((|#3| |#3|) 104)) (-2350 (((-3 |#3| "failed") |#3|) 42)) (-1812 ((|#3| |#3|) 114)) (-3372 (((-3 |#3| "failed") |#3|) 72)) (-3157 ((|#3| |#3|) 132)) (-1770 (((-3 |#3| "failed") |#3|) 56)) (-3033 ((|#3| |#3|) 120)) (-1359 (((-3 |#3| "failed") |#3|) 68)) (-3135 ((|#3| |#3|) 130)) (-1571 (((-3 |#3| "failed") |#3|) 52)) (-3016 ((|#3| |#3|) 118)) (-4223 (((-3 |#3| "failed") |#3|) 64)) (-3114 ((|#3| |#3|) 128)) (-2574 (((-3 |#3| "failed") |#3|) 48)) (-2995 ((|#3| |#3|) 116)) (-3847 (((-3 |#3| "failed") |#3|) 74)) (-3187 ((|#3| |#3|) 135)) (-2050 (((-3 |#3| "failed") |#3|) 58)) (-3060 ((|#3| |#3|) 123)) (-3460 (((-3 |#3| "failed") |#3|) 105)) (-3167 ((|#3| |#3|) 133)) (-1868 (((-3 |#3| "failed") |#3|) 94)) (-3043 ((|#3| |#3|) 121)) (-2869 (((-3 |#3| "failed") |#3|) 109)) (-3209 ((|#3| |#3|) 137)) (-3955 (((-3 |#3| "failed") |#3|) 101)) (-3081 ((|#3| |#3|) 125)) (-2937 (((-3 |#3| "failed") |#3|) 110)) (-3294 ((|#3| |#3|) 138)) (-4057 (((-3 |#3| "failed") |#3|) 103)) (-3094 ((|#3| |#3|) 126)) (-2757 (((-3 |#3| "failed") |#3|) 76)) (-3198 ((|#3| |#3|) 136)) (-3876 (((-3 |#3| "failed") |#3|) 60)) (-3072 ((|#3| |#3|) 124)) (-3558 (((-3 |#3| "failed") |#3|) 106)) (-3176 ((|#3| |#3|) 134)) (-1960 (((-3 |#3| "failed") |#3|) 97)) (-3052 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-400 (-550))) 40 (|has| |#1| (-356))))) +(((-272 |#1| |#2| |#3| |#4|) (-13 (-956 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-550)))) |%noBranch|) (-15 -1812 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2984 (|#3| |#3|)) (-15 -2995 (|#3| |#3|)) (-15 -3005 (|#3| |#3|)) (-15 -3016 (|#3| |#3|)) (-15 -3025 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3060 (|#3| |#3|)) (-15 -3072 (|#3| |#3|)) (-15 -3081 (|#3| |#3|)) (-15 -3094 (|#3| |#3|)) (-15 -3103 (|#3| |#3|)) (-15 -3114 (|#3| |#3|)) (-15 -3123 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3167 (|#3| |#3|)) (-15 -3176 (|#3| |#3|)) (-15 -3187 (|#3| |#3|)) (-15 -3198 (|#3| |#3|)) (-15 -3209 (|#3| |#3|)) (-15 -3294 (|#3| |#3|)))) (-38 (-400 (-550))) (-1187 |#1|) (-1210 |#1| |#2|) (-956 |#2|)) (T -272)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-550))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1187 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1210 *4 *5)) (-4 *6 (-956 *5)))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3016 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3060 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3094 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3103 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3123 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3198 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) (-3294 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4))))) +(-13 (-956 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-550)))) |%noBranch|) (-15 -1812 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2984 (|#3| |#3|)) (-15 -2995 (|#3| |#3|)) (-15 -3005 (|#3| |#3|)) (-15 -3016 (|#3| |#3|)) (-15 -3025 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3060 (|#3| |#3|)) (-15 -3072 (|#3| |#3|)) (-15 -3081 (|#3| |#3|)) (-15 -3094 (|#3| |#3|)) (-15 -3103 (|#3| |#3|)) (-15 -3114 (|#3| |#3|)) (-15 -3123 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3167 (|#3| |#3|)) (-15 -3176 (|#3| |#3|)) (-15 -3187 (|#3| |#3|)) (-15 -3198 (|#3| |#3|)) (-15 -3209 (|#3| |#3|)) (-15 -3294 (|#3| |#3|)))) +((-1690 (((-112) $) 19)) (-2463 (((-181) $) 7)) (-3792 (((-3 (-1144) "failed") $) 14)) (-3692 (((-3 (-623 $) "failed") $) NIL)) (-1352 (((-3 (-1144) "failed") $) 21)) (-3280 (((-3 (-1072) "failed") $) 17)) (-3870 (((-112) $) 15)) (-1518 (((-836) $) NIL)) (-4303 (((-112) $) 9))) +(((-273) (-13 (-595 (-836)) (-10 -8 (-15 -2463 ((-181) $)) (-15 -3870 ((-112) $)) (-15 -3280 ((-3 (-1072) "failed") $)) (-15 -1690 ((-112) $)) (-15 -1352 ((-3 (-1144) "failed") $)) (-15 -4303 ((-112) $)) (-15 -3792 ((-3 (-1144) "failed") $)) (-15 -3692 ((-3 (-623 $) "failed") $))))) (T -273)) +((-2463 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3280 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-273)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1352 (*1 *2 *1) (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-273)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3792 (*1 *2 *1) (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-273)))) (-3692 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-273))) (-5 *1 (-273))))) +(-13 (-595 (-836)) (-10 -8 (-15 -2463 ((-181) $)) (-15 -3870 ((-112) $)) (-15 -3280 ((-3 (-1072) "failed") $)) (-15 -1690 ((-112) $)) (-15 -1352 ((-3 (-1144) "failed") $)) (-15 -4303 ((-112) $)) (-15 -3792 ((-3 (-1144) "failed") $)) (-15 -3692 ((-3 (-623 $) "failed") $)))) +((-4253 (($ (-1 (-112) |#2|) $) 24)) (-1328 (($ $) 36)) (-3112 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3137 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3884 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2055 (($ |#2| $ (-550)) 20) (($ $ $ (-550)) 22)) (-1529 (($ $ (-550)) 11) (($ $ (-1194 (-550))) 14)) (-3547 (($ $ |#2|) 30) (($ $ $) NIL)) (-3227 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-623 $)) NIL))) +(((-274 |#1| |#2|) (-10 -8 (-15 -3884 (|#1| |#1| |#1|)) (-15 -3112 (|#1| |#2| |#1|)) (-15 -3884 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3112 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3547 (|#1| |#1| |#1|)) (-15 -3547 (|#1| |#1| |#2|)) (-15 -2055 (|#1| |#1| |#1| (-550))) (-15 -2055 (|#1| |#2| |#1| (-550))) (-15 -1529 (|#1| |#1| (-1194 (-550)))) (-15 -1529 (|#1| |#1| (-550))) (-15 -3227 (|#1| (-623 |#1|))) (-15 -3227 (|#1| |#1| |#1|)) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#2|)) (-15 -3137 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4253 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3137 (|#1| |#2| |#1|)) (-15 -1328 (|#1| |#1|))) (-275 |#2|) (-1181)) (T -274)) +NIL +(-10 -8 (-15 -3884 (|#1| |#1| |#1|)) (-15 -3112 (|#1| |#2| |#1|)) (-15 -3884 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3112 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3547 (|#1| |#1| |#1|)) (-15 -3547 (|#1| |#1| |#2|)) (-15 -2055 (|#1| |#1| |#1| (-550))) (-15 -2055 (|#1| |#2| |#1| (-550))) (-15 -1529 (|#1| |#1| (-1194 (-550)))) (-15 -1529 (|#1| |#1| (-550))) (-15 -3227 (|#1| (-623 |#1|))) (-15 -3227 (|#1| |#1| |#1|)) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#2|)) (-15 -3137 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4253 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3137 (|#1| |#2| |#1|)) (-15 -1328 (|#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 58 (|has| $ (-6 -4343)))) (-3378 (($ (-1 (-112) |#1|) $) 85)) (-4253 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-3912 (($ $) 83 (|has| |#1| (-1068)))) (-1328 (($ $) 78 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1068)))) (-3137 (($ |#1| $) 77 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 51)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2578 (($ (-749) |#1|) 69)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-3884 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-1886 (($ |#1| $ (-550)) 88) (($ $ $ (-550)) 87)) (-2055 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 42 (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3111 (($ $ |#1|) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1194 (-550))) 63)) (-3476 (($ $ (-550)) 91) (($ $ (-1194 (-550))) 90)) (-1529 (($ $ (-550)) 62) (($ $ (-1194 (-550))) 61)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 70)) (-3547 (($ $ |#1|) 93) (($ $ $) 92)) (-3227 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-275 |#1|) (-138) (-1181)) (T -275)) +((-3547 (*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)))) (-3547 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)))) (-3476 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) (-3476 (*1 *1 *1 *2) (-12 (-5 *2 (-1194 (-550))) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) (-3112 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) (-1886 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-275 *2)) (-4 *2 (-1181)))) (-1886 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) (-3884 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) (-3378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) (-3112 (*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)) (-4 *2 (-1068)))) (-3912 (*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)) (-4 *2 (-1068)))) (-3884 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)) (-4 *2 (-825))))) +(-13 (-629 |t#1|) (-10 -8 (-6 -4343) (-15 -3547 ($ $ |t#1|)) (-15 -3547 ($ $ $)) (-15 -3476 ($ $ (-550))) (-15 -3476 ($ $ (-1194 (-550)))) (-15 -3112 ($ (-1 (-112) |t#1|) $)) (-15 -1886 ($ |t#1| $ (-550))) (-15 -1886 ($ $ $ (-550))) (-15 -3884 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3378 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -3112 ($ |t#1| $)) (-15 -3912 ($ $))) |%noBranch|) (IF (|has| |t#1| (-825)) (-15 -3884 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-629 |#1|) . T) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) ((** (($ $ $) 10))) (((-276 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-277)) (T -276)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4285 (($ $) 6)) (-4286 (($ $) 7)) (** (($ $ $) 8))) +((-2958 (($ $) 6)) (-1812 (($ $) 7)) (** (($ $ $) 8))) (((-277) (-138)) (T -277)) -((** (*1 *1 *1 *1) (-4 *1 (-277))) (-4286 (*1 *1 *1) (-4 *1 (-277))) (-4285 (*1 *1 *1) (-4 *1 (-277)))) -(-13 (-10 -8 (-15 -4285 ($ $)) (-15 -4286 ($ $)) (-15 ** ($ $ $)))) -((-1631 (((-618 (-1119 |#1|)) (-1119 |#1|) |#1|) 35)) (-1628 ((|#2| |#2| |#1|) 38)) (-1630 ((|#2| |#2| |#1|) 40)) (-1629 ((|#2| |#2| |#1|) 39))) -(((-278 |#1| |#2|) (-10 -7 (-15 -1628 (|#2| |#2| |#1|)) (-15 -1629 (|#2| |#2| |#1|)) (-15 -1630 (|#2| |#2| |#1|)) (-15 -1631 ((-618 (-1119 |#1|)) (-1119 |#1|) |#1|))) (-356) (-1217 |#1|)) (T -278)) -((-1631 (*1 *2 *3 *4) (-12 (-4 *4 (-356)) (-5 *2 (-618 (-1119 *4))) (-5 *1 (-278 *4 *5)) (-5 *3 (-1119 *4)) (-4 *5 (-1217 *4)))) (-1630 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))) (-1629 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))) (-1628 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3))))) -(-10 -7 (-15 -1628 (|#2| |#2| |#1|)) (-15 -1629 (|#2| |#2| |#1|)) (-15 -1630 (|#2| |#2| |#1|)) (-15 -1631 ((-618 (-1119 |#1|)) (-1119 |#1|) |#1|))) -((-4142 ((|#2| $ |#1|) 6))) -(((-279 |#1| |#2|) (-138) (-1067) (-1178)) (T -279)) -((-4142 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178))))) -(-13 (-10 -8 (-15 -4142 (|t#2| $ |t#1|)))) -((-1632 ((|#3| $ |#2| |#3|) 12)) (-3431 ((|#3| $ |#2|) 10))) -(((-280 |#1| |#2| |#3|) (-10 -8 (-15 -1632 (|#3| |#1| |#2| |#3|)) (-15 -3431 (|#3| |#1| |#2|))) (-281 |#2| |#3|) (-1067) (-1178)) (T -280)) -NIL -(-10 -8 (-15 -1632 (|#3| |#1| |#2| |#3|)) (-15 -3431 (|#3| |#1| |#2|))) -((-4130 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4337)))) (-1632 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) 11)) (-4142 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-281 |#1| |#2|) (-138) (-1067) (-1178)) (T -281)) -((-4142 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) (-3431 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) (-1632 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178))))) -(-13 (-279 |t#1| |t#2|) (-10 -8 (-15 -4142 (|t#2| $ |t#1| |t#2|)) (-15 -3431 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -4130 (|t#2| $ |t#1| |t#2|)) (-15 -1632 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-277))) (-1812 (*1 *1 *1) (-4 *1 (-277))) (-2958 (*1 *1 *1) (-4 *1 (-277)))) +(-13 (-10 -8 (-15 -2958 ($ $)) (-15 -1812 ($ $)) (-15 ** ($ $ $)))) +((-3761 (((-623 (-1124 |#1|)) (-1124 |#1|) |#1|) 35)) (-3574 ((|#2| |#2| |#1|) 38)) (-3668 ((|#2| |#2| |#1|) 40)) (-1957 ((|#2| |#2| |#1|) 39))) +(((-278 |#1| |#2|) (-10 -7 (-15 -3574 (|#2| |#2| |#1|)) (-15 -1957 (|#2| |#2| |#1|)) (-15 -3668 (|#2| |#2| |#1|)) (-15 -3761 ((-623 (-1124 |#1|)) (-1124 |#1|) |#1|))) (-356) (-1218 |#1|)) (T -278)) +((-3761 (*1 *2 *3 *4) (-12 (-4 *4 (-356)) (-5 *2 (-623 (-1124 *4))) (-5 *1 (-278 *4 *5)) (-5 *3 (-1124 *4)) (-4 *5 (-1218 *4)))) (-3668 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1218 *3)))) (-1957 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1218 *3)))) (-3574 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1218 *3))))) +(-10 -7 (-15 -3574 (|#2| |#2| |#1|)) (-15 -1957 (|#2| |#2| |#1|)) (-15 -3668 (|#2| |#2| |#1|)) (-15 -3761 ((-623 (-1124 |#1|)) (-1124 |#1|) |#1|))) +((-2680 ((|#2| $ |#1|) 6))) +(((-279 |#1| |#2|) (-138) (-1068) (-1181)) (T -279)) +((-2680 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181))))) +(-13 (-10 -8 (-15 -2680 (|t#2| $ |t#1|)))) +((-3245 ((|#3| $ |#2| |#3|) 12)) (-3181 ((|#3| $ |#2|) 10))) +(((-280 |#1| |#2| |#3|) (-10 -8 (-15 -3245 (|#3| |#1| |#2| |#3|)) (-15 -3181 (|#3| |#1| |#2|))) (-281 |#2| |#3|) (-1068) (-1181)) (T -280)) +NIL +(-10 -8 (-15 -3245 (|#3| |#1| |#2| |#3|)) (-15 -3181 (|#3| |#1| |#2|))) +((-1705 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4343)))) (-3245 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) 11)) (-2680 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-281 |#1| |#2|) (-138) (-1068) (-1181)) (T -281)) +((-2680 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181)))) (-3181 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181)))) (-1705 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181)))) (-3245 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181))))) +(-13 (-279 |t#1| |t#2|) (-10 -8 (-15 -2680 (|t#2| $ |t#1| |t#2|)) (-15 -3181 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4343)) (PROGN (-15 -1705 (|t#2| $ |t#1| |t#2|)) (-15 -3245 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-279 |#1| |#2|) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 35)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 40)) (-2171 (($ $) 38)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) 33)) (-4185 (($ |#2| |#3|) 19)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 ((|#3| $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 20)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2485 (((-3 $ "failed") $ $) NIL)) (-1699 (((-747) $) 34)) (-4142 ((|#2| $ |#2|) 42)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 24)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 29 T CONST)) (-2985 (($) 36 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 37))) -(((-282 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-300) (-10 -8 (-15 -2931 (|#3| $)) (-15 -4300 (|#2| $)) (-15 -4185 ($ |#2| |#3|)) (-15 -2485 ((-3 $ "failed") $ $)) (-15 -3804 ((-3 $ "failed") $)) (-15 -2725 ($ $)) (-15 -4142 (|#2| $ |#2|)))) (-170) (-1200 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -282)) -((-3804 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2931 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1200 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4300 (*1 *2 *1) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4185 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1200 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2725 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4142 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1200 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) -(-13 (-300) (-10 -8 (-15 -2931 (|#3| $)) (-15 -4300 (|#2| $)) (-15 -4185 ($ |#2| |#3|)) (-15 -2485 ((-3 $ "failed") $ $)) (-15 -3804 ((-3 $ "failed") $)) (-15 -2725 ($ $)) (-15 -4142 (|#2| $ |#2|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 35)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 40)) (-1447 (($ $) 38)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-3349 (($ $ $) 33)) (-2419 (($ |#2| |#3|) 19)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3102 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-4189 ((|#3| $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 20)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3620 (((-3 $ "failed") $ $) NIL)) (-3542 (((-749) $) 34)) (-2680 ((|#2| $ |#2|) 42)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 24)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2390 (((-749)) NIL)) (-1345 (((-112) $ $) NIL)) (-2626 (($) 29 T CONST)) (-2636 (($) 36 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 37))) +(((-282 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-300) (-10 -8 (-15 -4189 (|#3| $)) (-15 -1518 (|#2| $)) (-15 -2419 ($ |#2| |#3|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -1386 ((-3 $ "failed") $)) (-15 -3235 ($ $)) (-15 -2680 (|#2| $ |#2|)))) (-170) (-1203 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -282)) +((-1386 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1203 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4189 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1203 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1518 (*1 *2 *1) (-12 (-4 *2 (-1203 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2419 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1203 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1203 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3235 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1203 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2680 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1203 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-300) (-10 -8 (-15 -4189 (|#3| $)) (-15 -1518 (|#2| $)) (-15 -2419 ($ |#2| |#3|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -1386 ((-3 $ "failed") $)) (-15 -3235 ($ $)) (-15 -2680 (|#2| $ |#2|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-283) (-138)) (T -283)) NIL -(-13 (-1018) (-111 $ $) (-10 -7 (-6 -4329))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-1637 (($ (-1142) (-1142) (-1069) $) 17)) (-1635 (($ (-1142) (-618 (-936)) $) 22)) (-1639 (((-618 (-1051)) $) 10)) (-1638 (((-3 (-1069) "failed") (-1142) (-1142) $) 16)) (-1636 (((-3 (-618 (-936)) "failed") (-1142) $) 21)) (-3911 (($) 7)) (-1634 (($) 23)) (-4300 (((-835) $) 27)) (-1633 (($) 24))) -(((-284) (-13 (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -1639 ((-618 (-1051)) $)) (-15 -1638 ((-3 (-1069) "failed") (-1142) (-1142) $)) (-15 -1637 ($ (-1142) (-1142) (-1069) $)) (-15 -1636 ((-3 (-618 (-936)) "failed") (-1142) $)) (-15 -1635 ($ (-1142) (-618 (-936)) $)) (-15 -1634 ($)) (-15 -1633 ($))))) (T -284)) -((-3911 (*1 *1) (-5 *1 (-284))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-618 (-1051))) (-5 *1 (-284)))) (-1638 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-284)))) (-1637 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-1069)) (-5 *1 (-284)))) (-1636 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-618 (-936))) (-5 *1 (-284)))) (-1635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-936))) (-5 *1 (-284)))) (-1634 (*1 *1) (-5 *1 (-284))) (-1633 (*1 *1) (-5 *1 (-284)))) -(-13 (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -1639 ((-618 (-1051)) $)) (-15 -1638 ((-3 (-1069) "failed") (-1142) (-1142) $)) (-15 -1637 ($ (-1142) (-1142) (-1069) $)) (-15 -1636 ((-3 (-618 (-936)) "failed") (-1142) $)) (-15 -1635 ($ (-1142) (-618 (-936)) $)) (-15 -1634 ($)) (-15 -1633 ($)))) -((-1643 (((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |geneigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|)))) 85)) (-1642 (((-618 (-665 (-400 (-917 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|)))))) (-665 (-400 (-917 |#1|)))) 80) (((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))) (-747) (-747)) 38)) (-1644 (((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|)))) 82)) (-1641 (((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|)))) 62)) (-1640 (((-618 (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (-665 (-400 (-917 |#1|)))) 61)) (-2689 (((-917 |#1|) (-665 (-400 (-917 |#1|)))) 50) (((-917 |#1|) (-665 (-400 (-917 |#1|))) (-1142)) 51))) -(((-285 |#1|) (-10 -7 (-15 -2689 ((-917 |#1|) (-665 (-400 (-917 |#1|))) (-1142))) (-15 -2689 ((-917 |#1|) (-665 (-400 (-917 |#1|))))) (-15 -1640 ((-618 (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (-665 (-400 (-917 |#1|))))) (-15 -1641 ((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))))) (-15 -1642 ((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))) (-747) (-747))) (-15 -1642 ((-618 (-665 (-400 (-917 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|)))))) (-665 (-400 (-917 |#1|))))) (-15 -1643 ((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |geneigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|))))) (-15 -1644 ((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|)))))) (-444)) (T -285)) -((-1644 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-618 (-2 (|:| |eigval| (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-917 *4)))))) (-1643 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-618 (-2 (|:| |eigval| (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4)))) (|:| |geneigvec| (-618 (-665 (-400 (-917 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-917 *4)))))) (-1642 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-400 (-917 *5)) (-1131 (-1142) (-917 *5)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 *4)))) (-4 *5 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-917 *5)))))) (-1642 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-400 (-917 *6)) (-1131 (-1142) (-917 *6)))) (-5 *5 (-747)) (-4 *6 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *6))))) (-5 *1 (-285 *6)) (-5 *4 (-665 (-400 (-917 *6)))))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-400 (-917 *5)) (-1131 (-1142) (-917 *5)))) (-4 *5 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-917 *5)))))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 *4)))) (-4 *4 (-444)) (-5 *2 (-618 (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4))))) (-5 *1 (-285 *4)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 *4)))) (-5 *2 (-917 *4)) (-5 *1 (-285 *4)) (-4 *4 (-444)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-917 *5)))) (-5 *4 (-1142)) (-5 *2 (-917 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444))))) -(-10 -7 (-15 -2689 ((-917 |#1|) (-665 (-400 (-917 |#1|))) (-1142))) (-15 -2689 ((-917 |#1|) (-665 (-400 (-917 |#1|))))) (-15 -1640 ((-618 (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (-665 (-400 (-917 |#1|))))) (-15 -1641 ((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))))) (-15 -1642 ((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))) (-747) (-747))) (-15 -1642 ((-618 (-665 (-400 (-917 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|)))))) (-665 (-400 (-917 |#1|))))) (-15 -1643 ((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |geneigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|))))) (-15 -1644 ((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|)))))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3522 (((-112) $) NIL (|has| |#1| (-21)))) (-1650 (($ $) 12)) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1659 (($ $ $) 94 (|has| |#1| (-291)))) (-3879 (($) NIL (-3874 (|has| |#1| (-21)) (|has| |#1| (-703))) CONST)) (-1648 (($ $) 50 (|has| |#1| (-21)))) (-1646 (((-3 $ "failed") $) 61 (|has| |#1| (-703)))) (-3865 ((|#1| $) 11)) (-3804 (((-3 $ "failed") $) 59 (|has| |#1| (-703)))) (-2493 (((-112) $) NIL (|has| |#1| (-703)))) (-4301 (($ (-1 |#1| |#1|) $) 14)) (-3866 ((|#1| $) 10)) (-1649 (($ $) 49 (|has| |#1| (-21)))) (-1647 (((-3 $ "failed") $) 60 (|has| |#1| (-703)))) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2725 (($ $) 63 (-3874 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1645 (((-618 $) $) 84 (|has| |#1| (-542)))) (-4110 (($ $ $) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 $)) 28 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-1142) |#1|) 17 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 21 (|has| |#1| (-505 (-1142) |#1|)))) (-3560 (($ |#1| |#1|) 9)) (-4254 (((-133)) 89 (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 86 (|has| |#1| (-871 (-1142))))) (-3330 (($ $ $) NIL (|has| |#1| (-465)))) (-2677 (($ $ $) NIL (|has| |#1| (-465)))) (-4300 (($ (-535)) NIL (|has| |#1| (-1018))) (((-112) $) 36 (|has| |#1| (-1067))) (((-835) $) 35 (|has| |#1| (-1067)))) (-3444 (((-747)) 66 (|has| |#1| (-1018)))) (-2979 (($) 46 (|has| |#1| (-21)) CONST)) (-2985 (($) 56 (|has| |#1| (-703)) CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142))))) (-3375 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 91 (-3874 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-4180 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4182 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-535)) NIL (|has| |#1| (-465))) (($ $ (-747)) NIL (|has| |#1| (-703))) (($ $ (-890)) NIL (|has| |#1| (-1078)))) (* (($ $ |#1|) 54 (|has| |#1| (-1078))) (($ |#1| $) 53 (|has| |#1| (-1078))) (($ $ $) 52 (|has| |#1| (-1078))) (($ (-535) $) 69 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-25))))) -(((-286 |#1|) (-13 (-1178) (-10 -8 (-15 -3375 ($ |#1| |#1|)) (-15 -3560 ($ |#1| |#1|)) (-15 -1650 ($ $)) (-15 -3866 (|#1| $)) (-15 -3865 (|#1| $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1142) |#1|)) (-6 (-505 (-1142) |#1|)) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-593 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -4110 ($ $ $)) (-15 -4110 ($ $ (-618 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4182 ($ |#1| $)) (-15 -4182 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1649 ($ $)) (-15 -1648 ($ $)) (-15 -4180 ($ |#1| $)) (-15 -4180 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1078)) (PROGN (-6 (-1078)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-703)) (PROGN (-6 (-703)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|) (IF (|has| |#1| (-542)) (-15 -1645 ((-618 $) $)) |%noBranch|) (IF (|has| |#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1232 |#1|)) (-15 -4291 ($ $ $)) (-15 -2725 ($ $))) |%noBranch|) (IF (|has| |#1| (-291)) (-15 -1659 ($ $ $)) |%noBranch|))) (-1178)) (T -286)) -((-3375 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-3560 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-1650 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-3866 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-3865 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-286 *3)))) (-4110 (*1 *1 *1 *1) (-12 (-4 *2 (-302 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)) (-5 *1 (-286 *2)))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-286 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1067)) (-4 *3 (-1178)) (-5 *1 (-286 *3)))) (-4182 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1178)))) (-4182 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1178)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) (-4180 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) (-1647 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-703)) (-4 *2 (-1178)))) (-1646 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-703)) (-4 *2 (-1178)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-618 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-542)) (-4 *3 (-1178)))) (-1659 (*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-291)) (-4 *2 (-1178)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1078)) (-4 *2 (-1178)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1078)) (-4 *2 (-1178)))) (-4291 (*1 *1 *1 *1) (-3874 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1178))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1178))))) (-2725 (*1 *1 *1) (-3874 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1178))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1178)))))) -(-13 (-1178) (-10 -8 (-15 -3375 ($ |#1| |#1|)) (-15 -3560 ($ |#1| |#1|)) (-15 -1650 ($ $)) (-15 -3866 (|#1| $)) (-15 -3865 (|#1| $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1142) |#1|)) (-6 (-505 (-1142) |#1|)) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-593 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -4110 ($ $ $)) (-15 -4110 ($ $ (-618 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4182 ($ |#1| $)) (-15 -4182 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1649 ($ $)) (-15 -1648 ($ $)) (-15 -4180 ($ |#1| $)) (-15 -4180 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1078)) (PROGN (-6 (-1078)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-703)) (PROGN (-6 (-703)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|) (IF (|has| |#1| (-542)) (-15 -1645 ((-618 $) $)) |%noBranch|) (IF (|has| |#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1232 |#1|)) (-15 -4291 ($ $ $)) (-15 -2725 ($ $))) |%noBranch|) (IF (|has| |#1| (-291)) (-15 -1659 ($ $ $)) |%noBranch|))) -((-4301 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 14))) -(((-287 |#1| |#2|) (-10 -7 (-15 -4301 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-1178) (-1178)) (T -287)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-286 *6)) (-5 *1 (-287 *5 *6))))) -(-10 -7 (-15 -4301 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) NIL)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-288 |#1| |#2|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1067) (-1067)) (T -288)) -NIL -(-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) -((-1651 (((-304) (-1124) (-618 (-1124))) 16) (((-304) (-1124) (-1124)) 15) (((-304) (-618 (-1124))) 14) (((-304) (-1124)) 12))) -(((-289) (-10 -7 (-15 -1651 ((-304) (-1124))) (-15 -1651 ((-304) (-618 (-1124)))) (-15 -1651 ((-304) (-1124) (-1124))) (-15 -1651 ((-304) (-1124) (-618 (-1124)))))) (T -289)) -((-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-1124))) (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289))))) -(-10 -7 (-15 -1651 ((-304) (-1124))) (-15 -1651 ((-304) (-618 (-1124)))) (-15 -1651 ((-304) (-1124) (-1124))) (-15 -1651 ((-304) (-1124) (-618 (-1124))))) -((-1655 (((-618 (-591 $)) $) 30)) (-1659 (($ $ (-286 $)) 81) (($ $ (-618 (-286 $))) 123) (($ $ (-618 (-591 $)) (-618 $)) NIL)) (-3491 (((-3 (-591 $) "failed") $) 113)) (-3490 (((-591 $) $) 112)) (-2892 (($ $) 19) (($ (-618 $)) 56)) (-1654 (((-618 (-113)) $) 38)) (-3368 (((-113) (-113)) 91)) (-2994 (((-112) $) 131)) (-4301 (($ (-1 $ $) (-591 $)) 89)) (-1657 (((-3 (-591 $) "failed") $) 93)) (-2308 (($ (-113) $) 61) (($ (-113) (-618 $)) 100)) (-2952 (((-112) $ (-113)) 117) (((-112) $ (-1142)) 116)) (-2922 (((-747) $) 46)) (-1653 (((-112) $ $) 59) (((-112) $ (-1142)) 51)) (-2995 (((-112) $) 129)) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL) (($ $ (-618 (-286 $))) 121) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) 84) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) 69) (($ $ (-1142) (-1 $ $)) 75) (($ $ (-618 (-113)) (-618 (-1 $ $))) 83) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) 85) (($ $ (-113) (-1 $ (-618 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-4142 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-618 $)) 109)) (-1658 (($ $) 53) (($ $ $) 119)) (-2909 (($ $) 17) (($ (-618 $)) 55)) (-2329 (((-112) (-113)) 22))) -(((-290 |#1|) (-10 -8 (-15 -2994 ((-112) |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| |#1|)))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| |#1|)))) (-15 -1653 ((-112) |#1| (-1142))) (-15 -1653 ((-112) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#1| |#1|) (-591 |#1|))) (-15 -2308 (|#1| (-113) (-618 |#1|))) (-15 -2308 (|#1| (-113) |#1|)) (-15 -2952 ((-112) |#1| (-1142))) (-15 -2952 ((-112) |#1| (-113))) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1654 ((-618 (-113)) |#1|)) (-15 -1655 ((-618 (-591 |#1|)) |#1|)) (-15 -1657 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -2922 ((-747) |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2892 (|#1| (-618 |#1|))) (-15 -2892 (|#1| |#1|)) (-15 -2909 (|#1| (-618 |#1|))) (-15 -2909 (|#1| |#1|)) (-15 -1659 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -1659 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4142 (|#1| (-113) (-618 |#1|))) (-15 -4142 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -3490 ((-591 |#1|) |#1|)) (-15 -3491 ((-3 (-591 |#1|) "failed") |#1|))) (-291)) (T -290)) -((-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-290 *4)) (-4 *4 (-291))))) -(-10 -8 (-15 -2994 ((-112) |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| |#1|)))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| |#1|)))) (-15 -1653 ((-112) |#1| (-1142))) (-15 -1653 ((-112) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#1| |#1|) (-591 |#1|))) (-15 -2308 (|#1| (-113) (-618 |#1|))) (-15 -2308 (|#1| (-113) |#1|)) (-15 -2952 ((-112) |#1| (-1142))) (-15 -2952 ((-112) |#1| (-113))) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1654 ((-618 (-113)) |#1|)) (-15 -1655 ((-618 (-591 |#1|)) |#1|)) (-15 -1657 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -2922 ((-747) |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2892 (|#1| (-618 |#1|))) (-15 -2892 (|#1| |#1|)) (-15 -2909 (|#1| (-618 |#1|))) (-15 -2909 (|#1| |#1|)) (-15 -1659 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -1659 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4142 (|#1| (-113) (-618 |#1|))) (-15 -4142 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -3490 ((-591 |#1|) |#1|)) (-15 -3491 ((-3 (-591 |#1|) "failed") |#1|))) -((-2887 (((-112) $ $) 7)) (-1655 (((-618 (-591 $)) $) 44)) (-1659 (($ $ (-286 $)) 56) (($ $ (-618 (-286 $))) 55) (($ $ (-618 (-591 $)) (-618 $)) 54)) (-3491 (((-3 (-591 $) "failed") $) 69)) (-3490 (((-591 $) $) 68)) (-2892 (($ $) 51) (($ (-618 $)) 50)) (-1654 (((-618 (-113)) $) 43)) (-3368 (((-113) (-113)) 42)) (-2994 (((-112) $) 22 (|has| $ (-1009 (-535))))) (-1652 (((-1136 $) (-591 $)) 25 (|has| $ (-1018)))) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-4301 (($ (-1 $ $) (-591 $)) 36)) (-1657 (((-3 (-591 $) "failed") $) 46)) (-3576 (((-1124) $) 9)) (-1656 (((-618 (-591 $)) $) 45)) (-2308 (($ (-113) $) 38) (($ (-113) (-618 $)) 37)) (-2952 (((-112) $ (-113)) 40) (((-112) $ (-1142)) 39)) (-2922 (((-747) $) 47)) (-3577 (((-1086) $) 10)) (-1653 (((-112) $ $) 35) (((-112) $ (-1142)) 34)) (-2995 (((-112) $) 23 (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) 67) (($ $ (-618 (-591 $)) (-618 $)) 66) (($ $ (-618 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-618 $) (-618 $)) 62) (($ $ (-618 (-1142)) (-618 (-1 $ $))) 33) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) 32) (($ $ (-1142) (-1 $ (-618 $))) 31) (($ $ (-1142) (-1 $ $)) 30) (($ $ (-618 (-113)) (-618 (-1 $ $))) 29) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) 28) (($ $ (-113) (-1 $ (-618 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4142 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-618 $)) 57)) (-1658 (($ $) 49) (($ $ $) 48)) (-3519 (($ $) 24 (|has| $ (-1018)))) (-4300 (((-835) $) 11) (($ (-591 $)) 70)) (-2909 (($ $) 53) (($ (-618 $)) 52)) (-2329 (((-112) (-113)) 41)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18))) -(((-291) (-138)) (T -291)) -((-4142 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4142 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4142 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4142 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4142 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 *1)) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-286 *1))) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-591 *1))) (-5 *3 (-618 *1)) (-4 *1 (-291)))) (-2909 (*1 *1 *1) (-4 *1 (-291))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-291)))) (-2892 (*1 *1 *1) (-4 *1 (-291))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-291)))) (-1658 (*1 *1 *1) (-4 *1 (-291))) (-1658 (*1 *1 *1 *1) (-4 *1 (-291))) (-2922 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-747)))) (-1657 (*1 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-291)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-618 (-591 *1))) (-4 *1 (-291)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-618 (-591 *1))) (-4 *1 (-291)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-618 (-113))))) (-3368 (*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-2329 (*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2952 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2952 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1142)) (-5 *2 (-112)))) (-2308 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-2308 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 *1)) (-4 *1 (-291)))) (-4301 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-591 *1)) (-4 *1 (-291)))) (-1653 (*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-112)))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1142)) (-5 *2 (-112)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-1 *1 *1))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 (-618 *1))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 (-1 *1 *1))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-618 *1))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-1018)) (-4 *1 (-291)) (-5 *2 (-1136 *1)))) (-3519 (*1 *1 *1) (-12 (-4 *1 (-1018)) (-4 *1 (-291)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1009 (-535))) (-4 *1 (-291)) (-5 *2 (-112)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-1009 (-535))) (-4 *1 (-291)) (-5 *2 (-112))))) -(-13 (-823) (-1009 (-591 $)) (-505 (-591 $) $) (-302 $) (-10 -8 (-15 -4142 ($ (-113) $)) (-15 -4142 ($ (-113) $ $)) (-15 -4142 ($ (-113) $ $ $)) (-15 -4142 ($ (-113) $ $ $ $)) (-15 -4142 ($ (-113) (-618 $))) (-15 -1659 ($ $ (-286 $))) (-15 -1659 ($ $ (-618 (-286 $)))) (-15 -1659 ($ $ (-618 (-591 $)) (-618 $))) (-15 -2909 ($ $)) (-15 -2909 ($ (-618 $))) (-15 -2892 ($ $)) (-15 -2892 ($ (-618 $))) (-15 -1658 ($ $)) (-15 -1658 ($ $ $)) (-15 -2922 ((-747) $)) (-15 -1657 ((-3 (-591 $) "failed") $)) (-15 -1656 ((-618 (-591 $)) $)) (-15 -1655 ((-618 (-591 $)) $)) (-15 -1654 ((-618 (-113)) $)) (-15 -3368 ((-113) (-113))) (-15 -2329 ((-112) (-113))) (-15 -2952 ((-112) $ (-113))) (-15 -2952 ((-112) $ (-1142))) (-15 -2308 ($ (-113) $)) (-15 -2308 ($ (-113) (-618 $))) (-15 -4301 ($ (-1 $ $) (-591 $))) (-15 -1653 ((-112) $ $)) (-15 -1653 ((-112) $ (-1142))) (-15 -4110 ($ $ (-618 (-1142)) (-618 (-1 $ $)))) (-15 -4110 ($ $ (-618 (-1142)) (-618 (-1 $ (-618 $))))) (-15 -4110 ($ $ (-1142) (-1 $ (-618 $)))) (-15 -4110 ($ $ (-1142) (-1 $ $))) (-15 -4110 ($ $ (-618 (-113)) (-618 (-1 $ $)))) (-15 -4110 ($ $ (-618 (-113)) (-618 (-1 $ (-618 $))))) (-15 -4110 ($ $ (-113) (-1 $ (-618 $)))) (-15 -4110 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1018)) (PROGN (-15 -1652 ((-1136 $) (-591 $))) (-15 -3519 ($ $))) |%noBranch|) (IF (|has| $ (-1009 (-535))) (PROGN (-15 -2995 ((-112) $)) (-15 -2994 ((-112) $))) |%noBranch|))) -(((-101) . T) ((-593 (-835)) . T) ((-302 $) . T) ((-505 (-591 $) $) . T) ((-505 $ $) . T) ((-823) . T) ((-1009 (-591 $)) . T) ((-1067) . T)) -((-4301 ((|#2| (-1 |#2| |#1|) (-1124) (-591 |#1|)) 18))) -(((-292 |#1| |#2|) (-10 -7 (-15 -4301 (|#2| (-1 |#2| |#1|) (-1124) (-591 |#1|)))) (-291) (-1178)) (T -292)) -((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1124)) (-5 *5 (-591 *6)) (-4 *6 (-291)) (-4 *2 (-1178)) (-5 *1 (-292 *6 *2))))) -(-10 -7 (-15 -4301 (|#2| (-1 |#2| |#1|) (-1124) (-591 |#1|)))) -((-4301 ((|#2| (-1 |#2| |#1|) (-591 |#1|)) 17))) -(((-293 |#1| |#2|) (-10 -7 (-15 -4301 (|#2| (-1 |#2| |#1|) (-591 |#1|)))) (-291) (-291)) (T -293)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-591 *5)) (-4 *5 (-291)) (-4 *2 (-291)) (-5 *1 (-293 *5 *2))))) -(-10 -7 (-15 -4301 (|#2| (-1 |#2| |#1|) (-591 |#1|)))) -((-1662 (((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219)))) 93)) (-1663 (((-1119 (-219)) (-1224 (-307 (-219))) (-618 (-1142)) (-1055 (-815 (-219)))) 107) (((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219)))) 61)) (-1684 (((-618 (-1124)) (-1119 (-219))) NIL)) (-1661 (((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219)))) 58)) (-1664 (((-618 (-219)) (-917 (-400 (-535))) (-1142) (-1055 (-815 (-219)))) 49)) (-1683 (((-618 (-1124)) (-618 (-219))) NIL)) (-1685 (((-219) (-1055 (-815 (-219)))) 25)) (-1686 (((-219) (-1055 (-815 (-219)))) 26)) (-1660 (((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 54)) (-1681 (((-1124) (-219)) NIL))) -(((-294) (-10 -7 (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -1660 ((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219))))) (-15 -1662 ((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-1224 (-307 (-219))) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1664 ((-618 (-219)) (-917 (-400 (-535))) (-1142) (-1055 (-815 (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))))) (T -294)) -((-1684 (*1 *2 *3) (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-294)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-294)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-294)))) (-1664 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-294)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *4 (-618 (-1142))) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-618 (-1142))) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-618 (-1142))) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))) (-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-294)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-112)) (-5 *1 (-294)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-294))))) -(-10 -7 (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -1660 ((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219))))) (-15 -1662 ((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-1224 (-307 (-219))) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1664 ((-618 (-219)) (-917 (-400 (-535))) (-1142) (-1055 (-815 (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219))))) -((-2094 (((-112) (-219)) 10))) -(((-295 |#1| |#2|) (-10 -7 (-15 -2094 ((-112) (-219)))) (-219) (-219)) (T -295)) -((-2094 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-295 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2094 ((-112) (-219)))) -((-1680 (((-1224 (-307 (-371))) (-1224 (-307 (-219)))) 105)) (-1668 (((-1055 (-815 (-219))) (-1055 (-815 (-371)))) 40)) (-1684 (((-618 (-1124)) (-1119 (-219))) 87)) (-1691 (((-307 (-371)) (-917 (-219))) 50)) (-1692 (((-219) (-917 (-219))) 46)) (-1687 (((-1124) (-371)) 169)) (-1667 (((-815 (-219)) (-815 (-371))) 34)) (-1673 (((-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535))) (-1224 (-307 (-219)))) 143)) (-1688 (((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) 181) (((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) 179)) (-1695 (((-665 (-219)) (-618 (-219)) (-747)) 14)) (-1678 (((-1224 (-675)) (-618 (-219))) 94)) (-1683 (((-618 (-1124)) (-618 (-219))) 75)) (-2977 (((-3 (-307 (-219)) "failed") (-307 (-219))) 120)) (-2094 (((-112) (-219) (-1055 (-815 (-219)))) 109)) (-1690 (((-1006) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) 198)) (-1685 (((-219) (-1055 (-815 (-219)))) 107)) (-1686 (((-219) (-1055 (-815 (-219)))) 108)) (-1694 (((-219) (-400 (-535))) 27)) (-1682 (((-1124) (-371)) 73)) (-1665 (((-219) (-371)) 17)) (-1672 (((-371) (-1224 (-307 (-219)))) 154)) (-1666 (((-307 (-219)) (-307 (-371))) 23)) (-1670 (((-400 (-535)) (-307 (-219))) 53)) (-1674 (((-307 (-400 (-535))) (-307 (-219))) 69)) (-1679 (((-307 (-371)) (-307 (-219))) 98)) (-1671 (((-219) (-307 (-219))) 54)) (-1676 (((-618 (-219)) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) 64)) (-1675 (((-1055 (-815 (-219))) (-1055 (-815 (-219)))) 61)) (-1681 (((-1124) (-219)) 72)) (-1677 (((-675) (-219)) 90)) (-1669 (((-400 (-535)) (-219)) 55)) (-1693 (((-307 (-371)) (-219)) 49)) (-4313 (((-618 (-1055 (-815 (-219)))) (-618 (-1055 (-815 (-371))))) 43)) (-4144 (((-1006) (-618 (-1006))) 165) (((-1006) (-1006) (-1006)) 162)) (-1689 (((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-296) (-10 -7 (-15 -1665 ((-219) (-371))) (-15 -1666 ((-307 (-219)) (-307 (-371)))) (-15 -1667 ((-815 (-219)) (-815 (-371)))) (-15 -1668 ((-1055 (-815 (-219))) (-1055 (-815 (-371))))) (-15 -4313 ((-618 (-1055 (-815 (-219)))) (-618 (-1055 (-815 (-371)))))) (-15 -1669 ((-400 (-535)) (-219))) (-15 -1670 ((-400 (-535)) (-307 (-219)))) (-15 -1671 ((-219) (-307 (-219)))) (-15 -2977 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1672 ((-371) (-1224 (-307 (-219))))) (-15 -1673 ((-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535))) (-1224 (-307 (-219))))) (-15 -1674 ((-307 (-400 (-535))) (-307 (-219)))) (-15 -1675 ((-1055 (-815 (-219))) (-1055 (-815 (-219))))) (-15 -1676 ((-618 (-219)) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-15 -1677 ((-675) (-219))) (-15 -1678 ((-1224 (-675)) (-618 (-219)))) (-15 -1679 ((-307 (-371)) (-307 (-219)))) (-15 -1680 ((-1224 (-307 (-371))) (-1224 (-307 (-219))))) (-15 -2094 ((-112) (-219) (-1055 (-815 (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1682 ((-1124) (-371))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))) (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -4144 ((-1006) (-1006) (-1006))) (-15 -4144 ((-1006) (-618 (-1006)))) (-15 -1687 ((-1124) (-371))) (-15 -1688 ((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))))) (-15 -1688 ((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))))) (-15 -1689 ((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1690 ((-1006) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -1691 ((-307 (-371)) (-917 (-219)))) (-15 -1692 ((-219) (-917 (-219)))) (-15 -1693 ((-307 (-371)) (-219))) (-15 -1694 ((-219) (-400 (-535)))) (-15 -1695 ((-665 (-219)) (-618 (-219)) (-747))))) (T -296)) -((-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-219))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) (-5 *1 (-296)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-400 (-535))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1124)) (-5 *1 (-296)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-618 (-1006))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-4144 (*1 *2 *2 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-296)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-296)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-296)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1124)) (-5 *1 (-296)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-296)))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-1055 (-815 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-296)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-1224 (-307 (-371)))) (-5 *1 (-296)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1224 (-675))) (-5 *1 (-296)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-675)) (-5 *1 (-296)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *2 (-618 (-219))) (-5 *1 (-296)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-1055 (-815 (-219)))) (-5 *1 (-296)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-400 (-535)))) (-5 *1 (-296)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535)))) (-5 *1 (-296)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-296)))) (-2977 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-296)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-400 (-535))) (-5 *1 (-296)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-535))) (-5 *1 (-296)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-618 (-1055 (-815 (-371))))) (-5 *2 (-618 (-1055 (-815 (-219))))) (-5 *1 (-296)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-371)))) (-5 *2 (-1055 (-815 (-219)))) (-5 *1 (-296)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-815 (-371))) (-5 *2 (-815 (-219))) (-5 *1 (-296)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-307 (-371))) (-5 *2 (-307 (-219))) (-5 *1 (-296)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-296))))) -(-10 -7 (-15 -1665 ((-219) (-371))) (-15 -1666 ((-307 (-219)) (-307 (-371)))) (-15 -1667 ((-815 (-219)) (-815 (-371)))) (-15 -1668 ((-1055 (-815 (-219))) (-1055 (-815 (-371))))) (-15 -4313 ((-618 (-1055 (-815 (-219)))) (-618 (-1055 (-815 (-371)))))) (-15 -1669 ((-400 (-535)) (-219))) (-15 -1670 ((-400 (-535)) (-307 (-219)))) (-15 -1671 ((-219) (-307 (-219)))) (-15 -2977 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1672 ((-371) (-1224 (-307 (-219))))) (-15 -1673 ((-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535))) (-1224 (-307 (-219))))) (-15 -1674 ((-307 (-400 (-535))) (-307 (-219)))) (-15 -1675 ((-1055 (-815 (-219))) (-1055 (-815 (-219))))) (-15 -1676 ((-618 (-219)) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-15 -1677 ((-675) (-219))) (-15 -1678 ((-1224 (-675)) (-618 (-219)))) (-15 -1679 ((-307 (-371)) (-307 (-219)))) (-15 -1680 ((-1224 (-307 (-371))) (-1224 (-307 (-219))))) (-15 -2094 ((-112) (-219) (-1055 (-815 (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1682 ((-1124) (-371))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))) (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -4144 ((-1006) (-1006) (-1006))) (-15 -4144 ((-1006) (-618 (-1006)))) (-15 -1687 ((-1124) (-371))) (-15 -1688 ((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))))) (-15 -1688 ((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))))) (-15 -1689 ((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1690 ((-1006) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -1691 ((-307 (-371)) (-917 (-219)))) (-15 -1692 ((-219) (-917 (-219)))) (-15 -1693 ((-307 (-371)) (-219))) (-15 -1694 ((-219) (-400 (-535)))) (-15 -1695 ((-665 (-219)) (-618 (-219)) (-747)))) -((-1696 (((-618 |#1|) (-618 |#1|)) 10))) -(((-297 |#1|) (-10 -7 (-15 -1696 ((-618 |#1|) (-618 |#1|)))) (-821)) (T -297)) -((-1696 (*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-821)) (-5 *1 (-297 *3))))) -(-10 -7 (-15 -1696 ((-618 |#1|) (-618 |#1|)))) -((-4301 (((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)) 17))) -(((-298 |#1| |#2|) (-10 -7 (-15 -4301 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) (-1018) (-1018)) (T -298)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-665 *6)) (-5 *1 (-298 *5 *6))))) -(-10 -7 (-15 -4301 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) -((-1700 (((-112) $ $) 11)) (-2883 (($ $ $) 15)) (-2882 (($ $ $) 14)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 44)) (-1697 (((-3 (-618 $) "failed") (-618 $) $) 53)) (-3478 (($ $ $) 21) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3803 (((-3 $ "failed") $ $) 17)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 46))) -(((-299 |#1|) (-10 -8 (-15 -1697 ((-3 (-618 |#1|) "failed") (-618 |#1|) |#1|)) (-15 -1698 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1698 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3061 ((-3 (-618 |#1|) "failed") (-618 |#1|) |#1|)) (-15 -3062 ((-2 (|:| -4296 (-618 |#1|)) (|:| -2492 |#1|)) (-618 |#1|))) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|))) (-300)) (T -299)) -NIL -(-10 -8 (-15 -1697 ((-3 (-618 |#1|) "failed") (-618 |#1|) |#1|)) (-15 -1698 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1698 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3061 ((-3 (-618 |#1|) "failed") (-618 |#1|) |#1|)) (-15 -3062 ((-2 (|:| -4296 (-618 |#1|)) (|:| -2492 |#1|)) (-618 |#1|))) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) "failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +(-13 (-1020) (-111 $ $) (-10 -7 (-6 -4335))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-2919 (($ (-1144) (-1144) (-1072) $) 17)) (-2751 (($ (-1144) (-623 (-938)) $) 22)) (-3098 (((-623 (-1053)) $) 10)) (-3011 (((-3 (-1072) "failed") (-1144) (-1144) $) 16)) (-2842 (((-3 (-623 (-938)) "failed") (-1144) $) 21)) (-3498 (($) 7)) (-2569 (($) 23)) (-1518 (((-836) $) 27)) (-2675 (($) 24))) +(((-284) (-13 (-595 (-836)) (-10 -8 (-15 -3498 ($)) (-15 -3098 ((-623 (-1053)) $)) (-15 -3011 ((-3 (-1072) "failed") (-1144) (-1144) $)) (-15 -2919 ($ (-1144) (-1144) (-1072) $)) (-15 -2842 ((-3 (-623 (-938)) "failed") (-1144) $)) (-15 -2751 ($ (-1144) (-623 (-938)) $)) (-15 -2569 ($)) (-15 -2675 ($))))) (T -284)) +((-3498 (*1 *1) (-5 *1 (-284))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-623 (-1053))) (-5 *1 (-284)))) (-3011 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1144)) (-5 *2 (-1072)) (-5 *1 (-284)))) (-2919 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1144)) (-5 *3 (-1072)) (-5 *1 (-284)))) (-2842 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1144)) (-5 *2 (-623 (-938))) (-5 *1 (-284)))) (-2751 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-938))) (-5 *1 (-284)))) (-2569 (*1 *1) (-5 *1 (-284))) (-2675 (*1 *1) (-5 *1 (-284)))) +(-13 (-595 (-836)) (-10 -8 (-15 -3498 ($)) (-15 -3098 ((-623 (-1053)) $)) (-15 -3011 ((-3 (-1072) "failed") (-1144) (-1144) $)) (-15 -2919 ($ (-1144) (-1144) (-1072) $)) (-15 -2842 ((-3 (-623 (-938)) "failed") (-1144) $)) (-15 -2751 ($ (-1144) (-623 (-938)) $)) (-15 -2569 ($)) (-15 -2675 ($)))) +((-2331 (((-623 (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |geneigvec| (-623 (-667 (-400 (-925 |#1|))))))) (-667 (-400 (-925 |#1|)))) 85)) (-2263 (((-623 (-667 (-400 (-925 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-925 |#1|)))))) (-667 (-400 (-925 |#1|)))) 80) (((-623 (-667 (-400 (-925 |#1|)))) (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|))) (-667 (-400 (-925 |#1|))) (-749) (-749)) 38)) (-2408 (((-623 (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-925 |#1|))))))) (-667 (-400 (-925 |#1|)))) 82)) (-2179 (((-623 (-667 (-400 (-925 |#1|)))) (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|))) (-667 (-400 (-925 |#1|)))) 62)) (-3183 (((-623 (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (-667 (-400 (-925 |#1|)))) 61)) (-2608 (((-925 |#1|) (-667 (-400 (-925 |#1|)))) 50) (((-925 |#1|) (-667 (-400 (-925 |#1|))) (-1144)) 51))) +(((-285 |#1|) (-10 -7 (-15 -2608 ((-925 |#1|) (-667 (-400 (-925 |#1|))) (-1144))) (-15 -2608 ((-925 |#1|) (-667 (-400 (-925 |#1|))))) (-15 -3183 ((-623 (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (-667 (-400 (-925 |#1|))))) (-15 -2179 ((-623 (-667 (-400 (-925 |#1|)))) (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|))) (-667 (-400 (-925 |#1|))))) (-15 -2263 ((-623 (-667 (-400 (-925 |#1|)))) (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|))) (-667 (-400 (-925 |#1|))) (-749) (-749))) (-15 -2263 ((-623 (-667 (-400 (-925 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-925 |#1|)))))) (-667 (-400 (-925 |#1|))))) (-15 -2331 ((-623 (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |geneigvec| (-623 (-667 (-400 (-925 |#1|))))))) (-667 (-400 (-925 |#1|))))) (-15 -2408 ((-623 (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-925 |#1|))))))) (-667 (-400 (-925 |#1|)))))) (-444)) (T -285)) +((-2408 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-623 (-2 (|:| |eigval| (-3 (-400 (-925 *4)) (-1133 (-1144) (-925 *4)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-925 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-925 *4)))))) (-2331 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-623 (-2 (|:| |eigval| (-3 (-400 (-925 *4)) (-1133 (-1144) (-925 *4)))) (|:| |geneigvec| (-623 (-667 (-400 (-925 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-925 *4)))))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-400 (-925 *5)) (-1133 (-1144) (-925 *5)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 *4)))) (-4 *5 (-444)) (-5 *2 (-623 (-667 (-400 (-925 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-925 *5)))))) (-2263 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-400 (-925 *6)) (-1133 (-1144) (-925 *6)))) (-5 *5 (-749)) (-4 *6 (-444)) (-5 *2 (-623 (-667 (-400 (-925 *6))))) (-5 *1 (-285 *6)) (-5 *4 (-667 (-400 (-925 *6)))))) (-2179 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-400 (-925 *5)) (-1133 (-1144) (-925 *5)))) (-4 *5 (-444)) (-5 *2 (-623 (-667 (-400 (-925 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-925 *5)))))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-925 *4)))) (-4 *4 (-444)) (-5 *2 (-623 (-3 (-400 (-925 *4)) (-1133 (-1144) (-925 *4))))) (-5 *1 (-285 *4)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-925 *4)))) (-5 *2 (-925 *4)) (-5 *1 (-285 *4)) (-4 *4 (-444)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-925 *5)))) (-5 *4 (-1144)) (-5 *2 (-925 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444))))) +(-10 -7 (-15 -2608 ((-925 |#1|) (-667 (-400 (-925 |#1|))) (-1144))) (-15 -2608 ((-925 |#1|) (-667 (-400 (-925 |#1|))))) (-15 -3183 ((-623 (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (-667 (-400 (-925 |#1|))))) (-15 -2179 ((-623 (-667 (-400 (-925 |#1|)))) (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|))) (-667 (-400 (-925 |#1|))))) (-15 -2263 ((-623 (-667 (-400 (-925 |#1|)))) (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|))) (-667 (-400 (-925 |#1|))) (-749) (-749))) (-15 -2263 ((-623 (-667 (-400 (-925 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-925 |#1|)))))) (-667 (-400 (-925 |#1|))))) (-15 -2331 ((-623 (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |geneigvec| (-623 (-667 (-400 (-925 |#1|))))))) (-667 (-400 (-925 |#1|))))) (-15 -2408 ((-623 (-2 (|:| |eigval| (-3 (-400 (-925 |#1|)) (-1133 (-1144) (-925 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-623 (-667 (-400 (-925 |#1|))))))) (-667 (-400 (-925 |#1|)))))) +((-3972 (((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)) 14))) +(((-286 |#1| |#2|) (-10 -7 (-15 -3972 ((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)))) (-1181) (-1181)) (T -286)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-287 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-287 *6)) (-5 *1 (-286 *5 *6))))) +(-10 -7 (-15 -3972 ((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3433 (((-112) $) NIL (|has| |#1| (-21)))) (-1742 (($ $) 12)) (-3219 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1760 (($ $ $) 94 (|has| |#1| (-295)))) (-3513 (($) NIL (-1561 (|has| |#1| (-21)) (|has| |#1| (-705))) CONST)) (-1541 (($ $) 50 (|has| |#1| (-21)))) (-2557 (((-3 $ "failed") $) 61 (|has| |#1| (-705)))) (-2874 ((|#1| $) 11)) (-1386 (((-3 $ "failed") $) 59 (|has| |#1| (-705)))) (-3102 (((-112) $) NIL (|has| |#1| (-705)))) (-3972 (($ (-1 |#1| |#1|) $) 14)) (-2864 ((|#1| $) 10)) (-1640 (($ $) 49 (|has| |#1| (-21)))) (-2632 (((-3 $ "failed") $) 60 (|has| |#1| (-705)))) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3235 (($ $) 63 (-1561 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-2485 (((-623 $) $) 84 (|has| |#1| (-542)))) (-3866 (($ $ $) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 $)) 28 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-1144) |#1|) 17 (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) 21 (|has| |#1| (-505 (-1144) |#1|)))) (-3065 (($ |#1| |#1|) 9)) (-2854 (((-133)) 89 (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144)) 86 (|has| |#1| (-873 (-1144))))) (-1270 (($ $ $) NIL (|has| |#1| (-465)))) (-3292 (($ $ $) NIL (|has| |#1| (-465)))) (-1518 (($ (-550)) NIL (|has| |#1| (-1020))) (((-112) $) 36 (|has| |#1| (-1068))) (((-836) $) 35 (|has| |#1| (-1068)))) (-2390 (((-749)) 66 (|has| |#1| (-1020)))) (-2626 (($) 46 (|has| |#1| (-21)) CONST)) (-2636 (($) 56 (|has| |#1| (-705)) CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144))))) (-2316 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1068)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 91 (-1561 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-2403 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2391 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-550)) NIL (|has| |#1| (-465))) (($ $ (-749)) NIL (|has| |#1| (-705))) (($ $ (-894)) NIL (|has| |#1| (-1080)))) (* (($ $ |#1|) 54 (|has| |#1| (-1080))) (($ |#1| $) 53 (|has| |#1| (-1080))) (($ $ $) 52 (|has| |#1| (-1080))) (($ (-550) $) 69 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-894) $) NIL (|has| |#1| (-25))))) +(((-287 |#1|) (-13 (-1181) (-10 -8 (-15 -2316 ($ |#1| |#1|)) (-15 -3065 ($ |#1| |#1|)) (-15 -1742 ($ $)) (-15 -2864 (|#1| $)) (-15 -2874 (|#1| $)) (-15 -3972 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1144) |#1|)) (-6 (-505 (-1144) |#1|)) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-595 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -3866 ($ $ $)) (-15 -3866 ($ $ (-623 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2391 ($ |#1| $)) (-15 -2391 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1640 ($ $)) (-15 -1541 ($ $)) (-15 -2403 ($ |#1| $)) (-15 -2403 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-6 (-1080)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-705)) (PROGN (-6 (-705)) (-15 -2632 ((-3 $ "failed") $)) (-15 -2557 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -2632 ((-3 $ "failed") $)) (-15 -2557 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|) (IF (|has| |#1| (-542)) (-15 -2485 ((-623 $) $)) |%noBranch|) (IF (|has| |#1| (-873 (-1144))) (-6 (-873 (-1144))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1234 |#1|)) (-15 -2414 ($ $ $)) (-15 -3235 ($ $))) |%noBranch|) (IF (|has| |#1| (-295)) (-15 -1760 ($ $ $)) |%noBranch|))) (-1181)) (T -287)) +((-2316 (*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) (-3065 (*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) (-1742 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) (-2864 (*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) (-2874 (*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1181)) (-5 *1 (-287 *3)))) (-3866 (*1 *1 *1 *1) (-12 (-4 *2 (-302 *2)) (-4 *2 (-1068)) (-4 *2 (-1181)) (-5 *1 (-287 *2)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-287 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1068)) (-4 *3 (-1181)) (-5 *1 (-287 *3)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1181)))) (-2391 (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1181)))) (-1640 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1181)))) (-1541 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1181)))) (-2403 (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1181)))) (-2403 (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1181)))) (-2632 (*1 *1 *1) (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-705)) (-4 *2 (-1181)))) (-2557 (*1 *1 *1) (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-705)) (-4 *2 (-1181)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-623 (-287 *3))) (-5 *1 (-287 *3)) (-4 *3 (-542)) (-4 *3 (-1181)))) (-1760 (*1 *1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-295)) (-4 *2 (-1181)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1080)) (-4 *2 (-1181)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1080)) (-4 *2 (-1181)))) (-2414 (*1 *1 *1 *1) (-1561 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1181))) (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1181))))) (-3235 (*1 *1 *1) (-1561 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1181))) (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1181)))))) +(-13 (-1181) (-10 -8 (-15 -2316 ($ |#1| |#1|)) (-15 -3065 ($ |#1| |#1|)) (-15 -1742 ($ $)) (-15 -2864 (|#1| $)) (-15 -2874 (|#1| $)) (-15 -3972 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1144) |#1|)) (-6 (-505 (-1144) |#1|)) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-595 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -3866 ($ $ $)) (-15 -3866 ($ $ (-623 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2391 ($ |#1| $)) (-15 -2391 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1640 ($ $)) (-15 -1541 ($ $)) (-15 -2403 ($ |#1| $)) (-15 -2403 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-6 (-1080)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-705)) (PROGN (-6 (-705)) (-15 -2632 ((-3 $ "failed") $)) (-15 -2557 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -2632 ((-3 $ "failed") $)) (-15 -2557 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|) (IF (|has| |#1| (-542)) (-15 -2485 ((-623 $) $)) |%noBranch|) (IF (|has| |#1| (-873 (-1144))) (-6 (-873 (-1144))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1234 |#1|)) (-15 -2414 ($ $ $)) (-15 -3235 ($ $))) |%noBranch|) (IF (|has| |#1| (-295)) (-15 -1760 ($ $ $)) |%noBranch|))) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3029 (((-1232) $ |#1| |#1|) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#2| $ |#1| |#2|) NIL)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 |#2| "failed") |#1| $) NIL)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) NIL)) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) NIL)) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 ((|#1| $) NIL (|has| |#1| (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 ((|#1| $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3531 (((-623 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-2325 (((-623 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-1293 ((|#2| $) NIL (|has| |#1| (-825)))) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))) (|has| |#2| (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-288 |#1| |#2|) (-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342))) (-1068) (-1068)) (T -288)) +NIL +(-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342))) +((-2478 (((-305) (-1126) (-623 (-1126))) 16) (((-305) (-1126) (-1126)) 15) (((-305) (-623 (-1126))) 14) (((-305) (-1126)) 12))) +(((-289) (-10 -7 (-15 -2478 ((-305) (-1126))) (-15 -2478 ((-305) (-623 (-1126)))) (-15 -2478 ((-305) (-1126) (-1126))) (-15 -2478 ((-305) (-1126) (-623 (-1126)))))) (T -289)) +((-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-1126))) (-5 *3 (-1126)) (-5 *2 (-305)) (-5 *1 (-289)))) (-2478 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-305)) (-5 *1 (-289)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-305)) (-5 *1 (-289)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-305)) (-5 *1 (-289))))) +(-10 -7 (-15 -2478 ((-305) (-1126))) (-15 -2478 ((-305) (-623 (-1126)))) (-15 -2478 ((-305) (-1126) (-1126))) (-15 -2478 ((-305) (-1126) (-623 (-1126))))) +((-3972 ((|#2| (-1 |#2| |#1|) (-1126) (-594 |#1|)) 18))) +(((-290 |#1| |#2|) (-10 -7 (-15 -3972 (|#2| (-1 |#2| |#1|) (-1126) (-594 |#1|)))) (-295) (-1181)) (T -290)) +((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1126)) (-5 *5 (-594 *6)) (-4 *6 (-295)) (-4 *2 (-1181)) (-5 *1 (-290 *6 *2))))) +(-10 -7 (-15 -3972 (|#2| (-1 |#2| |#1|) (-1126) (-594 |#1|)))) +((-3972 ((|#2| (-1 |#2| |#1|) (-594 |#1|)) 17))) +(((-291 |#1| |#2|) (-10 -7 (-15 -3972 (|#2| (-1 |#2| |#1|) (-594 |#1|)))) (-295) (-295)) (T -291)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-594 *5)) (-4 *5 (-295)) (-4 *2 (-295)) (-5 *1 (-291 *5 *2))))) +(-10 -7 (-15 -3972 (|#2| (-1 |#2| |#1|) (-594 |#1|)))) +((-1272 (((-112) (-219)) 10))) +(((-292 |#1| |#2|) (-10 -7 (-15 -1272 ((-112) (-219)))) (-219) (-219)) (T -292)) +((-1272 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-292 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1272 ((-112) (-219)))) +((-1384 (((-1124 (-219)) (-309 (-219)) (-623 (-1144)) (-1062 (-818 (-219)))) 93)) (-3323 (((-1124 (-219)) (-1227 (-309 (-219))) (-623 (-1144)) (-1062 (-818 (-219)))) 107) (((-1124 (-219)) (-309 (-219)) (-623 (-1144)) (-1062 (-818 (-219)))) 61)) (-1624 (((-623 (-1126)) (-1124 (-219))) NIL)) (-4117 (((-623 (-219)) (-309 (-219)) (-1144) (-1062 (-818 (-219)))) 58)) (-3426 (((-623 (-219)) (-925 (-400 (-550))) (-1144) (-1062 (-818 (-219)))) 49)) (-1526 (((-623 (-1126)) (-623 (-219))) NIL)) (-1725 (((-219) (-1062 (-818 (-219)))) 25)) (-1827 (((-219) (-1062 (-818 (-219)))) 26)) (-4033 (((-112) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 54)) (-2543 (((-1126) (-219)) NIL))) +(((-293) (-10 -7 (-15 -1725 ((-219) (-1062 (-818 (-219))))) (-15 -1827 ((-219) (-1062 (-818 (-219))))) (-15 -4033 ((-112) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4117 ((-623 (-219)) (-309 (-219)) (-1144) (-1062 (-818 (-219))))) (-15 -1384 ((-1124 (-219)) (-309 (-219)) (-623 (-1144)) (-1062 (-818 (-219))))) (-15 -3323 ((-1124 (-219)) (-309 (-219)) (-623 (-1144)) (-1062 (-818 (-219))))) (-15 -3323 ((-1124 (-219)) (-1227 (-309 (-219))) (-623 (-1144)) (-1062 (-818 (-219))))) (-15 -3426 ((-623 (-219)) (-925 (-400 (-550))) (-1144) (-1062 (-818 (-219))))) (-15 -2543 ((-1126) (-219))) (-15 -1526 ((-623 (-1126)) (-623 (-219)))) (-15 -1624 ((-623 (-1126)) (-1124 (-219)))))) (T -293)) +((-1624 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-293)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-293)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1126)) (-5 *1 (-293)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-925 (-400 (-550)))) (-5 *4 (-1144)) (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-293)))) (-3323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *4 (-623 (-1144))) (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-293)))) (-3323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-623 (-1144))) (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-293)))) (-1384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-623 (-1144))) (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-293)))) (-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1144)) (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-293)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-112)) (-5 *1 (-293)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-293))))) +(-10 -7 (-15 -1725 ((-219) (-1062 (-818 (-219))))) (-15 -1827 ((-219) (-1062 (-818 (-219))))) (-15 -4033 ((-112) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4117 ((-623 (-219)) (-309 (-219)) (-1144) (-1062 (-818 (-219))))) (-15 -1384 ((-1124 (-219)) (-309 (-219)) (-623 (-1144)) (-1062 (-818 (-219))))) (-15 -3323 ((-1124 (-219)) (-309 (-219)) (-623 (-1144)) (-1062 (-818 (-219))))) (-15 -3323 ((-1124 (-219)) (-1227 (-309 (-219))) (-623 (-1144)) (-1062 (-818 (-219))))) (-15 -3426 ((-623 (-219)) (-925 (-400 (-550))) (-1144) (-1062 (-818 (-219))))) (-15 -2543 ((-1126) (-219))) (-15 -1526 ((-623 (-1126)) (-623 (-219)))) (-15 -1624 ((-623 (-1126)) (-1124 (-219))))) +((-3223 (((-623 (-594 $)) $) 30)) (-1760 (($ $ (-287 $)) 81) (($ $ (-623 (-287 $))) 123) (($ $ (-623 (-594 $)) (-623 $)) NIL)) (-3880 (((-3 (-594 $) "failed") $) 113)) (-2726 (((-594 $) $) 112)) (-1380 (($ $) 19) (($ (-623 $)) 56)) (-2029 (((-623 (-114)) $) 38)) (-2926 (((-114) (-114)) 91)) (-3718 (((-112) $) 131)) (-3972 (($ (-1 $ $) (-594 $)) 89)) (-2106 (((-3 (-594 $) "failed") $) 93)) (-2776 (($ (-114) $) 61) (($ (-114) (-623 $)) 100)) (-3890 (((-112) $ (-114)) 117) (((-112) $ (-1144)) 116)) (-3142 (((-749) $) 46)) (-1938 (((-112) $ $) 59) (((-112) $ (-1144)) 51)) (-3777 (((-112) $) 129)) (-3866 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL) (($ $ (-623 (-287 $))) 121) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ $))) 84) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1144) (-1 $ (-623 $))) 69) (($ $ (-1144) (-1 $ $)) 75) (($ $ (-623 (-114)) (-623 (-1 $ $))) 83) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) 85) (($ $ (-114) (-1 $ (-623 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-2680 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-623 $)) 109)) (-3930 (($ $) 53) (($ $ $) 119)) (-3716 (($ $) 17) (($ (-623 $)) 55)) (-2222 (((-112) (-114)) 22))) +(((-294 |#1|) (-10 -8 (-15 -3718 ((-112) |#1|)) (-15 -3777 ((-112) |#1|)) (-15 -3866 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-114) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| |#1|)))) (-15 -3866 (|#1| |#1| (-1144) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-1144) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-1 |#1| |#1|)))) (-15 -1938 ((-112) |#1| (-1144))) (-15 -1938 ((-112) |#1| |#1|)) (-15 -3972 (|#1| (-1 |#1| |#1|) (-594 |#1|))) (-15 -2776 (|#1| (-114) (-623 |#1|))) (-15 -2776 (|#1| (-114) |#1|)) (-15 -3890 ((-112) |#1| (-1144))) (-15 -3890 ((-112) |#1| (-114))) (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -2029 ((-623 (-114)) |#1|)) (-15 -3223 ((-623 (-594 |#1|)) |#1|)) (-15 -2106 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -3142 ((-749) |#1|)) (-15 -3930 (|#1| |#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -1380 (|#1| (-623 |#1|))) (-15 -1380 (|#1| |#1|)) (-15 -3716 (|#1| (-623 |#1|))) (-15 -3716 (|#1| |#1|)) (-15 -1760 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -1760 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1760 (|#1| |#1| (-287 |#1|))) (-15 -2680 (|#1| (-114) (-623 |#1|))) (-15 -2680 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -3866 (|#1| |#1| (-594 |#1|) |#1|)) (-15 -2726 ((-594 |#1|) |#1|)) (-15 -3880 ((-3 (-594 |#1|) "failed") |#1|))) (-295)) (T -294)) +((-2926 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-294 *3)) (-4 *3 (-295)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-294 *4)) (-4 *4 (-295))))) +(-10 -8 (-15 -3718 ((-112) |#1|)) (-15 -3777 ((-112) |#1|)) (-15 -3866 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-114) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| |#1|)))) (-15 -3866 (|#1| |#1| (-1144) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-1144) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-1 |#1| |#1|)))) (-15 -1938 ((-112) |#1| (-1144))) (-15 -1938 ((-112) |#1| |#1|)) (-15 -3972 (|#1| (-1 |#1| |#1|) (-594 |#1|))) (-15 -2776 (|#1| (-114) (-623 |#1|))) (-15 -2776 (|#1| (-114) |#1|)) (-15 -3890 ((-112) |#1| (-1144))) (-15 -3890 ((-112) |#1| (-114))) (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -2029 ((-623 (-114)) |#1|)) (-15 -3223 ((-623 (-594 |#1|)) |#1|)) (-15 -2106 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -3142 ((-749) |#1|)) (-15 -3930 (|#1| |#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -1380 (|#1| (-623 |#1|))) (-15 -1380 (|#1| |#1|)) (-15 -3716 (|#1| (-623 |#1|))) (-15 -3716 (|#1| |#1|)) (-15 -1760 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -1760 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1760 (|#1| |#1| (-287 |#1|))) (-15 -2680 (|#1| (-114) (-623 |#1|))) (-15 -2680 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -3866 (|#1| |#1| (-594 |#1|) |#1|)) (-15 -2726 ((-594 |#1|) |#1|)) (-15 -3880 ((-3 (-594 |#1|) "failed") |#1|))) +((-1504 (((-112) $ $) 7)) (-3223 (((-623 (-594 $)) $) 44)) (-1760 (($ $ (-287 $)) 56) (($ $ (-623 (-287 $))) 55) (($ $ (-623 (-594 $)) (-623 $)) 54)) (-3880 (((-3 (-594 $) "failed") $) 69)) (-2726 (((-594 $) $) 68)) (-1380 (($ $) 51) (($ (-623 $)) 50)) (-2029 (((-623 (-114)) $) 43)) (-2926 (((-114) (-114)) 42)) (-3718 (((-112) $) 22 (|has| $ (-1011 (-550))))) (-1843 (((-1140 $) (-594 $)) 25 (|has| $ (-1020)))) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-3972 (($ (-1 $ $) (-594 $)) 36)) (-2106 (((-3 (-594 $) "failed") $) 46)) (-1825 (((-1126) $) 9)) (-3296 (((-623 (-594 $)) $) 45)) (-2776 (($ (-114) $) 38) (($ (-114) (-623 $)) 37)) (-3890 (((-112) $ (-114)) 40) (((-112) $ (-1144)) 39)) (-3142 (((-749) $) 47)) (-3337 (((-1088) $) 10)) (-1938 (((-112) $ $) 35) (((-112) $ (-1144)) 34)) (-3777 (((-112) $) 23 (|has| $ (-1011 (-550))))) (-3866 (($ $ (-594 $) $) 67) (($ $ (-623 (-594 $)) (-623 $)) 66) (($ $ (-623 (-287 $))) 65) (($ $ (-287 $)) 64) (($ $ $ $) 63) (($ $ (-623 $) (-623 $)) 62) (($ $ (-623 (-1144)) (-623 (-1 $ $))) 33) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) 32) (($ $ (-1144) (-1 $ (-623 $))) 31) (($ $ (-1144) (-1 $ $)) 30) (($ $ (-623 (-114)) (-623 (-1 $ $))) 29) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) 28) (($ $ (-114) (-1 $ (-623 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2680 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-623 $)) 57)) (-3930 (($ $) 49) (($ $ $) 48)) (-1310 (($ $) 24 (|has| $ (-1020)))) (-1518 (((-836) $) 11) (($ (-594 $)) 70)) (-3716 (($ $) 53) (($ (-623 $)) 52)) (-2222 (((-112) (-114)) 41)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18))) +(((-295) (-138)) (T -295)) +((-2680 (*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2680 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2680 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2680 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2680 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 *1)) (-4 *1 (-295)))) (-1760 (*1 *1 *1 *2) (-12 (-5 *2 (-287 *1)) (-4 *1 (-295)))) (-1760 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-287 *1))) (-4 *1 (-295)))) (-1760 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-594 *1))) (-5 *3 (-623 *1)) (-4 *1 (-295)))) (-3716 (*1 *1 *1) (-4 *1 (-295))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-295)))) (-1380 (*1 *1 *1) (-4 *1 (-295))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-295)))) (-3930 (*1 *1 *1) (-4 *1 (-295))) (-3930 (*1 *1 *1 *1) (-4 *1 (-295))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-749)))) (-2106 (*1 *2 *1) (|partial| -12 (-5 *2 (-594 *1)) (-4 *1 (-295)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-623 (-594 *1))) (-4 *1 (-295)))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-623 (-594 *1))) (-4 *1 (-295)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-623 (-114))))) (-2926 (*1 *2 *2) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2222 (*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3890 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3890 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1144)) (-5 *2 (-112)))) (-2776 (*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 *1)) (-4 *1 (-295)))) (-3972 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-594 *1)) (-4 *1 (-295)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-112)))) (-1938 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1144)) (-5 *2 (-112)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-623 (-1 *1 *1))) (-4 *1 (-295)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-623 (-1 *1 (-623 *1)))) (-4 *1 (-295)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1 *1 (-623 *1))) (-4 *1 (-295)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 (-1 *1 *1))) (-4 *1 (-295)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 (-1 *1 (-623 *1)))) (-4 *1 (-295)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-623 *1))) (-4 *1 (-295)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-1020)) (-4 *1 (-295)) (-5 *2 (-1140 *1)))) (-1310 (*1 *1 *1) (-12 (-4 *1 (-1020)) (-4 *1 (-295)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1011 (-550))) (-4 *1 (-295)) (-5 *2 (-112)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1011 (-550))) (-4 *1 (-295)) (-5 *2 (-112))))) +(-13 (-825) (-1011 (-594 $)) (-505 (-594 $) $) (-302 $) (-10 -8 (-15 -2680 ($ (-114) $)) (-15 -2680 ($ (-114) $ $)) (-15 -2680 ($ (-114) $ $ $)) (-15 -2680 ($ (-114) $ $ $ $)) (-15 -2680 ($ (-114) (-623 $))) (-15 -1760 ($ $ (-287 $))) (-15 -1760 ($ $ (-623 (-287 $)))) (-15 -1760 ($ $ (-623 (-594 $)) (-623 $))) (-15 -3716 ($ $)) (-15 -3716 ($ (-623 $))) (-15 -1380 ($ $)) (-15 -1380 ($ (-623 $))) (-15 -3930 ($ $)) (-15 -3930 ($ $ $)) (-15 -3142 ((-749) $)) (-15 -2106 ((-3 (-594 $) "failed") $)) (-15 -3296 ((-623 (-594 $)) $)) (-15 -3223 ((-623 (-594 $)) $)) (-15 -2029 ((-623 (-114)) $)) (-15 -2926 ((-114) (-114))) (-15 -2222 ((-112) (-114))) (-15 -3890 ((-112) $ (-114))) (-15 -3890 ((-112) $ (-1144))) (-15 -2776 ($ (-114) $)) (-15 -2776 ($ (-114) (-623 $))) (-15 -3972 ($ (-1 $ $) (-594 $))) (-15 -1938 ((-112) $ $)) (-15 -1938 ((-112) $ (-1144))) (-15 -3866 ($ $ (-623 (-1144)) (-623 (-1 $ $)))) (-15 -3866 ($ $ (-623 (-1144)) (-623 (-1 $ (-623 $))))) (-15 -3866 ($ $ (-1144) (-1 $ (-623 $)))) (-15 -3866 ($ $ (-1144) (-1 $ $))) (-15 -3866 ($ $ (-623 (-114)) (-623 (-1 $ $)))) (-15 -3866 ($ $ (-623 (-114)) (-623 (-1 $ (-623 $))))) (-15 -3866 ($ $ (-114) (-1 $ (-623 $)))) (-15 -3866 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1020)) (PROGN (-15 -1843 ((-1140 $) (-594 $))) (-15 -1310 ($ $))) |%noBranch|) (IF (|has| $ (-1011 (-550))) (PROGN (-15 -3777 ((-112) $)) (-15 -3718 ((-112) $))) |%noBranch|))) +(((-101) . T) ((-595 (-836)) . T) ((-302 $) . T) ((-505 (-594 $) $) . T) ((-505 $ $) . T) ((-825) . T) ((-1011 (-594 $)) . T) ((-1068) . T)) +((-1438 (((-623 |#1|) (-623 |#1|)) 10))) +(((-296 |#1|) (-10 -7 (-15 -1438 ((-623 |#1|) (-623 |#1|)))) (-823)) (T -296)) +((-1438 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-823)) (-5 *1 (-296 *3))))) +(-10 -7 (-15 -1438 ((-623 |#1|) (-623 |#1|)))) +((-3972 (((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)) 17))) +(((-297 |#1| |#2|) (-10 -7 (-15 -3972 ((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)))) (-1020) (-1020)) (T -297)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-667 *6)) (-5 *1 (-297 *5 *6))))) +(-10 -7 (-15 -3972 ((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)))) +((-2471 (((-1227 (-309 (-372))) (-1227 (-309 (-219)))) 105)) (-3767 (((-1062 (-818 (-219))) (-1062 (-818 (-372)))) 40)) (-1624 (((-623 (-1126)) (-1124 (-219))) 87)) (-4029 (((-309 (-372)) (-925 (-219))) 50)) (-4114 (((-219) (-925 (-219))) 46)) (-1922 (((-1126) (-372)) 169)) (-3673 (((-818 (-219)) (-818 (-372))) 34)) (-3007 (((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1227 (-309 (-219)))) 143)) (-2025 (((-1008) (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008)))) 181) (((-1008) (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))))) 179)) (-1340 (((-667 (-219)) (-623 (-219)) (-749)) 14)) (-2309 (((-1227 (-677)) (-623 (-219))) 94)) (-1526 (((-623 (-1126)) (-623 (-219))) 75)) (-3088 (((-3 (-309 (-219)) "failed") (-309 (-219))) 120)) (-1272 (((-112) (-219) (-1062 (-818 (-219)))) 109)) (-3940 (((-1008) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) 198)) (-1725 (((-219) (-1062 (-818 (-219)))) 107)) (-1827 (((-219) (-1062 (-818 (-219)))) 108)) (-4305 (((-219) (-400 (-550))) 27)) (-2617 (((-1126) (-372)) 73)) (-3501 (((-219) (-372)) 17)) (-2916 (((-372) (-1227 (-309 (-219)))) 154)) (-3592 (((-309 (-219)) (-309 (-372))) 23)) (-2736 (((-400 (-550)) (-309 (-219))) 53)) (-3096 (((-309 (-400 (-550))) (-309 (-219))) 69)) (-2394 (((-309 (-372)) (-309 (-219))) 98)) (-2847 (((-219) (-309 (-219))) 54)) (-2166 (((-623 (-219)) (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) 64)) (-3189 (((-1062 (-818 (-219))) (-1062 (-818 (-219)))) 61)) (-2543 (((-1126) (-219)) 72)) (-2241 (((-677) (-219)) 90)) (-3823 (((-400 (-550)) (-219)) 55)) (-4205 (((-309 (-372)) (-219)) 49)) (-4028 (((-623 (-1062 (-818 (-219)))) (-623 (-1062 (-818 (-372))))) 43)) (-3227 (((-1008) (-623 (-1008))) 165) (((-1008) (-1008) (-1008)) 162)) (-2112 (((-1008) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-298) (-10 -7 (-15 -3501 ((-219) (-372))) (-15 -3592 ((-309 (-219)) (-309 (-372)))) (-15 -3673 ((-818 (-219)) (-818 (-372)))) (-15 -3767 ((-1062 (-818 (-219))) (-1062 (-818 (-372))))) (-15 -4028 ((-623 (-1062 (-818 (-219)))) (-623 (-1062 (-818 (-372)))))) (-15 -3823 ((-400 (-550)) (-219))) (-15 -2736 ((-400 (-550)) (-309 (-219)))) (-15 -2847 ((-219) (-309 (-219)))) (-15 -3088 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -2916 ((-372) (-1227 (-309 (-219))))) (-15 -3007 ((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1227 (-309 (-219))))) (-15 -3096 ((-309 (-400 (-550))) (-309 (-219)))) (-15 -3189 ((-1062 (-818 (-219))) (-1062 (-818 (-219))))) (-15 -2166 ((-623 (-219)) (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))))) (-15 -2241 ((-677) (-219))) (-15 -2309 ((-1227 (-677)) (-623 (-219)))) (-15 -2394 ((-309 (-372)) (-309 (-219)))) (-15 -2471 ((-1227 (-309 (-372))) (-1227 (-309 (-219))))) (-15 -1272 ((-112) (-219) (-1062 (-818 (-219))))) (-15 -2543 ((-1126) (-219))) (-15 -2617 ((-1126) (-372))) (-15 -1526 ((-623 (-1126)) (-623 (-219)))) (-15 -1624 ((-623 (-1126)) (-1124 (-219)))) (-15 -1725 ((-219) (-1062 (-818 (-219))))) (-15 -1827 ((-219) (-1062 (-818 (-219))))) (-15 -3227 ((-1008) (-1008) (-1008))) (-15 -3227 ((-1008) (-623 (-1008)))) (-15 -1922 ((-1126) (-372))) (-15 -2025 ((-1008) (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))))) (-15 -2025 ((-1008) (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008))))) (-15 -2112 ((-1008) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3940 ((-1008) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))) (-15 -4029 ((-309 (-372)) (-925 (-219)))) (-15 -4114 ((-219) (-925 (-219)))) (-15 -4205 ((-309 (-372)) (-219))) (-15 -4305 ((-219) (-400 (-550)))) (-15 -1340 ((-667 (-219)) (-623 (-219)) (-749))))) (T -298)) +((-1340 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-219))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) (-5 *1 (-298)))) (-4305 (*1 *2 *3) (-12 (-5 *3 (-400 (-550))) (-5 *2 (-219)) (-5 *1 (-298)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-925 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-925 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) (-5 *2 (-1008)) (-5 *1 (-298)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1008)) (-5 *1 (-298)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008)))) (-5 *2 (-1008)) (-5 *1 (-298)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))))) (-5 *2 (-1008)) (-5 *1 (-298)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1126)) (-5 *1 (-298)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-623 (-1008))) (-5 *2 (-1008)) (-5 *1 (-298)))) (-3227 (*1 *2 *2 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-298)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-298)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-298)))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1126)) (-5 *1 (-298)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1126)) (-5 *1 (-298)))) (-1272 (*1 *2 *3 *4) (-12 (-5 *4 (-1062 (-818 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-298)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *2 (-1227 (-309 (-372)))) (-5 *1 (-298)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1227 (-677))) (-5 *1 (-298)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-677)) (-5 *1 (-298)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-5 *2 (-623 (-219))) (-5 *1 (-298)))) (-3189 (*1 *2 *2) (-12 (-5 *2 (-1062 (-818 (-219)))) (-5 *1 (-298)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-400 (-550)))) (-5 *1 (-298)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *2 (-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550)))) (-5 *1 (-298)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-298)))) (-3088 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-298)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-400 (-550))) (-5 *1 (-298)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-550))) (-5 *1 (-298)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-623 (-1062 (-818 (-372))))) (-5 *2 (-623 (-1062 (-818 (-219))))) (-5 *1 (-298)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-1062 (-818 (-372)))) (-5 *2 (-1062 (-818 (-219)))) (-5 *1 (-298)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-818 (-372))) (-5 *2 (-818 (-219))) (-5 *1 (-298)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-309 (-372))) (-5 *2 (-309 (-219))) (-5 *1 (-298)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-298))))) +(-10 -7 (-15 -3501 ((-219) (-372))) (-15 -3592 ((-309 (-219)) (-309 (-372)))) (-15 -3673 ((-818 (-219)) (-818 (-372)))) (-15 -3767 ((-1062 (-818 (-219))) (-1062 (-818 (-372))))) (-15 -4028 ((-623 (-1062 (-818 (-219)))) (-623 (-1062 (-818 (-372)))))) (-15 -3823 ((-400 (-550)) (-219))) (-15 -2736 ((-400 (-550)) (-309 (-219)))) (-15 -2847 ((-219) (-309 (-219)))) (-15 -3088 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -2916 ((-372) (-1227 (-309 (-219))))) (-15 -3007 ((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1227 (-309 (-219))))) (-15 -3096 ((-309 (-400 (-550))) (-309 (-219)))) (-15 -3189 ((-1062 (-818 (-219))) (-1062 (-818 (-219))))) (-15 -2166 ((-623 (-219)) (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))))) (-15 -2241 ((-677) (-219))) (-15 -2309 ((-1227 (-677)) (-623 (-219)))) (-15 -2394 ((-309 (-372)) (-309 (-219)))) (-15 -2471 ((-1227 (-309 (-372))) (-1227 (-309 (-219))))) (-15 -1272 ((-112) (-219) (-1062 (-818 (-219))))) (-15 -2543 ((-1126) (-219))) (-15 -2617 ((-1126) (-372))) (-15 -1526 ((-623 (-1126)) (-623 (-219)))) (-15 -1624 ((-623 (-1126)) (-1124 (-219)))) (-15 -1725 ((-219) (-1062 (-818 (-219))))) (-15 -1827 ((-219) (-1062 (-818 (-219))))) (-15 -3227 ((-1008) (-1008) (-1008))) (-15 -3227 ((-1008) (-623 (-1008)))) (-15 -1922 ((-1126) (-372))) (-15 -2025 ((-1008) (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))))) (-15 -2025 ((-1008) (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008))))) (-15 -2112 ((-1008) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3940 ((-1008) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))) (-15 -4029 ((-309 (-372)) (-925 (-219)))) (-15 -4114 ((-219) (-925 (-219)))) (-15 -4205 ((-309 (-372)) (-219))) (-15 -4305 ((-219) (-400 (-550)))) (-15 -1340 ((-667 (-219)) (-623 (-219)) (-749)))) +((-3631 (((-112) $ $) 11)) (-3349 (($ $ $) 15)) (-1519 (($ $ $) 14)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 44)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 53)) (-3139 (($ $ $) 21) (($ (-623 $)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-1495 (((-3 $ "failed") $ $) 17)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 46))) +(((-299 |#1|) (-10 -8 (-15 -3356 ((-3 (-623 |#1|) "failed") (-623 |#1|) |#1|)) (-15 -3455 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3455 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3935 |#1|)) |#1| |#1|)) (-15 -3349 (|#1| |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|)) (-15 -3631 ((-112) |#1| |#1|)) (-15 -3188 ((-3 (-623 |#1|) "failed") (-623 |#1|) |#1|)) (-15 -3291 ((-2 (|:| -2855 (-623 |#1|)) (|:| -3935 |#1|)) (-623 |#1|))) (-15 -3139 (|#1| (-623 |#1|))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|))) (-300)) (T -299)) +NIL +(-10 -8 (-15 -3356 ((-3 (-623 |#1|) "failed") (-623 |#1|) |#1|)) (-15 -3455 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3455 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3935 |#1|)) |#1| |#1|)) (-15 -3349 (|#1| |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|)) (-15 -3631 ((-112) |#1| |#1|)) (-15 -3188 ((-3 (-623 |#1|) "failed") (-623 |#1|) |#1|)) (-15 -3291 ((-2 (|:| -2855 (-623 |#1|)) (|:| -3935 |#1|)) (-623 |#1|))) (-15 -3139 (|#1| (-623 |#1|))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3631 (((-112) $ $) 57)) (-3513 (($) 17 T CONST)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3102 (((-112) $) 30)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-300) (-138)) (T -300)) -((-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-747)))) (-3202 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-300)))) (-2882 (*1 *1 *1 *1) (-4 *1 (-300))) (-2883 (*1 *1 *1 *1) (-4 *1 (-300))) (-1698 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) (-4 *1 (-300)))) (-1698 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-300)))) (-1697 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-300))))) -(-13 (-892) (-10 -8 (-15 -1700 ((-112) $ $)) (-15 -1699 ((-747) $)) (-15 -3202 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2882 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -1698 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $)) (-15 -1698 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1697 ((-3 (-618 $) "failed") (-618 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-4110 (($ $ (-618 |#2|) (-618 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-286 |#2|)) 11) (($ $ (-618 (-286 |#2|))) NIL))) -(((-301 |#1| |#2|) (-10 -8 (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|)))) (-302 |#2|) (-1067)) (T -301)) -NIL -(-10 -8 (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|)))) -((-4110 (($ $ (-618 |#1|) (-618 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-286 |#1|)) 11) (($ $ (-618 (-286 |#1|))) 10))) -(((-302 |#1|) (-138) (-1067)) (T -302)) -((-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1067)))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-286 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1067))))) -(-13 (-505 |t#1| |t#1|) (-10 -8 (-15 -4110 ($ $ (-286 |t#1|))) (-15 -4110 ($ $ (-618 (-286 |t#1|)))))) +((-3631 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-749)))) (-1866 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-300)))) (-1519 (*1 *1 *1 *1) (-4 *1 (-300))) (-3349 (*1 *1 *1 *1) (-4 *1 (-300))) (-3455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3935 *1))) (-4 *1 (-300)))) (-3455 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-300)))) (-3356 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-300))))) +(-13 (-893) (-10 -8 (-15 -3631 ((-112) $ $)) (-15 -3542 ((-749) $)) (-15 -1866 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -1519 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -3455 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $)) (-15 -3455 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3356 ((-3 (-623 $) "failed") (-623 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-893) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3866 (($ $ (-623 |#2|) (-623 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-287 |#2|)) 11) (($ $ (-623 (-287 |#2|))) NIL))) +(((-301 |#1| |#2|) (-10 -8 (-15 -3866 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -3866 (|#1| |#1| (-287 |#2|))) (-15 -3866 (|#1| |#1| |#2| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#2|) (-623 |#2|)))) (-302 |#2|) (-1068)) (T -301)) +NIL +(-10 -8 (-15 -3866 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -3866 (|#1| |#1| (-287 |#2|))) (-15 -3866 (|#1| |#1| |#2| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#2|) (-623 |#2|)))) +((-3866 (($ $ (-623 |#1|) (-623 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-287 |#1|)) 11) (($ $ (-623 (-287 |#1|))) 10))) +(((-302 |#1|) (-138) (-1068)) (T -302)) +((-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-287 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1068)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-287 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1068))))) +(-13 (-505 |t#1| |t#1|) (-10 -8 (-15 -3866 ($ $ (-287 |t#1|))) (-15 -3866 ($ $ (-623 (-287 |t#1|)))))) (((-505 |#1| |#1|) . T)) -((-4110 ((|#1| (-1 |#1| (-535)) (-1144 (-400 (-535)))) 25))) -(((-303 |#1|) (-10 -7 (-15 -4110 (|#1| (-1 |#1| (-535)) (-1144 (-400 (-535)))))) (-38 (-400 (-535)))) (T -303)) -((-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-535))) (-5 *4 (-1144 (-400 (-535)))) (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-535))))))) -(-10 -7 (-15 -4110 (|#1| (-1 |#1| (-535)) (-1144 (-400 (-535)))))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 7)) (-3375 (((-112) $ $) 9))) -(((-304) (-1067)) (T -304)) -NIL -(-1067) -((-2887 (((-112) $ $) NIL)) (-3843 (((-535) $) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 9)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-305) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3843 ((-535) $))))) (T -305)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-305)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-305))))) -(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3843 ((-535) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 62)) (-3447 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1211 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-535)))) (((-3 (-1205 |#2| |#3| |#4|) #2#) $) 25)) (-3490 (((-1211 |#1| |#2| |#3| |#4|) $) NIL) (((-1142) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-535)))) (((-535) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-535)))) (((-1205 |#2| |#3| |#4|) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-1211 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1224 (-1211 |#1| |#2| |#3| |#4|)))) (-665 $) (-1224 $)) NIL) (((-665 (-1211 |#1| |#2| |#3| |#4|)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-1211 |#1| |#2| |#3| |#4|) $) 21)) (-3786 (((-3 $ "failed") $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1117)))) (-3521 (((-112) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-3661 (($ $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-4301 (($ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) $) NIL)) (-4126 (((-3 (-815 |#2|) "failed") $) 78)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-300)))) (-3448 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-1211 |#1| |#2| |#3| |#4|)) (-618 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-286 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-618 (-286 (-1211 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-618 (-1142)) (-618 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-505 (-1142) (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-1142) (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-505 (-1142) (-1211 |#1| |#2| |#3| |#4|))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-279 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) (-747)) NIL) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-1211 |#1| |#2| |#3| |#4|) $) 17)) (-4313 (((-861 (-535)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-524)))) (((-371) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-991))) (((-219) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1211 |#1| |#2| |#3| |#4|) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-1211 |#1| |#2| |#3| |#4|)) 29) (($ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (($ (-1205 |#2| |#3| |#4|)) 36)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-1211 |#1| |#2| |#3| |#4|) (-881))) (|has| (-1211 |#1| |#2| |#3| |#4|) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-2979 (($) 41 T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) (-747)) NIL) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-4291 (($ $ $) 34) (($ (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) 31)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-1211 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1211 |#1| |#2| |#3| |#4|)) NIL))) -(((-306 |#1| |#2| |#3| |#4|) (-13 (-962 (-1211 |#1| |#2| |#3| |#4|)) (-1009 (-1205 |#2| |#3| |#4|)) (-10 -8 (-15 -4126 ((-3 (-815 |#2|) "failed") $)) (-15 -4300 ($ (-1205 |#2| |#3| |#4|))))) (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444)) (-13 (-27) (-1164) (-414 |#1|)) (-1142) |#2|) (T -306)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1205 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4) (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) (-5 *1 (-306 *3 *4 *5 *6)))) (-4126 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) (-5 *2 (-815 *4)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4)))) -(-13 (-962 (-1211 |#1| |#2| |#3| |#4|)) (-1009 (-1205 |#2| |#3| |#4|)) (-10 -8 (-15 -4126 ((-3 (-815 |#2|) "failed") $)) (-15 -4300 ($ (-1205 |#2| |#3| |#4|))))) -((-2887 (((-112) $ $) NIL)) (-1662 (((-618 $) $ (-1142)) NIL (|has| |#1| (-542))) (((-618 $) $) NIL (|has| |#1| (-542))) (((-618 $) (-1136 $) (-1142)) NIL (|has| |#1| (-542))) (((-618 $) (-1136 $)) NIL (|has| |#1| (-542))) (((-618 $) (-917 $)) NIL (|has| |#1| (-542)))) (-1258 (($ $ (-1142)) NIL (|has| |#1| (-542))) (($ $) NIL (|has| |#1| (-542))) (($ (-1136 $) (-1142)) NIL (|has| |#1| (-542))) (($ (-1136 $)) NIL (|has| |#1| (-542))) (($ (-917 $)) NIL (|has| |#1| (-542)))) (-3522 (((-112) $) 27 (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (-3405 (((-618 (-1142)) $) 351)) (-3407 (((-400 (-1136 $)) $ (-591 $)) NIL (|has| |#1| (-542)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-1655 (((-618 (-591 $)) $) NIL)) (-3829 (($ $) 161 (|has| |#1| (-542)))) (-3985 (($ $) 137 (|has| |#1| (-542)))) (-1416 (($ $ (-1058 $)) 222 (|has| |#1| (-542))) (($ $ (-1142)) 218 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL (-3874 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) 368) (($ $ (-618 (-591 $)) (-618 $)) 412)) (-3028 (((-398 (-1136 $)) (-1136 $)) 295 (-12 (|has| |#1| (-444)) (|has| |#1| (-542))))) (-4117 (($ $) NIL (|has| |#1| (-542)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-542)))) (-3358 (($ $) NIL (|has| |#1| (-542)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3827 (($ $) 157 (|has| |#1| (-542)))) (-3984 (($ $) 133 (|has| |#1| (-542)))) (-1701 (($ $ (-535)) 72 (|has| |#1| (-542)))) (-3831 (($ $) 165 (|has| |#1| (-542)))) (-3983 (($ $) 141 (|has| |#1| (-542)))) (-3879 (($) NIL (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))) CONST)) (-1259 (((-618 $) $ (-1142)) NIL (|has| |#1| (-542))) (((-618 $) $) NIL (|has| |#1| (-542))) (((-618 $) (-1136 $) (-1142)) NIL (|has| |#1| (-542))) (((-618 $) (-1136 $)) NIL (|has| |#1| (-542))) (((-618 $) (-917 $)) NIL (|has| |#1| (-542)))) (-3517 (($ $ (-1142)) NIL (|has| |#1| (-542))) (($ $) NIL (|has| |#1| (-542))) (($ (-1136 $) (-1142)) 124 (|has| |#1| (-542))) (($ (-1136 $)) NIL (|has| |#1| (-542))) (($ (-917 $)) NIL (|has| |#1| (-542)))) (-3491 (((-3 (-591 $) #1="failed") $) 17) (((-3 (-1142) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-48) #1#) $) 323 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) (((-3 (-535) #1#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-917 |#1|)) #1#) $) NIL (|has| |#1| (-542))) (((-3 (-917 |#1|) #1#) $) NIL (|has| |#1| (-1018))) (((-3 (-400 (-535)) #1#) $) 46 (-3874 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-3490 (((-591 $) $) 11) (((-1142) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-917 |#1|)) $) NIL (|has| |#1| (-542))) (((-917 |#1|) $) NIL (|has| |#1| (-1018))) (((-400 (-535)) $) 306 (-3874 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-2883 (($ $ $) NIL (|has| |#1| (-542)))) (-2353 (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 117 (|has| |#1| (-1018))) (((-665 |#1|) (-665 $)) 107 (|has| |#1| (-1018))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (-4185 (($ $) 89 (|has| |#1| (-542)))) (-3804 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (-2882 (($ $ $) NIL (|has| |#1| (-542)))) (-4287 (($ $ (-1058 $)) 226 (|has| |#1| (-542))) (($ $ (-1142)) 224 (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-542)))) (-4069 (((-112) $) NIL (|has| |#1| (-542)))) (-3728 (($ $ $) 192 (|has| |#1| (-542)))) (-3973 (($) 127 (|has| |#1| (-542)))) (-1413 (($ $ $) 212 (|has| |#1| (-542)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 374 (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 381 (|has| |#1| (-857 (-371))))) (-2892 (($ $) NIL) (($ (-618 $)) NIL)) (-1654 (((-618 (-113)) $) NIL)) (-3368 (((-113) (-113)) 267)) (-2493 (((-112) $) 25 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (-2994 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-3317 (($ $) 71 (|has| |#1| (-1018)))) (-3319 (((-1091 |#1| (-591 $)) $) 84 (|has| |#1| (-1018)))) (-1702 (((-112) $) 64 (|has| |#1| (-542)))) (-3332 (($ $ (-535)) NIL (|has| |#1| (-542)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-542)))) (-1652 (((-1136 $) (-591 $)) 268 (|has| $ (-1018)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 $ $) (-591 $)) 408)) (-1657 (((-3 (-591 $) "failed") $) NIL)) (-4285 (($ $) 131 (|has| |#1| (-542)))) (-2332 (($ $) 237 (|has| |#1| (-542)))) (-2008 (($ (-618 $)) NIL (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-3576 (((-1124) $) NIL)) (-1656 (((-618 (-591 $)) $) 49)) (-2308 (($ (-113) $) NIL) (($ (-113) (-618 $)) 413)) (-3144 (((-3 (-618 $) #3="failed") $) NIL (|has| |#1| (-1078)))) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) #3#) $) NIL (|has| |#1| (-1018)))) (-3143 (((-3 (-618 $) #3#) $) 416 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3145 (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $) NIL (|has| |#1| (-1078))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $ (-113)) NIL (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $ (-1142)) NIL (|has| |#1| (-1018)))) (-2952 (((-112) $ (-113)) NIL) (((-112) $ (-1142)) 53)) (-2725 (($ $) NIL (-3874 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-3153 (($ $ (-1142)) 241 (|has| |#1| (-542))) (($ $ (-1058 $)) 243 (|has| |#1| (-542)))) (-2922 (((-747) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 43)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 288 (|has| |#1| (-542)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-1653 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-1417 (($ $ (-1142)) 216 (|has| |#1| (-542))) (($ $) 214 (|has| |#1| (-542)))) (-1411 (($ $) 208 (|has| |#1| (-542)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 293 (-12 (|has| |#1| (-444)) (|has| |#1| (-542))))) (-4075 (((-398 $) $) NIL (|has| |#1| (-542)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-542))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-542)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-542)))) (-4286 (($ $) 129 (|has| |#1| (-542)))) (-2995 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) 407) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) 361) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1142)) NIL (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-594 (-524)))) (($ $) NIL (|has| |#1| (-594 (-524)))) (($ $ (-113) $ (-1142)) 349 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-113)) (-618 $) (-1142)) 348 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $))) NIL (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $)))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-618 $))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ $)) NIL (|has| |#1| (-1018)))) (-1699 (((-747) $) NIL (|has| |#1| (-542)))) (-2330 (($ $) 229 (|has| |#1| (-542)))) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-1658 (($ $) NIL) (($ $ $) NIL)) (-2331 (($ $) 239 (|has| |#1| (-542)))) (-3727 (($ $) 190 (|has| |#1| (-542)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-1018))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-1018))) (($ $ (-1142)) NIL (|has| |#1| (-1018)))) (-3316 (($ $) 73 (|has| |#1| (-542)))) (-3318 (((-1091 |#1| (-591 $)) $) 86 (|has| |#1| (-542)))) (-3519 (($ $) 304 (|has| $ (-1018)))) (-3832 (($ $) 167 (|has| |#1| (-542)))) (-3982 (($ $) 143 (|has| |#1| (-542)))) (-3830 (($ $) 163 (|has| |#1| (-542)))) (-3981 (($ $) 139 (|has| |#1| (-542)))) (-3828 (($ $) 159 (|has| |#1| (-542)))) (-3980 (($ $) 135 (|has| |#1| (-542)))) (-4313 (((-861 (-535)) $) NIL (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| |#1| (-594 (-861 (-371))))) (($ (-398 $)) NIL (|has| |#1| (-542))) (((-524) $) 346 (|has| |#1| (-594 (-524))))) (-3330 (($ $ $) NIL (|has| |#1| (-465)))) (-2677 (($ $ $) NIL (|has| |#1| (-465)))) (-4300 (((-835) $) 406) (($ (-591 $)) 397) (($ (-1142)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-542))) (($ (-48)) 299 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) (($ (-1091 |#1| (-591 $))) 88 (|has| |#1| (-1018))) (($ (-400 |#1|)) NIL (|has| |#1| (-542))) (($ (-917 (-400 |#1|))) NIL (|has| |#1| (-542))) (($ (-400 (-917 (-400 |#1|)))) NIL (|has| |#1| (-542))) (($ (-400 (-917 |#1|))) NIL (|has| |#1| (-542))) (($ (-917 |#1|)) NIL (|has| |#1| (-1018))) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-542)) (|has| |#1| (-1009 (-400 (-535)))))) (($ (-535)) 34 (-3874 (|has| |#1| (-1009 (-535))) (|has| |#1| (-1018))))) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL (|has| |#1| (-1018)))) (-2909 (($ $) NIL) (($ (-618 $)) NIL)) (-3420 (($ $ $) 210 (|has| |#1| (-542)))) (-3731 (($ $ $) 196 (|has| |#1| (-542)))) (-3733 (($ $ $) 200 (|has| |#1| (-542)))) (-3730 (($ $ $) 194 (|has| |#1| (-542)))) (-3732 (($ $ $) 198 (|has| |#1| (-542)))) (-2329 (((-112) (-113)) 9)) (-3835 (($ $) 173 (|has| |#1| (-542)))) (-3823 (($ $) 149 (|has| |#1| (-542)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 169 (|has| |#1| (-542)))) (-3821 (($ $) 145 (|has| |#1| (-542)))) (-3837 (($ $) 177 (|has| |#1| (-542)))) (-3825 (($ $) 153 (|has| |#1| (-542)))) (-1909 (($ (-1142) $) NIL) (($ (-1142) $ $) NIL) (($ (-1142) $ $ $) NIL) (($ (-1142) $ $ $ $) NIL) (($ (-1142) (-618 $)) NIL)) (-3735 (($ $) 204 (|has| |#1| (-542)))) (-3734 (($ $) 202 (|has| |#1| (-542)))) (-3838 (($ $) 179 (|has| |#1| (-542)))) (-3826 (($ $) 155 (|has| |#1| (-542)))) (-3836 (($ $) 175 (|has| |#1| (-542)))) (-3824 (($ $) 151 (|has| |#1| (-542)))) (-3834 (($ $) 171 (|has| |#1| (-542)))) (-3822 (($ $) 147 (|has| |#1| (-542)))) (-3725 (($ $) 182 (|has| |#1| (-542)))) (-2979 (($) 20 (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) CONST)) (-2334 (($ $) 233 (|has| |#1| (-542)))) (-2985 (($) 22 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))) CONST)) (-3729 (($ $) 184 (|has| |#1| (-542))) (($ $ $) 186 (|has| |#1| (-542)))) (-2335 (($ $) 231 (|has| |#1| (-542)))) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-1018))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-1018))) (($ $ (-1142)) NIL (|has| |#1| (-1018)))) (-2333 (($ $) 235 (|has| |#1| (-542)))) (-3726 (($ $ $) 188 (|has| |#1| (-542)))) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 81)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 80)) (-4291 (($ (-1091 |#1| (-591 $)) (-1091 |#1| (-591 $))) 98 (|has| |#1| (-542))) (($ $ $) 42 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-4180 (($ $ $) 40 (-3874 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (($ $) 29 (-3874 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (-4182 (($ $ $) 38 (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (** (($ $ $) 66 (|has| |#1| (-542))) (($ $ (-400 (-535))) 301 (|has| |#1| (-542))) (($ $ (-535)) 76 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542)))) (($ $ (-747)) 74 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078)))) (($ $ (-890)) 78 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (* (($ (-400 (-535)) $) NIL (|has| |#1| (-542))) (($ $ (-400 (-535))) NIL (|has| |#1| (-542))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078)))) (($ (-535) $) 32 (-3874 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (($ (-747) $) NIL (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (($ (-890) $) NIL (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))))) -(((-307 |#1|) (-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-542)) (PROGN (-6 (-29 |#1|)) (-6 (-1164)) (-6 (-158)) (-6 (-608)) (-6 (-1105)) (-15 -4185 ($ $)) (-15 -1702 ((-112) $)) (-15 -1701 ($ $ (-535))) (IF (|has| |#1| (-444)) (PROGN (-15 -3027 ((-398 (-1136 $)) (-1136 $))) (-15 -3028 ((-398 (-1136 $)) (-1136 $)))) |%noBranch|) (IF (|has| |#1| (-1009 (-535))) (-6 (-1009 (-48))) |%noBranch|)) |%noBranch|))) (-823)) (T -307)) -((-4185 (*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-542)) (-4 *2 (-823)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-542)) (-4 *3 (-823)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-307 *3)) (-4 *3 (-542)) (-4 *3 (-823)))) (-3027 (*1 *2 *3) (-12 (-5 *2 (-398 (-1136 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1136 *1)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-823)))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-398 (-1136 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1136 *1)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-823))))) -(-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-542)) (PROGN (-6 (-29 |#1|)) (-6 (-1164)) (-6 (-158)) (-6 (-608)) (-6 (-1105)) (-15 -4185 ($ $)) (-15 -1702 ((-112) $)) (-15 -1701 ($ $ (-535))) (IF (|has| |#1| (-444)) (PROGN (-15 -3027 ((-398 (-1136 $)) (-1136 $))) (-15 -3028 ((-398 (-1136 $)) (-1136 $)))) |%noBranch|) (IF (|has| |#1| (-1009 (-535))) (-6 (-1009 (-48))) |%noBranch|)) |%noBranch|))) -((-4301 (((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)) 13))) -(((-308 |#1| |#2|) (-10 -7 (-15 -4301 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) (-823) (-823)) (T -308)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-5 *2 (-307 *6)) (-5 *1 (-308 *5 *6))))) -(-10 -7 (-15 -4301 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) -((-4072 (((-51) |#2| (-286 |#2|) (-747)) 33) (((-51) |#2| (-286 |#2|)) 24) (((-51) |#2| (-747)) 28) (((-51) |#2|) 25) (((-51) (-1142)) 21)) (-4161 (((-51) |#2| (-286 |#2|) (-400 (-535))) 51) (((-51) |#2| (-286 |#2|)) 48) (((-51) |#2| (-400 (-535))) 50) (((-51) |#2|) 49) (((-51) (-1142)) 47)) (-4124 (((-51) |#2| (-286 |#2|) (-400 (-535))) 46) (((-51) |#2| (-286 |#2|)) 43) (((-51) |#2| (-400 (-535))) 45) (((-51) |#2|) 44) (((-51) (-1142)) 42)) (-4121 (((-51) |#2| (-286 |#2|) (-535)) 39) (((-51) |#2| (-286 |#2|)) 35) (((-51) |#2| (-535)) 38) (((-51) |#2|) 36) (((-51) (-1142)) 34))) -(((-309 |#1| |#2|) (-10 -7 (-15 -4072 ((-51) (-1142))) (-15 -4072 ((-51) |#2|)) (-15 -4072 ((-51) |#2| (-747))) (-15 -4072 ((-51) |#2| (-286 |#2|))) (-15 -4072 ((-51) |#2| (-286 |#2|) (-747))) (-15 -4121 ((-51) (-1142))) (-15 -4121 ((-51) |#2|)) (-15 -4121 ((-51) |#2| (-535))) (-15 -4121 ((-51) |#2| (-286 |#2|))) (-15 -4121 ((-51) |#2| (-286 |#2|) (-535))) (-15 -4124 ((-51) (-1142))) (-15 -4124 ((-51) |#2|)) (-15 -4124 ((-51) |#2| (-400 (-535)))) (-15 -4124 ((-51) |#2| (-286 |#2|))) (-15 -4124 ((-51) |#2| (-286 |#2|) (-400 (-535)))) (-15 -4161 ((-51) (-1142))) (-15 -4161 ((-51) |#2|)) (-15 -4161 ((-51) |#2| (-400 (-535)))) (-15 -4161 ((-51) |#2| (-286 |#2|))) (-15 -4161 ((-51) |#2| (-286 |#2|) (-400 (-535))))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -309)) -((-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-535))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) (-4124 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4124 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4124 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-535))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-4124 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 *5) (-617 *5))) (-5 *5 (-535)) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-4 *5 (-13 (-444) (-823) (-1009 *4) (-617 *4))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) (-4072 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-747)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4)))))) -(-10 -7 (-15 -4072 ((-51) (-1142))) (-15 -4072 ((-51) |#2|)) (-15 -4072 ((-51) |#2| (-747))) (-15 -4072 ((-51) |#2| (-286 |#2|))) (-15 -4072 ((-51) |#2| (-286 |#2|) (-747))) (-15 -4121 ((-51) (-1142))) (-15 -4121 ((-51) |#2|)) (-15 -4121 ((-51) |#2| (-535))) (-15 -4121 ((-51) |#2| (-286 |#2|))) (-15 -4121 ((-51) |#2| (-286 |#2|) (-535))) (-15 -4124 ((-51) (-1142))) (-15 -4124 ((-51) |#2|)) (-15 -4124 ((-51) |#2| (-400 (-535)))) (-15 -4124 ((-51) |#2| (-286 |#2|))) (-15 -4124 ((-51) |#2| (-286 |#2|) (-400 (-535)))) (-15 -4161 ((-51) (-1142))) (-15 -4161 ((-51) |#2|)) (-15 -4161 ((-51) |#2| (-400 (-535)))) (-15 -4161 ((-51) |#2| (-286 |#2|))) (-15 -4161 ((-51) |#2| (-286 |#2|) (-400 (-535))))) -((-1703 (((-51) |#2| (-113) (-286 |#2|) (-618 |#2|)) 88) (((-51) |#2| (-113) (-286 |#2|) (-286 |#2|)) 84) (((-51) |#2| (-113) (-286 |#2|) |#2|) 86) (((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|) 87) (((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|))) 80) (((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 |#2|)) 82) (((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 |#2|)) 83) (((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|))) 81) (((-51) (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|)) 89) (((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|)) 85))) -(((-310 |#1| |#2|) (-10 -7 (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|)))) (-15 -1703 ((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|)))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-618 |#2|)))) (-13 (-823) (-542) (-594 (-524))) (-414 |#1|)) (T -310)) -((-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-5 *6 (-618 *3)) (-4 *3 (-414 *7)) (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *3)))) (-1703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *3)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *3)))) (-1703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *5)))) (-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-113))) (-5 *6 (-618 (-286 *8))) (-4 *8 (-414 *7)) (-5 *5 (-286 *8)) (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *8)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-618 *7)) (-5 *4 (-618 (-113))) (-5 *5 (-286 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-618 (-286 *8))) (-5 *4 (-618 (-113))) (-5 *5 (-286 *8)) (-5 *6 (-618 *8)) (-4 *8 (-414 *7)) (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *8)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-618 (-286 *7))) (-5 *4 (-618 (-113))) (-5 *5 (-286 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-618 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-286 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) (-4 *5 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *5 *6))))) -(-10 -7 (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|)))) (-15 -1703 ((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|)))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-618 |#2|)))) -((-1705 (((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535) (-1124)) 46) (((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535)) 47) (((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535) (-1124)) 43) (((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535)) 44)) (-1704 (((-1 (-219) (-219)) (-219)) 45))) -(((-311) (-10 -7 (-15 -1704 ((-1 (-219) (-219)) (-219))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535) (-1124))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535) (-1124))))) (T -311)) -((-1705 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-219)) (-5 *7 (-535)) (-5 *8 (-1124)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-219)) (-5 *7 (-535)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-535)) (-5 *7 (-1124)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-535)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) (-1704 (*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) -(-10 -7 (-15 -1704 ((-1 (-219) (-219)) (-219))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535) (-1124))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535) (-1124)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 25)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) NIL) (($ $ (-400 (-535)) (-400 (-535))) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) 20)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) 32)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) NIL) (((-400 (-535)) $ (-400 (-535))) 16)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL) (($ $ (-400 (-535))) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) NIL) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-1706 (((-400 (-535)) $) 17)) (-3414 (($ (-1205 |#1| |#2| |#3|)) 11)) (-2484 (((-1205 |#1| |#2| |#3|) $) 12)) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) NIL) (($ $ $) NIL (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-4290 (((-400 (-535)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 10)) (-4300 (((-835) $) 38) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) 30)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) NIL)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 27)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 33)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-312 |#1| |#2| |#3|) (-13 (-1207 |#1|) (-768) (-10 -8 (-15 -3414 ($ (-1205 |#1| |#2| |#3|))) (-15 -2484 ((-1205 |#1| |#2| |#3|) $)) (-15 -1706 ((-400 (-535)) $)))) (-13 (-356) (-823)) (-1142) |#1|) (T -312)) -((-3414 (*1 *1 *2) (-12 (-5 *2 (-1205 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1205 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3))) (-1706 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3)))) -(-13 (-1207 |#1|) (-768) (-10 -8 (-15 -3414 ($ (-1205 |#1| |#2| |#3|))) (-15 -2484 ((-1205 |#1| |#2| |#3|) $)) (-15 -1706 ((-400 (-535)) $)))) -((-3332 (((-2 (|:| -2484 (-747)) (|:| -4296 |#1|) (|:| |radicand| (-618 |#1|))) (-398 |#1|) (-747)) 24)) (-4285 (((-618 (-2 (|:| -4296 (-747)) (|:| |logand| |#1|))) (-398 |#1|)) 28))) -(((-313 |#1|) (-10 -7 (-15 -3332 ((-2 (|:| -2484 (-747)) (|:| -4296 |#1|) (|:| |radicand| (-618 |#1|))) (-398 |#1|) (-747))) (-15 -4285 ((-618 (-2 (|:| -4296 (-747)) (|:| |logand| |#1|))) (-398 |#1|)))) (-542)) (T -313)) -((-4285 (*1 *2 *3) (-12 (-5 *3 (-398 *4)) (-4 *4 (-542)) (-5 *2 (-618 (-2 (|:| -4296 (-747)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *5)) (-4 *5 (-542)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *5) (|:| |radicand| (-618 *5)))) (-5 *1 (-313 *5)) (-5 *4 (-747))))) -(-10 -7 (-15 -3332 ((-2 (|:| -2484 (-747)) (|:| -4296 |#1|) (|:| |radicand| (-618 |#1|))) (-398 |#1|) (-747))) (-15 -4285 ((-618 (-2 (|:| -4296 (-747)) (|:| |logand| |#1|))) (-398 |#1|)))) -((-3405 (((-618 |#2|) (-1136 |#4|)) 43)) (-1711 ((|#3| (-535)) 46)) (-1709 (((-1136 |#4|) (-1136 |#3|)) 30)) (-1710 (((-1136 |#4|) (-1136 |#4|) (-535)) 56)) (-1708 (((-1136 |#3|) (-1136 |#4|)) 21)) (-4290 (((-618 (-747)) (-1136 |#4|) (-618 |#2|)) 40)) (-1707 (((-1136 |#3|) (-1136 |#4|) (-618 |#2|) (-618 |#3|)) 35))) -(((-314 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1707 ((-1136 |#3|) (-1136 |#4|) (-618 |#2|) (-618 |#3|))) (-15 -4290 ((-618 (-747)) (-1136 |#4|) (-618 |#2|))) (-15 -3405 ((-618 |#2|) (-1136 |#4|))) (-15 -1708 ((-1136 |#3|) (-1136 |#4|))) (-15 -1709 ((-1136 |#4|) (-1136 |#3|))) (-15 -1710 ((-1136 |#4|) (-1136 |#4|) (-535))) (-15 -1711 (|#3| (-535)))) (-769) (-823) (-1018) (-921 |#3| |#1| |#2|)) (T -314)) -((-1711 (*1 *2 *3) (-12 (-5 *3 (-535)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1018)) (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-921 *2 *4 *5)))) (-1710 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 *7)) (-5 *3 (-535)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *1 (-314 *4 *5 *6 *7)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-1136 *6)) (-4 *6 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-1136 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1136 *7)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-1136 *6)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-1136 *7)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-618 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *8)) (-5 *4 (-618 *6)) (-4 *6 (-823)) (-4 *8 (-921 *7 *5 *6)) (-4 *5 (-769)) (-4 *7 (-1018)) (-5 *2 (-618 (-747))) (-5 *1 (-314 *5 *6 *7 *8)))) (-1707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-5 *5 (-618 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-1136 *8)) (-5 *1 (-314 *6 *7 *8 *9))))) -(-10 -7 (-15 -1707 ((-1136 |#3|) (-1136 |#4|) (-618 |#2|) (-618 |#3|))) (-15 -4290 ((-618 (-747)) (-1136 |#4|) (-618 |#2|))) (-15 -3405 ((-618 |#2|) (-1136 |#4|))) (-15 -1708 ((-1136 |#3|) (-1136 |#4|))) (-15 -1709 ((-1136 |#4|) (-1136 |#3|))) (-15 -1710 ((-1136 |#4|) (-1136 |#4|) (-535))) (-15 -1711 (|#3| (-535)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 14)) (-4116 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-535)))) $) 18)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2759 ((|#1| $ (-535)) NIL)) (-1714 (((-535) $ (-535)) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2362 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-535) (-535)) $) 10)) (-3576 (((-1124) $) NIL)) (-1712 (($ $ $) NIL (|has| (-535) (-768)))) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-4023 (((-535) |#1| $) NIL)) (-2979 (($) 15 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) 21 (|has| |#1| (-823)))) (-4180 (($ $) 11) (($ $ $) 20)) (-4182 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ (-535)) NIL) (($ (-535) |#1|) 19))) -(((-315 |#1|) (-13 (-21) (-694 (-535)) (-316 |#1| (-535)) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1067)) (T -315)) -NIL -(-13 (-21) (-694 (-535)) (-316 |#1| (-535)) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4116 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $) 27)) (-1363 (((-3 $ "failed") $ $) 19)) (-3454 (((-747) $) 28)) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| "failed") $) 32)) (-3490 ((|#1| $) 31)) (-2759 ((|#1| $ (-535)) 25)) (-1714 ((|#2| $ (-535)) 26)) (-2362 (($ (-1 |#1| |#1|) $) 22)) (-1713 (($ (-1 |#2| |#2|) $) 23)) (-3576 (((-1124) $) 9)) (-1712 (($ $ $) 21 (|has| |#2| (-768)))) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ |#1|) 33)) (-4023 ((|#2| |#1| $) 24)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4182 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ |#2| |#1|) 29))) -(((-316 |#1| |#2|) (-138) (-1067) (-130)) (T -316)) -((-4182 (*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) (-5 *2 (-747)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))))) (-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-130)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1067)))) (-4023 (*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)))) (-2362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)))) (-1712 (*1 *1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)) (-4 *3 (-768))))) -(-13 (-130) (-1009 |t#1|) (-10 -8 (-15 -4182 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3454 ((-747) $)) (-15 -4116 ((-618 (-2 (|:| |gen| |t#1|) (|:| -4286 |t#2|))) $)) (-15 -1714 (|t#2| $ (-535))) (-15 -2759 (|t#1| $ (-535))) (-15 -4023 (|t#2| |t#1| $)) (-15 -1713 ($ (-1 |t#2| |t#2|) $)) (-15 -2362 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-768)) (-15 -1712 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1009 |#1|) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4116 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2759 ((|#1| $ (-535)) NIL)) (-1714 (((-747) $ (-535)) NIL)) (-2362 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-747) (-747)) $) NIL)) (-3576 (((-1124) $) NIL)) (-1712 (($ $ $) NIL (|has| (-747) (-768)))) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-4023 (((-747) |#1| $) NIL)) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-747) |#1|) NIL))) -(((-317 |#1|) (-316 |#1| (-747)) (-1067)) (T -317)) -NIL -(-316 |#1| (-747)) -((-3840 (($ $) 53)) (-1716 (($ $ |#2| |#3| $) 14)) (-1717 (($ (-1 |#3| |#3|) $) 33)) (-1911 (((-112) $) 24)) (-1910 ((|#2| $) 26)) (-3803 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3138 ((|#2| $) 49)) (-4160 (((-618 |#2|) $) 36)) (-1715 (($ $ $ (-747)) 20)) (-4291 (($ $ |#2|) 40))) -(((-318 |#1| |#2| |#3|) (-10 -8 (-15 -3840 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1715 (|#1| |#1| |#1| (-747))) (-15 -1716 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1717 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4160 ((-618 |#2|) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4291 (|#1| |#1| |#2|))) (-319 |#2| |#3|) (-1018) (-768)) (T -318)) -NIL -(-10 -8 (-15 -3840 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1715 (|#1| |#1| |#1| (-747))) (-15 -1716 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1717 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4160 ((-618 |#2|) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4291 (|#1| |#1| |#2|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 88 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 86 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 85)) (-3490 (((-535) $) 89 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 87 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 84)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 73 (|has| |#1| (-444)))) (-1716 (($ $ |#1| |#2| $) 77)) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 80)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| |#2|) 59)) (-3141 ((|#2| $) 79)) (-1717 (($ (-1 |#2| |#2|) $) 78)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 83)) (-1910 ((|#1| $) 82)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-542)))) (-4290 ((|#2| $) 62)) (-3138 ((|#1| $) 74 (|has| |#1| (-444)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45) (($ (-400 (-535))) 55 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535))))))) (-4160 (((-618 |#1|) $) 81)) (-4023 ((|#1| $ |#2|) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 76 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-319 |#1| |#2|) (-138) (-1018) (-768)) (T -319)) -((-1911 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-618 *3)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-747)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-1716 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-1715 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *3 (-170)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-542)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-444))))) -(-13 (-47 |t#1| |t#2|) (-405 |t#1|) (-10 -8 (-15 -1911 ((-112) $)) (-15 -1910 (|t#1| $)) (-15 -4160 ((-618 |t#1|) $)) (-15 -2501 ((-747) $)) (-15 -3141 (|t#2| $)) (-15 -1717 ($ (-1 |t#2| |t#2|) $)) (-15 -1716 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1715 ($ $ $ (-747))) |%noBranch|) (IF (|has| |t#1| (-542)) (-15 -3803 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3138 (|t#1| $)) (-15 -3840 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-405 |#1|) . T) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-2102 (((-112) (-112)) NIL)) (-4130 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-2446 (($ $) NIL (|has| |#1| (-1067)))) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2103 (($ $ (-535)) NIL)) (-2104 (((-747) $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3953 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2105 (($ (-618 |#1|)) NIL)) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-1627 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4133 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-320 |#1|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-618 |#1|))) (-15 -2104 ((-747) $)) (-15 -2103 ($ $ (-535))) (-15 -2102 ((-112) (-112))))) (-1178)) (T -320)) -((-2105 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-320 *3)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-320 *3)) (-4 *3 (-1178)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-320 *3)) (-4 *3 (-1178)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1178))))) -(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-618 |#1|))) (-15 -2104 ((-747) $)) (-15 -2103 ($ $ (-535))) (-15 -2102 ((-112) (-112))))) -((-4275 (((-112) $) 42)) (-4272 (((-747)) 22)) (-3672 ((|#2| $) 46) (($ $ (-890)) 101)) (-3454 (((-747)) 102)) (-1906 (($ (-1224 |#2|)) 20)) (-2122 (((-112) $) 115)) (-3450 ((|#2| $) 48) (($ $ (-890)) 99)) (-2125 (((-1136 |#2|) $) NIL) (((-1136 $) $ (-890)) 95)) (-1719 (((-1136 |#2|) $) 82)) (-1718 (((-1136 |#2|) $) 79) (((-3 (-1136 |#2|) "failed") $ $) 76)) (-1720 (($ $ (-1136 |#2|)) 53)) (-4273 (((-808 (-890))) 28) (((-890)) 43)) (-4254 (((-133)) 25)) (-4290 (((-808 (-890)) $) 30) (((-890) $) 117)) (-1721 (($) 108)) (-3558 (((-1224 |#2|) $) NIL) (((-665 |#2|) (-1224 $)) 39)) (-3023 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4276 (((-112) $) 41))) -(((-321 |#1| |#2|) (-10 -8 (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3454 ((-747))) (-15 -3023 (|#1| |#1|)) (-15 -1718 ((-3 (-1136 |#2|) "failed") |#1| |#1|)) (-15 -1718 ((-1136 |#2|) |#1|)) (-15 -1719 ((-1136 |#2|) |#1|)) (-15 -1720 (|#1| |#1| (-1136 |#2|))) (-15 -2122 ((-112) |#1|)) (-15 -1721 (|#1|)) (-15 -3672 (|#1| |#1| (-890))) (-15 -3450 (|#1| |#1| (-890))) (-15 -2125 ((-1136 |#1|) |#1| (-890))) (-15 -3672 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -4290 ((-890) |#1|)) (-15 -4273 ((-890))) (-15 -2125 ((-1136 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -4272 ((-747))) (-15 -4273 ((-808 (-890)))) (-15 -4290 ((-808 (-890)) |#1|)) (-15 -4275 ((-112) |#1|)) (-15 -4276 ((-112) |#1|)) (-15 -4254 ((-133)))) (-322 |#2|) (-356)) (T -321)) -((-4254 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4273 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-808 (-890))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4272 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4273 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-890)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3454 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))) -(-10 -8 (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3454 ((-747))) (-15 -3023 (|#1| |#1|)) (-15 -1718 ((-3 (-1136 |#2|) "failed") |#1| |#1|)) (-15 -1718 ((-1136 |#2|) |#1|)) (-15 -1719 ((-1136 |#2|) |#1|)) (-15 -1720 (|#1| |#1| (-1136 |#2|))) (-15 -2122 ((-112) |#1|)) (-15 -1721 (|#1|)) (-15 -3672 (|#1| |#1| (-890))) (-15 -3450 (|#1| |#1| (-890))) (-15 -2125 ((-1136 |#1|) |#1| (-890))) (-15 -3672 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -4290 ((-890) |#1|)) (-15 -4273 ((-890))) (-15 -2125 ((-1136 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -4272 ((-747))) (-15 -4273 ((-808 (-890)))) (-15 -4290 ((-808 (-890)) |#1|)) (-15 -4275 ((-112) |#1|)) (-15 -4276 ((-112) |#1|)) (-15 -4254 ((-133)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-4275 (((-112) $) 91)) (-4272 (((-747)) 87)) (-3672 ((|#1| $) 137) (($ $ (-890)) 134 (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) 119 (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3454 (((-747)) 109 (|has| |#1| (-361)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| "failed") $) 98)) (-3490 ((|#1| $) 97)) (-1906 (($ (-1224 |#1|)) 143)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-361)))) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-3315 (($) 106 (|has| |#1| (-361)))) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-3154 (($) 121 (|has| |#1| (-361)))) (-1791 (((-112) $) 122 (|has| |#1| (-361)))) (-1881 (($ $ (-747)) 84 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) 68)) (-4114 (((-890) $) 124 (|has| |#1| (-361))) (((-808 (-890)) $) 81 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) 30)) (-2124 (($) 132 (|has| |#1| (-361)))) (-2122 (((-112) $) 131 (|has| |#1| (-361)))) (-3450 ((|#1| $) 138) (($ $ (-890)) 135 (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) 110 (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2125 (((-1136 |#1|) $) 142) (((-1136 $) $ (-890)) 136 (|has| |#1| (-361)))) (-2121 (((-890) $) 107 (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) 128 (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) 127 (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) 126 (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) 129 (|has| |#1| (-361)))) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3787 (($) 111 (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) 108 (|has| |#1| (-361)))) (-4274 (((-112) $) 90)) (-3577 (((-1086) $) 10)) (-2492 (($) 130 (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 118 (|has| |#1| (-361)))) (-4075 (((-398 $) $) 71)) (-4273 (((-808 (-890))) 88) (((-890)) 140)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1882 (((-747) $) 123 (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) 82 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) 96)) (-4153 (($ $) 115 (|has| |#1| (-361))) (($ $ (-747)) 113 (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) 89) (((-890) $) 139)) (-3519 (((-1136 |#1|)) 141)) (-1785 (($) 120 (|has| |#1| (-361)))) (-1721 (($) 133 (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) 145) (((-665 |#1|) (-1224 $)) 144)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 117 (|has| |#1| (-361)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ |#1|) 99)) (-3023 (($ $) 116 (|has| |#1| (-361))) (((-3 $ "failed") $) 80 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 28)) (-2123 (((-1224 $)) 147) (((-1224 $) (-890)) 146)) (-2170 (((-112) $ $) 37)) (-4276 (((-112) $) 92)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-4271 (($ $) 86 (|has| |#1| (-361))) (($ $ (-747)) 85 (|has| |#1| (-361)))) (-2990 (($ $) 114 (|has| |#1| (-361))) (($ $ (-747)) 112 (|has| |#1| (-361)))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62) (($ $ |#1|) 95)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +((-3866 ((|#1| (-1 |#1| (-550)) (-1146 (-400 (-550)))) 25))) +(((-303 |#1|) (-10 -7 (-15 -3866 (|#1| (-1 |#1| (-550)) (-1146 (-400 (-550)))))) (-38 (-400 (-550)))) (T -303)) +((-3866 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-550))) (-5 *4 (-1146 (-400 (-550)))) (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-550))))))) +(-10 -7 (-15 -3866 (|#1| (-1 |#1| (-550)) (-1146 (-400 (-550)))))) +((-1504 (((-112) $ $) NIL)) (-2469 (((-550) $) 12)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2802 (((-1103) $) 9)) (-1518 (((-836) $) 21) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-304) (-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)) (-15 -2469 ((-550) $))))) (T -304)) +((-2802 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-304)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-304))))) +(-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)) (-15 -2469 ((-550) $)))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 7)) (-2316 (((-112) $ $) 9))) +(((-305) (-1068)) (T -305)) +NIL +(-1068) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 62)) (-1453 (((-1213 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-1213 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1011 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1011 (-550)))) (((-3 (-1212 |#2| |#3| |#4|) "failed") $) 25)) (-2726 (((-1213 |#1| |#2| |#3| |#4|) $) NIL) (((-1144) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1011 (-1144)))) (((-400 (-550)) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1011 (-550)))) (((-550) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1011 (-550)))) (((-1212 |#2| |#3| |#4|) $) NIL)) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-1213 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1227 (-1213 |#1| |#2| |#3| |#4|)))) (-667 $) (-1227 $)) NIL) (((-667 (-1213 |#1| |#2| |#3| |#4|)) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-859 (-372))))) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL)) (-2705 (((-1213 |#1| |#2| |#3| |#4|) $) 21)) (-2826 (((-3 $ "failed") $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1119)))) (-3329 (((-112) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-825)))) (-4164 (($ $ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-825)))) (-3972 (($ (-1 (-1213 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2| |#3| |#4|)) $) NIL)) (-4129 (((-3 (-818 |#2|) "failed") $) 78)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-300)))) (-1608 (((-1213 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 (-1213 |#1| |#2| |#3| |#4|)) (-623 (-1213 |#1| |#2| |#3| |#4|))) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-302 (-1213 |#1| |#2| |#3| |#4|)))) (($ $ (-1213 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2| |#3| |#4|)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-302 (-1213 |#1| |#2| |#3| |#4|)))) (($ $ (-287 (-1213 |#1| |#2| |#3| |#4|))) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-302 (-1213 |#1| |#2| |#3| |#4|)))) (($ $ (-623 (-287 (-1213 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-302 (-1213 |#1| |#2| |#3| |#4|)))) (($ $ (-623 (-1144)) (-623 (-1213 |#1| |#2| |#3| |#4|))) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-505 (-1144) (-1213 |#1| |#2| |#3| |#4|)))) (($ $ (-1144) (-1213 |#1| |#2| |#3| |#4|)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-505 (-1144) (-1213 |#1| |#2| |#3| |#4|))))) (-3542 (((-749) $) NIL)) (-2680 (($ $ (-1213 |#1| |#2| |#3| |#4|)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-279 (-1213 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2| |#3| |#4|))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-749)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1144)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-873 (-1144)))) (($ $ (-1 (-1213 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2| |#3| |#4|)) (-749)) NIL) (($ $ (-1 (-1213 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2| |#3| |#4|))) NIL)) (-2639 (($ $) NIL)) (-2715 (((-1213 |#1| |#2| |#3| |#4|) $) 17)) (-4028 (((-865 (-550)) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-596 (-865 (-372))))) (((-526) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-596 (-526)))) (((-372) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-995))) (((-219) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-995)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1213 |#1| |#2| |#3| |#4|) (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-1213 |#1| |#2| |#3| |#4|)) 29) (($ (-1144)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-1011 (-1144)))) (($ (-1212 |#2| |#3| |#4|)) 36)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-1213 |#1| |#2| |#3| |#4|) (-882))) (|has| (-1213 |#1| |#2| |#3| |#4|) (-143))))) (-2390 (((-749)) NIL)) (-1754 (((-1213 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-535)))) (-1345 (((-112) $ $) NIL)) (-1635 (($ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-798)))) (-2626 (($) 41 T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-749)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1144)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-873 (-1144)))) (($ $ (-1 (-1213 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2| |#3| |#4|)) (-749)) NIL) (($ $ (-1 (-1213 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2| |#3| |#4|))) NIL)) (-2363 (((-112) $ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-1213 |#1| |#2| |#3| |#4|) (-825)))) (-2414 (($ $ $) 34) (($ (-1213 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2| |#3| |#4|)) 31)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-1213 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1213 |#1| |#2| |#3| |#4|)) NIL))) +(((-306 |#1| |#2| |#3| |#4|) (-13 (-965 (-1213 |#1| |#2| |#3| |#4|)) (-1011 (-1212 |#2| |#3| |#4|)) (-10 -8 (-15 -4129 ((-3 (-818 |#2|) "failed") $)) (-15 -1518 ($ (-1212 |#2| |#3| |#4|))))) (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444)) (-13 (-27) (-1166) (-423 |#1|)) (-1144) |#2|) (T -306)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1212 *4 *5 *6)) (-4 *4 (-13 (-27) (-1166) (-423 *3))) (-14 *5 (-1144)) (-14 *6 *4) (-4 *3 (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444))) (-5 *1 (-306 *3 *4 *5 *6)))) (-4129 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444))) (-5 *2 (-818 *4)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1166) (-423 *3))) (-14 *5 (-1144)) (-14 *6 *4)))) +(-13 (-965 (-1213 |#1| |#2| |#3| |#4|)) (-1011 (-1212 |#2| |#3| |#4|)) (-10 -8 (-15 -4129 ((-3 (-818 |#2|) "failed") $)) (-15 -1518 ($ (-1212 |#2| |#3| |#4|))))) +((-3972 (((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)) 13))) +(((-307 |#1| |#2|) (-10 -7 (-15 -3972 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) (-825) (-825)) (T -307)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-5 *2 (-309 *6)) (-5 *1 (-307 *5 *6))))) +(-10 -7 (-15 -3972 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) +((-3192 (((-52) |#2| (-287 |#2|) (-749)) 33) (((-52) |#2| (-287 |#2|)) 24) (((-52) |#2| (-749)) 28) (((-52) |#2|) 25) (((-52) (-1144)) 21)) (-2672 (((-52) |#2| (-287 |#2|) (-400 (-550))) 51) (((-52) |#2| (-287 |#2|)) 48) (((-52) |#2| (-400 (-550))) 50) (((-52) |#2|) 49) (((-52) (-1144)) 47)) (-3214 (((-52) |#2| (-287 |#2|) (-400 (-550))) 46) (((-52) |#2| (-287 |#2|)) 43) (((-52) |#2| (-400 (-550))) 45) (((-52) |#2|) 44) (((-52) (-1144)) 42)) (-3203 (((-52) |#2| (-287 |#2|) (-550)) 39) (((-52) |#2| (-287 |#2|)) 35) (((-52) |#2| (-550)) 38) (((-52) |#2|) 36) (((-52) (-1144)) 34))) +(((-308 |#1| |#2|) (-10 -7 (-15 -3192 ((-52) (-1144))) (-15 -3192 ((-52) |#2|)) (-15 -3192 ((-52) |#2| (-749))) (-15 -3192 ((-52) |#2| (-287 |#2|))) (-15 -3192 ((-52) |#2| (-287 |#2|) (-749))) (-15 -3203 ((-52) (-1144))) (-15 -3203 ((-52) |#2|)) (-15 -3203 ((-52) |#2| (-550))) (-15 -3203 ((-52) |#2| (-287 |#2|))) (-15 -3203 ((-52) |#2| (-287 |#2|) (-550))) (-15 -3214 ((-52) (-1144))) (-15 -3214 ((-52) |#2|)) (-15 -3214 ((-52) |#2| (-400 (-550)))) (-15 -3214 ((-52) |#2| (-287 |#2|))) (-15 -3214 ((-52) |#2| (-287 |#2|) (-400 (-550)))) (-15 -2672 ((-52) (-1144))) (-15 -2672 ((-52) |#2|)) (-15 -2672 ((-52) |#2| (-400 (-550)))) (-15 -2672 ((-52) |#2| (-287 |#2|))) (-15 -2672 ((-52) |#2| (-287 |#2|) (-400 (-550))))) (-13 (-444) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|))) (T -308)) +((-2672 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-550))) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-550))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-2672 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *4))))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1166) (-423 *4))))) (-3214 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-550))) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-550))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-3214 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *4))))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1166) (-423 *4))))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1011 *5) (-619 *5))) (-5 *5 (-550)) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *5 (-13 (-444) (-825) (-1011 *4) (-619 *4))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-3203 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *4))))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1166) (-423 *4))))) (-3192 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-749)) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-3192 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *4))))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1166) (-423 *4)))))) +(-10 -7 (-15 -3192 ((-52) (-1144))) (-15 -3192 ((-52) |#2|)) (-15 -3192 ((-52) |#2| (-749))) (-15 -3192 ((-52) |#2| (-287 |#2|))) (-15 -3192 ((-52) |#2| (-287 |#2|) (-749))) (-15 -3203 ((-52) (-1144))) (-15 -3203 ((-52) |#2|)) (-15 -3203 ((-52) |#2| (-550))) (-15 -3203 ((-52) |#2| (-287 |#2|))) (-15 -3203 ((-52) |#2| (-287 |#2|) (-550))) (-15 -3214 ((-52) (-1144))) (-15 -3214 ((-52) |#2|)) (-15 -3214 ((-52) |#2| (-400 (-550)))) (-15 -3214 ((-52) |#2| (-287 |#2|))) (-15 -3214 ((-52) |#2| (-287 |#2|) (-400 (-550)))) (-15 -2672 ((-52) (-1144))) (-15 -2672 ((-52) |#2|)) (-15 -2672 ((-52) |#2| (-400 (-550)))) (-15 -2672 ((-52) |#2| (-287 |#2|))) (-15 -2672 ((-52) |#2| (-287 |#2|) (-400 (-550))))) +((-1504 (((-112) $ $) NIL)) (-1384 (((-623 $) $ (-1144)) NIL (|has| |#1| (-542))) (((-623 $) $) NIL (|has| |#1| (-542))) (((-623 $) (-1140 $) (-1144)) NIL (|has| |#1| (-542))) (((-623 $) (-1140 $)) NIL (|has| |#1| (-542))) (((-623 $) (-925 $)) NIL (|has| |#1| (-542)))) (-4122 (($ $ (-1144)) NIL (|has| |#1| (-542))) (($ $) NIL (|has| |#1| (-542))) (($ (-1140 $) (-1144)) NIL (|has| |#1| (-542))) (($ (-1140 $)) NIL (|has| |#1| (-542))) (($ (-925 $)) NIL (|has| |#1| (-542)))) (-3433 (((-112) $) 27 (-1561 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))))) (-3141 (((-623 (-1144)) $) 351)) (-3306 (((-400 (-1140 $)) $ (-594 $)) NIL (|has| |#1| (-542)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-3223 (((-623 (-594 $)) $) NIL)) (-3123 (($ $) 161 (|has| |#1| (-542)))) (-3005 (($ $) 137 (|has| |#1| (-542)))) (-1901 (($ $ (-1060 $)) 222 (|has| |#1| (-542))) (($ $ (-1144)) 218 (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) NIL (-1561 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))))) (-1760 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) 368) (($ $ (-623 (-594 $)) (-623 $)) 412)) (-3688 (((-411 (-1140 $)) (-1140 $)) 295 (-12 (|has| |#1| (-444)) (|has| |#1| (-542))))) (-1505 (($ $) NIL (|has| |#1| (-542)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-542)))) (-3353 (($ $) NIL (|has| |#1| (-542)))) (-3631 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3103 (($ $) 157 (|has| |#1| (-542)))) (-2984 (($ $) 133 (|has| |#1| (-542)))) (-3713 (($ $ (-550)) 72 (|has| |#1| (-542)))) (-3146 (($ $) 165 (|has| |#1| (-542)))) (-3025 (($ $) 141 (|has| |#1| (-542)))) (-3513 (($) NIL (-1561 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) (|has| |#1| (-1080))) CONST)) (-4241 (((-623 $) $ (-1144)) NIL (|has| |#1| (-542))) (((-623 $) $) NIL (|has| |#1| (-542))) (((-623 $) (-1140 $) (-1144)) NIL (|has| |#1| (-542))) (((-623 $) (-1140 $)) NIL (|has| |#1| (-542))) (((-623 $) (-925 $)) NIL (|has| |#1| (-542)))) (-4146 (($ $ (-1144)) NIL (|has| |#1| (-542))) (($ $) NIL (|has| |#1| (-542))) (($ (-1140 $) (-1144)) 124 (|has| |#1| (-542))) (($ (-1140 $)) NIL (|has| |#1| (-542))) (($ (-925 $)) NIL (|has| |#1| (-542)))) (-3880 (((-3 (-594 $) "failed") $) 17) (((-3 (-1144) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-925 |#1|)) "failed") $) NIL (|has| |#1| (-542))) (((-3 (-925 |#1|) "failed") $) NIL (|has| |#1| (-1020))) (((-3 (-400 (-550)) "failed") $) 46 (-1561 (-12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550)))) (|has| |#1| (-1011 (-400 (-550))))))) (-2726 (((-594 $) $) 11) (((-1144) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-925 |#1|)) $) NIL (|has| |#1| (-542))) (((-925 |#1|) $) NIL (|has| |#1| (-1020))) (((-400 (-550)) $) 306 (-1561 (-12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550)))) (|has| |#1| (-1011 (-400 (-550))))))) (-3349 (($ $ $) NIL (|has| |#1| (-542)))) (-3780 (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 117 (|has| |#1| (-1020))) (((-667 |#1|) (-667 $)) 107 (|has| |#1| (-1020))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))))) (-2419 (($ $) 89 (|has| |#1| (-542)))) (-1386 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) (|has| |#1| (-1080))))) (-1519 (($ $ $) NIL (|has| |#1| (-542)))) (-3838 (($ $ (-1060 $)) 226 (|has| |#1| (-542))) (($ $ (-1144)) 224 (|has| |#1| (-542)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-542)))) (-3933 (((-112) $) NIL (|has| |#1| (-542)))) (-2003 (($ $ $) 192 (|has| |#1| (-542)))) (-2734 (($) 127 (|has| |#1| (-542)))) (-3388 (($ $ $) 212 (|has| |#1| (-542)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 374 (|has| |#1| (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 381 (|has| |#1| (-859 (-372))))) (-1380 (($ $) NIL) (($ (-623 $)) NIL)) (-2029 (((-623 (-114)) $) NIL)) (-2926 (((-114) (-114)) 267)) (-3102 (((-112) $) 25 (-1561 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) (|has| |#1| (-1080))))) (-3718 (((-112) $) NIL (|has| $ (-1011 (-550))))) (-1552 (($ $) 71 (|has| |#1| (-1020)))) (-2705 (((-1093 |#1| (-594 $)) $) 84 (|has| |#1| (-1020)))) (-3791 (((-112) $) 64 (|has| |#1| (-542)))) (-1460 (($ $ (-550)) NIL (|has| |#1| (-542)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-542)))) (-1843 (((-1140 $) (-594 $)) 268 (|has| $ (-1020)))) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 $ $) (-594 $)) 408)) (-2106 (((-3 (-594 $) "failed") $) NIL)) (-2958 (($ $) 131 (|has| |#1| (-542)))) (-2634 (($ $) 237 (|has| |#1| (-542)))) (-3106 (($ (-623 $)) NIL (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-1825 (((-1126) $) NIL)) (-3296 (((-623 (-594 $)) $) 49)) (-2776 (($ (-114) $) NIL) (($ (-114) (-623 $)) 413)) (-1598 (((-3 (-623 $) "failed") $) NIL (|has| |#1| (-1080)))) (-1896 (((-3 (-2 (|:| |val| $) (|:| -3521 (-550))) "failed") $) NIL (|has| |#1| (-1020)))) (-1444 (((-3 (-623 $) "failed") $) 416 (|has| |#1| (-25)))) (-1264 (((-3 (-2 (|:| -2855 (-550)) (|:| |var| (-594 $))) "failed") $) 420 (|has| |#1| (-25)))) (-1748 (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $) NIL (|has| |#1| (-1080))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-114)) NIL (|has| |#1| (-1020))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-1144)) NIL (|has| |#1| (-1020)))) (-3890 (((-112) $ (-114)) NIL) (((-112) $ (-1144)) 53)) (-3235 (($ $) NIL (-1561 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-3336 (($ $ (-1144)) 241 (|has| |#1| (-542))) (($ $ (-1060 $)) 243 (|has| |#1| (-542)))) (-3142 (((-749) $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) 43)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 288 (|has| |#1| (-542)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-1938 (((-112) $ $) NIL) (((-112) $ (-1144)) NIL)) (-2017 (($ $ (-1144)) 216 (|has| |#1| (-542))) (($ $) 214 (|has| |#1| (-542)))) (-1289 (($ $) 208 (|has| |#1| (-542)))) (-3562 (((-411 (-1140 $)) (-1140 $)) 293 (-12 (|has| |#1| (-444)) (|has| |#1| (-542))))) (-3338 (((-411 $) $) NIL (|has| |#1| (-542)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-542))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-542)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-542)))) (-1812 (($ $) 129 (|has| |#1| (-542)))) (-3777 (((-112) $) NIL (|has| $ (-1011 (-550))))) (-3866 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) 407) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1144) (-1 $ (-623 $))) NIL) (($ $ (-1144) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) 361) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1144)) NIL (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-596 (-526)))) (($ $) NIL (|has| |#1| (-596 (-526)))) (($ $ (-114) $ (-1144)) 349 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-114)) (-623 $) (-1144)) 348 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ $))) NIL (|has| |#1| (-1020))) (($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ (-623 $)))) NIL (|has| |#1| (-1020))) (($ $ (-1144) (-749) (-1 $ (-623 $))) NIL (|has| |#1| (-1020))) (($ $ (-1144) (-749) (-1 $ $)) NIL (|has| |#1| (-1020)))) (-3542 (((-749) $) NIL (|has| |#1| (-542)))) (-2944 (($ $) 229 (|has| |#1| (-542)))) (-2680 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-3930 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $) 239 (|has| |#1| (-542)))) (-1885 (($ $) 190 (|has| |#1| (-542)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-1020))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-1020))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-1020))) (($ $ (-1144)) NIL (|has| |#1| (-1020)))) (-2639 (($ $) 73 (|has| |#1| (-542)))) (-2715 (((-1093 |#1| (-594 $)) $) 86 (|has| |#1| (-542)))) (-1310 (($ $) 304 (|has| $ (-1020)))) (-3157 (($ $) 167 (|has| |#1| (-542)))) (-3033 (($ $) 143 (|has| |#1| (-542)))) (-3135 (($ $) 163 (|has| |#1| (-542)))) (-3016 (($ $) 139 (|has| |#1| (-542)))) (-3114 (($ $) 159 (|has| |#1| (-542)))) (-2995 (($ $) 135 (|has| |#1| (-542)))) (-4028 (((-865 (-550)) $) NIL (|has| |#1| (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| |#1| (-596 (-865 (-372))))) (($ (-411 $)) NIL (|has| |#1| (-542))) (((-526) $) 346 (|has| |#1| (-596 (-526))))) (-1270 (($ $ $) NIL (|has| |#1| (-465)))) (-3292 (($ $ $) NIL (|has| |#1| (-465)))) (-1518 (((-836) $) 406) (($ (-594 $)) 397) (($ (-1144)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-542))) (($ (-48)) 299 (-12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550))))) (($ (-1093 |#1| (-594 $))) 88 (|has| |#1| (-1020))) (($ (-400 |#1|)) NIL (|has| |#1| (-542))) (($ (-925 (-400 |#1|))) NIL (|has| |#1| (-542))) (($ (-400 (-925 (-400 |#1|)))) NIL (|has| |#1| (-542))) (($ (-400 (-925 |#1|))) NIL (|has| |#1| (-542))) (($ (-925 |#1|)) NIL (|has| |#1| (-1020))) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-542)) (|has| |#1| (-1011 (-400 (-550)))))) (($ (-550)) 34 (-1561 (|has| |#1| (-1011 (-550))) (|has| |#1| (-1020))))) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL (|has| |#1| (-1020)))) (-3716 (($ $) NIL) (($ (-623 $)) NIL)) (-4224 (($ $ $) 210 (|has| |#1| (-542)))) (-4061 (($ $ $) 196 (|has| |#1| (-542)))) (-4293 (($ $ $) 200 (|has| |#1| (-542)))) (-3950 (($ $ $) 194 (|has| |#1| (-542)))) (-4165 (($ $ $) 198 (|has| |#1| (-542)))) (-2222 (((-112) (-114)) 9)) (-3187 (($ $) 173 (|has| |#1| (-542)))) (-3060 (($ $) 149 (|has| |#1| (-542)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) 169 (|has| |#1| (-542)))) (-3043 (($ $) 145 (|has| |#1| (-542)))) (-3209 (($ $) 177 (|has| |#1| (-542)))) (-3081 (($ $) 153 (|has| |#1| (-542)))) (-3240 (($ (-1144) $) NIL) (($ (-1144) $ $) NIL) (($ (-1144) $ $ $) NIL) (($ (-1144) $ $ $ $) NIL) (($ (-1144) (-623 $)) NIL)) (-3290 (($ $) 204 (|has| |#1| (-542)))) (-1355 (($ $) 202 (|has| |#1| (-542)))) (-3294 (($ $) 179 (|has| |#1| (-542)))) (-3094 (($ $) 155 (|has| |#1| (-542)))) (-3198 (($ $) 175 (|has| |#1| (-542)))) (-3072 (($ $) 151 (|has| |#1| (-542)))) (-3176 (($ $) 171 (|has| |#1| (-542)))) (-3052 (($ $) 147 (|has| |#1| (-542)))) (-1635 (($ $) 182 (|has| |#1| (-542)))) (-2626 (($) 20 (-1561 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))) CONST)) (-2425 (($ $) 233 (|has| |#1| (-542)))) (-2636 (($) 22 (-1561 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) (|has| |#1| (-1080))) CONST)) (-3851 (($ $) 184 (|has| |#1| (-542))) (($ $ $) 186 (|has| |#1| (-542)))) (-2518 (($ $) 231 (|has| |#1| (-542)))) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-1020))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-1020))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-1020))) (($ $ (-1144)) NIL (|has| |#1| (-1020)))) (-2317 (($ $) 235 (|has| |#1| (-542)))) (-1763 (($ $ $) 188 (|has| |#1| (-542)))) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 81)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 80)) (-2414 (($ (-1093 |#1| (-594 $)) (-1093 |#1| (-594 $))) 98 (|has| |#1| (-542))) (($ $ $) 42 (-1561 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-2403 (($ $ $) 40 (-1561 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))))) (($ $) 29 (-1561 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))))) (-2391 (($ $ $) 38 (-1561 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))))) (** (($ $ $) 66 (|has| |#1| (-542))) (($ $ (-400 (-550))) 301 (|has| |#1| (-542))) (($ $ (-550)) 76 (-1561 (|has| |#1| (-465)) (|has| |#1| (-542)))) (($ $ (-749)) 74 (-1561 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) (|has| |#1| (-1080)))) (($ $ (-894)) 78 (-1561 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) (|has| |#1| (-1080))))) (* (($ (-400 (-550)) $) NIL (|has| |#1| (-542))) (($ $ (-400 (-550))) NIL (|has| |#1| (-542))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-1561 (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) (|has| |#1| (-1080)))) (($ (-550) $) 32 (-1561 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))))) (($ (-749) $) NIL (-1561 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))))) (($ (-894) $) NIL (-1561 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))))))) +(((-309 |#1|) (-13 (-423 |#1|) (-10 -8 (IF (|has| |#1| (-542)) (PROGN (-6 (-29 |#1|)) (-6 (-1166)) (-6 (-158)) (-6 (-609)) (-6 (-1107)) (-15 -2419 ($ $)) (-15 -3791 ((-112) $)) (-15 -3713 ($ $ (-550))) (IF (|has| |#1| (-444)) (PROGN (-15 -3562 ((-411 (-1140 $)) (-1140 $))) (-15 -3688 ((-411 (-1140 $)) (-1140 $)))) |%noBranch|) (IF (|has| |#1| (-1011 (-550))) (-6 (-1011 (-48))) |%noBranch|)) |%noBranch|))) (-825)) (T -309)) +((-2419 (*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-542)) (-4 *2 (-825)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-542)) (-4 *3 (-825)))) (-3713 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-309 *3)) (-4 *3 (-542)) (-4 *3 (-825)))) (-3562 (*1 *2 *3) (-12 (-5 *2 (-411 (-1140 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1140 *1)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-825)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-411 (-1140 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1140 *1)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-825))))) +(-13 (-423 |#1|) (-10 -8 (IF (|has| |#1| (-542)) (PROGN (-6 (-29 |#1|)) (-6 (-1166)) (-6 (-158)) (-6 (-609)) (-6 (-1107)) (-15 -2419 ($ $)) (-15 -3791 ((-112) $)) (-15 -3713 ($ $ (-550))) (IF (|has| |#1| (-444)) (PROGN (-15 -3562 ((-411 (-1140 $)) (-1140 $))) (-15 -3688 ((-411 (-1140 $)) (-1140 $)))) |%noBranch|) (IF (|has| |#1| (-1011 (-550))) (-6 (-1011 (-48))) |%noBranch|)) |%noBranch|))) +((-3871 (((-52) |#2| (-114) (-287 |#2|) (-623 |#2|)) 88) (((-52) |#2| (-114) (-287 |#2|) (-287 |#2|)) 84) (((-52) |#2| (-114) (-287 |#2|) |#2|) 86) (((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|) 87) (((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|))) 80) (((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 |#2|)) 82) (((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 |#2|)) 83) (((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|))) 81) (((-52) (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|)) 89) (((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|)) 85))) +(((-310 |#1| |#2|) (-10 -7 (-15 -3871 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|))) (-15 -3871 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|))) (-15 -3871 ((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|)))) (-15 -3871 ((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 |#2|))) (-15 -3871 ((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 |#2|))) (-15 -3871 ((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|)))) (-15 -3871 ((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|)) (-15 -3871 ((-52) |#2| (-114) (-287 |#2|) |#2|)) (-15 -3871 ((-52) |#2| (-114) (-287 |#2|) (-287 |#2|))) (-15 -3871 ((-52) |#2| (-114) (-287 |#2|) (-623 |#2|)))) (-13 (-825) (-542) (-596 (-526))) (-423 |#1|)) (T -310)) +((-3871 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-5 *6 (-623 *3)) (-4 *3 (-423 *7)) (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *3)))) (-3871 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-3871 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-3871 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-287 *5)) (-5 *4 (-114)) (-4 *5 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *5)))) (-3871 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-114))) (-5 *6 (-623 (-287 *8))) (-4 *8 (-423 *7)) (-5 *5 (-287 *8)) (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *8)))) (-3871 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-623 *7)) (-5 *4 (-623 (-114))) (-5 *5 (-287 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-3871 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 (-287 *8))) (-5 *4 (-623 (-114))) (-5 *5 (-287 *8)) (-5 *6 (-623 *8)) (-4 *8 (-423 *7)) (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *8)))) (-3871 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-623 (-287 *7))) (-5 *4 (-623 (-114))) (-5 *5 (-287 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-3871 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-623 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-3871 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-287 *6)) (-5 *4 (-114)) (-4 *6 (-423 *5)) (-4 *5 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *6))))) +(-10 -7 (-15 -3871 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|))) (-15 -3871 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|))) (-15 -3871 ((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|)))) (-15 -3871 ((-52) (-623 (-287 |#2|)) (-623 (-114)) (-287 |#2|) (-623 |#2|))) (-15 -3871 ((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 |#2|))) (-15 -3871 ((-52) (-623 |#2|) (-623 (-114)) (-287 |#2|) (-623 (-287 |#2|)))) (-15 -3871 ((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|)) (-15 -3871 ((-52) |#2| (-114) (-287 |#2|) |#2|)) (-15 -3871 ((-52) |#2| (-114) (-287 |#2|) (-287 |#2|))) (-15 -3871 ((-52) |#2| (-114) (-287 |#2|) (-623 |#2|)))) +((-2866 (((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-219) (-550) (-1126)) 46) (((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-219) (-550)) 47) (((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-1 (-219) (-219)) (-550) (-1126)) 43) (((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-1 (-219) (-219)) (-550)) 44)) (-2770 (((-1 (-219) (-219)) (-219)) 45))) +(((-311) (-10 -7 (-15 -2770 ((-1 (-219) (-219)) (-219))) (-15 -2866 ((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-1 (-219) (-219)) (-550))) (-15 -2866 ((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-1 (-219) (-219)) (-550) (-1126))) (-15 -2866 ((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-219) (-550))) (-15 -2866 ((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-219) (-550) (-1126))))) (T -311)) +((-2866 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1062 (-219))) (-5 *6 (-219)) (-5 *7 (-550)) (-5 *8 (-1126)) (-5 *2 (-1176 (-899))) (-5 *1 (-311)))) (-2866 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1062 (-219))) (-5 *6 (-219)) (-5 *7 (-550)) (-5 *2 (-1176 (-899))) (-5 *1 (-311)))) (-2866 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1062 (-219))) (-5 *6 (-550)) (-5 *7 (-1126)) (-5 *2 (-1176 (-899))) (-5 *1 (-311)))) (-2866 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1062 (-219))) (-5 *6 (-550)) (-5 *2 (-1176 (-899))) (-5 *1 (-311)))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) +(-10 -7 (-15 -2770 ((-1 (-219) (-219)) (-219))) (-15 -2866 ((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-1 (-219) (-219)) (-550))) (-15 -2866 ((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-1 (-219) (-219)) (-550) (-1126))) (-15 -2866 ((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-219) (-550))) (-15 -2866 ((-1176 (-899)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-219) (-550) (-1126)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 25)) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-2370 (($ $ (-400 (-550))) NIL) (($ $ (-400 (-550)) (-400 (-550))) NIL)) (-2575 (((-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) 20)) (-3123 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3103 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) 32)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-3478 (((-112) $) NIL)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-400 (-550)) $) NIL) (((-400 (-550)) $ (-400 (-550))) 16)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) NIL) (($ $ (-400 (-550))) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-400 (-550))) NIL) (($ $ (-1050) (-400 (-550))) NIL) (($ $ (-623 (-1050)) (-623 (-400 (-550)))) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-1489 (($ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166)))))) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2272 (($ $ (-400 (-550))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-2941 (((-400 (-550)) $) 17)) (-2041 (($ (-1212 |#1| |#2| |#3|)) 11)) (-3521 (((-1212 |#1| |#2| |#3|) $) 12)) (-1812 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ (-400 (-550))) NIL) (($ $ $) NIL (|has| (-400 (-550)) (-1080)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2970 (((-400 (-550)) $) NIL)) (-3157 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 10)) (-1518 (((-836) $) 38) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-2510 ((|#1| $ (-400 (-550))) 30)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-3335 ((|#1| $) NIL)) (-3187 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-400 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 27)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 33)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-312 |#1| |#2| |#3|) (-13 (-1208 |#1|) (-770) (-10 -8 (-15 -2041 ($ (-1212 |#1| |#2| |#3|))) (-15 -3521 ((-1212 |#1| |#2| |#3|) $)) (-15 -2941 ((-400 (-550)) $)))) (-13 (-356) (-825)) (-1144) |#1|) (T -312)) +((-2041 (*1 *1 *2) (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1144)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-1212 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1144)) (-14 *5 *3))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1144)) (-14 *5 *3)))) +(-13 (-1208 |#1|) (-770) (-10 -8 (-15 -2041 ($ (-1212 |#1| |#2| |#3|))) (-15 -3521 ((-1212 |#1| |#2| |#3|) $)) (-15 -2941 ((-400 (-550)) $)))) +((-1460 (((-2 (|:| -3521 (-749)) (|:| -2855 |#1|) (|:| |radicand| (-623 |#1|))) (-411 |#1|) (-749)) 24)) (-2958 (((-623 (-2 (|:| -2855 (-749)) (|:| |logand| |#1|))) (-411 |#1|)) 28))) +(((-313 |#1|) (-10 -7 (-15 -1460 ((-2 (|:| -3521 (-749)) (|:| -2855 |#1|) (|:| |radicand| (-623 |#1|))) (-411 |#1|) (-749))) (-15 -2958 ((-623 (-2 (|:| -2855 (-749)) (|:| |logand| |#1|))) (-411 |#1|)))) (-542)) (T -313)) +((-2958 (*1 *2 *3) (-12 (-5 *3 (-411 *4)) (-4 *4 (-542)) (-5 *2 (-623 (-2 (|:| -2855 (-749)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) (-1460 (*1 *2 *3 *4) (-12 (-5 *3 (-411 *5)) (-4 *5 (-542)) (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *5) (|:| |radicand| (-623 *5)))) (-5 *1 (-313 *5)) (-5 *4 (-749))))) +(-10 -7 (-15 -1460 ((-2 (|:| -3521 (-749)) (|:| -2855 |#1|) (|:| |radicand| (-623 |#1|))) (-411 |#1|) (-749))) (-15 -2958 ((-623 (-2 (|:| -2855 (-749)) (|:| |logand| |#1|))) (-411 |#1|)))) +((-3141 (((-623 |#2|) (-1140 |#4|)) 43)) (-2246 ((|#3| (-550)) 46)) (-3184 (((-1140 |#4|) (-1140 |#3|)) 30)) (-3271 (((-1140 |#4|) (-1140 |#4|) (-550)) 56)) (-3100 (((-1140 |#3|) (-1140 |#4|)) 21)) (-2970 (((-623 (-749)) (-1140 |#4|) (-623 |#2|)) 40)) (-3020 (((-1140 |#3|) (-1140 |#4|) (-623 |#2|) (-623 |#3|)) 35))) +(((-314 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3020 ((-1140 |#3|) (-1140 |#4|) (-623 |#2|) (-623 |#3|))) (-15 -2970 ((-623 (-749)) (-1140 |#4|) (-623 |#2|))) (-15 -3141 ((-623 |#2|) (-1140 |#4|))) (-15 -3100 ((-1140 |#3|) (-1140 |#4|))) (-15 -3184 ((-1140 |#4|) (-1140 |#3|))) (-15 -3271 ((-1140 |#4|) (-1140 |#4|) (-550))) (-15 -2246 (|#3| (-550)))) (-771) (-825) (-1020) (-922 |#3| |#1| |#2|)) (T -314)) +((-2246 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1020)) (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-922 *2 *4 *5)))) (-3271 (*1 *2 *2 *3) (-12 (-5 *2 (-1140 *7)) (-5 *3 (-550)) (-4 *7 (-922 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1140 *6)) (-4 *6 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-1140 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-922 *6 *4 *5)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1140 *7)) (-4 *7 (-922 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) (-5 *2 (-1140 *6)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-1140 *7)) (-4 *7 (-922 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) (-5 *2 (-623 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-1140 *8)) (-5 *4 (-623 *6)) (-4 *6 (-825)) (-4 *8 (-922 *7 *5 *6)) (-4 *5 (-771)) (-4 *7 (-1020)) (-5 *2 (-623 (-749))) (-5 *1 (-314 *5 *6 *7 *8)))) (-3020 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1140 *9)) (-5 *4 (-623 *7)) (-5 *5 (-623 *8)) (-4 *7 (-825)) (-4 *8 (-1020)) (-4 *9 (-922 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-1140 *8)) (-5 *1 (-314 *6 *7 *8 *9))))) +(-10 -7 (-15 -3020 ((-1140 |#3|) (-1140 |#4|) (-623 |#2|) (-623 |#3|))) (-15 -2970 ((-623 (-749)) (-1140 |#4|) (-623 |#2|))) (-15 -3141 ((-623 |#2|) (-1140 |#4|))) (-15 -3100 ((-1140 |#3|) (-1140 |#4|))) (-15 -3184 ((-1140 |#4|) (-1140 |#3|))) (-15 -3271 ((-1140 |#4|) (-1140 |#4|) (-550))) (-15 -2246 (|#3| (-550)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 14)) (-2575 (((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-550)))) $) 18)) (-3219 (((-3 $ "failed") $ $) NIL)) (-4319 (((-749) $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-1980 ((|#1| $ (-550)) NIL)) (-2468 (((-550) $ (-550)) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2808 (($ (-1 |#1| |#1|) $) NIL)) (-2388 (($ (-1 (-550) (-550)) $) 10)) (-1825 (((-1126) $) NIL)) (-2314 (($ $ $) NIL (|has| (-550) (-770)))) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL) (($ |#1|) NIL)) (-2510 (((-550) |#1| $) NIL)) (-2626 (($) 15 T CONST)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) 21 (|has| |#1| (-825)))) (-2403 (($ $) 11) (($ $ $) 20)) (-2391 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL) (($ (-550) |#1|) 19))) +(((-315 |#1|) (-13 (-21) (-696 (-550)) (-316 |#1| (-550)) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1068)) (T -315)) +NIL +(-13 (-21) (-696 (-550)) (-316 |#1| (-550)) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-2575 (((-623 (-2 (|:| |gen| |#1|) (|:| -1812 |#2|))) $) 27)) (-3219 (((-3 $ "failed") $ $) 19)) (-4319 (((-749) $) 28)) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#1| "failed") $) 32)) (-2726 ((|#1| $) 31)) (-1980 ((|#1| $ (-550)) 25)) (-2468 ((|#2| $ (-550)) 26)) (-2808 (($ (-1 |#1| |#1|) $) 22)) (-2388 (($ (-1 |#2| |#2|) $) 23)) (-1825 (((-1126) $) 9)) (-2314 (($ $ $) 21 (|has| |#2| (-770)))) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ |#1|) 33)) (-2510 ((|#2| |#1| $) 24)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2391 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ |#2| |#1|) 29))) +(((-316 |#1| |#2|) (-138) (-1068) (-130)) (T -316)) +((-2391 (*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-130)))) (-4319 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-130)) (-5 *2 (-749)))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-130)) (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 *4)))))) (-2468 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-130)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1068)))) (-2510 (*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-130)))) (-2388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-130)))) (-2808 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-130)))) (-2314 (*1 *1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-130)) (-4 *3 (-770))))) +(-13 (-130) (-1011 |t#1|) (-10 -8 (-15 -2391 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -4319 ((-749) $)) (-15 -2575 ((-623 (-2 (|:| |gen| |t#1|) (|:| -1812 |t#2|))) $)) (-15 -2468 (|t#2| $ (-550))) (-15 -1980 (|t#1| $ (-550))) (-15 -2510 (|t#2| |t#1| $)) (-15 -2388 ($ (-1 |t#2| |t#2|) $)) (-15 -2808 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-770)) (-15 -2314 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-1011 |#1|) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-2575 (((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-749)))) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-4319 (((-749) $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-1980 ((|#1| $ (-550)) NIL)) (-2468 (((-749) $ (-550)) NIL)) (-2808 (($ (-1 |#1| |#1|) $) NIL)) (-2388 (($ (-1 (-749) (-749)) $) NIL)) (-1825 (((-1126) $) NIL)) (-2314 (($ $ $) NIL (|has| (-749) (-770)))) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL) (($ |#1|) NIL)) (-2510 (((-749) |#1| $) NIL)) (-2626 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2391 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-749) |#1|) NIL))) +(((-317 |#1|) (-316 |#1| (-749)) (-1068)) (T -317)) +NIL +(-316 |#1| (-749)) +((-2674 (($ $) 53)) (-2613 (($ $ |#2| |#3| $) 14)) (-2688 (($ (-1 |#3| |#3|) $) 33)) (-3248 (((-112) $) 24)) (-3256 ((|#2| $) 26)) (-1495 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-2503 ((|#2| $) 49)) (-3511 (((-623 |#2|) $) 36)) (-2540 (($ $ $ (-749)) 20)) (-2414 (($ $ |#2|) 40))) +(((-318 |#1| |#2| |#3|) (-10 -8 (-15 -2674 (|#1| |#1|)) (-15 -2503 (|#2| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2540 (|#1| |#1| |#1| (-749))) (-15 -2613 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2688 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3511 ((-623 |#2|) |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -3248 ((-112) |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2414 (|#1| |#1| |#2|))) (-319 |#2| |#3|) (-1020) (-770)) (T -318)) +NIL +(-10 -8 (-15 -2674 (|#1| |#1|)) (-15 -2503 (|#2| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2540 (|#1| |#1| |#1| (-749))) (-15 -2613 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2688 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3511 ((-623 |#2|) |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -3248 ((-112) |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2414 (|#1| |#1| |#2|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 88 (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 86 (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 85)) (-2726 (((-550) $) 89 (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) 87 (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 84)) (-3295 (($ $) 58)) (-1386 (((-3 $ "failed") $) 32)) (-2674 (($ $) 73 (|has| |#1| (-444)))) (-2613 (($ $ |#1| |#2| $) 77)) (-3102 (((-112) $) 30)) (-2603 (((-749) $) 80)) (-3439 (((-112) $) 60)) (-3118 (($ |#1| |#2|) 59)) (-1667 ((|#2| $) 79)) (-2688 (($ (-1 |#2| |#2|) $) 78)) (-3972 (($ (-1 |#1| |#1|) $) 61)) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3248 (((-112) $) 83)) (-3256 ((|#1| $) 82)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-542)))) (-2970 ((|#2| $) 62)) (-2503 ((|#1| $) 74 (|has| |#1| (-444)))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45) (($ (-400 (-550))) 55 (-1561 (|has| |#1| (-1011 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550))))))) (-3511 (((-623 |#1|) $) 81)) (-2510 ((|#1| $ |#2|) 57)) (-4242 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-2540 (($ $ $ (-749)) 76 (|has| |#1| (-170)))) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-319 |#1| |#2|) (-138) (-1020) (-770)) (T -319)) +((-3248 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) (-5 *2 (-112)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) (-5 *2 (-623 *3)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) (-5 *2 (-749)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) (-2688 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)))) (-2613 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)))) (-2540 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) (-4 *3 (-170)))) (-1495 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)) (-4 *2 (-542)))) (-2503 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)) (-4 *2 (-444)))) (-2674 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)) (-4 *2 (-444))))) +(-13 (-47 |t#1| |t#2|) (-404 |t#1|) (-10 -8 (-15 -3248 ((-112) $)) (-15 -3256 (|t#1| $)) (-15 -3511 ((-623 |t#1|) $)) (-15 -2603 ((-749) $)) (-15 -1667 (|t#2| $)) (-15 -2688 ($ (-1 |t#2| |t#2|) $)) (-15 -2613 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -2540 ($ $ $ (-749))) |%noBranch|) (IF (|has| |t#1| (-542)) (-15 -1495 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -2503 (|t#1| $)) (-15 -2674 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-404 |#1|) . T) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1026 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1734 (((-112) (-112)) NIL)) (-1705 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343)))) (-3378 (($ (-1 (-112) |#1|) $) NIL)) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-3912 (($ $) NIL (|has| |#1| (-1068)))) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3112 (($ |#1| $) NIL (|has| |#1| (-1068))) (($ (-1 (-112) |#1|) $) NIL)) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-2302 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068)))) (-1884 (($ $ (-550)) NIL)) (-3769 (((-749) $) NIL)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2578 (($ (-749) |#1|) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-3884 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-1886 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2055 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3888 (($ (-623 |#1|)) NIL)) (-1293 ((|#1| $) NIL (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3476 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-3547 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3227 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-320 |#1|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -3888 ($ (-623 |#1|))) (-15 -3769 ((-749) $)) (-15 -1884 ($ $ (-550))) (-15 -1734 ((-112) (-112))))) (-1181)) (T -320)) +((-3888 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-320 *3)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-320 *3)) (-4 *3 (-1181)))) (-1884 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-320 *3)) (-4 *3 (-1181)))) (-1734 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1181))))) +(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -3888 ($ (-623 |#1|))) (-15 -3769 ((-749) $)) (-15 -1884 ($ $ (-550))) (-15 -1734 ((-112) (-112))))) +((-4212 (((-112) $) 42)) (-2155 (((-749)) 22)) (-2252 ((|#2| $) 46) (($ $ (-894)) 101)) (-4319 (((-749)) 102)) (-4110 (($ (-1227 |#2|)) 20)) (-2340 (((-112) $) 115)) (-1389 ((|#2| $) 48) (($ $ (-894)) 99)) (-1428 (((-1140 |#2|) $) NIL) (((-1140 $) $ (-894)) 95)) (-4116 (((-1140 |#2|) $) 82)) (-4008 (((-1140 |#2|) $) 79) (((-3 (-1140 |#2|) "failed") $ $) 76)) (-4235 (($ $ (-1140 |#2|)) 53)) (-3990 (((-811 (-894))) 28) (((-894)) 43)) (-2854 (((-133)) 25)) (-2970 (((-811 (-894)) $) 30) (((-894) $) 117)) (-1273 (($) 108)) (-1373 (((-1227 |#2|) $) NIL) (((-667 |#2|) (-1227 $)) 39)) (-4242 (($ $) NIL) (((-3 $ "failed") $) 85)) (-1288 (((-112) $) 41))) +(((-321 |#1| |#2|) (-10 -8 (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -4319 ((-749))) (-15 -4242 (|#1| |#1|)) (-15 -4008 ((-3 (-1140 |#2|) "failed") |#1| |#1|)) (-15 -4008 ((-1140 |#2|) |#1|)) (-15 -4116 ((-1140 |#2|) |#1|)) (-15 -4235 (|#1| |#1| (-1140 |#2|))) (-15 -2340 ((-112) |#1|)) (-15 -1273 (|#1|)) (-15 -2252 (|#1| |#1| (-894))) (-15 -1389 (|#1| |#1| (-894))) (-15 -1428 ((-1140 |#1|) |#1| (-894))) (-15 -2252 (|#2| |#1|)) (-15 -1389 (|#2| |#1|)) (-15 -2970 ((-894) |#1|)) (-15 -3990 ((-894))) (-15 -1428 ((-1140 |#2|) |#1|)) (-15 -4110 (|#1| (-1227 |#2|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1|)) (-15 -2155 ((-749))) (-15 -3990 ((-811 (-894)))) (-15 -2970 ((-811 (-894)) |#1|)) (-15 -4212 ((-112) |#1|)) (-15 -1288 ((-112) |#1|)) (-15 -2854 ((-133)))) (-322 |#2|) (-356)) (T -321)) +((-2854 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3990 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-811 (-894))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-2155 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3990 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-894)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4319 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))) +(-10 -8 (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -4319 ((-749))) (-15 -4242 (|#1| |#1|)) (-15 -4008 ((-3 (-1140 |#2|) "failed") |#1| |#1|)) (-15 -4008 ((-1140 |#2|) |#1|)) (-15 -4116 ((-1140 |#2|) |#1|)) (-15 -4235 (|#1| |#1| (-1140 |#2|))) (-15 -2340 ((-112) |#1|)) (-15 -1273 (|#1|)) (-15 -2252 (|#1| |#1| (-894))) (-15 -1389 (|#1| |#1| (-894))) (-15 -1428 ((-1140 |#1|) |#1| (-894))) (-15 -2252 (|#2| |#1|)) (-15 -1389 (|#2| |#1|)) (-15 -2970 ((-894) |#1|)) (-15 -3990 ((-894))) (-15 -1428 ((-1140 |#2|) |#1|)) (-15 -4110 (|#1| (-1227 |#2|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1|)) (-15 -2155 ((-749))) (-15 -3990 ((-811 (-894)))) (-15 -2970 ((-811 (-894)) |#1|)) (-15 -4212 ((-112) |#1|)) (-15 -1288 ((-112) |#1|)) (-15 -2854 ((-133)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-4212 (((-112) $) 91)) (-2155 (((-749)) 87)) (-2252 ((|#1| $) 137) (($ $ (-894)) 134 (|has| |#1| (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) 119 (|has| |#1| (-361)))) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3631 (((-112) $ $) 57)) (-4319 (((-749)) 109 (|has| |#1| (-361)))) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#1| "failed") $) 98)) (-2726 ((|#1| $) 97)) (-4110 (($ (-1227 |#1|)) 143)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-361)))) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1741 (($) 106 (|has| |#1| (-361)))) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3485 (($) 121 (|has| |#1| (-361)))) (-3697 (((-112) $) 122 (|has| |#1| (-361)))) (-3714 (($ $ (-749)) 84 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3933 (((-112) $) 68)) (-2475 (((-894) $) 124 (|has| |#1| (-361))) (((-811 (-894)) $) 81 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3102 (((-112) $) 30)) (-2529 (($) 132 (|has| |#1| (-361)))) (-2340 (((-112) $) 131 (|has| |#1| (-361)))) (-1389 ((|#1| $) 138) (($ $ (-894)) 135 (|has| |#1| (-361)))) (-2826 (((-3 $ "failed") $) 110 (|has| |#1| (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-1428 (((-1140 |#1|) $) 142) (((-1140 $) $ (-894)) 136 (|has| |#1| (-361)))) (-2253 (((-894) $) 107 (|has| |#1| (-361)))) (-4116 (((-1140 |#1|) $) 128 (|has| |#1| (-361)))) (-4008 (((-1140 |#1|) $) 127 (|has| |#1| (-361))) (((-3 (-1140 |#1|) "failed") $ $) 126 (|has| |#1| (-361)))) (-4235 (($ $ (-1140 |#1|)) 129 (|has| |#1| (-361)))) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-3862 (($) 111 (|has| |#1| (-361)) CONST)) (-2922 (($ (-894)) 108 (|has| |#1| (-361)))) (-4100 (((-112) $) 90)) (-3337 (((-1088) $) 10)) (-3935 (($) 130 (|has| |#1| (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 118 (|has| |#1| (-361)))) (-3338 (((-411 $) $) 71)) (-3990 (((-811 (-894))) 88) (((-894)) 140)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-3811 (((-749) $) 123 (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) 82 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2854 (((-133)) 96)) (-2393 (($ $) 115 (|has| |#1| (-361))) (($ $ (-749)) 113 (|has| |#1| (-361)))) (-2970 (((-811 (-894)) $) 89) (((-894) $) 139)) (-1310 (((-1140 |#1|)) 141)) (-4288 (($) 120 (|has| |#1| (-361)))) (-1273 (($) 133 (|has| |#1| (-361)))) (-1373 (((-1227 |#1|) $) 145) (((-667 |#1|) (-1227 $)) 144)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 117 (|has| |#1| (-361)))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ |#1|) 99)) (-4242 (($ $) 116 (|has| |#1| (-361))) (((-3 $ "failed") $) 80 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2390 (((-749)) 28)) (-2437 (((-1227 $)) 147) (((-1227 $) (-894)) 146)) (-1345 (((-112) $ $) 37)) (-1288 (((-112) $) 92)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2072 (($ $) 86 (|has| |#1| (-361))) (($ $ (-749)) 85 (|has| |#1| (-361)))) (-4183 (($ $) 114 (|has| |#1| (-361))) (($ $ (-749)) 112 (|has| |#1| (-361)))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 62) (($ $ |#1|) 95)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) (((-322 |#1|) (-138) (-356)) (T -322)) -((-2123 (*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1224 *1)) (-4 *1 (-322 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-356)) (-5 *2 (-1224 *1)) (-4 *1 (-322 *4)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1224 *3)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1136 *3)))) (-3519 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1136 *3)))) (-4273 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-890)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-890)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1136 *1)) (-4 *1 (-322 *4)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-3672 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-1721 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2124 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) (-2492 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-1720 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3)))) (-1718 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3))))) -(-13 (-1243 |t#1|) (-1009 |t#1|) (-10 -8 (-15 -2123 ((-1224 $))) (-15 -2123 ((-1224 $) (-890))) (-15 -3558 ((-1224 |t#1|) $)) (-15 -3558 ((-665 |t#1|) (-1224 $))) (-15 -1906 ($ (-1224 |t#1|))) (-15 -2125 ((-1136 |t#1|) $)) (-15 -3519 ((-1136 |t#1|))) (-15 -4273 ((-890))) (-15 -4290 ((-890) $)) (-15 -3450 (|t#1| $)) (-15 -3672 (|t#1| $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-343)) (-15 -2125 ((-1136 $) $ (-890))) (-15 -3450 ($ $ (-890))) (-15 -3672 ($ $ (-890))) (-15 -1721 ($)) (-15 -2124 ($)) (-15 -2122 ((-112) $)) (-15 -2492 ($)) (-15 -1720 ($ $ (-1136 |t#1|))) (-15 -1719 ((-1136 |t#1|) $)) (-15 -1718 ((-1136 |t#1|) $)) (-15 -1718 ((-3 (-1136 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-227) |has| |#1| (-361)) ((-237) . T) ((-283) . T) ((-300) . T) ((-1243 |#1|) . T) ((-356) . T) ((-395) -3874 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-361) |has| |#1| (-361)) ((-343) |has| |#1| (-361)) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1009 |#1|) . T) ((-1024 #1#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-361)) ((-1183) . T) ((-1232 |#1|) . T)) -((-2887 (((-112) $ $) NIL)) (-1739 (($ (-1141) $) 88)) (-1730 (($) 77)) (-1722 (((-1086) (-1086)) 11)) (-1729 (($) 78)) (-1733 (($) 90) (($ (-307 (-675))) 98) (($ (-307 (-677))) 94) (($ (-307 (-670))) 102) (($ (-307 (-371))) 109) (($ (-307 (-535))) 105) (($ (-307 (-166 (-371)))) 113)) (-1738 (($ (-1141) $) 89)) (-1728 (($ (-618 (-835))) 79)) (-1724 (((-1230) $) 75)) (-1726 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1737 (($ (-1086)) 51)) (-1723 (((-1069) $) 25)) (-1740 (($ (-1058 (-917 (-535))) $) 85) (($ (-1058 (-917 (-535))) (-917 (-535)) $) 86)) (-1736 (($ (-1086)) 87)) (-1732 (($ (-1141) $) 115) (($ (-1141) $ $) 116)) (-1727 (($ (-1142) (-618 (-1142))) 76)) (-1735 (($ (-1124)) 82) (($ (-618 (-1124))) 80)) (-4300 (((-835) $) 118)) (-1725 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3745 (-112)) (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |blockBranch| (-618 $)) (|:| |commentBranch| (-618 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) (|:| -3567 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 $))) (|:| |commonBranch| (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) (|:| |printBranch| (-618 (-835)))) $) 44)) (-1734 (($ (-1124)) 187)) (-1731 (($ (-618 $)) 114)) (-2905 (($ (-1142) (-1124)) 120) (($ (-1142) (-307 (-677))) 160) (($ (-1142) (-307 (-675))) 161) (($ (-1142) (-307 (-670))) 162) (($ (-1142) (-665 (-677))) 123) (($ (-1142) (-665 (-675))) 126) (($ (-1142) (-665 (-670))) 129) (($ (-1142) (-1224 (-677))) 132) (($ (-1142) (-1224 (-675))) 135) (($ (-1142) (-1224 (-670))) 138) (($ (-1142) (-665 (-307 (-677)))) 141) (($ (-1142) (-665 (-307 (-675)))) 144) (($ (-1142) (-665 (-307 (-670)))) 147) (($ (-1142) (-1224 (-307 (-677)))) 150) (($ (-1142) (-1224 (-307 (-675)))) 153) (($ (-1142) (-1224 (-307 (-670)))) 156) (($ (-1142) (-618 (-917 (-535))) (-307 (-677))) 157) (($ (-1142) (-618 (-917 (-535))) (-307 (-675))) 158) (($ (-1142) (-618 (-917 (-535))) (-307 (-670))) 159) (($ (-1142) (-307 (-535))) 184) (($ (-1142) (-307 (-371))) 185) (($ (-1142) (-307 (-166 (-371)))) 186) (($ (-1142) (-665 (-307 (-535)))) 165) (($ (-1142) (-665 (-307 (-371)))) 168) (($ (-1142) (-665 (-307 (-166 (-371))))) 171) (($ (-1142) (-1224 (-307 (-535)))) 174) (($ (-1142) (-1224 (-307 (-371)))) 177) (($ (-1142) (-1224 (-307 (-166 (-371))))) 180) (($ (-1142) (-618 (-917 (-535))) (-307 (-535))) 181) (($ (-1142) (-618 (-917 (-535))) (-307 (-371))) 182) (($ (-1142) (-618 (-917 (-535))) (-307 (-166 (-371)))) 183)) (-3375 (((-112) $ $) NIL))) -(((-323) (-13 (-1067) (-10 -8 (-15 -4300 ((-835) $)) (-15 -1740 ($ (-1058 (-917 (-535))) $)) (-15 -1740 ($ (-1058 (-917 (-535))) (-917 (-535)) $)) (-15 -1739 ($ (-1141) $)) (-15 -1738 ($ (-1141) $)) (-15 -1737 ($ (-1086))) (-15 -1736 ($ (-1086))) (-15 -1735 ($ (-1124))) (-15 -1735 ($ (-618 (-1124)))) (-15 -1734 ($ (-1124))) (-15 -1733 ($)) (-15 -1733 ($ (-307 (-675)))) (-15 -1733 ($ (-307 (-677)))) (-15 -1733 ($ (-307 (-670)))) (-15 -1733 ($ (-307 (-371)))) (-15 -1733 ($ (-307 (-535)))) (-15 -1733 ($ (-307 (-166 (-371))))) (-15 -1732 ($ (-1141) $)) (-15 -1732 ($ (-1141) $ $)) (-15 -2905 ($ (-1142) (-1124))) (-15 -2905 ($ (-1142) (-307 (-677)))) (-15 -2905 ($ (-1142) (-307 (-675)))) (-15 -2905 ($ (-1142) (-307 (-670)))) (-15 -2905 ($ (-1142) (-665 (-677)))) (-15 -2905 ($ (-1142) (-665 (-675)))) (-15 -2905 ($ (-1142) (-665 (-670)))) (-15 -2905 ($ (-1142) (-1224 (-677)))) (-15 -2905 ($ (-1142) (-1224 (-675)))) (-15 -2905 ($ (-1142) (-1224 (-670)))) (-15 -2905 ($ (-1142) (-665 (-307 (-677))))) (-15 -2905 ($ (-1142) (-665 (-307 (-675))))) (-15 -2905 ($ (-1142) (-665 (-307 (-670))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-677))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-675))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-670))))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-677)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-675)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-670)))) (-15 -2905 ($ (-1142) (-307 (-535)))) (-15 -2905 ($ (-1142) (-307 (-371)))) (-15 -2905 ($ (-1142) (-307 (-166 (-371))))) (-15 -2905 ($ (-1142) (-665 (-307 (-535))))) (-15 -2905 ($ (-1142) (-665 (-307 (-371))))) (-15 -2905 ($ (-1142) (-665 (-307 (-166 (-371)))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-535))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-371))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-166 (-371)))))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-535)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-371)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-166 (-371))))) (-15 -1731 ($ (-618 $))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($ (-618 (-835)))) (-15 -1727 ($ (-1142) (-618 (-1142)))) (-15 -1726 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1725 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3745 (-112)) (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |blockBranch| (-618 $)) (|:| |commentBranch| (-618 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) (|:| -3567 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 $))) (|:| |commonBranch| (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) (|:| |printBranch| (-618 (-835)))) $)) (-15 -1724 ((-1230) $)) (-15 -1723 ((-1069) $)) (-15 -1722 ((-1086) (-1086)))))) (T -323)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-323)))) (-1740 (*1 *1 *2 *1) (-12 (-5 *2 (-1058 (-917 (-535)))) (-5 *1 (-323)))) (-1740 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1058 (-917 (-535)))) (-5 *3 (-917 (-535))) (-5 *1 (-323)))) (-1739 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-1738 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))) (-1735 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))) (-1735 (*1 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-323)))) (-1734 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))) (-1733 (*1 *1) (-5 *1 (-323))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-670))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-1732 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-1732 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-677))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-675))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-670))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-677))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-675))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-670))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-677))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-675))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-670))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-677)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-675)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-670)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-677)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-675)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-670)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-677))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-675))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-670))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-535))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-371))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-535)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-371)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-166 (-371))))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-535)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-371)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-166 (-371))))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-535))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-371))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-1731 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-5 *1 (-323)))) (-1730 (*1 *1) (-5 *1 (-323))) (-1729 (*1 *1) (-5 *1 (-323))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-323)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1142)) (-5 *1 (-323)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| (-2 (|:| -3745 (-112)) (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |blockBranch| (-618 (-323))) (|:| |commentBranch| (-618 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) (|:| -3567 (-323)))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 (-323)))) (|:| |commonBranch| (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) (|:| |printBranch| (-618 (-835))))) (-5 *1 (-323)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-323)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-323)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323))))) -(-13 (-1067) (-10 -8 (-15 -4300 ((-835) $)) (-15 -1740 ($ (-1058 (-917 (-535))) $)) (-15 -1740 ($ (-1058 (-917 (-535))) (-917 (-535)) $)) (-15 -1739 ($ (-1141) $)) (-15 -1738 ($ (-1141) $)) (-15 -1737 ($ (-1086))) (-15 -1736 ($ (-1086))) (-15 -1735 ($ (-1124))) (-15 -1735 ($ (-618 (-1124)))) (-15 -1734 ($ (-1124))) (-15 -1733 ($)) (-15 -1733 ($ (-307 (-675)))) (-15 -1733 ($ (-307 (-677)))) (-15 -1733 ($ (-307 (-670)))) (-15 -1733 ($ (-307 (-371)))) (-15 -1733 ($ (-307 (-535)))) (-15 -1733 ($ (-307 (-166 (-371))))) (-15 -1732 ($ (-1141) $)) (-15 -1732 ($ (-1141) $ $)) (-15 -2905 ($ (-1142) (-1124))) (-15 -2905 ($ (-1142) (-307 (-677)))) (-15 -2905 ($ (-1142) (-307 (-675)))) (-15 -2905 ($ (-1142) (-307 (-670)))) (-15 -2905 ($ (-1142) (-665 (-677)))) (-15 -2905 ($ (-1142) (-665 (-675)))) (-15 -2905 ($ (-1142) (-665 (-670)))) (-15 -2905 ($ (-1142) (-1224 (-677)))) (-15 -2905 ($ (-1142) (-1224 (-675)))) (-15 -2905 ($ (-1142) (-1224 (-670)))) (-15 -2905 ($ (-1142) (-665 (-307 (-677))))) (-15 -2905 ($ (-1142) (-665 (-307 (-675))))) (-15 -2905 ($ (-1142) (-665 (-307 (-670))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-677))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-675))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-670))))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-677)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-675)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-670)))) (-15 -2905 ($ (-1142) (-307 (-535)))) (-15 -2905 ($ (-1142) (-307 (-371)))) (-15 -2905 ($ (-1142) (-307 (-166 (-371))))) (-15 -2905 ($ (-1142) (-665 (-307 (-535))))) (-15 -2905 ($ (-1142) (-665 (-307 (-371))))) (-15 -2905 ($ (-1142) (-665 (-307 (-166 (-371)))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-535))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-371))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-166 (-371)))))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-535)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-371)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-166 (-371))))) (-15 -1731 ($ (-618 $))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($ (-618 (-835)))) (-15 -1727 ($ (-1142) (-618 (-1142)))) (-15 -1726 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1725 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3745 (-112)) (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |blockBranch| (-618 $)) (|:| |commentBranch| (-618 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) (|:| -3567 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 $))) (|:| |commonBranch| (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) (|:| |printBranch| (-618 (-835)))) $)) (-15 -1724 ((-1230) $)) (-15 -1723 ((-1069) $)) (-15 -1722 ((-1086) (-1086))))) -((-2887 (((-112) $ $) NIL)) (-1741 (((-112) $) 11)) (-3984 (($ |#1|) 8)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3980 (($ |#1|) 9)) (-4300 (((-835) $) 17)) (-2309 ((|#1| $) 12)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 19))) -(((-324 |#1|) (-13 (-823) (-10 -8 (-15 -3984 ($ |#1|)) (-15 -3980 ($ |#1|)) (-15 -1741 ((-112) $)) (-15 -2309 (|#1| $)))) (-823)) (T -324)) -((-3984 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) (-3980 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-823)))) (-2309 (*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))) -(-13 (-823) (-10 -8 (-15 -3984 ($ |#1|)) (-15 -3980 ($ |#1|)) (-15 -1741 ((-112) $)) (-15 -2309 (|#1| $)))) -((-1742 (((-323) (-1142) (-917 (-535))) 23)) (-1743 (((-323) (-1142) (-917 (-535))) 27)) (-2400 (((-323) (-1142) (-1058 (-917 (-535))) (-1058 (-917 (-535)))) 26) (((-323) (-1142) (-917 (-535)) (-917 (-535))) 24)) (-1744 (((-323) (-1142) (-917 (-535))) 31))) -(((-325) (-10 -7 (-15 -1742 ((-323) (-1142) (-917 (-535)))) (-15 -2400 ((-323) (-1142) (-917 (-535)) (-917 (-535)))) (-15 -2400 ((-323) (-1142) (-1058 (-917 (-535))) (-1058 (-917 (-535))))) (-15 -1743 ((-323) (-1142) (-917 (-535)))) (-15 -1744 ((-323) (-1142) (-917 (-535)))))) (T -325)) -((-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1058 (-917 (-535)))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325))))) -(-10 -7 (-15 -1742 ((-323) (-1142) (-917 (-535)))) (-15 -2400 ((-323) (-1142) (-917 (-535)) (-917 (-535)))) (-15 -2400 ((-323) (-1142) (-1058 (-917 (-535))) (-1058 (-917 (-535))))) (-15 -1743 ((-323) (-1142) (-917 (-535)))) (-15 -1744 ((-323) (-1142) (-917 (-535))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4185 (($ $) 33)) (-1747 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-1745 (((-1224 |#4|) $) 125)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 31)) (-3577 (((-1086) $) NIL)) (-2492 (((-3 |#4| "failed") $) 36)) (-1746 (((-1224 |#4|) $) 118)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-535)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3777 (((-2 (|:| -2408 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4300 (((-835) $) 17)) (-2979 (($) 14 T CONST)) (-3375 (((-112) $ $) 20)) (-4180 (($ $) 27) (($ $ $) NIL)) (-4182 (($ $ $) 25)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 23))) -(((-326 |#1| |#2| |#3| |#4|) (-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1746 ((-1224 |#4|) $)) (-15 -1745 ((-1224 |#4|) $)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -326)) -((-1746 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-1224 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))) (-1745 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-1224 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) -(-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1746 ((-1224 |#4|) $)) (-15 -1745 ((-1224 |#4|) $)))) -((-4301 (((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)) 33))) -(((-327 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4301 ((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-356) (-1200 |#5|) (-1200 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -327)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-326 *5 *6 *7 *8)) (-4 *5 (-356)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *9 (-356)) (-4 *10 (-1200 *9)) (-4 *11 (-1200 (-400 *10))) (-5 *2 (-326 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11))))) -(-10 -7 (-15 -4301 ((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)))) -((-1747 (((-112) $) 14))) -(((-328 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1747 ((-112) |#1|))) (-329 |#2| |#3| |#4| |#5|) (-356) (-1200 |#2|) (-1200 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -328)) -NIL -(-10 -8 (-15 -1747 ((-112) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4185 (($ $) 26)) (-1747 (((-112) $) 25)) (-3576 (((-1124) $) 9)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 32)) (-3577 (((-1086) $) 10)) (-2492 (((-3 |#4| "failed") $) 24)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-535)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3777 (((-2 (|:| -2408 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20))) -(((-329 |#1| |#2| |#3| |#4|) (-138) (-356) (-1200 |t#1|) (-1200 (-400 |t#2|)) (-335 |t#1| |t#2| |t#3|)) (T -329)) -((-2087 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-406 *4 (-400 *4) *5 *6)))) (-1748 (*1 *1 *2) (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) (-4 *1 (-329 *3 *4 *5 *6)))) (-1748 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) (-1748 (*1 *1 *2 *2) (-12 (-4 *2 (-356)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))) (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) (-1748 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-535)) (-4 *2 (-356)) (-4 *4 (-1200 *2)) (-4 *5 (-1200 (-400 *4))) (-4 *1 (-329 *2 *4 *5 *6)) (-4 *6 (-335 *2 *4 *5)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-2 (|:| -2408 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) (-4185 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))) (-2492 (*1 *2 *1) (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) (-1748 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-356)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2087 ((-406 |t#2| (-400 |t#2|) |t#3| |t#4|) $)) (-15 -1748 ($ (-406 |t#2| (-400 |t#2|) |t#3| |t#4|))) (-15 -1748 ($ |t#4|)) (-15 -1748 ($ |t#1| |t#1|)) (-15 -1748 ($ |t#1| |t#1| (-535))) (-15 -3777 ((-2 (|:| -2408 (-406 |t#2| (-400 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4185 ($ $)) (-15 -1747 ((-112) $)) (-15 -2492 ((-3 |t#4| "failed") $)) (-15 -1748 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-4110 (($ $ (-1142) |#2|) NIL) (($ $ (-618 (-1142)) (-618 |#2|)) 20) (($ $ (-618 (-286 |#2|))) 15) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-618 |#2|) (-618 |#2|)) NIL)) (-4142 (($ $ |#2|) 11))) -(((-330 |#1| |#2|) (-10 -8 (-15 -4142 (|#1| |#1| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 |#2|))) (-15 -4110 (|#1| |#1| (-1142) |#2|))) (-331 |#2|) (-1067)) (T -330)) -NIL -(-10 -8 (-15 -4142 (|#1| |#1| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 |#2|))) (-15 -4110 (|#1| |#1| (-1142) |#2|))) -((-4301 (($ (-1 |#1| |#1|) $) 6)) (-4110 (($ $ (-1142) |#1|) 17 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 16 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-618 (-286 |#1|))) 15 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 14 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-302 |#1|))) (($ $ (-618 |#1|) (-618 |#1|)) 12 (|has| |#1| (-302 |#1|)))) (-4142 (($ $ |#1|) 11 (|has| |#1| (-279 |#1| |#1|))))) -(((-331 |#1|) (-138) (-1067)) (T -331)) -((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1067))))) -(-13 (-10 -8 (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-279 |t#1| |t#1|)) (-6 (-279 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-505 (-1142) |t#1|)) (-6 (-505 (-1142) |t#1|)) |%noBranch|))) -(((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1142)) $) NIL)) (-1749 (((-112)) 91) (((-112) (-112)) 92)) (-1655 (((-618 (-591 $)) $) NIL)) (-3829 (($ $) NIL)) (-3985 (($ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL)) (-3358 (($ $) NIL)) (-3827 (($ $) NIL)) (-3984 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-591 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-307 |#3|)) 71) (((-3 $ "failed") (-1142)) 97) (((-3 $ "failed") (-307 (-535))) 59 (|has| |#3| (-1009 (-535)))) (((-3 $ "failed") (-400 (-917 (-535)))) 65 (|has| |#3| (-1009 (-535)))) (((-3 $ "failed") (-917 (-535))) 60 (|has| |#3| (-1009 (-535)))) (((-3 $ "failed") (-307 (-371))) 89 (|has| |#3| (-1009 (-371)))) (((-3 $ "failed") (-400 (-917 (-371)))) 83 (|has| |#3| (-1009 (-371)))) (((-3 $ "failed") (-917 (-371))) 78 (|has| |#3| (-1009 (-371))))) (-3490 (((-591 $) $) NIL) ((|#3| $) NIL) (($ (-307 |#3|)) 72) (($ (-1142)) 98) (($ (-307 (-535))) 61 (|has| |#3| (-1009 (-535)))) (($ (-400 (-917 (-535)))) 66 (|has| |#3| (-1009 (-535)))) (($ (-917 (-535))) 62 (|has| |#3| (-1009 (-535)))) (($ (-307 (-371))) 90 (|has| |#3| (-1009 (-371)))) (($ (-400 (-917 (-371)))) 84 (|has| |#3| (-1009 (-371)))) (($ (-917 (-371))) 80 (|has| |#3| (-1009 (-371))))) (-3804 (((-3 $ "failed") $) NIL)) (-3973 (($) 10)) (-2892 (($ $) NIL) (($ (-618 $)) NIL)) (-1654 (((-618 (-113)) $) NIL)) (-3368 (((-113) (-113)) NIL)) (-2493 (((-112) $) NIL)) (-2994 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-1652 (((-1136 $) (-591 $)) NIL (|has| $ (-1018)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 $ $) (-591 $)) NIL)) (-1657 (((-3 (-591 $) "failed") $) NIL)) (-1853 (($ $) 94)) (-4285 (($ $) NIL)) (-3576 (((-1124) $) NIL)) (-1656 (((-618 (-591 $)) $) NIL)) (-2308 (($ (-113) $) 93) (($ (-113) (-618 $)) NIL)) (-2952 (((-112) $ (-113)) NIL) (((-112) $ (-1142)) NIL)) (-2922 (((-747) $) NIL)) (-3577 (((-1086) $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-4286 (($ $) NIL)) (-2995 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL)) (-3519 (($ $) NIL (|has| $ (-1018)))) (-3828 (($ $) NIL)) (-3980 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-591 $)) NIL) (($ |#3|) NIL) (($ (-535)) NIL) (((-307 |#3|) $) 96)) (-3444 (((-747)) NIL)) (-2909 (($ $) NIL) (($ (-618 $)) NIL)) (-2329 (((-112) (-113)) NIL)) (-3823 (($ $) NIL)) (-3821 (($ $) NIL)) (-3822 (($ $) NIL)) (-3725 (($ $) NIL)) (-2979 (($) 95 T CONST)) (-2985 (($) 24 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL))) -(((-332 |#1| |#2| |#3|) (-13 (-291) (-38 |#3|) (-1009 |#3|) (-871 (-1142)) (-10 -8 (-15 -3490 ($ (-307 |#3|))) (-15 -3491 ((-3 $ "failed") (-307 |#3|))) (-15 -3490 ($ (-1142))) (-15 -3491 ((-3 $ "failed") (-1142))) (-15 -4300 ((-307 |#3|) $)) (IF (|has| |#3| (-1009 (-535))) (PROGN (-15 -3490 ($ (-307 (-535)))) (-15 -3491 ((-3 $ "failed") (-307 (-535)))) (-15 -3490 ($ (-400 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-535))))) (-15 -3490 ($ (-917 (-535)))) (-15 -3491 ((-3 $ "failed") (-917 (-535))))) |%noBranch|) (IF (|has| |#3| (-1009 (-371))) (PROGN (-15 -3490 ($ (-307 (-371)))) (-15 -3491 ((-3 $ "failed") (-307 (-371)))) (-15 -3490 ($ (-400 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-371))))) (-15 -3490 ($ (-917 (-371)))) (-15 -3491 ((-3 $ "failed") (-917 (-371))))) |%noBranch|) (-15 -3725 ($ $)) (-15 -3358 ($ $)) (-15 -4286 ($ $)) (-15 -4285 ($ $)) (-15 -1853 ($ $)) (-15 -3984 ($ $)) (-15 -3980 ($ $)) (-15 -3985 ($ $)) (-15 -3821 ($ $)) (-15 -3822 ($ $)) (-15 -3823 ($ $)) (-15 -3827 ($ $)) (-15 -3828 ($ $)) (-15 -3829 ($ $)) (-15 -3973 ($)) (-15 -3405 ((-618 (-1142)) $)) (-15 -1749 ((-112))) (-15 -1749 ((-112) (-112))))) (-618 (-1142)) (-618 (-1142)) (-380)) (T -332)) -((-3490 (*1 *1 *2) (-12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 *2)) (-14 *4 (-618 *2)) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 *2)) (-14 *4 (-618 *2)) (-4 *5 (-380)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-307 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-535)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-535)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-371)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-371)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3725 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3358 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-4286 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-4285 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3984 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3980 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3985 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3821 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3822 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3823 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3827 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3828 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3829 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3973 (*1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-380)))) (-1749 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380))))) -(-13 (-291) (-38 |#3|) (-1009 |#3|) (-871 (-1142)) (-10 -8 (-15 -3490 ($ (-307 |#3|))) (-15 -3491 ((-3 $ "failed") (-307 |#3|))) (-15 -3490 ($ (-1142))) (-15 -3491 ((-3 $ "failed") (-1142))) (-15 -4300 ((-307 |#3|) $)) (IF (|has| |#3| (-1009 (-535))) (PROGN (-15 -3490 ($ (-307 (-535)))) (-15 -3491 ((-3 $ "failed") (-307 (-535)))) (-15 -3490 ($ (-400 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-535))))) (-15 -3490 ($ (-917 (-535)))) (-15 -3491 ((-3 $ "failed") (-917 (-535))))) |%noBranch|) (IF (|has| |#3| (-1009 (-371))) (PROGN (-15 -3490 ($ (-307 (-371)))) (-15 -3491 ((-3 $ "failed") (-307 (-371)))) (-15 -3490 ($ (-400 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-371))))) (-15 -3490 ($ (-917 (-371)))) (-15 -3491 ((-3 $ "failed") (-917 (-371))))) |%noBranch|) (-15 -3725 ($ $)) (-15 -3358 ($ $)) (-15 -4286 ($ $)) (-15 -4285 ($ $)) (-15 -1853 ($ $)) (-15 -3984 ($ $)) (-15 -3980 ($ $)) (-15 -3985 ($ $)) (-15 -3821 ($ $)) (-15 -3822 ($ $)) (-15 -3823 ($ $)) (-15 -3827 ($ $)) (-15 -3828 ($ $)) (-15 -3829 ($ $)) (-15 -3973 ($)) (-15 -3405 ((-618 (-1142)) $)) (-15 -1749 ((-112))) (-15 -1749 ((-112) (-112))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-877 |#1|) (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| (-877 |#1|) (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-877 |#1|) "failed") $) NIL)) (-3490 (((-877 |#1|) $) NIL)) (-1906 (($ (-1224 (-877 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-877 |#1|) (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-877 |#1|) (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| (-877 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361)))) (($ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| (-877 |#1|) (-361))) (((-808 (-890)) $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-877 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-3450 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-877 |#1|) (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 (-877 |#1|)) $) NIL) (((-1136 $) $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-2121 (((-890) $) NIL (|has| (-877 |#1|) (-361)))) (-1719 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361)))) (-1718 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-1136 (-877 |#1|)) "failed") $ $) NIL (|has| (-877 |#1|) (-361)))) (-1720 (($ $ (-1136 (-877 |#1|))) NIL (|has| (-877 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-877 |#1|) (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL (|has| (-877 |#1|) (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-877 |#1|) (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 (-877 |#1|))) NIL)) (-1785 (($) NIL (|has| (-877 |#1|) (-361)))) (-1721 (($) NIL (|has| (-877 |#1|) (-361)))) (-3558 (((-1224 (-877 |#1|)) $) NIL) (((-665 (-877 |#1|)) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-877 |#1|) (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-877 |#1|)) NIL)) (-3023 (($ $) NIL (|has| (-877 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-2990 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ (-877 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-877 |#1|)) NIL) (($ (-877 |#1|) $) NIL))) -(((-333 |#1| |#2|) (-322 (-877 |#1|)) (-890) (-890)) (T -333)) -NIL -(-322 (-877 |#1|)) -((-1758 (((-2 (|:| |num| (-1224 |#3|)) (|:| |den| |#3|)) $) 38)) (-1906 (($ (-1224 (-400 |#3|)) (-1224 $)) NIL) (($ (-1224 (-400 |#3|))) NIL) (($ (-1224 |#3|) |#3|) 161)) (-1763 (((-1224 $) (-1224 $)) 145)) (-1750 (((-618 (-618 |#2|))) 119)) (-1775 (((-112) |#2| |#2|) 73)) (-3840 (($ $) 139)) (-3719 (((-747)) 31)) (-1764 (((-1224 $) (-1224 $)) 198)) (-1751 (((-618 (-917 |#2|)) (-1142)) 110)) (-1767 (((-112) $) 158)) (-1766 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1753 (((-3 |#3| "failed")) 50)) (-1777 (((-747)) 170)) (-4142 ((|#2| $ |#2| |#2|) 132)) (-1754 (((-3 |#3| "failed")) 68)) (-4153 (($ $ (-1 (-400 |#3|) (-400 |#3|)) (-747)) NIL) (($ $ (-1 (-400 |#3|) (-400 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-1765 (((-1224 $) (-1224 $)) 151)) (-1752 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1776 (((-112)) 33))) -(((-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -1750 ((-618 (-618 |#2|)))) (-15 -1751 ((-618 (-917 |#2|)) (-1142))) (-15 -1752 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1753 ((-3 |#3| "failed"))) (-15 -1754 ((-3 |#3| "failed"))) (-15 -4142 (|#2| |#1| |#2| |#2|)) (-15 -3840 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1766 ((-112) |#1| |#3|)) (-15 -1766 ((-112) |#1| |#2|)) (-15 -1906 (|#1| (-1224 |#3|) |#3|)) (-15 -1758 ((-2 (|:| |num| (-1224 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1763 ((-1224 |#1|) (-1224 |#1|))) (-15 -1764 ((-1224 |#1|) (-1224 |#1|))) (-15 -1765 ((-1224 |#1|) (-1224 |#1|))) (-15 -1766 ((-112) |#1|)) (-15 -1767 ((-112) |#1|)) (-15 -1775 ((-112) |#2| |#2|)) (-15 -1776 ((-112))) (-15 -1777 ((-747))) (-15 -3719 ((-747))) (-15 -4153 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -4153 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-747))) (-15 -1906 (|#1| (-1224 (-400 |#3|)))) (-15 -1906 (|#1| (-1224 (-400 |#3|)) (-1224 |#1|)))) (-335 |#2| |#3| |#4|) (-1183) (-1200 |#2|) (-1200 (-400 |#3|))) (T -334)) -((-3719 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1777 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1776 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *3 (-1183)) (-4 *5 (-1200 *3)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) (-1754 (*1 *2) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1753 (*1 *2) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *5 (-1183)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-5 *2 (-618 (-917 *5))) (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) (-1750 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-618 (-618 *4))) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))) -(-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -1750 ((-618 (-618 |#2|)))) (-15 -1751 ((-618 (-917 |#2|)) (-1142))) (-15 -1752 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1753 ((-3 |#3| "failed"))) (-15 -1754 ((-3 |#3| "failed"))) (-15 -4142 (|#2| |#1| |#2| |#2|)) (-15 -3840 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1766 ((-112) |#1| |#3|)) (-15 -1766 ((-112) |#1| |#2|)) (-15 -1906 (|#1| (-1224 |#3|) |#3|)) (-15 -1758 ((-2 (|:| |num| (-1224 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1763 ((-1224 |#1|) (-1224 |#1|))) (-15 -1764 ((-1224 |#1|) (-1224 |#1|))) (-15 -1765 ((-1224 |#1|) (-1224 |#1|))) (-15 -1766 ((-112) |#1|)) (-15 -1767 ((-112) |#1|)) (-15 -1775 ((-112) |#2| |#2|)) (-15 -1776 ((-112))) (-15 -1777 ((-747))) (-15 -3719 ((-747))) (-15 -4153 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -4153 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-747))) (-15 -1906 (|#1| (-1224 (-400 |#3|)))) (-15 -1906 (|#1| (-1224 (-400 |#3|)) (-1224 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1758 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) 193)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (|has| (-400 |#2|) (-356)))) (-2171 (($ $) 92 (|has| (-400 |#2|) (-356)))) (-2169 (((-112) $) 94 (|has| (-400 |#2|) (-356)))) (-1896 (((-665 (-400 |#2|)) (-1224 $)) 44) (((-665 (-400 |#2|))) 59)) (-3672 (((-400 |#2|) $) 50)) (-1786 (((-1151 (-890) (-747)) (-535)) 144 (|has| (-400 |#2|) (-343)))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 111 (|has| (-400 |#2|) (-356)))) (-4312 (((-398 $) $) 112 (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) 102 (|has| (-400 |#2|) (-356)))) (-3454 (((-747)) 85 (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) 210)) (-1771 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 166 (|has| (-400 |#2|) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 164 (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-3 (-400 |#2|) #1#) $) 163)) (-3490 (((-535) $) 167 (|has| (-400 |#2|) (-1009 (-535)))) (((-400 (-535)) $) 165 (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-400 |#2|) $) 162)) (-1906 (($ (-1224 (-400 |#2|)) (-1224 $)) 46) (($ (-1224 (-400 |#2|))) 62) (($ (-1224 |#2|) |#2|) 192)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-400 |#2|) (-343)))) (-2883 (($ $ $) 106 (|has| (-400 |#2|) (-356)))) (-1895 (((-665 (-400 |#2|)) $ (-1224 $)) 51) (((-665 (-400 |#2|)) $) 57)) (-2353 (((-665 (-535)) (-665 $)) 161 (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 160 (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-400 |#2|))) (|:| |vec| (-1224 (-400 |#2|)))) (-665 $) (-1224 $)) 159) (((-665 (-400 |#2|)) (-665 $)) 158)) (-1763 (((-1224 $) (-1224 $)) 198)) (-4185 (($ |#3|) 155) (((-3 $ "failed") (-400 |#3|)) 152 (|has| (-400 |#2|) (-356)))) (-3804 (((-3 $ "failed") $) 32)) (-1750 (((-618 (-618 |#1|))) 179 (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) 214)) (-3427 (((-890)) 52)) (-3315 (($) 88 (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) 207)) (-1769 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2882 (($ $ $) 105 (|has| (-400 |#2|) (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 100 (|has| (-400 |#2|) (-356)))) (-3840 (($ $) 185)) (-3154 (($) 146 (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) 147 (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-747)) 138 (|has| (-400 |#2|) (-343))) (($ $) 137 (|has| (-400 |#2|) (-343)))) (-4069 (((-112) $) 113 (|has| (-400 |#2|) (-356)))) (-4114 (((-890) $) 149 (|has| (-400 |#2|) (-343))) (((-808 (-890)) $) 135 (|has| (-400 |#2|) (-343)))) (-2493 (((-112) $) 30)) (-3719 (((-747)) 217)) (-1764 (((-1224 $) (-1224 $)) 199)) (-3450 (((-400 |#2|) $) 49)) (-1751 (((-618 (-917 |#1|)) (-1142)) 180 (|has| |#1| (-356)))) (-3786 (((-3 $ "failed") $) 139 (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 109 (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) 42 (|has| (-400 |#2|) (-356)))) (-2121 (((-890) $) 87 (|has| (-400 |#2|) (-361)))) (-3401 ((|#3| $) 153)) (-2008 (($ (-618 $)) 98 (|has| (-400 |#2|) (-356))) (($ $ $) 97 (|has| (-400 |#2|) (-356)))) (-3576 (((-1124) $) 9)) (-1759 (((-665 (-400 |#2|))) 194)) (-1761 (((-665 (-400 |#2|))) 196)) (-2725 (($ $) 114 (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1224 |#2|) |#2|) 190)) (-1760 (((-665 (-400 |#2|))) 195)) (-1762 (((-665 (-400 |#2|))) 197)) (-1755 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1757 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) 191)) (-1768 (((-1224 $)) 203)) (-4261 (((-1224 $)) 204)) (-1767 (((-112) $) 202)) (-1766 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3787 (($) 140 (|has| (-400 |#2|) (-343)) CONST)) (-2483 (($ (-890)) 86 (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| "failed")) 182)) (-3577 (((-1086) $) 10)) (-1777 (((-747)) 216)) (-2492 (($) 157)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 99 (|has| (-400 |#2|) (-356)))) (-3478 (($ (-618 $)) 96 (|has| (-400 |#2|) (-356))) (($ $ $) 95 (|has| (-400 |#2|) (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 143 (|has| (-400 |#2|) (-343)))) (-4075 (((-398 $) $) 110 (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 107 (|has| (-400 |#2|) (-356)))) (-3803 (((-3 $ "failed") $ $) 90 (|has| (-400 |#2|) (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 101 (|has| (-400 |#2|) (-356)))) (-1699 (((-747) $) 103 (|has| (-400 |#2|) (-356)))) (-4142 ((|#1| $ |#1| |#1|) 184)) (-1754 (((-3 |#2| "failed")) 183)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 104 (|has| (-400 |#2|) (-356)))) (-4100 (((-400 |#2|) (-1224 $)) 45) (((-400 |#2|)) 58)) (-1882 (((-747) $) 148 (|has| (-400 |#2|) (-343))) (((-3 (-747) "failed") $ $) 136 (|has| (-400 |#2|) (-343)))) (-4153 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) 120 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 119 (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-618 (-1142)) (-618 (-747))) 127 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142) (-747)) 128 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-618 (-1142))) 129 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142)) 130 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-747)) 132 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3179 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) 134 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3179 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2491 (((-665 (-400 |#2|)) (-1224 $) (-1 (-400 |#2|) (-400 |#2|))) 151 (|has| (-400 |#2|) (-356)))) (-3519 ((|#3|) 156)) (-1785 (($) 145 (|has| (-400 |#2|) (-343)))) (-3558 (((-1224 (-400 |#2|)) $ (-1224 $)) 48) (((-665 (-400 |#2|)) (-1224 $) (-1224 $)) 47) (((-1224 (-400 |#2|)) $) 64) (((-665 (-400 |#2|)) (-1224 $)) 63)) (-4313 (((-1224 (-400 |#2|)) $) 61) (($ (-1224 (-400 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 142 (|has| (-400 |#2|) (-343)))) (-1765 (((-1224 $) (-1224 $)) 200)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 |#2|)) 35) (($ (-400 (-535))) 84 (-3874 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1009 (-400 (-535)))))) (($ $) 89 (|has| (-400 |#2|) (-356)))) (-3023 (($ $) 141 (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) 41 (|has| (-400 |#2|) (-143)))) (-2689 ((|#3| $) 43)) (-3444 (((-747)) 28)) (-1774 (((-112)) 213)) (-1773 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2123 (((-1224 $)) 65)) (-2170 (((-112) $ $) 93 (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1776 (((-112)) 215)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) 122 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 121 (|has| (-400 |#2|) (-356))) (($ $ (-618 (-1142)) (-618 (-747))) 123 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142) (-747)) 124 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-618 (-1142))) 125 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142)) 126 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-747)) 131 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3179 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) 133 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3179 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 118 (|has| (-400 |#2|) (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 115 (|has| (-400 |#2|) (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 |#2|)) 37) (($ (-400 |#2|) $) 36) (($ (-400 (-535)) $) 117 (|has| (-400 |#2|) (-356))) (($ $ (-400 (-535))) 116 (|has| (-400 |#2|) (-356))))) -(((-335 |#1| |#2| |#3|) (-138) (-1183) (-1200 |t#1|) (-1200 (-400 |t#2|))) (T -335)) -((-3719 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-747)))) (-1777 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-747)))) (-1776 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1774 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1773 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1773 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) (-1772 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) (-1770 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1769 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1769 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) (-4261 (*1 *2) (-12 (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)))) (-1768 (*1 *2) (-12 (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) (-1763 (*1 *2 *2) (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) (-1762 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1761 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1760 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1759 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1224 *4)) (|:| |den| *4))))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1200 *4)) (-4 *4 (-1183)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1200 (-400 *3))))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1224 *4)) (|:| |den| *4))))) (-1756 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1200 *4)) (-4 *4 (-1183)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1200 (-400 *3))))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-2 (|:| |num| (-665 *5)) (|:| |den| *5))))) (-1766 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1766 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))))) (-4142 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))))) (-1754 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183)) (-4 *4 (-1200 (-400 *2))) (-4 *2 (-1200 *3)))) (-1753 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183)) (-4 *4 (-1200 (-400 *2))) (-4 *2 (-1200 *3)))) (-1752 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-1183)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-335 *4 *5 *6)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-4 *4 (-356)) (-5 *2 (-618 (-917 *4))))) (-1750 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-618 (-618 *3)))))) -(-13 (-701 (-400 |t#2|) |t#3|) (-10 -8 (-15 -3719 ((-747))) (-15 -1777 ((-747))) (-15 -1776 ((-112))) (-15 -1775 ((-112) |t#1| |t#1|)) (-15 -1774 ((-112))) (-15 -1773 ((-112) |t#1|)) (-15 -1773 ((-112) |t#2|)) (-15 -1772 ((-112))) (-15 -1771 ((-112) |t#1|)) (-15 -1771 ((-112) |t#2|)) (-15 -1770 ((-112))) (-15 -1769 ((-112) |t#1|)) (-15 -1769 ((-112) |t#2|)) (-15 -4261 ((-1224 $))) (-15 -1768 ((-1224 $))) (-15 -1767 ((-112) $)) (-15 -1766 ((-112) $)) (-15 -1765 ((-1224 $) (-1224 $))) (-15 -1764 ((-1224 $) (-1224 $))) (-15 -1763 ((-1224 $) (-1224 $))) (-15 -1762 ((-665 (-400 |t#2|)))) (-15 -1761 ((-665 (-400 |t#2|)))) (-15 -1760 ((-665 (-400 |t#2|)))) (-15 -1759 ((-665 (-400 |t#2|)))) (-15 -1758 ((-2 (|:| |num| (-1224 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1906 ($ (-1224 |t#2|) |t#2|)) (-15 -1757 ((-2 (|:| |num| (-1224 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1756 ($ (-1224 |t#2|) |t#2|)) (-15 -1755 ((-2 (|:| |num| (-665 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1766 ((-112) $ |t#1|)) (-15 -1766 ((-112) $ |t#2|)) (-15 -4153 ($ $ (-1 |t#2| |t#2|))) (-15 -3840 ($ $)) (-15 -4142 (|t#1| $ |t#1| |t#1|)) (-15 -1754 ((-3 |t#2| "failed"))) (-15 -1753 ((-3 |t#2| "failed"))) (-15 -1752 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-356)) (-15 -1751 ((-618 (-917 |t#1|)) (-1142))) |%noBranch|) (IF (|has| |t#1| (-361)) (-15 -1750 ((-618 (-618 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-38 #2=(-400 |#2|)) . T) ((-38 $) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-101) . T) ((-111 #1# #1#) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-143))) ((-145) |has| (-400 |#2|) (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 |#3|) . T) ((-225 #2#) |has| (-400 |#2|) (-356)) ((-227) -3874 (|has| (-400 |#2|) (-343)) (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356)))) ((-237) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-283) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-300) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-356) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-395) |has| (-400 |#2|) (-343)) ((-361) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-361))) ((-343) |has| (-400 |#2|) (-343)) ((-363 #2# |#3|) . T) ((-403 #2# |#3|) . T) ((-370 #2#) . T) ((-405 #2#) . T) ((-444) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-542) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-624 #1#) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-624 #2#) . T) ((-624 $) . T) ((-617 #2#) . T) ((-617 (-535)) |has| (-400 |#2|) (-617 (-535))) ((-694 #1#) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-694 #2#) . T) ((-694 $) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-701 #2# |#3|) . T) ((-703) . T) ((-871 (-1142)) -12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) ((-892) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-1009 (-400 (-535))) |has| (-400 |#2|) (-1009 (-400 (-535)))) ((-1009 #2#) . T) ((-1009 (-535)) |has| (-400 |#2|) (-1009 (-535))) ((-1024 #1#) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-1024 #2#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| (-400 |#2|) (-343)) ((-1183) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356)))) -((-4301 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-336 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4301 (|#8| (-1 |#5| |#1|) |#4|))) (-1183) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-1183) (-1200 |#5|) (-1200 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -336)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1183)) (-4 *8 (-1183)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *9 (-1200 *8)) (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-336 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1200 (-400 *9)))))) -(-10 -7 (-15 -4301 (|#8| (-1 |#5| |#1|) |#4|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-877 |#1|) (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| (-877 |#1|) (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-877 |#1|) "failed") $) NIL)) (-3490 (((-877 |#1|) $) NIL)) (-1906 (($ (-1224 (-877 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-877 |#1|) (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-877 |#1|) (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| (-877 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361)))) (($ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| (-877 |#1|) (-361))) (((-808 (-890)) $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-877 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-3450 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-877 |#1|) (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 (-877 |#1|)) $) NIL) (((-1136 $) $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-2121 (((-890) $) NIL (|has| (-877 |#1|) (-361)))) (-1719 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361)))) (-1718 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-1136 (-877 |#1|)) "failed") $ $) NIL (|has| (-877 |#1|) (-361)))) (-1720 (($ $ (-1136 (-877 |#1|))) NIL (|has| (-877 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-877 |#1|) (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-1778 (((-929 (-1086))) NIL)) (-2492 (($) NIL (|has| (-877 |#1|) (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-877 |#1|) (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 (-877 |#1|))) NIL)) (-1785 (($) NIL (|has| (-877 |#1|) (-361)))) (-1721 (($) NIL (|has| (-877 |#1|) (-361)))) (-3558 (((-1224 (-877 |#1|)) $) NIL) (((-665 (-877 |#1|)) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-877 |#1|) (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-877 |#1|)) NIL)) (-3023 (($ $) NIL (|has| (-877 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-2990 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ (-877 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-877 |#1|)) NIL) (($ (-877 |#1|) $) NIL))) -(((-337 |#1| |#2|) (-13 (-322 (-877 |#1|)) (-10 -7 (-15 -1778 ((-929 (-1086)))))) (-890) (-890)) (T -337)) -((-1778 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-337 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))) -(-13 (-322 (-877 |#1|)) (-10 -7 (-15 -1778 ((-929 (-1086)))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 44)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) 41 (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) 115)) (-3490 ((|#1| $) 86)) (-1906 (($ (-1224 |#1|)) 104)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) 98 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) 129 (|has| |#1| (-361)))) (-1791 (((-112) $) 48 (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) 45 (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) 131 (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3450 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) 90) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) 139 (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 146)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) 71 (|has| |#1| (-361)))) (-4274 (((-112) $) 118)) (-3577 (((-1086) $) NIL)) (-1778 (((-929 (-1086))) 42)) (-2492 (($) 127 (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 93 (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) 67) (((-890)) 68)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) 130 (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) 125 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 |#1|)) 96)) (-1785 (($) 128 (|has| |#1| (-361)))) (-1721 (($) 136 (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) 59) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) 142) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 75)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 138)) (-2123 (((-1224 $)) 117) (((-1224 $) (-890)) 73)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) 49 T CONST)) (-2985 (($) 46 T CONST)) (-4271 (($ $) 81 (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) 47)) (-4291 (($ $ $) 144) (($ $ |#1|) 145)) (-4180 (($ $) 126) (($ $ $) NIL)) (-4182 (($ $ $) 61)) (** (($ $ (-890)) 148) (($ $ (-747)) 149) (($ $ (-535)) 147)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 77) (($ $ $) 76) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-338 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-929 (-1086)))))) (-343) (-1136 |#1|)) (T -338)) -((-1778 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) (-14 *4 (-1136 *3))))) -(-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-929 (-1086)))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3450 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) NIL) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-1778 (((-929 (-1086))) NIL)) (-2492 (($) NIL (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) NIL) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) NIL)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-339 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-929 (-1086)))))) (-343) (-890)) (T -339)) -((-1778 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890))))) -(-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-929 (-1086)))))) -((-1788 (((-747) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) 42)) (-1779 (((-929 (-1086)) (-1136 |#1|)) 85)) (-1780 (((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) (-1136 |#1|)) 78)) (-1781 (((-665 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) 86)) (-1782 (((-3 (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) "failed") (-890)) 13)) (-1783 (((-3 (-1136 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) (-890)) 18))) -(((-340 |#1|) (-10 -7 (-15 -1779 ((-929 (-1086)) (-1136 |#1|))) (-15 -1780 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) (-1136 |#1|))) (-15 -1781 ((-665 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1788 ((-747) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1782 ((-3 (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) "failed") (-890))) (-15 -1783 ((-3 (-1136 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) (-890)))) (-343)) (T -340)) -((-1783 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-3 (-1136 *4) (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086))))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1782 (*1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-5 *2 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-4 *4 (-343)) (-5 *2 (-747)) (-5 *1 (-340 *4)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-4 *4 (-343)) (-5 *2 (-665 *4)) (-5 *1 (-340 *4)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-5 *1 (-340 *4)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-929 (-1086))) (-5 *1 (-340 *4))))) -(-10 -7 (-15 -1779 ((-929 (-1086)) (-1136 |#1|))) (-15 -1780 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) (-1136 |#1|))) (-15 -1781 ((-665 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1788 ((-747) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1782 ((-3 (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) "failed") (-890))) (-15 -1783 ((-3 (-1136 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) (-890)))) -((-4300 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -4300 (|#3| |#1|)) (-15 -4300 (|#1| |#3|))) (-322 |#2|) (-343) (-322 |#2|)) (T -341)) -((-4300 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *2 *4 *3)) (-4 *3 (-322 *4)))) (-4300 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *3 *4 *2)) (-4 *3 (-322 *4))))) -(-10 -7 (-15 -4300 (|#3| |#1|)) (-15 -4300 (|#1| |#3|))) -((-1791 (((-112) $) 51)) (-4114 (((-808 (-890)) $) 21) (((-890) $) 52)) (-3786 (((-3 $ "failed") $) 16)) (-3787 (($) 9)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93)) (-1882 (((-3 (-747) "failed") $ $) 71) (((-747) $) 60)) (-4153 (($ $ (-747)) NIL) (($ $) 8)) (-1785 (($) 44)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 34)) (-3023 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-342 |#1|) (-10 -8 (-15 -4114 ((-890) |#1|)) (-15 -1882 ((-747) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1785 (|#1|)) (-15 -3024 ((-3 (-1224 |#1|) "failed") (-665 |#1|))) (-15 -3023 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-3 (-747) "failed") |#1| |#1|)) (-15 -4114 ((-808 (-890)) |#1|)) (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|)))) (-343)) (T -342)) -NIL -(-10 -8 (-15 -4114 ((-890) |#1|)) (-15 -1882 ((-747) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1785 (|#1|)) (-15 -3024 ((-3 (-1224 |#1|) "failed") (-665 |#1|))) (-15 -3023 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-3 (-747) "failed") |#1| |#1|)) (-15 -4114 ((-808 (-890)) |#1|)) (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1786 (((-1151 (-890) (-747)) (-535)) 90)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3454 (((-747)) 100)) (-3879 (($) 17 T CONST)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-3315 (($) 103)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-3154 (($) 88)) (-1791 (((-112) $) 87)) (-1881 (($ $) 76) (($ $ (-747)) 75)) (-4069 (((-112) $) 68)) (-4114 (((-808 (-890)) $) 78) (((-890) $) 85)) (-2493 (((-112) $) 30)) (-3786 (((-3 $ "failed") $) 99)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2121 (((-890) $) 102)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3787 (($) 98 T CONST)) (-2483 (($ (-890)) 101)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 91)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1882 (((-3 (-747) "failed") $ $) 77) (((-747) $) 86)) (-4153 (($ $ (-747)) 96) (($ $) 94)) (-1785 (($) 89)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 92)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63)) (-3023 (((-3 $ "failed") $) 79) (($ $) 93)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-747)) 97) (($ $) 95)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64))) -(((-343) (-138)) (T -343)) -((-3023 (*1 *1 *1) (-4 *1 (-343))) (-3024 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-343)) (-5 *2 (-1224 *1)))) (-1787 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))))) (-1786 (*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-535)) (-5 *2 (-1151 (-890) (-747))))) (-1785 (*1 *1) (-4 *1 (-343))) (-3154 (*1 *1) (-4 *1 (-343))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-112)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-747)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-890)))) (-1784 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-395) (-361) (-1117) (-227) (-10 -8 (-15 -3023 ($ $)) (-15 -3024 ((-3 (-1224 $) "failed") (-665 $))) (-15 -1787 ((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535)))))) (-15 -1786 ((-1151 (-890) (-747)) (-535))) (-15 -1785 ($)) (-15 -3154 ($)) (-15 -1791 ((-112) $)) (-15 -1882 ((-747) $)) (-15 -4114 ((-890) $)) (-15 -1784 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-593 (-835)) . T) ((-170) . T) ((-227) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) . T) ((-361) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) . T) ((-1183) . T)) -((-4262 (((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|) 53)) (-4261 (((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))) 51))) -(((-344 |#1| |#2| |#3|) (-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|))) (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))) (-1200 |#1|) (-403 |#1| |#2|)) (T -344)) -((-4262 (*1 *2 *3) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4261 (*1 *2) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-877 |#1|) (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1788 (((-747)) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| (-877 |#1|) (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-877 |#1|) "failed") $) NIL)) (-3490 (((-877 |#1|) $) NIL)) (-1906 (($ (-1224 (-877 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-877 |#1|) (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-877 |#1|) (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| (-877 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361)))) (($ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| (-877 |#1|) (-361))) (((-808 (-890)) $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-877 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-3450 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-877 |#1|) (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 (-877 |#1|)) $) NIL) (((-1136 $) $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-2121 (((-890) $) NIL (|has| (-877 |#1|) (-361)))) (-1719 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361)))) (-1718 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-1136 (-877 |#1|)) "failed") $ $) NIL (|has| (-877 |#1|) (-361)))) (-1720 (($ $ (-1136 (-877 |#1|))) NIL (|has| (-877 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-877 |#1|) (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-1790 (((-1224 (-618 (-2 (|:| -3744 (-877 |#1|)) (|:| -2483 (-1086)))))) NIL)) (-1789 (((-665 (-877 |#1|))) NIL)) (-2492 (($) NIL (|has| (-877 |#1|) (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-877 |#1|) (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 (-877 |#1|))) NIL)) (-1785 (($) NIL (|has| (-877 |#1|) (-361)))) (-1721 (($) NIL (|has| (-877 |#1|) (-361)))) (-3558 (((-1224 (-877 |#1|)) $) NIL) (((-665 (-877 |#1|)) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-877 |#1|) (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-877 |#1|)) NIL)) (-3023 (($ $) NIL (|has| (-877 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-2990 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ (-877 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-877 |#1|)) NIL) (($ (-877 |#1|) $) NIL))) -(((-345 |#1| |#2|) (-13 (-322 (-877 |#1|)) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 (-877 |#1|)) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 (-877 |#1|)))) (-15 -1788 ((-747))))) (-890) (-890)) (T -345)) -((-1790 (*1 *2) (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 (-877 *3)) (|:| -2483 (-1086)))))) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-1789 (*1 *2) (-12 (-5 *2 (-665 (-877 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-1788 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))) -(-13 (-322 (-877 |#1|)) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 (-877 |#1|)) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 (-877 |#1|)))) (-15 -1788 ((-747))))) -((-2887 (((-112) $ $) 61)) (-3522 (((-112) $) 74)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) 92) (($ $ (-890)) 90 (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) 148 (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1788 (((-747)) 89)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) 162 (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) 112)) (-3490 ((|#1| $) 91)) (-1906 (($ (-1224 |#1|)) 58)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) 158 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) 149 (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) 98 (|has| |#1| (-361)))) (-2122 (((-112) $) 175 (|has| |#1| (-361)))) (-3450 ((|#1| $) 94) (($ $ (-890)) 93 (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) 189) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) 134 (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) 73 (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) 70 (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) 82 (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) 69 (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 192)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) 137 (|has| |#1| (-361)))) (-4274 (((-112) $) 108)) (-3577 (((-1086) $) NIL)) (-1790 (((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) 83)) (-1789 (((-665 |#1|)) 87)) (-2492 (($) 96 (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 150 (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) 151)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) 62)) (-3519 (((-1136 |#1|)) 152)) (-1785 (($) 133 (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) 106) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) 124) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 57)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 156)) (-2123 (((-1224 $)) 172) (((-1224 $) (-890)) 101)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) 117 T CONST)) (-2985 (($) 33 T CONST)) (-4271 (($ $) 107 (|has| |#1| (-361))) (($ $ (-747)) 99 (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) 183)) (-4291 (($ $ $) 104) (($ $ |#1|) 105)) (-4180 (($ $) 177) (($ $ $) 181)) (-4182 (($ $ $) 179)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 138)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 186) (($ $ $) 142) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-346 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 |#1|))) (-15 -1788 ((-747))))) (-343) (-3 (-1136 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (T -346)) -((-1790 (*1 *2) (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1136 *3) *2)))) (-1789 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1136 *3) (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086))))))))) (-1788 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1136 *3) (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))))))) -(-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 |#1|))) (-15 -1788 ((-747))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1788 (((-747)) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3450 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) NIL) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-1790 (((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) NIL)) (-1789 (((-665 |#1|)) NIL)) (-2492 (($) NIL (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) NIL) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) NIL)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-347 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 |#1|))) (-15 -1788 ((-747))))) (-343) (-890)) (T -347)) -((-1790 (*1 *2) (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))) (-1789 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))) (-1788 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890))))) -(-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 |#1|))) (-15 -1788 ((-747))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) 120 (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) 140 (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) 93)) (-3490 ((|#1| $) 90)) (-1906 (($ (-1224 |#1|)) 85)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) 82 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) 42 (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) 121 (|has| |#1| (-361)))) (-2122 (((-112) $) 74 (|has| |#1| (-361)))) (-3450 ((|#1| $) 39) (($ $ (-890)) 43 (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) 65) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) 97 (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) 95 (|has| |#1| (-361)))) (-4274 (((-112) $) 142)) (-3577 (((-1086) $) NIL)) (-2492 (($) 36 (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 115 (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) 139)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) 59)) (-3519 (((-1136 |#1|)) 88)) (-1785 (($) 126 (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) 53) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) 138) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 87)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 144)) (-2123 (((-1224 $)) 109) (((-1224 $) (-890)) 49)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) 111 T CONST)) (-2985 (($) 32 T CONST)) (-4271 (($ $) 68 (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) 107)) (-4291 (($ $ $) 99) (($ $ |#1|) 100)) (-4180 (($ $) 80) (($ $ $) 105)) (-4182 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-747)) 44) (($ $ (-535)) 130)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 78) (($ $ $) 56) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-348 |#1| |#2|) (-322 |#1|) (-343) (-1136 |#1|)) (T -348)) +((-2437 (*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1227 *1)) (-4 *1 (-322 *3)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-894)) (-4 *4 (-356)) (-5 *2 (-1227 *1)) (-4 *1 (-322 *4)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1227 *3)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1140 *3)))) (-1310 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1140 *3)))) (-3990 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-894)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-894)))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-1428 (*1 *2 *1 *3) (-12 (-5 *3 (-894)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1140 *1)) (-4 *1 (-322 *4)))) (-1389 (*1 *1 *1 *2) (-12 (-5 *2 (-894)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-2252 (*1 *1 *1 *2) (-12 (-5 *2 (-894)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-1273 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2529 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) (-3935 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-4235 (*1 *1 *1 *2) (-12 (-5 *2 (-1140 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1140 *3)))) (-4008 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1140 *3)))) (-4008 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1140 *3))))) +(-13 (-1246 |t#1|) (-1011 |t#1|) (-10 -8 (-15 -2437 ((-1227 $))) (-15 -2437 ((-1227 $) (-894))) (-15 -1373 ((-1227 |t#1|) $)) (-15 -1373 ((-667 |t#1|) (-1227 $))) (-15 -4110 ($ (-1227 |t#1|))) (-15 -1428 ((-1140 |t#1|) $)) (-15 -1310 ((-1140 |t#1|))) (-15 -3990 ((-894))) (-15 -2970 ((-894) $)) (-15 -1389 (|t#1| $)) (-15 -2252 (|t#1| $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-342)) (-15 -1428 ((-1140 $) $ (-894))) (-15 -1389 ($ $ (-894))) (-15 -2252 ($ $ (-894))) (-15 -1273 ($)) (-15 -2529 ($)) (-15 -2340 ((-112) $)) (-15 -3935 ($)) (-15 -4235 ($ $ (-1140 |t#1|))) (-15 -4116 ((-1140 |t#1|) $)) (-15 -4008 ((-1140 |t#1|) $)) (-15 -4008 ((-3 (-1140 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1561 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) . T) ((-227) |has| |#1| (-361)) ((-237) . T) ((-283) . T) ((-300) . T) ((-1246 |#1|) . T) ((-356) . T) ((-395) -1561 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-361) |has| |#1| (-361)) ((-342) |has| |#1| (-361)) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-893) . T) ((-1011 |#1|) . T) ((-1026 #0#) . T) ((-1026 |#1|) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) |has| |#1| (-361)) ((-1185) . T) ((-1234 |#1|) . T)) +((-1504 (((-112) $ $) NIL)) (-2906 (($ (-1143) $) 88)) (-1894 (($) 77)) (-3218 (((-1088) (-1088)) 11)) (-2213 (($) 78)) (-3775 (($) 90) (($ (-309 (-677))) 98) (($ (-309 (-679))) 94) (($ (-309 (-672))) 102) (($ (-309 (-372))) 109) (($ (-309 (-550))) 105) (($ (-309 (-167 (-372)))) 113)) (-2801 (($ (-1143) $) 89)) (-3523 (($ (-623 (-836))) 79)) (-3435 (((-1232) $) 75)) (-3456 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2690 (($ (-1088)) 51)) (-3322 (((-1072) $) 25)) (-3008 (($ (-1060 (-925 (-550))) $) 85) (($ (-1060 (-925 (-550))) (-925 (-550)) $) 86)) (-3470 (($ (-1088)) 87)) (-1847 (($ (-1143) $) 115) (($ (-1143) $ $) 116)) (-1830 (($ (-1144) (-623 (-1144))) 76)) (-4009 (($ (-1126)) 82) (($ (-623 (-1126))) 80)) (-1518 (((-836) $) 118)) (-1542 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1144)) (|:| |arrayIndex| (-623 (-925 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1144)) (|:| |rand| (-836)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1143)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2902 (-112)) (|:| -3625 (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |blockBranch| (-623 $)) (|:| |commentBranch| (-623 (-1126))) (|:| |callBranch| (-1126)) (|:| |forBranch| (-2 (|:| -3170 (-1060 (-925 (-550)))) (|:| |span| (-925 (-550))) (|:| -1925 $))) (|:| |labelBranch| (-1088)) (|:| |loopBranch| (-2 (|:| |switch| (-1143)) (|:| -1925 $))) (|:| |commonBranch| (-2 (|:| -1916 (-1144)) (|:| |contents| (-623 (-1144))))) (|:| |printBranch| (-623 (-836)))) $) 44)) (-1568 (($ (-1126)) 187)) (-3653 (($ (-623 $)) 114)) (-3134 (($ (-1144) (-1126)) 120) (($ (-1144) (-309 (-679))) 160) (($ (-1144) (-309 (-677))) 161) (($ (-1144) (-309 (-672))) 162) (($ (-1144) (-667 (-679))) 123) (($ (-1144) (-667 (-677))) 126) (($ (-1144) (-667 (-672))) 129) (($ (-1144) (-1227 (-679))) 132) (($ (-1144) (-1227 (-677))) 135) (($ (-1144) (-1227 (-672))) 138) (($ (-1144) (-667 (-309 (-679)))) 141) (($ (-1144) (-667 (-309 (-677)))) 144) (($ (-1144) (-667 (-309 (-672)))) 147) (($ (-1144) (-1227 (-309 (-679)))) 150) (($ (-1144) (-1227 (-309 (-677)))) 153) (($ (-1144) (-1227 (-309 (-672)))) 156) (($ (-1144) (-623 (-925 (-550))) (-309 (-679))) 157) (($ (-1144) (-623 (-925 (-550))) (-309 (-677))) 158) (($ (-1144) (-623 (-925 (-550))) (-309 (-672))) 159) (($ (-1144) (-309 (-550))) 184) (($ (-1144) (-309 (-372))) 185) (($ (-1144) (-309 (-167 (-372)))) 186) (($ (-1144) (-667 (-309 (-550)))) 165) (($ (-1144) (-667 (-309 (-372)))) 168) (($ (-1144) (-667 (-309 (-167 (-372))))) 171) (($ (-1144) (-1227 (-309 (-550)))) 174) (($ (-1144) (-1227 (-309 (-372)))) 177) (($ (-1144) (-1227 (-309 (-167 (-372))))) 180) (($ (-1144) (-623 (-925 (-550))) (-309 (-550))) 181) (($ (-1144) (-623 (-925 (-550))) (-309 (-372))) 182) (($ (-1144) (-623 (-925 (-550))) (-309 (-167 (-372)))) 183)) (-2316 (((-112) $ $) NIL))) +(((-323) (-13 (-1068) (-10 -8 (-15 -1518 ((-836) $)) (-15 -3008 ($ (-1060 (-925 (-550))) $)) (-15 -3008 ($ (-1060 (-925 (-550))) (-925 (-550)) $)) (-15 -2906 ($ (-1143) $)) (-15 -2801 ($ (-1143) $)) (-15 -2690 ($ (-1088))) (-15 -3470 ($ (-1088))) (-15 -4009 ($ (-1126))) (-15 -4009 ($ (-623 (-1126)))) (-15 -1568 ($ (-1126))) (-15 -3775 ($)) (-15 -3775 ($ (-309 (-677)))) (-15 -3775 ($ (-309 (-679)))) (-15 -3775 ($ (-309 (-672)))) (-15 -3775 ($ (-309 (-372)))) (-15 -3775 ($ (-309 (-550)))) (-15 -3775 ($ (-309 (-167 (-372))))) (-15 -1847 ($ (-1143) $)) (-15 -1847 ($ (-1143) $ $)) (-15 -3134 ($ (-1144) (-1126))) (-15 -3134 ($ (-1144) (-309 (-679)))) (-15 -3134 ($ (-1144) (-309 (-677)))) (-15 -3134 ($ (-1144) (-309 (-672)))) (-15 -3134 ($ (-1144) (-667 (-679)))) (-15 -3134 ($ (-1144) (-667 (-677)))) (-15 -3134 ($ (-1144) (-667 (-672)))) (-15 -3134 ($ (-1144) (-1227 (-679)))) (-15 -3134 ($ (-1144) (-1227 (-677)))) (-15 -3134 ($ (-1144) (-1227 (-672)))) (-15 -3134 ($ (-1144) (-667 (-309 (-679))))) (-15 -3134 ($ (-1144) (-667 (-309 (-677))))) (-15 -3134 ($ (-1144) (-667 (-309 (-672))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-679))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-677))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-672))))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-679)))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-677)))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-672)))) (-15 -3134 ($ (-1144) (-309 (-550)))) (-15 -3134 ($ (-1144) (-309 (-372)))) (-15 -3134 ($ (-1144) (-309 (-167 (-372))))) (-15 -3134 ($ (-1144) (-667 (-309 (-550))))) (-15 -3134 ($ (-1144) (-667 (-309 (-372))))) (-15 -3134 ($ (-1144) (-667 (-309 (-167 (-372)))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-550))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-372))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-167 (-372)))))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-550)))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-372)))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-167 (-372))))) (-15 -3653 ($ (-623 $))) (-15 -1894 ($)) (-15 -2213 ($)) (-15 -3523 ($ (-623 (-836)))) (-15 -1830 ($ (-1144) (-623 (-1144)))) (-15 -3456 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1542 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1144)) (|:| |arrayIndex| (-623 (-925 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1144)) (|:| |rand| (-836)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1143)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2902 (-112)) (|:| -3625 (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |blockBranch| (-623 $)) (|:| |commentBranch| (-623 (-1126))) (|:| |callBranch| (-1126)) (|:| |forBranch| (-2 (|:| -3170 (-1060 (-925 (-550)))) (|:| |span| (-925 (-550))) (|:| -1925 $))) (|:| |labelBranch| (-1088)) (|:| |loopBranch| (-2 (|:| |switch| (-1143)) (|:| -1925 $))) (|:| |commonBranch| (-2 (|:| -1916 (-1144)) (|:| |contents| (-623 (-1144))))) (|:| |printBranch| (-623 (-836)))) $)) (-15 -3435 ((-1232) $)) (-15 -3322 ((-1072) $)) (-15 -3218 ((-1088) (-1088)))))) (T -323)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-323)))) (-3008 (*1 *1 *2 *1) (-12 (-5 *2 (-1060 (-925 (-550)))) (-5 *1 (-323)))) (-3008 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1060 (-925 (-550)))) (-5 *3 (-925 (-550))) (-5 *1 (-323)))) (-2906 (*1 *1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-323)))) (-2801 (*1 *1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-323)))) (-2690 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-323)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-323)))) (-4009 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-323)))) (-4009 (*1 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-323)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-323)))) (-3775 (*1 *1) (-5 *1 (-323))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-323)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-323)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-309 (-672))) (-5 *1 (-323)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-323)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-5 *1 (-323)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-1847 (*1 *1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-323)))) (-1847 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1126)) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-679))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-677))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-672))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-679))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-677))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-672))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-679))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-677))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-672))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-679)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-677)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-672)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-679)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-677)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-672)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-309 (-679))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-309 (-677))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-309 (-672))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-550))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-372))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-550)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-372)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-167 (-372))))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-550)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-372)))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-167 (-372))))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-309 (-550))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-309 (-372))) (-5 *1 (-323)))) (-3134 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-3653 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-5 *1 (-323)))) (-1894 (*1 *1) (-5 *1 (-323))) (-2213 (*1 *1) (-5 *1 (-323))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-323)))) (-1830 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-1144))) (-5 *2 (-1144)) (-5 *1 (-323)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1144)) (|:| |arrayIndex| (-623 (-925 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1144)) (|:| |rand| (-836)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1143)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| (-2 (|:| -2902 (-112)) (|:| -3625 (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |blockBranch| (-623 (-323))) (|:| |commentBranch| (-623 (-1126))) (|:| |callBranch| (-1126)) (|:| |forBranch| (-2 (|:| -3170 (-1060 (-925 (-550)))) (|:| |span| (-925 (-550))) (|:| -1925 (-323)))) (|:| |labelBranch| (-1088)) (|:| |loopBranch| (-2 (|:| |switch| (-1143)) (|:| -1925 (-323)))) (|:| |commonBranch| (-2 (|:| -1916 (-1144)) (|:| |contents| (-623 (-1144))))) (|:| |printBranch| (-623 (-836))))) (-5 *1 (-323)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-323)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-323)))) (-3218 (*1 *2 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-323))))) +(-13 (-1068) (-10 -8 (-15 -1518 ((-836) $)) (-15 -3008 ($ (-1060 (-925 (-550))) $)) (-15 -3008 ($ (-1060 (-925 (-550))) (-925 (-550)) $)) (-15 -2906 ($ (-1143) $)) (-15 -2801 ($ (-1143) $)) (-15 -2690 ($ (-1088))) (-15 -3470 ($ (-1088))) (-15 -4009 ($ (-1126))) (-15 -4009 ($ (-623 (-1126)))) (-15 -1568 ($ (-1126))) (-15 -3775 ($)) (-15 -3775 ($ (-309 (-677)))) (-15 -3775 ($ (-309 (-679)))) (-15 -3775 ($ (-309 (-672)))) (-15 -3775 ($ (-309 (-372)))) (-15 -3775 ($ (-309 (-550)))) (-15 -3775 ($ (-309 (-167 (-372))))) (-15 -1847 ($ (-1143) $)) (-15 -1847 ($ (-1143) $ $)) (-15 -3134 ($ (-1144) (-1126))) (-15 -3134 ($ (-1144) (-309 (-679)))) (-15 -3134 ($ (-1144) (-309 (-677)))) (-15 -3134 ($ (-1144) (-309 (-672)))) (-15 -3134 ($ (-1144) (-667 (-679)))) (-15 -3134 ($ (-1144) (-667 (-677)))) (-15 -3134 ($ (-1144) (-667 (-672)))) (-15 -3134 ($ (-1144) (-1227 (-679)))) (-15 -3134 ($ (-1144) (-1227 (-677)))) (-15 -3134 ($ (-1144) (-1227 (-672)))) (-15 -3134 ($ (-1144) (-667 (-309 (-679))))) (-15 -3134 ($ (-1144) (-667 (-309 (-677))))) (-15 -3134 ($ (-1144) (-667 (-309 (-672))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-679))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-677))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-672))))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-679)))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-677)))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-672)))) (-15 -3134 ($ (-1144) (-309 (-550)))) (-15 -3134 ($ (-1144) (-309 (-372)))) (-15 -3134 ($ (-1144) (-309 (-167 (-372))))) (-15 -3134 ($ (-1144) (-667 (-309 (-550))))) (-15 -3134 ($ (-1144) (-667 (-309 (-372))))) (-15 -3134 ($ (-1144) (-667 (-309 (-167 (-372)))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-550))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-372))))) (-15 -3134 ($ (-1144) (-1227 (-309 (-167 (-372)))))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-550)))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-372)))) (-15 -3134 ($ (-1144) (-623 (-925 (-550))) (-309 (-167 (-372))))) (-15 -3653 ($ (-623 $))) (-15 -1894 ($)) (-15 -2213 ($)) (-15 -3523 ($ (-623 (-836)))) (-15 -1830 ($ (-1144) (-623 (-1144)))) (-15 -3456 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1542 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1144)) (|:| |arrayIndex| (-623 (-925 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1144)) (|:| |rand| (-836)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1143)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2902 (-112)) (|:| -3625 (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |blockBranch| (-623 $)) (|:| |commentBranch| (-623 (-1126))) (|:| |callBranch| (-1126)) (|:| |forBranch| (-2 (|:| -3170 (-1060 (-925 (-550)))) (|:| |span| (-925 (-550))) (|:| -1925 $))) (|:| |labelBranch| (-1088)) (|:| |loopBranch| (-2 (|:| |switch| (-1143)) (|:| -1925 $))) (|:| |commonBranch| (-2 (|:| -1916 (-1144)) (|:| |contents| (-623 (-1144))))) (|:| |printBranch| (-623 (-836)))) $)) (-15 -3435 ((-1232) $)) (-15 -3322 ((-1072) $)) (-15 -3218 ((-1088) (-1088))))) +((-1504 (((-112) $ $) NIL)) (-3095 (((-112) $) 11)) (-2984 (($ |#1|) 8)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2995 (($ |#1|) 9)) (-1518 (((-836) $) 17)) (-2696 ((|#1| $) 12)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 19))) +(((-324 |#1|) (-13 (-825) (-10 -8 (-15 -2984 ($ |#1|)) (-15 -2995 ($ |#1|)) (-15 -3095 ((-112) $)) (-15 -2696 (|#1| $)))) (-825)) (T -324)) +((-2984 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) (-2995 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-825)))) (-2696 (*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825))))) +(-13 (-825) (-10 -8 (-15 -2984 ($ |#1|)) (-15 -2995 ($ |#1|)) (-15 -3095 ((-112) $)) (-15 -2696 (|#1| $)))) +((-2118 (((-323) (-1144) (-925 (-550))) 23)) (-2214 (((-323) (-1144) (-925 (-550))) 27)) (-3473 (((-323) (-1144) (-1060 (-925 (-550))) (-1060 (-925 (-550)))) 26) (((-323) (-1144) (-925 (-550)) (-925 (-550))) 24)) (-2308 (((-323) (-1144) (-925 (-550))) 31))) +(((-325) (-10 -7 (-15 -2118 ((-323) (-1144) (-925 (-550)))) (-15 -3473 ((-323) (-1144) (-925 (-550)) (-925 (-550)))) (-15 -3473 ((-323) (-1144) (-1060 (-925 (-550))) (-1060 (-925 (-550))))) (-15 -2214 ((-323) (-1144) (-925 (-550)))) (-15 -2308 ((-323) (-1144) (-925 (-550)))))) (T -325)) +((-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-925 (-550))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-925 (-550))) (-5 *2 (-323)) (-5 *1 (-325)))) (-3473 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-1060 (-925 (-550)))) (-5 *2 (-323)) (-5 *1 (-325)))) (-3473 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-925 (-550))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-925 (-550))) (-5 *2 (-323)) (-5 *1 (-325))))) +(-10 -7 (-15 -2118 ((-323) (-1144) (-925 (-550)))) (-15 -3473 ((-323) (-1144) (-925 (-550)) (-925 (-550)))) (-15 -3473 ((-323) (-1144) (-1060 (-925 (-550))) (-1060 (-925 (-550))))) (-15 -2214 ((-323) (-1144) (-925 (-550)))) (-15 -2308 ((-323) (-1144) (-925 (-550))))) +((-3972 (((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)) 33))) +(((-326 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3972 ((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)))) (-356) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-356) (-1203 |#5|) (-1203 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -326)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-329 *5 *6 *7 *8)) (-4 *5 (-356)) (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *9 (-356)) (-4 *10 (-1203 *9)) (-4 *11 (-1203 (-400 *10))) (-5 *2 (-329 *9 *10 *11 *12)) (-5 *1 (-326 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11))))) +(-10 -7 (-15 -3972 ((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)))) +((-2596 (((-112) $) 14))) +(((-327 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2596 ((-112) |#1|))) (-328 |#2| |#3| |#4| |#5|) (-356) (-1203 |#2|) (-1203 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -327)) +NIL +(-10 -8 (-15 -2596 ((-112) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-2419 (($ $) 26)) (-2596 (((-112) $) 25)) (-1825 (((-1126) $) 9)) (-2135 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 32)) (-3337 (((-1088) $) 10)) (-3935 (((-3 |#4| "failed") $) 24)) (-1524 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-550)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3417 (((-2 (|:| -2551 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20))) +(((-328 |#1| |#2| |#3| |#4|) (-138) (-356) (-1203 |t#1|) (-1203 (-400 |t#2|)) (-335 |t#1| |t#2| |t#3|)) (T -328)) +((-2135 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-406 *4 (-400 *4) *5 *6)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) (-4 *1 (-328 *3 *4 *5 *6)))) (-1524 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-4 *1 (-328 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) (-1524 (*1 *1 *2 *2) (-12 (-4 *2 (-356)) (-4 *3 (-1203 *2)) (-4 *4 (-1203 (-400 *3))) (-4 *1 (-328 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) (-1524 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-550)) (-4 *2 (-356)) (-4 *4 (-1203 *2)) (-4 *5 (-1203 (-400 *4))) (-4 *1 (-328 *2 *4 *5 *6)) (-4 *6 (-335 *2 *4 *5)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-2 (|:| -2551 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) (-2419 (*1 *1 *1) (-12 (-4 *1 (-328 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1203 *2)) (-4 *4 (-1203 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (|partial| -12 (-4 *1 (-328 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) (-1524 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-356)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 (-400 *3))) (-4 *1 (-328 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2135 ((-406 |t#2| (-400 |t#2|) |t#3| |t#4|) $)) (-15 -1524 ($ (-406 |t#2| (-400 |t#2|) |t#3| |t#4|))) (-15 -1524 ($ |t#4|)) (-15 -1524 ($ |t#1| |t#1|)) (-15 -1524 ($ |t#1| |t#1| (-550))) (-15 -3417 ((-2 (|:| -2551 (-406 |t#2| (-400 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2419 ($ $)) (-15 -2596 ((-112) $)) (-15 -3935 ((-3 |t#4| "failed") $)) (-15 -1524 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2419 (($ $) 33)) (-2596 (((-112) $) NIL)) (-1825 (((-1126) $) NIL)) (-2415 (((-1227 |#4|) $) 125)) (-2135 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 31)) (-3337 (((-1088) $) NIL)) (-3935 (((-3 |#4| "failed") $) 36)) (-2508 (((-1227 |#4|) $) 118)) (-1524 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-550)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3417 (((-2 (|:| -2551 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1518 (((-836) $) 17)) (-2626 (($) 14 T CONST)) (-2316 (((-112) $ $) 20)) (-2403 (($ $) 27) (($ $ $) NIL)) (-2391 (($ $ $) 25)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 23))) +(((-329 |#1| |#2| |#3| |#4|) (-13 (-328 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2508 ((-1227 |#4|) $)) (-15 -2415 ((-1227 |#4|) $)))) (-356) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -329)) +((-2508 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-1227 *6)) (-5 *1 (-329 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))) (-2415 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-1227 *6)) (-5 *1 (-329 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) +(-13 (-328 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2508 ((-1227 |#4|) $)) (-15 -2415 ((-1227 |#4|) $)))) +((-3866 (($ $ (-1144) |#2|) NIL) (($ $ (-623 (-1144)) (-623 |#2|)) 20) (($ $ (-623 (-287 |#2|))) 15) (($ $ (-287 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-623 |#2|) (-623 |#2|)) NIL)) (-2680 (($ $ |#2|) 11))) +(((-330 |#1| |#2|) (-10 -8 (-15 -2680 (|#1| |#1| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#2|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#2| |#2|)) (-15 -3866 (|#1| |#1| (-287 |#2|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 |#2|))) (-15 -3866 (|#1| |#1| (-1144) |#2|))) (-331 |#2|) (-1068)) (T -330)) +NIL +(-10 -8 (-15 -2680 (|#1| |#1| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#2|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#2| |#2|)) (-15 -3866 (|#1| |#1| (-287 |#2|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 |#2|))) (-15 -3866 (|#1| |#1| (-1144) |#2|))) +((-3972 (($ (-1 |#1| |#1|) $) 6)) (-3866 (($ $ (-1144) |#1|) 17 (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) 16 (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-623 (-287 |#1|))) 15 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 14 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-302 |#1|))) (($ $ (-623 |#1|) (-623 |#1|)) 12 (|has| |#1| (-302 |#1|)))) (-2680 (($ $ |#1|) 11 (|has| |#1| (-279 |#1| |#1|))))) +(((-331 |#1|) (-138) (-1068)) (T -331)) +((-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1068))))) +(-13 (-10 -8 (-15 -3972 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-279 |t#1| |t#1|)) (-6 (-279 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-505 (-1144) |t#1|)) (-6 (-505 (-1144) |t#1|)) |%noBranch|))) +(((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-505 (-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-1144)) $) NIL)) (-1646 (((-112)) 91) (((-112) (-112)) 92)) (-3223 (((-623 (-594 $)) $) NIL)) (-3123 (($ $) NIL)) (-3005 (($ $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL)) (-3353 (($ $) NIL)) (-3103 (($ $) NIL)) (-2984 (($ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-594 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-309 |#3|)) 71) (((-3 $ "failed") (-1144)) 97) (((-3 $ "failed") (-309 (-550))) 59 (|has| |#3| (-1011 (-550)))) (((-3 $ "failed") (-400 (-925 (-550)))) 65 (|has| |#3| (-1011 (-550)))) (((-3 $ "failed") (-925 (-550))) 60 (|has| |#3| (-1011 (-550)))) (((-3 $ "failed") (-309 (-372))) 89 (|has| |#3| (-1011 (-372)))) (((-3 $ "failed") (-400 (-925 (-372)))) 83 (|has| |#3| (-1011 (-372)))) (((-3 $ "failed") (-925 (-372))) 78 (|has| |#3| (-1011 (-372))))) (-2726 (((-594 $) $) NIL) ((|#3| $) NIL) (($ (-309 |#3|)) 72) (($ (-1144)) 98) (($ (-309 (-550))) 61 (|has| |#3| (-1011 (-550)))) (($ (-400 (-925 (-550)))) 66 (|has| |#3| (-1011 (-550)))) (($ (-925 (-550))) 62 (|has| |#3| (-1011 (-550)))) (($ (-309 (-372))) 90 (|has| |#3| (-1011 (-372)))) (($ (-400 (-925 (-372)))) 84 (|has| |#3| (-1011 (-372)))) (($ (-925 (-372))) 80 (|has| |#3| (-1011 (-372))))) (-1386 (((-3 $ "failed") $) NIL)) (-2734 (($) 10)) (-1380 (($ $) NIL) (($ (-623 $)) NIL)) (-2029 (((-623 (-114)) $) NIL)) (-2926 (((-114) (-114)) NIL)) (-3102 (((-112) $) NIL)) (-3718 (((-112) $) NIL (|has| $ (-1011 (-550))))) (-1843 (((-1140 $) (-594 $)) NIL (|has| $ (-1020)))) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 $ $) (-594 $)) NIL)) (-2106 (((-3 (-594 $) "failed") $) NIL)) (-1664 (($ $) 94)) (-2958 (($ $) NIL)) (-1825 (((-1126) $) NIL)) (-3296 (((-623 (-594 $)) $) NIL)) (-2776 (($ (-114) $) 93) (($ (-114) (-623 $)) NIL)) (-3890 (((-112) $ (-114)) NIL) (((-112) $ (-1144)) NIL)) (-3142 (((-749) $) NIL)) (-3337 (((-1088) $) NIL)) (-1938 (((-112) $ $) NIL) (((-112) $ (-1144)) NIL)) (-1812 (($ $) NIL)) (-3777 (((-112) $) NIL (|has| $ (-1011 (-550))))) (-3866 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1144) (-1 $ (-623 $))) NIL) (($ $ (-1144) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2680 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) NIL)) (-3930 (($ $) NIL) (($ $ $) NIL)) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) NIL)) (-1310 (($ $) NIL (|has| $ (-1020)))) (-3114 (($ $) NIL)) (-2995 (($ $) NIL)) (-1518 (((-836) $) NIL) (($ (-594 $)) NIL) (($ |#3|) NIL) (($ (-550)) NIL) (((-309 |#3|) $) 96)) (-2390 (((-749)) NIL)) (-3716 (($ $) NIL) (($ (-623 $)) NIL)) (-2222 (((-112) (-114)) NIL)) (-3060 (($ $) NIL)) (-3043 (($ $) NIL)) (-3052 (($ $) NIL)) (-1635 (($ $) NIL)) (-2626 (($) 95 T CONST)) (-2636 (($) 24 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2403 (($ $ $) NIL) (($ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-894)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-894) $) NIL))) +(((-332 |#1| |#2| |#3|) (-13 (-295) (-38 |#3|) (-1011 |#3|) (-873 (-1144)) (-10 -8 (-15 -2726 ($ (-309 |#3|))) (-15 -3880 ((-3 $ "failed") (-309 |#3|))) (-15 -2726 ($ (-1144))) (-15 -3880 ((-3 $ "failed") (-1144))) (-15 -1518 ((-309 |#3|) $)) (IF (|has| |#3| (-1011 (-550))) (PROGN (-15 -2726 ($ (-309 (-550)))) (-15 -3880 ((-3 $ "failed") (-309 (-550)))) (-15 -2726 ($ (-400 (-925 (-550))))) (-15 -3880 ((-3 $ "failed") (-400 (-925 (-550))))) (-15 -2726 ($ (-925 (-550)))) (-15 -3880 ((-3 $ "failed") (-925 (-550))))) |%noBranch|) (IF (|has| |#3| (-1011 (-372))) (PROGN (-15 -2726 ($ (-309 (-372)))) (-15 -3880 ((-3 $ "failed") (-309 (-372)))) (-15 -2726 ($ (-400 (-925 (-372))))) (-15 -3880 ((-3 $ "failed") (-400 (-925 (-372))))) (-15 -2726 ($ (-925 (-372)))) (-15 -3880 ((-3 $ "failed") (-925 (-372))))) |%noBranch|) (-15 -1635 ($ $)) (-15 -3353 ($ $)) (-15 -1812 ($ $)) (-15 -2958 ($ $)) (-15 -1664 ($ $)) (-15 -2984 ($ $)) (-15 -2995 ($ $)) (-15 -3005 ($ $)) (-15 -3043 ($ $)) (-15 -3052 ($ $)) (-15 -3060 ($ $)) (-15 -3103 ($ $)) (-15 -3114 ($ $)) (-15 -3123 ($ $)) (-15 -2734 ($)) (-15 -3141 ((-623 (-1144)) $)) (-15 -1646 ((-112))) (-15 -1646 ((-112) (-112))))) (-623 (-1144)) (-623 (-1144)) (-380)) (T -332)) +((-2726 (*1 *1 *2) (-12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 *2)) (-14 *4 (-623 *2)) (-4 *5 (-380)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 *2)) (-14 *4 (-623 *2)) (-4 *5 (-380)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-309 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-550))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-400 (-925 (-550)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-925 (-550)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-925 (-550))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-925 (-550))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-400 (-925 (-372)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-925 (-372)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-925 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-925 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-1635 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3353 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-1812 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-2958 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-1664 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-2984 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-2995 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3005 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3043 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3052 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3060 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3103 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3114 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3123 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-2734 (*1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-380)))) (-1646 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) (-1646 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380))))) +(-13 (-295) (-38 |#3|) (-1011 |#3|) (-873 (-1144)) (-10 -8 (-15 -2726 ($ (-309 |#3|))) (-15 -3880 ((-3 $ "failed") (-309 |#3|))) (-15 -2726 ($ (-1144))) (-15 -3880 ((-3 $ "failed") (-1144))) (-15 -1518 ((-309 |#3|) $)) (IF (|has| |#3| (-1011 (-550))) (PROGN (-15 -2726 ($ (-309 (-550)))) (-15 -3880 ((-3 $ "failed") (-309 (-550)))) (-15 -2726 ($ (-400 (-925 (-550))))) (-15 -3880 ((-3 $ "failed") (-400 (-925 (-550))))) (-15 -2726 ($ (-925 (-550)))) (-15 -3880 ((-3 $ "failed") (-925 (-550))))) |%noBranch|) (IF (|has| |#3| (-1011 (-372))) (PROGN (-15 -2726 ($ (-309 (-372)))) (-15 -3880 ((-3 $ "failed") (-309 (-372)))) (-15 -2726 ($ (-400 (-925 (-372))))) (-15 -3880 ((-3 $ "failed") (-400 (-925 (-372))))) (-15 -2726 ($ (-925 (-372)))) (-15 -3880 ((-3 $ "failed") (-925 (-372))))) |%noBranch|) (-15 -1635 ($ $)) (-15 -3353 ($ $)) (-15 -1812 ($ $)) (-15 -2958 ($ $)) (-15 -1664 ($ $)) (-15 -2984 ($ $)) (-15 -2995 ($ $)) (-15 -3005 ($ $)) (-15 -3043 ($ $)) (-15 -3052 ($ $)) (-15 -3060 ($ $)) (-15 -3103 ($ $)) (-15 -3114 ($ $)) (-15 -3123 ($ $)) (-15 -2734 ($)) (-15 -3141 ((-623 (-1144)) $)) (-15 -1646 ((-112))) (-15 -1646 ((-112) (-112))))) +((-3972 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3972 (|#8| (-1 |#5| |#1|) |#4|))) (-1185) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-1185) (-1203 |#5|) (-1203 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -333)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1185)) (-4 *8 (-1185)) (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-4 *9 (-1203 *8)) (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-333 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1203 (-400 *9)))))) +(-10 -7 (-15 -3972 (|#8| (-1 |#5| |#1|) |#4|))) +((-1363 (((-2 (|:| |num| (-1227 |#3|)) (|:| |den| |#3|)) $) 38)) (-4110 (($ (-1227 (-400 |#3|)) (-1227 $)) NIL) (($ (-1227 (-400 |#3|))) NIL) (($ (-1227 |#3|) |#3|) 161)) (-3770 (((-1227 $) (-1227 $)) 145)) (-1774 (((-623 (-623 |#2|))) 119)) (-1591 (((-112) |#2| |#2|) 73)) (-2674 (($ $) 139)) (-2392 (((-749)) 31)) (-2694 (((-1227 $) (-1227 $)) 198)) (-1897 (((-623 (-925 |#2|)) (-1144)) 110)) (-3022 (((-112) $) 158)) (-2911 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-3858 (((-3 |#3| "failed")) 50)) (-1880 (((-749)) 170)) (-2680 ((|#2| $ |#2| |#2|) 132)) (-3959 (((-3 |#3| "failed")) 68)) (-2393 (($ $ (-1 (-400 |#3|) (-400 |#3|)) (-749)) NIL) (($ $ (-1 (-400 |#3|) (-400 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-2794 (((-1227 $) (-1227 $)) 151)) (-2013 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1726 (((-112)) 33))) +(((-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -1774 ((-623 (-623 |#2|)))) (-15 -1897 ((-623 (-925 |#2|)) (-1144))) (-15 -2013 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3858 ((-3 |#3| "failed"))) (-15 -3959 ((-3 |#3| "failed"))) (-15 -2680 (|#2| |#1| |#2| |#2|)) (-15 -2674 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2911 ((-112) |#1| |#3|)) (-15 -2911 ((-112) |#1| |#2|)) (-15 -4110 (|#1| (-1227 |#3|) |#3|)) (-15 -1363 ((-2 (|:| |num| (-1227 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3770 ((-1227 |#1|) (-1227 |#1|))) (-15 -2694 ((-1227 |#1|) (-1227 |#1|))) (-15 -2794 ((-1227 |#1|) (-1227 |#1|))) (-15 -2911 ((-112) |#1|)) (-15 -3022 ((-112) |#1|)) (-15 -1591 ((-112) |#2| |#2|)) (-15 -1726 ((-112))) (-15 -1880 ((-749))) (-15 -2392 ((-749))) (-15 -2393 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -2393 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-749))) (-15 -4110 (|#1| (-1227 (-400 |#3|)))) (-15 -4110 (|#1| (-1227 (-400 |#3|)) (-1227 |#1|)))) (-335 |#2| |#3| |#4|) (-1185) (-1203 |#2|) (-1203 (-400 |#3|))) (T -334)) +((-2392 (*1 *2) (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1880 (*1 *2) (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1726 (*1 *2) (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1591 (*1 *2 *3 *3) (-12 (-4 *3 (-1185)) (-4 *5 (-1203 *3)) (-4 *6 (-1203 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) (-3959 (*1 *2) (|partial| -12 (-4 *4 (-1185)) (-4 *5 (-1203 (-400 *2))) (-4 *2 (-1203 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-3858 (*1 *2) (|partial| -12 (-4 *4 (-1185)) (-4 *5 (-1203 (-400 *2))) (-4 *2 (-1203 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-4 *5 (-1185)) (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-5 *2 (-623 (-925 *5))) (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) (-1774 (*1 *2) (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-5 *2 (-623 (-623 *4))) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))) +(-10 -8 (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -1774 ((-623 (-623 |#2|)))) (-15 -1897 ((-623 (-925 |#2|)) (-1144))) (-15 -2013 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3858 ((-3 |#3| "failed"))) (-15 -3959 ((-3 |#3| "failed"))) (-15 -2680 (|#2| |#1| |#2| |#2|)) (-15 -2674 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2911 ((-112) |#1| |#3|)) (-15 -2911 ((-112) |#1| |#2|)) (-15 -4110 (|#1| (-1227 |#3|) |#3|)) (-15 -1363 ((-2 (|:| |num| (-1227 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3770 ((-1227 |#1|) (-1227 |#1|))) (-15 -2694 ((-1227 |#1|) (-1227 |#1|))) (-15 -2794 ((-1227 |#1|) (-1227 |#1|))) (-15 -2911 ((-112) |#1|)) (-15 -3022 ((-112) |#1|)) (-15 -1591 ((-112) |#2| |#2|)) (-15 -1726 ((-112))) (-15 -1880 ((-749))) (-15 -2392 ((-749))) (-15 -2393 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -2393 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-749))) (-15 -4110 (|#1| (-1227 (-400 |#3|)))) (-15 -4110 (|#1| (-1227 (-400 |#3|)) (-1227 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1363 (((-2 (|:| |num| (-1227 |#2|)) (|:| |den| |#2|)) $) 193)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 91 (|has| (-400 |#2|) (-356)))) (-1447 (($ $) 92 (|has| (-400 |#2|) (-356)))) (-4291 (((-112) $) 94 (|has| (-400 |#2|) (-356)))) (-1615 (((-667 (-400 |#2|)) (-1227 $)) 44) (((-667 (-400 |#2|))) 59)) (-2252 (((-400 |#2|) $) 50)) (-1337 (((-1154 (-894) (-749)) (-550)) 144 (|has| (-400 |#2|) (-342)))) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 111 (|has| (-400 |#2|) (-356)))) (-3564 (((-411 $) $) 112 (|has| (-400 |#2|) (-356)))) (-3631 (((-112) $ $) 102 (|has| (-400 |#2|) (-356)))) (-4319 (((-749)) 85 (|has| (-400 |#2|) (-361)))) (-2438 (((-112)) 210)) (-2332 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 166 (|has| (-400 |#2|) (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 164 (|has| (-400 |#2|) (-1011 (-400 (-550))))) (((-3 (-400 |#2|) "failed") $) 163)) (-2726 (((-550) $) 167 (|has| (-400 |#2|) (-1011 (-550)))) (((-400 (-550)) $) 165 (|has| (-400 |#2|) (-1011 (-400 (-550))))) (((-400 |#2|) $) 162)) (-4110 (($ (-1227 (-400 |#2|)) (-1227 $)) 46) (($ (-1227 (-400 |#2|))) 62) (($ (-1227 |#2|) |#2|) 192)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-400 |#2|) (-342)))) (-3349 (($ $ $) 106 (|has| (-400 |#2|) (-356)))) (-2677 (((-667 (-400 |#2|)) $ (-1227 $)) 51) (((-667 (-400 |#2|)) $) 57)) (-3780 (((-667 (-550)) (-667 $)) 161 (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 160 (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-400 |#2|))) (|:| |vec| (-1227 (-400 |#2|)))) (-667 $) (-1227 $)) 159) (((-667 (-400 |#2|)) (-667 $)) 158)) (-3770 (((-1227 $) (-1227 $)) 198)) (-2419 (($ |#3|) 155) (((-3 $ "failed") (-400 |#3|)) 152 (|has| (-400 |#2|) (-356)))) (-1386 (((-3 $ "failed") $) 32)) (-1774 (((-623 (-623 |#1|))) 179 (|has| |#1| (-361)))) (-1591 (((-112) |#1| |#1|) 214)) (-2122 (((-894)) 52)) (-1741 (($) 88 (|has| (-400 |#2|) (-361)))) (-2234 (((-112)) 207)) (-2133 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-1519 (($ $ $) 105 (|has| (-400 |#2|) (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 100 (|has| (-400 |#2|) (-356)))) (-2674 (($ $) 185)) (-3485 (($) 146 (|has| (-400 |#2|) (-342)))) (-3697 (((-112) $) 147 (|has| (-400 |#2|) (-342)))) (-3714 (($ $ (-749)) 138 (|has| (-400 |#2|) (-342))) (($ $) 137 (|has| (-400 |#2|) (-342)))) (-3933 (((-112) $) 113 (|has| (-400 |#2|) (-356)))) (-2475 (((-894) $) 149 (|has| (-400 |#2|) (-342))) (((-811 (-894)) $) 135 (|has| (-400 |#2|) (-342)))) (-3102 (((-112) $) 30)) (-2392 (((-749)) 217)) (-2694 (((-1227 $) (-1227 $)) 199)) (-1389 (((-400 |#2|) $) 49)) (-1897 (((-623 (-925 |#1|)) (-1144)) 180 (|has| |#1| (-356)))) (-2826 (((-3 $ "failed") $) 139 (|has| (-400 |#2|) (-342)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 109 (|has| (-400 |#2|) (-356)))) (-1428 ((|#3| $) 42 (|has| (-400 |#2|) (-356)))) (-2253 (((-894) $) 87 (|has| (-400 |#2|) (-361)))) (-2407 ((|#3| $) 153)) (-3106 (($ (-623 $)) 98 (|has| (-400 |#2|) (-356))) (($ $ $) 97 (|has| (-400 |#2|) (-356)))) (-1825 (((-1126) $) 9)) (-3298 (((-667 (-400 |#2|))) 194)) (-3519 (((-667 (-400 |#2|))) 196)) (-3235 (($ $) 114 (|has| (-400 |#2|) (-356)))) (-4179 (($ (-1227 |#2|) |#2|) 190)) (-3411 (((-667 (-400 |#2|))) 195)) (-3649 (((-667 (-400 |#2|))) 197)) (-4072 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-4306 (((-2 (|:| |num| (-1227 |#2|)) (|:| |den| |#2|)) $) 191)) (-3119 (((-1227 $)) 203)) (-2372 (((-1227 $)) 204)) (-3022 (((-112) $) 202)) (-2911 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3862 (($) 140 (|has| (-400 |#2|) (-342)) CONST)) (-2922 (($ (-894)) 86 (|has| (-400 |#2|) (-361)))) (-3858 (((-3 |#2| "failed")) 182)) (-3337 (((-1088) $) 10)) (-1880 (((-749)) 216)) (-3935 (($) 157)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 99 (|has| (-400 |#2|) (-356)))) (-3139 (($ (-623 $)) 96 (|has| (-400 |#2|) (-356))) (($ $ $) 95 (|has| (-400 |#2|) (-356)))) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 143 (|has| (-400 |#2|) (-342)))) (-3338 (((-411 $) $) 110 (|has| (-400 |#2|) (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 107 (|has| (-400 |#2|) (-356)))) (-1495 (((-3 $ "failed") $ $) 90 (|has| (-400 |#2|) (-356)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 101 (|has| (-400 |#2|) (-356)))) (-3542 (((-749) $) 103 (|has| (-400 |#2|) (-356)))) (-2680 ((|#1| $ |#1| |#1|) 184)) (-3959 (((-3 |#2| "failed")) 183)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 104 (|has| (-400 |#2|) (-356)))) (-3453 (((-400 |#2|) (-1227 $)) 45) (((-400 |#2|)) 58)) (-3811 (((-749) $) 148 (|has| (-400 |#2|) (-342))) (((-3 (-749) "failed") $ $) 136 (|has| (-400 |#2|) (-342)))) (-2393 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) 120 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 119 (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-623 (-1144)) (-623 (-749))) 127 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) (-1262 (|has| (-400 |#2|) (-873 (-1144))) (|has| (-400 |#2|) (-356))))) (($ $ (-1144) (-749)) 128 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) (-1262 (|has| (-400 |#2|) (-873 (-1144))) (|has| (-400 |#2|) (-356))))) (($ $ (-623 (-1144))) 129 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) (-1262 (|has| (-400 |#2|) (-873 (-1144))) (|has| (-400 |#2|) (-356))))) (($ $ (-1144)) 130 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) (-1262 (|has| (-400 |#2|) (-873 (-1144))) (|has| (-400 |#2|) (-356))))) (($ $ (-749)) 132 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1262 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) 134 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1262 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-3013 (((-667 (-400 |#2|)) (-1227 $) (-1 (-400 |#2|) (-400 |#2|))) 151 (|has| (-400 |#2|) (-356)))) (-1310 ((|#3|) 156)) (-4288 (($) 145 (|has| (-400 |#2|) (-342)))) (-1373 (((-1227 (-400 |#2|)) $ (-1227 $)) 48) (((-667 (-400 |#2|)) (-1227 $) (-1227 $)) 47) (((-1227 (-400 |#2|)) $) 64) (((-667 (-400 |#2|)) (-1227 $)) 63)) (-4028 (((-1227 (-400 |#2|)) $) 61) (($ (-1227 (-400 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 142 (|has| (-400 |#2|) (-342)))) (-2794 (((-1227 $) (-1227 $)) 200)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 |#2|)) 35) (($ (-400 (-550))) 84 (-1561 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1011 (-400 (-550)))))) (($ $) 89 (|has| (-400 |#2|) (-356)))) (-4242 (($ $) 141 (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) 41 (|has| (-400 |#2|) (-143)))) (-2608 ((|#3| $) 43)) (-2390 (((-749)) 28)) (-1449 (((-112)) 213)) (-2538 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2437 (((-1227 $)) 65)) (-1345 (((-112) $ $) 93 (|has| (-400 |#2|) (-356)))) (-2013 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1726 (((-112)) 215)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) 122 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 121 (|has| (-400 |#2|) (-356))) (($ $ (-623 (-1144)) (-623 (-749))) 123 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) (-1262 (|has| (-400 |#2|) (-873 (-1144))) (|has| (-400 |#2|) (-356))))) (($ $ (-1144) (-749)) 124 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) (-1262 (|has| (-400 |#2|) (-873 (-1144))) (|has| (-400 |#2|) (-356))))) (($ $ (-623 (-1144))) 125 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) (-1262 (|has| (-400 |#2|) (-873 (-1144))) (|has| (-400 |#2|) (-356))))) (($ $ (-1144)) 126 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) (-1262 (|has| (-400 |#2|) (-873 (-1144))) (|has| (-400 |#2|) (-356))))) (($ $ (-749)) 131 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1262 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) 133 (-1561 (-1262 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1262 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 118 (|has| (-400 |#2|) (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 115 (|has| (-400 |#2|) (-356)))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 |#2|)) 37) (($ (-400 |#2|) $) 36) (($ (-400 (-550)) $) 117 (|has| (-400 |#2|) (-356))) (($ $ (-400 (-550))) 116 (|has| (-400 |#2|) (-356))))) +(((-335 |#1| |#2| |#3|) (-138) (-1185) (-1203 |t#1|) (-1203 (-400 |t#2|))) (T -335)) +((-2392 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-749)))) (-1880 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-749)))) (-1726 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-1591 (*1 *2 *3 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-1449 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2538 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2538 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 (-400 *3))) (-5 *2 (-112)))) (-2438 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2332 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2332 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 (-400 *3))) (-5 *2 (-112)))) (-2234 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2133 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2133 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 (-400 *3))) (-5 *2 (-112)))) (-2372 (*1 *2) (-12 (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)))) (-3119 (*1 *2) (-12 (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))))) (-2694 (*1 *2 *2) (-12 (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))))) (-3649 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-3519 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-3411 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-3298 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1227 *4)) (|:| |den| *4))))) (-4110 (*1 *1 *2 *3) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-1203 *4)) (-4 *4 (-1185)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1203 (-400 *3))))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1227 *4)) (|:| |den| *4))))) (-4179 (*1 *1 *2 *3) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-1203 *4)) (-4 *4 (-1185)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1203 (-400 *3))))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-5 *2 (-2 (|:| |num| (-667 *5)) (|:| |den| *5))))) (-2911 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) (-2911 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 (-400 *3))) (-5 *2 (-112)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))))) (-2674 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1185)) (-4 *3 (-1203 *2)) (-4 *4 (-1203 (-400 *3))))) (-2680 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1185)) (-4 *3 (-1203 *2)) (-4 *4 (-1203 (-400 *3))))) (-3959 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1185)) (-4 *4 (-1203 (-400 *2))) (-4 *2 (-1203 *3)))) (-3858 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1185)) (-4 *4 (-1203 (-400 *2))) (-4 *2 (-1203 *3)))) (-2013 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1203 *4)) (-4 *4 (-1185)) (-4 *6 (-1203 (-400 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-335 *4 *5 *6)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-4 *4 (-356)) (-5 *2 (-623 (-925 *4))))) (-1774 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-623 (-623 *3)))))) +(-13 (-703 (-400 |t#2|) |t#3|) (-10 -8 (-15 -2392 ((-749))) (-15 -1880 ((-749))) (-15 -1726 ((-112))) (-15 -1591 ((-112) |t#1| |t#1|)) (-15 -1449 ((-112))) (-15 -2538 ((-112) |t#1|)) (-15 -2538 ((-112) |t#2|)) (-15 -2438 ((-112))) (-15 -2332 ((-112) |t#1|)) (-15 -2332 ((-112) |t#2|)) (-15 -2234 ((-112))) (-15 -2133 ((-112) |t#1|)) (-15 -2133 ((-112) |t#2|)) (-15 -2372 ((-1227 $))) (-15 -3119 ((-1227 $))) (-15 -3022 ((-112) $)) (-15 -2911 ((-112) $)) (-15 -2794 ((-1227 $) (-1227 $))) (-15 -2694 ((-1227 $) (-1227 $))) (-15 -3770 ((-1227 $) (-1227 $))) (-15 -3649 ((-667 (-400 |t#2|)))) (-15 -3519 ((-667 (-400 |t#2|)))) (-15 -3411 ((-667 (-400 |t#2|)))) (-15 -3298 ((-667 (-400 |t#2|)))) (-15 -1363 ((-2 (|:| |num| (-1227 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4110 ($ (-1227 |t#2|) |t#2|)) (-15 -4306 ((-2 (|:| |num| (-1227 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4179 ($ (-1227 |t#2|) |t#2|)) (-15 -4072 ((-2 (|:| |num| (-667 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2911 ((-112) $ |t#1|)) (-15 -2911 ((-112) $ |t#2|)) (-15 -2393 ($ $ (-1 |t#2| |t#2|))) (-15 -2674 ($ $)) (-15 -2680 (|t#1| $ |t#1| |t#1|)) (-15 -3959 ((-3 |t#2| "failed"))) (-15 -3858 ((-3 |t#2| "failed"))) (-15 -2013 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-356)) (-15 -1897 ((-623 (-925 |t#1|)) (-1144))) |%noBranch|) (IF (|has| |t#1| (-361)) (-15 -1774 ((-623 (-623 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-38 #1=(-400 |#2|)) . T) ((-38 $) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-101) . T) ((-111 #0# #0#) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-143))) ((-145) |has| (-400 |#2|) (-145)) ((-595 (-836)) . T) ((-170) . T) ((-596 |#3|) . T) ((-225 #1#) |has| (-400 |#2|) (-356)) ((-227) -1561 (|has| (-400 |#2|) (-342)) (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356)))) ((-237) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-283) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-300) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-356) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-395) |has| (-400 |#2|) (-342)) ((-361) -1561 (|has| (-400 |#2|) (-361)) (|has| (-400 |#2|) (-342))) ((-342) |has| (-400 |#2|) (-342)) ((-363 #1# |#3|) . T) ((-402 #1# |#3|) . T) ((-370 #1#) . T) ((-404 #1#) . T) ((-444) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-542) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-626 #0#) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-626 #1#) . T) ((-626 $) . T) ((-619 #1#) . T) ((-619 (-550)) |has| (-400 |#2|) (-619 (-550))) ((-696 #0#) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-696 #1#) . T) ((-696 $) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-703 #1# |#3|) . T) ((-705) . T) ((-873 (-1144)) -12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144)))) ((-893) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-1011 (-400 (-550))) |has| (-400 |#2|) (-1011 (-400 (-550)))) ((-1011 #1#) . T) ((-1011 (-550)) |has| (-400 |#2|) (-1011 (-550))) ((-1026 #0#) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-1026 #1#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) |has| (-400 |#2|) (-342)) ((-1185) -1561 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 (((-883 |#1|) $) NIL) (($ $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| (-883 |#1|) (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL (|has| (-883 |#1|) (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-883 |#1|) "failed") $) NIL)) (-2726 (((-883 |#1|) $) NIL)) (-4110 (($ (-1227 (-883 |#1|))) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-883 |#1|) (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-883 |#1|) (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) NIL (|has| (-883 |#1|) (-361)))) (-3697 (((-112) $) NIL (|has| (-883 |#1|) (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361)))) (($ $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| (-883 |#1|) (-361))) (((-811 (-894)) $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) NIL (|has| (-883 |#1|) (-361)))) (-2340 (((-112) $) NIL (|has| (-883 |#1|) (-361)))) (-1389 (((-883 |#1|) $) NIL) (($ $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| (-883 |#1|) (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 (-883 |#1|)) $) NIL) (((-1140 $) $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-2253 (((-894) $) NIL (|has| (-883 |#1|) (-361)))) (-4116 (((-1140 (-883 |#1|)) $) NIL (|has| (-883 |#1|) (-361)))) (-4008 (((-1140 (-883 |#1|)) $) NIL (|has| (-883 |#1|) (-361))) (((-3 (-1140 (-883 |#1|)) "failed") $ $) NIL (|has| (-883 |#1|) (-361)))) (-4235 (($ $ (-1140 (-883 |#1|))) NIL (|has| (-883 |#1|) (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-883 |#1|) (-361)) CONST)) (-2922 (($ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-4100 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-2018 (((-931 (-1088))) NIL)) (-3935 (($) NIL (|has| (-883 |#1|) (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| (-883 |#1|) (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| (-883 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-1310 (((-1140 (-883 |#1|))) NIL)) (-4288 (($) NIL (|has| (-883 |#1|) (-361)))) (-1273 (($) NIL (|has| (-883 |#1|) (-361)))) (-1373 (((-1227 (-883 |#1|)) $) NIL) (((-667 (-883 |#1|)) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| (-883 |#1|) (-361)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-883 |#1|)) NIL)) (-4242 (($ $) NIL (|has| (-883 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL) (((-1227 $) (-894)) NIL)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2072 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-4183 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL) (($ $ (-883 |#1|)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-883 |#1|)) NIL) (($ (-883 |#1|) $) NIL))) +(((-336 |#1| |#2|) (-13 (-322 (-883 |#1|)) (-10 -7 (-15 -2018 ((-931 (-1088)))))) (-894) (-894)) (T -336)) +((-2018 (*1 *2) (-12 (-5 *2 (-931 (-1088))) (-5 *1 (-336 *3 *4)) (-14 *3 (-894)) (-14 *4 (-894))))) +(-13 (-322 (-883 |#1|)) (-10 -7 (-15 -2018 ((-931 (-1088)))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 44)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) 41 (|has| |#1| (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL (|has| |#1| (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) 115)) (-2726 ((|#1| $) 86)) (-4110 (($ (-1227 |#1|)) 104)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) 98 (|has| |#1| (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) 129 (|has| |#1| (-361)))) (-3697 (((-112) $) 48 (|has| |#1| (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) 45 (|has| |#1| (-361))) (((-811 (-894)) $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) 131 (|has| |#1| (-361)))) (-2340 (((-112) $) NIL (|has| |#1| (-361)))) (-1389 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 |#1|) $) 90) (((-1140 $) $ (-894)) NIL (|has| |#1| (-361)))) (-2253 (((-894) $) 139 (|has| |#1| (-361)))) (-4116 (((-1140 |#1|) $) NIL (|has| |#1| (-361)))) (-4008 (((-1140 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1140 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-4235 (($ $ (-1140 |#1|)) NIL (|has| |#1| (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 146)) (-3862 (($) NIL (|has| |#1| (-361)) CONST)) (-2922 (($ (-894)) 71 (|has| |#1| (-361)))) (-4100 (((-112) $) 118)) (-3337 (((-1088) $) NIL)) (-2018 (((-931 (-1088))) 42)) (-3935 (($) 127 (|has| |#1| (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 93 (|has| |#1| (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) 67) (((-894)) 68)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) 130 (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) 125 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-1310 (((-1140 |#1|)) 96)) (-4288 (($) 128 (|has| |#1| (-361)))) (-1273 (($) 136 (|has| |#1| (-361)))) (-1373 (((-1227 |#1|) $) 59) (((-667 |#1|) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-1518 (((-836) $) 142) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 75)) (-4242 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2390 (((-749)) 138)) (-2437 (((-1227 $)) 117) (((-1227 $) (-894)) 73)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) 49 T CONST)) (-2636 (($) 46 T CONST)) (-2072 (($ $) 81 (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4183 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2316 (((-112) $ $) 47)) (-2414 (($ $ $) 144) (($ $ |#1|) 145)) (-2403 (($ $) 126) (($ $ $) NIL)) (-2391 (($ $ $) 61)) (** (($ $ (-894)) 148) (($ $ (-749)) 149) (($ $ (-550)) 147)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 77) (($ $ $) 76) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-337 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -2018 ((-931 (-1088)))))) (-342) (-1140 |#1|)) (T -337)) +((-2018 (*1 *2) (-12 (-5 *2 (-931 (-1088))) (-5 *1 (-337 *3 *4)) (-4 *3 (-342)) (-14 *4 (-1140 *3))))) +(-13 (-322 |#1|) (-10 -7 (-15 -2018 ((-931 (-1088)))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| |#1| (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL (|has| |#1| (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-4110 (($ (-1227 |#1|)) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| |#1| (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) NIL (|has| |#1| (-361)))) (-3697 (((-112) $) NIL (|has| |#1| (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| |#1| (-361))) (((-811 (-894)) $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) NIL (|has| |#1| (-361)))) (-2340 (((-112) $) NIL (|has| |#1| (-361)))) (-1389 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 |#1|) $) NIL) (((-1140 $) $ (-894)) NIL (|has| |#1| (-361)))) (-2253 (((-894) $) NIL (|has| |#1| (-361)))) (-4116 (((-1140 |#1|) $) NIL (|has| |#1| (-361)))) (-4008 (((-1140 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1140 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-4235 (($ $ (-1140 |#1|)) NIL (|has| |#1| (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| |#1| (-361)) CONST)) (-2922 (($ (-894)) NIL (|has| |#1| (-361)))) (-4100 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-2018 (((-931 (-1088))) NIL)) (-3935 (($) NIL (|has| |#1| (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| |#1| (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-1310 (((-1140 |#1|)) NIL)) (-4288 (($) NIL (|has| |#1| (-361)))) (-1273 (($) NIL (|has| |#1| (-361)))) (-1373 (((-1227 |#1|) $) NIL) (((-667 |#1|) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) NIL)) (-4242 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL) (((-1227 $) (-894)) NIL)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2072 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4183 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-338 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -2018 ((-931 (-1088)))))) (-342) (-894)) (T -338)) +((-2018 (*1 *2) (-12 (-5 *2 (-931 (-1088))) (-5 *1 (-338 *3 *4)) (-4 *3 (-342)) (-14 *4 (-894))))) +(-13 (-322 |#1|) (-10 -7 (-15 -2018 ((-931 (-1088)))))) +((-3398 (((-749) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088)))))) 42)) (-3875 (((-931 (-1088)) (-1140 |#1|)) 85)) (-3976 (((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) (-1140 |#1|)) 78)) (-4086 (((-667 |#1|) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088)))))) 86)) (-4197 (((-3 (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) "failed") (-894)) 13)) (-4059 (((-3 (-1140 |#1|) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088)))))) (-894)) 18))) +(((-339 |#1|) (-10 -7 (-15 -3875 ((-931 (-1088)) (-1140 |#1|))) (-15 -3976 ((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) (-1140 |#1|))) (-15 -4086 ((-667 |#1|) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (-15 -3398 ((-749) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (-15 -4197 ((-3 (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) "failed") (-894))) (-15 -4059 ((-3 (-1140 |#1|) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088)))))) (-894)))) (-342)) (T -339)) +((-4059 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-3 (-1140 *4) (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088))))))) (-5 *1 (-339 *4)) (-4 *4 (-342)))) (-4197 (*1 *2 *3) (|partial| -12 (-5 *3 (-894)) (-5 *2 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) (-5 *1 (-339 *4)) (-4 *4 (-342)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) (-4 *4 (-342)) (-5 *2 (-749)) (-5 *1 (-339 *4)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) (-4 *4 (-342)) (-5 *2 (-667 *4)) (-5 *1 (-339 *4)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) (-5 *2 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) (-5 *1 (-339 *4)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) (-5 *2 (-931 (-1088))) (-5 *1 (-339 *4))))) +(-10 -7 (-15 -3875 ((-931 (-1088)) (-1140 |#1|))) (-15 -3976 ((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) (-1140 |#1|))) (-15 -4086 ((-667 |#1|) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (-15 -3398 ((-749) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (-15 -4197 ((-3 (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) "failed") (-894))) (-15 -4059 ((-3 (-1140 |#1|) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088)))))) (-894)))) +((-1518 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-340 |#1| |#2| |#3|) (-10 -7 (-15 -1518 (|#3| |#1|)) (-15 -1518 (|#1| |#3|))) (-322 |#2|) (-342) (-322 |#2|)) (T -340)) +((-1518 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *2 *4 *3)) (-4 *3 (-322 *4)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *3 *4 *2)) (-4 *3 (-322 *4))))) +(-10 -7 (-15 -1518 (|#3| |#1|)) (-15 -1518 (|#1| |#3|))) +((-3697 (((-112) $) 51)) (-2475 (((-811 (-894)) $) 21) (((-894) $) 52)) (-2826 (((-3 $ "failed") $) 16)) (-3862 (($) 9)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 93)) (-3811 (((-3 (-749) "failed") $ $) 71) (((-749) $) 60)) (-2393 (($ $ (-749)) NIL) (($ $) 8)) (-4288 (($) 44)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 34)) (-4242 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-341 |#1|) (-10 -8 (-15 -2475 ((-894) |#1|)) (-15 -3811 ((-749) |#1|)) (-15 -3697 ((-112) |#1|)) (-15 -4288 (|#1|)) (-15 -3172 ((-3 (-1227 |#1|) "failed") (-667 |#1|))) (-15 -4242 (|#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -3862 (|#1|)) (-15 -2826 ((-3 |#1| "failed") |#1|)) (-15 -3811 ((-3 (-749) "failed") |#1| |#1|)) (-15 -2475 ((-811 (-894)) |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|)))) (-342)) (T -341)) +NIL +(-10 -8 (-15 -2475 ((-894) |#1|)) (-15 -3811 ((-749) |#1|)) (-15 -3697 ((-112) |#1|)) (-15 -4288 (|#1|)) (-15 -3172 ((-3 (-1227 |#1|) "failed") (-667 |#1|))) (-15 -4242 (|#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -3862 (|#1|)) (-15 -2826 ((-3 |#1| "failed") |#1|)) (-15 -3811 ((-3 (-749) "failed") |#1| |#1|)) (-15 -2475 ((-811 (-894)) |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-1337 (((-1154 (-894) (-749)) (-550)) 90)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3631 (((-112) $ $) 57)) (-4319 (((-749)) 100)) (-3513 (($) 17 T CONST)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1741 (($) 103)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3485 (($) 88)) (-3697 (((-112) $) 87)) (-3714 (($ $) 76) (($ $ (-749)) 75)) (-3933 (((-112) $) 68)) (-2475 (((-811 (-894)) $) 78) (((-894) $) 85)) (-3102 (((-112) $) 30)) (-2826 (((-3 $ "failed") $) 99)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2253 (((-894) $) 102)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-3862 (($) 98 T CONST)) (-2922 (($ (-894)) 101)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 91)) (-3338 (((-411 $) $) 71)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-3811 (((-3 (-749) "failed") $ $) 77) (((-749) $) 86)) (-2393 (($ $ (-749)) 96) (($ $) 94)) (-4288 (($) 89)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 92)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63)) (-4242 (((-3 $ "failed") $) 79) (($ $) 93)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-749)) 97) (($ $) 95)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 62)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) +(((-342) (-138)) (T -342)) +((-4242 (*1 *1 *1) (-4 *1 (-342))) (-3172 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-342)) (-5 *2 (-1227 *1)))) (-1464 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))))) (-1337 (*1 *2 *3) (-12 (-4 *1 (-342)) (-5 *3 (-550)) (-5 *2 (-1154 (-894) (-749))))) (-4288 (*1 *1) (-4 *1 (-342))) (-3485 (*1 *1) (-4 *1 (-342))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-112)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-749)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-894)))) (-4161 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-395) (-361) (-1119) (-227) (-10 -8 (-15 -4242 ($ $)) (-15 -3172 ((-3 (-1227 $) "failed") (-667 $))) (-15 -1464 ((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550)))))) (-15 -1337 ((-1154 (-894) (-749)) (-550))) (-15 -4288 ($)) (-15 -3485 ($)) (-15 -3697 ((-112) $)) (-15 -3811 ((-749) $)) (-15 -2475 ((-894) $)) (-15 -4161 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-595 (-836)) . T) ((-170) . T) ((-227) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) . T) ((-361) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-893) . T) ((-1026 #0#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) . T) ((-1185) . T)) +((-2457 (((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|) 53)) (-2372 (((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))) 51))) +(((-343 |#1| |#2| |#3|) (-10 -7 (-15 -2372 ((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))))) (-15 -2457 ((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|))) (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $)))) (-1203 |#1|) (-402 |#1| |#2|)) (T -343)) +((-2457 (*1 *2 *3) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *4 (-1203 *3)) (-5 *2 (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2372 (*1 *2) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *4 (-1203 *3)) (-5 *2 (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) +(-10 -7 (-15 -2372 ((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))))) (-15 -2457 ((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 (((-883 |#1|) $) NIL) (($ $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| (-883 |#1|) (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3398 (((-749)) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL (|has| (-883 |#1|) (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-883 |#1|) "failed") $) NIL)) (-2726 (((-883 |#1|) $) NIL)) (-4110 (($ (-1227 (-883 |#1|))) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-883 |#1|) (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-883 |#1|) (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) NIL (|has| (-883 |#1|) (-361)))) (-3697 (((-112) $) NIL (|has| (-883 |#1|) (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361)))) (($ $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| (-883 |#1|) (-361))) (((-811 (-894)) $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) NIL (|has| (-883 |#1|) (-361)))) (-2340 (((-112) $) NIL (|has| (-883 |#1|) (-361)))) (-1389 (((-883 |#1|) $) NIL) (($ $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| (-883 |#1|) (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 (-883 |#1|)) $) NIL) (((-1140 $) $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-2253 (((-894) $) NIL (|has| (-883 |#1|) (-361)))) (-4116 (((-1140 (-883 |#1|)) $) NIL (|has| (-883 |#1|) (-361)))) (-4008 (((-1140 (-883 |#1|)) $) NIL (|has| (-883 |#1|) (-361))) (((-3 (-1140 (-883 |#1|)) "failed") $ $) NIL (|has| (-883 |#1|) (-361)))) (-4235 (($ $ (-1140 (-883 |#1|))) NIL (|has| (-883 |#1|) (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-883 |#1|) (-361)) CONST)) (-2922 (($ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-4100 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-3595 (((-1227 (-623 (-2 (|:| -3625 (-883 |#1|)) (|:| -2922 (-1088)))))) NIL)) (-3503 (((-667 (-883 |#1|))) NIL)) (-3935 (($) NIL (|has| (-883 |#1|) (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| (-883 |#1|) (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| (-883 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-1310 (((-1140 (-883 |#1|))) NIL)) (-4288 (($) NIL (|has| (-883 |#1|) (-361)))) (-1273 (($) NIL (|has| (-883 |#1|) (-361)))) (-1373 (((-1227 (-883 |#1|)) $) NIL) (((-667 (-883 |#1|)) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| (-883 |#1|) (-361)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-883 |#1|)) NIL)) (-4242 (($ $) NIL (|has| (-883 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL) (((-1227 $) (-894)) NIL)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2072 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-4183 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL) (($ $ (-883 |#1|)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-883 |#1|)) NIL) (($ (-883 |#1|) $) NIL))) +(((-344 |#1| |#2|) (-13 (-322 (-883 |#1|)) (-10 -7 (-15 -3595 ((-1227 (-623 (-2 (|:| -3625 (-883 |#1|)) (|:| -2922 (-1088))))))) (-15 -3503 ((-667 (-883 |#1|)))) (-15 -3398 ((-749))))) (-894) (-894)) (T -344)) +((-3595 (*1 *2) (-12 (-5 *2 (-1227 (-623 (-2 (|:| -3625 (-883 *3)) (|:| -2922 (-1088)))))) (-5 *1 (-344 *3 *4)) (-14 *3 (-894)) (-14 *4 (-894)))) (-3503 (*1 *2) (-12 (-5 *2 (-667 (-883 *3))) (-5 *1 (-344 *3 *4)) (-14 *3 (-894)) (-14 *4 (-894)))) (-3398 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-344 *3 *4)) (-14 *3 (-894)) (-14 *4 (-894))))) +(-13 (-322 (-883 |#1|)) (-10 -7 (-15 -3595 ((-1227 (-623 (-2 (|:| -3625 (-883 |#1|)) (|:| -2922 (-1088))))))) (-15 -3503 ((-667 (-883 |#1|)))) (-15 -3398 ((-749))))) +((-1504 (((-112) $ $) 61)) (-3433 (((-112) $) 74)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 ((|#1| $) 92) (($ $ (-894)) 90 (|has| |#1| (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) 148 (|has| |#1| (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3398 (((-749)) 89)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) 162 (|has| |#1| (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) 112)) (-2726 ((|#1| $) 91)) (-4110 (($ (-1227 |#1|)) 58)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) 158 (|has| |#1| (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) 149 (|has| |#1| (-361)))) (-3697 (((-112) $) NIL (|has| |#1| (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| |#1| (-361))) (((-811 (-894)) $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) 98 (|has| |#1| (-361)))) (-2340 (((-112) $) 175 (|has| |#1| (-361)))) (-1389 ((|#1| $) 94) (($ $ (-894)) 93 (|has| |#1| (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 |#1|) $) 189) (((-1140 $) $ (-894)) NIL (|has| |#1| (-361)))) (-2253 (((-894) $) 134 (|has| |#1| (-361)))) (-4116 (((-1140 |#1|) $) 73 (|has| |#1| (-361)))) (-4008 (((-1140 |#1|) $) 70 (|has| |#1| (-361))) (((-3 (-1140 |#1|) "failed") $ $) 82 (|has| |#1| (-361)))) (-4235 (($ $ (-1140 |#1|)) 69 (|has| |#1| (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 192)) (-3862 (($) NIL (|has| |#1| (-361)) CONST)) (-2922 (($ (-894)) 137 (|has| |#1| (-361)))) (-4100 (((-112) $) 108)) (-3337 (((-1088) $) NIL)) (-3595 (((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088)))))) 83)) (-3503 (((-667 |#1|)) 87)) (-3935 (($) 96 (|has| |#1| (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 150 (|has| |#1| (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) 151)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) 62)) (-1310 (((-1140 |#1|)) 152)) (-4288 (($) 133 (|has| |#1| (-361)))) (-1273 (($) NIL (|has| |#1| (-361)))) (-1373 (((-1227 |#1|) $) 106) (((-667 |#1|) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-1518 (((-836) $) 124) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 57)) (-4242 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2390 (((-749)) 156)) (-2437 (((-1227 $)) 172) (((-1227 $) (-894)) 101)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) 117 T CONST)) (-2636 (($) 33 T CONST)) (-2072 (($ $) 107 (|has| |#1| (-361))) (($ $ (-749)) 99 (|has| |#1| (-361)))) (-4183 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2316 (((-112) $ $) 183)) (-2414 (($ $ $) 104) (($ $ |#1|) 105)) (-2403 (($ $) 177) (($ $ $) 181)) (-2391 (($ $ $) 179)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 138)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 186) (($ $ $) 142) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-345 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -3595 ((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (-15 -3503 ((-667 |#1|))) (-15 -3398 ((-749))))) (-342) (-3 (-1140 |#1|) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (T -345)) +((-3595 (*1 *2) (-12 (-5 *2 (-1227 (-623 (-2 (|:| -3625 *3) (|:| -2922 (-1088)))))) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1140 *3) *2)))) (-3503 (*1 *2) (-12 (-5 *2 (-667 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1140 *3) (-1227 (-623 (-2 (|:| -3625 *3) (|:| -2922 (-1088))))))))) (-3398 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1140 *3) (-1227 (-623 (-2 (|:| -3625 *3) (|:| -2922 (-1088)))))))))) +(-13 (-322 |#1|) (-10 -7 (-15 -3595 ((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (-15 -3503 ((-667 |#1|))) (-15 -3398 ((-749))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| |#1| (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3398 (((-749)) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL (|has| |#1| (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-4110 (($ (-1227 |#1|)) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| |#1| (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) NIL (|has| |#1| (-361)))) (-3697 (((-112) $) NIL (|has| |#1| (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| |#1| (-361))) (((-811 (-894)) $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) NIL (|has| |#1| (-361)))) (-2340 (((-112) $) NIL (|has| |#1| (-361)))) (-1389 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 |#1|) $) NIL) (((-1140 $) $ (-894)) NIL (|has| |#1| (-361)))) (-2253 (((-894) $) NIL (|has| |#1| (-361)))) (-4116 (((-1140 |#1|) $) NIL (|has| |#1| (-361)))) (-4008 (((-1140 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1140 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-4235 (($ $ (-1140 |#1|)) NIL (|has| |#1| (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| |#1| (-361)) CONST)) (-2922 (($ (-894)) NIL (|has| |#1| (-361)))) (-4100 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-3595 (((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088)))))) NIL)) (-3503 (((-667 |#1|)) NIL)) (-3935 (($) NIL (|has| |#1| (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| |#1| (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-1310 (((-1140 |#1|)) NIL)) (-4288 (($) NIL (|has| |#1| (-361)))) (-1273 (($) NIL (|has| |#1| (-361)))) (-1373 (((-1227 |#1|) $) NIL) (((-667 |#1|) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) NIL)) (-4242 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL) (((-1227 $) (-894)) NIL)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2072 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4183 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-346 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -3595 ((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (-15 -3503 ((-667 |#1|))) (-15 -3398 ((-749))))) (-342) (-894)) (T -346)) +((-3595 (*1 *2) (-12 (-5 *2 (-1227 (-623 (-2 (|:| -3625 *3) (|:| -2922 (-1088)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-894)))) (-3503 (*1 *2) (-12 (-5 *2 (-667 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-894)))) (-3398 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-894))))) +(-13 (-322 |#1|) (-10 -7 (-15 -3595 ((-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))))) (-15 -3503 ((-667 |#1|))) (-15 -3398 ((-749))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 (((-883 |#1|) $) NIL) (($ $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| (-883 |#1|) (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL (|has| (-883 |#1|) (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-883 |#1|) "failed") $) NIL)) (-2726 (((-883 |#1|) $) NIL)) (-4110 (($ (-1227 (-883 |#1|))) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-883 |#1|) (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-883 |#1|) (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) NIL (|has| (-883 |#1|) (-361)))) (-3697 (((-112) $) NIL (|has| (-883 |#1|) (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361)))) (($ $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| (-883 |#1|) (-361))) (((-811 (-894)) $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) NIL (|has| (-883 |#1|) (-361)))) (-2340 (((-112) $) NIL (|has| (-883 |#1|) (-361)))) (-1389 (((-883 |#1|) $) NIL) (($ $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| (-883 |#1|) (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 (-883 |#1|)) $) NIL) (((-1140 $) $ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-2253 (((-894) $) NIL (|has| (-883 |#1|) (-361)))) (-4116 (((-1140 (-883 |#1|)) $) NIL (|has| (-883 |#1|) (-361)))) (-4008 (((-1140 (-883 |#1|)) $) NIL (|has| (-883 |#1|) (-361))) (((-3 (-1140 (-883 |#1|)) "failed") $ $) NIL (|has| (-883 |#1|) (-361)))) (-4235 (($ $ (-1140 (-883 |#1|))) NIL (|has| (-883 |#1|) (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-883 |#1|) (-361)) CONST)) (-2922 (($ (-894)) NIL (|has| (-883 |#1|) (-361)))) (-4100 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-3935 (($) NIL (|has| (-883 |#1|) (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| (-883 |#1|) (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| (-883 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-1310 (((-1140 (-883 |#1|))) NIL)) (-4288 (($) NIL (|has| (-883 |#1|) (-361)))) (-1273 (($) NIL (|has| (-883 |#1|) (-361)))) (-1373 (((-1227 (-883 |#1|)) $) NIL) (((-667 (-883 |#1|)) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| (-883 |#1|) (-361)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-883 |#1|)) NIL)) (-4242 (($ $) NIL (|has| (-883 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| (-883 |#1|) (-143)) (|has| (-883 |#1|) (-361))))) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL) (((-1227 $) (-894)) NIL)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2072 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-4183 (($ $) NIL (|has| (-883 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-883 |#1|) (-361)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL) (($ $ (-883 |#1|)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-883 |#1|)) NIL) (($ (-883 |#1|) $) NIL))) +(((-347 |#1| |#2|) (-322 (-883 |#1|)) (-894) (-894)) (T -347)) +NIL +(-322 (-883 |#1|)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) 120 (|has| |#1| (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) 140 (|has| |#1| (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) 93)) (-2726 ((|#1| $) 90)) (-4110 (($ (-1227 |#1|)) 85)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) 82 (|has| |#1| (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) 42 (|has| |#1| (-361)))) (-3697 (((-112) $) NIL (|has| |#1| (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| |#1| (-361))) (((-811 (-894)) $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) 121 (|has| |#1| (-361)))) (-2340 (((-112) $) 74 (|has| |#1| (-361)))) (-1389 ((|#1| $) 39) (($ $ (-894)) 43 (|has| |#1| (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 |#1|) $) 65) (((-1140 $) $ (-894)) NIL (|has| |#1| (-361)))) (-2253 (((-894) $) 97 (|has| |#1| (-361)))) (-4116 (((-1140 |#1|) $) NIL (|has| |#1| (-361)))) (-4008 (((-1140 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1140 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-4235 (($ $ (-1140 |#1|)) NIL (|has| |#1| (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| |#1| (-361)) CONST)) (-2922 (($ (-894)) 95 (|has| |#1| (-361)))) (-4100 (((-112) $) 142)) (-3337 (((-1088) $) NIL)) (-3935 (($) 36 (|has| |#1| (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 115 (|has| |#1| (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) 139)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) 59)) (-1310 (((-1140 |#1|)) 88)) (-4288 (($) 126 (|has| |#1| (-361)))) (-1273 (($) NIL (|has| |#1| (-361)))) (-1373 (((-1227 |#1|) $) 53) (((-667 |#1|) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-1518 (((-836) $) 138) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 87)) (-4242 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2390 (((-749)) 144)) (-2437 (((-1227 $)) 109) (((-1227 $) (-894)) 49)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) 111 T CONST)) (-2636 (($) 32 T CONST)) (-2072 (($ $) 68 (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4183 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2316 (((-112) $ $) 107)) (-2414 (($ $ $) 99) (($ $ |#1|) 100)) (-2403 (($ $) 80) (($ $ $) 105)) (-2391 (($ $ $) 103)) (** (($ $ (-894)) NIL) (($ $ (-749)) 44) (($ $ (-550)) 130)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 78) (($ $ $) 56) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-348 |#1| |#2|) (-322 |#1|) (-342) (-1140 |#1|)) (T -348)) NIL (-322 |#1|) -((-1806 (((-929 (-1136 |#1|)) (-1136 |#1|)) 36)) (-3315 (((-1136 |#1|) (-890) (-890)) 113) (((-1136 |#1|) (-890)) 112)) (-1791 (((-112) (-1136 |#1|)) 84)) (-1793 (((-890) (-890)) 71)) (-1794 (((-890) (-890)) 74)) (-1792 (((-890) (-890)) 69)) (-2122 (((-112) (-1136 |#1|)) 88)) (-1801 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 101)) (-1804 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 104)) (-1803 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 103)) (-1802 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 102)) (-1800 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 98)) (-1805 (((-1136 |#1|) (-1136 |#1|)) 62)) (-1796 (((-1136 |#1|) (-890)) 107)) (-1799 (((-1136 |#1|) (-890)) 110)) (-1798 (((-1136 |#1|) (-890)) 109)) (-1797 (((-1136 |#1|) (-890)) 108)) (-1795 (((-1136 |#1|) (-890)) 105))) -(((-349 |#1|) (-10 -7 (-15 -1791 ((-112) (-1136 |#1|))) (-15 -2122 ((-112) (-1136 |#1|))) (-15 -1792 ((-890) (-890))) (-15 -1793 ((-890) (-890))) (-15 -1794 ((-890) (-890))) (-15 -1795 ((-1136 |#1|) (-890))) (-15 -1796 ((-1136 |#1|) (-890))) (-15 -1797 ((-1136 |#1|) (-890))) (-15 -1798 ((-1136 |#1|) (-890))) (-15 -1799 ((-1136 |#1|) (-890))) (-15 -1800 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1801 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1802 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1803 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1804 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -3315 ((-1136 |#1|) (-890))) (-15 -3315 ((-1136 |#1|) (-890) (-890))) (-15 -1805 ((-1136 |#1|) (-1136 |#1|))) (-15 -1806 ((-929 (-1136 |#1|)) (-1136 |#1|)))) (-343)) (T -349)) -((-1806 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-929 (-1136 *4))) (-5 *1 (-349 *4)) (-5 *3 (-1136 *4)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1804 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1803 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1802 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1801 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1800 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4))))) -(-10 -7 (-15 -1791 ((-112) (-1136 |#1|))) (-15 -2122 ((-112) (-1136 |#1|))) (-15 -1792 ((-890) (-890))) (-15 -1793 ((-890) (-890))) (-15 -1794 ((-890) (-890))) (-15 -1795 ((-1136 |#1|) (-890))) (-15 -1796 ((-1136 |#1|) (-890))) (-15 -1797 ((-1136 |#1|) (-890))) (-15 -1798 ((-1136 |#1|) (-890))) (-15 -1799 ((-1136 |#1|) (-890))) (-15 -1800 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1801 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1802 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1803 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1804 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -3315 ((-1136 |#1|) (-890))) (-15 -3315 ((-1136 |#1|) (-890) (-890))) (-15 -1805 ((-1136 |#1|) (-1136 |#1|))) (-15 -1806 ((-929 (-1136 |#1|)) (-1136 |#1|)))) -((-1807 ((|#1| (-1136 |#2|)) 52))) -(((-350 |#1| |#2|) (-10 -7 (-15 -1807 (|#1| (-1136 |#2|)))) (-13 (-395) (-10 -7 (-15 -4300 (|#1| |#2|)) (-15 -2121 ((-890) |#1|)) (-15 -2123 ((-1224 |#1|) (-890))) (-15 -4271 (|#1| |#1|)))) (-343)) (T -350)) -((-1807 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-4 *2 (-13 (-395) (-10 -7 (-15 -4300 (*2 *4)) (-15 -2121 ((-890) *2)) (-15 -2123 ((-1224 *2) (-890))) (-15 -4271 (*2 *2))))) (-5 *1 (-350 *2 *4))))) -(-10 -7 (-15 -1807 (|#1| (-1136 |#2|)))) -((-3025 (((-3 (-618 |#3|) "failed") (-618 |#3|) |#3|) 34))) -(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3025 ((-3 (-618 |#3|) "failed") (-618 |#3|) |#3|))) (-343) (-1200 |#1|) (-1200 |#2|)) (T -351)) -((-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-343)) (-5 *1 (-351 *4 *5 *3))))) -(-10 -7 (-15 -3025 ((-3 (-618 |#3|) "failed") (-618 |#3|) |#3|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3450 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) NIL) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) NIL) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) NIL)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-352 |#1| |#2|) (-322 |#1|) (-343) (-890)) (T -352)) +((-1362 ((|#1| (-1140 |#2|)) 52))) +(((-349 |#1| |#2|) (-10 -7 (-15 -1362 (|#1| (-1140 |#2|)))) (-13 (-395) (-10 -7 (-15 -1518 (|#1| |#2|)) (-15 -2253 ((-894) |#1|)) (-15 -2437 ((-1227 |#1|) (-894))) (-15 -2072 (|#1| |#1|)))) (-342)) (T -349)) +((-1362 (*1 *2 *3) (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) (-4 *2 (-13 (-395) (-10 -7 (-15 -1518 (*2 *4)) (-15 -2253 ((-894) *2)) (-15 -2437 ((-1227 *2) (-894))) (-15 -2072 (*2 *2))))) (-5 *1 (-349 *2 *4))))) +(-10 -7 (-15 -1362 (|#1| (-1140 |#2|)))) +((-1728 (((-931 (-1140 |#1|)) (-1140 |#1|)) 36)) (-1741 (((-1140 |#1|) (-894) (-894)) 113) (((-1140 |#1|) (-894)) 112)) (-3697 (((-112) (-1140 |#1|)) 84)) (-3877 (((-894) (-894)) 71)) (-2805 (((-894) (-894)) 74)) (-3797 (((-894) (-894)) 69)) (-2340 (((-112) (-1140 |#1|)) 88)) (-4207 (((-3 (-1140 |#1|) "failed") (-1140 |#1|)) 101)) (-1430 (((-3 (-1140 |#1|) "failed") (-1140 |#1|)) 104)) (-3709 (((-3 (-1140 |#1|) "failed") (-1140 |#1|)) 103)) (-2196 (((-3 (-1140 |#1|) "failed") (-1140 |#1|)) 102)) (-3596 (((-3 (-1140 |#1|) "failed") (-1140 |#1|)) 98)) (-1580 (((-1140 |#1|) (-1140 |#1|)) 62)) (-4213 (((-1140 |#1|) (-894)) 107)) (-3457 (((-1140 |#1|) (-894)) 110)) (-1501 (((-1140 |#1|) (-894)) 109)) (-1266 (((-1140 |#1|) (-894)) 108)) (-2918 (((-1140 |#1|) (-894)) 105))) +(((-350 |#1|) (-10 -7 (-15 -3697 ((-112) (-1140 |#1|))) (-15 -2340 ((-112) (-1140 |#1|))) (-15 -3797 ((-894) (-894))) (-15 -3877 ((-894) (-894))) (-15 -2805 ((-894) (-894))) (-15 -2918 ((-1140 |#1|) (-894))) (-15 -4213 ((-1140 |#1|) (-894))) (-15 -1266 ((-1140 |#1|) (-894))) (-15 -1501 ((-1140 |#1|) (-894))) (-15 -3457 ((-1140 |#1|) (-894))) (-15 -3596 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -4207 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -2196 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -3709 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -1430 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -1741 ((-1140 |#1|) (-894))) (-15 -1741 ((-1140 |#1|) (-894) (-894))) (-15 -1580 ((-1140 |#1|) (-1140 |#1|))) (-15 -1728 ((-931 (-1140 |#1|)) (-1140 |#1|)))) (-342)) (T -350)) +((-1728 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-931 (-1140 *4))) (-5 *1 (-350 *4)) (-5 *3 (-1140 *4)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-1741 (*1 *2 *3 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-1430 (*1 *2 *2) (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-3709 (*1 *2 *2) (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2196 (*1 *2 *2) (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-4207 (*1 *2 *2) (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-3596 (*1 *2 *2) (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-1266 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-350 *4)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-350 *4))))) +(-10 -7 (-15 -3697 ((-112) (-1140 |#1|))) (-15 -2340 ((-112) (-1140 |#1|))) (-15 -3797 ((-894) (-894))) (-15 -3877 ((-894) (-894))) (-15 -2805 ((-894) (-894))) (-15 -2918 ((-1140 |#1|) (-894))) (-15 -4213 ((-1140 |#1|) (-894))) (-15 -1266 ((-1140 |#1|) (-894))) (-15 -1501 ((-1140 |#1|) (-894))) (-15 -3457 ((-1140 |#1|) (-894))) (-15 -3596 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -4207 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -2196 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -3709 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -1430 ((-3 (-1140 |#1|) "failed") (-1140 |#1|))) (-15 -1741 ((-1140 |#1|) (-894))) (-15 -1741 ((-1140 |#1|) (-894) (-894))) (-15 -1580 ((-1140 |#1|) (-1140 |#1|))) (-15 -1728 ((-931 (-1140 |#1|)) (-1140 |#1|)))) +((-3297 (((-3 (-623 |#3|) "failed") (-623 |#3|) |#3|) 34))) +(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3297 ((-3 (-623 |#3|) "failed") (-623 |#3|) |#3|))) (-342) (-1203 |#1|) (-1203 |#2|)) (T -351)) +((-3297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-1203 *4)) (-4 *4 (-342)) (-5 *1 (-351 *4 *5 *3))))) +(-10 -7 (-15 -3297 ((-3 (-623 |#3|) "failed") (-623 |#3|) |#3|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| |#1| (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL (|has| |#1| (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-4110 (($ (-1227 |#1|)) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| |#1| (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) NIL (|has| |#1| (-361)))) (-3697 (((-112) $) NIL (|has| |#1| (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| |#1| (-361))) (((-811 (-894)) $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) NIL (|has| |#1| (-361)))) (-2340 (((-112) $) NIL (|has| |#1| (-361)))) (-1389 ((|#1| $) NIL) (($ $ (-894)) NIL (|has| |#1| (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 |#1|) $) NIL) (((-1140 $) $ (-894)) NIL (|has| |#1| (-361)))) (-2253 (((-894) $) NIL (|has| |#1| (-361)))) (-4116 (((-1140 |#1|) $) NIL (|has| |#1| (-361)))) (-4008 (((-1140 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1140 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-4235 (($ $ (-1140 |#1|)) NIL (|has| |#1| (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| |#1| (-361)) CONST)) (-2922 (($ (-894)) NIL (|has| |#1| (-361)))) (-4100 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-3935 (($) NIL (|has| |#1| (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| |#1| (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-1310 (((-1140 |#1|)) NIL)) (-4288 (($) NIL (|has| |#1| (-361)))) (-1273 (($) NIL (|has| |#1| (-361)))) (-1373 (((-1227 |#1|) $) NIL) (((-667 |#1|) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) NIL)) (-4242 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL) (((-1227 $) (-894)) NIL)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2072 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4183 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-352 |#1| |#2|) (-322 |#1|) (-342) (-894)) (T -352)) NIL (-322 |#1|) -((-2324 (((-112) (-618 (-917 |#1|))) 34)) (-2326 (((-618 (-917 |#1|)) (-618 (-917 |#1|))) 46)) (-2325 (((-3 (-618 (-917 |#1|)) "failed") (-618 (-917 |#1|))) 41))) -(((-353 |#1| |#2|) (-10 -7 (-15 -2324 ((-112) (-618 (-917 |#1|)))) (-15 -2325 ((-3 (-618 (-917 |#1|)) "failed") (-618 (-917 |#1|)))) (-15 -2326 ((-618 (-917 |#1|)) (-618 (-917 |#1|))))) (-444) (-618 (-1142))) (T -353)) -((-2326 (*1 *2 *2) (-12 (-5 *2 (-618 (-917 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-618 (-1142))))) (-2325 (*1 *2 *2) (|partial| -12 (-5 *2 (-618 (-917 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-618 (-1142))))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-444)) (-5 *2 (-112)) (-5 *1 (-353 *4 *5)) (-14 *5 (-618 (-1142)))))) -(-10 -7 (-15 -2324 ((-112) (-618 (-917 |#1|)))) (-15 -2325 ((-3 (-618 (-917 |#1|)) "failed") (-618 (-917 |#1|)))) (-15 -2326 ((-618 (-917 |#1|)) (-618 (-917 |#1|))))) -((-2887 (((-112) $ $) NIL)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) 15)) (-2759 ((|#1| $ (-535)) NIL)) (-2760 (((-535) $ (-535)) NIL)) (-2362 (($ (-1 |#1| |#1|) $) 32)) (-2363 (($ (-1 (-535) (-535)) $) 24)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 26)) (-3577 (((-1086) $) NIL)) (-2758 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-535)))) $) 28)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 38) (($ |#1|) NIL)) (-2985 (($) 9 T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL) (($ |#1| (-535)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-354 |#1|) (-13 (-465) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-535))) (-15 -3454 ((-747) $)) (-15 -2760 ((-535) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2363 ($ (-1 (-535) (-535)) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-535)))) $)))) (-1067)) (T -354)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-2760 (*1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (-2363 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-535) (-535))) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-2362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-354 *3)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-535))))) (-5 *1 (-354 *3)) (-4 *3 (-1067))))) -(-13 (-465) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-535))) (-15 -3454 ((-747) $)) (-15 -2760 ((-535) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2363 ($ (-1 (-535) (-535)) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-535)))) $)))) -((-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 13)) (-2171 (($ $) 14)) (-4312 (((-398 $) $) 30)) (-4069 (((-112) $) 26)) (-2725 (($ $) 19)) (-3478 (($ $ $) 23) (($ (-618 $)) NIL)) (-4075 (((-398 $) $) 31)) (-3803 (((-3 $ "failed") $ $) 22)) (-1699 (((-747) $) 25)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 35)) (-2170 (((-112) $ $) 16)) (-4291 (($ $ $) 33))) -(((-355 |#1|) (-10 -8 (-15 -4291 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -1699 ((-747) |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)) (-15 -2170 ((-112) |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|))) (-356)) (T -355)) -NIL -(-10 -8 (-15 -4291 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -1699 ((-747) |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)) (-15 -2170 ((-112) |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64))) +((-2813 (((-112) (-623 (-925 |#1|))) 34)) (-3017 (((-623 (-925 |#1|)) (-623 (-925 |#1|))) 46)) (-2915 (((-3 (-623 (-925 |#1|)) "failed") (-623 (-925 |#1|))) 41))) +(((-353 |#1| |#2|) (-10 -7 (-15 -2813 ((-112) (-623 (-925 |#1|)))) (-15 -2915 ((-3 (-623 (-925 |#1|)) "failed") (-623 (-925 |#1|)))) (-15 -3017 ((-623 (-925 |#1|)) (-623 (-925 |#1|))))) (-444) (-623 (-1144))) (T -353)) +((-3017 (*1 *2 *2) (-12 (-5 *2 (-623 (-925 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-623 (-1144))))) (-2915 (*1 *2 *2) (|partial| -12 (-5 *2 (-623 (-925 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-623 (-1144))))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-444)) (-5 *2 (-112)) (-5 *1 (-353 *4 *5)) (-14 *5 (-623 (-1144)))))) +(-10 -7 (-15 -2813 ((-112) (-623 (-925 |#1|)))) (-15 -2915 ((-3 (-623 (-925 |#1|)) "failed") (-623 (-925 |#1|)))) (-15 -3017 ((-623 (-925 |#1|)) (-623 (-925 |#1|))))) +((-1504 (((-112) $ $) NIL)) (-4319 (((-749) $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) 15)) (-1980 ((|#1| $ (-550)) NIL)) (-2076 (((-550) $ (-550)) NIL)) (-2808 (($ (-1 |#1| |#1|) $) 32)) (-2921 (($ (-1 (-550) (-550)) $) 24)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 26)) (-3337 (((-1088) $) NIL)) (-1877 (((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-550)))) $) 28)) (-1270 (($ $ $) NIL)) (-3292 (($ $ $) NIL)) (-1518 (((-836) $) 38) (($ |#1|) NIL)) (-2636 (($) 9 T CONST)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL) (($ |#1| (-550)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-354 |#1|) (-13 (-465) (-1011 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-550))) (-15 -4319 ((-749) $)) (-15 -2076 ((-550) $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -2921 ($ (-1 (-550) (-550)) $)) (-15 -2808 ($ (-1 |#1| |#1|) $)) (-15 -1877 ((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-550)))) $)))) (-1068)) (T -354)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1068)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1068)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-354 *2)) (-4 *2 (-1068)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-354 *3)) (-4 *3 (-1068)))) (-2076 (*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-354 *3)) (-4 *3 (-1068)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-354 *2)) (-4 *2 (-1068)))) (-2921 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-550) (-550))) (-5 *1 (-354 *3)) (-4 *3 (-1068)))) (-2808 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-354 *3)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 (-550))))) (-5 *1 (-354 *3)) (-4 *3 (-1068))))) +(-13 (-465) (-1011 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-550))) (-15 -4319 ((-749) $)) (-15 -2076 ((-550) $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -2921 ($ (-1 (-550) (-550)) $)) (-15 -2808 ($ (-1 |#1| |#1|) $)) (-15 -1877 ((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-550)))) $)))) +((-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 13)) (-1447 (($ $) 14)) (-3564 (((-411 $) $) 30)) (-3933 (((-112) $) 26)) (-3235 (($ $) 19)) (-3139 (($ $ $) 23) (($ (-623 $)) NIL)) (-3338 (((-411 $) $) 31)) (-1495 (((-3 $ "failed") $ $) 22)) (-3542 (((-749) $) 25)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 35)) (-1345 (((-112) $ $) 16)) (-2414 (($ $ $) 33))) +(((-355 |#1|) (-10 -8 (-15 -2414 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -1866 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -3542 ((-749) |#1|)) (-15 -3139 (|#1| (-623 |#1|))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -1345 ((-112) |#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -3368 ((-2 (|:| -3090 |#1|) (|:| -4329 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|))) (-356)) (T -355)) +NIL +(-10 -8 (-15 -2414 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -1866 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -3542 ((-749) |#1|)) (-15 -3139 (|#1| (-623 |#1|))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -1345 ((-112) |#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -3368 ((-2 (|:| -3090 |#1|) (|:| -4329 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3631 (((-112) $ $) 57)) (-3513 (($) 17 T CONST)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3933 (((-112) $) 68)) (-3102 (((-112) $) 30)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3338 (((-411 $) $) 71)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 62)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) (((-356) (-138)) (T -356)) -((-4291 (*1 *1 *1 *1) (-4 *1 (-356)))) -(-13 (-300) (-1183) (-237) (-10 -8 (-15 -4291 ($ $ $)) (-6 -4334) (-6 -4328))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T)) -((-2887 (((-112) $ $) NIL)) (-1808 ((|#1| $ |#1|) 30)) (-1812 (($ $ (-1124)) 22)) (-3965 (((-3 |#1| "failed") $) 29)) (-1809 ((|#1| $) 27)) (-1813 (($ (-381)) 21) (($ (-381) (-1124)) 20)) (-3888 (((-381) $) 24)) (-3576 (((-1124) $) NIL)) (-1810 (((-1124) $) 25)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19)) (-1811 (($ $) 23)) (-3375 (((-112) $ $) 18))) -(((-357 |#1|) (-13 (-358 (-381) |#1|) (-10 -8 (-15 -3965 ((-3 |#1| "failed") $)))) (-1067)) (T -357)) -((-3965 (*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1067))))) -(-13 (-358 (-381) |#1|) (-10 -8 (-15 -3965 ((-3 |#1| "failed") $)))) -((-2887 (((-112) $ $) 7)) (-1808 ((|#2| $ |#2|) 13)) (-1812 (($ $ (-1124)) 18)) (-1809 ((|#2| $) 14)) (-1813 (($ |#1|) 20) (($ |#1| (-1124)) 19)) (-3888 ((|#1| $) 16)) (-3576 (((-1124) $) 9)) (-1810 (((-1124) $) 15)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-1811 (($ $) 17)) (-3375 (((-112) $ $) 6))) -(((-358 |#1| |#2|) (-138) (-1067) (-1067)) (T -358)) -((-1813 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-1813 (*1 *1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1067)) (-4 *4 (-1067)))) (-1812 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-1124)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-1808 (*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))) -(-13 (-1067) (-10 -8 (-15 -1813 ($ |t#1|)) (-15 -1813 ($ |t#1| (-1124))) (-15 -1812 ($ $ (-1124))) (-15 -1811 ($ $)) (-15 -3888 (|t#1| $)) (-15 -1810 ((-1124) $)) (-15 -1809 (|t#2| $)) (-15 -1808 (|t#2| $ |t#2|)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-3557 (((-1224 (-665 |#2|)) (-1224 $)) 61)) (-1902 (((-665 |#2|) (-1224 $)) 120)) (-1838 ((|#2| $) 32)) (-1900 (((-665 |#2|) $ (-1224 $)) 123)) (-2487 (((-3 $ "failed") $) 75)) (-1836 ((|#2| $) 35)) (-1816 (((-1136 |#2|) $) 83)) (-1904 ((|#2| (-1224 $)) 106)) (-1834 (((-1136 |#2|) $) 28)) (-1828 (((-112)) 100)) (-1906 (($ (-1224 |#2|) (-1224 $)) 113)) (-3804 (((-3 $ "failed") $) 79)) (-1821 (((-112)) 95)) (-1819 (((-112)) 90)) (-1823 (((-112)) 53)) (-1903 (((-665 |#2|) (-1224 $)) 118)) (-1839 ((|#2| $) 31)) (-1901 (((-665 |#2|) $ (-1224 $)) 122)) (-2488 (((-3 $ "failed") $) 73)) (-1837 ((|#2| $) 34)) (-1817 (((-1136 |#2|) $) 82)) (-1905 ((|#2| (-1224 $)) 104)) (-1835 (((-1136 |#2|) $) 26)) (-1829 (((-112)) 99)) (-1820 (((-112)) 92)) (-1822 (((-112)) 51)) (-1824 (((-112)) 87)) (-1827 (((-112)) 101)) (-3558 (((-1224 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) 111)) (-1833 (((-112)) 97)) (-1818 (((-618 (-1224 |#2|))) 86)) (-1831 (((-112)) 98)) (-1832 (((-112)) 96)) (-1830 (((-112)) 46)) (-1826 (((-112)) 102))) -(((-359 |#1| |#2|) (-10 -8 (-15 -1816 ((-1136 |#2|) |#1|)) (-15 -1817 ((-1136 |#2|) |#1|)) (-15 -1818 ((-618 (-1224 |#2|)))) (-15 -2487 ((-3 |#1| "failed") |#1|)) (-15 -2488 ((-3 |#1| "failed") |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-112))) (-15 -1820 ((-112))) (-15 -1821 ((-112))) (-15 -1822 ((-112))) (-15 -1823 ((-112))) (-15 -1824 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1830 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-1136 |#2|) |#1|)) (-15 -1835 ((-1136 |#2|) |#1|)) (-15 -1902 ((-665 |#2|) (-1224 |#1|))) (-15 -1903 ((-665 |#2|) (-1224 |#1|))) (-15 -1904 (|#2| (-1224 |#1|))) (-15 -1905 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1836 (|#2| |#1|)) (-15 -1837 (|#2| |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -1900 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -1901 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -3557 ((-1224 (-665 |#2|)) (-1224 |#1|)))) (-360 |#2|) (-170)) (T -359)) -((-1833 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1832 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1831 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1830 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1828 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1827 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1826 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1824 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1823 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1822 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1821 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1820 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1819 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1818 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-618 (-1224 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))) -(-10 -8 (-15 -1816 ((-1136 |#2|) |#1|)) (-15 -1817 ((-1136 |#2|) |#1|)) (-15 -1818 ((-618 (-1224 |#2|)))) (-15 -2487 ((-3 |#1| "failed") |#1|)) (-15 -2488 ((-3 |#1| "failed") |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-112))) (-15 -1820 ((-112))) (-15 -1821 ((-112))) (-15 -1822 ((-112))) (-15 -1823 ((-112))) (-15 -1824 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1830 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-1136 |#2|) |#1|)) (-15 -1835 ((-1136 |#2|) |#1|)) (-15 -1902 ((-665 |#2|) (-1224 |#1|))) (-15 -1903 ((-665 |#2|) (-1224 |#1|))) (-15 -1904 (|#2| (-1224 |#1|))) (-15 -1905 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1836 (|#2| |#1|)) (-15 -1837 (|#2| |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -1900 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -1901 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -3557 ((-1224 (-665 |#2|)) (-1224 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1887 (((-3 $ "failed")) 37 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3557 (((-1224 (-665 |#1|)) (-1224 $)) 78)) (-1840 (((-1224 $)) 81)) (-3879 (($) 17 T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed")) 40 (|has| |#1| (-542)))) (-1814 (((-3 $ "failed")) 38 (|has| |#1| (-542)))) (-1902 (((-665 |#1|) (-1224 $)) 65)) (-1838 ((|#1| $) 74)) (-1900 (((-665 |#1|) $ (-1224 $)) 76)) (-2487 (((-3 $ "failed") $) 45 (|has| |#1| (-542)))) (-2490 (($ $ (-890)) 28)) (-1836 ((|#1| $) 72)) (-1816 (((-1136 |#1|) $) 42 (|has| |#1| (-542)))) (-1904 ((|#1| (-1224 $)) 67)) (-1834 (((-1136 |#1|) $) 63)) (-1828 (((-112)) 57)) (-1906 (($ (-1224 |#1|) (-1224 $)) 69)) (-3804 (((-3 $ "failed") $) 47 (|has| |#1| (-542)))) (-3427 (((-890)) 80)) (-1825 (((-112)) 54)) (-2515 (($ $ (-890)) 33)) (-1821 (((-112)) 50)) (-1819 (((-112)) 48)) (-1823 (((-112)) 52)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed")) 41 (|has| |#1| (-542)))) (-1815 (((-3 $ "failed")) 39 (|has| |#1| (-542)))) (-1903 (((-665 |#1|) (-1224 $)) 66)) (-1839 ((|#1| $) 75)) (-1901 (((-665 |#1|) $ (-1224 $)) 77)) (-2488 (((-3 $ "failed") $) 46 (|has| |#1| (-542)))) (-2489 (($ $ (-890)) 29)) (-1837 ((|#1| $) 73)) (-1817 (((-1136 |#1|) $) 43 (|has| |#1| (-542)))) (-1905 ((|#1| (-1224 $)) 68)) (-1835 (((-1136 |#1|) $) 64)) (-1829 (((-112)) 58)) (-3576 (((-1124) $) 9)) (-1820 (((-112)) 49)) (-1822 (((-112)) 51)) (-1824 (((-112)) 53)) (-3577 (((-1086) $) 10)) (-1827 (((-112)) 56)) (-3558 (((-1224 |#1|) $ (-1224 $)) 71) (((-665 |#1|) (-1224 $) (-1224 $)) 70)) (-2009 (((-618 (-917 |#1|)) (-1224 $)) 79)) (-2677 (($ $ $) 25)) (-1833 (((-112)) 62)) (-4300 (((-835) $) 11)) (-1818 (((-618 (-1224 |#1|))) 44 (|has| |#1| (-542)))) (-2678 (($ $ $ $) 26)) (-1831 (((-112)) 60)) (-2676 (($ $ $) 24)) (-1832 (((-112)) 61)) (-1830 (((-112)) 59)) (-1826 (((-112)) 55)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-2414 (*1 *1 *1 *1) (-4 *1 (-356)))) +(-13 (-300) (-1185) (-237) (-10 -8 (-15 -2414 ($ $ $)) (-6 -4340) (-6 -4334))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-893) . T) ((-1026 #0#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) . T)) +((-1504 (((-112) $ $) 7)) (-1510 ((|#2| $ |#2|) 13)) (-3826 (($ $ (-1126)) 18)) (-1656 ((|#2| $) 14)) (-3257 (($ |#1|) 20) (($ |#1| (-1126)) 19)) (-1916 ((|#1| $) 16)) (-1825 (((-1126) $) 9)) (-1811 (((-1126) $) 15)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-1951 (($ $) 17)) (-2316 (((-112) $ $) 6))) +(((-357 |#1| |#2|) (-138) (-1068) (-1068)) (T -357)) +((-3257 (*1 *1 *2) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) (-3257 (*1 *1 *2 *3) (-12 (-5 *3 (-1126)) (-4 *1 (-357 *2 *4)) (-4 *2 (-1068)) (-4 *4 (-1068)))) (-3826 (*1 *1 *1 *2) (-12 (-5 *2 (-1126)) (-4 *1 (-357 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-1951 (*1 *1 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1068)) (-4 *2 (-1068)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-5 *2 (-1126)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068)))) (-1510 (*1 *2 *1 *2) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068))))) +(-13 (-1068) (-10 -8 (-15 -3257 ($ |t#1|)) (-15 -3257 ($ |t#1| (-1126))) (-15 -3826 ($ $ (-1126))) (-15 -1951 ($ $)) (-15 -1916 (|t#1| $)) (-15 -1811 ((-1126) $)) (-15 -1656 (|t#2| $)) (-15 -1510 (|t#2| $ |t#2|)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-1510 ((|#1| $ |#1|) 30)) (-3826 (($ $ (-1126)) 22)) (-3318 (((-3 |#1| "failed") $) 29)) (-1656 ((|#1| $) 27)) (-3257 (($ (-381)) 21) (($ (-381) (-1126)) 20)) (-1916 (((-381) $) 24)) (-1825 (((-1126) $) NIL)) (-1811 (((-1126) $) 25)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 19)) (-1951 (($ $) 23)) (-2316 (((-112) $ $) 18))) +(((-358 |#1|) (-13 (-357 (-381) |#1|) (-10 -8 (-15 -3318 ((-3 |#1| "failed") $)))) (-1068)) (T -358)) +((-3318 (*1 *2 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1068))))) +(-13 (-357 (-381) |#1|) (-10 -8 (-15 -3318 ((-3 |#1| "failed") $)))) +((-1265 (((-1227 (-667 |#2|)) (-1227 $)) 61)) (-2043 (((-667 |#2|) (-1227 $)) 120)) (-1958 ((|#2| $) 32)) (-2042 (((-667 |#2|) $ (-1227 $)) 123)) (-3818 (((-3 $ "failed") $) 75)) (-1729 ((|#2| $) 35)) (-4215 (((-1140 |#2|) $) 83)) (-3945 ((|#2| (-1227 $)) 106)) (-1474 (((-1140 |#2|) $) 28)) (-2105 (((-112)) 100)) (-4110 (($ (-1227 |#2|) (-1227 $)) 113)) (-1386 (((-3 $ "failed") $) 79)) (-3657 (((-112)) 95)) (-3400 (((-112)) 90)) (-2685 (((-112)) 53)) (-2116 (((-667 |#2|) (-1227 $)) 118)) (-3813 ((|#2| $) 31)) (-2127 (((-667 |#2|) $ (-1227 $)) 122)) (-2732 (((-3 $ "failed") $) 73)) (-1842 ((|#2| $) 34)) (-1305 (((-1140 |#2|) $) 82)) (-4012 ((|#2| (-1227 $)) 104)) (-1603 (((-1140 |#2|) $) 26)) (-2197 (((-112)) 99)) (-3528 (((-112)) 92)) (-2591 (((-112)) 51)) (-2781 (((-112)) 87)) (-3089 (((-112)) 101)) (-1373 (((-1227 |#2|) $ (-1227 $)) NIL) (((-667 |#2|) (-1227 $) (-1227 $)) 111)) (-2564 (((-112)) 97)) (-3268 (((-623 (-1227 |#2|))) 86)) (-2376 (((-112)) 98)) (-2473 (((-112)) 96)) (-2286 (((-112)) 46)) (-2990 (((-112)) 102))) +(((-359 |#1| |#2|) (-10 -8 (-15 -4215 ((-1140 |#2|) |#1|)) (-15 -1305 ((-1140 |#2|) |#1|)) (-15 -3268 ((-623 (-1227 |#2|)))) (-15 -3818 ((-3 |#1| "failed") |#1|)) (-15 -2732 ((-3 |#1| "failed") |#1|)) (-15 -1386 ((-3 |#1| "failed") |#1|)) (-15 -3400 ((-112))) (-15 -3528 ((-112))) (-15 -3657 ((-112))) (-15 -2591 ((-112))) (-15 -2685 ((-112))) (-15 -2781 ((-112))) (-15 -2990 ((-112))) (-15 -3089 ((-112))) (-15 -2105 ((-112))) (-15 -2197 ((-112))) (-15 -2286 ((-112))) (-15 -2376 ((-112))) (-15 -2473 ((-112))) (-15 -2564 ((-112))) (-15 -1474 ((-1140 |#2|) |#1|)) (-15 -1603 ((-1140 |#2|) |#1|)) (-15 -2043 ((-667 |#2|) (-1227 |#1|))) (-15 -2116 ((-667 |#2|) (-1227 |#1|))) (-15 -3945 (|#2| (-1227 |#1|))) (-15 -4012 (|#2| (-1227 |#1|))) (-15 -4110 (|#1| (-1227 |#2|) (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -1729 (|#2| |#1|)) (-15 -1842 (|#2| |#1|)) (-15 -1958 (|#2| |#1|)) (-15 -3813 (|#2| |#1|)) (-15 -2042 ((-667 |#2|) |#1| (-1227 |#1|))) (-15 -2127 ((-667 |#2|) |#1| (-1227 |#1|))) (-15 -1265 ((-1227 (-667 |#2|)) (-1227 |#1|)))) (-360 |#2|) (-170)) (T -359)) +((-2564 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2473 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2376 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2286 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2197 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2105 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3089 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2990 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2781 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2685 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2591 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3657 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3528 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3400 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3268 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-623 (-1227 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))) +(-10 -8 (-15 -4215 ((-1140 |#2|) |#1|)) (-15 -1305 ((-1140 |#2|) |#1|)) (-15 -3268 ((-623 (-1227 |#2|)))) (-15 -3818 ((-3 |#1| "failed") |#1|)) (-15 -2732 ((-3 |#1| "failed") |#1|)) (-15 -1386 ((-3 |#1| "failed") |#1|)) (-15 -3400 ((-112))) (-15 -3528 ((-112))) (-15 -3657 ((-112))) (-15 -2591 ((-112))) (-15 -2685 ((-112))) (-15 -2781 ((-112))) (-15 -2990 ((-112))) (-15 -3089 ((-112))) (-15 -2105 ((-112))) (-15 -2197 ((-112))) (-15 -2286 ((-112))) (-15 -2376 ((-112))) (-15 -2473 ((-112))) (-15 -2564 ((-112))) (-15 -1474 ((-1140 |#2|) |#1|)) (-15 -1603 ((-1140 |#2|) |#1|)) (-15 -2043 ((-667 |#2|) (-1227 |#1|))) (-15 -2116 ((-667 |#2|) (-1227 |#1|))) (-15 -3945 (|#2| (-1227 |#1|))) (-15 -4012 (|#2| (-1227 |#1|))) (-15 -4110 (|#1| (-1227 |#2|) (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -1729 (|#2| |#1|)) (-15 -1842 (|#2| |#1|)) (-15 -1958 (|#2| |#1|)) (-15 -3813 (|#2| |#1|)) (-15 -2042 ((-667 |#2|) |#1| (-1227 |#1|))) (-15 -2127 ((-667 |#2|) |#1| (-1227 |#1|))) (-15 -1265 ((-1227 (-667 |#2|)) (-1227 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3090 (((-3 $ "failed")) 37 (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) 19)) (-1265 (((-1227 (-667 |#1|)) (-1227 $)) 78)) (-3406 (((-1227 $)) 81)) (-3513 (($) 17 T CONST)) (-3726 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) 40 (|has| |#1| (-542)))) (-3947 (((-3 $ "failed")) 38 (|has| |#1| (-542)))) (-2043 (((-667 |#1|) (-1227 $)) 65)) (-1958 ((|#1| $) 74)) (-2042 (((-667 |#1|) $ (-1227 $)) 76)) (-3818 (((-3 $ "failed") $) 45 (|has| |#1| (-542)))) (-2923 (($ $ (-894)) 28)) (-1729 ((|#1| $) 72)) (-4215 (((-1140 |#1|) $) 42 (|has| |#1| (-542)))) (-3945 ((|#1| (-1227 $)) 67)) (-1474 (((-1140 |#1|) $) 63)) (-2105 (((-112)) 57)) (-4110 (($ (-1227 |#1|) (-1227 $)) 69)) (-1386 (((-3 $ "failed") $) 47 (|has| |#1| (-542)))) (-2122 (((-894)) 80)) (-2890 (((-112)) 54)) (-1494 (($ $ (-894)) 33)) (-3657 (((-112)) 50)) (-3400 (((-112)) 48)) (-2685 (((-112)) 52)) (-2662 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) 41 (|has| |#1| (-542)))) (-4080 (((-3 $ "failed")) 39 (|has| |#1| (-542)))) (-2116 (((-667 |#1|) (-1227 $)) 66)) (-3813 ((|#1| $) 75)) (-2127 (((-667 |#1|) $ (-1227 $)) 77)) (-2732 (((-3 $ "failed") $) 46 (|has| |#1| (-542)))) (-2834 (($ $ (-894)) 29)) (-1842 ((|#1| $) 73)) (-1305 (((-1140 |#1|) $) 43 (|has| |#1| (-542)))) (-4012 ((|#1| (-1227 $)) 68)) (-1603 (((-1140 |#1|) $) 64)) (-2197 (((-112)) 58)) (-1825 (((-1126) $) 9)) (-3528 (((-112)) 49)) (-2591 (((-112)) 51)) (-2781 (((-112)) 53)) (-3337 (((-1088) $) 10)) (-3089 (((-112)) 56)) (-1373 (((-1227 |#1|) $ (-1227 $)) 71) (((-667 |#1|) (-1227 $) (-1227 $)) 70)) (-2361 (((-623 (-925 |#1|)) (-1227 $)) 79)) (-3292 (($ $ $) 25)) (-2564 (((-112)) 62)) (-1518 (((-836) $) 11)) (-3268 (((-623 (-1227 |#1|))) 44 (|has| |#1| (-542)))) (-3395 (($ $ $ $) 26)) (-2376 (((-112)) 60)) (-1358 (($ $ $) 24)) (-2473 (((-112)) 61)) (-2286 (((-112)) 59)) (-2990 (((-112)) 55)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 30)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-360 |#1|) (-138) (-170)) (T -360)) -((-1840 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1224 *1)) (-4 *1 (-360 *3)))) (-3427 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-890)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-618 (-917 *4))))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1224 (-665 *4))))) (-1901 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1900 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-3558 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1224 *4)))) (-3558 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1224 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1136 *3)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1136 *3)))) (-1833 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1832 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1830 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1828 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1827 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1826 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1825 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1824 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1823 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1822 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1821 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1820 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1819 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3804 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-2488 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-2487 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-1818 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-618 (-1224 *3))))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1136 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1136 *3)))) (-2024 (*1 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-618 *1)))) (-4 *1 (-360 *3)))) (-2023 (*1 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-618 *1)))) (-4 *1 (-360 *3)))) (-1815 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) (-1814 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) (-1887 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) -(-13 (-721 |t#1|) (-10 -8 (-15 -1840 ((-1224 $))) (-15 -3427 ((-890))) (-15 -2009 ((-618 (-917 |t#1|)) (-1224 $))) (-15 -3557 ((-1224 (-665 |t#1|)) (-1224 $))) (-15 -1901 ((-665 |t#1|) $ (-1224 $))) (-15 -1900 ((-665 |t#1|) $ (-1224 $))) (-15 -1839 (|t#1| $)) (-15 -1838 (|t#1| $)) (-15 -1837 (|t#1| $)) (-15 -1836 (|t#1| $)) (-15 -3558 ((-1224 |t#1|) $ (-1224 $))) (-15 -3558 ((-665 |t#1|) (-1224 $) (-1224 $))) (-15 -1906 ($ (-1224 |t#1|) (-1224 $))) (-15 -1905 (|t#1| (-1224 $))) (-15 -1904 (|t#1| (-1224 $))) (-15 -1903 ((-665 |t#1|) (-1224 $))) (-15 -1902 ((-665 |t#1|) (-1224 $))) (-15 -1835 ((-1136 |t#1|) $)) (-15 -1834 ((-1136 |t#1|) $)) (-15 -1833 ((-112))) (-15 -1832 ((-112))) (-15 -1831 ((-112))) (-15 -1830 ((-112))) (-15 -1829 ((-112))) (-15 -1828 ((-112))) (-15 -1827 ((-112))) (-15 -1826 ((-112))) (-15 -1825 ((-112))) (-15 -1824 ((-112))) (-15 -1823 ((-112))) (-15 -1822 ((-112))) (-15 -1821 ((-112))) (-15 -1820 ((-112))) (-15 -1819 ((-112))) (IF (|has| |t#1| (-542)) (PROGN (-15 -3804 ((-3 $ "failed") $)) (-15 -2488 ((-3 $ "failed") $)) (-15 -2487 ((-3 $ "failed") $)) (-15 -1818 ((-618 (-1224 |t#1|)))) (-15 -1817 ((-1136 |t#1|) $)) (-15 -1816 ((-1136 |t#1|) $)) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -1815 ((-3 $ "failed"))) (-15 -1814 ((-3 $ "failed"))) (-15 -1887 ((-3 $ "failed"))) (-6 -4333)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-721 |#1|) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 7)) (-3454 (((-747)) 16)) (-3315 (($) 13)) (-2121 (((-890) $) 14)) (-3576 (((-1124) $) 9)) (-2483 (($ (-890)) 15)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6))) +((-3406 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1227 *1)) (-4 *1 (-360 *3)))) (-2122 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-894)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-623 (-925 *4))))) (-1265 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1227 (-667 *4))))) (-2127 (*1 *2 *1 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-2042 (*1 *2 *1 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1373 (*1 *2 *1 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1227 *4)))) (-1373 (*1 *2 *3 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-4110 (*1 *1 *2 *3) (-12 (-5 *2 (-1227 *4)) (-5 *3 (-1227 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) (-4012 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1140 *3)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1140 *3)))) (-2564 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2473 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2376 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2286 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2197 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2105 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3089 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2990 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2890 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2781 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2685 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2591 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3657 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3528 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3400 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1386 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-2732 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-3818 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-3268 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-623 (-1227 *3))))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1140 *3)))) (-4215 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1140 *3)))) (-2662 (*1 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2437 (-623 *1)))) (-4 *1 (-360 *3)))) (-3726 (*1 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2437 (-623 *1)))) (-4 *1 (-360 *3)))) (-4080 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) (-3947 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) (-3090 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) +(-13 (-723 |t#1|) (-10 -8 (-15 -3406 ((-1227 $))) (-15 -2122 ((-894))) (-15 -2361 ((-623 (-925 |t#1|)) (-1227 $))) (-15 -1265 ((-1227 (-667 |t#1|)) (-1227 $))) (-15 -2127 ((-667 |t#1|) $ (-1227 $))) (-15 -2042 ((-667 |t#1|) $ (-1227 $))) (-15 -3813 (|t#1| $)) (-15 -1958 (|t#1| $)) (-15 -1842 (|t#1| $)) (-15 -1729 (|t#1| $)) (-15 -1373 ((-1227 |t#1|) $ (-1227 $))) (-15 -1373 ((-667 |t#1|) (-1227 $) (-1227 $))) (-15 -4110 ($ (-1227 |t#1|) (-1227 $))) (-15 -4012 (|t#1| (-1227 $))) (-15 -3945 (|t#1| (-1227 $))) (-15 -2116 ((-667 |t#1|) (-1227 $))) (-15 -2043 ((-667 |t#1|) (-1227 $))) (-15 -1603 ((-1140 |t#1|) $)) (-15 -1474 ((-1140 |t#1|) $)) (-15 -2564 ((-112))) (-15 -2473 ((-112))) (-15 -2376 ((-112))) (-15 -2286 ((-112))) (-15 -2197 ((-112))) (-15 -2105 ((-112))) (-15 -3089 ((-112))) (-15 -2990 ((-112))) (-15 -2890 ((-112))) (-15 -2781 ((-112))) (-15 -2685 ((-112))) (-15 -2591 ((-112))) (-15 -3657 ((-112))) (-15 -3528 ((-112))) (-15 -3400 ((-112))) (IF (|has| |t#1| (-542)) (PROGN (-15 -1386 ((-3 $ "failed") $)) (-15 -2732 ((-3 $ "failed") $)) (-15 -3818 ((-3 $ "failed") $)) (-15 -3268 ((-623 (-1227 |t#1|)))) (-15 -1305 ((-1140 |t#1|) $)) (-15 -4215 ((-1140 |t#1|) $)) (-15 -2662 ((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed"))) (-15 -3726 ((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed"))) (-15 -4080 ((-3 $ "failed"))) (-15 -3947 ((-3 $ "failed"))) (-15 -3090 ((-3 $ "failed"))) (-6 -4339)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-723 |#1|) . T) ((-740) . T) ((-1026 |#1|) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 7)) (-4319 (((-749)) 16)) (-1741 (($) 13)) (-2253 (((-894) $) 14)) (-1825 (((-1126) $) 9)) (-2922 (($ (-894)) 15)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6))) (((-361) (-138)) (T -361)) -((-3454 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-747)))) (-2483 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-361)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-890)))) (-3315 (*1 *1) (-4 *1 (-361)))) -(-13 (-1067) (-10 -8 (-15 -3454 ((-747))) (-15 -2483 ($ (-890))) (-15 -2121 ((-890) $)) (-15 -3315 ($)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-1896 (((-665 |#2|) (-1224 $)) 40)) (-1906 (($ (-1224 |#2|) (-1224 $)) 34)) (-1895 (((-665 |#2|) $ (-1224 $)) 42)) (-4100 ((|#2| (-1224 $)) 13)) (-3558 (((-1224 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) 25))) -(((-362 |#1| |#2| |#3|) (-10 -8 (-15 -1896 ((-665 |#2|) (-1224 |#1|))) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1895 ((-665 |#2|) |#1| (-1224 |#1|)))) (-363 |#2| |#3|) (-170) (-1200 |#2|)) (T -362)) -NIL -(-10 -8 (-15 -1896 ((-665 |#2|) (-1224 |#1|))) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1895 ((-665 |#2|) |#1| (-1224 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1896 (((-665 |#1|) (-1224 $)) 44)) (-3672 ((|#1| $) 50)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-1906 (($ (-1224 |#1|) (-1224 $)) 46)) (-1895 (((-665 |#1|) $ (-1224 $)) 51)) (-3804 (((-3 $ "failed") $) 32)) (-3427 (((-890)) 52)) (-2493 (((-112) $) 30)) (-3450 ((|#1| $) 49)) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4100 ((|#1| (-1224 $)) 45)) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) 47)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35)) (-3023 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2689 ((|#2| $) 43)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-363 |#1| |#2|) (-138) (-170) (-1200 |t#1|)) (T -363)) -((-3427 (*1 *2) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-890)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) (-3558 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *4)))) (-3558 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1224 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4 *5)) (-4 *5 (-1200 *4)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1200 *2)) (-4 *2 (-170)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1200 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3427 ((-890))) (-15 -1895 ((-665 |t#1|) $ (-1224 $))) (-15 -3672 (|t#1| $)) (-15 -3450 (|t#1| $)) (-15 -3558 ((-1224 |t#1|) $ (-1224 $))) (-15 -3558 ((-665 |t#1|) (-1224 $) (-1224 $))) (-15 -1906 ($ (-1224 |t#1|) (-1224 $))) (-15 -4100 (|t#1| (-1224 $))) (-15 -1896 ((-665 |t#1|) (-1224 $))) (-15 -2689 (|t#2| $)) (IF (|has| |t#1| (-356)) (-15 -2125 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-1843 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1841 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3230 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2369 (($ $) 25)) (-3761 (((-535) (-1 (-112) |#2|) $) NIL) (((-535) |#2| $) 11) (((-535) |#2| $ (-535)) NIL)) (-3855 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-364 |#1| |#2|) (-10 -8 (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3230 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-365 |#2|) (-1178)) (T -364)) -NIL -(-10 -8 (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3230 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-3761 (((-535) (-1 (-112) |#1|) $) 97) (((-535) |#1| $) 96 (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) 95 (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 83 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 82 (|has| |#1| (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-365 |#1|) (-138) (-1178)) (T -365)) -((-3855 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)))) (-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) (-1843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1178)) (-5 *2 (-112)))) (-3761 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1178)) (-5 *2 (-535)))) (-3761 (*1 *2 *3 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-535)))) (-3761 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))) (-3230 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-823)) (-5 *2 (-112)))) (-1842 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (|has| *1 (-6 -4337)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) (-2368 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-365 *2)) (-4 *2 (-1178)))) (-1841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) (-1841 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823))))) -(-13 (-627 |t#1|) (-10 -8 (-6 -4336) (-15 -3855 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2369 ($ $)) (-15 -3230 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1843 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3761 ((-535) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -3761 ((-535) |t#1| $)) (-15 -3761 ((-535) |t#1| $ (-535)))) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-6 (-823)) (-15 -3855 ($ $ $)) (-15 -3230 ($ $)) (-15 -1843 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -1842 ($ $ $ (-535))) (-15 -2368 ($ $)) (-15 -1841 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-823)) (-15 -1841 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1178) . T)) -((-4184 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4185 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4301 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1178) (-365 |#1|) (-1178) (-365 |#3|)) (T -366)) -((-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-4 *2 (-365 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *2 (-365 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-365 *5))))) -(-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4277 (((-618 |#1|) $) 32)) (-4289 (($ $ (-747)) 33)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4282 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 36)) (-4279 (($ $) 34)) (-4283 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 37)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4110 (($ $ |#1| $) 31) (($ $ (-618 |#1|) (-618 $)) 30)) (-4290 (((-747) $) 38)) (-3867 (($ $ $) 29)) (-4300 (((-835) $) 11) (($ |#1|) 41) (((-1240 |#1| |#2|) $) 40) (((-1249 |#1| |#2|) $) 39)) (-4296 ((|#2| (-1249 |#1| |#2|) $) 42)) (-2979 (($) 18 T CONST)) (-1844 (($ (-648 |#1|)) 35)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#2|) 28 (|has| |#2| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-367 |#1| |#2|) (-138) (-823) (-170)) (T -367)) -((-4296 (*1 *2 *3 *1) (-12 (-5 *3 (-1249 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-823)) (-4 *2 (-170)))) (-4300 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-1240 *3 *4)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-1249 *3 *4)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-747)))) (-4283 (*1 *2 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4282 (*1 *2 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))) (-4279 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-618 *3)))) (-4110 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-823)) (-4 *5 (-170))))) -(-13 (-613 |t#2|) (-10 -8 (-15 -4296 (|t#2| (-1249 |t#1| |t#2|) $)) (-15 -4300 ($ |t#1|)) (-15 -4300 ((-1240 |t#1| |t#2|) $)) (-15 -4300 ((-1249 |t#1| |t#2|) $)) (-15 -4290 ((-747) $)) (-15 -4283 ((-1249 |t#1| |t#2|) (-1249 |t#1| |t#2|) $)) (-15 -4282 ((-1249 |t#1| |t#2|) (-1249 |t#1| |t#2|) $)) (-15 -1844 ($ (-648 |t#1|))) (-15 -4279 ($ $)) (-15 -4289 ($ $ (-747))) (-15 -4277 ((-618 |t#1|) $)) (-15 -4110 ($ $ |t#1| $)) (-15 -4110 ($ $ (-618 |t#1|) (-618 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#2|) . T) ((-613 |#2|) . T) ((-694 |#2|) . T) ((-1024 |#2|) . T) ((-1067) . T)) -((-1847 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-1845 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1846 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) -(((-368 |#1| |#2|) (-10 -7 (-15 -1845 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1846 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1847 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1178) (-13 (-365 |#1|) (-10 -7 (-6 -4337)))) (T -368)) -((-1847 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))))) (-1846 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))))) (-1845 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337))))))) -(-10 -7 (-15 -1845 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1846 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1847 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2353 (((-665 |#2|) (-665 $)) NIL) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 22) (((-665 (-535)) (-665 $)) 14))) -(((-369 |#1| |#2|) (-10 -8 (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 |#2|) (-665 |#1|)))) (-370 |#2|) (-1018)) (T -369)) -NIL -(-10 -8 (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 |#2|) (-665 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2353 (((-665 |#1|) (-665 $)) 34) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 33) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 41 (|has| |#1| (-617 (-535)))) (((-665 (-535)) (-665 $)) 40 (|has| |#1| (-617 (-535))))) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-370 |#1|) (-138) (-1018)) (T -370)) -NIL -(-13 (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-617 (-535))) (-6 (-617 (-535))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 33)) (-3447 (((-535) $) 55)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4113 (($ $) 110)) (-3829 (($ $) 82)) (-3985 (($ $) 71)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) 44)) (-1700 (((-112) $ $) NIL)) (-3827 (($ $) 80)) (-3984 (($ $) 69)) (-3969 (((-535) $) 64)) (-2681 (($ $ (-535)) 62)) (-3831 (($ $) NIL)) (-3983 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3445 (($ $) 112)) (-3491 (((-3 (-535) #1="failed") $) 189) (((-3 (-400 (-535)) #1#) $) 185)) (-3490 (((-535) $) 187) (((-400 (-535)) $) 183)) (-2883 (($ $ $) NIL)) (-1856 (((-535) $ $) 102)) (-3804 (((-3 $ "failed") $) 114)) (-1855 (((-400 (-535)) $ (-747)) 190) (((-400 (-535)) $ (-747) (-747)) 182)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2457 (((-890)) 73) (((-890) (-890)) 98 (|has| $ (-6 -4327)))) (-3520 (((-112) $) 106)) (-3973 (($) 40)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL)) (-1848 (((-1230) (-747)) 152)) (-1849 (((-1230)) 157) (((-1230) (-747)) 158)) (-1851 (((-1230)) 159) (((-1230) (-747)) 160)) (-1850 (((-1230)) 155) (((-1230) (-747)) 156)) (-4114 (((-535) $) 58)) (-2493 (((-112) $) 104)) (-3332 (($ $ (-535)) NIL)) (-2683 (($ $) 48)) (-3450 (($ $) NIL)) (-3521 (((-112) $) 35)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL) (($) NIL (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-3661 (($ $ $) NIL) (($) 99 (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-2458 (((-535) $) 17)) (-1854 (($) 87) (($ $) 92)) (-1853 (($) 91) (($ $) 93)) (-4285 (($ $) 83)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 116)) (-1884 (((-890) (-535)) 43 (|has| $ (-6 -4327)))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) 53)) (-3448 (($ $) 109)) (-3588 (($ (-535) (-535)) 107) (($ (-535) (-535) (-890)) 108)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2484 (((-535) $) 19)) (-1852 (($) 94)) (-4286 (($ $) 79)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2932 (((-890)) 100) (((-890) (-890)) 101 (|has| $ (-6 -4327)))) (-4153 (($ $ (-747)) NIL) (($ $) 115)) (-1883 (((-890) (-535)) 47 (|has| $ (-6 -4327)))) (-3832 (($ $) NIL)) (-3982 (($ $) NIL)) (-3830 (($ $) NIL)) (-3981 (($ $) NIL)) (-3828 (($ $) 81)) (-3980 (($ $) 70)) (-4313 (((-371) $) 175) (((-219) $) 177) (((-861 (-371)) $) NIL) (((-1124) $) 162) (((-524) $) 173) (($ (-219)) 181)) (-4300 (((-835) $) 164) (($ (-535)) 186) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-535)) 186) (($ (-400 (-535))) NIL) (((-219) $) 178)) (-3444 (((-747)) NIL)) (-3449 (($ $) 111)) (-1885 (((-890)) 54) (((-890) (-890)) 66 (|has| $ (-6 -4327)))) (-3015 (((-890)) 103)) (-3835 (($ $) 86)) (-3823 (($ $) 46) (($ $ $) 52)) (-2170 (((-112) $ $) NIL)) (-3833 (($ $) 84)) (-3821 (($ $) 37)) (-3837 (($ $) NIL)) (-3825 (($ $) NIL)) (-3838 (($ $) NIL)) (-3826 (($ $) NIL)) (-3836 (($ $) NIL)) (-3824 (($ $) NIL)) (-3834 (($ $) 85)) (-3822 (($ $) 49)) (-3725 (($ $) 51)) (-2979 (($) 34 T CONST)) (-2985 (($) 38 T CONST)) (-2825 (((-1124) $) 27) (((-1124) $ (-112)) 29) (((-1230) (-799) $) 30) (((-1230) (-799) $ (-112)) 31)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 39)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 42)) (-4291 (($ $ $) 45) (($ $ (-535)) 41)) (-4180 (($ $) 36) (($ $ $) 50)) (-4182 (($ $ $) 61)) (** (($ $ (-890)) 67) (($ $ (-747)) NIL) (($ $ (-535)) 88) (($ $ (-400 (-535))) 125) (($ $ $) 117)) (* (($ (-890) $) 65) (($ (-747) $) NIL) (($ (-535) $) 68) (($ $ $) 60) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL))) -(((-371) (-13 (-397) (-227) (-594 (-1124)) (-797) (-593 (-219)) (-1164) (-594 (-524)) (-10 -8 (-15 -4291 ($ $ (-535))) (-15 ** ($ $ $)) (-15 -2683 ($ $)) (-15 -1856 ((-535) $ $)) (-15 -2681 ($ $ (-535))) (-15 -1855 ((-400 (-535)) $ (-747))) (-15 -1855 ((-400 (-535)) $ (-747) (-747))) (-15 -1854 ($)) (-15 -1853 ($)) (-15 -1852 ($)) (-15 -3823 ($ $ $)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -4313 ($ (-219))) (-15 -1851 ((-1230))) (-15 -1851 ((-1230) (-747))) (-15 -1850 ((-1230))) (-15 -1850 ((-1230) (-747))) (-15 -1849 ((-1230))) (-15 -1849 ((-1230) (-747))) (-15 -1848 ((-1230) (-747))) (-6 -4327) (-6 -4319)))) (T -371)) -((** (*1 *1 *1 *1) (-5 *1 (-371))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-371)))) (-2683 (*1 *1 *1) (-5 *1 (-371))) (-1856 (*1 *2 *1 *1) (-12 (-5 *2 (-535)) (-5 *1 (-371)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-371)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-371)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-371)))) (-1854 (*1 *1) (-5 *1 (-371))) (-1853 (*1 *1) (-5 *1 (-371))) (-1852 (*1 *1) (-5 *1 (-371))) (-3823 (*1 *1 *1 *1) (-5 *1 (-371))) (-1854 (*1 *1 *1) (-5 *1 (-371))) (-1853 (*1 *1 *1) (-5 *1 (-371))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-371)))) (-1851 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) (-1850 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) (-1849 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371))))) -(-13 (-397) (-227) (-594 (-1124)) (-797) (-593 (-219)) (-1164) (-594 (-524)) (-10 -8 (-15 -4291 ($ $ (-535))) (-15 ** ($ $ $)) (-15 -2683 ($ $)) (-15 -1856 ((-535) $ $)) (-15 -2681 ($ $ (-535))) (-15 -1855 ((-400 (-535)) $ (-747))) (-15 -1855 ((-400 (-535)) $ (-747) (-747))) (-15 -1854 ($)) (-15 -1853 ($)) (-15 -1852 ($)) (-15 -3823 ($ $ $)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -4313 ($ (-219))) (-15 -1851 ((-1230))) (-15 -1851 ((-1230) (-747))) (-15 -1850 ((-1230))) (-15 -1850 ((-1230) (-747))) (-15 -1849 ((-1230))) (-15 -1849 ((-1230) (-747))) (-15 -1848 ((-1230) (-747))) (-6 -4327) (-6 -4319))) -((-1857 (((-618 (-286 (-917 (-166 |#1|)))) (-286 (-400 (-917 (-166 (-535))))) |#1|) 51) (((-618 (-286 (-917 (-166 |#1|)))) (-400 (-917 (-166 (-535)))) |#1|) 50) (((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-286 (-400 (-917 (-166 (-535)))))) |#1|) 47) (((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-400 (-917 (-166 (-535))))) |#1|) 41)) (-1858 (((-618 (-618 (-166 |#1|))) (-618 (-400 (-917 (-166 (-535))))) (-618 (-1142)) |#1|) 30) (((-618 (-166 |#1|)) (-400 (-917 (-166 (-535)))) |#1|) 18))) -(((-372 |#1|) (-10 -7 (-15 -1857 ((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-400 (-917 (-166 (-535))))) |#1|)) (-15 -1857 ((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-286 (-400 (-917 (-166 (-535)))))) |#1|)) (-15 -1857 ((-618 (-286 (-917 (-166 |#1|)))) (-400 (-917 (-166 (-535)))) |#1|)) (-15 -1857 ((-618 (-286 (-917 (-166 |#1|)))) (-286 (-400 (-917 (-166 (-535))))) |#1|)) (-15 -1858 ((-618 (-166 |#1|)) (-400 (-917 (-166 (-535)))) |#1|)) (-15 -1858 ((-618 (-618 (-166 |#1|))) (-618 (-400 (-917 (-166 (-535))))) (-618 (-1142)) |#1|))) (-13 (-356) (-821))) (T -372)) -((-1858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-400 (-917 (-166 (-535)))))) (-5 *4 (-618 (-1142))) (-5 *2 (-618 (-618 (-166 *5)))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-356) (-821))))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-166 (-535))))) (-5 *2 (-618 (-166 *4))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-917 (-166 (-535)))))) (-5 *2 (-618 (-286 (-917 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-166 (-535))))) (-5 *2 (-618 (-286 (-917 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-286 (-400 (-917 (-166 (-535))))))) (-5 *2 (-618 (-618 (-286 (-917 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 (-166 (-535)))))) (-5 *2 (-618 (-618 (-286 (-917 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821)))))) -(-10 -7 (-15 -1857 ((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-400 (-917 (-166 (-535))))) |#1|)) (-15 -1857 ((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-286 (-400 (-917 (-166 (-535)))))) |#1|)) (-15 -1857 ((-618 (-286 (-917 (-166 |#1|)))) (-400 (-917 (-166 (-535)))) |#1|)) (-15 -1857 ((-618 (-286 (-917 (-166 |#1|)))) (-286 (-400 (-917 (-166 (-535))))) |#1|)) (-15 -1858 ((-618 (-166 |#1|)) (-400 (-917 (-166 (-535)))) |#1|)) (-15 -1858 ((-618 (-618 (-166 |#1|))) (-618 (-400 (-917 (-166 (-535))))) (-618 (-1142)) |#1|))) -((-3919 (((-618 (-286 (-917 |#1|))) (-286 (-400 (-917 (-535)))) |#1|) 46) (((-618 (-286 (-917 |#1|))) (-400 (-917 (-535))) |#1|) 45) (((-618 (-618 (-286 (-917 |#1|)))) (-618 (-286 (-400 (-917 (-535))))) |#1|) 42) (((-618 (-618 (-286 (-917 |#1|)))) (-618 (-400 (-917 (-535)))) |#1|) 36)) (-1859 (((-618 |#1|) (-400 (-917 (-535))) |#1|) 20) (((-618 (-618 |#1|)) (-618 (-400 (-917 (-535)))) (-618 (-1142)) |#1|) 30))) -(((-373 |#1|) (-10 -7 (-15 -3919 ((-618 (-618 (-286 (-917 |#1|)))) (-618 (-400 (-917 (-535)))) |#1|)) (-15 -3919 ((-618 (-618 (-286 (-917 |#1|)))) (-618 (-286 (-400 (-917 (-535))))) |#1|)) (-15 -3919 ((-618 (-286 (-917 |#1|))) (-400 (-917 (-535))) |#1|)) (-15 -3919 ((-618 (-286 (-917 |#1|))) (-286 (-400 (-917 (-535)))) |#1|)) (-15 -1859 ((-618 (-618 |#1|)) (-618 (-400 (-917 (-535)))) (-618 (-1142)) |#1|)) (-15 -1859 ((-618 |#1|) (-400 (-917 (-535))) |#1|))) (-13 (-821) (-356))) (T -373)) -((-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-535)))) (-5 *2 (-618 *4)) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-1859 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-400 (-917 (-535))))) (-5 *4 (-618 (-1142))) (-5 *2 (-618 (-618 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-821) (-356))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-917 (-535))))) (-5 *2 (-618 (-286 (-917 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-535)))) (-5 *2 (-618 (-286 (-917 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-286 (-400 (-917 (-535)))))) (-5 *2 (-618 (-618 (-286 (-917 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 (-535))))) (-5 *2 (-618 (-618 (-286 (-917 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356)))))) -(-10 -7 (-15 -3919 ((-618 (-618 (-286 (-917 |#1|)))) (-618 (-400 (-917 (-535)))) |#1|)) (-15 -3919 ((-618 (-618 (-286 (-917 |#1|)))) (-618 (-286 (-400 (-917 (-535))))) |#1|)) (-15 -3919 ((-618 (-286 (-917 |#1|))) (-400 (-917 (-535))) |#1|)) (-15 -3919 ((-618 (-286 (-917 |#1|))) (-286 (-400 (-917 (-535)))) |#1|)) (-15 -1859 ((-618 (-618 |#1|)) (-618 (-400 (-917 (-535)))) (-618 (-1142)) |#1|)) (-15 -1859 ((-618 |#1|) (-400 (-917 (-535))) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 28)) (-2979 (($) 12 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-374 |#1| |#2|) (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|))) (-1018) (-823)) (T -374)) -NIL -(-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| "failed") $) 26)) (-3490 ((|#2| $) 28)) (-4302 (($ $) NIL)) (-2501 (((-747) $) 10)) (-3142 (((-618 $) $) 20)) (-4280 (((-112) $) NIL)) (-4281 (($ |#2| |#1|) 18)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3215 ((|#2| $) 15)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 45) (($ |#2|) 27)) (-4160 (((-618 |#1|) $) 17)) (-4023 ((|#1| $ |#2|) 47)) (-2979 (($) 29 T CONST)) (-2984 (((-618 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-375 |#1| |#2|) (-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1018) (-823)) (T -375)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823))))) -(-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-665 (-675))) 14) (($ (-618 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 11))) +((-4319 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-749)))) (-2922 (*1 *1 *2) (-12 (-5 *2 (-894)) (-4 *1 (-361)))) (-2253 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-894)))) (-1741 (*1 *1) (-4 *1 (-361)))) +(-13 (-1068) (-10 -8 (-15 -4319 ((-749))) (-15 -2922 ($ (-894))) (-15 -2253 ((-894) $)) (-15 -1741 ($)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1615 (((-667 |#2|) (-1227 $)) 40)) (-4110 (($ (-1227 |#2|) (-1227 $)) 34)) (-2677 (((-667 |#2|) $ (-1227 $)) 42)) (-3453 ((|#2| (-1227 $)) 13)) (-1373 (((-1227 |#2|) $ (-1227 $)) NIL) (((-667 |#2|) (-1227 $) (-1227 $)) 25))) +(((-362 |#1| |#2| |#3|) (-10 -8 (-15 -1615 ((-667 |#2|) (-1227 |#1|))) (-15 -3453 (|#2| (-1227 |#1|))) (-15 -4110 (|#1| (-1227 |#2|) (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -2677 ((-667 |#2|) |#1| (-1227 |#1|)))) (-363 |#2| |#3|) (-170) (-1203 |#2|)) (T -362)) +NIL +(-10 -8 (-15 -1615 ((-667 |#2|) (-1227 |#1|))) (-15 -3453 (|#2| (-1227 |#1|))) (-15 -4110 (|#1| (-1227 |#2|) (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -2677 ((-667 |#2|) |#1| (-1227 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1615 (((-667 |#1|) (-1227 $)) 44)) (-2252 ((|#1| $) 50)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-4110 (($ (-1227 |#1|) (-1227 $)) 46)) (-2677 (((-667 |#1|) $ (-1227 $)) 51)) (-1386 (((-3 $ "failed") $) 32)) (-2122 (((-894)) 52)) (-3102 (((-112) $) 30)) (-1389 ((|#1| $) 49)) (-1428 ((|#2| $) 42 (|has| |#1| (-356)))) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3453 ((|#1| (-1227 $)) 45)) (-1373 (((-1227 |#1|) $ (-1227 $)) 48) (((-667 |#1|) (-1227 $) (-1227 $)) 47)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 35)) (-4242 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2608 ((|#2| $) 43)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-363 |#1| |#2|) (-138) (-170) (-1203 |t#1|)) (T -363)) +((-2122 (*1 *2) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) (-5 *2 (-894)))) (-2677 (*1 *2 *1 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1203 *2)) (-4 *2 (-170)))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1203 *2)) (-4 *2 (-170)))) (-1373 (*1 *2 *1 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-1227 *4)))) (-1373 (*1 *2 *3 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)))) (-4110 (*1 *1 *2 *3) (-12 (-5 *2 (-1227 *4)) (-5 *3 (-1227 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4 *5)) (-4 *5 (-1203 *4)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1203 *2)) (-4 *2 (-170)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1203 *3)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1203 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -2122 ((-894))) (-15 -2677 ((-667 |t#1|) $ (-1227 $))) (-15 -2252 (|t#1| $)) (-15 -1389 (|t#1| $)) (-15 -1373 ((-1227 |t#1|) $ (-1227 $))) (-15 -1373 ((-667 |t#1|) (-1227 $) (-1227 $))) (-15 -4110 ($ (-1227 |t#1|) (-1227 $))) (-15 -3453 (|t#1| (-1227 $))) (-15 -1615 ((-667 |t#1|) (-1227 $))) (-15 -2608 (|t#2| $)) (IF (|has| |t#1| (-356)) (-15 -1428 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1026 |#1|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3572 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2419 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3972 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2419 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3572 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1181) (-366 |#1|) (-1181) (-366 |#3|)) (T -364)) +((-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1181)) (-4 *5 (-1181)) (-4 *2 (-366 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) (-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1181)) (-4 *2 (-1181)) (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-4 *2 (-366 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-366 *5))))) +(-10 -7 (-15 -3972 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2419 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3572 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3654 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3491 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1674 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3243 (($ $) 25)) (-2302 (((-550) (-1 (-112) |#2|) $) NIL) (((-550) |#2| $) 11) (((-550) |#2| $ (-550)) NIL)) (-1832 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-365 |#1| |#2|) (-10 -8 (-15 -3491 (|#1| |#1|)) (-15 -3491 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3654 ((-112) |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -2302 ((-550) |#2| |#1| (-550))) (-15 -2302 ((-550) |#2| |#1|)) (-15 -2302 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -3654 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1674 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3243 (|#1| |#1|)) (-15 -1832 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-366 |#2|) (-1181)) (T -365)) +NIL +(-10 -8 (-15 -3491 (|#1| |#1|)) (-15 -3491 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3654 ((-112) |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -2302 ((-550) |#2| |#1| (-550))) (-15 -2302 ((-550) |#2| |#1|)) (-15 -2302 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -3654 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1674 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3243 (|#1| |#1|)) (-15 -1832 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4343))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4343))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 58 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-2342 (($ $) 90 (|has| $ (-6 -4343)))) (-3243 (($ $) 100)) (-1328 (($ $) 78 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#1| $) 77 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 51)) (-2302 (((-550) (-1 (-112) |#1|) $) 97) (((-550) |#1| $) 96 (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) 95 (|has| |#1| (-1068)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2578 (($ (-749) |#1|) 69)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-2707 (($ $ $) 87 (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-4164 (($ $ $) 86 (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 42 (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3111 (($ $ |#1|) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1194 (-550))) 63)) (-1529 (($ $ (-550)) 62) (($ $ (-1194 (-550))) 61)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3593 (($ $ $ (-550)) 91 (|has| $ (-6 -4343)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 70)) (-3227 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 83 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-2354 (((-112) $ $) 85 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 82 (|has| |#1| (-825)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-366 |#1|) (-138) (-1181)) (T -366)) +((-1832 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1181)))) (-3243 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1181)))) (-1674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1181)))) (-3654 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-366 *4)) (-4 *4 (-1181)) (-5 *2 (-112)))) (-2302 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-366 *4)) (-4 *4 (-1181)) (-5 *2 (-550)))) (-2302 (*1 *2 *3 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)) (-5 *2 (-550)))) (-2302 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-366 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)))) (-1832 (*1 *1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1181)) (-4 *2 (-825)))) (-1674 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1181)) (-4 *2 (-825)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1181)) (-4 *3 (-825)) (-5 *2 (-112)))) (-3593 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (|has| *1 (-6 -4343)) (-4 *1 (-366 *3)) (-4 *3 (-1181)))) (-2342 (*1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-366 *2)) (-4 *2 (-1181)))) (-3491 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4343)) (-4 *1 (-366 *3)) (-4 *3 (-1181)))) (-3491 (*1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-366 *2)) (-4 *2 (-1181)) (-4 *2 (-825))))) +(-13 (-629 |t#1|) (-10 -8 (-6 -4342) (-15 -1832 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3243 ($ $)) (-15 -1674 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3654 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2302 ((-550) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -2302 ((-550) |t#1| $)) (-15 -2302 ((-550) |t#1| $ (-550)))) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-6 (-825)) (-15 -1832 ($ $ $)) (-15 -1674 ($ $)) (-15 -3654 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4343)) (PROGN (-15 -3593 ($ $ $ (-550))) (-15 -2342 ($ $)) (-15 -3491 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-825)) (-15 -3491 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1068) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-1181) . T)) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1540 (((-623 |#1|) $) 32)) (-2859 (($ $ (-749)) 33)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3527 (((-1251 |#1| |#2|) (-1251 |#1| |#2|) $) 36)) (-1522 (($ $) 34)) (-3636 (((-1251 |#1| |#2|) (-1251 |#1| |#2|) $) 37)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3866 (($ $ |#1| $) 31) (($ $ (-623 |#1|) (-623 $)) 30)) (-2970 (((-749) $) 38)) (-1532 (($ $ $) 29)) (-1518 (((-836) $) 11) (($ |#1|) 41) (((-1242 |#1| |#2|) $) 40) (((-1251 |#1| |#2|) $) 39)) (-2855 ((|#2| (-1251 |#1| |#2|) $) 42)) (-2626 (($) 18 T CONST)) (-3737 (($ (-650 |#1|)) 35)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#2|) 28 (|has| |#2| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-367 |#1| |#2|) (-138) (-825) (-170)) (T -367)) +((-2855 (*1 *2 *3 *1) (-12 (-5 *3 (-1251 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-825)) (-4 *2 (-170)))) (-1518 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-1242 *3 *4)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-1251 *3 *4)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-749)))) (-3636 (*1 *2 *2 *1) (-12 (-5 *2 (-1251 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-3527 (*1 *2 *2 *1) (-12 (-5 *2 (-1251 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-3737 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))) (-1522 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-2859 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-623 *3)))) (-3866 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-825)) (-4 *5 (-170))))) +(-13 (-614 |t#2|) (-10 -8 (-15 -2855 (|t#2| (-1251 |t#1| |t#2|) $)) (-15 -1518 ($ |t#1|)) (-15 -1518 ((-1242 |t#1| |t#2|) $)) (-15 -1518 ((-1251 |t#1| |t#2|) $)) (-15 -2970 ((-749) $)) (-15 -3636 ((-1251 |t#1| |t#2|) (-1251 |t#1| |t#2|) $)) (-15 -3527 ((-1251 |t#1| |t#2|) (-1251 |t#1| |t#2|) $)) (-15 -3737 ($ (-650 |t#1|))) (-15 -1522 ($ $)) (-15 -2859 ($ $ (-749))) (-15 -1540 ((-623 |t#1|) $)) (-15 -3866 ($ $ |t#1| $)) (-15 -3866 ($ $ (-623 |t#1|) (-623 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#2|) . T) ((-614 |#2|) . T) ((-696 |#2|) . T) ((-1026 |#2|) . T) ((-1068) . T)) +((-2778 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3814 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2718 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) +(((-368 |#1| |#2|) (-10 -7 (-15 -3814 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2718 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2778 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1181) (-13 (-366 |#1|) (-10 -7 (-6 -4343)))) (T -368)) +((-2778 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4343)))))) (-2718 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4343)))))) (-3814 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4343))))))) +(-10 -7 (-15 -3814 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2718 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2778 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-3780 (((-667 |#2|) (-667 $)) NIL) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 22) (((-667 (-550)) (-667 $)) 14))) +(((-369 |#1| |#2|) (-10 -8 (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 |#2|) (-667 |#1|)))) (-370 |#2|) (-1020)) (T -369)) +NIL +(-10 -8 (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 |#2|) (-667 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3780 (((-667 |#1|) (-667 $)) 34) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 33) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 41 (|has| |#1| (-619 (-550)))) (((-667 (-550)) (-667 $)) 40 (|has| |#1| (-619 (-550))))) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-370 |#1|) (-138) (-1020)) (T -370)) +NIL +(-13 (-619 |t#1|) (-10 -7 (IF (|has| |t#1| (-619 (-550))) (-6 (-619 (-550))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-705) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-2472 (((-623 (-287 (-925 (-167 |#1|)))) (-287 (-400 (-925 (-167 (-550))))) |#1|) 51) (((-623 (-287 (-925 (-167 |#1|)))) (-400 (-925 (-167 (-550)))) |#1|) 50) (((-623 (-623 (-287 (-925 (-167 |#1|))))) (-623 (-287 (-400 (-925 (-167 (-550)))))) |#1|) 47) (((-623 (-623 (-287 (-925 (-167 |#1|))))) (-623 (-400 (-925 (-167 (-550))))) |#1|) 41)) (-2553 (((-623 (-623 (-167 |#1|))) (-623 (-400 (-925 (-167 (-550))))) (-623 (-1144)) |#1|) 30) (((-623 (-167 |#1|)) (-400 (-925 (-167 (-550)))) |#1|) 18))) +(((-371 |#1|) (-10 -7 (-15 -2472 ((-623 (-623 (-287 (-925 (-167 |#1|))))) (-623 (-400 (-925 (-167 (-550))))) |#1|)) (-15 -2472 ((-623 (-623 (-287 (-925 (-167 |#1|))))) (-623 (-287 (-400 (-925 (-167 (-550)))))) |#1|)) (-15 -2472 ((-623 (-287 (-925 (-167 |#1|)))) (-400 (-925 (-167 (-550)))) |#1|)) (-15 -2472 ((-623 (-287 (-925 (-167 |#1|)))) (-287 (-400 (-925 (-167 (-550))))) |#1|)) (-15 -2553 ((-623 (-167 |#1|)) (-400 (-925 (-167 (-550)))) |#1|)) (-15 -2553 ((-623 (-623 (-167 |#1|))) (-623 (-400 (-925 (-167 (-550))))) (-623 (-1144)) |#1|))) (-13 (-356) (-823))) (T -371)) +((-2553 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-400 (-925 (-167 (-550)))))) (-5 *4 (-623 (-1144))) (-5 *2 (-623 (-623 (-167 *5)))) (-5 *1 (-371 *5)) (-4 *5 (-13 (-356) (-823))))) (-2553 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 (-167 (-550))))) (-5 *2 (-623 (-167 *4))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-925 (-167 (-550)))))) (-5 *2 (-623 (-287 (-925 (-167 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 (-167 (-550))))) (-5 *2 (-623 (-287 (-925 (-167 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-287 (-400 (-925 (-167 (-550))))))) (-5 *2 (-623 (-623 (-287 (-925 (-167 *4)))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-925 (-167 (-550)))))) (-5 *2 (-623 (-623 (-287 (-925 (-167 *4)))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -2472 ((-623 (-623 (-287 (-925 (-167 |#1|))))) (-623 (-400 (-925 (-167 (-550))))) |#1|)) (-15 -2472 ((-623 (-623 (-287 (-925 (-167 |#1|))))) (-623 (-287 (-400 (-925 (-167 (-550)))))) |#1|)) (-15 -2472 ((-623 (-287 (-925 (-167 |#1|)))) (-400 (-925 (-167 (-550)))) |#1|)) (-15 -2472 ((-623 (-287 (-925 (-167 |#1|)))) (-287 (-400 (-925 (-167 (-550))))) |#1|)) (-15 -2553 ((-623 (-167 |#1|)) (-400 (-925 (-167 (-550)))) |#1|)) (-15 -2553 ((-623 (-623 (-167 |#1|))) (-623 (-400 (-925 (-167 (-550))))) (-623 (-1144)) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 33)) (-1453 (((-550) $) 55)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-2370 (($ $) 110)) (-3123 (($ $) 82)) (-3005 (($ $) 71)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3353 (($ $) 44)) (-3631 (((-112) $ $) NIL)) (-3103 (($ $) 80)) (-2984 (($ $) 69)) (-3712 (((-550) $) 64)) (-3827 (($ $ (-550)) 62)) (-3146 (($ $) NIL)) (-3025 (($ $) NIL)) (-3513 (($) NIL T CONST)) (-3364 (($ $) 112)) (-3880 (((-3 (-550) "failed") $) 189) (((-3 (-400 (-550)) "failed") $) 185)) (-2726 (((-550) $) 187) (((-400 (-550)) $) 183)) (-3349 (($ $ $) NIL)) (-2383 (((-550) $ $) 102)) (-1386 (((-3 $ "failed") $) 114)) (-2300 (((-400 (-550)) $ (-749)) 190) (((-400 (-550)) $ (-749) (-749)) 182)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-2236 (((-894)) 73) (((-894) (-894)) 98 (|has| $ (-6 -4333)))) (-1416 (((-112) $) 106)) (-2734 (($) 40)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL)) (-2868 (((-1232) (-749)) 152)) (-2957 (((-1232)) 157) (((-1232) (-749)) 158)) (-3125 (((-1232)) 159) (((-1232) (-749)) 160)) (-3018 (((-1232)) 155) (((-1232) (-749)) 156)) (-2475 (((-550) $) 58)) (-3102 (((-112) $) 104)) (-1460 (($ $ (-550)) NIL)) (-3748 (($ $) 48)) (-1389 (($ $) NIL)) (-3329 (((-112) $) 35)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL) (($) NIL (-12 (-3462 (|has| $ (-6 -4325))) (-3462 (|has| $ (-6 -4333)))))) (-4164 (($ $ $) NIL) (($) 99 (-12 (-3462 (|has| $ (-6 -4325))) (-3462 (|has| $ (-6 -4333)))))) (-3357 (((-550) $) 17)) (-2223 (($) 87) (($ $) 92)) (-1664 (($) 91) (($ $) 93)) (-2958 (($ $) 83)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 116)) (-2822 (((-894) (-550)) 43 (|has| $ (-6 -4333)))) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) 53)) (-1608 (($ $) 109)) (-2708 (($ (-550) (-550)) 107) (($ (-550) (-550) (-894)) 108)) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3521 (((-550) $) 19)) (-3246 (($) 94)) (-1812 (($ $) 79)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-4302 (((-894)) 100) (((-894) (-894)) 101 (|has| $ (-6 -4333)))) (-2393 (($ $ (-749)) NIL) (($ $) 115)) (-2723 (((-894) (-550)) 47 (|has| $ (-6 -4333)))) (-3157 (($ $) NIL)) (-3033 (($ $) NIL)) (-3135 (($ $) NIL)) (-3016 (($ $) NIL)) (-3114 (($ $) 81)) (-2995 (($ $) 70)) (-4028 (((-372) $) 175) (((-219) $) 177) (((-865 (-372)) $) NIL) (((-1126) $) 162) (((-526) $) 173) (($ (-219)) 181)) (-1518 (((-836) $) 164) (($ (-550)) 186) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-550)) 186) (($ (-400 (-550))) NIL) (((-219) $) 178)) (-2390 (((-749)) NIL)) (-1754 (($ $) 111)) (-2913 (((-894)) 54) (((-894) (-894)) 66 (|has| $ (-6 -4333)))) (-1860 (((-894)) 103)) (-3187 (($ $) 86)) (-3060 (($ $) 46) (($ $ $) 52)) (-1345 (((-112) $ $) NIL)) (-3167 (($ $) 84)) (-3043 (($ $) 37)) (-3209 (($ $) NIL)) (-3081 (($ $) NIL)) (-3294 (($ $) NIL)) (-3094 (($ $) NIL)) (-3198 (($ $) NIL)) (-3072 (($ $) NIL)) (-3176 (($ $) 85)) (-3052 (($ $) 49)) (-1635 (($ $) 51)) (-2626 (($) 34 T CONST)) (-2636 (($) 38 T CONST)) (-3040 (((-1126) $) 27) (((-1126) $ (-112)) 29) (((-1232) (-800) $) 30) (((-1232) (-800) $ (-112)) 31)) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 39)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 42)) (-2414 (($ $ $) 45) (($ $ (-550)) 41)) (-2403 (($ $) 36) (($ $ $) 50)) (-2391 (($ $ $) 61)) (** (($ $ (-894)) 67) (($ $ (-749)) NIL) (($ $ (-550)) 88) (($ $ (-400 (-550))) 125) (($ $ $) 117)) (* (($ (-894) $) 65) (($ (-749) $) NIL) (($ (-550) $) 68) (($ $ $) 60) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) +(((-372) (-13 (-397) (-227) (-596 (-1126)) (-806) (-595 (-219)) (-1166) (-596 (-526)) (-10 -8 (-15 -2414 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -3748 ($ $)) (-15 -2383 ((-550) $ $)) (-15 -3827 ($ $ (-550))) (-15 -2300 ((-400 (-550)) $ (-749))) (-15 -2300 ((-400 (-550)) $ (-749) (-749))) (-15 -2223 ($)) (-15 -1664 ($)) (-15 -3246 ($)) (-15 -3060 ($ $ $)) (-15 -2223 ($ $)) (-15 -1664 ($ $)) (-15 -4028 ($ (-219))) (-15 -3125 ((-1232))) (-15 -3125 ((-1232) (-749))) (-15 -3018 ((-1232))) (-15 -3018 ((-1232) (-749))) (-15 -2957 ((-1232))) (-15 -2957 ((-1232) (-749))) (-15 -2868 ((-1232) (-749))) (-6 -4333) (-6 -4325)))) (T -372)) +((** (*1 *1 *1 *1) (-5 *1 (-372))) (-2414 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) (-3748 (*1 *1 *1) (-5 *1 (-372))) (-2383 (*1 *2 *1 *1) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) (-3827 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-372)))) (-2300 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-372)))) (-2223 (*1 *1) (-5 *1 (-372))) (-1664 (*1 *1) (-5 *1 (-372))) (-3246 (*1 *1) (-5 *1 (-372))) (-3060 (*1 *1 *1 *1) (-5 *1 (-372))) (-2223 (*1 *1 *1) (-5 *1 (-372))) (-1664 (*1 *1 *1) (-5 *1 (-372))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-372)))) (-3125 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-372)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-372)))) (-3018 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-372)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-372)))) (-2957 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-372)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-372)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-372))))) +(-13 (-397) (-227) (-596 (-1126)) (-806) (-595 (-219)) (-1166) (-596 (-526)) (-10 -8 (-15 -2414 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -3748 ($ $)) (-15 -2383 ((-550) $ $)) (-15 -3827 ($ $ (-550))) (-15 -2300 ((-400 (-550)) $ (-749))) (-15 -2300 ((-400 (-550)) $ (-749) (-749))) (-15 -2223 ($)) (-15 -1664 ($)) (-15 -3246 ($)) (-15 -3060 ($ $ $)) (-15 -2223 ($ $)) (-15 -1664 ($ $)) (-15 -4028 ($ (-219))) (-15 -3125 ((-1232))) (-15 -3125 ((-1232) (-749))) (-15 -3018 ((-1232))) (-15 -3018 ((-1232) (-749))) (-15 -2957 ((-1232))) (-15 -2957 ((-1232) (-749))) (-15 -2868 ((-1232) (-749))) (-6 -4333) (-6 -4325))) +((-2903 (((-623 (-287 (-925 |#1|))) (-287 (-400 (-925 (-550)))) |#1|) 46) (((-623 (-287 (-925 |#1|))) (-400 (-925 (-550))) |#1|) 45) (((-623 (-623 (-287 (-925 |#1|)))) (-623 (-287 (-400 (-925 (-550))))) |#1|) 42) (((-623 (-623 (-287 (-925 |#1|)))) (-623 (-400 (-925 (-550)))) |#1|) 36)) (-2638 (((-623 |#1|) (-400 (-925 (-550))) |#1|) 20) (((-623 (-623 |#1|)) (-623 (-400 (-925 (-550)))) (-623 (-1144)) |#1|) 30))) +(((-373 |#1|) (-10 -7 (-15 -2903 ((-623 (-623 (-287 (-925 |#1|)))) (-623 (-400 (-925 (-550)))) |#1|)) (-15 -2903 ((-623 (-623 (-287 (-925 |#1|)))) (-623 (-287 (-400 (-925 (-550))))) |#1|)) (-15 -2903 ((-623 (-287 (-925 |#1|))) (-400 (-925 (-550))) |#1|)) (-15 -2903 ((-623 (-287 (-925 |#1|))) (-287 (-400 (-925 (-550)))) |#1|)) (-15 -2638 ((-623 (-623 |#1|)) (-623 (-400 (-925 (-550)))) (-623 (-1144)) |#1|)) (-15 -2638 ((-623 |#1|) (-400 (-925 (-550))) |#1|))) (-13 (-823) (-356))) (T -373)) +((-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 (-550)))) (-5 *2 (-623 *4)) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-2638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-400 (-925 (-550))))) (-5 *4 (-623 (-1144))) (-5 *2 (-623 (-623 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-823) (-356))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-925 (-550))))) (-5 *2 (-623 (-287 (-925 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 (-550)))) (-5 *2 (-623 (-287 (-925 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-287 (-400 (-925 (-550)))))) (-5 *2 (-623 (-623 (-287 (-925 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-925 (-550))))) (-5 *2 (-623 (-623 (-287 (-925 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356)))))) +(-10 -7 (-15 -2903 ((-623 (-623 (-287 (-925 |#1|)))) (-623 (-400 (-925 (-550)))) |#1|)) (-15 -2903 ((-623 (-623 (-287 (-925 |#1|)))) (-623 (-287 (-400 (-925 (-550))))) |#1|)) (-15 -2903 ((-623 (-287 (-925 |#1|))) (-400 (-925 (-550))) |#1|)) (-15 -2903 ((-623 (-287 (-925 |#1|))) (-287 (-400 (-925 (-550)))) |#1|)) (-15 -2638 ((-623 (-623 |#1|)) (-623 (-400 (-925 (-550)))) (-623 (-1144)) |#1|)) (-15 -2638 ((-623 |#1|) (-400 (-925 (-550))) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) 26)) (-2726 ((|#2| $) 28)) (-3295 (($ $) NIL)) (-2603 (((-749) $) 10)) (-1822 (((-623 $) $) 20)) (-3439 (((-112) $) NIL)) (-1792 (($ |#2| |#1|) 18)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1565 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3267 ((|#2| $) 15)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 45) (($ |#2|) 27)) (-3511 (((-623 |#1|) $) 17)) (-2510 ((|#1| $ |#2|) 47)) (-2626 (($) 29 T CONST)) (-4237 (((-623 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-374 |#1| |#2|) (-13 (-375 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1020) (-825)) (T -374)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-825))))) +(-13 (-375 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#2| "failed") $) 44)) (-2726 ((|#2| $) 43)) (-3295 (($ $) 30)) (-2603 (((-749) $) 34)) (-1822 (((-623 $) $) 35)) (-3439 (((-112) $) 38)) (-1792 (($ |#2| |#1|) 39)) (-3972 (($ (-1 |#1| |#1|) $) 40)) (-1565 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3267 ((|#2| $) 33)) (-3277 ((|#1| $) 32)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ |#2|) 45)) (-3511 (((-623 |#1|) $) 36)) (-2510 ((|#1| $ |#2|) 41)) (-2626 (($) 18 T CONST)) (-4237 (((-623 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-375 |#1| |#2|) (-138) (-1020) (-1068)) (T -375)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1068)))) (-2510 (*1 *2 *1 *3) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1068)) (-4 *2 (-1020)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)))) (-1792 (*1 *1 *2 *3) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1068)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) (-5 *2 (-623 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) (-5 *2 (-623 *3)))) (-1822 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-1068)) (-5 *2 (-623 *1)) (-4 *1 (-375 *3 *4)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) (-5 *2 (-749)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1068)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1068)) (-4 *2 (-1020)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1068))))) +(-13 (-111 |t#1| |t#1|) (-1011 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2510 (|t#1| $ |t#2|)) (-15 -3972 ($ (-1 |t#1| |t#1|) $)) (-15 -1792 ($ |t#2| |t#1|)) (-15 -3439 ((-112) $)) (-15 -4237 ((-623 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3511 ((-623 |t#1|) $)) (-15 -1822 ((-623 $) $)) (-15 -2603 ((-749) $)) (-15 -3267 (|t#2| $)) (-15 -3277 (|t#1| $)) (-15 -1565 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3295 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-696 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-696 |#1|) |has| |#1| (-170)) ((-1011 |#2|) . T) ((-1026 |#1|) . T) ((-1068) . T)) +((-3397 (((-1232) $) 7)) (-1518 (((-836) $) 8) (($ (-667 (-677))) 14) (($ (-623 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 11))) (((-376) (-138)) (T -376)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-675))) (-4 *1 (-376)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-376)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-376))))) -(-13 (-389) (-10 -8 (-15 -4300 ($ (-665 (-675)))) (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))))) -(((-593 (-835)) . T) ((-389) . T) ((-1178) . T)) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#2| "failed") $) 44)) (-3490 ((|#2| $) 43)) (-4302 (($ $) 30)) (-2501 (((-747) $) 34)) (-3142 (((-618 $) $) 35)) (-4280 (((-112) $) 38)) (-4281 (($ |#2| |#1|) 39)) (-4301 (($ (-1 |#1| |#1|) $) 40)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3215 ((|#2| $) 33)) (-3508 ((|#1| $) 32)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ |#2|) 45)) (-4160 (((-618 |#1|) $) 36)) (-4023 ((|#1| $ |#2|) 41)) (-2979 (($) 18 T CONST)) (-2984 (((-618 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-377 |#1| |#2|) (-138) (-1018) (-1067)) (T -377)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067)))) (-4023 (*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)))) (-4281 (*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 *3)))) (-3142 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 *1)) (-4 *1 (-377 *3 *4)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-747)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067))))) -(-13 (-111 |t#1| |t#1|) (-1009 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4023 (|t#1| $ |t#2|)) (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (-15 -4281 ($ |t#2| |t#1|)) (-15 -4280 ((-112) $)) (-15 -2984 ((-618 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4160 ((-618 |t#1|) $)) (-15 -3142 ((-618 $) $)) (-15 -2501 ((-747) $)) (-15 -3215 (|t#2| $)) (-15 -3508 (|t#1| $)) (-15 -1860 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4302 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-694 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) |has| |#1| (-170)) ((-1009 |#2|) . T) ((-1024 |#1|) . T) ((-1067) . T)) -((-3491 (((-3 $ "failed") (-665 (-307 (-371)))) 21) (((-3 $ "failed") (-665 (-307 (-535)))) 19) (((-3 $ "failed") (-665 (-917 (-371)))) 17) (((-3 $ "failed") (-665 (-917 (-535)))) 15) (((-3 $ "failed") (-665 (-400 (-917 (-371))))) 13) (((-3 $ "failed") (-665 (-400 (-917 (-535))))) 11)) (-3490 (($ (-665 (-307 (-371)))) 22) (($ (-665 (-307 (-535)))) 20) (($ (-665 (-917 (-371)))) 18) (($ (-665 (-917 (-535)))) 16) (($ (-665 (-400 (-917 (-371))))) 14) (($ (-665 (-400 (-917 (-535))))) 12)) (-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-618 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 23))) -(((-378) (-138)) (T -378)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-378)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-378)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-307 (-371)))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-307 (-371)))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-307 (-535)))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-307 (-535)))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-917 (-371)))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-917 (-371)))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-917 (-535)))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-917 (-535)))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-917 (-371))))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-400 (-917 (-371))))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-917 (-535))))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-400 (-917 (-535))))) (-4 *1 (-378))))) -(-13 (-389) (-10 -8 (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -3490 ($ (-665 (-307 (-371))))) (-15 -3491 ((-3 $ "failed") (-665 (-307 (-371))))) (-15 -3490 ($ (-665 (-307 (-535))))) (-15 -3491 ((-3 $ "failed") (-665 (-307 (-535))))) (-15 -3490 ($ (-665 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-665 (-917 (-371))))) (-15 -3490 ($ (-665 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-665 (-917 (-535))))) (-15 -3490 ($ (-665 (-400 (-917 (-371)))))) (-15 -3491 ((-3 $ "failed") (-665 (-400 (-917 (-371)))))) (-15 -3490 ($ (-665 (-400 (-917 (-535)))))) (-15 -3491 ((-3 $ "failed") (-665 (-400 (-917 (-535)))))))) -(((-593 (-835)) . T) ((-389) . T) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3454 (((-747) $) 59)) (-3879 (($) NIL T CONST)) (-4282 (((-3 $ "failed") $ $) 61)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2761 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2493 (((-112) $) 15)) (-2759 ((|#1| $ (-535)) NIL)) (-2760 (((-747) $ (-535)) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2362 (($ (-1 |#1| |#1|) $) 38)) (-2363 (($ (-1 (-747) (-747)) $) 35)) (-4283 (((-3 $ "failed") $ $) 50)) (-3576 (((-1124) $) NIL)) (-2762 (($ $ $) 26)) (-2763 (($ $ $) 24)) (-3577 (((-1086) $) NIL)) (-2758 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $) 32)) (-3202 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4300 (((-835) $) 22) (($ |#1|) NIL)) (-2985 (($) 9 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 41)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) 63 (|has| |#1| (-823)))) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ |#1| (-747)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-379 |#1|) (-13 (-703) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -2763 ($ $ $)) (-15 -2762 ($ $ $)) (-15 -4283 ((-3 $ "failed") $ $)) (-15 -4282 ((-3 $ "failed") $ $)) (-15 -3202 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2761 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3454 ((-747) $)) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $)) (-15 -2760 ((-747) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2363 ($ (-1 (-747) (-747)) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1067)) (T -379)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-2763 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-2762 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-4283 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-4282 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-3202 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2761 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-747))))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-747)) (-5 *1 (-379 *4)) (-4 *4 (-1067)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-2363 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-747) (-747))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-379 *3))))) -(-13 (-703) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -2763 ($ $ $)) (-15 -2762 ($ $ $)) (-15 -4283 ((-3 $ "failed") $ $)) (-15 -4282 ((-3 $ "failed") $ $)) (-15 -3202 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2761 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3454 ((-747) $)) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $)) (-15 -2760 ((-747) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2363 ($ (-1 (-747) (-747)) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) "failed") $) 45)) (-3490 (((-535) $) 44)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3660 (($ $ $) 52)) (-3661 (($ $ $) 51)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-535)) 46)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 49)) (-2886 (((-112) $ $) 48)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 50)) (-3006 (((-112) $ $) 47)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-667 (-677))) (-4 *1 (-376)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-376)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) (-4 *1 (-376))))) +(-13 (-388) (-10 -8 (-15 -1518 ($ (-667 (-677)))) (-15 -1518 ($ (-623 (-323)))) (-15 -1518 ($ (-323))) (-15 -1518 ($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323)))))))) +(((-595 (-836)) . T) ((-388) . T) ((-1181) . T)) +((-3880 (((-3 $ "failed") (-667 (-309 (-372)))) 21) (((-3 $ "failed") (-667 (-309 (-550)))) 19) (((-3 $ "failed") (-667 (-925 (-372)))) 17) (((-3 $ "failed") (-667 (-925 (-550)))) 15) (((-3 $ "failed") (-667 (-400 (-925 (-372))))) 13) (((-3 $ "failed") (-667 (-400 (-925 (-550))))) 11)) (-2726 (($ (-667 (-309 (-372)))) 22) (($ (-667 (-309 (-550)))) 20) (($ (-667 (-925 (-372)))) 18) (($ (-667 (-925 (-550)))) 16) (($ (-667 (-400 (-925 (-372))))) 14) (($ (-667 (-400 (-925 (-550))))) 12)) (-3397 (((-1232) $) 7)) (-1518 (((-836) $) 8) (($ (-623 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 23))) +(((-377) (-138)) (T -377)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-377)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-377)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) (-4 *1 (-377)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-667 (-309 (-372)))) (-4 *1 (-377)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-309 (-372)))) (-4 *1 (-377)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-667 (-309 (-550)))) (-4 *1 (-377)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-309 (-550)))) (-4 *1 (-377)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-667 (-925 (-372)))) (-4 *1 (-377)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-925 (-372)))) (-4 *1 (-377)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-667 (-925 (-550)))) (-4 *1 (-377)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-925 (-550)))) (-4 *1 (-377)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-925 (-372))))) (-4 *1 (-377)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-400 (-925 (-372))))) (-4 *1 (-377)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-925 (-550))))) (-4 *1 (-377)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-400 (-925 (-550))))) (-4 *1 (-377))))) +(-13 (-388) (-10 -8 (-15 -1518 ($ (-623 (-323)))) (-15 -1518 ($ (-323))) (-15 -1518 ($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323)))))) (-15 -2726 ($ (-667 (-309 (-372))))) (-15 -3880 ((-3 $ "failed") (-667 (-309 (-372))))) (-15 -2726 ($ (-667 (-309 (-550))))) (-15 -3880 ((-3 $ "failed") (-667 (-309 (-550))))) (-15 -2726 ($ (-667 (-925 (-372))))) (-15 -3880 ((-3 $ "failed") (-667 (-925 (-372))))) (-15 -2726 ($ (-667 (-925 (-550))))) (-15 -3880 ((-3 $ "failed") (-667 (-925 (-550))))) (-15 -2726 ($ (-667 (-400 (-925 (-372)))))) (-15 -3880 ((-3 $ "failed") (-667 (-400 (-925 (-372)))))) (-15 -2726 ($ (-667 (-400 (-925 (-550)))))) (-15 -3880 ((-3 $ "failed") (-667 (-400 (-925 (-550)))))))) +(((-595 (-836)) . T) ((-388) . T) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-3118 (($ |#1| |#2|) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1586 ((|#2| $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 28)) (-2626 (($) 12 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-378 |#1| |#2|) (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|))) (-1020) (-825)) (T -378)) +NIL +(-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-4319 (((-749) $) 59)) (-3513 (($) NIL T CONST)) (-3527 (((-3 $ "failed") $ $) 61)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3911 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3102 (((-112) $) 15)) (-1980 ((|#1| $ (-550)) NIL)) (-2076 (((-749) $ (-550)) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2808 (($ (-1 |#1| |#1|) $) 38)) (-2921 (($ (-1 (-749) (-749)) $) 35)) (-3636 (((-3 $ "failed") $ $) 50)) (-1825 (((-1126) $) NIL)) (-4007 (($ $ $) 26)) (-4104 (($ $ $) 24)) (-3337 (((-1088) $) NIL)) (-1877 (((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-749)))) $) 32)) (-1866 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1518 (((-836) $) 22) (($ |#1|) NIL)) (-2636 (($) 9 T CONST)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) 41)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) 63 (|has| |#1| (-825)))) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ |#1| (-749)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-379 |#1|) (-13 (-705) (-1011 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -4104 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -3636 ((-3 $ "failed") $ $)) (-15 -3527 ((-3 $ "failed") $ $)) (-15 -1866 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3911 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4319 ((-749) $)) (-15 -1877 ((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-749)))) $)) (-15 -2076 ((-749) $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -2921 ($ (-1 (-749) (-749)) $)) (-15 -2808 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1068)) (T -379)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-379 *2)) (-4 *2 (-1068)))) (-4104 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) (-4007 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) (-3636 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) (-3527 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) (-1866 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1068)))) (-3911 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1068)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-379 *3)) (-4 *3 (-1068)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 (-749))))) (-5 *1 (-379 *3)) (-4 *3 (-1068)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-749)) (-5 *1 (-379 *4)) (-4 *4 (-1068)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-379 *2)) (-4 *2 (-1068)))) (-2921 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-749) (-749))) (-5 *1 (-379 *3)) (-4 *3 (-1068)))) (-2808 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-379 *3))))) +(-13 (-705) (-1011 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -4104 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -3636 ((-3 $ "failed") $ $)) (-15 -3527 ((-3 $ "failed") $ $)) (-15 -1866 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3911 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4319 ((-749) $)) (-15 -1877 ((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-749)))) $)) (-15 -2076 ((-749) $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -2921 ($ (-1 (-749) (-749)) $)) (-15 -2808 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 45)) (-2726 (((-550) $) 44)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-2707 (($ $ $) 52)) (-4164 (($ $ $) 51)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ $) 40)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-550)) 46)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2363 (((-112) $ $) 49)) (-2345 (((-112) $ $) 48)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 50)) (-2335 (((-112) $ $) 47)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-380) (-138)) (T -380)) NIL -(-13 (-542) (-823) (-1009 (-535))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-1009 (-535)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-1861 (((-112) $) 20)) (-1862 (((-112) $) 19)) (-3960 (($ (-1124) (-1124) (-1124)) 21)) (-3888 (((-1124) $) 16)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1866 (($ (-1124) (-1124) (-1124)) 14)) (-1864 (((-1124) $) 17)) (-1863 (((-112) $) 18)) (-1865 (((-1124) $) 15)) (-4300 (((-835) $) 12) (($ (-1124)) 13) (((-1124) $) 9)) (-3375 (((-112) $ $) 7))) +(-13 (-542) (-825) (-1011 (-550))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-1011 (-550)) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-1671 (((-112) $) 20)) (-1790 (((-112) $) 19)) (-2578 (($ (-1126) (-1126) (-1126)) 21)) (-1916 (((-1126) $) 16)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2782 (($ (-1126) (-1126) (-1126)) 14)) (-1999 (((-1126) $) 17)) (-1899 (((-112) $) 18)) (-1872 (((-1126) $) 15)) (-1518 (((-836) $) 12) (($ (-1126)) 13) (((-1126) $) 9)) (-2316 (((-112) $ $) 7))) (((-381) (-382)) (T -381)) NIL (-382) -((-2887 (((-112) $ $) 7)) (-1861 (((-112) $) 14)) (-1862 (((-112) $) 15)) (-3960 (($ (-1124) (-1124) (-1124)) 13)) (-3888 (((-1124) $) 18)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-1866 (($ (-1124) (-1124) (-1124)) 20)) (-1864 (((-1124) $) 17)) (-1863 (((-112) $) 16)) (-1865 (((-1124) $) 19)) (-4300 (((-835) $) 11) (($ (-1124)) 22) (((-1124) $) 21)) (-3375 (((-112) $ $) 6))) +((-1504 (((-112) $ $) 7)) (-1671 (((-112) $) 14)) (-1790 (((-112) $) 15)) (-2578 (($ (-1126) (-1126) (-1126)) 13)) (-1916 (((-1126) $) 18)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2782 (($ (-1126) (-1126) (-1126)) 20)) (-1999 (((-1126) $) 17)) (-1899 (((-112) $) 16)) (-1872 (((-1126) $) 19)) (-1518 (((-836) $) 11) (($ (-1126)) 22) (((-1126) $) 21)) (-2316 (((-112) $ $) 6))) (((-382) (-138)) (T -382)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-1866 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3960 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382))))) -(-13 (-1067) (-10 -8 (-15 -4300 ($ (-1124))) (-15 -4300 ((-1124) $)) (-15 -1866 ($ (-1124) (-1124) (-1124))) (-15 -1865 ((-1124) $)) (-15 -3888 ((-1124) $)) (-15 -1864 ((-1124) $)) (-15 -1863 ((-112) $)) (-15 -1862 ((-112) $)) (-15 -1861 ((-112) $)) (-15 -3960 ($ (-1124) (-1124) (-1124))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1867 (((-835) $) 50)) (-3879 (($) NIL T CONST)) (-2490 (($ $ (-890)) NIL)) (-2515 (($ $ (-890)) NIL)) (-2489 (($ $ (-890)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($ (-747)) 26)) (-4254 (((-747)) 17)) (-1868 (((-835) $) 52)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) NIL)) (-2678 (($ $ $ $) NIL)) (-2676 (($ $ $) NIL)) (-2979 (($) 20 T CONST)) (-3375 (((-112) $ $) 28)) (-4180 (($ $) 34) (($ $ $) 36)) (-4182 (($ $ $) 37)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-383 |#1| |#2| |#3|) (-13 (-721 |#3|) (-10 -8 (-15 -4254 ((-747))) (-15 -1868 ((-835) $)) (-15 -1867 ((-835) $)) (-15 -2492 ($ (-747))))) (-747) (-747) (-170)) (T -383)) -((-4254 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-170)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-170)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) -(-13 (-721 |#3|) (-10 -8 (-15 -4254 ((-747))) (-15 -1868 ((-835) $)) (-15 -1867 ((-835) $)) (-15 -2492 ($ (-747))))) -((-1873 (((-1124)) 10)) (-1870 (((-1113 (-1124))) 28)) (-1872 (((-1230) (-1124)) 25) (((-1230) (-381)) 24)) (-1871 (((-1230)) 26)) (-1869 (((-1113 (-1124))) 27))) -(((-384) (-10 -7 (-15 -1869 ((-1113 (-1124)))) (-15 -1870 ((-1113 (-1124)))) (-15 -1871 ((-1230))) (-15 -1872 ((-1230) (-381))) (-15 -1872 ((-1230) (-1124))) (-15 -1873 ((-1124))))) (T -384)) -((-1873 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-384)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-384)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-384)))) (-1871 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-384)))) (-1870 (*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))) (-1869 (*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384))))) -(-10 -7 (-15 -1869 ((-1113 (-1124)))) (-15 -1870 ((-1113 (-1124)))) (-15 -1871 ((-1230))) (-15 -1872 ((-1230) (-381))) (-15 -1872 ((-1230) (-1124))) (-15 -1873 ((-1124)))) -((-4114 (((-747) (-326 |#1| |#2| |#3| |#4|)) 16))) -(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4114 ((-747) (-326 |#1| |#2| |#3| |#4|)))) (-13 (-361) (-356)) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -385)) -((-4114 (*1 *2 *3) (-12 (-5 *3 (-326 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) (-5 *2 (-747)) (-5 *1 (-385 *4 *5 *6 *7))))) -(-10 -7 (-15 -4114 ((-747) (-326 |#1| |#2| |#3| |#4|)))) -((-2887 (((-112) $ $) NIL)) (-3956 (((-618 (-1124)) $ (-618 (-1124))) 38)) (-1874 (((-618 (-1124)) $ (-618 (-1124))) 39)) (-3958 (((-618 (-1124)) $ (-618 (-1124))) 40)) (-3959 (((-618 (-1124)) $) 35)) (-3960 (($) 23)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1875 (((-618 (-1124)) $) 36)) (-3962 (((-618 (-1124)) $) 37)) (-3963 (((-1230) $ (-535)) 33) (((-1230) $) 34)) (-4313 (($ (-835) (-535)) 30)) (-4300 (((-835) $) 42) (($ (-835)) 25)) (-3375 (((-112) $ $) NIL))) -(((-386) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-835))) (-15 -4313 ($ (-835) (-535))) (-15 -3963 ((-1230) $ (-535))) (-15 -3963 ((-1230) $)) (-15 -3962 ((-618 (-1124)) $)) (-15 -1875 ((-618 (-1124)) $)) (-15 -3960 ($)) (-15 -3959 ((-618 (-1124)) $)) (-15 -3958 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -1874 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3956 ((-618 (-1124)) $ (-618 (-1124))))))) (T -386)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-386)))) (-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-386)))) (-3963 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-386)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-386)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-3960 (*1 *1) (-5 *1 (-386))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-3958 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-1874 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-3956 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386))))) -(-13 (-1067) (-10 -8 (-15 -4300 ($ (-835))) (-15 -4313 ($ (-835) (-535))) (-15 -3963 ((-1230) $ (-535))) (-15 -3963 ((-1230) $)) (-15 -3962 ((-618 (-1124)) $)) (-15 -1875 ((-618 (-1124)) $)) (-15 -3960 ($)) (-15 -3959 ((-618 (-1124)) $)) (-15 -3958 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -1874 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3956 ((-618 (-1124)) $ (-618 (-1124)))))) -((-4300 (((-386) |#1|) 11))) -(((-387 |#1|) (-10 -7 (-15 -4300 ((-386) |#1|))) (-1067)) (T -387)) -((-4300 (*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-387 *3)) (-4 *3 (-1067))))) -(-10 -7 (-15 -4300 ((-386) |#1|))) -((-1877 (((-618 (-1124)) (-618 (-1124))) 9)) (-3722 (((-1230) (-381)) 27)) (-1876 (((-1069) (-1142) (-618 (-1142)) (-1145) (-618 (-1142))) 60) (((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)) (-1142)) 35) (((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142))) 34))) -(((-388) (-10 -7 (-15 -1876 ((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)))) (-15 -1876 ((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)) (-1142))) (-15 -1876 ((-1069) (-1142) (-618 (-1142)) (-1145) (-618 (-1142)))) (-15 -3722 ((-1230) (-381))) (-15 -1877 ((-618 (-1124)) (-618 (-1124)))))) (T -388)) -((-1877 (*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-388)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-618 (-1142))) (-5 *5 (-1145)) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-618 (-618 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-618 (-3 (|:| |array| (-618 *3)) (|:| |scalar| (-1142))))) (-5 *6 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-618 (-618 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-618 (-3 (|:| |array| (-618 *3)) (|:| |scalar| (-1142))))) (-5 *6 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388))))) -(-10 -7 (-15 -1876 ((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)))) (-15 -1876 ((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)) (-1142))) (-15 -1876 ((-1069) (-1142) (-618 (-1142)) (-1145) (-618 (-1142)))) (-15 -3722 ((-1230) (-381))) (-15 -1877 ((-618 (-1124)) (-618 (-1124))))) -((-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8))) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-4 *1 (-382)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1126)))) (-2782 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1126)) (-4 *1 (-382)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1126)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1126)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1126)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-2578 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1126)) (-4 *1 (-382))))) +(-13 (-1068) (-10 -8 (-15 -1518 ($ (-1126))) (-15 -1518 ((-1126) $)) (-15 -2782 ($ (-1126) (-1126) (-1126))) (-15 -1872 ((-1126) $)) (-15 -1916 ((-1126) $)) (-15 -1999 ((-1126) $)) (-15 -1899 ((-112) $)) (-15 -1790 ((-112) $)) (-15 -1671 ((-112) $)) (-15 -2578 ($ (-1126) (-1126) (-1126))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-2093 (((-836) $) 50)) (-3513 (($) NIL T CONST)) (-2923 (($ $ (-894)) NIL)) (-1494 (($ $ (-894)) NIL)) (-2834 (($ $ (-894)) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3935 (($ (-749)) 26)) (-2854 (((-749)) 17)) (-3927 (((-836) $) 52)) (-3292 (($ $ $) NIL)) (-1518 (((-836) $) NIL)) (-3395 (($ $ $ $) NIL)) (-1358 (($ $ $) NIL)) (-2626 (($) 20 T CONST)) (-2316 (((-112) $ $) 28)) (-2403 (($ $) 34) (($ $ $) 36)) (-2391 (($ $ $) 37)) (** (($ $ (-894)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-383 |#1| |#2| |#3|) (-13 (-723 |#3|) (-10 -8 (-15 -2854 ((-749))) (-15 -3927 ((-836) $)) (-15 -2093 ((-836) $)) (-15 -3935 ($ (-749))))) (-749) (-749) (-170)) (T -383)) +((-2854 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-170)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-170)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) +(-13 (-723 |#3|) (-10 -8 (-15 -2854 ((-749))) (-15 -3927 ((-836) $)) (-15 -2093 ((-836) $)) (-15 -3935 ($ (-749))))) +((-4227 (((-1126)) 10)) (-4124 (((-1115 (-1126))) 28)) (-3370 (((-1232) (-1126)) 25) (((-1232) (-381)) 24)) (-3383 (((-1232)) 26)) (-4030 (((-1115 (-1126))) 27))) +(((-384) (-10 -7 (-15 -4030 ((-1115 (-1126)))) (-15 -4124 ((-1115 (-1126)))) (-15 -3383 ((-1232))) (-15 -3370 ((-1232) (-381))) (-15 -3370 ((-1232) (-1126))) (-15 -4227 ((-1126))))) (T -384)) +((-4227 (*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-384)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-384)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1232)) (-5 *1 (-384)))) (-3383 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-384)))) (-4124 (*1 *2) (-12 (-5 *2 (-1115 (-1126))) (-5 *1 (-384)))) (-4030 (*1 *2) (-12 (-5 *2 (-1115 (-1126))) (-5 *1 (-384))))) +(-10 -7 (-15 -4030 ((-1115 (-1126)))) (-15 -4124 ((-1115 (-1126)))) (-15 -3383 ((-1232))) (-15 -3370 ((-1232) (-381))) (-15 -3370 ((-1232) (-1126))) (-15 -4227 ((-1126)))) +((-2475 (((-749) (-329 |#1| |#2| |#3| |#4|)) 16))) +(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 ((-749) (-329 |#1| |#2| |#3| |#4|)))) (-13 (-361) (-356)) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -385)) +((-2475 (*1 *2 *3) (-12 (-5 *3 (-329 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) (-5 *2 (-749)) (-5 *1 (-385 *4 *5 *6 *7))))) +(-10 -7 (-15 -2475 ((-749) (-329 |#1| |#2| |#3| |#4|)))) +((-1518 (((-387) |#1|) 11))) +(((-386 |#1|) (-10 -7 (-15 -1518 ((-387) |#1|))) (-1068)) (T -386)) +((-1518 (*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-386 *3)) (-4 *3 (-1068))))) +(-10 -7 (-15 -1518 ((-387) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3918 (((-623 (-1126)) $ (-623 (-1126))) 38)) (-1279 (((-623 (-1126)) $ (-623 (-1126))) 39)) (-4112 (((-623 (-1126)) $ (-623 (-1126))) 40)) (-4231 (((-623 (-1126)) $) 35)) (-2578 (($) 23)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2078 (((-623 (-1126)) $) 36)) (-1291 (((-623 (-1126)) $) 37)) (-2048 (((-1232) $ (-550)) 33) (((-1232) $) 34)) (-4028 (($ (-836) (-550)) 30)) (-1518 (((-836) $) 42) (($ (-836)) 25)) (-2316 (((-112) $ $) NIL))) +(((-387) (-13 (-1068) (-10 -8 (-15 -1518 ($ (-836))) (-15 -4028 ($ (-836) (-550))) (-15 -2048 ((-1232) $ (-550))) (-15 -2048 ((-1232) $)) (-15 -1291 ((-623 (-1126)) $)) (-15 -2078 ((-623 (-1126)) $)) (-15 -2578 ($)) (-15 -4231 ((-623 (-1126)) $)) (-15 -4112 ((-623 (-1126)) $ (-623 (-1126)))) (-15 -1279 ((-623 (-1126)) $ (-623 (-1126)))) (-15 -3918 ((-623 (-1126)) $ (-623 (-1126))))))) (T -387)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-836)) (-5 *1 (-387)))) (-4028 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-550)) (-5 *1 (-387)))) (-2048 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-387)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-387)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) (-2578 (*1 *1) (-5 *1 (-387))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) (-4112 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) (-1279 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) (-3918 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387))))) +(-13 (-1068) (-10 -8 (-15 -1518 ($ (-836))) (-15 -4028 ($ (-836) (-550))) (-15 -2048 ((-1232) $ (-550))) (-15 -2048 ((-1232) $)) (-15 -1291 ((-623 (-1126)) $)) (-15 -2078 ((-623 (-1126)) $)) (-15 -2578 ($)) (-15 -4231 ((-623 (-1126)) $)) (-15 -4112 ((-623 (-1126)) $ (-623 (-1126)))) (-15 -1279 ((-623 (-1126)) $ (-623 (-1126)))) (-15 -3918 ((-623 (-1126)) $ (-623 (-1126)))))) +((-3397 (((-1232) $) 7)) (-1518 (((-836) $) 8))) +(((-388) (-138)) (T -388)) +((-3397 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1232))))) +(-13 (-1181) (-595 (-836)) (-10 -8 (-15 -3397 ((-1232) $)))) +(((-595 (-836)) . T) ((-1181) . T)) +((-3880 (((-3 $ "failed") (-309 (-372))) 21) (((-3 $ "failed") (-309 (-550))) 19) (((-3 $ "failed") (-925 (-372))) 17) (((-3 $ "failed") (-925 (-550))) 15) (((-3 $ "failed") (-400 (-925 (-372)))) 13) (((-3 $ "failed") (-400 (-925 (-550)))) 11)) (-2726 (($ (-309 (-372))) 22) (($ (-309 (-550))) 20) (($ (-925 (-372))) 18) (($ (-925 (-550))) 16) (($ (-400 (-925 (-372)))) 14) (($ (-400 (-925 (-550)))) 12)) (-3397 (((-1232) $) 7)) (-1518 (((-836) $) 8) (($ (-623 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 23))) (((-389) (-138)) (T -389)) -((-3722 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1230))))) -(-13 (-1178) (-593 (-835)) (-10 -8 (-15 -3722 ((-1230) $)))) -(((-593 (-835)) . T) ((-1178) . T)) -((-3491 (((-3 $ "failed") (-307 (-371))) 21) (((-3 $ "failed") (-307 (-535))) 19) (((-3 $ "failed") (-917 (-371))) 17) (((-3 $ "failed") (-917 (-535))) 15) (((-3 $ "failed") (-400 (-917 (-371)))) 13) (((-3 $ "failed") (-400 (-917 (-535)))) 11)) (-3490 (($ (-307 (-371))) 22) (($ (-307 (-535))) 20) (($ (-917 (-371))) 18) (($ (-917 (-535))) 16) (($ (-400 (-917 (-371)))) 14) (($ (-400 (-917 (-535)))) 12)) (-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-618 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 23))) -(((-390) (-138)) (T -390)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-390)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-390)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-535))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-371))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-371))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-535))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-371)))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-371)))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-535)))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-535)))) (-4 *1 (-390))))) -(-13 (-389) (-10 -8 (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -3490 ($ (-307 (-371)))) (-15 -3491 ((-3 $ "failed") (-307 (-371)))) (-15 -3490 ($ (-307 (-535)))) (-15 -3491 ((-3 $ "failed") (-307 (-535)))) (-15 -3490 ($ (-917 (-371)))) (-15 -3491 ((-3 $ "failed") (-917 (-371)))) (-15 -3490 ($ (-917 (-535)))) (-15 -3491 ((-3 $ "failed") (-917 (-535)))) (-15 -3490 ($ (-400 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-371))))) (-15 -3490 ($ (-400 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-535))))))) -(((-593 (-835)) . T) ((-389) . T) ((-1178) . T)) -((-3722 (((-1230) $) 38)) (-4300 (((-835) $) 98) (($ (-323)) 100) (($ (-618 (-323))) 99) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 97) (($ (-307 (-677))) 54) (($ (-307 (-675))) 73) (($ (-307 (-670))) 86) (($ (-286 (-307 (-677)))) 68) (($ (-286 (-307 (-675)))) 81) (($ (-286 (-307 (-670)))) 94) (($ (-307 (-535))) 104) (($ (-307 (-371))) 117) (($ (-307 (-166 (-371)))) 130) (($ (-286 (-307 (-535)))) 112) (($ (-286 (-307 (-371)))) 125) (($ (-286 (-307 (-166 (-371))))) 138))) -(((-391 |#1| |#2| |#3| |#4|) (-13 (-389) (-10 -8 (-15 -4300 ($ (-323))) (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -4300 ($ (-307 (-677)))) (-15 -4300 ($ (-307 (-675)))) (-15 -4300 ($ (-307 (-670)))) (-15 -4300 ($ (-286 (-307 (-677))))) (-15 -4300 ($ (-286 (-307 (-675))))) (-15 -4300 ($ (-286 (-307 (-670))))) (-15 -4300 ($ (-307 (-535)))) (-15 -4300 ($ (-307 (-371)))) (-15 -4300 ($ (-307 (-166 (-371))))) (-15 -4300 ($ (-286 (-307 (-535))))) (-15 -4300 ($ (-286 (-307 (-371))))) (-15 -4300 ($ (-286 (-307 (-166 (-371)))))))) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 "void")) (-618 (-1142)) (-1146)) (T -391)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-670))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-675)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-670)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-535)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-166 (-371))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146))))) -(-13 (-389) (-10 -8 (-15 -4300 ($ (-323))) (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -4300 ($ (-307 (-677)))) (-15 -4300 ($ (-307 (-675)))) (-15 -4300 ($ (-307 (-670)))) (-15 -4300 ($ (-286 (-307 (-677))))) (-15 -4300 ($ (-286 (-307 (-675))))) (-15 -4300 ($ (-286 (-307 (-670))))) (-15 -4300 ($ (-307 (-535)))) (-15 -4300 ($ (-307 (-371)))) (-15 -4300 ($ (-307 (-166 (-371))))) (-15 -4300 ($ (-286 (-307 (-535))))) (-15 -4300 ($ (-286 (-307 (-371))))) (-15 -4300 ($ (-286 (-307 (-166 (-371)))))))) -((-2887 (((-112) $ $) NIL)) (-1879 ((|#2| $) 36)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1880 (($ (-400 |#2|)) 85)) (-1878 (((-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))) $) 37)) (-4153 (($ $) 32) (($ $ (-747)) 34)) (-4313 (((-400 |#2|) $) 46)) (-3867 (($ (-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|)))) 31)) (-4300 (((-835) $) 120)) (-2990 (($ $) 33) (($ $ (-747)) 35)) (-3375 (((-112) $ $) NIL)) (-4182 (($ |#2| $) 39))) -(((-392 |#1| |#2|) (-13 (-1067) (-594 (-400 |#2|)) (-10 -8 (-15 -4182 ($ |#2| $)) (-15 -1880 ($ (-400 |#2|))) (-15 -1879 (|#2| $)) (-15 -1878 ((-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))) $)) (-15 -3867 ($ (-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))))) (-15 -4153 ($ $)) (-15 -2990 ($ $)) (-15 -4153 ($ $ (-747))) (-15 -2990 ($ $ (-747))))) (-13 (-356) (-145)) (-1200 |#1|)) (T -392)) -((-4182 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1200 *3)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-1879 (*1 *2 *1) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))) (-1878 (*1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *2 (-618 (-2 (|:| -2484 (-747)) (|:| -4115 *4) (|:| |num| *4)))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1200 *3)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -2484 (-747)) (|:| -4115 *4) (|:| |num| *4)))) (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-4153 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1200 *2)))) (-2990 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1200 *2)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1200 *3)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1200 *3))))) -(-13 (-1067) (-594 (-400 |#2|)) (-10 -8 (-15 -4182 ($ |#2| $)) (-15 -1880 ($ (-400 |#2|))) (-15 -1879 (|#2| $)) (-15 -1878 ((-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))) $)) (-15 -3867 ($ (-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))))) (-15 -4153 ($ $)) (-15 -2990 ($ $)) (-15 -4153 ($ $ (-747))) (-15 -2990 ($ $ (-747))))) -((-2887 (((-112) $ $) 9 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 15 (|has| |#1| (-857 (-371)))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 14 (|has| |#1| (-857 (-535))))) (-3576 (((-1124) $) 13 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))) (-3577 (((-1086) $) 12 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))) (-4300 (((-835) $) 11 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))) (-3375 (((-112) $ $) 10 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371))))))) -(((-393 |#1|) (-138) (-1178)) (T -393)) -NIL -(-13 (-1178) (-10 -7 (IF (|has| |t#1| (-857 (-535))) (-6 (-857 (-535))) |%noBranch|) (IF (|has| |t#1| (-857 (-371))) (-6 (-857 (-371))) |%noBranch|))) -(((-101) -3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))) ((-593 (-835)) -3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-1067) -3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))) ((-1178) . T)) -((-1881 (($ $) 10) (($ $ (-747)) 11))) -(((-394 |#1|) (-10 -8 (-15 -1881 (|#1| |#1| (-747))) (-15 -1881 (|#1| |#1|))) (-395)) (T -394)) -NIL -(-10 -8 (-15 -1881 (|#1| |#1| (-747))) (-15 -1881 (|#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-1881 (($ $) 76) (($ $ (-747)) 75)) (-4069 (((-112) $) 68)) (-4114 (((-808 (-890)) $) 78)) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1882 (((-3 (-747) "failed") $ $) 77)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63)) (-3023 (((-3 $ "failed") $) 79)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64))) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-389)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-389)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) (-4 *1 (-389)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-4 *1 (-389)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-550))) (-4 *1 (-389)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-925 (-372))) (-4 *1 (-389)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-925 (-372))) (-4 *1 (-389)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-925 (-550))) (-4 *1 (-389)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-925 (-550))) (-4 *1 (-389)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-400 (-925 (-372)))) (-4 *1 (-389)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-925 (-372)))) (-4 *1 (-389)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-400 (-925 (-550)))) (-4 *1 (-389)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-925 (-550)))) (-4 *1 (-389))))) +(-13 (-388) (-10 -8 (-15 -1518 ($ (-623 (-323)))) (-15 -1518 ($ (-323))) (-15 -1518 ($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323)))))) (-15 -2726 ($ (-309 (-372)))) (-15 -3880 ((-3 $ "failed") (-309 (-372)))) (-15 -2726 ($ (-309 (-550)))) (-15 -3880 ((-3 $ "failed") (-309 (-550)))) (-15 -2726 ($ (-925 (-372)))) (-15 -3880 ((-3 $ "failed") (-925 (-372)))) (-15 -2726 ($ (-925 (-550)))) (-15 -3880 ((-3 $ "failed") (-925 (-550)))) (-15 -2726 ($ (-400 (-925 (-372))))) (-15 -3880 ((-3 $ "failed") (-400 (-925 (-372))))) (-15 -2726 ($ (-400 (-925 (-550))))) (-15 -3880 ((-3 $ "failed") (-400 (-925 (-550))))))) +(((-595 (-836)) . T) ((-388) . T) ((-1181) . T)) +((-3309 (((-623 (-1126)) (-623 (-1126))) 9)) (-3397 (((-1232) (-381)) 27)) (-1393 (((-1072) (-1144) (-623 (-1144)) (-1147) (-623 (-1144))) 60) (((-1072) (-1144) (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144)))) (-623 (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144))))) (-623 (-1144)) (-1144)) 35) (((-1072) (-1144) (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144)))) (-623 (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144))))) (-623 (-1144))) 34))) +(((-390) (-10 -7 (-15 -1393 ((-1072) (-1144) (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144)))) (-623 (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144))))) (-623 (-1144)))) (-15 -1393 ((-1072) (-1144) (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144)))) (-623 (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144))))) (-623 (-1144)) (-1144))) (-15 -1393 ((-1072) (-1144) (-623 (-1144)) (-1147) (-623 (-1144)))) (-15 -3397 ((-1232) (-381))) (-15 -3309 ((-623 (-1126)) (-623 (-1126)))))) (T -390)) +((-3309 (*1 *2 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-390)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1232)) (-5 *1 (-390)))) (-1393 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-623 (-1144))) (-5 *5 (-1147)) (-5 *3 (-1144)) (-5 *2 (-1072)) (-5 *1 (-390)))) (-1393 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-623 (-623 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-623 (-3 (|:| |array| (-623 *3)) (|:| |scalar| (-1144))))) (-5 *6 (-623 (-1144))) (-5 *3 (-1144)) (-5 *2 (-1072)) (-5 *1 (-390)))) (-1393 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-623 (-623 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-623 (-3 (|:| |array| (-623 *3)) (|:| |scalar| (-1144))))) (-5 *6 (-623 (-1144))) (-5 *3 (-1144)) (-5 *2 (-1072)) (-5 *1 (-390))))) +(-10 -7 (-15 -1393 ((-1072) (-1144) (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144)))) (-623 (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144))))) (-623 (-1144)))) (-15 -1393 ((-1072) (-1144) (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144)))) (-623 (-623 (-3 (|:| |array| (-623 (-1144))) (|:| |scalar| (-1144))))) (-623 (-1144)) (-1144))) (-15 -1393 ((-1072) (-1144) (-623 (-1144)) (-1147) (-623 (-1144)))) (-15 -3397 ((-1232) (-381))) (-15 -3309 ((-623 (-1126)) (-623 (-1126))))) +((-3397 (((-1232) $) 38)) (-1518 (((-836) $) 98) (($ (-323)) 100) (($ (-623 (-323))) 99) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 97) (($ (-309 (-679))) 54) (($ (-309 (-677))) 73) (($ (-309 (-672))) 86) (($ (-287 (-309 (-679)))) 68) (($ (-287 (-309 (-677)))) 81) (($ (-287 (-309 (-672)))) 94) (($ (-309 (-550))) 104) (($ (-309 (-372))) 117) (($ (-309 (-167 (-372)))) 130) (($ (-287 (-309 (-550)))) 112) (($ (-287 (-309 (-372)))) 125) (($ (-287 (-309 (-167 (-372))))) 138))) +(((-391 |#1| |#2| |#3| |#4|) (-13 (-388) (-10 -8 (-15 -1518 ($ (-323))) (-15 -1518 ($ (-623 (-323)))) (-15 -1518 ($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323)))))) (-15 -1518 ($ (-309 (-679)))) (-15 -1518 ($ (-309 (-677)))) (-15 -1518 ($ (-309 (-672)))) (-15 -1518 ($ (-287 (-309 (-679))))) (-15 -1518 ($ (-287 (-309 (-677))))) (-15 -1518 ($ (-287 (-309 (-672))))) (-15 -1518 ($ (-309 (-550)))) (-15 -1518 ($ (-309 (-372)))) (-15 -1518 ($ (-309 (-167 (-372))))) (-15 -1518 ($ (-287 (-309 (-550))))) (-15 -1518 ($ (-287 (-309 (-372))))) (-15 -1518 ($ (-287 (-309 (-167 (-372)))))))) (-1144) (-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-623 (-1144)) (-1148)) (T -391)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-309 (-672))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-679)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-672)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-550)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-167 (-372))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-14 *5 (-623 (-1144))) (-14 *6 (-1148))))) +(-13 (-388) (-10 -8 (-15 -1518 ($ (-323))) (-15 -1518 ($ (-623 (-323)))) (-15 -1518 ($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323)))))) (-15 -1518 ($ (-309 (-679)))) (-15 -1518 ($ (-309 (-677)))) (-15 -1518 ($ (-309 (-672)))) (-15 -1518 ($ (-287 (-309 (-679))))) (-15 -1518 ($ (-287 (-309 (-677))))) (-15 -1518 ($ (-287 (-309 (-672))))) (-15 -1518 ($ (-309 (-550)))) (-15 -1518 ($ (-309 (-372)))) (-15 -1518 ($ (-309 (-167 (-372))))) (-15 -1518 ($ (-287 (-309 (-550))))) (-15 -1518 ($ (-287 (-309 (-372))))) (-15 -1518 ($ (-287 (-309 (-167 (-372)))))))) +((-1504 (((-112) $ $) NIL)) (-3509 ((|#2| $) 36)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3610 (($ (-400 |#2|)) 85)) (-3413 (((-623 (-2 (|:| -3521 (-749)) (|:| -3335 |#2|) (|:| |num| |#2|))) $) 37)) (-2393 (($ $) 32) (($ $ (-749)) 34)) (-4028 (((-400 |#2|) $) 46)) (-1532 (($ (-623 (-2 (|:| -3521 (-749)) (|:| -3335 |#2|) (|:| |num| |#2|)))) 31)) (-1518 (((-836) $) 120)) (-4183 (($ $) 33) (($ $ (-749)) 35)) (-2316 (((-112) $ $) NIL)) (-2391 (($ |#2| $) 39))) +(((-392 |#1| |#2|) (-13 (-1068) (-596 (-400 |#2|)) (-10 -8 (-15 -2391 ($ |#2| $)) (-15 -3610 ($ (-400 |#2|))) (-15 -3509 (|#2| $)) (-15 -3413 ((-623 (-2 (|:| -3521 (-749)) (|:| -3335 |#2|) (|:| |num| |#2|))) $)) (-15 -1532 ($ (-623 (-2 (|:| -3521 (-749)) (|:| -3335 |#2|) (|:| |num| |#2|))))) (-15 -2393 ($ $)) (-15 -4183 ($ $)) (-15 -2393 ($ $ (-749))) (-15 -4183 ($ $ (-749))))) (-13 (-356) (-145)) (-1203 |#1|)) (T -392)) +((-2391 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1203 *3)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-400 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-3509 (*1 *2 *1) (-12 (-4 *2 (-1203 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))) (-3413 (*1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *2 (-623 (-2 (|:| -3521 (-749)) (|:| -3335 *4) (|:| |num| *4)))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1203 *3)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -3521 (-749)) (|:| -3335 *4) (|:| |num| *4)))) (-4 *4 (-1203 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-2393 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1203 *2)))) (-4183 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1203 *2)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1203 *3)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1203 *3))))) +(-13 (-1068) (-596 (-400 |#2|)) (-10 -8 (-15 -2391 ($ |#2| $)) (-15 -3610 ($ (-400 |#2|))) (-15 -3509 (|#2| $)) (-15 -3413 ((-623 (-2 (|:| -3521 (-749)) (|:| -3335 |#2|) (|:| |num| |#2|))) $)) (-15 -1532 ($ (-623 (-2 (|:| -3521 (-749)) (|:| -3335 |#2|) (|:| |num| |#2|))))) (-15 -2393 ($ $)) (-15 -4183 ($ $)) (-15 -2393 ($ $ (-749))) (-15 -4183 ($ $ (-749))))) +((-1504 (((-112) $ $) 9 (-1561 (|has| |#1| (-859 (-550))) (|has| |#1| (-859 (-372)))))) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 15 (|has| |#1| (-859 (-372)))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 14 (|has| |#1| (-859 (-550))))) (-1825 (((-1126) $) 13 (-1561 (|has| |#1| (-859 (-550))) (|has| |#1| (-859 (-372)))))) (-3337 (((-1088) $) 12 (-1561 (|has| |#1| (-859 (-550))) (|has| |#1| (-859 (-372)))))) (-1518 (((-836) $) 11 (-1561 (|has| |#1| (-859 (-550))) (|has| |#1| (-859 (-372)))))) (-2316 (((-112) $ $) 10 (-1561 (|has| |#1| (-859 (-550))) (|has| |#1| (-859 (-372))))))) +(((-393 |#1|) (-138) (-1181)) (T -393)) +NIL +(-13 (-1181) (-10 -7 (IF (|has| |t#1| (-859 (-550))) (-6 (-859 (-550))) |%noBranch|) (IF (|has| |t#1| (-859 (-372))) (-6 (-859 (-372))) |%noBranch|))) +(((-101) -1561 (|has| |#1| (-859 (-550))) (|has| |#1| (-859 (-372)))) ((-595 (-836)) -1561 (|has| |#1| (-859 (-550))) (|has| |#1| (-859 (-372)))) ((-859 (-372)) |has| |#1| (-859 (-372))) ((-859 (-550)) |has| |#1| (-859 (-550))) ((-1068) -1561 (|has| |#1| (-859 (-550))) (|has| |#1| (-859 (-372)))) ((-1181) . T)) +((-3714 (($ $) 10) (($ $ (-749)) 11))) +(((-394 |#1|) (-10 -8 (-15 -3714 (|#1| |#1| (-749))) (-15 -3714 (|#1| |#1|))) (-395)) (T -394)) +NIL +(-10 -8 (-15 -3714 (|#1| |#1| (-749))) (-15 -3714 (|#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3631 (((-112) $ $) 57)) (-3513 (($) 17 T CONST)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3714 (($ $) 76) (($ $ (-749)) 75)) (-3933 (((-112) $) 68)) (-2475 (((-811 (-894)) $) 78)) (-3102 (((-112) $) 30)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3338 (((-411 $) $) 71)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-3811 (((-3 (-749) "failed") $ $) 77)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63)) (-4242 (((-3 $ "failed") $) 79)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 62)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) (((-395) (-138)) (T -395)) -((-4114 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-808 (-890))))) (-1882 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-747)))) (-1881 (*1 *1 *1) (-4 *1 (-395))) (-1881 (*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-747))))) -(-13 (-356) (-143) (-10 -8 (-15 -4114 ((-808 (-890)) $)) (-15 -1882 ((-3 (-747) "failed") $ $)) (-15 -1881 ($ $)) (-15 -1881 ($ $ (-747))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T)) -((-3588 (($ (-535) (-535)) 11) (($ (-535) (-535) (-890)) NIL)) (-2932 (((-890)) 16) (((-890) (-890)) NIL))) -(((-396 |#1|) (-10 -8 (-15 -2932 ((-890) (-890))) (-15 -2932 ((-890))) (-15 -3588 (|#1| (-535) (-535) (-890))) (-15 -3588 (|#1| (-535) (-535)))) (-397)) (T -396)) -((-2932 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-396 *3)) (-4 *3 (-397))))) -(-10 -8 (-15 -2932 ((-890) (-890))) (-15 -2932 ((-890))) (-15 -3588 (|#1| (-535) (-535) (-890))) (-15 -3588 (|#1| (-535) (-535)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3447 (((-535) $) 86)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-4113 (($ $) 84)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3358 (($ $) 94)) (-1700 (((-112) $ $) 57)) (-3969 (((-535) $) 111)) (-3879 (($) 17 T CONST)) (-3445 (($ $) 83)) (-3491 (((-3 (-535) #1="failed") $) 99) (((-3 (-400 (-535)) #1#) $) 96)) (-3490 (((-535) $) 98) (((-400 (-535)) $) 95)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-2457 (((-890)) 127) (((-890) (-890)) 124 (|has| $ (-6 -4327)))) (-3520 (((-112) $) 109)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 90)) (-4114 (((-535) $) 133)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 93)) (-3450 (($ $) 89)) (-3521 (((-112) $) 110)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 50)) (-3660 (($ $ $) 108) (($) 121 (-12 (-3659 (|has| $ (-6 -4327))) (-3659 (|has| $ (-6 -4319)))))) (-3661 (($ $ $) 107) (($) 120 (-12 (-3659 (|has| $ (-6 -4327))) (-3659 (|has| $ (-6 -4319)))))) (-2458 (((-535) $) 130)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-1884 (((-890) (-535)) 123 (|has| $ (-6 -4327)))) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3446 (($ $) 85)) (-3448 (($ $) 87)) (-3588 (($ (-535) (-535)) 135) (($ (-535) (-535) (-890)) 134)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-2484 (((-535) $) 131)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-2932 (((-890)) 128) (((-890) (-890)) 125 (|has| $ (-6 -4327)))) (-1883 (((-890) (-535)) 122 (|has| $ (-6 -4327)))) (-4313 (((-371) $) 102) (((-219) $) 101) (((-861 (-371)) $) 91)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ (-535)) 100) (($ (-400 (-535))) 97)) (-3444 (((-747)) 28)) (-3449 (($ $) 88)) (-1885 (((-890)) 129) (((-890) (-890)) 126 (|has| $ (-6 -4327)))) (-3015 (((-890)) 132)) (-2170 (((-112) $ $) 37)) (-3725 (($ $) 112)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 105)) (-2886 (((-112) $ $) 104)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 106)) (-3006 (((-112) $ $) 103)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66) (($ $ (-400 (-535))) 92)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64))) +((-2475 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-811 (-894))))) (-3811 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-749)))) (-3714 (*1 *1 *1) (-4 *1 (-395))) (-3714 (*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-749))))) +(-13 (-356) (-143) (-10 -8 (-15 -2475 ((-811 (-894)) $)) (-15 -3811 ((-3 (-749) "failed") $ $)) (-15 -3714 ($ $)) (-15 -3714 ($ $ (-749))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-595 (-836)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-893) . T) ((-1026 #0#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) . T)) +((-2708 (($ (-550) (-550)) 11) (($ (-550) (-550) (-894)) NIL)) (-4302 (((-894)) 16) (((-894) (-894)) NIL))) +(((-396 |#1|) (-10 -8 (-15 -4302 ((-894) (-894))) (-15 -4302 ((-894))) (-15 -2708 (|#1| (-550) (-550) (-894))) (-15 -2708 (|#1| (-550) (-550)))) (-397)) (T -396)) +((-4302 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-396 *3)) (-4 *3 (-397))))) +(-10 -8 (-15 -4302 ((-894) (-894))) (-15 -4302 ((-894))) (-15 -2708 (|#1| (-550) (-550) (-894))) (-15 -2708 (|#1| (-550) (-550)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1453 (((-550) $) 86)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-2370 (($ $) 84)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3353 (($ $) 94)) (-3631 (((-112) $ $) 57)) (-3712 (((-550) $) 111)) (-3513 (($) 17 T CONST)) (-3364 (($ $) 83)) (-3880 (((-3 (-550) "failed") $) 99) (((-3 (-400 (-550)) "failed") $) 96)) (-2726 (((-550) $) 98) (((-400 (-550)) $) 95)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3933 (((-112) $) 68)) (-2236 (((-894)) 127) (((-894) (-894)) 124 (|has| $ (-6 -4333)))) (-1416 (((-112) $) 109)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 90)) (-2475 (((-550) $) 133)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 93)) (-1389 (($ $) 89)) (-3329 (((-112) $) 110)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2707 (($ $ $) 108) (($) 121 (-12 (-3462 (|has| $ (-6 -4333))) (-3462 (|has| $ (-6 -4325)))))) (-4164 (($ $ $) 107) (($) 120 (-12 (-3462 (|has| $ (-6 -4333))) (-3462 (|has| $ (-6 -4325)))))) (-3357 (((-550) $) 130)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-2822 (((-894) (-550)) 123 (|has| $ (-6 -4333)))) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3948 (($ $) 85)) (-1608 (($ $) 87)) (-2708 (($ (-550) (-550)) 135) (($ (-550) (-550) (-894)) 134)) (-3338 (((-411 $) $) 71)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3521 (((-550) $) 131)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-4302 (((-894)) 128) (((-894) (-894)) 125 (|has| $ (-6 -4333)))) (-2723 (((-894) (-550)) 122 (|has| $ (-6 -4333)))) (-4028 (((-372) $) 102) (((-219) $) 101) (((-865 (-372)) $) 91)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ (-550)) 100) (($ (-400 (-550))) 97)) (-2390 (((-749)) 28)) (-1754 (($ $) 88)) (-2913 (((-894)) 129) (((-894) (-894)) 126 (|has| $ (-6 -4333)))) (-1860 (((-894)) 132)) (-1345 (((-112) $ $) 37)) (-1635 (($ $) 112)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2363 (((-112) $ $) 105)) (-2345 (((-112) $ $) 104)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 106)) (-2335 (((-112) $ $) 103)) (-2414 (($ $ $) 62)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66) (($ $ (-400 (-550))) 92)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) (((-397) (-138)) (T -397)) -((-3588 (*1 *1 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-397)))) (-3588 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-890)) (-4 *1 (-397)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) (-3015 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) (-1885 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) (-2932 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) (-2457 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-535)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-890)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-535)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-890)))) (-3660 (*1 *1) (-12 (-4 *1 (-397)) (-3659 (|has| *1 (-6 -4327))) (-3659 (|has| *1 (-6 -4319))))) (-3661 (*1 *1) (-12 (-4 *1 (-397)) (-3659 (|has| *1 (-6 -4327))) (-3659 (|has| *1 (-6 -4319)))))) -(-13 (-1027) (-10 -8 (-6 -4112) (-15 -3588 ($ (-535) (-535))) (-15 -3588 ($ (-535) (-535) (-890))) (-15 -4114 ((-535) $)) (-15 -3015 ((-890))) (-15 -2484 ((-535) $)) (-15 -2458 ((-535) $)) (-15 -1885 ((-890))) (-15 -2932 ((-890))) (-15 -2457 ((-890))) (IF (|has| $ (-6 -4327)) (PROGN (-15 -1885 ((-890) (-890))) (-15 -2932 ((-890) (-890))) (-15 -2457 ((-890) (-890))) (-15 -1884 ((-890) (-535))) (-15 -1883 ((-890) (-535)))) |%noBranch|) (IF (|has| $ (-6 -4319)) |%noBranch| (IF (|has| $ (-6 -4327)) |%noBranch| (PROGN (-15 -3660 ($)) (-15 -3661 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-371)) . T) ((-594 (-861 (-371))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-821) . T) ((-823) . T) ((-857 (-371)) . T) ((-892) . T) ((-973) . T) ((-991) . T) ((-1027) . T) ((-1009 (-400 (-535))) . T) ((-1009 (-535)) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 42)) (-1886 (($ $) 57)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 146)) (-2171 (($ $) NIL)) (-2169 (((-112) $) 36)) (-1887 ((|#1| $) 13)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-1183)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-1183)))) (-1889 (($ |#1| (-535)) 31)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 116)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 55)) (-3804 (((-3 $ "failed") $) 131)) (-3345 (((-3 (-400 (-535)) "failed") $) 63 (|has| |#1| (-534)))) (-3344 (((-112) $) 59 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 70 (|has| |#1| (-534)))) (-1890 (($ |#1| (-535)) 33)) (-4069 (((-112) $) 152 (|has| |#1| (-1183)))) (-2493 (((-112) $) 43)) (-1951 (((-747) $) 38)) (-1891 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-535)) 137)) (-2759 ((|#1| $ (-535)) 136)) (-1892 (((-535) $ (-535)) 135)) (-1894 (($ |#1| (-535)) 30)) (-4301 (($ (-1 |#1| |#1|) $) 143)) (-1948 (($ |#1| (-618 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-535))))) 58)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-1893 (($ |#1| (-535)) 32)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) 147 (|has| |#1| (-444)))) (-1888 (($ |#1| (-535) (-3 #2# #3# #4# #5#)) 29)) (-2758 (((-618 (-2 (|:| -4075 |#1|) (|:| -2484 (-535)))) $) 54)) (-2070 (((-618 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))) $) 12)) (-4075 (((-398 $) $) NIL (|has| |#1| (-1183)))) (-3803 (((-3 $ "failed") $ $) 138)) (-2484 (((-535) $) 132)) (-4306 ((|#1| $) 56)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 79 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 85 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) $) NIL (|has| |#1| (-505 (-1142) $))) (($ $ (-618 (-1142)) (-618 $)) 86 (|has| |#1| (-505 (-1142) $))) (($ $ (-618 (-286 $))) 82 (|has| |#1| (-302 $))) (($ $ (-286 $)) NIL (|has| |#1| (-302 $))) (($ $ $ $) NIL (|has| |#1| (-302 $))) (($ $ (-618 $) (-618 $)) NIL (|has| |#1| (-302 $)))) (-4142 (($ $ |#1|) 71 (|has| |#1| (-279 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-279 $ $)))) (-4153 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4313 (((-524) $) 27 (|has| |#1| (-594 (-524)))) (((-371) $) 92 (|has| |#1| (-991))) (((-219) $) 95 (|has| |#1| (-991)))) (-4300 (((-835) $) 114) (($ (-535)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535)))))) (-3444 (((-747)) 48)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 40 T CONST)) (-2985 (($) 39 T CONST)) (-2990 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3375 (((-112) $ $) 96)) (-4180 (($ $) 128) (($ $ $) NIL)) (-4182 (($ $ $) 140)) (** (($ $ (-890)) NIL) (($ $ (-747)) 102)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-398 |#1|) (-13 (-542) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-405 |#1|) (-10 -8 (-15 -4306 (|#1| $)) (-15 -2484 ((-535) $)) (-15 -1948 ($ |#1| (-618 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))))) (-15 -2070 ((-618 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))) $)) (-15 -1894 ($ |#1| (-535))) (-15 -2758 ((-618 (-2 (|:| -4075 |#1|) (|:| -2484 (-535)))) $)) (-15 -1893 ($ |#1| (-535))) (-15 -1892 ((-535) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -1891 ((-3 #1# #2# #3# #4#) $ (-535))) (-15 -1951 ((-747) $)) (-15 -1890 ($ |#1| (-535))) (-15 -1889 ($ |#1| (-535))) (-15 -1888 ($ |#1| (-535) (-3 #1# #2# #3# #4#))) (-15 -1887 (|#1| $)) (-15 -1886 ($ $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1183)) (-6 (-1183)) |%noBranch|) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1142) $)) (-6 (-505 (-1142) $)) |%noBranch|))) (-542)) (T -398)) -((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-542)) (-5 *1 (-398 *3)))) (-4306 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-1948 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-535))))) (-4 *2 (-542)) (-5 *1 (-398 *2)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-535))))) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-1894 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| -4075 *3) (|:| -2484 (-535))))) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1892 (*1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1891 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-398 *4)) (-4 *4 (-542)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1889 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1888 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-535)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1887 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542)))) (-3345 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542))))) -(-13 (-542) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-405 |#1|) (-10 -8 (-15 -4306 (|#1| $)) (-15 -2484 ((-535) $)) (-15 -1948 ($ |#1| (-618 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))))) (-15 -2070 ((-618 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))) $)) (-15 -1894 ($ |#1| (-535))) (-15 -2758 ((-618 (-2 (|:| -4075 |#1|) (|:| -2484 (-535)))) $)) (-15 -1893 ($ |#1| (-535))) (-15 -1892 ((-535) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -1891 ((-3 #1# #2# #3# #4#) $ (-535))) (-15 -1951 ((-747) $)) (-15 -1890 ($ |#1| (-535))) (-15 -1889 ($ |#1| (-535))) (-15 -1888 ($ |#1| (-535) (-3 #1# #2# #3# #4#))) (-15 -1887 (|#1| $)) (-15 -1886 ($ $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1183)) (-6 (-1183)) |%noBranch|) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1142) $)) (-6 (-505 (-1142) $)) |%noBranch|))) -((-4301 (((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)) 20))) -(((-399 |#1| |#2|) (-10 -7 (-15 -4301 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) (-542) (-542)) (T -399)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-5 *2 (-398 *6)) (-5 *1 (-399 *5 *6))))) -(-10 -7 (-15 -4301 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 13)) (-3447 ((|#1| $) 21 (|has| |#1| (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| |#1| (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) 17) (((-3 (-1142) #2#) $) NIL (|has| |#1| (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) 70 (|has| |#1| (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535))))) (-3490 ((|#1| $) 15) (((-1142) $) NIL (|has| |#1| (-1009 (-1142)))) (((-400 (-535)) $) 67 (|has| |#1| (-1009 (-535)))) (((-535) $) NIL (|has| |#1| (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) 50)) (-3315 (($) NIL (|has| |#1| (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| |#1| (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| |#1| (-857 (-371))))) (-2493 (((-112) $) 64)) (-3317 (($ $) NIL)) (-3319 ((|#1| $) 71)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-3521 (((-112) $) NIL (|has| |#1| (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 97)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| |#1| (-300)))) (-3448 ((|#1| $) 28 (|has| |#1| (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 135 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 131 (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-1699 (((-747) $) NIL)) (-4142 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3316 (($ $) NIL)) (-3318 ((|#1| $) 73)) (-4313 (((-861 (-535)) $) NIL (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| |#1| (-594 (-861 (-371))))) (((-524) $) NIL (|has| |#1| (-594 (-524)))) (((-371) $) NIL (|has| |#1| (-991))) (((-219) $) NIL (|has| |#1| (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 10) (($ (-1142)) NIL (|has| |#1| (-1009 (-1142))))) (-3023 (((-3 $ #1#) $) 99 (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 100)) (-3449 ((|#1| $) 26 (|has| |#1| (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| |#1| (-796)))) (-2979 (($) 22 T CONST)) (-2985 (($) 8 T CONST)) (-2825 (((-1124) $) 43 (-12 (|has| |#1| (-534)) (|has| |#1| (-797)))) (((-1124) $ (-112)) 44 (-12 (|has| |#1| (-534)) (|has| |#1| (-797)))) (((-1230) (-799) $) 45 (-12 (|has| |#1| (-534)) (|has| |#1| (-797)))) (((-1230) (-799) $ (-112)) 46 (-12 (|has| |#1| (-534)) (|has| |#1| (-797))))) (-2990 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 56)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) 24 (|has| |#1| (-823)))) (-4291 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4180 (($ $) 25) (($ $ $) 55)) (-4182 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 125)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 60) (($ $ $) 57) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-400 |#1|) (-13 (-962 |#1|) (-10 -7 (IF (|has| |#1| (-534)) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4323)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4334)) (-6 -4323) |%noBranch|) |%noBranch|) |%noBranch|))) (-542)) (T -400)) -NIL -(-13 (-962 |#1|) (-10 -7 (IF (|has| |#1| (-534)) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4323)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4334)) (-6 -4323) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4301 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 13))) -(((-401 |#1| |#2|) (-10 -7 (-15 -4301 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-542) (-542)) (T -401)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6))))) -(-10 -7 (-15 -4301 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) -((-1896 (((-665 |#2|) (-1224 $)) NIL) (((-665 |#2|)) 18)) (-1906 (($ (-1224 |#2|) (-1224 $)) NIL) (($ (-1224 |#2|)) 24)) (-1895 (((-665 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) $) 38)) (-2125 ((|#3| $) 60)) (-4100 ((|#2| (-1224 $)) NIL) ((|#2|) 20)) (-3558 (((-1224 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) NIL) (((-1224 |#2|) $) 22) (((-665 |#2|) (-1224 $)) 36)) (-4313 (((-1224 |#2|) $) 11) (($ (-1224 |#2|)) 13)) (-2689 ((|#3| $) 52))) -(((-402 |#1| |#2| |#3|) (-10 -8 (-15 -1895 ((-665 |#2|) |#1|)) (-15 -4100 (|#2|)) (-15 -1896 ((-665 |#2|))) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -2125 (|#3| |#1|)) (-15 -2689 (|#3| |#1|)) (-15 -1896 ((-665 |#2|) (-1224 |#1|))) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1895 ((-665 |#2|) |#1| (-1224 |#1|)))) (-403 |#2| |#3|) (-170) (-1200 |#2|)) (T -402)) -((-1896 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)) (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) (-4100 (*1 *2) (-12 (-4 *4 (-1200 *2)) (-4 *2 (-170)) (-5 *1 (-402 *3 *2 *4)) (-4 *3 (-403 *2 *4))))) -(-10 -8 (-15 -1895 ((-665 |#2|) |#1|)) (-15 -4100 (|#2|)) (-15 -1896 ((-665 |#2|))) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -2125 (|#3| |#1|)) (-15 -2689 (|#3| |#1|)) (-15 -1896 ((-665 |#2|) (-1224 |#1|))) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1895 ((-665 |#2|) |#1| (-1224 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1896 (((-665 |#1|) (-1224 $)) 44) (((-665 |#1|)) 59)) (-3672 ((|#1| $) 50)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-1906 (($ (-1224 |#1|) (-1224 $)) 46) (($ (-1224 |#1|)) 62)) (-1895 (((-665 |#1|) $ (-1224 $)) 51) (((-665 |#1|) $) 57)) (-3804 (((-3 $ "failed") $) 32)) (-3427 (((-890)) 52)) (-2493 (((-112) $) 30)) (-3450 ((|#1| $) 49)) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4100 ((|#1| (-1224 $)) 45) ((|#1|) 58)) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) 47) (((-1224 |#1|) $) 64) (((-665 |#1|) (-1224 $)) 63)) (-4313 (((-1224 |#1|) $) 61) (($ (-1224 |#1|)) 60)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35)) (-3023 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2689 ((|#2| $) 43)) (-3444 (((-747)) 28)) (-2123 (((-1224 $)) 65)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-403 |#1| |#2|) (-138) (-170) (-1200 |t#1|)) (T -403)) -((-2123 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-1224 *1)) (-4 *1 (-403 *3 *4)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-1224 *3)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1200 *3)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-1224 *3)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1200 *3)))) (-1896 (*1 *2) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-665 *3)))) (-4100 (*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-665 *3))))) -(-13 (-363 |t#1| |t#2|) (-10 -8 (-15 -2123 ((-1224 $))) (-15 -3558 ((-1224 |t#1|) $)) (-15 -3558 ((-665 |t#1|) (-1224 $))) (-15 -1906 ($ (-1224 |t#1|))) (-15 -4313 ((-1224 |t#1|) $)) (-15 -4313 ($ (-1224 |t#1|))) (-15 -1896 ((-665 |t#1|))) (-15 -4100 (|t#1|)) (-15 -1895 ((-665 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-363 |#1| |#2|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-3491 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) 27) (((-3 (-535) #1#) $) 19)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) 24) (((-535) $) 14)) (-4300 (($ |#2|) NIL) (($ (-400 (-535))) 22) (($ (-535)) 11))) -(((-404 |#1| |#2|) (-10 -8 (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|))) (-405 |#2|) (-1178)) (T -404)) -NIL -(-10 -8 (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|))) -((-3491 (((-3 |#1| #1="failed") $) 7) (((-3 (-400 (-535)) #1#) $) 16 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #1#) $) 13 (|has| |#1| (-1009 (-535))))) (-3490 ((|#1| $) 8) (((-400 (-535)) $) 15 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 12 (|has| |#1| (-1009 (-535))))) (-4300 (($ |#1|) 6) (($ (-400 (-535))) 17 (|has| |#1| (-1009 (-400 (-535))))) (($ (-535)) 14 (|has| |#1| (-1009 (-535)))))) -(((-405 |#1|) (-138) (-1178)) (T -405)) -NIL -(-13 (-1009 |t#1|) (-10 -7 (IF (|has| |t#1| (-1009 (-535))) (-6 (-1009 (-535))) |%noBranch|) (IF (|has| |t#1| (-1009 (-400 (-535)))) (-6 (-1009 (-400 (-535)))) |%noBranch|))) -(((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T)) -((-2887 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-1897 ((|#4| (-747) (-1224 |#4|)) 56)) (-2493 (((-112) $) NIL)) (-3319 (((-1224 |#4|) $) 17)) (-3450 ((|#2| $) 54)) (-1898 (($ $) 139)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 100)) (-2087 (($ (-1224 |#4|)) 99)) (-3577 (((-1086) $) NIL)) (-3318 ((|#1| $) 18)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 134)) (-2123 (((-1224 |#4|) $) 129)) (-2985 (($) 11 T CONST)) (-3375 (((-112) $ $) 40)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 122)) (* (($ $ $) 121))) -(((-406 |#1| |#2| |#3| |#4|) (-13 (-465) (-10 -8 (-15 -2087 ($ (-1224 |#4|))) (-15 -2123 ((-1224 |#4|) $)) (-15 -3450 (|#2| $)) (-15 -3319 ((-1224 |#4|) $)) (-15 -3318 (|#1| $)) (-15 -1898 ($ $)) (-15 -1897 (|#4| (-747) (-1224 |#4|))))) (-300) (-962 |#1|) (-1200 |#2|) (-13 (-403 |#2| |#3|) (-1009 |#2|))) (T -406)) -((-2087 (*1 *1 *2) (-12 (-5 *2 (-1224 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *3 (-300)) (-5 *1 (-406 *3 *4 *5 *6)))) (-2123 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))))) (-3450 (*1 *2 *1) (-12 (-4 *4 (-1200 *2)) (-4 *2 (-962 *3)) (-5 *1 (-406 *3 *2 *4 *5)) (-4 *3 (-300)) (-4 *5 (-13 (-403 *2 *4) (-1009 *2))))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))))) (-3318 (*1 *2 *1) (-12 (-4 *3 (-962 *2)) (-4 *4 (-1200 *3)) (-4 *2 (-300)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1009 *3))))) (-1898 (*1 *1 *1) (-12 (-4 *2 (-300)) (-4 *3 (-962 *2)) (-4 *4 (-1200 *3)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1009 *3))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1224 *2)) (-4 *5 (-300)) (-4 *6 (-962 *5)) (-4 *2 (-13 (-403 *6 *7) (-1009 *6))) (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1200 *6))))) -(-13 (-465) (-10 -8 (-15 -2087 ($ (-1224 |#4|))) (-15 -2123 ((-1224 |#4|) $)) (-15 -3450 (|#2| $)) (-15 -3319 ((-1224 |#4|) $)) (-15 -3318 (|#1| $)) (-15 -1898 ($ $)) (-15 -1897 (|#4| (-747) (-1224 |#4|))))) -((-4301 (((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)) 33))) -(((-407 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4301 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) (-300) (-962 |#1|) (-1200 |#2|) (-13 (-403 |#2| |#3|) (-1009 |#2|)) (-300) (-962 |#5|) (-1200 |#6|) (-13 (-403 |#6| |#7|) (-1009 |#6|))) (T -407)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) (-4 *6 (-962 *5)) (-4 *7 (-1200 *6)) (-4 *8 (-13 (-403 *6 *7) (-1009 *6))) (-4 *9 (-300)) (-4 *10 (-962 *9)) (-4 *11 (-1200 *10)) (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-403 *10 *11) (-1009 *10)))))) -(-10 -7 (-15 -4301 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) -((-2887 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3450 ((|#2| $) 61)) (-1899 (($ (-1224 |#4|)) 25) (($ (-406 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1009 |#2|)))) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 34)) (-2123 (((-1224 |#4|) $) 26)) (-2985 (($) 23 T CONST)) (-3375 (((-112) $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ $ $) 72))) -(((-408 |#1| |#2| |#3| |#4| |#5|) (-13 (-703) (-10 -8 (-15 -2123 ((-1224 |#4|) $)) (-15 -3450 (|#2| $)) (-15 -1899 ($ (-1224 |#4|))) (IF (|has| |#4| (-1009 |#2|)) (-15 -1899 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-300) (-962 |#1|) (-1200 |#2|) (-403 |#2| |#3|) (-1224 |#4|)) (T -408)) -((-2123 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) (-3450 (*1 *2 *1) (-12 (-4 *4 (-1200 *2)) (-4 *2 (-962 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1224 *5)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-1224 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *3 (-300)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1009 *4)) (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *6 (-403 *4 *5)) (-14 *7 (-1224 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7))))) -(-13 (-703) (-10 -8 (-15 -2123 ((-1224 |#4|) $)) (-15 -3450 (|#2| $)) (-15 -1899 ($ (-1224 |#4|))) (IF (|has| |#4| (-1009 |#2|)) (-15 -1899 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4301 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-409 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) (-411 |#2|) (-170) (-411 |#4|) (-170)) (T -409)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5))))) -(-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) -((-1887 (((-3 $ #1="failed")) 86)) (-3557 (((-1224 (-665 |#2|)) (-1224 $)) NIL) (((-1224 (-665 |#2|))) 91)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) 85)) (-1814 (((-3 $ #1#)) 84)) (-1902 (((-665 |#2|) (-1224 $)) NIL) (((-665 |#2|)) 102)) (-1900 (((-665 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) $) 110)) (-2017 (((-1136 (-917 |#2|))) 55)) (-1904 ((|#2| (-1224 $)) NIL) ((|#2|) 106)) (-1906 (($ (-1224 |#2|) (-1224 $)) NIL) (($ (-1224 |#2|)) 112)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) 83)) (-1815 (((-3 $ #1#)) 75)) (-1903 (((-665 |#2|) (-1224 $)) NIL) (((-665 |#2|)) 100)) (-1901 (((-665 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) $) 108)) (-2021 (((-1136 (-917 |#2|))) 54)) (-1905 ((|#2| (-1224 $)) NIL) ((|#2|) 104)) (-3558 (((-1224 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) NIL) (((-1224 |#2|) $) 111) (((-665 |#2|) (-1224 $)) 118)) (-4313 (((-1224 |#2|) $) 96) (($ (-1224 |#2|)) 98)) (-2009 (((-618 (-917 |#2|)) (-1224 $)) NIL) (((-618 (-917 |#2|))) 94)) (-2871 (($ (-665 |#2|) $) 90))) -(((-410 |#1| |#2|) (-10 -8 (-15 -2871 (|#1| (-665 |#2|) |#1|)) (-15 -2017 ((-1136 (-917 |#2|)))) (-15 -2021 ((-1136 (-917 |#2|)))) (-15 -1900 ((-665 |#2|) |#1|)) (-15 -1901 ((-665 |#2|) |#1|)) (-15 -1902 ((-665 |#2|))) (-15 -1903 ((-665 |#2|))) (-15 -1904 (|#2|)) (-15 -1905 (|#2|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -2009 ((-618 (-917 |#2|)))) (-15 -3557 ((-1224 (-665 |#2|)))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -1887 ((-3 |#1| #1="failed"))) (-15 -1814 ((-3 |#1| #1#))) (-15 -1815 ((-3 |#1| #1#))) (-15 -2023 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) #1#))) (-15 -2024 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) #1#))) (-15 -1902 ((-665 |#2|) (-1224 |#1|))) (-15 -1903 ((-665 |#2|) (-1224 |#1|))) (-15 -1904 (|#2| (-1224 |#1|))) (-15 -1905 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1900 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -1901 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -3557 ((-1224 (-665 |#2|)) (-1224 |#1|))) (-15 -2009 ((-618 (-917 |#2|)) (-1224 |#1|)))) (-411 |#2|) (-170)) (T -410)) -((-3557 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2009 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-618 (-917 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1905 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1904 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1903 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1902 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2021 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1136 (-917 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2017 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1136 (-917 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) -(-10 -8 (-15 -2871 (|#1| (-665 |#2|) |#1|)) (-15 -2017 ((-1136 (-917 |#2|)))) (-15 -2021 ((-1136 (-917 |#2|)))) (-15 -1900 ((-665 |#2|) |#1|)) (-15 -1901 ((-665 |#2|) |#1|)) (-15 -1902 ((-665 |#2|))) (-15 -1903 ((-665 |#2|))) (-15 -1904 (|#2|)) (-15 -1905 (|#2|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -2009 ((-618 (-917 |#2|)))) (-15 -3557 ((-1224 (-665 |#2|)))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -1887 ((-3 |#1| #1="failed"))) (-15 -1814 ((-3 |#1| #1#))) (-15 -1815 ((-3 |#1| #1#))) (-15 -2023 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) #1#))) (-15 -2024 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) #1#))) (-15 -1902 ((-665 |#2|) (-1224 |#1|))) (-15 -1903 ((-665 |#2|) (-1224 |#1|))) (-15 -1904 (|#2| (-1224 |#1|))) (-15 -1905 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1900 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -1901 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -3557 ((-1224 (-665 |#2|)) (-1224 |#1|))) (-15 -2009 ((-618 (-917 |#2|)) (-1224 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1887 (((-3 $ #1="failed")) 37 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3557 (((-1224 (-665 |#1|)) (-1224 $)) 78) (((-1224 (-665 |#1|))) 100)) (-1840 (((-1224 $)) 81)) (-3879 (($) 17 T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) 40 (|has| |#1| (-542)))) (-1814 (((-3 $ #1#)) 38 (|has| |#1| (-542)))) (-1902 (((-665 |#1|) (-1224 $)) 65) (((-665 |#1|)) 92)) (-1838 ((|#1| $) 74)) (-1900 (((-665 |#1|) $ (-1224 $)) 76) (((-665 |#1|) $) 90)) (-2487 (((-3 $ #1#) $) 45 (|has| |#1| (-542)))) (-2017 (((-1136 (-917 |#1|))) 88 (|has| |#1| (-356)))) (-2490 (($ $ (-890)) 28)) (-1836 ((|#1| $) 72)) (-1816 (((-1136 |#1|) $) 42 (|has| |#1| (-542)))) (-1904 ((|#1| (-1224 $)) 67) ((|#1|) 94)) (-1834 (((-1136 |#1|) $) 63)) (-1828 (((-112)) 57)) (-1906 (($ (-1224 |#1|) (-1224 $)) 69) (($ (-1224 |#1|)) 98)) (-3804 (((-3 $ #1#) $) 47 (|has| |#1| (-542)))) (-3427 (((-890)) 80)) (-1825 (((-112)) 54)) (-2515 (($ $ (-890)) 33)) (-1821 (((-112)) 50)) (-1819 (((-112)) 48)) (-1823 (((-112)) 52)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) 41 (|has| |#1| (-542)))) (-1815 (((-3 $ #1#)) 39 (|has| |#1| (-542)))) (-1903 (((-665 |#1|) (-1224 $)) 66) (((-665 |#1|)) 93)) (-1839 ((|#1| $) 75)) (-1901 (((-665 |#1|) $ (-1224 $)) 77) (((-665 |#1|) $) 91)) (-2488 (((-3 $ #1#) $) 46 (|has| |#1| (-542)))) (-2021 (((-1136 (-917 |#1|))) 89 (|has| |#1| (-356)))) (-2489 (($ $ (-890)) 29)) (-1837 ((|#1| $) 73)) (-1817 (((-1136 |#1|) $) 43 (|has| |#1| (-542)))) (-1905 ((|#1| (-1224 $)) 68) ((|#1|) 95)) (-1835 (((-1136 |#1|) $) 64)) (-1829 (((-112)) 58)) (-3576 (((-1124) $) 9)) (-1820 (((-112)) 49)) (-1822 (((-112)) 51)) (-1824 (((-112)) 53)) (-3577 (((-1086) $) 10)) (-1827 (((-112)) 56)) (-4142 ((|#1| $ (-535)) 101)) (-3558 (((-1224 |#1|) $ (-1224 $)) 71) (((-665 |#1|) (-1224 $) (-1224 $)) 70) (((-1224 |#1|) $) 103) (((-665 |#1|) (-1224 $)) 102)) (-4313 (((-1224 |#1|) $) 97) (($ (-1224 |#1|)) 96)) (-2009 (((-618 (-917 |#1|)) (-1224 $)) 79) (((-618 (-917 |#1|))) 99)) (-2677 (($ $ $) 25)) (-1833 (((-112)) 62)) (-4300 (((-835) $) 11)) (-2123 (((-1224 $)) 104)) (-1818 (((-618 (-1224 |#1|))) 44 (|has| |#1| (-542)))) (-2678 (($ $ $ $) 26)) (-1831 (((-112)) 60)) (-2871 (($ (-665 |#1|) $) 87)) (-2676 (($ $ $) 24)) (-1832 (((-112)) 61)) (-1830 (((-112)) 59)) (-1826 (((-112)) 55)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-411 |#1|) (-138) (-170)) (T -411)) -((-2123 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1224 *1)) (-4 *1 (-411 *3)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 *3)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-411 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-3557 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 (-665 *3))))) (-2009 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-618 (-917 *3))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 *3)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) (-1905 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-1904 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-1903 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-1902 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-2021 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1136 (-917 *3))))) (-2017 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1136 (-917 *3))))) (-2871 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *1 (-411 *3)) (-4 *3 (-170))))) -(-13 (-360 |t#1|) (-10 -8 (-15 -2123 ((-1224 $))) (-15 -3558 ((-1224 |t#1|) $)) (-15 -3558 ((-665 |t#1|) (-1224 $))) (-15 -4142 (|t#1| $ (-535))) (-15 -3557 ((-1224 (-665 |t#1|)))) (-15 -2009 ((-618 (-917 |t#1|)))) (-15 -1906 ($ (-1224 |t#1|))) (-15 -4313 ((-1224 |t#1|) $)) (-15 -4313 ($ (-1224 |t#1|))) (-15 -1905 (|t#1|)) (-15 -1904 (|t#1|)) (-15 -1903 ((-665 |t#1|))) (-15 -1902 ((-665 |t#1|))) (-15 -1901 ((-665 |t#1|) $)) (-15 -1900 ((-665 |t#1|) $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2021 ((-1136 (-917 |t#1|)))) (-15 -2017 ((-1136 (-917 |t#1|))))) |%noBranch|) (-15 -2871 ($ (-665 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-360 |#1|) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-721 |#1|) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T)) -((-3452 (((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|)) 21)) (-1907 (((-398 |#1|) (-398 |#1|) (-398 |#1|)) 16))) -(((-412 |#1|) (-10 -7 (-15 -3452 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -1907 ((-398 |#1|) (-398 |#1|) (-398 |#1|)))) (-542)) (T -412)) -((-1907 (*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-542)) (-5 *1 (-412 *3)))) (-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-542)) (-5 *2 (-398 *4)) (-5 *1 (-412 *4))))) -(-10 -7 (-15 -3452 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -1907 ((-398 |#1|) (-398 |#1|) (-398 |#1|)))) -((-3405 (((-618 (-1142)) $) 72)) (-3407 (((-400 (-1136 $)) $ (-591 $)) 273)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-618 (-591 $)) (-618 $)) 237)) (-3491 (((-3 (-591 $) #1="failed") $) NIL) (((-3 (-1142) #1#) $) 75) (((-3 (-535) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-400 (-917 |#2|)) #1#) $) 324) (((-3 (-917 |#2|) #1#) $) 235) (((-3 (-400 (-535)) #1#) $) NIL)) (-3490 (((-591 $) $) NIL) (((-1142) $) 30) (((-535) $) NIL) ((|#2| $) 231) (((-400 (-917 |#2|)) $) 305) (((-917 |#2|) $) 232) (((-400 (-535)) $) NIL)) (-3368 (((-113) (-113)) 47)) (-3317 (($ $) 87)) (-1657 (((-3 (-591 $) "failed") $) 228)) (-1656 (((-618 (-591 $)) $) 229)) (-3144 (((-3 (-618 $) "failed") $) 247)) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) "failed") $) 254)) (-3143 (((-3 (-618 $) "failed") $) 245)) (-1908 (((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) "failed") $) 264)) (-3145 (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $) 251) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-1142)) 219)) (-1911 (((-112) $) 19)) (-1910 ((|#2| $) 21)) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) 236) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) 96) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1142)) 57) (($ $ (-618 (-1142))) 240) (($ $) 241) (($ $ (-113) $ (-1142)) 60) (($ $ (-618 (-113)) (-618 $) (-1142)) 67) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $))) 107) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $)))) 242) (($ $ (-1142) (-747) (-1 $ (-618 $))) 94) (($ $ (-1142) (-747) (-1 $ $)) 93)) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) 106)) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) 238)) (-3316 (($ $) 284)) (-4313 (((-861 (-535)) $) 257) (((-861 (-371)) $) 261) (($ (-398 $)) 320) (((-524) $) NIL)) (-4300 (((-835) $) 239) (($ (-591 $)) 84) (($ (-1142)) 26) (($ |#2|) NIL) (($ (-1091 |#2| (-591 $))) NIL) (($ (-400 |#2|)) 289) (($ (-917 (-400 |#2|))) 329) (($ (-400 (-917 (-400 |#2|)))) 301) (($ (-400 (-917 |#2|))) 295) (($ $) NIL) (($ (-917 |#2|)) 185) (($ (-400 (-535))) 334) (($ (-535)) NIL)) (-3444 (((-747)) 79)) (-2329 (((-112) (-113)) 41)) (-1909 (($ (-1142) $) 33) (($ (-1142) $ $) 34) (($ (-1142) $ $ $) 35) (($ (-1142) $ $ $ $) 36) (($ (-1142) (-618 $)) 39)) (* (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL))) -(((-413 |#1| |#2|) (-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3444 ((-747))) (-15 -4300 (|#1| (-535))) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1="failed") |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-917 |#2|) |#1|)) (-15 -3491 ((-3 (-917 |#2|) #1#) |#1|)) (-15 -4300 (|#1| (-917 |#2|))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -3490 ((-400 (-917 |#2|)) |#1|)) (-15 -3491 ((-3 (-400 (-917 |#2|)) #1#) |#1|)) (-15 -4300 (|#1| (-400 (-917 |#2|)))) (-15 -3407 ((-400 (-1136 |#1|)) |#1| (-591 |#1|))) (-15 -4300 (|#1| (-400 (-917 (-400 |#2|))))) (-15 -4300 (|#1| (-917 (-400 |#2|)))) (-15 -4300 (|#1| (-400 |#2|))) (-15 -3316 (|#1| |#1|)) (-15 -4313 (|#1| (-398 |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-747) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-747) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-747)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-747)) (-618 (-1 |#1| |#1|)))) (-15 -3146 ((-3 (-2 (|:| |val| |#1|) (|:| -2484 (-535))) "failed") |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1| (-1142))) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1| (-113))) (-15 -3317 (|#1| |#1|)) (-15 -4300 (|#1| (-1091 |#2| (-591 |#1|)))) (-15 -1908 ((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 |#1|))) "failed") |#1|)) (-15 -3143 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1|)) (-15 -3144 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 |#1|) (-1142))) (-15 -4110 (|#1| |#1| (-113) |#1| (-1142))) (-15 -4110 (|#1| |#1|)) (-15 -4110 (|#1| |#1| (-618 (-1142)))) (-15 -4110 (|#1| |#1| (-1142))) (-15 -1909 (|#1| (-1142) (-618 |#1|))) (-15 -1909 (|#1| (-1142) |#1| |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1|)) (-15 -3405 ((-618 (-1142)) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -4300 (|#1| (-1142))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| |#1|)))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| |#1|)))) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1656 ((-618 (-591 |#1|)) |#1|)) (-15 -1657 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -1659 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -1659 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4142 (|#1| (-113) (-618 |#1|))) (-15 -4142 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -3490 ((-591 |#1|) |#1|)) (-15 -3491 ((-3 (-591 |#1|) #1#) |#1|)) (-15 -4300 (|#1| (-591 |#1|))) (-15 -4300 ((-835) |#1|))) (-414 |#2|) (-823)) (T -413)) -((-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-823)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-413 *4 *5)) (-4 *4 (-414 *5)))) (-3444 (*1 *2) (-12 (-4 *4 (-823)) (-5 *2 (-747)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4))))) -(-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3444 ((-747))) (-15 -4300 (|#1| (-535))) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1="failed") |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-917 |#2|) |#1|)) (-15 -3491 ((-3 (-917 |#2|) #1#) |#1|)) (-15 -4300 (|#1| (-917 |#2|))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -3490 ((-400 (-917 |#2|)) |#1|)) (-15 -3491 ((-3 (-400 (-917 |#2|)) #1#) |#1|)) (-15 -4300 (|#1| (-400 (-917 |#2|)))) (-15 -3407 ((-400 (-1136 |#1|)) |#1| (-591 |#1|))) (-15 -4300 (|#1| (-400 (-917 (-400 |#2|))))) (-15 -4300 (|#1| (-917 (-400 |#2|)))) (-15 -4300 (|#1| (-400 |#2|))) (-15 -3316 (|#1| |#1|)) (-15 -4313 (|#1| (-398 |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-747) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-747) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-747)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-747)) (-618 (-1 |#1| |#1|)))) (-15 -3146 ((-3 (-2 (|:| |val| |#1|) (|:| -2484 (-535))) "failed") |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1| (-1142))) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1| (-113))) (-15 -3317 (|#1| |#1|)) (-15 -4300 (|#1| (-1091 |#2| (-591 |#1|)))) (-15 -1908 ((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 |#1|))) "failed") |#1|)) (-15 -3143 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1|)) (-15 -3144 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 |#1|) (-1142))) (-15 -4110 (|#1| |#1| (-113) |#1| (-1142))) (-15 -4110 (|#1| |#1|)) (-15 -4110 (|#1| |#1| (-618 (-1142)))) (-15 -4110 (|#1| |#1| (-1142))) (-15 -1909 (|#1| (-1142) (-618 |#1|))) (-15 -1909 (|#1| (-1142) |#1| |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1|)) (-15 -3405 ((-618 (-1142)) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -4300 (|#1| (-1142))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| |#1|)))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| |#1|)))) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1656 ((-618 (-591 |#1|)) |#1|)) (-15 -1657 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -1659 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -1659 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4142 (|#1| (-113) (-618 |#1|))) (-15 -4142 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -3490 ((-591 |#1|) |#1|)) (-15 -3491 ((-3 (-591 |#1|) #1#) |#1|)) (-15 -4300 (|#1| (-591 |#1|))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 113 (|has| |#1| (-25)))) (-3405 (((-618 (-1142)) $) 200)) (-3407 (((-400 (-1136 $)) $ (-591 $)) 168 (|has| |#1| (-542)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 140 (|has| |#1| (-542)))) (-2171 (($ $) 141 (|has| |#1| (-542)))) (-2169 (((-112) $) 143 (|has| |#1| (-542)))) (-1655 (((-618 (-591 $)) $) 44)) (-1363 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1659 (($ $ (-286 $)) 56) (($ $ (-618 (-286 $))) 55) (($ $ (-618 (-591 $)) (-618 $)) 54)) (-4117 (($ $) 160 (|has| |#1| (-542)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-542)))) (-1700 (((-112) $ $) 151 (|has| |#1| (-542)))) (-3879 (($) 101 (-3874 (|has| |#1| (-1078)) (|has| |#1| (-25))) CONST)) (-3491 (((-3 (-591 $) #1="failed") $) 69) (((-3 (-1142) #1#) $) 213) (((-3 (-535) #1#) $) 206 (|has| |#1| (-1009 (-535)))) (((-3 |#1| #1#) $) 204) (((-3 (-400 (-917 |#1|)) #1#) $) 166 (|has| |#1| (-542))) (((-3 (-917 |#1|) #1#) $) 120 (|has| |#1| (-1018))) (((-3 (-400 (-535)) #1#) $) 95 (-3874 (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535))))))) (-3490 (((-591 $) $) 68) (((-1142) $) 212) (((-535) $) 207 (|has| |#1| (-1009 (-535)))) ((|#1| $) 203) (((-400 (-917 |#1|)) $) 165 (|has| |#1| (-542))) (((-917 |#1|) $) 119 (|has| |#1| (-1018))) (((-400 (-535)) $) 94 (-3874 (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535))))))) (-2883 (($ $ $) 155 (|has| |#1| (-542)))) (-2353 (((-665 (-535)) (-665 $)) 134 (-3179 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 133 (-3179 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 132 (|has| |#1| (-1018))) (((-665 |#1|) (-665 $)) 131 (|has| |#1| (-1018)))) (-3804 (((-3 $ "failed") $) 103 (|has| |#1| (-1078)))) (-2882 (($ $ $) 154 (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-542)))) (-4069 (((-112) $) 162 (|has| |#1| (-542)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 209 (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 208 (|has| |#1| (-857 (-371))))) (-2892 (($ $) 51) (($ (-618 $)) 50)) (-1654 (((-618 (-113)) $) 43)) (-3368 (((-113) (-113)) 42)) (-2493 (((-112) $) 102 (|has| |#1| (-1078)))) (-2994 (((-112) $) 22 (|has| $ (-1009 (-535))))) (-3317 (($ $) 183 (|has| |#1| (-1018)))) (-3319 (((-1091 |#1| (-591 $)) $) 184 (|has| |#1| (-1018)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 158 (|has| |#1| (-542)))) (-1652 (((-1136 $) (-591 $)) 25 (|has| $ (-1018)))) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-4301 (($ (-1 $ $) (-591 $)) 36)) (-1657 (((-3 (-591 $) "failed") $) 46)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-542))) (($ $ $) 146 (|has| |#1| (-542)))) (-3576 (((-1124) $) 9)) (-1656 (((-618 (-591 $)) $) 45)) (-2308 (($ (-113) $) 38) (($ (-113) (-618 $)) 37)) (-3144 (((-3 (-618 $) "failed") $) 189 (|has| |#1| (-1078)))) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) "failed") $) 180 (|has| |#1| (-1018)))) (-3143 (((-3 (-618 $) "failed") $) 187 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3145 (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $) 188 (|has| |#1| (-1078))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-113)) 182 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-1142)) 181 (|has| |#1| (-1018)))) (-2952 (((-112) $ (-113)) 40) (((-112) $ (-1142)) 39)) (-2725 (($ $) 105 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-2922 (((-747) $) 47)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 202)) (-1910 ((|#1| $) 201)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-542)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-542))) (($ $ $) 144 (|has| |#1| (-542)))) (-1653 (((-112) $ $) 35) (((-112) $ (-1142)) 34)) (-4075 (((-398 $) $) 159 (|has| |#1| (-542)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 157 (|has| |#1| (-542))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-542)))) (-3803 (((-3 $ "failed") $ $) 139 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-542)))) (-2995 (((-112) $) 23 (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) 67) (($ $ (-618 (-591 $)) (-618 $)) 66) (($ $ (-618 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-618 $) (-618 $)) 62) (($ $ (-618 (-1142)) (-618 (-1 $ $))) 33) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) 32) (($ $ (-1142) (-1 $ (-618 $))) 31) (($ $ (-1142) (-1 $ $)) 30) (($ $ (-618 (-113)) (-618 (-1 $ $))) 29) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) 28) (($ $ (-113) (-1 $ (-618 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1142)) 194 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142))) 193 (|has| |#1| (-594 (-524)))) (($ $) 192 (|has| |#1| (-594 (-524)))) (($ $ (-113) $ (-1142)) 191 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-113)) (-618 $) (-1142)) 190 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $))) 179 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $)))) 178 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-618 $))) 177 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ $)) 176 (|has| |#1| (-1018)))) (-1699 (((-747) $) 152 (|has| |#1| (-542)))) (-4142 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-618 $)) 57)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-542)))) (-1658 (($ $) 49) (($ $ $) 48)) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 125 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 124 (|has| |#1| (-1018))) (($ $ (-618 (-1142))) 123 (|has| |#1| (-1018))) (($ $ (-1142)) 122 (|has| |#1| (-1018)))) (-3316 (($ $) 173 (|has| |#1| (-542)))) (-3318 (((-1091 |#1| (-591 $)) $) 174 (|has| |#1| (-542)))) (-3519 (($ $) 24 (|has| $ (-1018)))) (-4313 (((-861 (-535)) $) 211 (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) 210 (|has| |#1| (-594 (-861 (-371))))) (($ (-398 $)) 175 (|has| |#1| (-542))) (((-524) $) 97 (|has| |#1| (-594 (-524))))) (-3330 (($ $ $) 108 (|has| |#1| (-465)))) (-2677 (($ $ $) 109 (|has| |#1| (-465)))) (-4300 (((-835) $) 11) (($ (-591 $)) 70) (($ (-1142)) 214) (($ |#1|) 205) (($ (-1091 |#1| (-591 $))) 185 (|has| |#1| (-1018))) (($ (-400 |#1|)) 171 (|has| |#1| (-542))) (($ (-917 (-400 |#1|))) 170 (|has| |#1| (-542))) (($ (-400 (-917 (-400 |#1|)))) 169 (|has| |#1| (-542))) (($ (-400 (-917 |#1|))) 167 (|has| |#1| (-542))) (($ $) 138 (|has| |#1| (-542))) (($ (-917 |#1|)) 121 (|has| |#1| (-1018))) (($ (-400 (-535))) 96 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535)))))) (($ (-535)) 93 (-3874 (|has| |#1| (-1018)) (|has| |#1| (-1009 (-535)))))) (-3023 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3444 (((-747)) 130 (|has| |#1| (-1018)))) (-2909 (($ $) 53) (($ (-618 $)) 52)) (-2329 (((-112) (-113)) 41)) (-2170 (((-112) $ $) 142 (|has| |#1| (-542)))) (-1909 (($ (-1142) $) 199) (($ (-1142) $ $) 198) (($ (-1142) $ $ $) 197) (($ (-1142) $ $ $ $) 196) (($ (-1142) (-618 $)) 195)) (-2979 (($) 112 (|has| |#1| (-25)) CONST)) (-2985 (($) 100 (|has| |#1| (-1078)) CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 129 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 128 (|has| |#1| (-1018))) (($ $ (-618 (-1142))) 127 (|has| |#1| (-1018))) (($ $ (-1142)) 126 (|has| |#1| (-1018)))) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4291 (($ (-1091 |#1| (-591 $)) (-1091 |#1| (-591 $))) 172 (|has| |#1| (-542))) (($ $ $) 106 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-4180 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-4182 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-535)) 107 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542)))) (($ $ (-747)) 104 (|has| |#1| (-1078))) (($ $ (-890)) 99 (|has| |#1| (-1078)))) (* (($ (-400 (-535)) $) 164 (|has| |#1| (-542))) (($ $ (-400 (-535))) 163 (|has| |#1| (-542))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-535) $) 118 (|has| |#1| (-21))) (($ (-747) $) 114 (|has| |#1| (-25))) (($ (-890) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1078))))) -(((-414 |#1|) (-138) (-823)) (T -414)) -((-1911 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-823)) (-5 *2 (-112)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-823)) (-5 *2 (-618 (-1142))))) (-1909 (*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) (-1909 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) (-1909 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) (-1909 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 *1)) (-4 *1 (-414 *4)) (-4 *4 (-823)))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-524))))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1142))) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-524))))) (-4110 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-594 (-524))))) (-4110 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1142)) (-4 *1 (-414 *4)) (-4 *4 (-823)) (-4 *4 (-594 (-524))))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 *1)) (-5 *4 (-1142)) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-594 (-524))))) (-3144 (*1 *2 *1) (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-414 *3)))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *3)))) (-3143 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-414 *3)))) (-1908 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -4296 (-535)) (|:| |var| (-591 *1)))) (-4 *1 (-414 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1091 *3 (-591 *1))) (-4 *3 (-1018)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-591 *1))) (-4 *1 (-414 *3)))) (-3317 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-1018)))) (-3145 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1018)) (-4 *4 (-823)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *4)))) (-3145 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-1018)) (-4 *4 (-823)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *4)))) (-3146 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-2 (|:| |val| *1) (|:| -2484 (-535)))) (-4 *1 (-414 *3)))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-747))) (-5 *4 (-618 (-1 *1 *1))) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-747))) (-5 *4 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 (-618 *1))) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-398 *1)) (-4 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-823)))) (-3318 (*1 *2 *1) (-12 (-4 *3 (-542)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-591 *1))) (-4 *1 (-414 *3)))) (-3316 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-542)))) (-4291 (*1 *1 *2 *2) (-12 (-5 *2 (-1091 *3 (-591 *1))) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-917 (-400 *3))) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-400 *3)))) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-3407 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-414 *4)) (-4 *4 (-823)) (-4 *4 (-542)) (-5 *2 (-400 (-1136 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-1078))))) -(-13 (-291) (-1009 (-1142)) (-855 |t#1|) (-393 |t#1|) (-405 |t#1|) (-10 -8 (-15 -1911 ((-112) $)) (-15 -1910 (|t#1| $)) (-15 -3405 ((-618 (-1142)) $)) (-15 -1909 ($ (-1142) $)) (-15 -1909 ($ (-1142) $ $)) (-15 -1909 ($ (-1142) $ $ $)) (-15 -1909 ($ (-1142) $ $ $ $)) (-15 -1909 ($ (-1142) (-618 $))) (IF (|has| |t#1| (-594 (-524))) (PROGN (-6 (-594 (-524))) (-15 -4110 ($ $ (-1142))) (-15 -4110 ($ $ (-618 (-1142)))) (-15 -4110 ($ $)) (-15 -4110 ($ $ (-113) $ (-1142))) (-15 -4110 ($ $ (-618 (-113)) (-618 $) (-1142)))) |%noBranch|) (IF (|has| |t#1| (-1078)) (PROGN (-6 (-703)) (-15 ** ($ $ (-747))) (-15 -3144 ((-3 (-618 $) "failed") $)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3143 ((-3 (-618 $) "failed") $)) (-15 -1908 ((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-1009 (-917 |t#1|))) (-6 (-871 (-1142))) (-6 (-370 |t#1|)) (-15 -4300 ($ (-1091 |t#1| (-591 $)))) (-15 -3319 ((-1091 |t#1| (-591 $)) $)) (-15 -3317 ($ $)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-113))) (-15 -3145 ((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-1142))) (-15 -3146 ((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) "failed") $)) (-15 -4110 ($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $)))) (-15 -4110 ($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $))))) (-15 -4110 ($ $ (-1142) (-747) (-1 $ (-618 $)))) (-15 -4110 ($ $ (-1142) (-747) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-356)) (-6 (-1009 (-400 (-917 |t#1|)))) (-15 -4313 ($ (-398 $))) (-15 -3318 ((-1091 |t#1| (-591 $)) $)) (-15 -3316 ($ $)) (-15 -4291 ($ (-1091 |t#1| (-591 $)) (-1091 |t#1| (-591 $)))) (-15 -4300 ($ (-400 |t#1|))) (-15 -4300 ($ (-917 (-400 |t#1|)))) (-15 -4300 ($ (-400 (-917 (-400 |t#1|))))) (-15 -3407 ((-400 (-1136 $)) $ (-591 $))) (IF (|has| |t#1| (-1009 (-535))) (-6 (-1009 (-400 (-535)))) |%noBranch|)) |%noBranch|))) -(((-21) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-400 (-535))) |has| |#1| (-542)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-542)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-542)) ((-130) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) |has| |#1| (-542)) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))) ((-237) |has| |#1| (-542)) ((-283) |has| |#1| (-542)) ((-300) |has| |#1| (-542)) ((-302 $) . T) ((-291) . T) ((-356) |has| |#1| (-542)) ((-370 |#1|) |has| |#1| (-1018)) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-444) |has| |#1| (-542)) ((-465) |has| |#1| (-465)) ((-505 (-591 $) $) . T) ((-505 $ $) . T) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-542)) ((-624 |#1|) |has| |#1| (-170)) ((-624 $) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-617 (-535)) -12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) ((-617 |#1|) |has| |#1| (-1018)) ((-694 #1#) |has| |#1| (-542)) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) -3874 (|has| |#1| (-1078)) (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-823) . T) ((-871 (-1142)) |has| |#1| (-1018)) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-855 |#1|) . T) ((-892) |has| |#1| (-542)) ((-1009 (-400 (-535))) -3874 (|has| |#1| (-1009 (-400 (-535)))) (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) ((-1009 (-400 (-917 |#1|))) |has| |#1| (-542)) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 (-591 $)) . T) ((-1009 (-917 |#1|)) |has| |#1| (-1018)) ((-1009 (-1142)) . T) ((-1009 |#1|) . T) ((-1024 #1#) |has| |#1| (-542)) ((-1024 |#1|) |has| |#1| (-170)) ((-1024 $) |has| |#1| (-542)) ((-1018) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1025) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1078) -3874 (|has| |#1| (-1078)) (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1067) . T) ((-1178) . T) ((-1183) |has| |#1| (-542))) -((-4301 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1018) (-823)) (-414 |#1|) (-13 (-1018) (-823)) (-414 |#3|)) (T -415)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1018) (-823))) (-4 *6 (-13 (-1018) (-823))) (-4 *2 (-414 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-414 *5))))) -(-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|))) -((-1915 ((|#2| |#2|) 166)) (-1912 (((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112)) 57))) -(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1912 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112))) (-15 -1915 (|#2| |#2|))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|)) (-1142) |#2|) (T -416)) -((-1915 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1164) (-414 *3))) (-14 *4 (-1142)) (-14 *5 *2))) (-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-14 *6 (-1142)) (-14 *7 *3)))) -(-10 -7 (-15 -1912 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112))) (-15 -1915 (|#2| |#2|))) -((-1915 ((|#2| |#2|) 90)) (-1913 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124)) 48)) (-1914 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124)) 154))) -(((-417 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1913 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -1914 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -1915 (|#2| |#2|))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|) (-10 -8 (-15 -4300 ($ |#3|)))) (-821) (-13 (-1203 |#2| |#3|) (-356) (-1164) (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $)))) (-954 |#4|) (-1142)) (T -417)) -((-1915 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-4 *2 (-13 (-27) (-1164) (-414 *3) (-10 -8 (-15 -4300 ($ *4))))) (-4 *4 (-821)) (-4 *5 (-13 (-1203 *2 *4) (-356) (-1164) (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-954 *5)) (-14 *7 (-1142)))) (-1914 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-4 *3 (-13 (-27) (-1164) (-414 *6) (-10 -8 (-15 -4300 ($ *7))))) (-4 *7 (-821)) (-4 *8 (-13 (-1203 *3 *7) (-356) (-1164) (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8)) (-14 *10 (-1142)))) (-1913 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-4 *3 (-13 (-27) (-1164) (-414 *6) (-10 -8 (-15 -4300 ($ *7))))) (-4 *7 (-821)) (-4 *8 (-13 (-1203 *3 *7) (-356) (-1164) (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8)) (-14 *10 (-1142))))) -(-10 -7 (-15 -1913 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -1914 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -1915 (|#2| |#2|))) -((-1916 (($) 44)) (-3568 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3570 (($ $ $) 39)) (-3569 (((-112) $ $) 28)) (-3454 (((-747)) 47)) (-3573 (($ (-618 |#2|)) 20) (($) NIL)) (-3315 (($) 53)) (-3575 (((-112) $ $) 13)) (-3660 ((|#2| $) 61)) (-3661 ((|#2| $) 59)) (-2121 (((-890) $) 55)) (-3572 (($ $ $) 35)) (-2483 (($ (-890)) 50)) (-3571 (($ $ |#2|) NIL) (($ $ $) 38)) (-2064 (((-747) (-1 (-112) |#2|) $) NIL) (((-747) |#2| $) 26)) (-3867 (($ (-618 |#2|)) 24)) (-1917 (($ $) 46)) (-4300 (((-835) $) 33)) (-1918 (((-747) $) 21)) (-3574 (($ (-618 |#2|)) 19) (($) NIL)) (-3375 (((-112) $ $) 16))) -(((-418 |#1| |#2|) (-10 -8 (-15 -3454 ((-747))) (-15 -2483 (|#1| (-890))) (-15 -2121 ((-890) |#1|)) (-15 -3315 (|#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -1916 (|#1|)) (-15 -1917 (|#1| |#1|)) (-15 -1918 ((-747) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3575 ((-112) |#1| |#1|)) (-15 -3574 (|#1|)) (-15 -3574 (|#1| (-618 |#2|))) (-15 -3573 (|#1|)) (-15 -3573 (|#1| (-618 |#2|))) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3569 ((-112) |#1| |#1|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3568 (|#1| |#2| |#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|))) (-419 |#2|) (-1067)) (T -418)) -((-3454 (*1 *2) (-12 (-4 *4 (-1067)) (-5 *2 (-747)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) -(-10 -8 (-15 -3454 ((-747))) (-15 -2483 (|#1| (-890))) (-15 -2121 ((-890) |#1|)) (-15 -3315 (|#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -1916 (|#1|)) (-15 -1917 (|#1| |#1|)) (-15 -1918 ((-747) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3575 ((-112) |#1| |#1|)) (-15 -3574 (|#1|)) (-15 -3574 (|#1| (-618 |#2|))) (-15 -3573 (|#1|)) (-15 -3573 (|#1| (-618 |#2|))) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3569 ((-112) |#1| |#1|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3568 (|#1| |#2| |#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|))) -((-2887 (((-112) $ $) 19)) (-1916 (($) 67 (|has| |#1| (-361)))) (-3568 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3570 (($ $ $) 78)) (-3569 (((-112) $ $) 79)) (-1264 (((-112) $ (-747)) 8)) (-3454 (((-747)) 61 (|has| |#1| (-361)))) (-3573 (($ (-618 |#1|)) 74) (($) 73)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-3315 (($) 64 (|has| |#1| (-361)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 70)) (-4065 (((-112) $ (-747)) 9)) (-3660 ((|#1| $) 65 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3661 ((|#1| $) 66 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-2121 (((-890) $) 63 (|has| |#1| (-361)))) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22)) (-3572 (($ $ $) 75)) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-2483 (($ (-890)) 62 (|has| |#1| (-361)))) (-3577 (((-1086) $) 21)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3571 (($ $ |#1|) 77) (($ $ $) 76)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-1917 (($ $) 68 (|has| |#1| (-361)))) (-4300 (((-835) $) 18)) (-1918 (((-747) $) 69)) (-3574 (($ (-618 |#1|)) 72) (($) 71)) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-419 |#1|) (-138) (-1067)) (T -419)) -((-1918 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1067)) (-5 *2 (-747)))) (-1917 (*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-361)))) (-1916 (*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-361)) (-4 *2 (-1067)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-823))))) -(-13 (-223 |t#1|) (-1065 |t#1|) (-10 -8 (-6 -4336) (-15 -1918 ((-747) $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-361)) (-15 -1917 ($ $)) (-15 -1916 ($))) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-15 -3661 (|t#1| $)) (-15 -3660 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-223 |#1|) . T) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-361) |has| |#1| (-361)) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1065 |#1|) . T) ((-1067) . T) ((-1178) . T)) -((-4184 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4185 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4301 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1067) (-419 |#1|) (-1067) (-419 |#3|)) (T -420)) -((-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1067)) (-4 *5 (-1067)) (-4 *2 (-419 *5)) (-5 *1 (-420 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067)) (-5 *1 (-420 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-419 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-419 *5))))) -(-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1919 (((-565 |#2|) |#2| (-1142)) 36)) (-2213 (((-565 |#2|) |#2| (-1142)) 20)) (-2252 ((|#2| |#2| (-1142)) 25))) -(((-421 |#1| |#2|) (-10 -7 (-15 -2213 ((-565 |#2|) |#2| (-1142))) (-15 -1919 ((-565 |#2|) |#2| (-1142))) (-15 -2252 (|#2| |#2| (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-29 |#1|))) (T -421)) -((-2252 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1164) (-29 *4))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5))))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5)))))) -(-10 -7 (-15 -2213 ((-565 |#2|) |#2| (-1142))) (-15 -1919 ((-565 |#2|) |#2| (-1142))) (-15 -2252 (|#2| |#2| (-1142)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-1921 (($ |#2| |#1|) 35)) (-1920 (($ |#2| |#1|) 33)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-324 |#2|)) 25)) (-3444 (((-747)) NIL)) (-2979 (($) 10 T CONST)) (-2985 (($) 16 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-422 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4323)) (IF (|has| |#1| (-6 -4323)) (-6 -4323) |%noBranch|) |%noBranch|) (-15 -4300 ($ |#1|)) (-15 -4300 ($ (-324 |#2|))) (-15 -1921 ($ |#2| |#1|)) (-15 -1920 ($ |#2| |#1|)))) (-13 (-170) (-38 (-400 (-535)))) (-13 (-823) (-21))) (T -422)) -((-4300 (*1 *1 *2) (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-535))))) (-4 *3 (-13 (-823) (-21))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-823) (-21))) (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-535))))))) (-1921 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-535))))) (-4 *2 (-13 (-823) (-21))))) (-1920 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-535))))) (-4 *2 (-13 (-823) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4323)) (IF (|has| |#1| (-6 -4323)) (-6 -4323) |%noBranch|) |%noBranch|) (-15 -4300 ($ |#1|)) (-15 -4300 ($ (-324 |#2|))) (-15 -1921 ($ |#2| |#1|)) (-15 -1920 ($ |#2| |#1|)))) -((-4155 (((-3 |#2| (-618 |#2|)) |#2| (-1142)) 109))) -(((-423 |#1| |#2|) (-10 -7 (-15 -4155 ((-3 |#2| (-618 |#2|)) |#2| (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-931) (-29 |#1|))) (T -423)) -((-4155 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 *3 (-618 *3))) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1164) (-931) (-29 *5)))))) -(-10 -7 (-15 -4155 ((-3 |#2| (-618 |#2|)) |#2| (-1142)))) -((-3728 ((|#2| |#2| |#2|) 33)) (-3368 (((-113) (-113)) 44)) (-1923 ((|#2| |#2|) 66)) (-1922 ((|#2| |#2|) 69)) (-3727 ((|#2| |#2|) 32)) (-3731 ((|#2| |#2| |#2|) 35)) (-3733 ((|#2| |#2| |#2|) 37)) (-3730 ((|#2| |#2| |#2|) 34)) (-3732 ((|#2| |#2| |#2|) 36)) (-2329 (((-112) (-113)) 42)) (-3735 ((|#2| |#2|) 39)) (-3734 ((|#2| |#2|) 38)) (-3725 ((|#2| |#2|) 27)) (-3729 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3726 ((|#2| |#2| |#2|) 31))) -(((-424 |#1| |#2|) (-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -3725 (|#2| |#2|)) (-15 -3729 (|#2| |#2|)) (-15 -3729 (|#2| |#2| |#2|)) (-15 -3726 (|#2| |#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3728 (|#2| |#2| |#2|)) (-15 -3730 (|#2| |#2| |#2|)) (-15 -3731 (|#2| |#2| |#2|)) (-15 -3732 (|#2| |#2| |#2|)) (-15 -3733 (|#2| |#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -3735 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -1923 (|#2| |#2|))) (-13 (-823) (-542)) (-414 |#1|)) (T -424)) -((-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-1922 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3735 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3733 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3732 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3731 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3730 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3728 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3726 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3729 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3729 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3725 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *4)) (-4 *4 (-414 *3)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *5 (-414 *4))))) -(-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -3725 (|#2| |#2|)) (-15 -3729 (|#2| |#2|)) (-15 -3729 (|#2| |#2| |#2|)) (-15 -3726 (|#2| |#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3728 (|#2| |#2| |#2|)) (-15 -3730 (|#2| |#2| |#2|)) (-15 -3731 (|#2| |#2| |#2|)) (-15 -3732 (|#2| |#2| |#2|)) (-15 -3733 (|#2| |#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -3735 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -1923 (|#2| |#2|))) -((-3154 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1136 |#2|)) (|:| |pol2| (-1136 |#2|)) (|:| |prim| (-1136 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-618 (-1136 |#2|))) (|:| |prim| (-1136 |#2|))) (-618 |#2|)) 61))) -(((-425 |#1| |#2|) (-10 -7 (-15 -3154 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-618 (-1136 |#2|))) (|:| |prim| (-1136 |#2|))) (-618 |#2|))) (IF (|has| |#2| (-27)) (-15 -3154 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1136 |#2|)) (|:| |pol2| (-1136 |#2|)) (|:| |prim| (-1136 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-542) (-823) (-145)) (-414 |#1|)) (T -425)) -((-3154 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-542) (-823) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1136 *3)) (|:| |pol2| (-1136 *3)) (|:| |prim| (-1136 *3)))) (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-618 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-542) (-823) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-618 (-1136 *5))) (|:| |prim| (-1136 *5)))) (-5 *1 (-425 *4 *5))))) -(-10 -7 (-15 -3154 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-618 (-1136 |#2|))) (|:| |prim| (-1136 |#2|))) (-618 |#2|))) (IF (|has| |#2| (-27)) (-15 -3154 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1136 |#2|)) (|:| |pol2| (-1136 |#2|)) (|:| |prim| (-1136 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1925 (((-1230)) 19)) (-1924 (((-1136 (-400 (-535))) |#2| (-591 |#2|)) 41) (((-400 (-535)) |#2|) 25))) -(((-426 |#1| |#2|) (-10 -7 (-15 -1924 ((-400 (-535)) |#2|)) (-15 -1924 ((-1136 (-400 (-535))) |#2| (-591 |#2|))) (-15 -1925 ((-1230)))) (-13 (-823) (-542) (-1009 (-535))) (-414 |#1|)) (T -426)) -((-1925 (*1 *2) (-12 (-4 *3 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-1230)) (-5 *1 (-426 *3 *4)) (-4 *4 (-414 *3)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-414 *5)) (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-426 *5 *3)))) (-1924 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-426 *4 *3)) (-4 *3 (-414 *4))))) -(-10 -7 (-15 -1924 ((-400 (-535)) |#2|)) (-15 -1924 ((-1136 (-400 (-535))) |#2| (-591 |#2|))) (-15 -1925 ((-1230)))) -((-3991 (((-112) $) 28)) (-1926 (((-112) $) 30)) (-3593 (((-112) $) 31)) (-1928 (((-112) $) 34)) (-1930 (((-112) $) 29)) (-1929 (((-112) $) 33)) (-4300 (((-835) $) 18) (($ (-1124)) 27) (($ (-1142)) 23) (((-1142) $) 22) (((-1069) $) 21)) (-1927 (((-112) $) 32)) (-3375 (((-112) $ $) 15))) -(((-427) (-13 (-593 (-835)) (-10 -8 (-15 -4300 ($ (-1124))) (-15 -4300 ($ (-1142))) (-15 -4300 ((-1142) $)) (-15 -4300 ((-1069) $)) (-15 -3991 ((-112) $)) (-15 -1930 ((-112) $)) (-15 -3593 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1926 ((-112) $)) (-15 -3375 ((-112) $ $))))) (T -427)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-427)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-427)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-427)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-427)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3375 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(-13 (-593 (-835)) (-10 -8 (-15 -4300 ($ (-1124))) (-15 -4300 ($ (-1142))) (-15 -4300 ((-1142) $)) (-15 -4300 ((-1069) $)) (-15 -3991 ((-112) $)) (-15 -1930 ((-112) $)) (-15 -3593 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1926 ((-112) $)) (-15 -3375 ((-112) $ $)))) -((-1932 (((-3 (-398 (-1136 (-400 (-535)))) "failed") |#3|) 70)) (-1931 (((-398 |#3|) |#3|) 34)) (-1934 (((-3 (-398 (-1136 (-48))) "failed") |#3|) 46 (|has| |#2| (-1009 (-48))))) (-1933 (((-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) (|:| -2958 (-112))) |#3|) 37))) -(((-428 |#1| |#2| |#3|) (-10 -7 (-15 -1931 ((-398 |#3|) |#3|)) (-15 -1932 ((-3 (-398 (-1136 (-400 (-535)))) "failed") |#3|)) (-15 -1933 ((-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) (|:| -2958 (-112))) |#3|)) (IF (|has| |#2| (-1009 (-48))) (-15 -1934 ((-3 (-398 (-1136 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-542) (-823) (-1009 (-535))) (-414 |#1|) (-1200 |#2|)) (T -428)) -((-1934 (*1 *2 *3) (|partial| -12 (-4 *5 (-1009 (-48))) (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) (-5 *2 (-398 (-1136 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) (-5 *2 (-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) (|:| -2958 (-112)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))) (-1932 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) (-5 *2 (-398 (-1136 (-400 (-535))))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))) (-1931 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) (-5 *2 (-398 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5))))) -(-10 -7 (-15 -1931 ((-398 |#3|) |#3|)) (-15 -1932 ((-3 (-398 (-1136 (-400 (-535)))) "failed") |#3|)) (-15 -1933 ((-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) (|:| -2958 (-112))) |#3|)) (IF (|has| |#2| (-1009 (-48))) (-15 -1934 ((-3 (-398 (-1136 (-48))) "failed") |#3|)) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-1943 (((-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $) 11)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1941 (($) 32)) (-1938 (($) 38)) (-1939 (($) 34)) (-1936 (($) 36)) (-1940 (($) 33)) (-1937 (($) 35)) (-1935 (($) 37)) (-1942 (((-112) $) 8)) (-2673 (((-618 (-917 (-535))) $) 19)) (-3867 (($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-1142)) (-112)) 27) (($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-917 (-535))) (-112)) 28)) (-4300 (((-835) $) 23) (($ (-427)) 29)) (-3375 (((-112) $ $) NIL))) -(((-429) (-13 (-1067) (-10 -8 (-15 -4300 ((-835) $)) (-15 -4300 ($ (-427))) (-15 -1943 ((-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $)) (-15 -2673 ((-618 (-917 (-535))) $)) (-15 -1942 ((-112) $)) (-15 -3867 ($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-1142)) (-112))) (-15 -3867 ($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-917 (-535))) (-112))) (-15 -1941 ($)) (-15 -1940 ($)) (-15 -1939 ($)) (-15 -1938 ($)) (-15 -1937 ($)) (-15 -1936 ($)) (-15 -1935 ($))))) (T -429)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-429)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-429)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) (-5 *1 (-429)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-618 (-917 (-535)))) (-5 *1 (-429)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *3 (-618 (-1142))) (-5 *4 (-112)) (-5 *1 (-429)))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-112)) (-5 *1 (-429)))) (-1941 (*1 *1) (-5 *1 (-429))) (-1940 (*1 *1) (-5 *1 (-429))) (-1939 (*1 *1) (-5 *1 (-429))) (-1938 (*1 *1) (-5 *1 (-429))) (-1937 (*1 *1) (-5 *1 (-429))) (-1936 (*1 *1) (-5 *1 (-429))) (-1935 (*1 *1) (-5 *1 (-429)))) -(-13 (-1067) (-10 -8 (-15 -4300 ((-835) $)) (-15 -4300 ($ (-427))) (-15 -1943 ((-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $)) (-15 -2673 ((-618 (-917 (-535))) $)) (-15 -1942 ((-112) $)) (-15 -3867 ($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-1142)) (-112))) (-15 -3867 ($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-917 (-535))) (-112))) (-15 -1941 ($)) (-15 -1940 ($)) (-15 -1939 ($)) (-15 -1938 ($)) (-15 -1937 ($)) (-15 -1936 ($)) (-15 -1935 ($)))) -((-2887 (((-112) $ $) NIL)) (-1808 (((-1124) $ (-1124)) NIL)) (-1812 (($ $ (-1124)) NIL)) (-1809 (((-1124) $) NIL)) (-1947 (((-381) (-381) (-381)) 17) (((-381) (-381)) 15)) (-1813 (($ (-381)) NIL) (($ (-381) (-1124)) NIL)) (-3888 (((-381) $) NIL)) (-3576 (((-1124) $) NIL)) (-1810 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1946 (((-1230) (-1124)) 9)) (-1945 (((-1230) (-1124)) 10)) (-1944 (((-1230)) 11)) (-4300 (((-835) $) NIL)) (-1811 (($ $) 35)) (-3375 (((-112) $ $) NIL))) -(((-430) (-13 (-358 (-381) (-1124)) (-10 -7 (-15 -1947 ((-381) (-381) (-381))) (-15 -1947 ((-381) (-381))) (-15 -1946 ((-1230) (-1124))) (-15 -1945 ((-1230) (-1124))) (-15 -1944 ((-1230)))))) (T -430)) -((-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-430)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-430)))) (-1944 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-430))))) -(-13 (-358 (-381) (-1124)) (-10 -7 (-15 -1947 ((-381) (-381) (-381))) (-15 -1947 ((-381) (-381))) (-15 -1946 ((-1230) (-1124))) (-15 -1945 ((-1230) (-1124))) (-15 -1944 ((-1230))))) -((-2887 (((-112) $ $) NIL)) (-3888 (((-1142) $) 8)) (-3576 (((-1124) $) 16)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 13))) -(((-431 |#1|) (-13 (-1067) (-10 -8 (-15 -3888 ((-1142) $)))) (-1142)) (T -431)) -((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-431 *3)) (-14 *3 *2)))) -(-13 (-1067) (-10 -8 (-15 -3888 ((-1142) $)))) -((-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-1224 (-675))) 14) (($ (-618 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 11))) +((-2708 (*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-397)))) (-2708 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-894)) (-4 *1 (-397)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) (-1860 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-894)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) (-2913 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-894)))) (-4302 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-894)))) (-2236 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-894)))) (-2913 (*1 *2 *2) (-12 (-5 *2 (-894)) (|has| *1 (-6 -4333)) (-4 *1 (-397)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-894)) (|has| *1 (-6 -4333)) (-4 *1 (-397)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-894)) (|has| *1 (-6 -4333)) (-4 *1 (-397)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-550)) (|has| *1 (-6 -4333)) (-4 *1 (-397)) (-5 *2 (-894)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-550)) (|has| *1 (-6 -4333)) (-4 *1 (-397)) (-5 *2 (-894)))) (-2707 (*1 *1) (-12 (-4 *1 (-397)) (-3462 (|has| *1 (-6 -4333))) (-3462 (|has| *1 (-6 -4325))))) (-4164 (*1 *1) (-12 (-4 *1 (-397)) (-3462 (|has| *1 (-6 -4333))) (-3462 (|has| *1 (-6 -4325)))))) +(-13 (-1029) (-10 -8 (-6 -2001) (-15 -2708 ($ (-550) (-550))) (-15 -2708 ($ (-550) (-550) (-894))) (-15 -2475 ((-550) $)) (-15 -1860 ((-894))) (-15 -3521 ((-550) $)) (-15 -3357 ((-550) $)) (-15 -2913 ((-894))) (-15 -4302 ((-894))) (-15 -2236 ((-894))) (IF (|has| $ (-6 -4333)) (PROGN (-15 -2913 ((-894) (-894))) (-15 -4302 ((-894) (-894))) (-15 -2236 ((-894) (-894))) (-15 -2822 ((-894) (-550))) (-15 -2723 ((-894) (-550)))) |%noBranch|) (IF (|has| $ (-6 -4325)) |%noBranch| (IF (|has| $ (-6 -4333)) |%noBranch| (PROGN (-15 -2707 ($)) (-15 -4164 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-836)) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-372)) . T) ((-596 (-865 (-372))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-823) . T) ((-825) . T) ((-859 (-372)) . T) ((-893) . T) ((-975) . T) ((-995) . T) ((-1029) . T) ((-1011 (-400 (-550))) . T) ((-1011 (-550)) . T) ((-1026 #0#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) . T)) +((-3972 (((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)) 20))) +(((-398 |#1| |#2|) (-10 -7 (-15 -3972 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)))) (-542) (-542)) (T -398)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-5 *2 (-411 *6)) (-5 *1 (-398 *5 *6))))) +(-10 -7 (-15 -3972 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)))) +((-3972 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 13))) +(((-399 |#1| |#2|) (-10 -7 (-15 -3972 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-542) (-542)) (T -399)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-5 *2 (-400 *6)) (-5 *1 (-399 *5 *6))))) +(-10 -7 (-15 -3972 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 13)) (-1453 ((|#1| $) 21 (|has| |#1| (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| |#1| (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) 17) (((-3 (-1144) "failed") $) NIL (|has| |#1| (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) 70 (|has| |#1| (-1011 (-550)))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550))))) (-2726 ((|#1| $) 15) (((-1144) $) NIL (|has| |#1| (-1011 (-1144)))) (((-400 (-550)) $) 67 (|has| |#1| (-1011 (-550)))) (((-550) $) NIL (|has| |#1| (-1011 (-550))))) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) 50)) (-1741 (($) NIL (|has| |#1| (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) NIL (|has| |#1| (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| |#1| (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| |#1| (-859 (-372))))) (-3102 (((-112) $) 64)) (-1552 (($ $) NIL)) (-2705 ((|#1| $) 71)) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-1119)))) (-3329 (((-112) $) NIL (|has| |#1| (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| |#1| (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 97)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| |#1| (-300)))) (-1608 ((|#1| $) 28 (|has| |#1| (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) 135 (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) 131 (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) NIL (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) NIL (|has| |#1| (-505 (-1144) |#1|)))) (-3542 (((-749) $) NIL)) (-2680 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2639 (($ $) NIL)) (-2715 ((|#1| $) 73)) (-4028 (((-865 (-550)) $) NIL (|has| |#1| (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| |#1| (-596 (-865 (-372))))) (((-526) $) NIL (|has| |#1| (-596 (-526)))) (((-372) $) NIL (|has| |#1| (-995))) (((-219) $) NIL (|has| |#1| (-995)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 10) (($ (-1144)) NIL (|has| |#1| (-1011 (-1144))))) (-4242 (((-3 $ "failed") $) 99 (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) 100)) (-1754 ((|#1| $) 26 (|has| |#1| (-535)))) (-1345 (((-112) $ $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-798)))) (-2626 (($) 22 T CONST)) (-2636 (($) 8 T CONST)) (-3040 (((-1126) $) 43 (-12 (|has| |#1| (-535)) (|has| |#1| (-806)))) (((-1126) $ (-112)) 44 (-12 (|has| |#1| (-535)) (|has| |#1| (-806)))) (((-1232) (-800) $) 45 (-12 (|has| |#1| (-535)) (|has| |#1| (-806)))) (((-1232) (-800) $ (-112)) 46 (-12 (|has| |#1| (-535)) (|has| |#1| (-806))))) (-4183 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) 56)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) 24 (|has| |#1| (-825)))) (-2414 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2403 (($ $) 25) (($ $ $) 55)) (-2391 (($ $ $) 53)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 125)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 60) (($ $ $) 57) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-400 |#1|) (-13 (-965 |#1|) (-10 -7 (IF (|has| |#1| (-535)) (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4329)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4340)) (-6 -4329) |%noBranch|) |%noBranch|) |%noBranch|))) (-542)) (T -400)) +NIL +(-13 (-965 |#1|) (-10 -7 (IF (|has| |#1| (-535)) (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4329)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4340)) (-6 -4329) |%noBranch|) |%noBranch|) |%noBranch|))) +((-1615 (((-667 |#2|) (-1227 $)) NIL) (((-667 |#2|)) 18)) (-4110 (($ (-1227 |#2|) (-1227 $)) NIL) (($ (-1227 |#2|)) 24)) (-2677 (((-667 |#2|) $ (-1227 $)) NIL) (((-667 |#2|) $) 38)) (-1428 ((|#3| $) 60)) (-3453 ((|#2| (-1227 $)) NIL) ((|#2|) 20)) (-1373 (((-1227 |#2|) $ (-1227 $)) NIL) (((-667 |#2|) (-1227 $) (-1227 $)) NIL) (((-1227 |#2|) $) 22) (((-667 |#2|) (-1227 $)) 36)) (-4028 (((-1227 |#2|) $) 11) (($ (-1227 |#2|)) 13)) (-2608 ((|#3| $) 52))) +(((-401 |#1| |#2| |#3|) (-10 -8 (-15 -2677 ((-667 |#2|) |#1|)) (-15 -3453 (|#2|)) (-15 -1615 ((-667 |#2|))) (-15 -4028 (|#1| (-1227 |#2|))) (-15 -4028 ((-1227 |#2|) |#1|)) (-15 -4110 (|#1| (-1227 |#2|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1|)) (-15 -1428 (|#3| |#1|)) (-15 -2608 (|#3| |#1|)) (-15 -1615 ((-667 |#2|) (-1227 |#1|))) (-15 -3453 (|#2| (-1227 |#1|))) (-15 -4110 (|#1| (-1227 |#2|) (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -2677 ((-667 |#2|) |#1| (-1227 |#1|)))) (-402 |#2| |#3|) (-170) (-1203 |#2|)) (T -401)) +((-1615 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)) (-5 *1 (-401 *3 *4 *5)) (-4 *3 (-402 *4 *5)))) (-3453 (*1 *2) (-12 (-4 *4 (-1203 *2)) (-4 *2 (-170)) (-5 *1 (-401 *3 *2 *4)) (-4 *3 (-402 *2 *4))))) +(-10 -8 (-15 -2677 ((-667 |#2|) |#1|)) (-15 -3453 (|#2|)) (-15 -1615 ((-667 |#2|))) (-15 -4028 (|#1| (-1227 |#2|))) (-15 -4028 ((-1227 |#2|) |#1|)) (-15 -4110 (|#1| (-1227 |#2|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1|)) (-15 -1428 (|#3| |#1|)) (-15 -2608 (|#3| |#1|)) (-15 -1615 ((-667 |#2|) (-1227 |#1|))) (-15 -3453 (|#2| (-1227 |#1|))) (-15 -4110 (|#1| (-1227 |#2|) (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -2677 ((-667 |#2|) |#1| (-1227 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1615 (((-667 |#1|) (-1227 $)) 44) (((-667 |#1|)) 59)) (-2252 ((|#1| $) 50)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-4110 (($ (-1227 |#1|) (-1227 $)) 46) (($ (-1227 |#1|)) 62)) (-2677 (((-667 |#1|) $ (-1227 $)) 51) (((-667 |#1|) $) 57)) (-1386 (((-3 $ "failed") $) 32)) (-2122 (((-894)) 52)) (-3102 (((-112) $) 30)) (-1389 ((|#1| $) 49)) (-1428 ((|#2| $) 42 (|has| |#1| (-356)))) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3453 ((|#1| (-1227 $)) 45) ((|#1|) 58)) (-1373 (((-1227 |#1|) $ (-1227 $)) 48) (((-667 |#1|) (-1227 $) (-1227 $)) 47) (((-1227 |#1|) $) 64) (((-667 |#1|) (-1227 $)) 63)) (-4028 (((-1227 |#1|) $) 61) (($ (-1227 |#1|)) 60)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 35)) (-4242 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2608 ((|#2| $) 43)) (-2390 (((-749)) 28)) (-2437 (((-1227 $)) 65)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-402 |#1| |#2|) (-138) (-170) (-1203 |t#1|)) (T -402)) +((-2437 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1203 *3)) (-5 *2 (-1227 *1)) (-4 *1 (-402 *3 *4)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) (-5 *2 (-1227 *3)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-402 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) (-4 *4 (-1203 *3)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) (-5 *2 (-1227 *3)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) (-4 *4 (-1203 *3)))) (-1615 (*1 *2) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) (-5 *2 (-667 *3)))) (-3453 (*1 *2) (-12 (-4 *1 (-402 *2 *3)) (-4 *3 (-1203 *2)) (-4 *2 (-170)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) (-5 *2 (-667 *3))))) +(-13 (-363 |t#1| |t#2|) (-10 -8 (-15 -2437 ((-1227 $))) (-15 -1373 ((-1227 |t#1|) $)) (-15 -1373 ((-667 |t#1|) (-1227 $))) (-15 -4110 ($ (-1227 |t#1|))) (-15 -4028 ((-1227 |t#1|) $)) (-15 -4028 ($ (-1227 |t#1|))) (-15 -1615 ((-667 |t#1|))) (-15 -3453 (|t#1|)) (-15 -2677 ((-667 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-363 |#1| |#2|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1026 |#1|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) 27) (((-3 (-550) "failed") $) 19)) (-2726 ((|#2| $) NIL) (((-400 (-550)) $) 24) (((-550) $) 14)) (-1518 (($ |#2|) NIL) (($ (-400 (-550))) 22) (($ (-550)) 11))) +(((-403 |#1| |#2|) (-10 -8 (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -1518 (|#1| (-550))) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2726 (|#2| |#1|))) (-404 |#2|) (-1181)) (T -403)) +NIL +(-10 -8 (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -1518 (|#1| (-550))) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2726 (|#2| |#1|))) +((-3880 (((-3 |#1| "failed") $) 7) (((-3 (-400 (-550)) "failed") $) 16 (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) 13 (|has| |#1| (-1011 (-550))))) (-2726 ((|#1| $) 8) (((-400 (-550)) $) 15 (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) 12 (|has| |#1| (-1011 (-550))))) (-1518 (($ |#1|) 6) (($ (-400 (-550))) 17 (|has| |#1| (-1011 (-400 (-550))))) (($ (-550)) 14 (|has| |#1| (-1011 (-550)))))) +(((-404 |#1|) (-138) (-1181)) (T -404)) +NIL +(-13 (-1011 |t#1|) (-10 -7 (IF (|has| |t#1| (-1011 (-550))) (-6 (-1011 (-550))) |%noBranch|) (IF (|has| |t#1| (-1011 (-400 (-550)))) (-6 (-1011 (-400 (-550)))) |%noBranch|))) +(((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T)) +((-3972 (((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)) 33))) +(((-405 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3972 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) (-300) (-965 |#1|) (-1203 |#2|) (-13 (-402 |#2| |#3|) (-1011 |#2|)) (-300) (-965 |#5|) (-1203 |#6|) (-13 (-402 |#6| |#7|) (-1011 |#6|))) (T -405)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) (-4 *6 (-965 *5)) (-4 *7 (-1203 *6)) (-4 *8 (-13 (-402 *6 *7) (-1011 *6))) (-4 *9 (-300)) (-4 *10 (-965 *9)) (-4 *11 (-1203 *10)) (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-405 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-402 *10 *11) (-1011 *10)))))) +(-10 -7 (-15 -3972 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) +((-1504 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-1732 ((|#4| (-749) (-1227 |#4|)) 56)) (-3102 (((-112) $) NIL)) (-2705 (((-1227 |#4|) $) 17)) (-1389 ((|#2| $) 54)) (-1845 (($ $) 139)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 100)) (-2135 (($ (-1227 |#4|)) 99)) (-3337 (((-1088) $) NIL)) (-2715 ((|#1| $) 18)) (-1270 (($ $ $) NIL)) (-3292 (($ $ $) NIL)) (-1518 (((-836) $) 134)) (-2437 (((-1227 |#4|) $) 129)) (-2636 (($) 11 T CONST)) (-2316 (((-112) $ $) 40)) (-2414 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 122)) (* (($ $ $) 121))) +(((-406 |#1| |#2| |#3| |#4|) (-13 (-465) (-10 -8 (-15 -2135 ($ (-1227 |#4|))) (-15 -2437 ((-1227 |#4|) $)) (-15 -1389 (|#2| $)) (-15 -2705 ((-1227 |#4|) $)) (-15 -2715 (|#1| $)) (-15 -1845 ($ $)) (-15 -1732 (|#4| (-749) (-1227 |#4|))))) (-300) (-965 |#1|) (-1203 |#2|) (-13 (-402 |#2| |#3|) (-1011 |#2|))) (T -406)) +((-2135 (*1 *1 *2) (-12 (-5 *2 (-1227 *6)) (-4 *6 (-13 (-402 *4 *5) (-1011 *4))) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) (-4 *3 (-300)) (-5 *1 (-406 *3 *4 *5 *6)))) (-2437 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) (-5 *2 (-1227 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-402 *4 *5) (-1011 *4))))) (-1389 (*1 *2 *1) (-12 (-4 *4 (-1203 *2)) (-4 *2 (-965 *3)) (-5 *1 (-406 *3 *2 *4 *5)) (-4 *3 (-300)) (-4 *5 (-13 (-402 *2 *4) (-1011 *2))))) (-2705 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) (-5 *2 (-1227 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-402 *4 *5) (-1011 *4))))) (-2715 (*1 *2 *1) (-12 (-4 *3 (-965 *2)) (-4 *4 (-1203 *3)) (-4 *2 (-300)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1011 *3))))) (-1845 (*1 *1 *1) (-12 (-4 *2 (-300)) (-4 *3 (-965 *2)) (-4 *4 (-1203 *3)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1011 *3))))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1227 *2)) (-4 *5 (-300)) (-4 *6 (-965 *5)) (-4 *2 (-13 (-402 *6 *7) (-1011 *6))) (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1203 *6))))) +(-13 (-465) (-10 -8 (-15 -2135 ($ (-1227 |#4|))) (-15 -2437 ((-1227 |#4|) $)) (-15 -1389 (|#2| $)) (-15 -2705 ((-1227 |#4|) $)) (-15 -2715 (|#1| $)) (-15 -1845 ($ $)) (-15 -1732 (|#4| (-749) (-1227 |#4|))))) +((-1504 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-1389 ((|#2| $) 61)) (-1939 (($ (-1227 |#4|)) 25) (($ (-406 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1011 |#2|)))) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 34)) (-2437 (((-1227 |#4|) $) 26)) (-2636 (($) 23 T CONST)) (-2316 (((-112) $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ $ $) 72))) +(((-407 |#1| |#2| |#3| |#4| |#5|) (-13 (-705) (-10 -8 (-15 -2437 ((-1227 |#4|) $)) (-15 -1389 (|#2| $)) (-15 -1939 ($ (-1227 |#4|))) (IF (|has| |#4| (-1011 |#2|)) (-15 -1939 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-300) (-965 |#1|) (-1203 |#2|) (-402 |#2| |#3|) (-1227 |#4|)) (T -407)) +((-2437 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) (-5 *2 (-1227 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)) (-4 *6 (-402 *4 *5)) (-14 *7 *2))) (-1389 (*1 *2 *1) (-12 (-4 *4 (-1203 *2)) (-4 *2 (-965 *3)) (-5 *1 (-407 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-402 *2 *4)) (-14 *6 (-1227 *5)))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-1227 *6)) (-4 *6 (-402 *4 *5)) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) (-4 *3 (-300)) (-5 *1 (-407 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1011 *4)) (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) (-4 *6 (-402 *4 *5)) (-14 *7 (-1227 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7))))) +(-13 (-705) (-10 -8 (-15 -2437 ((-1227 |#4|) $)) (-15 -1389 (|#2| $)) (-15 -1939 ($ (-1227 |#4|))) (IF (|has| |#4| (-1011 |#2|)) (-15 -1939 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-3972 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-408 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#3| (-1 |#4| |#2|) |#1|))) (-410 |#2|) (-170) (-410 |#4|) (-170)) (T -408)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-410 *6)) (-5 *1 (-408 *4 *5 *2 *6)) (-4 *4 (-410 *5))))) +(-10 -7 (-15 -3972 (|#3| (-1 |#4| |#2|) |#1|))) +((-3090 (((-3 $ "failed")) 86)) (-1265 (((-1227 (-667 |#2|)) (-1227 $)) NIL) (((-1227 (-667 |#2|))) 91)) (-3726 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) 85)) (-3947 (((-3 $ "failed")) 84)) (-2043 (((-667 |#2|) (-1227 $)) NIL) (((-667 |#2|)) 102)) (-2042 (((-667 |#2|) $ (-1227 $)) NIL) (((-667 |#2|) $) 110)) (-1870 (((-1140 (-925 |#2|))) 55)) (-3945 ((|#2| (-1227 $)) NIL) ((|#2|) 106)) (-4110 (($ (-1227 |#2|) (-1227 $)) NIL) (($ (-1227 |#2|)) 112)) (-2662 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) 83)) (-4080 (((-3 $ "failed")) 75)) (-2116 (((-667 |#2|) (-1227 $)) NIL) (((-667 |#2|)) 100)) (-2127 (((-667 |#2|) $ (-1227 $)) NIL) (((-667 |#2|) $) 108)) (-3480 (((-1140 (-925 |#2|))) 54)) (-4012 ((|#2| (-1227 $)) NIL) ((|#2|) 104)) (-1373 (((-1227 |#2|) $ (-1227 $)) NIL) (((-667 |#2|) (-1227 $) (-1227 $)) NIL) (((-1227 |#2|) $) 111) (((-667 |#2|) (-1227 $)) 118)) (-4028 (((-1227 |#2|) $) 96) (($ (-1227 |#2|)) 98)) (-2361 (((-623 (-925 |#2|)) (-1227 $)) NIL) (((-623 (-925 |#2|))) 94)) (-4292 (($ (-667 |#2|) $) 90))) +(((-409 |#1| |#2|) (-10 -8 (-15 -4292 (|#1| (-667 |#2|) |#1|)) (-15 -1870 ((-1140 (-925 |#2|)))) (-15 -3480 ((-1140 (-925 |#2|)))) (-15 -2042 ((-667 |#2|) |#1|)) (-15 -2127 ((-667 |#2|) |#1|)) (-15 -2043 ((-667 |#2|))) (-15 -2116 ((-667 |#2|))) (-15 -3945 (|#2|)) (-15 -4012 (|#2|)) (-15 -4028 (|#1| (-1227 |#2|))) (-15 -4028 ((-1227 |#2|) |#1|)) (-15 -4110 (|#1| (-1227 |#2|))) (-15 -2361 ((-623 (-925 |#2|)))) (-15 -1265 ((-1227 (-667 |#2|)))) (-15 -1373 ((-667 |#2|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1|)) (-15 -3090 ((-3 |#1| "failed"))) (-15 -3947 ((-3 |#1| "failed"))) (-15 -4080 ((-3 |#1| "failed"))) (-15 -3726 ((-3 (-2 (|:| |particular| |#1|) (|:| -2437 (-623 |#1|))) "failed"))) (-15 -2662 ((-3 (-2 (|:| |particular| |#1|) (|:| -2437 (-623 |#1|))) "failed"))) (-15 -2043 ((-667 |#2|) (-1227 |#1|))) (-15 -2116 ((-667 |#2|) (-1227 |#1|))) (-15 -3945 (|#2| (-1227 |#1|))) (-15 -4012 (|#2| (-1227 |#1|))) (-15 -4110 (|#1| (-1227 |#2|) (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -2042 ((-667 |#2|) |#1| (-1227 |#1|))) (-15 -2127 ((-667 |#2|) |#1| (-1227 |#1|))) (-15 -1265 ((-1227 (-667 |#2|)) (-1227 |#1|))) (-15 -2361 ((-623 (-925 |#2|)) (-1227 |#1|)))) (-410 |#2|) (-170)) (T -409)) +((-1265 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1227 (-667 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2361 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-623 (-925 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-4012 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) (-3945 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) (-2116 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2043 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-3480 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1140 (-925 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-1870 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1140 (-925 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4))))) +(-10 -8 (-15 -4292 (|#1| (-667 |#2|) |#1|)) (-15 -1870 ((-1140 (-925 |#2|)))) (-15 -3480 ((-1140 (-925 |#2|)))) (-15 -2042 ((-667 |#2|) |#1|)) (-15 -2127 ((-667 |#2|) |#1|)) (-15 -2043 ((-667 |#2|))) (-15 -2116 ((-667 |#2|))) (-15 -3945 (|#2|)) (-15 -4012 (|#2|)) (-15 -4028 (|#1| (-1227 |#2|))) (-15 -4028 ((-1227 |#2|) |#1|)) (-15 -4110 (|#1| (-1227 |#2|))) (-15 -2361 ((-623 (-925 |#2|)))) (-15 -1265 ((-1227 (-667 |#2|)))) (-15 -1373 ((-667 |#2|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1|)) (-15 -3090 ((-3 |#1| "failed"))) (-15 -3947 ((-3 |#1| "failed"))) (-15 -4080 ((-3 |#1| "failed"))) (-15 -3726 ((-3 (-2 (|:| |particular| |#1|) (|:| -2437 (-623 |#1|))) "failed"))) (-15 -2662 ((-3 (-2 (|:| |particular| |#1|) (|:| -2437 (-623 |#1|))) "failed"))) (-15 -2043 ((-667 |#2|) (-1227 |#1|))) (-15 -2116 ((-667 |#2|) (-1227 |#1|))) (-15 -3945 (|#2| (-1227 |#1|))) (-15 -4012 (|#2| (-1227 |#1|))) (-15 -4110 (|#1| (-1227 |#2|) (-1227 |#1|))) (-15 -1373 ((-667 |#2|) (-1227 |#1|) (-1227 |#1|))) (-15 -1373 ((-1227 |#2|) |#1| (-1227 |#1|))) (-15 -2042 ((-667 |#2|) |#1| (-1227 |#1|))) (-15 -2127 ((-667 |#2|) |#1| (-1227 |#1|))) (-15 -1265 ((-1227 (-667 |#2|)) (-1227 |#1|))) (-15 -2361 ((-623 (-925 |#2|)) (-1227 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3090 (((-3 $ "failed")) 37 (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) 19)) (-1265 (((-1227 (-667 |#1|)) (-1227 $)) 78) (((-1227 (-667 |#1|))) 100)) (-3406 (((-1227 $)) 81)) (-3513 (($) 17 T CONST)) (-3726 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) 40 (|has| |#1| (-542)))) (-3947 (((-3 $ "failed")) 38 (|has| |#1| (-542)))) (-2043 (((-667 |#1|) (-1227 $)) 65) (((-667 |#1|)) 92)) (-1958 ((|#1| $) 74)) (-2042 (((-667 |#1|) $ (-1227 $)) 76) (((-667 |#1|) $) 90)) (-3818 (((-3 $ "failed") $) 45 (|has| |#1| (-542)))) (-1870 (((-1140 (-925 |#1|))) 88 (|has| |#1| (-356)))) (-2923 (($ $ (-894)) 28)) (-1729 ((|#1| $) 72)) (-4215 (((-1140 |#1|) $) 42 (|has| |#1| (-542)))) (-3945 ((|#1| (-1227 $)) 67) ((|#1|) 94)) (-1474 (((-1140 |#1|) $) 63)) (-2105 (((-112)) 57)) (-4110 (($ (-1227 |#1|) (-1227 $)) 69) (($ (-1227 |#1|)) 98)) (-1386 (((-3 $ "failed") $) 47 (|has| |#1| (-542)))) (-2122 (((-894)) 80)) (-2890 (((-112)) 54)) (-1494 (($ $ (-894)) 33)) (-3657 (((-112)) 50)) (-3400 (((-112)) 48)) (-2685 (((-112)) 52)) (-2662 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) 41 (|has| |#1| (-542)))) (-4080 (((-3 $ "failed")) 39 (|has| |#1| (-542)))) (-2116 (((-667 |#1|) (-1227 $)) 66) (((-667 |#1|)) 93)) (-3813 ((|#1| $) 75)) (-2127 (((-667 |#1|) $ (-1227 $)) 77) (((-667 |#1|) $) 91)) (-2732 (((-3 $ "failed") $) 46 (|has| |#1| (-542)))) (-3480 (((-1140 (-925 |#1|))) 89 (|has| |#1| (-356)))) (-2834 (($ $ (-894)) 29)) (-1842 ((|#1| $) 73)) (-1305 (((-1140 |#1|) $) 43 (|has| |#1| (-542)))) (-4012 ((|#1| (-1227 $)) 68) ((|#1|) 95)) (-1603 (((-1140 |#1|) $) 64)) (-2197 (((-112)) 58)) (-1825 (((-1126) $) 9)) (-3528 (((-112)) 49)) (-2591 (((-112)) 51)) (-2781 (((-112)) 53)) (-3337 (((-1088) $) 10)) (-3089 (((-112)) 56)) (-2680 ((|#1| $ (-550)) 101)) (-1373 (((-1227 |#1|) $ (-1227 $)) 71) (((-667 |#1|) (-1227 $) (-1227 $)) 70) (((-1227 |#1|) $) 103) (((-667 |#1|) (-1227 $)) 102)) (-4028 (((-1227 |#1|) $) 97) (($ (-1227 |#1|)) 96)) (-2361 (((-623 (-925 |#1|)) (-1227 $)) 79) (((-623 (-925 |#1|))) 99)) (-3292 (($ $ $) 25)) (-2564 (((-112)) 62)) (-1518 (((-836) $) 11)) (-2437 (((-1227 $)) 104)) (-3268 (((-623 (-1227 |#1|))) 44 (|has| |#1| (-542)))) (-3395 (($ $ $ $) 26)) (-2376 (((-112)) 60)) (-4292 (($ (-667 |#1|) $) 87)) (-1358 (($ $ $) 24)) (-2473 (((-112)) 61)) (-2286 (((-112)) 59)) (-2990 (((-112)) 55)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 30)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-410 |#1|) (-138) (-170)) (T -410)) +((-2437 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1227 *1)) (-4 *1 (-410 *3)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1227 *3)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-410 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-1265 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1227 (-667 *3))))) (-2361 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-623 (-925 *3))))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1227 *3)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) (-4012 (*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-3945 (*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-2116 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-2043 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-3480 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1140 (-925 *3))))) (-1870 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1140 (-925 *3))))) (-4292 (*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *1 (-410 *3)) (-4 *3 (-170))))) +(-13 (-360 |t#1|) (-10 -8 (-15 -2437 ((-1227 $))) (-15 -1373 ((-1227 |t#1|) $)) (-15 -1373 ((-667 |t#1|) (-1227 $))) (-15 -2680 (|t#1| $ (-550))) (-15 -1265 ((-1227 (-667 |t#1|)))) (-15 -2361 ((-623 (-925 |t#1|)))) (-15 -4110 ($ (-1227 |t#1|))) (-15 -4028 ((-1227 |t#1|) $)) (-15 -4028 ($ (-1227 |t#1|))) (-15 -4012 (|t#1|)) (-15 -3945 (|t#1|)) (-15 -2116 ((-667 |t#1|))) (-15 -2043 ((-667 |t#1|))) (-15 -2127 ((-667 |t#1|) $)) (-15 -2042 ((-667 |t#1|) $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -3480 ((-1140 (-925 |t#1|)))) (-15 -1870 ((-1140 (-925 |t#1|))))) |%noBranch|) (-15 -4292 ($ (-667 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-360 |#1|) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-723 |#1|) . T) ((-740) . T) ((-1026 |#1|) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 42)) (-3002 (($ $) 57)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 146)) (-1447 (($ $) NIL)) (-4291 (((-112) $) 36)) (-3090 ((|#1| $) 13)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| |#1| (-1185)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-1185)))) (-3282 (($ |#1| (-550)) 31)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 116)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 55)) (-1386 (((-3 $ "failed") $) 131)) (-3207 (((-3 (-400 (-550)) "failed") $) 63 (|has| |#1| (-535)))) (-3122 (((-112) $) 59 (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) 70 (|has| |#1| (-535)))) (-2265 (($ |#1| (-550)) 33)) (-3933 (((-112) $) 152 (|has| |#1| (-1185)))) (-3102 (((-112) $) 43)) (-1903 (((-749) $) 38)) (-2343 (((-3 "nil" "sqfr" "irred" "prime") $ (-550)) 137)) (-1980 ((|#1| $ (-550)) 136)) (-2431 (((-550) $ (-550)) 135)) (-2594 (($ |#1| (-550)) 30)) (-3972 (($ (-1 |#1| |#1|) $) 143)) (-1604 (($ |#1| (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550))))) 58)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1825 (((-1126) $) NIL)) (-2516 (($ |#1| (-550)) 32)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) 147 (|has| |#1| (-444)))) (-3186 (($ |#1| (-550) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-1877 (((-623 (-2 (|:| -3338 |#1|) (|:| -3521 (-550)))) $) 54)) (-2087 (((-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $) 12)) (-3338 (((-411 $) $) NIL (|has| |#1| (-1185)))) (-1495 (((-3 $ "failed") $ $) 138)) (-3521 (((-550) $) 132)) (-4214 ((|#1| $) 56)) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 79 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) 85 (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) NIL (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) $) NIL (|has| |#1| (-505 (-1144) $))) (($ $ (-623 (-1144)) (-623 $)) 86 (|has| |#1| (-505 (-1144) $))) (($ $ (-623 (-287 $))) 82 (|has| |#1| (-302 $))) (($ $ (-287 $)) NIL (|has| |#1| (-302 $))) (($ $ $ $) NIL (|has| |#1| (-302 $))) (($ $ (-623 $) (-623 $)) NIL (|has| |#1| (-302 $)))) (-2680 (($ $ |#1|) 71 (|has| |#1| (-279 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-279 $ $)))) (-2393 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4028 (((-526) $) 27 (|has| |#1| (-596 (-526)))) (((-372) $) 92 (|has| |#1| (-995))) (((-219) $) 95 (|has| |#1| (-995)))) (-1518 (((-836) $) 114) (($ (-550)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-400 (-550))) NIL (|has| |#1| (-1011 (-400 (-550)))))) (-2390 (((-749)) 48)) (-1345 (((-112) $ $) NIL)) (-2626 (($) 40 T CONST)) (-2636 (($) 39 T CONST)) (-4183 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2316 (((-112) $ $) 96)) (-2403 (($ $) 128) (($ $ $) NIL)) (-2391 (($ $ $) 140)) (** (($ $ (-894)) NIL) (($ $ (-749)) 102)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-411 |#1|) (-13 (-542) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-404 |#1|) (-10 -8 (-15 -4214 (|#1| $)) (-15 -3521 ((-550) $)) (-15 -1604 ($ |#1| (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))))) (-15 -2087 ((-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $)) (-15 -2594 ($ |#1| (-550))) (-15 -1877 ((-623 (-2 (|:| -3338 |#1|) (|:| -3521 (-550)))) $)) (-15 -2516 ($ |#1| (-550))) (-15 -2431 ((-550) $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -2343 ((-3 "nil" "sqfr" "irred" "prime") $ (-550))) (-15 -1903 ((-749) $)) (-15 -2265 ($ |#1| (-550))) (-15 -3282 ($ |#1| (-550))) (-15 -3186 ($ |#1| (-550) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3090 (|#1| $)) (-15 -3002 ($ $)) (-15 -3972 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-995)) (-6 (-995)) |%noBranch|) (IF (|has| |#1| (-1185)) (-6 (-1185)) |%noBranch|) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1144) $)) (-6 (-505 (-1144) $)) |%noBranch|))) (-542)) (T -411)) +((-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-542)) (-5 *1 (-411 *3)))) (-4214 (*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-1604 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-550))))) (-4 *2 (-542)) (-5 *1 (-411 *2)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-550))))) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-2594 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| -3338 *3) (|:| -3521 (-550))))) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-2431 (*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-411 *4)) (-4 *4 (-542)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) (-2265 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3282 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3186 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3090 (*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3002 (*1 *1 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-411 *3)) (-4 *3 (-535)) (-4 *3 (-542)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-411 *3)) (-4 *3 (-535)) (-4 *3 (-542)))) (-3207 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-411 *3)) (-4 *3 (-535)) (-4 *3 (-542))))) +(-13 (-542) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-404 |#1|) (-10 -8 (-15 -4214 (|#1| $)) (-15 -3521 ((-550) $)) (-15 -1604 ($ |#1| (-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))))) (-15 -2087 ((-623 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $)) (-15 -2594 ($ |#1| (-550))) (-15 -1877 ((-623 (-2 (|:| -3338 |#1|) (|:| -3521 (-550)))) $)) (-15 -2516 ($ |#1| (-550))) (-15 -2431 ((-550) $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -2343 ((-3 "nil" "sqfr" "irred" "prime") $ (-550))) (-15 -1903 ((-749) $)) (-15 -2265 ($ |#1| (-550))) (-15 -3282 ($ |#1| (-550))) (-15 -3186 ($ |#1| (-550) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3090 (|#1| $)) (-15 -3002 ($ $)) (-15 -3972 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-995)) (-6 (-995)) |%noBranch|) (IF (|has| |#1| (-1185)) (-6 (-1185)) |%noBranch|) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1144) $)) (-6 (-505 (-1144) $)) |%noBranch|))) +((-1682 (((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|)) 21)) (-4211 (((-411 |#1|) (-411 |#1|) (-411 |#1|)) 16))) +(((-412 |#1|) (-10 -7 (-15 -1682 ((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|))) (-15 -4211 ((-411 |#1|) (-411 |#1|) (-411 |#1|)))) (-542)) (T -412)) +((-4211 (*1 *2 *2 *2) (-12 (-5 *2 (-411 *3)) (-4 *3 (-542)) (-5 *1 (-412 *3)))) (-1682 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-411 *4) *4)) (-4 *4 (-542)) (-5 *2 (-411 *4)) (-5 *1 (-412 *4))))) +(-10 -7 (-15 -1682 ((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|))) (-15 -4211 ((-411 |#1|) (-411 |#1|) (-411 |#1|)))) +((-1497 ((|#2| |#2|) 166)) (-1350 (((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112)) 57))) +(((-413 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1350 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112))) (-15 -1497 (|#2| |#2|))) (-13 (-444) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|)) (-1144) |#2|) (T -413)) +((-1497 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1166) (-423 *3))) (-14 *4 (-1144)) (-14 *5 *2))) (-1350 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126)))))) (-5 *1 (-413 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) (-14 *6 (-1144)) (-14 *7 *3)))) +(-10 -7 (-15 -1350 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112))) (-15 -1497 (|#2| |#2|))) +((-3972 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1020) (-825)) (-423 |#1|) (-13 (-1020) (-825)) (-423 |#3|)) (T -414)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1020) (-825))) (-4 *6 (-13 (-1020) (-825))) (-4 *2 (-423 *6)) (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-423 *5))))) +(-10 -7 (-15 -3972 (|#4| (-1 |#3| |#1|) |#2|))) +((-1497 ((|#2| |#2|) 90)) (-1442 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112) (-1126)) 48)) (-1424 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112) (-1126)) 154))) +(((-415 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1442 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112) (-1126))) (-15 -1424 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112) (-1126))) (-15 -1497 (|#2| |#2|))) (-13 (-444) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|) (-10 -8 (-15 -1518 ($ |#3|)))) (-823) (-13 (-1205 |#2| |#3|) (-356) (-1166) (-10 -8 (-15 -2393 ($ $)) (-15 -1489 ($ $)))) (-956 |#4|) (-1144)) (T -415)) +((-1497 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-4 *2 (-13 (-27) (-1166) (-423 *3) (-10 -8 (-15 -1518 ($ *4))))) (-4 *4 (-823)) (-4 *5 (-13 (-1205 *2 *4) (-356) (-1166) (-10 -8 (-15 -2393 ($ $)) (-15 -1489 ($ $))))) (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *6 (-956 *5)) (-14 *7 (-1144)))) (-1424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-4 *3 (-13 (-27) (-1166) (-423 *6) (-10 -8 (-15 -1518 ($ *7))))) (-4 *7 (-823)) (-4 *8 (-13 (-1205 *3 *7) (-356) (-1166) (-10 -8 (-15 -2393 ($ $)) (-15 -1489 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126)))))) (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1126)) (-4 *9 (-956 *8)) (-14 *10 (-1144)))) (-1442 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-4 *3 (-13 (-27) (-1166) (-423 *6) (-10 -8 (-15 -1518 ($ *7))))) (-4 *7 (-823)) (-4 *8 (-13 (-1205 *3 *7) (-356) (-1166) (-10 -8 (-15 -2393 ($ $)) (-15 -1489 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126)))))) (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1126)) (-4 *9 (-956 *8)) (-14 *10 (-1144))))) +(-10 -7 (-15 -1442 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112) (-1126))) (-15 -1424 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126))))) |#2| (-112) (-1126))) (-15 -1497 (|#2| |#2|))) +((-3572 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2419 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3972 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2419 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3572 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1068) (-418 |#1|) (-1068) (-418 |#3|)) (T -416)) +((-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1068)) (-4 *5 (-1068)) (-4 *2 (-418 *5)) (-5 *1 (-416 *6 *4 *5 *2)) (-4 *4 (-418 *6)))) (-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) (-5 *1 (-416 *5 *4 *2 *6)) (-4 *4 (-418 *5)) (-4 *6 (-418 *2)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-418 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-418 *5))))) +(-10 -7 (-15 -3972 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2419 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3572 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1597 (($) 44)) (-3965 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1445 (($ $ $) 39)) (-1467 (((-112) $ $) 28)) (-4319 (((-749)) 47)) (-2142 (($ (-623 |#2|)) 20) (($) NIL)) (-1741 (($) 53)) (-1723 (((-112) $ $) 13)) (-2707 ((|#2| $) 61)) (-4164 ((|#2| $) 59)) (-2253 (((-894) $) 55)) (-1623 (($ $ $) 35)) (-2922 (($ (-894)) 50)) (-1525 (($ $ |#2|) NIL) (($ $ $) 38)) (-3350 (((-749) (-1 (-112) |#2|) $) NIL) (((-749) |#2| $) 26)) (-1532 (($ (-623 |#2|)) 24)) (-1696 (($ $) 46)) (-1518 (((-836) $) 33)) (-1800 (((-749) $) 21)) (-3578 (($ (-623 |#2|)) 19) (($) NIL)) (-2316 (((-112) $ $) 16))) +(((-417 |#1| |#2|) (-10 -8 (-15 -4319 ((-749))) (-15 -2922 (|#1| (-894))) (-15 -2253 ((-894) |#1|)) (-15 -1741 (|#1|)) (-15 -2707 (|#2| |#1|)) (-15 -4164 (|#2| |#1|)) (-15 -1597 (|#1|)) (-15 -1696 (|#1| |#1|)) (-15 -1800 ((-749) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -3578 (|#1|)) (-15 -3578 (|#1| (-623 |#2|))) (-15 -2142 (|#1|)) (-15 -2142 (|#1| (-623 |#2|))) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#2|)) (-15 -1445 (|#1| |#1| |#1|)) (-15 -1467 ((-112) |#1| |#1|)) (-15 -3965 (|#1| |#1| |#1|)) (-15 -3965 (|#1| |#1| |#2|)) (-15 -3965 (|#1| |#2| |#1|)) (-15 -1532 (|#1| (-623 |#2|))) (-15 -3350 ((-749) |#2| |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|))) (-418 |#2|) (-1068)) (T -417)) +((-4319 (*1 *2) (-12 (-4 *4 (-1068)) (-5 *2 (-749)) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4))))) +(-10 -8 (-15 -4319 ((-749))) (-15 -2922 (|#1| (-894))) (-15 -2253 ((-894) |#1|)) (-15 -1741 (|#1|)) (-15 -2707 (|#2| |#1|)) (-15 -4164 (|#2| |#1|)) (-15 -1597 (|#1|)) (-15 -1696 (|#1| |#1|)) (-15 -1800 ((-749) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -3578 (|#1|)) (-15 -3578 (|#1| (-623 |#2|))) (-15 -2142 (|#1|)) (-15 -2142 (|#1| (-623 |#2|))) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#2|)) (-15 -1445 (|#1| |#1| |#1|)) (-15 -1467 ((-112) |#1| |#1|)) (-15 -3965 (|#1| |#1| |#1|)) (-15 -3965 (|#1| |#1| |#2|)) (-15 -3965 (|#1| |#2| |#1|)) (-15 -1532 (|#1| (-623 |#2|))) (-15 -3350 ((-749) |#2| |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|))) +((-1504 (((-112) $ $) 19)) (-1597 (($) 67 (|has| |#1| (-361)))) (-3965 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1445 (($ $ $) 78)) (-1467 (((-112) $ $) 79)) (-4047 (((-112) $ (-749)) 8)) (-4319 (((-749)) 61 (|has| |#1| (-361)))) (-2142 (($ (-623 |#1|)) 74) (($) 73)) (-3378 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-1328 (($ $) 58 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ |#1| $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4342)))) (-3137 (($ |#1| $) 57 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4342)))) (-1741 (($) 64 (|has| |#1| (-361)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1723 (((-112) $ $) 70)) (-1859 (((-112) $ (-749)) 9)) (-2707 ((|#1| $) 65 (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-4164 ((|#1| $) 66 (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-2253 (((-894) $) 63 (|has| |#1| (-361)))) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22)) (-1623 (($ $ $) 75)) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40)) (-2922 (($ (-894)) 62 (|has| |#1| (-361)))) (-3337 (((-1088) $) 21)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-1525 (($ $ |#1|) 77) (($ $ $) 76)) (-2729 (($) 49) (($ (-623 |#1|)) 48)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 50)) (-1696 (($ $) 68 (|has| |#1| (-361)))) (-1518 (((-836) $) 18)) (-1800 (((-749) $) 69)) (-3578 (($ (-623 |#1|)) 72) (($) 71)) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20)) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-418 |#1|) (-138) (-1068)) (T -418)) +((-1800 (*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-1068)) (-5 *2 (-749)))) (-1696 (*1 *1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1068)) (-4 *2 (-361)))) (-1597 (*1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-361)) (-4 *2 (-1068)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1068)) (-4 *2 (-825)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1068)) (-4 *2 (-825))))) +(-13 (-223 |t#1|) (-1066 |t#1|) (-10 -8 (-6 -4342) (-15 -1800 ((-749) $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-361)) (-15 -1696 ($ $)) (-15 -1597 ($))) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-15 -4164 (|t#1| $)) (-15 -2707 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-836)) . T) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-223 |#1|) . T) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-361) |has| |#1| (-361)) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1066 |#1|) . T) ((-1068) . T) ((-1181) . T)) +((-1898 (((-569 |#2|) |#2| (-1144)) 36)) (-1954 (((-569 |#2|) |#2| (-1144)) 20)) (-4309 ((|#2| |#2| (-1144)) 25))) +(((-419 |#1| |#2|) (-10 -7 (-15 -1954 ((-569 |#2|) |#2| (-1144))) (-15 -1898 ((-569 |#2|) |#2| (-1144))) (-15 -4309 (|#2| |#2| (-1144)))) (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550))) (-13 (-1166) (-29 |#1|))) (T -419)) +((-4309 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-419 *4 *2)) (-4 *2 (-13 (-1166) (-29 *4))))) (-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1166) (-29 *5))))) (-1954 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1166) (-29 *5)))))) +(-10 -7 (-15 -1954 ((-569 |#2|) |#2| (-1144))) (-15 -1898 ((-569 |#2|) |#2| (-1144))) (-15 -4309 (|#2| |#2| (-1144)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-3840 (($ |#2| |#1|) 35)) (-2000 (($ |#2| |#1|) 33)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-324 |#2|)) 25)) (-2390 (((-749)) NIL)) (-2626 (($) 10 T CONST)) (-2636 (($) 16 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 34)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-420 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4329)) (IF (|has| |#1| (-6 -4329)) (-6 -4329) |%noBranch|) |%noBranch|) (-15 -1518 ($ |#1|)) (-15 -1518 ($ (-324 |#2|))) (-15 -3840 ($ |#2| |#1|)) (-15 -2000 ($ |#2| |#1|)))) (-13 (-170) (-38 (-400 (-550)))) (-13 (-825) (-21))) (T -420)) +((-1518 (*1 *1 *2) (-12 (-5 *1 (-420 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-550))))) (-4 *3 (-13 (-825) (-21))))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-825) (-21))) (-5 *1 (-420 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))))) (-3840 (*1 *1 *2 *3) (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))) (-4 *2 (-13 (-825) (-21))))) (-2000 (*1 *1 *2 *3) (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))) (-4 *2 (-13 (-825) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4329)) (IF (|has| |#1| (-6 -4329)) (-6 -4329) |%noBranch|) |%noBranch|) (-15 -1518 ($ |#1|)) (-15 -1518 ($ (-324 |#2|))) (-15 -3840 ($ |#2| |#1|)) (-15 -2000 ($ |#2| |#1|)))) +((-1489 (((-3 |#2| (-623 |#2|)) |#2| (-1144)) 109))) +(((-421 |#1| |#2|) (-10 -7 (-15 -1489 ((-3 |#2| (-623 |#2|)) |#2| (-1144)))) (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550))) (-13 (-1166) (-932) (-29 |#1|))) (T -421)) +((-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 *3 (-623 *3))) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1166) (-932) (-29 *5)))))) +(-10 -7 (-15 -1489 ((-3 |#2| (-623 |#2|)) |#2| (-1144)))) +((-3141 (((-623 (-1144)) $) 72)) (-3306 (((-400 (-1140 $)) $ (-594 $)) 273)) (-1760 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-623 (-594 $)) (-623 $)) 237)) (-3880 (((-3 (-594 $) "failed") $) NIL) (((-3 (-1144) "failed") $) 75) (((-3 (-550) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-400 (-925 |#2|)) "failed") $) 324) (((-3 (-925 |#2|) "failed") $) 235) (((-3 (-400 (-550)) "failed") $) NIL)) (-2726 (((-594 $) $) NIL) (((-1144) $) 30) (((-550) $) NIL) ((|#2| $) 231) (((-400 (-925 |#2|)) $) 305) (((-925 |#2|) $) 232) (((-400 (-550)) $) NIL)) (-2926 (((-114) (-114)) 47)) (-1552 (($ $) 87)) (-2106 (((-3 (-594 $) "failed") $) 228)) (-3296 (((-623 (-594 $)) $) 229)) (-1598 (((-3 (-623 $) "failed") $) 247)) (-1896 (((-3 (-2 (|:| |val| $) (|:| -3521 (-550))) "failed") $) 254)) (-1444 (((-3 (-623 $) "failed") $) 245)) (-1264 (((-3 (-2 (|:| -2855 (-550)) (|:| |var| (-594 $))) "failed") $) 264)) (-1748 (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $) 251) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-1144)) 219)) (-3248 (((-112) $) 19)) (-3256 ((|#2| $) 21)) (-3866 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) 236) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) 96) (($ $ (-1144) (-1 $ (-623 $))) NIL) (($ $ (-1144) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1144)) 57) (($ $ (-623 (-1144))) 240) (($ $) 241) (($ $ (-114) $ (-1144)) 60) (($ $ (-623 (-114)) (-623 $) (-1144)) 67) (($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ $))) 107) (($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ (-623 $)))) 242) (($ $ (-1144) (-749) (-1 $ (-623 $))) 94) (($ $ (-1144) (-749) (-1 $ $)) 93)) (-2680 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) 106)) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) 238)) (-2639 (($ $) 284)) (-4028 (((-865 (-550)) $) 257) (((-865 (-372)) $) 261) (($ (-411 $)) 320) (((-526) $) NIL)) (-1518 (((-836) $) 239) (($ (-594 $)) 84) (($ (-1144)) 26) (($ |#2|) NIL) (($ (-1093 |#2| (-594 $))) NIL) (($ (-400 |#2|)) 289) (($ (-925 (-400 |#2|))) 329) (($ (-400 (-925 (-400 |#2|)))) 301) (($ (-400 (-925 |#2|))) 295) (($ $) NIL) (($ (-925 |#2|)) 185) (($ (-400 (-550))) 334) (($ (-550)) NIL)) (-2390 (((-749)) 79)) (-2222 (((-112) (-114)) 41)) (-3240 (($ (-1144) $) 33) (($ (-1144) $ $) 34) (($ (-1144) $ $ $) 35) (($ (-1144) $ $ $ $) 36) (($ (-1144) (-623 $)) 39)) (* (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-894) $) NIL))) +(((-422 |#1| |#2|) (-10 -8 (-15 * (|#1| (-894) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2390 ((-749))) (-15 -1518 (|#1| (-550))) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -4028 ((-526) |#1|)) (-15 -2726 ((-925 |#2|) |#1|)) (-15 -3880 ((-3 (-925 |#2|) "failed") |#1|)) (-15 -1518 (|#1| (-925 |#2|))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1518 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2726 ((-400 (-925 |#2|)) |#1|)) (-15 -3880 ((-3 (-400 (-925 |#2|)) "failed") |#1|)) (-15 -1518 (|#1| (-400 (-925 |#2|)))) (-15 -3306 ((-400 (-1140 |#1|)) |#1| (-594 |#1|))) (-15 -1518 (|#1| (-400 (-925 (-400 |#2|))))) (-15 -1518 (|#1| (-925 (-400 |#2|)))) (-15 -1518 (|#1| (-400 |#2|))) (-15 -2639 (|#1| |#1|)) (-15 -4028 (|#1| (-411 |#1|))) (-15 -3866 (|#1| |#1| (-1144) (-749) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-1144) (-749) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-749)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-749)) (-623 (-1 |#1| |#1|)))) (-15 -1896 ((-3 (-2 (|:| |val| |#1|) (|:| -3521 (-550))) "failed") |#1|)) (-15 -1748 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3521 (-550))) "failed") |#1| (-1144))) (-15 -1748 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3521 (-550))) "failed") |#1| (-114))) (-15 -1552 (|#1| |#1|)) (-15 -1518 (|#1| (-1093 |#2| (-594 |#1|)))) (-15 -1264 ((-3 (-2 (|:| -2855 (-550)) (|:| |var| (-594 |#1|))) "failed") |#1|)) (-15 -1444 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1748 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3521 (-550))) "failed") |#1|)) (-15 -1598 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 |#1|) (-1144))) (-15 -3866 (|#1| |#1| (-114) |#1| (-1144))) (-15 -3866 (|#1| |#1|)) (-15 -3866 (|#1| |#1| (-623 (-1144)))) (-15 -3866 (|#1| |#1| (-1144))) (-15 -3240 (|#1| (-1144) (-623 |#1|))) (-15 -3240 (|#1| (-1144) |#1| |#1| |#1| |#1|)) (-15 -3240 (|#1| (-1144) |#1| |#1| |#1|)) (-15 -3240 (|#1| (-1144) |#1| |#1|)) (-15 -3240 (|#1| (-1144) |#1|)) (-15 -3141 ((-623 (-1144)) |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -3248 ((-112) |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -2726 ((-1144) |#1|)) (-15 -3880 ((-3 (-1144) "failed") |#1|)) (-15 -1518 (|#1| (-1144))) (-15 -3866 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-114) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| |#1|)))) (-15 -3866 (|#1| |#1| (-1144) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-1144) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-1 |#1| |#1|)))) (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -3296 ((-623 (-594 |#1|)) |#1|)) (-15 -2106 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -1760 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -1760 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1760 (|#1| |#1| (-287 |#1|))) (-15 -2680 (|#1| (-114) (-623 |#1|))) (-15 -2680 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -3866 (|#1| |#1| (-594 |#1|) |#1|)) (-15 -2726 ((-594 |#1|) |#1|)) (-15 -3880 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -1518 (|#1| (-594 |#1|))) (-15 -1518 ((-836) |#1|))) (-423 |#2|) (-825)) (T -422)) +((-2926 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-825)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-422 *4 *5)) (-4 *4 (-423 *5)))) (-2390 (*1 *2) (-12 (-4 *4 (-825)) (-5 *2 (-749)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4))))) +(-10 -8 (-15 * (|#1| (-894) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2390 ((-749))) (-15 -1518 (|#1| (-550))) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -4028 ((-526) |#1|)) (-15 -2726 ((-925 |#2|) |#1|)) (-15 -3880 ((-3 (-925 |#2|) "failed") |#1|)) (-15 -1518 (|#1| (-925 |#2|))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1518 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2726 ((-400 (-925 |#2|)) |#1|)) (-15 -3880 ((-3 (-400 (-925 |#2|)) "failed") |#1|)) (-15 -1518 (|#1| (-400 (-925 |#2|)))) (-15 -3306 ((-400 (-1140 |#1|)) |#1| (-594 |#1|))) (-15 -1518 (|#1| (-400 (-925 (-400 |#2|))))) (-15 -1518 (|#1| (-925 (-400 |#2|)))) (-15 -1518 (|#1| (-400 |#2|))) (-15 -2639 (|#1| |#1|)) (-15 -4028 (|#1| (-411 |#1|))) (-15 -3866 (|#1| |#1| (-1144) (-749) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-1144) (-749) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-749)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-749)) (-623 (-1 |#1| |#1|)))) (-15 -1896 ((-3 (-2 (|:| |val| |#1|) (|:| -3521 (-550))) "failed") |#1|)) (-15 -1748 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3521 (-550))) "failed") |#1| (-1144))) (-15 -1748 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3521 (-550))) "failed") |#1| (-114))) (-15 -1552 (|#1| |#1|)) (-15 -1518 (|#1| (-1093 |#2| (-594 |#1|)))) (-15 -1264 ((-3 (-2 (|:| -2855 (-550)) (|:| |var| (-594 |#1|))) "failed") |#1|)) (-15 -1444 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1748 ((-3 (-2 (|:| |var| (-594 |#1|)) (|:| -3521 (-550))) "failed") |#1|)) (-15 -1598 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 |#1|) (-1144))) (-15 -3866 (|#1| |#1| (-114) |#1| (-1144))) (-15 -3866 (|#1| |#1|)) (-15 -3866 (|#1| |#1| (-623 (-1144)))) (-15 -3866 (|#1| |#1| (-1144))) (-15 -3240 (|#1| (-1144) (-623 |#1|))) (-15 -3240 (|#1| (-1144) |#1| |#1| |#1| |#1|)) (-15 -3240 (|#1| (-1144) |#1| |#1| |#1|)) (-15 -3240 (|#1| (-1144) |#1| |#1|)) (-15 -3240 (|#1| (-1144) |#1|)) (-15 -3141 ((-623 (-1144)) |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -3248 ((-112) |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -2726 ((-1144) |#1|)) (-15 -3880 ((-3 (-1144) "failed") |#1|)) (-15 -1518 (|#1| (-1144))) (-15 -3866 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-114) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-114)) (-623 (-1 |#1| |#1|)))) (-15 -3866 (|#1| |#1| (-1144) (-1 |#1| |#1|))) (-15 -3866 (|#1| |#1| (-1144) (-1 |#1| (-623 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-1 |#1| (-623 |#1|))))) (-15 -3866 (|#1| |#1| (-623 (-1144)) (-623 (-1 |#1| |#1|)))) (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -3296 ((-623 (-594 |#1|)) |#1|)) (-15 -2106 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -1760 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -1760 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -1760 (|#1| |#1| (-287 |#1|))) (-15 -2680 (|#1| (-114) (-623 |#1|))) (-15 -2680 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1| |#1|)) (-15 -2680 (|#1| (-114) |#1|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3866 (|#1| |#1| (-623 (-594 |#1|)) (-623 |#1|))) (-15 -3866 (|#1| |#1| (-594 |#1|) |#1|)) (-15 -2726 ((-594 |#1|) |#1|)) (-15 -3880 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -1518 (|#1| (-594 |#1|))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 113 (|has| |#1| (-25)))) (-3141 (((-623 (-1144)) $) 200)) (-3306 (((-400 (-1140 $)) $ (-594 $)) 168 (|has| |#1| (-542)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 140 (|has| |#1| (-542)))) (-1447 (($ $) 141 (|has| |#1| (-542)))) (-4291 (((-112) $) 143 (|has| |#1| (-542)))) (-3223 (((-623 (-594 $)) $) 44)) (-3219 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1760 (($ $ (-287 $)) 56) (($ $ (-623 (-287 $))) 55) (($ $ (-623 (-594 $)) (-623 $)) 54)) (-1505 (($ $) 160 (|has| |#1| (-542)))) (-3564 (((-411 $) $) 161 (|has| |#1| (-542)))) (-3631 (((-112) $ $) 151 (|has| |#1| (-542)))) (-3513 (($) 101 (-1561 (|has| |#1| (-1080)) (|has| |#1| (-25))) CONST)) (-3880 (((-3 (-594 $) "failed") $) 69) (((-3 (-1144) "failed") $) 213) (((-3 (-550) "failed") $) 206 (|has| |#1| (-1011 (-550)))) (((-3 |#1| "failed") $) 204) (((-3 (-400 (-925 |#1|)) "failed") $) 166 (|has| |#1| (-542))) (((-3 (-925 |#1|) "failed") $) 120 (|has| |#1| (-1020))) (((-3 (-400 (-550)) "failed") $) 95 (-1561 (-12 (|has| |#1| (-1011 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1011 (-400 (-550))))))) (-2726 (((-594 $) $) 68) (((-1144) $) 212) (((-550) $) 207 (|has| |#1| (-1011 (-550)))) ((|#1| $) 203) (((-400 (-925 |#1|)) $) 165 (|has| |#1| (-542))) (((-925 |#1|) $) 119 (|has| |#1| (-1020))) (((-400 (-550)) $) 94 (-1561 (-12 (|has| |#1| (-1011 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1011 (-400 (-550))))))) (-3349 (($ $ $) 155 (|has| |#1| (-542)))) (-3780 (((-667 (-550)) (-667 $)) 134 (-1262 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 133 (-1262 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 132 (|has| |#1| (-1020))) (((-667 |#1|) (-667 $)) 131 (|has| |#1| (-1020)))) (-1386 (((-3 $ "failed") $) 103 (|has| |#1| (-1080)))) (-1519 (($ $ $) 154 (|has| |#1| (-542)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 149 (|has| |#1| (-542)))) (-3933 (((-112) $) 162 (|has| |#1| (-542)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 209 (|has| |#1| (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 208 (|has| |#1| (-859 (-372))))) (-1380 (($ $) 51) (($ (-623 $)) 50)) (-2029 (((-623 (-114)) $) 43)) (-2926 (((-114) (-114)) 42)) (-3102 (((-112) $) 102 (|has| |#1| (-1080)))) (-3718 (((-112) $) 22 (|has| $ (-1011 (-550))))) (-1552 (($ $) 183 (|has| |#1| (-1020)))) (-2705 (((-1093 |#1| (-594 $)) $) 184 (|has| |#1| (-1020)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-542)))) (-1843 (((-1140 $) (-594 $)) 25 (|has| $ (-1020)))) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-3972 (($ (-1 $ $) (-594 $)) 36)) (-2106 (((-3 (-594 $) "failed") $) 46)) (-3106 (($ (-623 $)) 147 (|has| |#1| (-542))) (($ $ $) 146 (|has| |#1| (-542)))) (-1825 (((-1126) $) 9)) (-3296 (((-623 (-594 $)) $) 45)) (-2776 (($ (-114) $) 38) (($ (-114) (-623 $)) 37)) (-1598 (((-3 (-623 $) "failed") $) 189 (|has| |#1| (-1080)))) (-1896 (((-3 (-2 (|:| |val| $) (|:| -3521 (-550))) "failed") $) 180 (|has| |#1| (-1020)))) (-1444 (((-3 (-623 $) "failed") $) 187 (|has| |#1| (-25)))) (-1264 (((-3 (-2 (|:| -2855 (-550)) (|:| |var| (-594 $))) "failed") $) 186 (|has| |#1| (-25)))) (-1748 (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $) 188 (|has| |#1| (-1080))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-114)) 182 (|has| |#1| (-1020))) (((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-1144)) 181 (|has| |#1| (-1020)))) (-3890 (((-112) $ (-114)) 40) (((-112) $ (-1144)) 39)) (-3235 (($ $) 105 (-1561 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-3142 (((-749) $) 47)) (-3337 (((-1088) $) 10)) (-3248 (((-112) $) 202)) (-3256 ((|#1| $) 201)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 148 (|has| |#1| (-542)))) (-3139 (($ (-623 $)) 145 (|has| |#1| (-542))) (($ $ $) 144 (|has| |#1| (-542)))) (-1938 (((-112) $ $) 35) (((-112) $ (-1144)) 34)) (-3338 (((-411 $) $) 159 (|has| |#1| (-542)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-542))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 156 (|has| |#1| (-542)))) (-1495 (((-3 $ "failed") $ $) 139 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-542)))) (-3777 (((-112) $) 23 (|has| $ (-1011 (-550))))) (-3866 (($ $ (-594 $) $) 67) (($ $ (-623 (-594 $)) (-623 $)) 66) (($ $ (-623 (-287 $))) 65) (($ $ (-287 $)) 64) (($ $ $ $) 63) (($ $ (-623 $) (-623 $)) 62) (($ $ (-623 (-1144)) (-623 (-1 $ $))) 33) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) 32) (($ $ (-1144) (-1 $ (-623 $))) 31) (($ $ (-1144) (-1 $ $)) 30) (($ $ (-623 (-114)) (-623 (-1 $ $))) 29) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) 28) (($ $ (-114) (-1 $ (-623 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1144)) 194 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1144))) 193 (|has| |#1| (-596 (-526)))) (($ $) 192 (|has| |#1| (-596 (-526)))) (($ $ (-114) $ (-1144)) 191 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-114)) (-623 $) (-1144)) 190 (|has| |#1| (-596 (-526)))) (($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ $))) 179 (|has| |#1| (-1020))) (($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ (-623 $)))) 178 (|has| |#1| (-1020))) (($ $ (-1144) (-749) (-1 $ (-623 $))) 177 (|has| |#1| (-1020))) (($ $ (-1144) (-749) (-1 $ $)) 176 (|has| |#1| (-1020)))) (-3542 (((-749) $) 152 (|has| |#1| (-542)))) (-2680 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-623 $)) 57)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 153 (|has| |#1| (-542)))) (-3930 (($ $) 49) (($ $ $) 48)) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) 125 (|has| |#1| (-1020))) (($ $ (-1144) (-749)) 124 (|has| |#1| (-1020))) (($ $ (-623 (-1144))) 123 (|has| |#1| (-1020))) (($ $ (-1144)) 122 (|has| |#1| (-1020)))) (-2639 (($ $) 173 (|has| |#1| (-542)))) (-2715 (((-1093 |#1| (-594 $)) $) 174 (|has| |#1| (-542)))) (-1310 (($ $) 24 (|has| $ (-1020)))) (-4028 (((-865 (-550)) $) 211 (|has| |#1| (-596 (-865 (-550))))) (((-865 (-372)) $) 210 (|has| |#1| (-596 (-865 (-372))))) (($ (-411 $)) 175 (|has| |#1| (-542))) (((-526) $) 97 (|has| |#1| (-596 (-526))))) (-1270 (($ $ $) 108 (|has| |#1| (-465)))) (-3292 (($ $ $) 109 (|has| |#1| (-465)))) (-1518 (((-836) $) 11) (($ (-594 $)) 70) (($ (-1144)) 214) (($ |#1|) 205) (($ (-1093 |#1| (-594 $))) 185 (|has| |#1| (-1020))) (($ (-400 |#1|)) 171 (|has| |#1| (-542))) (($ (-925 (-400 |#1|))) 170 (|has| |#1| (-542))) (($ (-400 (-925 (-400 |#1|)))) 169 (|has| |#1| (-542))) (($ (-400 (-925 |#1|))) 167 (|has| |#1| (-542))) (($ $) 138 (|has| |#1| (-542))) (($ (-925 |#1|)) 121 (|has| |#1| (-1020))) (($ (-400 (-550))) 96 (-1561 (|has| |#1| (-542)) (-12 (|has| |#1| (-1011 (-550))) (|has| |#1| (-542))) (|has| |#1| (-1011 (-400 (-550)))))) (($ (-550)) 93 (-1561 (|has| |#1| (-1020)) (|has| |#1| (-1011 (-550)))))) (-4242 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-2390 (((-749)) 130 (|has| |#1| (-1020)))) (-3716 (($ $) 53) (($ (-623 $)) 52)) (-2222 (((-112) (-114)) 41)) (-1345 (((-112) $ $) 142 (|has| |#1| (-542)))) (-3240 (($ (-1144) $) 199) (($ (-1144) $ $) 198) (($ (-1144) $ $ $) 197) (($ (-1144) $ $ $ $) 196) (($ (-1144) (-623 $)) 195)) (-2626 (($) 112 (|has| |#1| (-25)) CONST)) (-2636 (($) 100 (|has| |#1| (-1080)) CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) 129 (|has| |#1| (-1020))) (($ $ (-1144) (-749)) 128 (|has| |#1| (-1020))) (($ $ (-623 (-1144))) 127 (|has| |#1| (-1020))) (($ $ (-1144)) 126 (|has| |#1| (-1020)))) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (-2414 (($ (-1093 |#1| (-594 $)) (-1093 |#1| (-594 $))) 172 (|has| |#1| (-542))) (($ $ $) 106 (-1561 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-2403 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2391 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-550)) 107 (-1561 (|has| |#1| (-465)) (|has| |#1| (-542)))) (($ $ (-749)) 104 (|has| |#1| (-1080))) (($ $ (-894)) 99 (|has| |#1| (-1080)))) (* (($ (-400 (-550)) $) 164 (|has| |#1| (-542))) (($ $ (-400 (-550))) 163 (|has| |#1| (-542))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-550) $) 118 (|has| |#1| (-21))) (($ (-749) $) 114 (|has| |#1| (-25))) (($ (-894) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1080))))) +(((-423 |#1|) (-138) (-825)) (T -423)) +((-3248 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-825)) (-5 *2 (-112)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-825)) (-5 *2 (-623 (-1144))))) (-3240 (*1 *1 *2 *1) (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) (-3240 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) (-3240 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) (-3240 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) (-3240 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-623 *1)) (-4 *1 (-423 *4)) (-4 *4 (-825)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-526))))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1144))) (-4 *1 (-423 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-526))))) (-3866 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-596 (-526))))) (-3866 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1144)) (-4 *1 (-423 *4)) (-4 *4 (-825)) (-4 *4 (-596 (-526))))) (-3866 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 *1)) (-5 *4 (-1144)) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-596 (-526))))) (-1598 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-423 *3)))) (-1748 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-825)) (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3521 (-550)))) (-4 *1 (-423 *3)))) (-1444 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-423 *3)))) (-1264 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -2855 (-550)) (|:| |var| (-594 *1)))) (-4 *1 (-423 *3)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1093 *3 (-594 *1))) (-4 *3 (-1020)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-2705 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *3 (-825)) (-5 *2 (-1093 *3 (-594 *1))) (-4 *1 (-423 *3)))) (-1552 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-1020)))) (-1748 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1020)) (-4 *4 (-825)) (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3521 (-550)))) (-4 *1 (-423 *4)))) (-1748 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1144)) (-4 *4 (-1020)) (-4 *4 (-825)) (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3521 (-550)))) (-4 *1 (-423 *4)))) (-1896 (*1 *2 *1) (|partial| -12 (-4 *3 (-1020)) (-4 *3 (-825)) (-5 *2 (-2 (|:| |val| *1) (|:| -3521 (-550)))) (-4 *1 (-423 *3)))) (-3866 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-623 (-749))) (-5 *4 (-623 (-1 *1 *1))) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1020)))) (-3866 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-623 (-749))) (-5 *4 (-623 (-1 *1 (-623 *1)))) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1020)))) (-3866 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-749)) (-5 *4 (-1 *1 (-623 *1))) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1020)))) (-3866 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-749)) (-5 *4 (-1 *1 *1)) (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1020)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-411 *1)) (-4 *1 (-423 *3)) (-4 *3 (-542)) (-4 *3 (-825)))) (-2715 (*1 *2 *1) (-12 (-4 *3 (-542)) (-4 *3 (-825)) (-5 *2 (-1093 *3 (-594 *1))) (-4 *1 (-423 *3)))) (-2639 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-542)))) (-2414 (*1 *1 *2 *2) (-12 (-5 *2 (-1093 *3 (-594 *1))) (-4 *3 (-542)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-542)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-925 (-400 *3))) (-4 *3 (-542)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-400 (-925 (-400 *3)))) (-4 *3 (-542)) (-4 *3 (-825)) (-4 *1 (-423 *3)))) (-3306 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-423 *4)) (-4 *4 (-825)) (-4 *4 (-542)) (-5 *2 (-400 (-1140 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-423 *3)) (-4 *3 (-825)) (-4 *3 (-1080))))) +(-13 (-295) (-1011 (-1144)) (-857 |t#1|) (-393 |t#1|) (-404 |t#1|) (-10 -8 (-15 -3248 ((-112) $)) (-15 -3256 (|t#1| $)) (-15 -3141 ((-623 (-1144)) $)) (-15 -3240 ($ (-1144) $)) (-15 -3240 ($ (-1144) $ $)) (-15 -3240 ($ (-1144) $ $ $)) (-15 -3240 ($ (-1144) $ $ $ $)) (-15 -3240 ($ (-1144) (-623 $))) (IF (|has| |t#1| (-596 (-526))) (PROGN (-6 (-596 (-526))) (-15 -3866 ($ $ (-1144))) (-15 -3866 ($ $ (-623 (-1144)))) (-15 -3866 ($ $)) (-15 -3866 ($ $ (-114) $ (-1144))) (-15 -3866 ($ $ (-623 (-114)) (-623 $) (-1144)))) |%noBranch|) (IF (|has| |t#1| (-1080)) (PROGN (-6 (-705)) (-15 ** ($ $ (-749))) (-15 -1598 ((-3 (-623 $) "failed") $)) (-15 -1748 ((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1444 ((-3 (-623 $) "failed") $)) (-15 -1264 ((-3 (-2 (|:| -2855 (-550)) (|:| |var| (-594 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-1011 (-925 |t#1|))) (-6 (-873 (-1144))) (-6 (-370 |t#1|)) (-15 -1518 ($ (-1093 |t#1| (-594 $)))) (-15 -2705 ((-1093 |t#1| (-594 $)) $)) (-15 -1552 ($ $)) (-15 -1748 ((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-114))) (-15 -1748 ((-3 (-2 (|:| |var| (-594 $)) (|:| -3521 (-550))) "failed") $ (-1144))) (-15 -1896 ((-3 (-2 (|:| |val| $) (|:| -3521 (-550))) "failed") $)) (-15 -3866 ($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ $)))) (-15 -3866 ($ $ (-623 (-1144)) (-623 (-749)) (-623 (-1 $ (-623 $))))) (-15 -3866 ($ $ (-1144) (-749) (-1 $ (-623 $)))) (-15 -3866 ($ $ (-1144) (-749) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-356)) (-6 (-1011 (-400 (-925 |t#1|)))) (-15 -4028 ($ (-411 $))) (-15 -2715 ((-1093 |t#1| (-594 $)) $)) (-15 -2639 ($ $)) (-15 -2414 ($ (-1093 |t#1| (-594 $)) (-1093 |t#1| (-594 $)))) (-15 -1518 ($ (-400 |t#1|))) (-15 -1518 ($ (-925 (-400 |t#1|)))) (-15 -1518 ($ (-400 (-925 (-400 |t#1|))))) (-15 -3306 ((-400 (-1140 $)) $ (-594 $))) (IF (|has| |t#1| (-1011 (-550))) (-6 (-1011 (-400 (-550)))) |%noBranch|)) |%noBranch|))) +(((-21) -1561 (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1561 (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1561 (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-400 (-550))) |has| |#1| (-542)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-542)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-542)) ((-130) -1561 (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) |has| |#1| (-542)) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-596 (-865 (-372))) |has| |#1| (-596 (-865 (-372)))) ((-596 (-865 (-550))) |has| |#1| (-596 (-865 (-550)))) ((-237) |has| |#1| (-542)) ((-283) |has| |#1| (-542)) ((-300) |has| |#1| (-542)) ((-302 $) . T) ((-295) . T) ((-356) |has| |#1| (-542)) ((-370 |#1|) |has| |#1| (-1020)) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-444) |has| |#1| (-542)) ((-465) |has| |#1| (-465)) ((-505 (-594 $) $) . T) ((-505 $ $) . T) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-542)) ((-626 |#1|) |has| |#1| (-170)) ((-626 $) -1561 (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-619 (-550)) -12 (|has| |#1| (-619 (-550))) (|has| |#1| (-1020))) ((-619 |#1|) |has| |#1| (-1020)) ((-696 #0#) |has| |#1| (-542)) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) -1561 (|has| |#1| (-1080)) (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-825) . T) ((-873 (-1144)) |has| |#1| (-1020)) ((-859 (-372)) |has| |#1| (-859 (-372))) ((-859 (-550)) |has| |#1| (-859 (-550))) ((-857 |#1|) . T) ((-893) |has| |#1| (-542)) ((-1011 (-400 (-550))) -1561 (|has| |#1| (-1011 (-400 (-550)))) (-12 (|has| |#1| (-542)) (|has| |#1| (-1011 (-550))))) ((-1011 (-400 (-925 |#1|))) |has| |#1| (-542)) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 (-594 $)) . T) ((-1011 (-925 |#1|)) |has| |#1| (-1020)) ((-1011 (-1144)) . T) ((-1011 |#1|) . T) ((-1026 #0#) |has| |#1| (-542)) ((-1026 |#1|) |has| |#1| (-170)) ((-1026 $) |has| |#1| (-542)) ((-1020) -1561 (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1027) -1561 (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1080) -1561 (|has| |#1| (-1080)) (|has| |#1| (-1020)) (|has| |#1| (-542)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1068) . T) ((-1181) . T) ((-1185) |has| |#1| (-542))) +((-2003 ((|#2| |#2| |#2|) 33)) (-2926 (((-114) (-114)) 44)) (-4025 ((|#2| |#2|) 66)) (-3925 ((|#2| |#2|) 69)) (-1885 ((|#2| |#2|) 32)) (-4061 ((|#2| |#2| |#2|) 35)) (-4293 ((|#2| |#2| |#2|) 37)) (-3950 ((|#2| |#2| |#2|) 34)) (-4165 ((|#2| |#2| |#2|) 36)) (-2222 (((-112) (-114)) 42)) (-3290 ((|#2| |#2|) 39)) (-1355 ((|#2| |#2|) 38)) (-1635 ((|#2| |#2|) 27)) (-3851 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1763 ((|#2| |#2| |#2|) 31))) +(((-424 |#1| |#2|) (-10 -7 (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -1635 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3851 (|#2| |#2| |#2|)) (-15 -1763 (|#2| |#2| |#2|)) (-15 -1885 (|#2| |#2|)) (-15 -2003 (|#2| |#2| |#2|)) (-15 -3950 (|#2| |#2| |#2|)) (-15 -4061 (|#2| |#2| |#2|)) (-15 -4165 (|#2| |#2| |#2|)) (-15 -4293 (|#2| |#2| |#2|)) (-15 -1355 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -4025 (|#2| |#2|))) (-13 (-825) (-542)) (-423 |#1|)) (T -424)) +((-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3290 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1355 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-4293 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-4165 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-4061 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3950 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2003 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1885 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1763 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3851 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *4)) (-4 *4 (-423 *3)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *5 (-423 *4))))) +(-10 -7 (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -1635 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3851 (|#2| |#2| |#2|)) (-15 -1763 (|#2| |#2| |#2|)) (-15 -1885 (|#2| |#2|)) (-15 -2003 (|#2| |#2| |#2|)) (-15 -3950 (|#2| |#2| |#2|)) (-15 -4061 (|#2| |#2| |#2|)) (-15 -4165 (|#2| |#2| |#2|)) (-15 -4293 (|#2| |#2| |#2|)) (-15 -1355 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -4025 (|#2| |#2|))) +((-3485 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1140 |#2|)) (|:| |pol2| (-1140 |#2|)) (|:| |prim| (-1140 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-623 (-1140 |#2|))) (|:| |prim| (-1140 |#2|))) (-623 |#2|)) 61))) +(((-425 |#1| |#2|) (-10 -7 (-15 -3485 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-623 (-1140 |#2|))) (|:| |prim| (-1140 |#2|))) (-623 |#2|))) (IF (|has| |#2| (-27)) (-15 -3485 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1140 |#2|)) (|:| |pol2| (-1140 |#2|)) (|:| |prim| (-1140 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-542) (-825) (-145)) (-423 |#1|)) (T -425)) +((-3485 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-542) (-825) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1140 *3)) (|:| |pol2| (-1140 *3)) (|:| |prim| (-1140 *3)))) (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-423 *4)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-542) (-825) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-623 (-1140 *5))) (|:| |prim| (-1140 *5)))) (-5 *1 (-425 *4 *5))))) +(-10 -7 (-15 -3485 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-623 (-1140 |#2|))) (|:| |prim| (-1140 |#2|))) (-623 |#2|))) (IF (|has| |#2| (-27)) (-15 -3485 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1140 |#2|)) (|:| |pol2| (-1140 |#2|)) (|:| |prim| (-1140 |#2|))) |#2| |#2|)) |%noBranch|)) +((-4254 (((-1232)) 19)) (-4133 (((-1140 (-400 (-550))) |#2| (-594 |#2|)) 41) (((-400 (-550)) |#2|) 25))) +(((-426 |#1| |#2|) (-10 -7 (-15 -4133 ((-400 (-550)) |#2|)) (-15 -4133 ((-1140 (-400 (-550))) |#2| (-594 |#2|))) (-15 -4254 ((-1232)))) (-13 (-825) (-542) (-1011 (-550))) (-423 |#1|)) (T -426)) +((-4254 (*1 *2) (-12 (-4 *3 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-1232)) (-5 *1 (-426 *3 *4)) (-4 *4 (-423 *3)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-423 *5)) (-4 *5 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-1140 (-400 (-550)))) (-5 *1 (-426 *5 *3)))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-400 (-550))) (-5 *1 (-426 *4 *3)) (-4 *3 (-423 *4))))) +(-10 -7 (-15 -4133 ((-400 (-550)) |#2|)) (-15 -4133 ((-1140 (-400 (-550))) |#2| (-594 |#2|))) (-15 -4254 ((-1232)))) +((-2447 (((-112) $) 28)) (-1306 (((-112) $) 30)) (-1331 (((-112) $) 31)) (-3327 (((-112) $) 34)) (-3529 (((-112) $) 29)) (-3431 (((-112) $) 33)) (-1518 (((-836) $) 18) (($ (-1126)) 27) (($ (-1144)) 23) (((-1144) $) 22) (((-1072) $) 21)) (-3236 (((-112) $) 32)) (-2316 (((-112) $ $) 15))) +(((-427) (-13 (-595 (-836)) (-10 -8 (-15 -1518 ($ (-1126))) (-15 -1518 ($ (-1144))) (-15 -1518 ((-1144) $)) (-15 -1518 ((-1072) $)) (-15 -2447 ((-112) $)) (-15 -3529 ((-112) $)) (-15 -1331 ((-112) $)) (-15 -3431 ((-112) $)) (-15 -3327 ((-112) $)) (-15 -3236 ((-112) $)) (-15 -1306 ((-112) $)) (-15 -2316 ((-112) $ $))))) (T -427)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-427)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-427)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-427)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-427)))) (-2447 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-2316 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(-13 (-595 (-836)) (-10 -8 (-15 -1518 ($ (-1126))) (-15 -1518 ($ (-1144))) (-15 -1518 ((-1144) $)) (-15 -1518 ((-1072) $)) (-15 -2447 ((-112) $)) (-15 -3529 ((-112) $)) (-15 -1331 ((-112) $)) (-15 -3431 ((-112) $)) (-15 -3327 ((-112) $)) (-15 -3236 ((-112) $)) (-15 -1306 ((-112) $)) (-15 -2316 ((-112) $ $)))) +((-3721 (((-3 (-411 (-1140 (-400 (-550)))) "failed") |#3|) 70)) (-3629 (((-411 |#3|) |#3|) 34)) (-2721 (((-3 (-411 (-1140 (-48))) "failed") |#3|) 46 (|has| |#2| (-1011 (-48))))) (-3809 (((-3 (|:| |overq| (-1140 (-400 (-550)))) (|:| |overan| (-1140 (-48))) (|:| -3517 (-112))) |#3|) 37))) +(((-428 |#1| |#2| |#3|) (-10 -7 (-15 -3629 ((-411 |#3|) |#3|)) (-15 -3721 ((-3 (-411 (-1140 (-400 (-550)))) "failed") |#3|)) (-15 -3809 ((-3 (|:| |overq| (-1140 (-400 (-550)))) (|:| |overan| (-1140 (-48))) (|:| -3517 (-112))) |#3|)) (IF (|has| |#2| (-1011 (-48))) (-15 -2721 ((-3 (-411 (-1140 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-542) (-825) (-1011 (-550))) (-423 |#1|) (-1203 |#2|)) (T -428)) +((-2721 (*1 *2 *3) (|partial| -12 (-4 *5 (-1011 (-48))) (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-4 *5 (-423 *4)) (-5 *2 (-411 (-1140 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1203 *5)))) (-3809 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-4 *5 (-423 *4)) (-5 *2 (-3 (|:| |overq| (-1140 (-400 (-550)))) (|:| |overan| (-1140 (-48))) (|:| -3517 (-112)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1203 *5)))) (-3721 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-4 *5 (-423 *4)) (-5 *2 (-411 (-1140 (-400 (-550))))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1203 *5)))) (-3629 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-4 *5 (-423 *4)) (-5 *2 (-411 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1203 *5))))) +(-10 -7 (-15 -3629 ((-411 |#3|) |#3|)) (-15 -3721 ((-3 (-411 (-1140 (-400 (-550)))) "failed") |#3|)) (-15 -3809 ((-3 (|:| |overq| (-1140 (-400 (-550)))) (|:| |overan| (-1140 (-48))) (|:| -3517 (-112))) |#3|)) (IF (|has| |#2| (-1011 (-48))) (-15 -2721 ((-3 (-411 (-1140 (-48))) "failed") |#3|)) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-1510 (((-1126) $ (-1126)) NIL)) (-3826 (($ $ (-1126)) NIL)) (-1656 (((-1126) $) NIL)) (-1502 (((-381) (-381) (-381)) 17) (((-381) (-381)) 15)) (-3257 (($ (-381)) NIL) (($ (-381) (-1126)) NIL)) (-1916 (((-381) $) NIL)) (-1825 (((-1126) $) NIL)) (-1811 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2600 (((-1232) (-1126)) 9)) (-2530 (((-1232) (-1126)) 10)) (-2454 (((-1232)) 11)) (-1518 (((-836) $) NIL)) (-1951 (($ $) 35)) (-2316 (((-112) $ $) NIL))) +(((-429) (-13 (-357 (-381) (-1126)) (-10 -7 (-15 -1502 ((-381) (-381) (-381))) (-15 -1502 ((-381) (-381))) (-15 -2600 ((-1232) (-1126))) (-15 -2530 ((-1232) (-1126))) (-15 -2454 ((-1232)))))) (T -429)) +((-1502 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-429)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-429)))) (-2454 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-429))))) +(-13 (-357 (-381) (-1126)) (-10 -7 (-15 -1502 ((-381) (-381) (-381))) (-15 -1502 ((-381) (-381))) (-15 -2600 ((-1232) (-1126))) (-15 -2530 ((-1232) (-1126))) (-15 -2454 ((-1232))))) +((-1504 (((-112) $ $) NIL)) (-2378 (((-3 (|:| |fst| (-427)) (|:| -3730 "void")) $) 11)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2226 (($) 32)) (-3056 (($) 38)) (-3153 (($) 34)) (-2891 (($) 36)) (-2143 (($) 33)) (-2973 (($) 35)) (-2806 (($) 37)) (-2304 (((-112) $) 8)) (-4159 (((-623 (-925 (-550))) $) 19)) (-1532 (($ (-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-623 (-1144)) (-112)) 27) (($ (-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-623 (-925 (-550))) (-112)) 28)) (-1518 (((-836) $) 23) (($ (-427)) 29)) (-2316 (((-112) $ $) NIL))) +(((-430) (-13 (-1068) (-10 -8 (-15 -1518 ((-836) $)) (-15 -1518 ($ (-427))) (-15 -2378 ((-3 (|:| |fst| (-427)) (|:| -3730 "void")) $)) (-15 -4159 ((-623 (-925 (-550))) $)) (-15 -2304 ((-112) $)) (-15 -1532 ($ (-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-623 (-1144)) (-112))) (-15 -1532 ($ (-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-623 (-925 (-550))) (-112))) (-15 -2226 ($)) (-15 -2143 ($)) (-15 -3153 ($)) (-15 -3056 ($)) (-15 -2973 ($)) (-15 -2891 ($)) (-15 -2806 ($))))) (T -430)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-430)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-430)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *1 (-430)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-623 (-925 (-550)))) (-5 *1 (-430)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430)))) (-1532 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *3 (-623 (-1144))) (-5 *4 (-112)) (-5 *1 (-430)))) (-1532 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-112)) (-5 *1 (-430)))) (-2226 (*1 *1) (-5 *1 (-430))) (-2143 (*1 *1) (-5 *1 (-430))) (-3153 (*1 *1) (-5 *1 (-430))) (-3056 (*1 *1) (-5 *1 (-430))) (-2973 (*1 *1) (-5 *1 (-430))) (-2891 (*1 *1) (-5 *1 (-430))) (-2806 (*1 *1) (-5 *1 (-430)))) +(-13 (-1068) (-10 -8 (-15 -1518 ((-836) $)) (-15 -1518 ($ (-427))) (-15 -2378 ((-3 (|:| |fst| (-427)) (|:| -3730 "void")) $)) (-15 -4159 ((-623 (-925 (-550))) $)) (-15 -2304 ((-112) $)) (-15 -1532 ($ (-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-623 (-1144)) (-112))) (-15 -1532 ($ (-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-623 (-925 (-550))) (-112))) (-15 -2226 ($)) (-15 -2143 ($)) (-15 -3153 ($)) (-15 -3056 ($)) (-15 -2973 ($)) (-15 -2891 ($)) (-15 -2806 ($)))) +((-1504 (((-112) $ $) NIL)) (-1916 (((-1144) $) 8)) (-1825 (((-1126) $) 16)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 13))) +(((-431 |#1|) (-13 (-1068) (-10 -8 (-15 -1916 ((-1144) $)))) (-1144)) (T -431)) +((-1916 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-431 *3)) (-14 *3 *2)))) +(-13 (-1068) (-10 -8 (-15 -1916 ((-1144) $)))) +((-3397 (((-1232) $) 7)) (-1518 (((-836) $) 8) (($ (-1227 (-677))) 14) (($ (-623 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 11))) (((-432) (-138)) (T -432)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-675))) (-4 *1 (-432)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-432)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-432))))) -(-13 (-389) (-10 -8 (-15 -4300 ($ (-1224 (-675)))) (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))))) -(((-593 (-835)) . T) ((-389) . T) ((-1178) . T)) -((-3491 (((-3 $ "failed") (-1224 (-307 (-371)))) 21) (((-3 $ "failed") (-1224 (-307 (-535)))) 19) (((-3 $ "failed") (-1224 (-917 (-371)))) 17) (((-3 $ "failed") (-1224 (-917 (-535)))) 15) (((-3 $ "failed") (-1224 (-400 (-917 (-371))))) 13) (((-3 $ "failed") (-1224 (-400 (-917 (-535))))) 11)) (-3490 (($ (-1224 (-307 (-371)))) 22) (($ (-1224 (-307 (-535)))) 20) (($ (-1224 (-917 (-371)))) 18) (($ (-1224 (-917 (-535)))) 16) (($ (-1224 (-400 (-917 (-371))))) 14) (($ (-1224 (-400 (-917 (-535))))) 12)) (-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-618 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 23))) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-677))) (-4 *1 (-432)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-432)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) (-4 *1 (-432))))) +(-13 (-388) (-10 -8 (-15 -1518 ($ (-1227 (-677)))) (-15 -1518 ($ (-623 (-323)))) (-15 -1518 ($ (-323))) (-15 -1518 ($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323)))))))) +(((-595 (-836)) . T) ((-388) . T) ((-1181) . T)) +((-3880 (((-3 $ "failed") (-1227 (-309 (-372)))) 21) (((-3 $ "failed") (-1227 (-309 (-550)))) 19) (((-3 $ "failed") (-1227 (-925 (-372)))) 17) (((-3 $ "failed") (-1227 (-925 (-550)))) 15) (((-3 $ "failed") (-1227 (-400 (-925 (-372))))) 13) (((-3 $ "failed") (-1227 (-400 (-925 (-550))))) 11)) (-2726 (($ (-1227 (-309 (-372)))) 22) (($ (-1227 (-309 (-550)))) 20) (($ (-1227 (-925 (-372)))) 18) (($ (-1227 (-925 (-550)))) 16) (($ (-1227 (-400 (-925 (-372))))) 14) (($ (-1227 (-400 (-925 (-550))))) 12)) (-3397 (((-1232) $) 7)) (-1518 (((-836) $) 8) (($ (-623 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) 23))) (((-433) (-138)) (T -433)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-433)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-307 (-371)))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-307 (-371)))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-307 (-535)))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-307 (-535)))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-917 (-371)))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-917 (-371)))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-917 (-535)))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-917 (-535)))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 (-371))))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-400 (-917 (-371))))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 (-535))))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-400 (-917 (-535))))) (-4 *1 (-433))))) -(-13 (-389) (-10 -8 (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -3490 ($ (-1224 (-307 (-371))))) (-15 -3491 ((-3 $ "failed") (-1224 (-307 (-371))))) (-15 -3490 ($ (-1224 (-307 (-535))))) (-15 -3491 ((-3 $ "failed") (-1224 (-307 (-535))))) (-15 -3490 ($ (-1224 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-1224 (-917 (-371))))) (-15 -3490 ($ (-1224 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-1224 (-917 (-535))))) (-15 -3490 ($ (-1224 (-400 (-917 (-371)))))) (-15 -3491 ((-3 $ "failed") (-1224 (-400 (-917 (-371)))))) (-15 -3490 ($ (-1224 (-400 (-917 (-535)))))) (-15 -3491 ((-3 $ "failed") (-1224 (-400 (-917 (-535)))))))) -(((-593 (-835)) . T) ((-389) . T) ((-1178) . T)) -((-1953 (((-112)) 17)) (-1954 (((-112) (-112)) 18)) (-1955 (((-112)) 13)) (-1956 (((-112) (-112)) 14)) (-1958 (((-112)) 15)) (-1959 (((-112) (-112)) 16)) (-1950 (((-890) (-890)) 21) (((-890)) 20)) (-1951 (((-747) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535))))) 42)) (-1949 (((-890) (-890)) 23) (((-890)) 22)) (-1952 (((-2 (|:| -2897 (-535)) (|:| -2758 (-618 |#1|))) |#1|) 62)) (-1948 (((-398 |#1|) (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535))))))) 126)) (-4077 (((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112)) 152)) (-4076 (((-398 |#1|) |#1| (-747) (-747)) 165) (((-398 |#1|) |#1| (-618 (-747)) (-747)) 162) (((-398 |#1|) |#1| (-618 (-747))) 164) (((-398 |#1|) |#1| (-747)) 163) (((-398 |#1|) |#1|) 161)) (-1970 (((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747) (-112)) 167) (((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747)) 168) (((-3 |#1| "failed") (-890) |#1| (-618 (-747))) 170) (((-3 |#1| "failed") (-890) |#1| (-747)) 169) (((-3 |#1| "failed") (-890) |#1|) 171)) (-4075 (((-398 |#1|) |#1| (-747) (-747)) 160) (((-398 |#1|) |#1| (-618 (-747)) (-747)) 156) (((-398 |#1|) |#1| (-618 (-747))) 158) (((-398 |#1|) |#1| (-747)) 157) (((-398 |#1|) |#1|) 155)) (-1957 (((-112) |#1|) 37)) (-1969 (((-713 (-747)) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535))))) 67)) (-1960 (((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112) (-1063 (-747)) (-747)) 154))) -(((-434 |#1|) (-10 -7 (-15 -1948 ((-398 |#1|) (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))))) (-15 -1969 ((-713 (-747)) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))))) (-15 -1949 ((-890))) (-15 -1949 ((-890) (-890))) (-15 -1950 ((-890))) (-15 -1950 ((-890) (-890))) (-15 -1951 ((-747) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))))) (-15 -1952 ((-2 (|:| -2897 (-535)) (|:| -2758 (-618 |#1|))) |#1|)) (-15 -1953 ((-112))) (-15 -1954 ((-112) (-112))) (-15 -1955 ((-112))) (-15 -1956 ((-112) (-112))) (-15 -1957 ((-112) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4075 ((-398 |#1|) |#1| (-747))) (-15 -4075 ((-398 |#1|) |#1| (-618 (-747)))) (-15 -4075 ((-398 |#1|) |#1| (-618 (-747)) (-747))) (-15 -4075 ((-398 |#1|) |#1| (-747) (-747))) (-15 -4076 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1| (-747))) (-15 -4076 ((-398 |#1|) |#1| (-618 (-747)))) (-15 -4076 ((-398 |#1|) |#1| (-618 (-747)) (-747))) (-15 -4076 ((-398 |#1|) |#1| (-747) (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1|)) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747) (-112))) (-15 -4077 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112))) (-15 -1960 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112) (-1063 (-747)) (-747)))) (-1200 (-535))) (T -434)) -((-1960 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1063 (-747))) (-5 *6 (-747)) (-5 *2 (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1970 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-1970 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-1970 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-1970 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-747)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-1970 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-890)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-4076 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-747))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-747))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1955 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1953 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2897 (-535)) (|:| -2758 (-618 *3)))) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -4075 *4) (|:| -4290 (-535))))) (-4 *4 (-1200 (-535))) (-5 *2 (-747)) (-5 *1 (-434 *4)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1950 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1949 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -4075 *4) (|:| -4290 (-535))))) (-4 *4 (-1200 (-535))) (-5 *2 (-713 (-747))) (-5 *1 (-434 *4)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| *4) (|:| -2478 (-535))))))) (-4 *4 (-1200 (-535))) (-5 *2 (-398 *4)) (-5 *1 (-434 *4))))) -(-10 -7 (-15 -1948 ((-398 |#1|) (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))))) (-15 -1969 ((-713 (-747)) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))))) (-15 -1949 ((-890))) (-15 -1949 ((-890) (-890))) (-15 -1950 ((-890))) (-15 -1950 ((-890) (-890))) (-15 -1951 ((-747) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))))) (-15 -1952 ((-2 (|:| -2897 (-535)) (|:| -2758 (-618 |#1|))) |#1|)) (-15 -1953 ((-112))) (-15 -1954 ((-112) (-112))) (-15 -1955 ((-112))) (-15 -1956 ((-112) (-112))) (-15 -1957 ((-112) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4075 ((-398 |#1|) |#1| (-747))) (-15 -4075 ((-398 |#1|) |#1| (-618 (-747)))) (-15 -4075 ((-398 |#1|) |#1| (-618 (-747)) (-747))) (-15 -4075 ((-398 |#1|) |#1| (-747) (-747))) (-15 -4076 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1| (-747))) (-15 -4076 ((-398 |#1|) |#1| (-618 (-747)))) (-15 -4076 ((-398 |#1|) |#1| (-618 (-747)) (-747))) (-15 -4076 ((-398 |#1|) |#1| (-747) (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1|)) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747) (-112))) (-15 -4077 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112))) (-15 -1960 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112) (-1063 (-747)) (-747)))) -((-1964 (((-535) |#2|) 48) (((-535) |#2| (-747)) 47)) (-1963 (((-535) |#2|) 55)) (-1965 ((|#3| |#2|) 25)) (-3450 ((|#3| |#2| (-890)) 14)) (-4176 ((|#3| |#2|) 15)) (-1966 ((|#3| |#2|) 9)) (-2922 ((|#3| |#2|) 10)) (-1962 ((|#3| |#2| (-890)) 62) ((|#3| |#2|) 30)) (-1961 (((-535) |#2|) 57))) -(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1961 ((-535) |#2|)) (-15 -1962 (|#3| |#2|)) (-15 -1962 (|#3| |#2| (-890))) (-15 -1963 ((-535) |#2|)) (-15 -1964 ((-535) |#2| (-747))) (-15 -1964 ((-535) |#2|)) (-15 -3450 (|#3| |#2| (-890))) (-15 -1965 (|#3| |#2|)) (-15 -1966 (|#3| |#2|)) (-15 -2922 (|#3| |#2|)) (-15 -4176 (|#3| |#2|))) (-1018) (-1200 |#1|) (-13 (-397) (-1009 |#1|) (-356) (-1164) (-277))) (T -435)) -((-4176 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-3450 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1200 *5)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))) (-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1200 *5)) (-4 *6 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))))) (-1963 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))) (-1962 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1200 *5)))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-1961 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))))) -(-10 -7 (-15 -1961 ((-535) |#2|)) (-15 -1962 (|#3| |#2|)) (-15 -1962 (|#3| |#2| (-890))) (-15 -1963 ((-535) |#2|)) (-15 -1964 ((-535) |#2| (-747))) (-15 -1964 ((-535) |#2|)) (-15 -3450 (|#3| |#2| (-890))) (-15 -1965 (|#3| |#2|)) (-15 -1966 (|#3| |#2|)) (-15 -2922 (|#3| |#2|)) (-15 -4176 (|#3| |#2|))) -((-3696 ((|#2| (-1224 |#1|)) 36)) (-1968 ((|#2| |#2| |#1|) 49)) (-1967 ((|#2| |#2| |#1|) 41)) (-2369 ((|#2| |#2|) 38)) (-3507 (((-112) |#2|) 30)) (-1971 (((-618 |#2|) (-890) (-398 |#2|)) 17)) (-1970 ((|#2| (-890) (-398 |#2|)) 21)) (-1969 (((-713 (-747)) (-398 |#2|)) 25))) -(((-436 |#1| |#2|) (-10 -7 (-15 -3507 ((-112) |#2|)) (-15 -3696 (|#2| (-1224 |#1|))) (-15 -2369 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#1|)) (-15 -1968 (|#2| |#2| |#1|)) (-15 -1969 ((-713 (-747)) (-398 |#2|))) (-15 -1970 (|#2| (-890) (-398 |#2|))) (-15 -1971 ((-618 |#2|) (-890) (-398 |#2|)))) (-1018) (-1200 |#1|)) (T -436)) -((-1971 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-398 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-1018)) (-5 *2 (-618 *6)) (-5 *1 (-436 *5 *6)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-398 *2)) (-4 *2 (-1200 *5)) (-5 *1 (-436 *5 *2)) (-4 *5 (-1018)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-1018)) (-5 *2 (-713 (-747))) (-5 *1 (-436 *4 *5)))) (-1968 (*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))) (-1967 (*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-1018)) (-4 *2 (-1200 *4)) (-5 *1 (-436 *4 *2)))) (-3507 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -3507 ((-112) |#2|)) (-15 -3696 (|#2| (-1224 |#1|))) (-15 -2369 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#1|)) (-15 -1968 (|#2| |#2| |#1|)) (-15 -1969 ((-713 (-747)) (-398 |#2|))) (-15 -1970 (|#2| (-890) (-398 |#2|))) (-15 -1971 ((-618 |#2|) (-890) (-398 |#2|)))) -((-1974 (((-747)) 41)) (-1978 (((-747)) 23 (|has| |#1| (-397))) (((-747) (-747)) 22 (|has| |#1| (-397)))) (-1977 (((-535) |#1|) 18 (|has| |#1| (-397)))) (-1976 (((-535) |#1|) 20 (|has| |#1| (-397)))) (-1973 (((-747)) 40) (((-747) (-747)) 39)) (-1972 ((|#1| (-747) (-535)) 29)) (-1975 (((-1230)) 43))) -(((-437 |#1|) (-10 -7 (-15 -1972 (|#1| (-747) (-535))) (-15 -1973 ((-747) (-747))) (-15 -1973 ((-747))) (-15 -1974 ((-747))) (-15 -1975 ((-1230))) (IF (|has| |#1| (-397)) (PROGN (-15 -1976 ((-535) |#1|)) (-15 -1977 ((-535) |#1|)) (-15 -1978 ((-747) (-747))) (-15 -1978 ((-747)))) |%noBranch|)) (-1018)) (T -437)) -((-1978 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1977 (*1 *2 *3) (-12 (-5 *2 (-535)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1976 (*1 *2 *3) (-12 (-5 *2 (-535)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1975 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1974 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1973 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-535)) (-5 *1 (-437 *2)) (-4 *2 (-1018))))) -(-10 -7 (-15 -1972 (|#1| (-747) (-535))) (-15 -1973 ((-747) (-747))) (-15 -1973 ((-747))) (-15 -1974 ((-747))) (-15 -1975 ((-1230))) (IF (|has| |#1| (-397)) (PROGN (-15 -1976 ((-535) |#1|)) (-15 -1977 ((-535) |#1|)) (-15 -1978 ((-747) (-747))) (-15 -1978 ((-747)))) |%noBranch|)) -((-1979 (((-618 (-535)) (-535)) 61)) (-4069 (((-112) (-166 (-535))) 65)) (-4075 (((-398 (-166 (-535))) (-166 (-535))) 60))) -(((-438) (-10 -7 (-15 -4075 ((-398 (-166 (-535))) (-166 (-535)))) (-15 -1979 ((-618 (-535)) (-535))) (-15 -4069 ((-112) (-166 (-535)))))) (T -438)) -((-4069 (*1 *2 *3) (-12 (-5 *3 (-166 (-535))) (-5 *2 (-112)) (-5 *1 (-438)))) (-1979 (*1 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-438)) (-5 *3 (-535)))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 (-166 (-535)))) (-5 *1 (-438)) (-5 *3 (-166 (-535)))))) -(-10 -7 (-15 -4075 ((-398 (-166 (-535))) (-166 (-535)))) (-15 -1979 ((-618 (-535)) (-535))) (-15 -4069 ((-112) (-166 (-535))))) -((-3267 ((|#4| |#4| (-618 |#4|)) 22 (|has| |#1| (-356)))) (-2326 (((-618 |#4|) (-618 |#4|) (-1124) (-1124)) 41) (((-618 |#4|) (-618 |#4|) (-1124)) 40) (((-618 |#4|) (-618 |#4|)) 35))) -(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2326 ((-618 |#4|) (-618 |#4|))) (-15 -2326 ((-618 |#4|) (-618 |#4|) (-1124))) (-15 -2326 ((-618 |#4|) (-618 |#4|) (-1124) (-1124))) (IF (|has| |#1| (-356)) (-15 -3267 (|#4| |#4| (-618 |#4|))) |%noBranch|)) (-444) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -439)) -((-3267 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *2)))) (-2326 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2326 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2326 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-439 *3 *4 *5 *6))))) -(-10 -7 (-15 -2326 ((-618 |#4|) (-618 |#4|))) (-15 -2326 ((-618 |#4|) (-618 |#4|) (-1124))) (-15 -2326 ((-618 |#4|) (-618 |#4|) (-1124) (-1124))) (IF (|has| |#1| (-356)) (-15 -3267 (|#4| |#4| (-618 |#4|))) |%noBranch|)) -((-1980 ((|#4| |#4| (-618 |#4|)) 61)) (-1981 (((-618 |#4|) (-618 |#4|) (-1124) (-1124)) 17) (((-618 |#4|) (-618 |#4|) (-1124)) 16) (((-618 |#4|) (-618 |#4|)) 11))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1980 (|#4| |#4| (-618 |#4|))) (-15 -1981 ((-618 |#4|) (-618 |#4|))) (-15 -1981 ((-618 |#4|) (-618 |#4|) (-1124))) (-15 -1981 ((-618 |#4|) (-618 |#4|) (-1124) (-1124)))) (-300) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -440)) -((-1981 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1981 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-440 *3 *4 *5 *6)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *2))))) -(-10 -7 (-15 -1980 (|#4| |#4| (-618 |#4|))) (-15 -1981 ((-618 |#4|) (-618 |#4|))) (-15 -1981 ((-618 |#4|) (-618 |#4|) (-1124))) (-15 -1981 ((-618 |#4|) (-618 |#4|) (-1124) (-1124)))) -((-1983 (((-618 (-618 |#4|)) (-618 |#4|) (-112)) 73) (((-618 (-618 |#4|)) (-618 |#4|)) 72) (((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|) (-112)) 66) (((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|)) 67)) (-1982 (((-618 (-618 |#4|)) (-618 |#4|) (-112)) 42) (((-618 (-618 |#4|)) (-618 |#4|)) 63))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1982 ((-618 (-618 |#4|)) (-618 |#4|))) (-15 -1982 ((-618 (-618 |#4|)) (-618 |#4|) (-112))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|) (-112))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-112)))) (-13 (-300) (-145)) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -441)) -((-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-618 *8)))) (-1983 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-1983 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-618 *8)))) (-1983 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-1982 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-618 *8)))) (-1982 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-618 *7))))) -(-10 -7 (-15 -1982 ((-618 (-618 |#4|)) (-618 |#4|))) (-15 -1982 ((-618 (-618 |#4|)) (-618 |#4|) (-112))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|) (-112))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-112)))) -((-2007 (((-747) |#4|) 12)) (-1995 (((-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))) |#4| (-747) (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|)))) 31)) (-1997 (((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1996 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1985 ((|#4| |#4| (-618 |#4|)) 40)) (-1993 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-618 |#4|)) 70)) (-2000 (((-1230) |#4|) 42)) (-2003 (((-1230) (-618 |#4|)) 51)) (-2001 (((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535)) 48)) (-2004 (((-1230) (-535)) 79)) (-1998 (((-618 |#4|) (-618 |#4|)) 77)) (-2006 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|)) |#4| (-747)) 25)) (-1999 (((-535) |#4|) 78)) (-1994 ((|#4| |#4|) 29)) (-1986 (((-618 |#4|) (-618 |#4|) (-535) (-535)) 56)) (-2002 (((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535) (-535)) 89)) (-2005 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1987 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1992 (((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1991 (((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1988 (((-112) |#2| |#2|) 57)) (-1990 (((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1989 (((-112) |#2| |#2| |#2| |#2|) 60)) (-1984 ((|#4| |#4| (-618 |#4|)) 71))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1984 (|#4| |#4| (-618 |#4|))) (-15 -1985 (|#4| |#4| (-618 |#4|))) (-15 -1986 ((-618 |#4|) (-618 |#4|) (-535) (-535))) (-15 -1987 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1988 ((-112) |#2| |#2|)) (-15 -1989 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1990 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1991 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1992 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-618 |#4|))) (-15 -1994 (|#4| |#4|)) (-15 -1995 ((-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))) |#4| (-747) (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))))) (-15 -1996 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1997 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-618 |#4|) (-618 |#4|))) (-15 -1999 ((-535) |#4|)) (-15 -2000 ((-1230) |#4|)) (-15 -2001 ((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535))) (-15 -2002 ((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535) (-535))) (-15 -2003 ((-1230) (-618 |#4|))) (-15 -2004 ((-1230) (-535))) (-15 -2005 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2006 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|)) |#4| (-747))) (-15 -2007 ((-747) |#4|))) (-444) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -442)) -((-2007 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-747)) (|:| -2115 *4))) (-5 *5 (-747)) (-4 *4 (-921 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-442 *6 *7 *8 *4)))) (-2005 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-769)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-535)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2002 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-769)) (-4 *4 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2001 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-769)) (-4 *4 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2000 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-535)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-618 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-769)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-769)) (-4 *2 (-921 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *4 (-444)) (-4 *6 (-823)))) (-1995 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 *3)))) (-5 *4 (-747)) (-4 *3 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-442 *5 *6 *7 *3)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-921 *3 *4 *5)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-442 *5 *6 *7 *3)))) (-1992 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-769)) (-4 *6 (-921 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-823)) (-5 *1 (-442 *4 *3 *5 *6)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-618 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-769)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1990 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-769)) (-4 *3 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *3)))) (-1989 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-921 *4 *3 *5)))) (-1988 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-921 *4 *3 *5)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-769)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1986 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-535)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1985 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2))))) -(-10 -7 (-15 -1984 (|#4| |#4| (-618 |#4|))) (-15 -1985 (|#4| |#4| (-618 |#4|))) (-15 -1986 ((-618 |#4|) (-618 |#4|) (-535) (-535))) (-15 -1987 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1988 ((-112) |#2| |#2|)) (-15 -1989 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1990 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1991 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1992 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-618 |#4|))) (-15 -1994 (|#4| |#4|)) (-15 -1995 ((-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))) |#4| (-747) (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))))) (-15 -1996 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1997 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-618 |#4|) (-618 |#4|))) (-15 -1999 ((-535) |#4|)) (-15 -2000 ((-1230) |#4|)) (-15 -2001 ((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535))) (-15 -2002 ((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535) (-535))) (-15 -2003 ((-1230) (-618 |#4|))) (-15 -2004 ((-1230) (-535))) (-15 -2005 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2006 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|)) |#4| (-747))) (-15 -2007 ((-747) |#4|))) -((-2008 (($ $ $) 14) (($ (-618 $)) 21)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 41)) (-3478 (($ $ $) NIL) (($ (-618 $)) 22))) -(((-443 |#1|) (-10 -8 (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -2008 (|#1| (-618 |#1|))) (-15 -2008 (|#1| |#1| |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|))) (-444)) (T -443)) -NIL -(-10 -8 (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -2008 (|#1| (-618 |#1|))) (-15 -2008 (|#1| |#1| |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-433)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) (-4 *1 (-433)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1227 (-309 (-372)))) (-4 *1 (-433)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1227 (-309 (-372)))) (-4 *1 (-433)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1227 (-309 (-550)))) (-4 *1 (-433)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1227 (-309 (-550)))) (-4 *1 (-433)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1227 (-925 (-372)))) (-4 *1 (-433)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1227 (-925 (-372)))) (-4 *1 (-433)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1227 (-925 (-550)))) (-4 *1 (-433)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1227 (-925 (-550)))) (-4 *1 (-433)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1227 (-400 (-925 (-372))))) (-4 *1 (-433)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1227 (-400 (-925 (-372))))) (-4 *1 (-433)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1227 (-400 (-925 (-550))))) (-4 *1 (-433)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1227 (-400 (-925 (-550))))) (-4 *1 (-433))))) +(-13 (-388) (-10 -8 (-15 -1518 ($ (-623 (-323)))) (-15 -1518 ($ (-323))) (-15 -1518 ($ (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323)))))) (-15 -2726 ($ (-1227 (-309 (-372))))) (-15 -3880 ((-3 $ "failed") (-1227 (-309 (-372))))) (-15 -2726 ($ (-1227 (-309 (-550))))) (-15 -3880 ((-3 $ "failed") (-1227 (-309 (-550))))) (-15 -2726 ($ (-1227 (-925 (-372))))) (-15 -3880 ((-3 $ "failed") (-1227 (-925 (-372))))) (-15 -2726 ($ (-1227 (-925 (-550))))) (-15 -3880 ((-3 $ "failed") (-1227 (-925 (-550))))) (-15 -2726 ($ (-1227 (-400 (-925 (-372)))))) (-15 -3880 ((-3 $ "failed") (-1227 (-400 (-925 (-372)))))) (-15 -2726 ($ (-1227 (-400 (-925 (-550)))))) (-15 -3880 ((-3 $ "failed") (-1227 (-400 (-925 (-550)))))))) +(((-595 (-836)) . T) ((-388) . T) ((-1181) . T)) +((-2081 (((-112)) 17)) (-3901 (((-112) (-112)) 18)) (-3998 (((-112)) 13)) (-4087 (((-112) (-112)) 14)) (-4262 (((-112)) 15)) (-1297 (((-112) (-112)) 16)) (-1807 (((-894) (-894)) 21) (((-894)) 20)) (-1903 (((-749) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550))))) 42)) (-1701 (((-894) (-894)) 23) (((-894)) 22)) (-1995 (((-2 (|:| -3662 (-550)) (|:| -1877 (-623 |#1|))) |#1|) 62)) (-1604 (((-411 |#1|) (-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550))))))) 126)) (-1433 (((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112)) 152)) (-1338 (((-411 |#1|) |#1| (-749) (-749)) 165) (((-411 |#1|) |#1| (-623 (-749)) (-749)) 162) (((-411 |#1|) |#1| (-623 (-749))) 164) (((-411 |#1|) |#1| (-749)) 163) (((-411 |#1|) |#1|) 161)) (-3161 (((-3 |#1| "failed") (-894) |#1| (-623 (-749)) (-749) (-112)) 167) (((-3 |#1| "failed") (-894) |#1| (-623 (-749)) (-749)) 168) (((-3 |#1| "failed") (-894) |#1| (-623 (-749))) 170) (((-3 |#1| "failed") (-894) |#1| (-749)) 169) (((-3 |#1| "failed") (-894) |#1|) 171)) (-3338 (((-411 |#1|) |#1| (-749) (-749)) 160) (((-411 |#1|) |#1| (-623 (-749)) (-749)) 156) (((-411 |#1|) |#1| (-623 (-749))) 158) (((-411 |#1|) |#1| (-749)) 157) (((-411 |#1|) |#1|) 155)) (-4171 (((-112) |#1|) 37)) (-3062 (((-716 (-749)) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550))))) 67)) (-1397 (((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112) (-1070 (-749)) (-749)) 154))) +(((-434 |#1|) (-10 -7 (-15 -1604 ((-411 |#1|) (-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))))) (-15 -3062 ((-716 (-749)) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))))) (-15 -1701 ((-894))) (-15 -1701 ((-894) (-894))) (-15 -1807 ((-894))) (-15 -1807 ((-894) (-894))) (-15 -1903 ((-749) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))))) (-15 -1995 ((-2 (|:| -3662 (-550)) (|:| -1877 (-623 |#1|))) |#1|)) (-15 -2081 ((-112))) (-15 -3901 ((-112) (-112))) (-15 -3998 ((-112))) (-15 -4087 ((-112) (-112))) (-15 -4171 ((-112) |#1|)) (-15 -4262 ((-112))) (-15 -1297 ((-112) (-112))) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3338 ((-411 |#1|) |#1| (-749))) (-15 -3338 ((-411 |#1|) |#1| (-623 (-749)))) (-15 -3338 ((-411 |#1|) |#1| (-623 (-749)) (-749))) (-15 -3338 ((-411 |#1|) |#1| (-749) (-749))) (-15 -1338 ((-411 |#1|) |#1|)) (-15 -1338 ((-411 |#1|) |#1| (-749))) (-15 -1338 ((-411 |#1|) |#1| (-623 (-749)))) (-15 -1338 ((-411 |#1|) |#1| (-623 (-749)) (-749))) (-15 -1338 ((-411 |#1|) |#1| (-749) (-749))) (-15 -3161 ((-3 |#1| "failed") (-894) |#1|)) (-15 -3161 ((-3 |#1| "failed") (-894) |#1| (-749))) (-15 -3161 ((-3 |#1| "failed") (-894) |#1| (-623 (-749)))) (-15 -3161 ((-3 |#1| "failed") (-894) |#1| (-623 (-749)) (-749))) (-15 -3161 ((-3 |#1| "failed") (-894) |#1| (-623 (-749)) (-749) (-112))) (-15 -1433 ((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112))) (-15 -1397 ((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112) (-1070 (-749)) (-749)))) (-1203 (-550))) (T -434)) +((-1397 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1070 (-749))) (-5 *6 (-749)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| *3) (|:| -4245 (-550))))))) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| *3) (|:| -4245 (-550))))))) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3161 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-894)) (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1203 (-550))))) (-3161 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-894)) (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *1 (-434 *2)) (-4 *2 (-1203 (-550))))) (-3161 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-894)) (-5 *4 (-623 (-749))) (-5 *1 (-434 *2)) (-4 *2 (-1203 (-550))))) (-3161 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-894)) (-5 *4 (-749)) (-5 *1 (-434 *2)) (-4 *2 (-1203 (-550))))) (-3161 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-894)) (-5 *1 (-434 *2)) (-4 *2 (-1203 (-550))))) (-1338 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1338 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1338 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-749))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1338 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3338 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3338 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-749))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1297 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-4262 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-4171 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3998 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-2081 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1995 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3662 (-550)) (|:| -1877 (-623 *3)))) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -3338 *4) (|:| -2970 (-550))))) (-4 *4 (-1203 (-550))) (-5 *2 (-749)) (-5 *1 (-434 *4)))) (-1807 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1807 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-1701 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -3338 *4) (|:| -2970 (-550))))) (-4 *4 (-1203 (-550))) (-5 *2 (-716 (-749))) (-5 *1 (-434 *4)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| *4) (|:| -4245 (-550))))))) (-4 *4 (-1203 (-550))) (-5 *2 (-411 *4)) (-5 *1 (-434 *4))))) +(-10 -7 (-15 -1604 ((-411 |#1|) (-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))))) (-15 -3062 ((-716 (-749)) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))))) (-15 -1701 ((-894))) (-15 -1701 ((-894) (-894))) (-15 -1807 ((-894))) (-15 -1807 ((-894) (-894))) (-15 -1903 ((-749) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))))) (-15 -1995 ((-2 (|:| -3662 (-550)) (|:| -1877 (-623 |#1|))) |#1|)) (-15 -2081 ((-112))) (-15 -3901 ((-112) (-112))) (-15 -3998 ((-112))) (-15 -4087 ((-112) (-112))) (-15 -4171 ((-112) |#1|)) (-15 -4262 ((-112))) (-15 -1297 ((-112) (-112))) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3338 ((-411 |#1|) |#1| (-749))) (-15 -3338 ((-411 |#1|) |#1| (-623 (-749)))) (-15 -3338 ((-411 |#1|) |#1| (-623 (-749)) (-749))) (-15 -3338 ((-411 |#1|) |#1| (-749) (-749))) (-15 -1338 ((-411 |#1|) |#1|)) (-15 -1338 ((-411 |#1|) |#1| (-749))) (-15 -1338 ((-411 |#1|) |#1| (-623 (-749)))) (-15 -1338 ((-411 |#1|) |#1| (-623 (-749)) (-749))) (-15 -1338 ((-411 |#1|) |#1| (-749) (-749))) (-15 -3161 ((-3 |#1| "failed") (-894) |#1|)) (-15 -3161 ((-3 |#1| "failed") (-894) |#1| (-749))) (-15 -3161 ((-3 |#1| "failed") (-894) |#1| (-623 (-749)))) (-15 -3161 ((-3 |#1| "failed") (-894) |#1| (-623 (-749)) (-749))) (-15 -3161 ((-3 |#1| "failed") (-894) |#1| (-623 (-749)) (-749) (-112))) (-15 -1433 ((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112))) (-15 -1397 ((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112) (-1070 (-749)) (-749)))) +((-3795 (((-550) |#2|) 48) (((-550) |#2| (-749)) 47)) (-3738 (((-550) |#2|) 55)) (-2699 ((|#3| |#2|) 25)) (-1389 ((|#3| |#2| (-894)) 14)) (-3772 ((|#3| |#2|) 15)) (-2788 ((|#3| |#2|) 9)) (-3142 ((|#3| |#2|) 10)) (-3643 ((|#3| |#2| (-894)) 62) ((|#3| |#2|) 30)) (-3556 (((-550) |#2|) 57))) +(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3556 ((-550) |#2|)) (-15 -3643 (|#3| |#2|)) (-15 -3643 (|#3| |#2| (-894))) (-15 -3738 ((-550) |#2|)) (-15 -3795 ((-550) |#2| (-749))) (-15 -3795 ((-550) |#2|)) (-15 -1389 (|#3| |#2| (-894))) (-15 -2699 (|#3| |#2|)) (-15 -2788 (|#3| |#2|)) (-15 -3142 (|#3| |#2|)) (-15 -3772 (|#3| |#2|))) (-1020) (-1203 |#1|) (-13 (-397) (-1011 |#1|) (-356) (-1166) (-277))) (T -435)) +((-3772 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4)))) (-3142 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4)))) (-2788 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *4 (-894)) (-4 *5 (-1020)) (-4 *2 (-13 (-397) (-1011 *5) (-356) (-1166) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1203 *5)))) (-3795 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1203 *4)) (-4 *5 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))))) (-3795 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-1020)) (-5 *2 (-550)) (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1203 *5)) (-4 *6 (-13 (-397) (-1011 *5) (-356) (-1166) (-277))))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1203 *4)) (-4 *5 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-894)) (-4 *5 (-1020)) (-4 *2 (-13 (-397) (-1011 *5) (-356) (-1166) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1203 *5)))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4)))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1203 *4)) (-4 *5 (-13 (-397) (-1011 *4) (-356) (-1166) (-277)))))) +(-10 -7 (-15 -3556 ((-550) |#2|)) (-15 -3643 (|#3| |#2|)) (-15 -3643 (|#3| |#2| (-894))) (-15 -3738 ((-550) |#2|)) (-15 -3795 ((-550) |#2| (-749))) (-15 -3795 ((-550) |#2|)) (-15 -1389 (|#3| |#2| (-894))) (-15 -2699 (|#3| |#2|)) (-15 -2788 (|#3| |#2|)) (-15 -3142 (|#3| |#2|)) (-15 -3772 (|#3| |#2|))) +((-2533 ((|#2| (-1227 |#1|)) 36)) (-2978 ((|#2| |#2| |#1|) 49)) (-2897 ((|#2| |#2| |#1|) 41)) (-3243 ((|#2| |#2|) 38)) (-1590 (((-112) |#2|) 30)) (-3233 (((-623 |#2|) (-894) (-411 |#2|)) 17)) (-3161 ((|#2| (-894) (-411 |#2|)) 21)) (-3062 (((-716 (-749)) (-411 |#2|)) 25))) +(((-436 |#1| |#2|) (-10 -7 (-15 -1590 ((-112) |#2|)) (-15 -2533 (|#2| (-1227 |#1|))) (-15 -3243 (|#2| |#2|)) (-15 -2897 (|#2| |#2| |#1|)) (-15 -2978 (|#2| |#2| |#1|)) (-15 -3062 ((-716 (-749)) (-411 |#2|))) (-15 -3161 (|#2| (-894) (-411 |#2|))) (-15 -3233 ((-623 |#2|) (-894) (-411 |#2|)))) (-1020) (-1203 |#1|)) (T -436)) +((-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-411 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-1020)) (-5 *2 (-623 *6)) (-5 *1 (-436 *5 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-411 *2)) (-4 *2 (-1203 *5)) (-5 *1 (-436 *5 *2)) (-4 *5 (-1020)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-411 *5)) (-4 *5 (-1203 *4)) (-4 *4 (-1020)) (-5 *2 (-716 (-749))) (-5 *1 (-436 *4 *5)))) (-2978 (*1 *2 *2 *3) (-12 (-4 *3 (-1020)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1203 *3)))) (-2897 (*1 *2 *2 *3) (-12 (-4 *3 (-1020)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1203 *3)))) (-3243 (*1 *2 *2) (-12 (-4 *3 (-1020)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1203 *3)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1227 *4)) (-4 *4 (-1020)) (-4 *2 (-1203 *4)) (-5 *1 (-436 *4 *2)))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -1590 ((-112) |#2|)) (-15 -2533 (|#2| (-1227 |#1|))) (-15 -3243 (|#2| |#2|)) (-15 -2897 (|#2| |#2| |#1|)) (-15 -2978 (|#2| |#2| |#1|)) (-15 -3062 ((-716 (-749)) (-411 |#2|))) (-15 -3161 (|#2| (-894) (-411 |#2|))) (-15 -3233 ((-623 |#2|) (-894) (-411 |#2|)))) +((-2365 (((-749)) 41)) (-2663 (((-749)) 23 (|has| |#1| (-397))) (((-749) (-749)) 22 (|has| |#1| (-397)))) (-2590 (((-550) |#1|) 18 (|has| |#1| (-397)))) (-2519 (((-550) |#1|) 20 (|has| |#1| (-397)))) (-2284 (((-749)) 40) (((-749) (-749)) 39)) (-2215 ((|#1| (-749) (-550)) 29)) (-2443 (((-1232)) 43))) +(((-437 |#1|) (-10 -7 (-15 -2215 (|#1| (-749) (-550))) (-15 -2284 ((-749) (-749))) (-15 -2284 ((-749))) (-15 -2365 ((-749))) (-15 -2443 ((-1232))) (IF (|has| |#1| (-397)) (PROGN (-15 -2519 ((-550) |#1|)) (-15 -2590 ((-550) |#1|)) (-15 -2663 ((-749) (-749))) (-15 -2663 ((-749)))) |%noBranch|)) (-1020)) (T -437)) +((-2663 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1020)))) (-2663 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1020)))) (-2590 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1020)))) (-2519 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1020)))) (-2443 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-437 *3)) (-4 *3 (-1020)))) (-2365 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1020)))) (-2284 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1020)))) (-2284 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1020)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-550)) (-5 *1 (-437 *2)) (-4 *2 (-1020))))) +(-10 -7 (-15 -2215 (|#1| (-749) (-550))) (-15 -2284 ((-749) (-749))) (-15 -2284 ((-749))) (-15 -2365 ((-749))) (-15 -2443 ((-1232))) (IF (|has| |#1| (-397)) (PROGN (-15 -2519 ((-550) |#1|)) (-15 -2590 ((-550) |#1|)) (-15 -2663 ((-749) (-749))) (-15 -2663 ((-749)))) |%noBranch|)) +((-1589 (((-623 (-550)) (-550)) 61)) (-3933 (((-112) (-167 (-550))) 65)) (-3338 (((-411 (-167 (-550))) (-167 (-550))) 60))) +(((-438) (-10 -7 (-15 -3338 ((-411 (-167 (-550))) (-167 (-550)))) (-15 -1589 ((-623 (-550)) (-550))) (-15 -3933 ((-112) (-167 (-550)))))) (T -438)) +((-3933 (*1 *2 *3) (-12 (-5 *3 (-167 (-550))) (-5 *2 (-112)) (-5 *1 (-438)))) (-1589 (*1 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-438)) (-5 *3 (-550)))) (-3338 (*1 *2 *3) (-12 (-5 *2 (-411 (-167 (-550)))) (-5 *1 (-438)) (-5 *3 (-167 (-550)))))) +(-10 -7 (-15 -3338 ((-411 (-167 (-550))) (-167 (-550)))) (-15 -1589 ((-623 (-550)) (-550))) (-15 -3933 ((-112) (-167 (-550))))) +((-1685 ((|#4| |#4| (-623 |#4|)) 61)) (-1791 (((-623 |#4|) (-623 |#4|) (-1126) (-1126)) 17) (((-623 |#4|) (-623 |#4|) (-1126)) 16) (((-623 |#4|) (-623 |#4|)) 11))) +(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1685 (|#4| |#4| (-623 |#4|))) (-15 -1791 ((-623 |#4|) (-623 |#4|))) (-15 -1791 ((-623 |#4|) (-623 |#4|) (-1126))) (-15 -1791 ((-623 |#4|) (-623 |#4|) (-1126) (-1126)))) (-300) (-771) (-825) (-922 |#1| |#2| |#3|)) (T -439)) +((-1791 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-1126)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) (-1791 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-1126)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) (-1791 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-439 *3 *4 *5 *6)))) (-1685 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *2))))) +(-10 -7 (-15 -1685 (|#4| |#4| (-623 |#4|))) (-15 -1791 ((-623 |#4|) (-623 |#4|))) (-15 -1791 ((-623 |#4|) (-623 |#4|) (-1126))) (-15 -1791 ((-623 |#4|) (-623 |#4|) (-1126) (-1126)))) +((-1979 (((-623 (-623 |#4|)) (-623 |#4|) (-112)) 73) (((-623 (-623 |#4|)) (-623 |#4|)) 72) (((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|) (-112)) 66) (((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|)) 67)) (-1887 (((-623 (-623 |#4|)) (-623 |#4|) (-112)) 42) (((-623 (-623 |#4|)) (-623 |#4|)) 63))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1887 ((-623 (-623 |#4|)) (-623 |#4|))) (-15 -1887 ((-623 (-623 |#4|)) (-623 |#4|) (-112))) (-15 -1979 ((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|))) (-15 -1979 ((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|) (-112))) (-15 -1979 ((-623 (-623 |#4|)) (-623 |#4|))) (-15 -1979 ((-623 (-623 |#4|)) (-623 |#4|) (-112)))) (-13 (-300) (-145)) (-771) (-825) (-922 |#1| |#2| |#3|)) (T -440)) +((-1979 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-922 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) (-1979 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-1979 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-922 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) (-1979 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-1887 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-922 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) (-1887 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) +(-10 -7 (-15 -1887 ((-623 (-623 |#4|)) (-623 |#4|))) (-15 -1887 ((-623 (-623 |#4|)) (-623 |#4|) (-112))) (-15 -1979 ((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|))) (-15 -1979 ((-623 (-623 |#4|)) (-623 |#4|) (-623 |#4|) (-112))) (-15 -1979 ((-623 (-623 |#4|)) (-623 |#4|))) (-15 -1979 ((-623 (-623 |#4|)) (-623 |#4|) (-112)))) +((-2289 (((-749) |#4|) 12)) (-3597 (((-623 (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|))) |#4| (-749) (-623 (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|)))) 31)) (-3762 (((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3682 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3910 ((|#4| |#4| (-623 |#4|)) 40)) (-3414 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-623 |#4|)) 70)) (-2833 (((-1232) |#4|) 42)) (-3069 (((-1232) (-623 |#4|)) 51)) (-2914 (((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550)) 48)) (-3154 (((-1232) (-550)) 79)) (-3843 (((-623 |#4|) (-623 |#4|)) 77)) (-2221 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|)) |#4| (-749)) 25)) (-2742 (((-550) |#4|) 78)) (-3510 ((|#4| |#4|) 29)) (-3994 (((-623 |#4|) (-623 |#4|) (-550) (-550)) 56)) (-2991 (((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550)) 89)) (-3241 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-4083 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3310 (((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1403 (((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-4168 (((-112) |#2| |#2|) 57)) (-1307 (((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-4265 (((-112) |#2| |#2| |#2| |#2|) 60)) (-2075 ((|#4| |#4| (-623 |#4|)) 71))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2075 (|#4| |#4| (-623 |#4|))) (-15 -3910 (|#4| |#4| (-623 |#4|))) (-15 -3994 ((-623 |#4|) (-623 |#4|) (-550) (-550))) (-15 -4083 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4168 ((-112) |#2| |#2|)) (-15 -4265 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1307 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1403 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3310 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3414 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-623 |#4|))) (-15 -3510 (|#4| |#4|)) (-15 -3597 ((-623 (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|))) |#4| (-749) (-623 (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|))))) (-15 -3682 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3762 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3843 ((-623 |#4|) (-623 |#4|))) (-15 -2742 ((-550) |#4|)) (-15 -2833 ((-1232) |#4|)) (-15 -2914 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550))) (-15 -2991 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550))) (-15 -3069 ((-1232) (-623 |#4|))) (-15 -3154 ((-1232) (-550))) (-15 -3241 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2221 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|)) |#4| (-749))) (-15 -2289 ((-749) |#4|))) (-444) (-771) (-825) (-922 |#1| |#2| |#3|)) (T -441)) +((-2289 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6)))) (-2221 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-749)) (|:| -2739 *4))) (-5 *5 (-749)) (-4 *4 (-922 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-441 *6 *7 *8 *4)))) (-3241 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-771)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1232)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-922 *4 *5 *6)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1232)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2991 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-771)) (-4 *4 (-922 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) (-5 *1 (-441 *5 *6 *7 *4)))) (-2914 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-771)) (-4 *4 (-922 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) (-5 *1 (-441 *5 *6 *7 *4)))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1232)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6)))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-550)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *6)))) (-3762 (*1 *2 *2 *2) (-12 (-5 *2 (-623 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-771)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *6)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-771)) (-4 *2 (-922 *4 *5 *6)) (-5 *1 (-441 *4 *5 *6 *2)) (-4 *4 (-444)) (-4 *6 (-825)))) (-3597 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-623 (-2 (|:| |totdeg| (-749)) (|:| -2739 *3)))) (-5 *4 (-749)) (-4 *3 (-922 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-441 *5 *6 *7 *3)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-922 *3 *4 *5)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-922 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-441 *5 *6 *7 *3)))) (-3310 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-771)) (-4 *6 (-922 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-825)) (-5 *1 (-441 *4 *3 *5 *6)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-623 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-771)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1307 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-771)) (-4 *3 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *3)))) (-4265 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-922 *4 *3 *5)))) (-4168 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-922 *4 *3 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-771)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3994 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-550)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *2)))) (-2075 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *2))))) +(-10 -7 (-15 -2075 (|#4| |#4| (-623 |#4|))) (-15 -3910 (|#4| |#4| (-623 |#4|))) (-15 -3994 ((-623 |#4|) (-623 |#4|) (-550) (-550))) (-15 -4083 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4168 ((-112) |#2| |#2|)) (-15 -4265 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1307 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1403 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3310 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3414 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-623 |#4|))) (-15 -3510 (|#4| |#4|)) (-15 -3597 ((-623 (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|))) |#4| (-749) (-623 (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|))))) (-15 -3682 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3762 ((-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-623 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3843 ((-623 |#4|) (-623 |#4|))) (-15 -2742 ((-550) |#4|)) (-15 -2833 ((-1232) |#4|)) (-15 -2914 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550))) (-15 -2991 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550))) (-15 -3069 ((-1232) (-623 |#4|))) (-15 -3154 ((-1232) (-550))) (-15 -3241 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2221 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2739 |#4|)) |#4| (-749))) (-15 -2289 ((-749) |#4|))) +((-3497 ((|#4| |#4| (-623 |#4|)) 22 (|has| |#1| (-356)))) (-3017 (((-623 |#4|) (-623 |#4|) (-1126) (-1126)) 41) (((-623 |#4|) (-623 |#4|) (-1126)) 40) (((-623 |#4|) (-623 |#4|)) 35))) +(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3017 ((-623 |#4|) (-623 |#4|))) (-15 -3017 ((-623 |#4|) (-623 |#4|) (-1126))) (-15 -3017 ((-623 |#4|) (-623 |#4|) (-1126) (-1126))) (IF (|has| |#1| (-356)) (-15 -3497 (|#4| |#4| (-623 |#4|))) |%noBranch|)) (-444) (-771) (-825) (-922 |#1| |#2| |#3|)) (T -442)) +((-3497 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2)))) (-3017 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-1126)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3017 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-1126)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6))))) +(-10 -7 (-15 -3017 ((-623 |#4|) (-623 |#4|))) (-15 -3017 ((-623 |#4|) (-623 |#4|) (-1126))) (-15 -3017 ((-623 |#4|) (-623 |#4|) (-1126) (-1126))) (IF (|has| |#1| (-356)) (-15 -3497 (|#4| |#4| (-623 |#4|))) |%noBranch|)) +((-3106 (($ $ $) 14) (($ (-623 $)) 21)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 41)) (-3139 (($ $ $) NIL) (($ (-623 $)) 22))) +(((-443 |#1|) (-10 -8 (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|))) (-15 -3106 (|#1| (-623 |#1|))) (-15 -3106 (|#1| |#1| |#1|)) (-15 -3139 (|#1| (-623 |#1|))) (-15 -3139 (|#1| |#1| |#1|))) (-444)) (T -443)) +NIL +(-10 -8 (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|))) (-15 -3106 (|#1| (-623 |#1|))) (-15 -3106 (|#1| |#1| |#1|)) (-15 -3139 (|#1| (-623 |#1|))) (-15 -3139 (|#1| |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-1495 (((-3 $ "failed") $ $) 40)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-444) (-138)) (T -444)) -((-3478 (*1 *1 *1 *1) (-4 *1 (-444))) (-3478 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-444)))) (-2008 (*1 *1 *1 *1) (-4 *1 (-444))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-444)))) (-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-444))))) -(-13 (-542) (-10 -8 (-15 -3478 ($ $ $)) (-15 -3478 ($ (-618 $))) (-15 -2008 ($ $ $)) (-15 -2008 ($ (-618 $))) (-15 -3029 ((-1136 $) (-1136 $) (-1136 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 (-400 (-917 |#1|)))) (-1224 $)) NIL) (((-1224 (-665 (-400 (-917 |#1|))))) NIL)) (-1840 (((-1224 $)) NIL)) (-3879 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed")) NIL)) (-1814 (((-3 $ #1#)) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-1902 (((-665 (-400 (-917 |#1|))) (-1224 $)) NIL) (((-665 (-400 (-917 |#1|)))) NIL)) (-1838 (((-400 (-917 |#1|)) $) NIL)) (-1900 (((-665 (-400 (-917 |#1|))) $ (-1224 $)) NIL) (((-665 (-400 (-917 |#1|))) $) NIL)) (-2487 (((-3 $ #1#) $) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-2017 (((-1136 (-917 (-400 (-917 |#1|))))) NIL (|has| (-400 (-917 |#1|)) (-356))) (((-1136 (-400 (-917 |#1|)))) 84 (|has| |#1| (-542)))) (-2490 (($ $ (-890)) NIL)) (-1836 (((-400 (-917 |#1|)) $) NIL)) (-1816 (((-1136 (-400 (-917 |#1|))) $) 82 (|has| (-400 (-917 |#1|)) (-542)))) (-1904 (((-400 (-917 |#1|)) (-1224 $)) NIL) (((-400 (-917 |#1|))) NIL)) (-1834 (((-1136 (-400 (-917 |#1|))) $) NIL)) (-1828 (((-112)) NIL)) (-1906 (($ (-1224 (-400 (-917 |#1|))) (-1224 $)) 103) (($ (-1224 (-400 (-917 |#1|)))) NIL)) (-3804 (((-3 $ #1#) $) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-3427 (((-890)) NIL)) (-1825 (((-112)) NIL)) (-2515 (($ $ (-890)) NIL)) (-1821 (((-112)) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) NIL)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed")) NIL)) (-1815 (((-3 $ #1#)) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-1903 (((-665 (-400 (-917 |#1|))) (-1224 $)) NIL) (((-665 (-400 (-917 |#1|)))) NIL)) (-1839 (((-400 (-917 |#1|)) $) NIL)) (-1901 (((-665 (-400 (-917 |#1|))) $ (-1224 $)) NIL) (((-665 (-400 (-917 |#1|))) $) NIL)) (-2488 (((-3 $ #1#) $) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-2021 (((-1136 (-917 (-400 (-917 |#1|))))) NIL (|has| (-400 (-917 |#1|)) (-356))) (((-1136 (-400 (-917 |#1|)))) 83 (|has| |#1| (-542)))) (-2489 (($ $ (-890)) NIL)) (-1837 (((-400 (-917 |#1|)) $) NIL)) (-1817 (((-1136 (-400 (-917 |#1|))) $) 77 (|has| (-400 (-917 |#1|)) (-542)))) (-1905 (((-400 (-917 |#1|)) (-1224 $)) NIL) (((-400 (-917 |#1|))) NIL)) (-1835 (((-1136 (-400 (-917 |#1|))) $) NIL)) (-1829 (((-112)) NIL)) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) NIL)) (-1822 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-3577 (((-1086) $) NIL)) (-2011 (((-400 (-917 |#1|)) $ $) 71 (|has| |#1| (-542)))) (-2015 (((-400 (-917 |#1|)) $) 93 (|has| |#1| (-542)))) (-2014 (((-400 (-917 |#1|)) $) 95 (|has| |#1| (-542)))) (-2016 (((-1136 (-400 (-917 |#1|))) $) 88 (|has| |#1| (-542)))) (-2010 (((-400 (-917 |#1|))) 72 (|has| |#1| (-542)))) (-2013 (((-400 (-917 |#1|)) $ $) 64 (|has| |#1| (-542)))) (-2019 (((-400 (-917 |#1|)) $) 92 (|has| |#1| (-542)))) (-2018 (((-400 (-917 |#1|)) $) 94 (|has| |#1| (-542)))) (-2020 (((-1136 (-400 (-917 |#1|))) $) 87 (|has| |#1| (-542)))) (-2012 (((-400 (-917 |#1|))) 68 (|has| |#1| (-542)))) (-2022 (($) 101) (($ (-1142)) 107) (($ (-1224 (-1142))) 106) (($ (-1224 $)) 96) (($ (-1142) (-1224 $)) 105) (($ (-1224 (-1142)) (-1224 $)) 104)) (-1827 (((-112)) NIL)) (-4142 (((-400 (-917 |#1|)) $ (-535)) NIL)) (-3558 (((-1224 (-400 (-917 |#1|))) $ (-1224 $)) 98) (((-665 (-400 (-917 |#1|))) (-1224 $) (-1224 $)) NIL) (((-1224 (-400 (-917 |#1|))) $) 40) (((-665 (-400 (-917 |#1|))) (-1224 $)) NIL)) (-4313 (((-1224 (-400 (-917 |#1|))) $) NIL) (($ (-1224 (-400 (-917 |#1|)))) 37)) (-2009 (((-618 (-917 (-400 (-917 |#1|)))) (-1224 $)) NIL) (((-618 (-917 (-400 (-917 |#1|))))) NIL) (((-618 (-917 |#1|)) (-1224 $)) 99 (|has| |#1| (-542))) (((-618 (-917 |#1|))) 100 (|has| |#1| (-542)))) (-2677 (($ $ $) NIL)) (-1833 (((-112)) NIL)) (-4300 (((-835) $) NIL) (($ (-1224 (-400 (-917 |#1|)))) NIL)) (-2123 (((-1224 $)) 60)) (-1818 (((-618 (-1224 (-400 (-917 |#1|))))) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) NIL)) (-2871 (($ (-665 (-400 (-917 |#1|))) $) NIL)) (-2676 (($ $ $) NIL)) (-1832 (((-112)) NIL)) (-1830 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) 97)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 56) (($ $ (-400 (-917 |#1|))) NIL) (($ (-400 (-917 |#1|)) $) NIL) (($ (-1108 |#2| (-400 (-917 |#1|))) $) NIL))) -(((-445 |#1| |#2| |#3| |#4|) (-13 (-411 (-400 (-917 |#1|))) (-624 (-1108 |#2| (-400 (-917 |#1|)))) (-10 -8 (-15 -4300 ($ (-1224 (-400 (-917 |#1|))))) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2022 ($)) (-15 -2022 ($ (-1142))) (-15 -2022 ($ (-1224 (-1142)))) (-15 -2022 ($ (-1224 $))) (-15 -2022 ($ (-1142) (-1224 $))) (-15 -2022 ($ (-1224 (-1142)) (-1224 $))) (IF (|has| |#1| (-542)) (PROGN (-15 -2021 ((-1136 (-400 (-917 |#1|))))) (-15 -2020 ((-1136 (-400 (-917 |#1|))) $)) (-15 -2019 ((-400 (-917 |#1|)) $)) (-15 -2018 ((-400 (-917 |#1|)) $)) (-15 -2017 ((-1136 (-400 (-917 |#1|))))) (-15 -2016 ((-1136 (-400 (-917 |#1|))) $)) (-15 -2015 ((-400 (-917 |#1|)) $)) (-15 -2014 ((-400 (-917 |#1|)) $)) (-15 -2013 ((-400 (-917 |#1|)) $ $)) (-15 -2012 ((-400 (-917 |#1|)))) (-15 -2011 ((-400 (-917 |#1|)) $ $)) (-15 -2010 ((-400 (-917 |#1|)))) (-15 -2009 ((-618 (-917 |#1|)) (-1224 $))) (-15 -2009 ((-618 (-917 |#1|))))) |%noBranch|))) (-170) (-890) (-618 (-1142)) (-1224 (-665 |#1|))) (T -445)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 *3)))) (-4 *3 (-170)) (-14 *6 (-1224 (-665 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))))) (-2024 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2123 (-618 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2023 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2123 (-618 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2022 (*1 *1) (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-890)) (-14 *4 (-618 (-1142))) (-14 *5 (-1224 (-665 *2))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 *2)) (-14 *6 (-1224 (-665 *3))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1224 (-1142))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1224 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-890)) (-14 *6 (-618 *2)) (-14 *7 (-1224 (-665 *4))))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 (-1142))) (-5 *3 (-1224 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-890)) (-14 *6 (-618 (-1142))) (-14 *7 (-1224 (-665 *4))))) (-2021 (*1 *2) (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2017 (*1 *2) (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2013 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2012 (*1 *2) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2011 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2010 (*1 *2) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1224 (-445 *4 *5 *6 *7))) (-5 *2 (-618 (-917 *4))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *4 (-170)) (-14 *5 (-890)) (-14 *6 (-618 (-1142))) (-14 *7 (-1224 (-665 *4))))) (-2009 (*1 *2) (-12 (-5 *2 (-618 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3)))))) -(-13 (-411 (-400 (-917 |#1|))) (-624 (-1108 |#2| (-400 (-917 |#1|)))) (-10 -8 (-15 -4300 ($ (-1224 (-400 (-917 |#1|))))) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2022 ($)) (-15 -2022 ($ (-1142))) (-15 -2022 ($ (-1224 (-1142)))) (-15 -2022 ($ (-1224 $))) (-15 -2022 ($ (-1142) (-1224 $))) (-15 -2022 ($ (-1224 (-1142)) (-1224 $))) (IF (|has| |#1| (-542)) (PROGN (-15 -2021 ((-1136 (-400 (-917 |#1|))))) (-15 -2020 ((-1136 (-400 (-917 |#1|))) $)) (-15 -2019 ((-400 (-917 |#1|)) $)) (-15 -2018 ((-400 (-917 |#1|)) $)) (-15 -2017 ((-1136 (-400 (-917 |#1|))))) (-15 -2016 ((-1136 (-400 (-917 |#1|))) $)) (-15 -2015 ((-400 (-917 |#1|)) $)) (-15 -2014 ((-400 (-917 |#1|)) $)) (-15 -2013 ((-400 (-917 |#1|)) $ $)) (-15 -2012 ((-400 (-917 |#1|)))) (-15 -2011 ((-400 (-917 |#1|)) $ $)) (-15 -2010 ((-400 (-917 |#1|)))) (-15 -2009 ((-618 (-917 |#1|)) (-1224 $))) (-15 -2009 ((-618 (-917 |#1|))))) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 13)) (-3405 (((-618 (-836 |#1|)) $) 75)) (-3407 (((-1136 $) $ (-836 |#1|)) 46) (((-1136 |#2|) $) 118)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) 21) (((-747) $ (-618 (-836 |#1|))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) 44) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-836 |#1|) #2#) $) NIL)) (-3490 ((|#2| $) 42) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-836 |#1|) $) NIL)) (-4099 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-618 (-535))) 80)) (-4302 (($ $) 68)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| |#3| $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) 58)) (-3408 (($ (-1136 |#2|) (-836 |#1|)) 123) (($ (-1136 $) (-836 |#1|)) 52)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) 59)) (-3214 (($ |#2| |#3|) 28) (($ $ (-836 |#1|) (-747)) 30) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-836 |#1|)) NIL)) (-3141 ((|#3| $) NIL) (((-747) $ (-836 |#1|)) 50) (((-618 (-747)) $ (-618 (-836 |#1|))) 57)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 |#3| |#3|) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-3406 (((-3 (-836 |#1|) #3="failed") $) 39)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) 41)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 40)) (-1910 ((|#2| $) 116)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) 128 (|has| |#2| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-836 |#1|) |#2|) 87) (($ $ (-618 (-836 |#1|)) (-618 |#2|)) 90) (($ $ (-836 |#1|) $) 85) (($ $ (-618 (-836 |#1|)) (-618 $)) 106)) (-4100 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-836 |#1|)) 53) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4290 ((|#3| $) 67) (((-747) $ (-836 |#1|)) 37) (((-618 (-747)) $ (-618 (-836 |#1|))) 56)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-836 |#1|) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) 125 (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) 145) (($ (-535)) NIL) (($ |#2|) 86) (($ (-836 |#1|)) 31) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#2| (-542)))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ |#3|) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) 17 T CONST)) (-2985 (($) 25 T CONST)) (-2990 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) 64 (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 111)) (** (($ $ (-890)) NIL) (($ $ (-747)) 109)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 29) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-446 |#1| |#2| |#3|) (-13 (-921 |#2| |#3| (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) (-618 (-1142)) (-1018) (-232 (-4299 |#1|) (-747))) (T -446)) -((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-14 *3 (-618 (-1142))) (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-232 (-4299 *3) (-747)))))) -(-13 (-921 |#2| |#3| (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) -((-2028 (((-112) |#1| (-618 |#2|)) 69)) (-2026 (((-3 (-1224 (-618 |#2|)) "failed") (-747) |#1| (-618 |#2|)) 78)) (-2027 (((-3 (-618 |#2|) "failed") |#2| |#1| (-1224 (-618 |#2|))) 80)) (-2145 ((|#2| |#2| |#1|) 28)) (-2025 (((-747) |#2| (-618 |#2|)) 20))) -(((-447 |#1| |#2|) (-10 -7 (-15 -2145 (|#2| |#2| |#1|)) (-15 -2025 ((-747) |#2| (-618 |#2|))) (-15 -2026 ((-3 (-1224 (-618 |#2|)) "failed") (-747) |#1| (-618 |#2|))) (-15 -2027 ((-3 (-618 |#2|) "failed") |#2| |#1| (-1224 (-618 |#2|)))) (-15 -2028 ((-112) |#1| (-618 |#2|)))) (-300) (-1200 |#1|)) (T -447)) -((-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *5)) (-4 *5 (-1200 *3)) (-4 *3 (-300)) (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))) (-2027 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1224 (-618 *3))) (-4 *4 (-300)) (-5 *2 (-618 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1200 *4)))) (-2026 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-300)) (-4 *6 (-1200 *4)) (-5 *2 (-1224 (-618 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-618 *6)))) (-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-300)) (-5 *2 (-747)) (-5 *1 (-447 *5 *3)))) (-2145 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1200 *3))))) -(-10 -7 (-15 -2145 (|#2| |#2| |#1|)) (-15 -2025 ((-747) |#2| (-618 |#2|))) (-15 -2026 ((-3 (-1224 (-618 |#2|)) "failed") (-747) |#1| (-618 |#2|))) (-15 -2027 ((-3 (-618 |#2|) "failed") |#2| |#1| (-1224 (-618 |#2|)))) (-15 -2028 ((-112) |#1| (-618 |#2|)))) -((-4075 (((-398 |#5|) |#5|) 24))) -(((-448 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4075 ((-398 |#5|) |#5|))) (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))) (-769) (-542) (-542) (-921 |#4| |#2| |#1|)) (T -448)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142)))))) (-4 *5 (-769)) (-4 *7 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-542)) (-4 *3 (-921 *7 *5 *4))))) -(-10 -7 (-15 -4075 ((-398 |#5|) |#5|))) -((-3021 ((|#3|) 37)) (-3029 (((-1136 |#4|) (-1136 |#4|) (-1136 |#4|)) 33))) -(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3029 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3021 (|#3|))) (-769) (-823) (-881) (-921 |#3| |#1| |#2|)) (T -449)) -((-3021 (*1 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-881)) (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-921 *2 *3 *4)))) (-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-881)) (-5 *1 (-449 *3 *4 *5 *6))))) -(-10 -7 (-15 -3029 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3021 (|#3|))) -((-4075 (((-398 (-1136 |#1|)) (-1136 |#1|)) 43))) -(((-450 |#1|) (-10 -7 (-15 -4075 ((-398 (-1136 |#1|)) (-1136 |#1|)))) (-300)) (T -450)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-398 (-1136 *4))) (-5 *1 (-450 *4)) (-5 *3 (-1136 *4))))) -(-10 -7 (-15 -4075 ((-398 (-1136 |#1|)) (-1136 |#1|)))) -((-4072 (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-747))) 42) (((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-747))) 41) (((-51) |#2| (-1142) (-286 |#2|)) 35) (((-51) (-1 |#2| (-535)) (-286 |#2|)) 28)) (-4161 (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))) 80) (((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))) 79) (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535))) 78) (((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535))) 77) (((-51) |#2| (-1142) (-286 |#2|)) 72) (((-51) (-1 |#2| (-535)) (-286 |#2|)) 71)) (-4124 (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))) 66) (((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))) 64)) (-4121 (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535))) 48) (((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535))) 47))) -(((-451 |#1| |#2|) (-10 -7 (-15 -4072 ((-51) (-1 |#2| (-535)) (-286 |#2|))) (-15 -4072 ((-51) |#2| (-1142) (-286 |#2|))) (-15 -4072 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-747)))) (-15 -4072 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-747)))) (-15 -4121 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535)))) (-15 -4121 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535)))) (-15 -4124 ((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4124 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4161 ((-51) (-1 |#2| (-535)) (-286 |#2|))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|))) (-15 -4161 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535)))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535)))) (-15 -4161 ((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))))) (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -451)) -((-4161 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-400 (-535)))) (-5 *7 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *8))) (-4 *8 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *8 *3)))) (-4161 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-535)))) (-5 *4 (-286 *8)) (-5 *5 (-1191 (-400 (-535)))) (-5 *6 (-400 (-535))) (-4 *8 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *8)))) (-4161 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-535))) (-4 *7 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-535))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *5 *6)))) (-4124 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-400 (-535)))) (-5 *7 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *8))) (-4 *8 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *8 *3)))) (-4124 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-535)))) (-5 *4 (-286 *8)) (-5 *5 (-1191 (-400 (-535)))) (-5 *6 (-400 (-535))) (-4 *8 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *8)))) (-4121 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-535))) (-4 *7 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4072 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-747))) (-4 *3 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-747))) (-4 *7 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4072 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *3)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-535))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *5 *6))))) -(-10 -7 (-15 -4072 ((-51) (-1 |#2| (-535)) (-286 |#2|))) (-15 -4072 ((-51) |#2| (-1142) (-286 |#2|))) (-15 -4072 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-747)))) (-15 -4072 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-747)))) (-15 -4121 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535)))) (-15 -4121 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535)))) (-15 -4124 ((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4124 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4161 ((-51) (-1 |#2| (-535)) (-286 |#2|))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|))) (-15 -4161 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535)))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535)))) (-15 -4161 ((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))))) -((-2145 ((|#2| |#2| |#1|) 15)) (-2030 (((-618 |#2|) |#2| (-618 |#2|) |#1| (-890)) 69)) (-2029 (((-2 (|:| |plist| (-618 |#2|)) (|:| |modulo| |#1|)) |#2| (-618 |#2|) |#1| (-890)) 60))) -(((-452 |#1| |#2|) (-10 -7 (-15 -2029 ((-2 (|:| |plist| (-618 |#2|)) (|:| |modulo| |#1|)) |#2| (-618 |#2|) |#1| (-890))) (-15 -2030 ((-618 |#2|) |#2| (-618 |#2|) |#1| (-890))) (-15 -2145 (|#2| |#2| |#1|))) (-300) (-1200 |#1|)) (T -452)) -((-2145 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1200 *3)))) (-2030 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-618 *3)) (-5 *5 (-890)) (-4 *3 (-1200 *4)) (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))) (-2029 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-890)) (-4 *5 (-300)) (-4 *3 (-1200 *5)) (-5 *2 (-2 (|:| |plist| (-618 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) (-5 *4 (-618 *3))))) -(-10 -7 (-15 -2029 ((-2 (|:| |plist| (-618 |#2|)) (|:| |modulo| |#1|)) |#2| (-618 |#2|) |#1| (-890))) (-15 -2030 ((-618 |#2|) |#2| (-618 |#2|) |#1| (-890))) (-15 -2145 (|#2| |#2| |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 28)) (-4053 (($ |#3|) 25)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) 32)) (-2031 (($ |#2| |#4| $) 33)) (-3214 (($ |#2| (-690 |#3| |#4| |#5|)) 24)) (-3215 (((-690 |#3| |#4| |#5|) $) 15)) (-2033 ((|#3| $) 19)) (-2034 ((|#4| $) 17)) (-3508 ((|#2| $) 29)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2032 (($ |#2| |#3| |#4|) 26)) (-2979 (($) 36 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 34)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-453 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-694 |#6|) (-694 |#2|) (-10 -8 (-15 -3508 (|#2| $)) (-15 -3215 ((-690 |#3| |#4| |#5|) $)) (-15 -2034 (|#4| $)) (-15 -2033 (|#3| $)) (-15 -4302 ($ $)) (-15 -3214 ($ |#2| (-690 |#3| |#4| |#5|))) (-15 -4053 ($ |#3|)) (-15 -2032 ($ |#2| |#3| |#4|)) (-15 -2031 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-618 (-1142)) (-170) (-823) (-232 (-4299 |#1|) (-747)) (-1 (-112) (-2 (|:| -2483 |#3|) (|:| -2484 |#4|)) (-2 (|:| -2483 |#3|) (|:| -2484 |#4|))) (-921 |#2| |#4| (-836 |#1|))) (T -453)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-4299 *3) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) (-2 (|:| -2483 *5) (|:| -2484 *6)))) (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-823)) (-4 *2 (-921 *4 *6 (-836 *3))))) (-3508 (*1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *5 (-232 (-4299 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *4) (|:| -2484 *5)) (-2 (|:| -2483 *4) (|:| -2484 *5)))) (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-823)) (-4 *7 (-921 *2 *5 (-836 *3))))) (-3215 (*1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-4299 *3) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) (-2 (|:| -2483 *5) (|:| -2484 *6)))) (-5 *2 (-690 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-823)) (-4 *8 (-921 *4 *6 (-836 *3))))) (-2034 (*1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *2)) (-2 (|:| -2483 *5) (|:| -2484 *2)))) (-4 *2 (-232 (-4299 *3) (-747))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) (-4 *5 (-823)) (-4 *7 (-921 *4 *2 (-836 *3))))) (-2033 (*1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-4299 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *5)) (-2 (|:| -2483 *2) (|:| -2484 *5)))) (-4 *2 (-823)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *7 (-921 *4 *5 (-836 *3))))) (-4302 (*1 *1 *1) (-12 (-14 *2 (-618 (-1142))) (-4 *3 (-170)) (-4 *5 (-232 (-4299 *2) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *4) (|:| -2484 *5)) (-2 (|:| -2483 *4) (|:| -2484 *5)))) (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-823)) (-4 *7 (-921 *3 *5 (-836 *2))))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-690 *5 *6 *7)) (-4 *5 (-823)) (-4 *6 (-232 (-4299 *4) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) (-2 (|:| -2483 *5) (|:| -2484 *6)))) (-14 *4 (-618 (-1142))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-921 *2 *6 (-836 *4))))) (-4053 (*1 *1 *2) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-4299 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *5)) (-2 (|:| -2483 *2) (|:| -2484 *5)))) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-823)) (-4 *7 (-921 *4 *5 (-836 *3))))) (-2032 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-618 (-1142))) (-4 *2 (-170)) (-4 *4 (-232 (-4299 *5) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *3) (|:| -2484 *4)) (-2 (|:| -2483 *3) (|:| -2484 *4)))) (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-823)) (-4 *7 (-921 *2 *4 (-836 *5))))) (-2031 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-618 (-1142))) (-4 *2 (-170)) (-4 *3 (-232 (-4299 *4) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *3)) (-2 (|:| -2483 *5) (|:| -2484 *3)))) (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-823)) (-4 *7 (-921 *2 *3 (-836 *4)))))) -(-13 (-694 |#6|) (-694 |#2|) (-10 -8 (-15 -3508 (|#2| $)) (-15 -3215 ((-690 |#3| |#4| |#5|) $)) (-15 -2034 (|#4| $)) (-15 -2033 (|#3| $)) (-15 -4302 ($ $)) (-15 -3214 ($ |#2| (-690 |#3| |#4| |#5|))) (-15 -4053 ($ |#3|)) (-15 -2032 ($ |#2| |#3| |#4|)) (-15 -2031 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2035 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2035 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-769) (-823) (-542) (-921 |#3| |#1| |#2|) (-13 (-1009 (-400 (-535))) (-356) (-10 -8 (-15 -4300 ($ |#4|)) (-15 -3319 (|#4| $)) (-15 -3318 (|#4| $))))) (T -454)) -((-2035 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-823)) (-4 *5 (-769)) (-4 *6 (-542)) (-4 *7 (-921 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1009 (-400 (-535))) (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))) -(-10 -7 (-15 -2035 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2887 (((-112) $ $) NIL)) (-3405 (((-618 |#3|) $) 41)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) NIL (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-3221 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 47)) (-3490 (($ (-618 |#4|)) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336)))) (-2063 (((-618 |#4|) $) 18 (|has| $ (-6 -4336)))) (-3514 ((|#3| $) 45)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 14 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 21)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-3577 (((-1086) $) NIL)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 39)) (-3911 (($) 17)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) 16)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524)))) (($ (-618 |#4|)) 49)) (-3867 (($ (-618 |#4|)) 13)) (-3231 (($ $ |#3|) NIL)) (-3233 (($ $ |#3|) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) 38) (((-618 |#4|) $) 48)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 30)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-455 |#1| |#2| |#3| |#4|) (-13 (-947 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4313 ($ (-618 |#4|))) (-6 -4336) (-6 -4337))) (-1018) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -455)) -((-4313 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-455 *3 *4 *5 *6))))) -(-13 (-947 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4313 ($ (-618 |#4|))) (-6 -4336) (-6 -4337))) -((-2979 (($) 11)) (-2985 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-456 |#1| |#2| |#3|) (-10 -8 (-15 -2985 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2979 (|#1|))) (-457 |#2| |#3|) (-170) (-23)) (T -456)) -NIL -(-10 -8 (-15 -2985 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2979 (|#1|))) -((-2887 (((-112) $ $) 7)) (-3491 (((-3 |#1| "failed") $) 26)) (-3490 ((|#1| $) 25)) (-4287 (($ $ $) 23)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4290 ((|#2| $) 19)) (-4300 (((-835) $) 11) (($ |#1|) 27)) (-2979 (($) 18 T CONST)) (-2985 (($) 24 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 15) (($ $ $) 13)) (-4182 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-3139 (*1 *1 *1 *1) (-4 *1 (-444))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-444)))) (-3106 (*1 *1 *1 *1) (-4 *1 (-444))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-444)))) (-2619 (*1 *2 *2 *2) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-444))))) +(-13 (-542) (-10 -8 (-15 -3139 ($ $ $)) (-15 -3139 ($ (-623 $))) (-15 -3106 ($ $ $)) (-15 -3106 ($ (-623 $))) (-15 -2619 ((-1140 $) (-1140 $) (-1140 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3090 (((-3 $ "failed")) NIL (|has| (-400 (-925 |#1|)) (-542)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1265 (((-1227 (-667 (-400 (-925 |#1|)))) (-1227 $)) NIL) (((-1227 (-667 (-400 (-925 |#1|))))) NIL)) (-3406 (((-1227 $)) NIL)) (-3513 (($) NIL T CONST)) (-3726 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL)) (-3947 (((-3 $ "failed")) NIL (|has| (-400 (-925 |#1|)) (-542)))) (-2043 (((-667 (-400 (-925 |#1|))) (-1227 $)) NIL) (((-667 (-400 (-925 |#1|)))) NIL)) (-1958 (((-400 (-925 |#1|)) $) NIL)) (-2042 (((-667 (-400 (-925 |#1|))) $ (-1227 $)) NIL) (((-667 (-400 (-925 |#1|))) $) NIL)) (-3818 (((-3 $ "failed") $) NIL (|has| (-400 (-925 |#1|)) (-542)))) (-1870 (((-1140 (-925 (-400 (-925 |#1|))))) NIL (|has| (-400 (-925 |#1|)) (-356))) (((-1140 (-400 (-925 |#1|)))) 84 (|has| |#1| (-542)))) (-2923 (($ $ (-894)) NIL)) (-1729 (((-400 (-925 |#1|)) $) NIL)) (-4215 (((-1140 (-400 (-925 |#1|))) $) 82 (|has| (-400 (-925 |#1|)) (-542)))) (-3945 (((-400 (-925 |#1|)) (-1227 $)) NIL) (((-400 (-925 |#1|))) NIL)) (-1474 (((-1140 (-400 (-925 |#1|))) $) NIL)) (-2105 (((-112)) NIL)) (-4110 (($ (-1227 (-400 (-925 |#1|))) (-1227 $)) 103) (($ (-1227 (-400 (-925 |#1|)))) NIL)) (-1386 (((-3 $ "failed") $) NIL (|has| (-400 (-925 |#1|)) (-542)))) (-2122 (((-894)) NIL)) (-2890 (((-112)) NIL)) (-1494 (($ $ (-894)) NIL)) (-3657 (((-112)) NIL)) (-3400 (((-112)) NIL)) (-2685 (((-112)) NIL)) (-2662 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL)) (-4080 (((-3 $ "failed")) NIL (|has| (-400 (-925 |#1|)) (-542)))) (-2116 (((-667 (-400 (-925 |#1|))) (-1227 $)) NIL) (((-667 (-400 (-925 |#1|)))) NIL)) (-3813 (((-400 (-925 |#1|)) $) NIL)) (-2127 (((-667 (-400 (-925 |#1|))) $ (-1227 $)) NIL) (((-667 (-400 (-925 |#1|))) $) NIL)) (-2732 (((-3 $ "failed") $) NIL (|has| (-400 (-925 |#1|)) (-542)))) (-3480 (((-1140 (-925 (-400 (-925 |#1|))))) NIL (|has| (-400 (-925 |#1|)) (-356))) (((-1140 (-400 (-925 |#1|)))) 83 (|has| |#1| (-542)))) (-2834 (($ $ (-894)) NIL)) (-1842 (((-400 (-925 |#1|)) $) NIL)) (-1305 (((-1140 (-400 (-925 |#1|))) $) 77 (|has| (-400 (-925 |#1|)) (-542)))) (-4012 (((-400 (-925 |#1|)) (-1227 $)) NIL) (((-400 (-925 |#1|))) NIL)) (-1603 (((-1140 (-400 (-925 |#1|))) $) NIL)) (-2197 (((-112)) NIL)) (-1825 (((-1126) $) NIL)) (-3528 (((-112)) NIL)) (-2591 (((-112)) NIL)) (-2781 (((-112)) NIL)) (-3337 (((-1088) $) NIL)) (-2517 (((-400 (-925 |#1|)) $ $) 71 (|has| |#1| (-542)))) (-1666 (((-400 (-925 |#1|)) $) 93 (|has| |#1| (-542)))) (-1584 (((-400 (-925 |#1|)) $) 95 (|has| |#1| (-542)))) (-1767 (((-1140 (-400 (-925 |#1|))) $) 88 (|has| |#1| (-542)))) (-2440 (((-400 (-925 |#1|))) 72 (|has| |#1| (-542)))) (-2658 (((-400 (-925 |#1|)) $ $) 64 (|has| |#1| (-542)))) (-3284 (((-400 (-925 |#1|)) $) 92 (|has| |#1| (-542)))) (-1346 (((-400 (-925 |#1|)) $) 94 (|has| |#1| (-542)))) (-3394 (((-1140 (-400 (-925 |#1|))) $) 87 (|has| |#1| (-542)))) (-2586 (((-400 (-925 |#1|))) 68 (|has| |#1| (-542)))) (-3603 (($) 101) (($ (-1144)) 107) (($ (-1227 (-1144))) 106) (($ (-1227 $)) 96) (($ (-1144) (-1227 $)) 105) (($ (-1227 (-1144)) (-1227 $)) 104)) (-3089 (((-112)) NIL)) (-2680 (((-400 (-925 |#1|)) $ (-550)) NIL)) (-1373 (((-1227 (-400 (-925 |#1|))) $ (-1227 $)) 98) (((-667 (-400 (-925 |#1|))) (-1227 $) (-1227 $)) NIL) (((-1227 (-400 (-925 |#1|))) $) 40) (((-667 (-400 (-925 |#1|))) (-1227 $)) NIL)) (-4028 (((-1227 (-400 (-925 |#1|))) $) NIL) (($ (-1227 (-400 (-925 |#1|)))) 37)) (-2361 (((-623 (-925 (-400 (-925 |#1|)))) (-1227 $)) NIL) (((-623 (-925 (-400 (-925 |#1|))))) NIL) (((-623 (-925 |#1|)) (-1227 $)) 99 (|has| |#1| (-542))) (((-623 (-925 |#1|))) 100 (|has| |#1| (-542)))) (-3292 (($ $ $) NIL)) (-2564 (((-112)) NIL)) (-1518 (((-836) $) NIL) (($ (-1227 (-400 (-925 |#1|)))) NIL)) (-2437 (((-1227 $)) 60)) (-3268 (((-623 (-1227 (-400 (-925 |#1|))))) NIL (|has| (-400 (-925 |#1|)) (-542)))) (-3395 (($ $ $ $) NIL)) (-2376 (((-112)) NIL)) (-4292 (($ (-667 (-400 (-925 |#1|))) $) NIL)) (-1358 (($ $ $) NIL)) (-2473 (((-112)) NIL)) (-2286 (((-112)) NIL)) (-2990 (((-112)) NIL)) (-2626 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) 97)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 56) (($ $ (-400 (-925 |#1|))) NIL) (($ (-400 (-925 |#1|)) $) NIL) (($ (-1110 |#2| (-400 (-925 |#1|))) $) NIL))) +(((-445 |#1| |#2| |#3| |#4|) (-13 (-410 (-400 (-925 |#1|))) (-626 (-1110 |#2| (-400 (-925 |#1|)))) (-10 -8 (-15 -1518 ($ (-1227 (-400 (-925 |#1|))))) (-15 -2662 ((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed"))) (-15 -3726 ((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed"))) (-15 -3603 ($)) (-15 -3603 ($ (-1144))) (-15 -3603 ($ (-1227 (-1144)))) (-15 -3603 ($ (-1227 $))) (-15 -3603 ($ (-1144) (-1227 $))) (-15 -3603 ($ (-1227 (-1144)) (-1227 $))) (IF (|has| |#1| (-542)) (PROGN (-15 -3480 ((-1140 (-400 (-925 |#1|))))) (-15 -3394 ((-1140 (-400 (-925 |#1|))) $)) (-15 -3284 ((-400 (-925 |#1|)) $)) (-15 -1346 ((-400 (-925 |#1|)) $)) (-15 -1870 ((-1140 (-400 (-925 |#1|))))) (-15 -1767 ((-1140 (-400 (-925 |#1|))) $)) (-15 -1666 ((-400 (-925 |#1|)) $)) (-15 -1584 ((-400 (-925 |#1|)) $)) (-15 -2658 ((-400 (-925 |#1|)) $ $)) (-15 -2586 ((-400 (-925 |#1|)))) (-15 -2517 ((-400 (-925 |#1|)) $ $)) (-15 -2440 ((-400 (-925 |#1|)))) (-15 -2361 ((-623 (-925 |#1|)) (-1227 $))) (-15 -2361 ((-623 (-925 |#1|))))) |%noBranch|))) (-170) (-894) (-623 (-1144)) (-1227 (-667 |#1|))) (T -445)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1227 (-400 (-925 *3)))) (-4 *3 (-170)) (-14 *6 (-1227 (-667 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))))) (-2662 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2437 (-623 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-3726 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2437 (-623 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-3603 (*1 *1) (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-894)) (-14 *4 (-623 (-1144))) (-14 *5 (-1227 (-667 *2))))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 *2)) (-14 *6 (-1227 (-667 *3))))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1227 (-1144))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1227 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-3603 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-894)) (-14 *6 (-623 *2)) (-14 *7 (-1227 (-667 *4))))) (-3603 (*1 *1 *2 *3) (-12 (-5 *2 (-1227 (-1144))) (-5 *3 (-1227 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-894)) (-14 *6 (-623 (-1144))) (-14 *7 (-1227 (-667 *4))))) (-3480 (*1 *2) (-12 (-5 *2 (-1140 (-400 (-925 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-1140 (-400 (-925 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-1870 (*1 *2) (-12 (-5 *2 (-1140 (-400 (-925 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1140 (-400 (-925 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-2658 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-2586 (*1 *2) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-2517 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-2440 (*1 *2) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-1227 (-445 *4 *5 *6 *7))) (-5 *2 (-623 (-925 *4))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *4 (-170)) (-14 *5 (-894)) (-14 *6 (-623 (-1144))) (-14 *7 (-1227 (-667 *4))))) (-2361 (*1 *2) (-12 (-5 *2 (-623 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(-13 (-410 (-400 (-925 |#1|))) (-626 (-1110 |#2| (-400 (-925 |#1|)))) (-10 -8 (-15 -1518 ($ (-1227 (-400 (-925 |#1|))))) (-15 -2662 ((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed"))) (-15 -3726 ((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed"))) (-15 -3603 ($)) (-15 -3603 ($ (-1144))) (-15 -3603 ($ (-1227 (-1144)))) (-15 -3603 ($ (-1227 $))) (-15 -3603 ($ (-1144) (-1227 $))) (-15 -3603 ($ (-1227 (-1144)) (-1227 $))) (IF (|has| |#1| (-542)) (PROGN (-15 -3480 ((-1140 (-400 (-925 |#1|))))) (-15 -3394 ((-1140 (-400 (-925 |#1|))) $)) (-15 -3284 ((-400 (-925 |#1|)) $)) (-15 -1346 ((-400 (-925 |#1|)) $)) (-15 -1870 ((-1140 (-400 (-925 |#1|))))) (-15 -1767 ((-1140 (-400 (-925 |#1|))) $)) (-15 -1666 ((-400 (-925 |#1|)) $)) (-15 -1584 ((-400 (-925 |#1|)) $)) (-15 -2658 ((-400 (-925 |#1|)) $ $)) (-15 -2586 ((-400 (-925 |#1|)))) (-15 -2517 ((-400 (-925 |#1|)) $ $)) (-15 -2440 ((-400 (-925 |#1|)))) (-15 -2361 ((-623 (-925 |#1|)) (-1227 $))) (-15 -2361 ((-623 (-925 |#1|))))) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 13)) (-3141 (((-623 (-838 |#1|)) $) 75)) (-3306 (((-1140 $) $ (-838 |#1|)) 46) (((-1140 |#2|) $) 118)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-1447 (($ $) NIL (|has| |#2| (-542)))) (-4291 (((-112) $) NIL (|has| |#2| (-542)))) (-1520 (((-749) $) 21) (((-749) $ (-623 (-838 |#1|))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-1505 (($ $) NIL (|has| |#2| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#2| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) 44) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-838 |#1|) "failed") $) NIL)) (-2726 ((|#2| $) 42) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1011 (-550)))) (((-838 |#1|) $) NIL)) (-3340 (($ $ $ (-838 |#1|)) NIL (|has| |#2| (-170)))) (-2980 (($ $ (-623 (-550))) 80)) (-3295 (($ $) 68)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#2| (-444))) (($ $ (-838 |#1|)) NIL (|has| |#2| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#2| (-882)))) (-2613 (($ $ |#2| |#3| $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-838 |#1|) (-859 (-372))) (|has| |#2| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-838 |#1|) (-859 (-550))) (|has| |#2| (-859 (-550)))))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) 58)) (-3129 (($ (-1140 |#2|) (-838 |#1|)) 123) (($ (-1140 $) (-838 |#1|)) 52)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) 59)) (-3118 (($ |#2| |#3|) 28) (($ $ (-838 |#1|) (-749)) 30) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-838 |#1|)) NIL)) (-1667 ((|#3| $) NIL) (((-749) $ (-838 |#1|)) 50) (((-623 (-749)) $ (-623 (-838 |#1|))) 57)) (-2707 (($ $ $) NIL (|has| |#2| (-825)))) (-4164 (($ $ $) NIL (|has| |#2| (-825)))) (-2688 (($ (-1 |#3| |#3|) $) NIL)) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-2558 (((-3 (-838 |#1|) "failed") $) 39)) (-3267 (($ $) NIL)) (-3277 ((|#2| $) 41)) (-3106 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1825 (((-1126) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-838 |#1|)) (|:| -3521 (-749))) "failed") $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) 40)) (-3256 ((|#2| $) 116)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#2| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) 128 (|has| |#2| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#2| (-882)))) (-1495 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-838 |#1|) |#2|) 87) (($ $ (-623 (-838 |#1|)) (-623 |#2|)) 90) (($ $ (-838 |#1|) $) 85) (($ $ (-623 (-838 |#1|)) (-623 $)) 106)) (-3453 (($ $ (-838 |#1|)) NIL (|has| |#2| (-170)))) (-2393 (($ $ (-838 |#1|)) 53) (($ $ (-623 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2970 ((|#3| $) 67) (((-749) $ (-838 |#1|)) 37) (((-623 (-749)) $ (-623 (-838 |#1|))) 56)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-838 |#1|) (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-838 |#1|) (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-838 |#1|) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-2503 ((|#2| $) 125 (|has| |#2| (-444))) (($ $ (-838 |#1|)) NIL (|has| |#2| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-882))))) (-1518 (((-836) $) 145) (($ (-550)) NIL) (($ |#2|) 86) (($ (-838 |#1|)) 31) (($ (-400 (-550))) NIL (-1561 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#2| (-542)))) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ |#3|) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#2| (-882))) (|has| |#2| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2626 (($) 17 T CONST)) (-2636 (($) 25 T CONST)) (-4183 (($ $ (-838 |#1|)) NIL) (($ $ (-623 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2363 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2414 (($ $ |#2|) 64 (|has| |#2| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 111)) (** (($ $ (-894)) NIL) (($ $ (-749)) 109)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 29) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-446 |#1| |#2| |#3|) (-13 (-922 |#2| |#3| (-838 |#1|)) (-10 -8 (-15 -2980 ($ $ (-623 (-550)))))) (-623 (-1144)) (-1020) (-232 (-3191 |#1|) (-749))) (T -446)) +((-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-14 *3 (-623 (-1144))) (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-232 (-3191 *3) (-749)))))) +(-13 (-922 |#2| |#3| (-838 |#1|)) (-10 -8 (-15 -2980 ($ $ (-623 (-550)))))) +((-3053 (((-112) |#1| (-623 |#2|)) 69)) (-2867 (((-3 (-1227 (-623 |#2|)) "failed") (-749) |#1| (-623 |#2|)) 78)) (-2967 (((-3 (-623 |#2|) "failed") |#2| |#1| (-1227 (-623 |#2|))) 80)) (-2824 ((|#2| |#2| |#1|) 28)) (-2755 (((-749) |#2| (-623 |#2|)) 20))) +(((-447 |#1| |#2|) (-10 -7 (-15 -2824 (|#2| |#2| |#1|)) (-15 -2755 ((-749) |#2| (-623 |#2|))) (-15 -2867 ((-3 (-1227 (-623 |#2|)) "failed") (-749) |#1| (-623 |#2|))) (-15 -2967 ((-3 (-623 |#2|) "failed") |#2| |#1| (-1227 (-623 |#2|)))) (-15 -3053 ((-112) |#1| (-623 |#2|)))) (-300) (-1203 |#1|)) (T -447)) +((-3053 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *5)) (-4 *5 (-1203 *3)) (-4 *3 (-300)) (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))) (-2967 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1227 (-623 *3))) (-4 *4 (-300)) (-5 *2 (-623 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1203 *4)))) (-2867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-300)) (-4 *6 (-1203 *4)) (-5 *2 (-1227 (-623 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-623 *6)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-300)) (-5 *2 (-749)) (-5 *1 (-447 *5 *3)))) (-2824 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1203 *3))))) +(-10 -7 (-15 -2824 (|#2| |#2| |#1|)) (-15 -2755 ((-749) |#2| (-623 |#2|))) (-15 -2867 ((-3 (-1227 (-623 |#2|)) "failed") (-749) |#1| (-623 |#2|))) (-15 -2967 ((-3 (-623 |#2|) "failed") |#2| |#1| (-1227 (-623 |#2|)))) (-15 -3053 ((-112) |#1| (-623 |#2|)))) +((-3338 (((-411 |#5|) |#5|) 24))) +(((-448 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3338 ((-411 |#5|) |#5|))) (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144))))) (-771) (-542) (-542) (-922 |#4| |#2| |#1|)) (T -448)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144)))))) (-4 *5 (-771)) (-4 *7 (-542)) (-5 *2 (-411 *3)) (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-542)) (-4 *3 (-922 *7 *5 *4))))) +(-10 -7 (-15 -3338 ((-411 |#5|) |#5|))) +((-3980 ((|#3|) 37)) (-2619 (((-1140 |#4|) (-1140 |#4|) (-1140 |#4|)) 33))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2619 ((-1140 |#4|) (-1140 |#4|) (-1140 |#4|))) (-15 -3980 (|#3|))) (-771) (-825) (-882) (-922 |#3| |#1| |#2|)) (T -449)) +((-3980 (*1 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-882)) (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-922 *2 *3 *4)))) (-2619 (*1 *2 *2 *2) (-12 (-5 *2 (-1140 *6)) (-4 *6 (-922 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-882)) (-5 *1 (-449 *3 *4 *5 *6))))) +(-10 -7 (-15 -2619 ((-1140 |#4|) (-1140 |#4|) (-1140 |#4|))) (-15 -3980 (|#3|))) +((-3338 (((-411 (-1140 |#1|)) (-1140 |#1|)) 43))) +(((-450 |#1|) (-10 -7 (-15 -3338 ((-411 (-1140 |#1|)) (-1140 |#1|)))) (-300)) (T -450)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-411 (-1140 *4))) (-5 *1 (-450 *4)) (-5 *3 (-1140 *4))))) +(-10 -7 (-15 -3338 ((-411 (-1140 |#1|)) (-1140 |#1|)))) +((-3192 (((-52) |#2| (-1144) (-287 |#2|) (-1194 (-749))) 42) (((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-749))) 41) (((-52) |#2| (-1144) (-287 |#2|)) 35) (((-52) (-1 |#2| (-550)) (-287 |#2|)) 28)) (-2672 (((-52) |#2| (-1144) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550))) 80) (((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550))) 79) (((-52) |#2| (-1144) (-287 |#2|) (-1194 (-550))) 78) (((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-550))) 77) (((-52) |#2| (-1144) (-287 |#2|)) 72) (((-52) (-1 |#2| (-550)) (-287 |#2|)) 71)) (-3214 (((-52) |#2| (-1144) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550))) 66) (((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550))) 64)) (-3203 (((-52) |#2| (-1144) (-287 |#2|) (-1194 (-550))) 48) (((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-550))) 47))) +(((-451 |#1| |#2|) (-10 -7 (-15 -3192 ((-52) (-1 |#2| (-550)) (-287 |#2|))) (-15 -3192 ((-52) |#2| (-1144) (-287 |#2|))) (-15 -3192 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-749)))) (-15 -3192 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-749)))) (-15 -3203 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-550)))) (-15 -3203 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-550)))) (-15 -3214 ((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550)))) (-15 -3214 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550)))) (-15 -2672 ((-52) (-1 |#2| (-550)) (-287 |#2|))) (-15 -2672 ((-52) |#2| (-1144) (-287 |#2|))) (-15 -2672 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-550)))) (-15 -2672 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-550)))) (-15 -2672 ((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550)))) (-15 -2672 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550))))) (-13 (-542) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|))) (T -451)) +((-2672 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-400 (-550)))) (-5 *7 (-400 (-550))) (-4 *3 (-13 (-27) (-1166) (-423 *8))) (-4 *8 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) (-2672 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-550)))) (-5 *4 (-287 *8)) (-5 *5 (-1194 (-400 (-550)))) (-5 *6 (-400 (-550))) (-4 *8 (-13 (-27) (-1166) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) (-2672 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-550))) (-4 *3 (-13 (-27) (-1166) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-2672 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1194 (-550))) (-4 *7 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-2672 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-287 *6)) (-4 *6 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))) (-3214 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-400 (-550)))) (-5 *7 (-400 (-550))) (-4 *3 (-13 (-27) (-1166) (-423 *8))) (-4 *8 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) (-3214 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-550)))) (-5 *4 (-287 *8)) (-5 *5 (-1194 (-400 (-550)))) (-5 *6 (-400 (-550))) (-4 *8 (-13 (-27) (-1166) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) (-3203 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-550))) (-4 *3 (-13 (-27) (-1166) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1194 (-550))) (-4 *7 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-3192 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-749))) (-4 *3 (-13 (-27) (-1166) (-423 *7))) (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-3192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1194 (-749))) (-4 *7 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-3192 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-287 *6)) (-4 *6 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-52)) (-5 *1 (-451 *5 *6))))) +(-10 -7 (-15 -3192 ((-52) (-1 |#2| (-550)) (-287 |#2|))) (-15 -3192 ((-52) |#2| (-1144) (-287 |#2|))) (-15 -3192 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-749)))) (-15 -3192 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-749)))) (-15 -3203 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-550)))) (-15 -3203 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-550)))) (-15 -3214 ((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550)))) (-15 -3214 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550)))) (-15 -2672 ((-52) (-1 |#2| (-550)) (-287 |#2|))) (-15 -2672 ((-52) |#2| (-1144) (-287 |#2|))) (-15 -2672 ((-52) (-1 |#2| (-550)) (-287 |#2|) (-1194 (-550)))) (-15 -2672 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-550)))) (-15 -2672 ((-52) (-1 |#2| (-400 (-550))) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550)))) (-15 -2672 ((-52) |#2| (-1144) (-287 |#2|) (-1194 (-400 (-550))) (-400 (-550))))) +((-2824 ((|#2| |#2| |#1|) 15)) (-2173 (((-623 |#2|) |#2| (-623 |#2|) |#1| (-894)) 69)) (-3169 (((-2 (|:| |plist| (-623 |#2|)) (|:| |modulo| |#1|)) |#2| (-623 |#2|) |#1| (-894)) 60))) +(((-452 |#1| |#2|) (-10 -7 (-15 -3169 ((-2 (|:| |plist| (-623 |#2|)) (|:| |modulo| |#1|)) |#2| (-623 |#2|) |#1| (-894))) (-15 -2173 ((-623 |#2|) |#2| (-623 |#2|) |#1| (-894))) (-15 -2824 (|#2| |#2| |#1|))) (-300) (-1203 |#1|)) (T -452)) +((-2824 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1203 *3)))) (-2173 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-623 *3)) (-5 *5 (-894)) (-4 *3 (-1203 *4)) (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))) (-3169 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-894)) (-4 *5 (-300)) (-4 *3 (-1203 *5)) (-5 *2 (-2 (|:| |plist| (-623 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) (-5 *4 (-623 *3))))) +(-10 -7 (-15 -3169 ((-2 (|:| |plist| (-623 |#2|)) (|:| |modulo| |#1|)) |#2| (-623 |#2|) |#1| (-894))) (-15 -2173 ((-623 |#2|) |#2| (-623 |#2|) |#1| (-894))) (-15 -2824 (|#2| |#2| |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 28)) (-3230 (($ |#3|) 25)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3295 (($ $) 32)) (-2267 (($ |#2| |#4| $) 33)) (-3118 (($ |#2| (-692 |#3| |#4| |#5|)) 24)) (-3267 (((-692 |#3| |#4| |#5|) $) 15)) (-2470 ((|#3| $) 19)) (-2561 ((|#4| $) 17)) (-3277 ((|#2| $) 29)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2364 (($ |#2| |#3| |#4|) 26)) (-2626 (($) 36 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 34)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-453 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-696 |#6|) (-696 |#2|) (-10 -8 (-15 -3277 (|#2| $)) (-15 -3267 ((-692 |#3| |#4| |#5|) $)) (-15 -2561 (|#4| $)) (-15 -2470 (|#3| $)) (-15 -3295 ($ $)) (-15 -3118 ($ |#2| (-692 |#3| |#4| |#5|))) (-15 -3230 ($ |#3|)) (-15 -2364 ($ |#2| |#3| |#4|)) (-15 -2267 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-623 (-1144)) (-170) (-825) (-232 (-3191 |#1|) (-749)) (-1 (-112) (-2 (|:| -2922 |#3|) (|:| -3521 |#4|)) (-2 (|:| -2922 |#3|) (|:| -3521 |#4|))) (-922 |#2| |#4| (-838 |#1|))) (T -453)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) (-4 *6 (-232 (-3191 *3) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *6)) (-2 (|:| -2922 *5) (|:| -3521 *6)))) (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-825)) (-4 *2 (-922 *4 *6 (-838 *3))))) (-3277 (*1 *2 *1) (-12 (-14 *3 (-623 (-1144))) (-4 *5 (-232 (-3191 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2922 *4) (|:| -3521 *5)) (-2 (|:| -2922 *4) (|:| -3521 *5)))) (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-825)) (-4 *7 (-922 *2 *5 (-838 *3))))) (-3267 (*1 *2 *1) (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) (-4 *6 (-232 (-3191 *3) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *6)) (-2 (|:| -2922 *5) (|:| -3521 *6)))) (-5 *2 (-692 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-825)) (-4 *8 (-922 *4 *6 (-838 *3))))) (-2561 (*1 *2 *1) (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *2)) (-2 (|:| -2922 *5) (|:| -3521 *2)))) (-4 *2 (-232 (-3191 *3) (-749))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) (-4 *5 (-825)) (-4 *7 (-922 *4 *2 (-838 *3))))) (-2470 (*1 *2 *1) (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) (-4 *5 (-232 (-3191 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2922 *2) (|:| -3521 *5)) (-2 (|:| -2922 *2) (|:| -3521 *5)))) (-4 *2 (-825)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *7 (-922 *4 *5 (-838 *3))))) (-3295 (*1 *1 *1) (-12 (-14 *2 (-623 (-1144))) (-4 *3 (-170)) (-4 *5 (-232 (-3191 *2) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2922 *4) (|:| -3521 *5)) (-2 (|:| -2922 *4) (|:| -3521 *5)))) (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-825)) (-4 *7 (-922 *3 *5 (-838 *2))))) (-3118 (*1 *1 *2 *3) (-12 (-5 *3 (-692 *5 *6 *7)) (-4 *5 (-825)) (-4 *6 (-232 (-3191 *4) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *6)) (-2 (|:| -2922 *5) (|:| -3521 *6)))) (-14 *4 (-623 (-1144))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-922 *2 *6 (-838 *4))))) (-3230 (*1 *1 *2) (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) (-4 *5 (-232 (-3191 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2922 *2) (|:| -3521 *5)) (-2 (|:| -2922 *2) (|:| -3521 *5)))) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-825)) (-4 *7 (-922 *4 *5 (-838 *3))))) (-2364 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-623 (-1144))) (-4 *2 (-170)) (-4 *4 (-232 (-3191 *5) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2922 *3) (|:| -3521 *4)) (-2 (|:| -2922 *3) (|:| -3521 *4)))) (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-825)) (-4 *7 (-922 *2 *4 (-838 *5))))) (-2267 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-623 (-1144))) (-4 *2 (-170)) (-4 *3 (-232 (-3191 *4) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *3)) (-2 (|:| -2922 *5) (|:| -3521 *3)))) (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-825)) (-4 *7 (-922 *2 *3 (-838 *4)))))) +(-13 (-696 |#6|) (-696 |#2|) (-10 -8 (-15 -3277 (|#2| $)) (-15 -3267 ((-692 |#3| |#4| |#5|) $)) (-15 -2561 (|#4| $)) (-15 -2470 (|#3| $)) (-15 -3295 ($ $)) (-15 -3118 ($ |#2| (-692 |#3| |#4| |#5|))) (-15 -3230 ($ |#3|)) (-15 -2364 ($ |#2| |#3| |#4|)) (-15 -2267 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-1470 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1470 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-771) (-825) (-542) (-922 |#3| |#1| |#2|) (-13 (-1011 (-400 (-550))) (-356) (-10 -8 (-15 -1518 ($ |#4|)) (-15 -2705 (|#4| $)) (-15 -2715 (|#4| $))))) (T -454)) +((-1470 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-825)) (-4 *5 (-771)) (-4 *6 (-542)) (-4 *7 (-922 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1011 (-400 (-550))) (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $)))))))) +(-10 -7 (-15 -1470 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3141 (((-623 |#3|) $) 41)) (-2238 (((-112) $) NIL)) (-3670 (((-112) $) NIL (|has| |#1| (-542)))) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4253 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2976 (((-112) $) NIL (|has| |#1| (-542)))) (-3156 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3059 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3253 (((-112) $) NIL (|has| |#1| (-542)))) (-3774 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) 47)) (-2726 (($ (-623 |#4|)) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3137 (($ |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4342)))) (-3450 (((-623 |#4|) $) 18 (|has| $ (-6 -4342)))) (-3952 ((|#3| $) 45)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#4|) $) 14 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3234 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 21)) (-2650 (((-623 |#3|) $) NIL)) (-2568 (((-112) |#3| $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-3337 (((-1088) $) NIL)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 39)) (-3498 (($) 17)) (-3350 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) 16)) (-4028 (((-526) $) NIL (|has| |#4| (-596 (-526)))) (($ (-623 |#4|)) 49)) (-1532 (($ (-623 |#4|)) 13)) (-2315 (($ $ |#3|) NIL)) (-2486 (($ $ |#3|) NIL)) (-2401 (($ $ |#3|) NIL)) (-1518 (((-836) $) 38) (((-623 |#4|) $) 48)) (-1675 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 30)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-455 |#1| |#2| |#3| |#4|) (-13 (-949 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4028 ($ (-623 |#4|))) (-6 -4342) (-6 -4343))) (-1020) (-771) (-825) (-1034 |#1| |#2| |#3|)) (T -455)) +((-4028 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-455 *3 *4 *5 *6))))) +(-13 (-949 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4028 ($ (-623 |#4|))) (-6 -4342) (-6 -4343))) +((-2626 (($) 11)) (-2636 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-456 |#1| |#2| |#3|) (-10 -8 (-15 -2636 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2626 (|#1|))) (-457 |#2| |#3|) (-170) (-23)) (T -456)) +NIL +(-10 -8 (-15 -2636 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2626 (|#1|))) +((-1504 (((-112) $ $) 7)) (-3880 (((-3 |#1| "failed") $) 26)) (-2726 ((|#1| $) 25)) (-3838 (($ $ $) 23)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2970 ((|#2| $) 19)) (-1518 (((-836) $) 11) (($ |#1|) 27)) (-2626 (($) 18 T CONST)) (-2636 (($) 24 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 15) (($ $ $) 13)) (-2391 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-457 |#1| |#2|) (-138) (-170) (-23)) (T -457)) -((-2985 (*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-462 |t#1| |t#2|) (-1009 |t#1|) (-10 -8 (-15 (-2985) ($) -4294) (-15 -4287 ($ $ $)))) -(((-101) . T) ((-593 (-835)) . T) ((-462 |#1| |#2|) . T) ((-1009 |#1|) . T) ((-1067) . T)) -((-2036 (((-1224 (-1224 (-535))) (-1224 (-1224 (-535))) (-890)) 18)) (-2037 (((-1224 (-1224 (-535))) (-890)) 16))) -(((-458) (-10 -7 (-15 -2036 ((-1224 (-1224 (-535))) (-1224 (-1224 (-535))) (-890))) (-15 -2037 ((-1224 (-1224 (-535))) (-890))))) (T -458)) -((-2037 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 (-1224 (-535)))) (-5 *1 (-458)))) (-2036 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 (-1224 (-535)))) (-5 *3 (-890)) (-5 *1 (-458))))) -(-10 -7 (-15 -2036 ((-1224 (-1224 (-535))) (-1224 (-1224 (-535))) (-890))) (-15 -2037 ((-1224 (-1224 (-535))) (-890)))) -((-3091 (((-535) (-535)) 30) (((-535)) 22)) (-3095 (((-535) (-535)) 26) (((-535)) 18)) (-3093 (((-535) (-535)) 28) (((-535)) 20)) (-2039 (((-112) (-112)) 12) (((-112)) 10)) (-2038 (((-112) (-112)) 11) (((-112)) 9)) (-2040 (((-112) (-112)) 24) (((-112)) 15))) -(((-459) (-10 -7 (-15 -2038 ((-112))) (-15 -2039 ((-112))) (-15 -2038 ((-112) (-112))) (-15 -2039 ((-112) (-112))) (-15 -2040 ((-112))) (-15 -3093 ((-535))) (-15 -3095 ((-535))) (-15 -3091 ((-535))) (-15 -2040 ((-112) (-112))) (-15 -3093 ((-535) (-535))) (-15 -3095 ((-535) (-535))) (-15 -3091 ((-535) (-535))))) (T -459)) -((-3091 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-3091 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-3095 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-3093 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-2040 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2038 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2039 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2038 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(-10 -7 (-15 -2038 ((-112))) (-15 -2039 ((-112))) (-15 -2038 ((-112) (-112))) (-15 -2039 ((-112) (-112))) (-15 -2040 ((-112))) (-15 -3093 ((-535))) (-15 -3095 ((-535))) (-15 -3091 ((-535))) (-15 -2040 ((-112) (-112))) (-15 -3093 ((-535) (-535))) (-15 -3095 ((-535) (-535))) (-15 -3091 ((-535) (-535)))) -((-2887 (((-112) $ $) NIL)) (-4194 (((-618 (-371)) $) 28) (((-618 (-371)) $ (-618 (-371))) 96)) (-2045 (((-618 (-1055 (-371))) $) 16) (((-618 (-1055 (-371))) $ (-618 (-1055 (-371)))) 94)) (-2042 (((-618 (-618 (-914 (-219)))) (-618 (-618 (-914 (-219)))) (-618 (-845))) 45)) (-2046 (((-618 (-618 (-914 (-219)))) $) 90)) (-4052 (((-1230) $ (-914 (-219)) (-845)) 108)) (-2047 (($ $) 89) (($ (-618 (-618 (-914 (-219))))) 99) (($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890))) 98) (($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)) (-618 (-254))) 100)) (-3576 (((-1124) $) NIL)) (-4203 (((-535) $) 71)) (-3577 (((-1086) $) NIL)) (-2048 (($) 97)) (-2041 (((-618 (-219)) (-618 (-618 (-914 (-219))))) 56)) (-2044 (((-1230) $ (-618 (-914 (-219))) (-845) (-845) (-890)) 102) (((-1230) $ (-914 (-219))) 104) (((-1230) $ (-914 (-219)) (-845) (-845) (-890)) 103)) (-4300 (((-835) $) 114) (($ (-618 (-618 (-914 (-219))))) 109)) (-2043 (((-1230) $ (-914 (-219))) 107)) (-3375 (((-112) $ $) NIL))) -(((-460) (-13 (-1067) (-10 -8 (-15 -2048 ($)) (-15 -2047 ($ $)) (-15 -2047 ($ (-618 (-618 (-914 (-219)))))) (-15 -2047 ($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)))) (-15 -2047 ($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)) (-618 (-254)))) (-15 -2046 ((-618 (-618 (-914 (-219)))) $)) (-15 -4203 ((-535) $)) (-15 -2045 ((-618 (-1055 (-371))) $)) (-15 -2045 ((-618 (-1055 (-371))) $ (-618 (-1055 (-371))))) (-15 -4194 ((-618 (-371)) $)) (-15 -4194 ((-618 (-371)) $ (-618 (-371)))) (-15 -2044 ((-1230) $ (-618 (-914 (-219))) (-845) (-845) (-890))) (-15 -2044 ((-1230) $ (-914 (-219)))) (-15 -2044 ((-1230) $ (-914 (-219)) (-845) (-845) (-890))) (-15 -2043 ((-1230) $ (-914 (-219)))) (-15 -4052 ((-1230) $ (-914 (-219)) (-845))) (-15 -4300 ($ (-618 (-618 (-914 (-219)))))) (-15 -4300 ((-835) $)) (-15 -2042 ((-618 (-618 (-914 (-219)))) (-618 (-618 (-914 (-219)))) (-618 (-845)))) (-15 -2041 ((-618 (-219)) (-618 (-618 (-914 (-219))))))))) (T -460)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-460)))) (-2048 (*1 *1) (-5 *1 (-460))) (-2047 (*1 *1 *1) (-5 *1 (-460))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))) (-2047 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) (-5 *4 (-618 (-890))) (-5 *1 (-460)))) (-2047 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) (-5 *4 (-618 (-890))) (-5 *5 (-618 (-254))) (-5 *1 (-460)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-460)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-460)))) (-2045 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-460)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-460)))) (-4194 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))) (-4052 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))) (-2042 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) (-5 *1 (-460)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-618 (-219))) (-5 *1 (-460))))) -(-13 (-1067) (-10 -8 (-15 -2048 ($)) (-15 -2047 ($ $)) (-15 -2047 ($ (-618 (-618 (-914 (-219)))))) (-15 -2047 ($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)))) (-15 -2047 ($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)) (-618 (-254)))) (-15 -2046 ((-618 (-618 (-914 (-219)))) $)) (-15 -4203 ((-535) $)) (-15 -2045 ((-618 (-1055 (-371))) $)) (-15 -2045 ((-618 (-1055 (-371))) $ (-618 (-1055 (-371))))) (-15 -4194 ((-618 (-371)) $)) (-15 -4194 ((-618 (-371)) $ (-618 (-371)))) (-15 -2044 ((-1230) $ (-618 (-914 (-219))) (-845) (-845) (-890))) (-15 -2044 ((-1230) $ (-914 (-219)))) (-15 -2044 ((-1230) $ (-914 (-219)) (-845) (-845) (-890))) (-15 -2043 ((-1230) $ (-914 (-219)))) (-15 -4052 ((-1230) $ (-914 (-219)) (-845))) (-15 -4300 ($ (-618 (-618 (-914 (-219)))))) (-15 -4300 ((-835) $)) (-15 -2042 ((-618 (-618 (-914 (-219)))) (-618 (-618 (-914 (-219)))) (-618 (-845)))) (-15 -2041 ((-618 (-219)) (-618 (-618 (-914 (-219)))))))) -((-4180 (($ $) NIL) (($ $ $) 11))) -(((-461 |#1| |#2| |#3|) (-10 -8 (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|))) (-462 |#2| |#3|) (-170) (-23)) (T -461)) -NIL -(-10 -8 (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4290 ((|#2| $) 19)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 15) (($ $ $) 13)) (-4182 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-2636 (*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) +(-13 (-462 |t#1| |t#2|) (-1011 |t#1|) (-10 -8 (-15 (-2636) ($) -2258) (-15 -3838 ($ $ $)))) +(((-101) . T) ((-595 (-836)) . T) ((-462 |#1| |#2|) . T) ((-1011 |#1|) . T) ((-1068) . T)) +((-1599 (((-1227 (-1227 (-550))) (-1227 (-1227 (-550))) (-894)) 18)) (-1722 (((-1227 (-1227 (-550))) (-894)) 16))) +(((-458) (-10 -7 (-15 -1599 ((-1227 (-1227 (-550))) (-1227 (-1227 (-550))) (-894))) (-15 -1722 ((-1227 (-1227 (-550))) (-894))))) (T -458)) +((-1722 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1227 (-1227 (-550)))) (-5 *1 (-458)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *2 (-1227 (-1227 (-550)))) (-5 *3 (-894)) (-5 *1 (-458))))) +(-10 -7 (-15 -1599 ((-1227 (-1227 (-550))) (-1227 (-1227 (-550))) (-894))) (-15 -1722 ((-1227 (-1227 (-550))) (-894)))) +((-3379 (((-550) (-550)) 30) (((-550)) 22)) (-2666 (((-550) (-550)) 26) (((-550)) 18)) (-3608 (((-550) (-550)) 28) (((-550)) 20)) (-1963 (((-112) (-112)) 12) (((-112)) 10)) (-1849 (((-112) (-112)) 11) (((-112)) 9)) (-2073 (((-112) (-112)) 24) (((-112)) 15))) +(((-459) (-10 -7 (-15 -1849 ((-112))) (-15 -1963 ((-112))) (-15 -1849 ((-112) (-112))) (-15 -1963 ((-112) (-112))) (-15 -2073 ((-112))) (-15 -3608 ((-550))) (-15 -2666 ((-550))) (-15 -3379 ((-550))) (-15 -2073 ((-112) (-112))) (-15 -3608 ((-550) (-550))) (-15 -2666 ((-550) (-550))) (-15 -3379 ((-550) (-550))))) (T -459)) +((-3379 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-3608 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-3379 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-2666 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-3608 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) (-2073 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-1963 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-1849 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-1963 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-1849 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) +(-10 -7 (-15 -1849 ((-112))) (-15 -1963 ((-112))) (-15 -1849 ((-112) (-112))) (-15 -1963 ((-112) (-112))) (-15 -2073 ((-112))) (-15 -3608 ((-550))) (-15 -2666 ((-550))) (-15 -3379 ((-550))) (-15 -2073 ((-112) (-112))) (-15 -3608 ((-550) (-550))) (-15 -2666 ((-550) (-550))) (-15 -3379 ((-550) (-550)))) +((-1504 (((-112) $ $) NIL)) (-1476 (((-623 (-372)) $) 28) (((-623 (-372)) $ (-623 (-372))) 96)) (-1316 (((-623 (-1062 (-372))) $) 16) (((-623 (-1062 (-372))) $ (-623 (-1062 (-372)))) 94)) (-4027 (((-623 (-623 (-916 (-219)))) (-623 (-623 (-916 (-219)))) (-623 (-847))) 45)) (-3258 (((-623 (-623 (-916 (-219)))) $) 90)) (-2644 (((-1232) $ (-916 (-219)) (-847)) 108)) (-3366 (($ $) 89) (($ (-623 (-623 (-916 (-219))))) 99) (($ (-623 (-623 (-916 (-219)))) (-623 (-847)) (-623 (-847)) (-623 (-894))) 98) (($ (-623 (-623 (-916 (-219)))) (-623 (-847)) (-623 (-847)) (-623 (-894)) (-623 (-256))) 100)) (-1825 (((-1126) $) NIL)) (-2763 (((-550) $) 71)) (-3337 (((-1088) $) NIL)) (-3477 (($) 97)) (-3917 (((-623 (-219)) (-623 (-623 (-916 (-219))))) 56)) (-4256 (((-1232) $ (-623 (-916 (-219))) (-847) (-847) (-894)) 102) (((-1232) $ (-916 (-219))) 104) (((-1232) $ (-916 (-219)) (-847) (-847) (-894)) 103)) (-1518 (((-836) $) 114) (($ (-623 (-623 (-916 (-219))))) 109)) (-4134 (((-1232) $ (-916 (-219))) 107)) (-2316 (((-112) $ $) NIL))) +(((-460) (-13 (-1068) (-10 -8 (-15 -3477 ($)) (-15 -3366 ($ $)) (-15 -3366 ($ (-623 (-623 (-916 (-219)))))) (-15 -3366 ($ (-623 (-623 (-916 (-219)))) (-623 (-847)) (-623 (-847)) (-623 (-894)))) (-15 -3366 ($ (-623 (-623 (-916 (-219)))) (-623 (-847)) (-623 (-847)) (-623 (-894)) (-623 (-256)))) (-15 -3258 ((-623 (-623 (-916 (-219)))) $)) (-15 -2763 ((-550) $)) (-15 -1316 ((-623 (-1062 (-372))) $)) (-15 -1316 ((-623 (-1062 (-372))) $ (-623 (-1062 (-372))))) (-15 -1476 ((-623 (-372)) $)) (-15 -1476 ((-623 (-372)) $ (-623 (-372)))) (-15 -4256 ((-1232) $ (-623 (-916 (-219))) (-847) (-847) (-894))) (-15 -4256 ((-1232) $ (-916 (-219)))) (-15 -4256 ((-1232) $ (-916 (-219)) (-847) (-847) (-894))) (-15 -4134 ((-1232) $ (-916 (-219)))) (-15 -2644 ((-1232) $ (-916 (-219)) (-847))) (-15 -1518 ($ (-623 (-623 (-916 (-219)))))) (-15 -1518 ((-836) $)) (-15 -4027 ((-623 (-623 (-916 (-219)))) (-623 (-623 (-916 (-219)))) (-623 (-847)))) (-15 -3917 ((-623 (-219)) (-623 (-623 (-916 (-219))))))))) (T -460)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-460)))) (-3477 (*1 *1) (-5 *1 (-460))) (-3366 (*1 *1 *1) (-5 *1 (-460))) (-3366 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *1 (-460)))) (-3366 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *3 (-623 (-847))) (-5 *4 (-623 (-894))) (-5 *1 (-460)))) (-3366 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *3 (-623 (-847))) (-5 *4 (-623 (-894))) (-5 *5 (-623 (-256))) (-5 *1 (-460)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *1 (-460)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-460)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-460)))) (-1316 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-460)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-460)))) (-1476 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-460)))) (-4256 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-623 (-916 (-219)))) (-5 *4 (-847)) (-5 *5 (-894)) (-5 *2 (-1232)) (-5 *1 (-460)))) (-4256 (*1 *2 *1 *3) (-12 (-5 *3 (-916 (-219))) (-5 *2 (-1232)) (-5 *1 (-460)))) (-4256 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-916 (-219))) (-5 *4 (-847)) (-5 *5 (-894)) (-5 *2 (-1232)) (-5 *1 (-460)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-916 (-219))) (-5 *2 (-1232)) (-5 *1 (-460)))) (-2644 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916 (-219))) (-5 *4 (-847)) (-5 *2 (-1232)) (-5 *1 (-460)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *1 (-460)))) (-4027 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *3 (-623 (-847))) (-5 *1 (-460)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *2 (-623 (-219))) (-5 *1 (-460))))) +(-13 (-1068) (-10 -8 (-15 -3477 ($)) (-15 -3366 ($ $)) (-15 -3366 ($ (-623 (-623 (-916 (-219)))))) (-15 -3366 ($ (-623 (-623 (-916 (-219)))) (-623 (-847)) (-623 (-847)) (-623 (-894)))) (-15 -3366 ($ (-623 (-623 (-916 (-219)))) (-623 (-847)) (-623 (-847)) (-623 (-894)) (-623 (-256)))) (-15 -3258 ((-623 (-623 (-916 (-219)))) $)) (-15 -2763 ((-550) $)) (-15 -1316 ((-623 (-1062 (-372))) $)) (-15 -1316 ((-623 (-1062 (-372))) $ (-623 (-1062 (-372))))) (-15 -1476 ((-623 (-372)) $)) (-15 -1476 ((-623 (-372)) $ (-623 (-372)))) (-15 -4256 ((-1232) $ (-623 (-916 (-219))) (-847) (-847) (-894))) (-15 -4256 ((-1232) $ (-916 (-219)))) (-15 -4256 ((-1232) $ (-916 (-219)) (-847) (-847) (-894))) (-15 -4134 ((-1232) $ (-916 (-219)))) (-15 -2644 ((-1232) $ (-916 (-219)) (-847))) (-15 -1518 ($ (-623 (-623 (-916 (-219)))))) (-15 -1518 ((-836) $)) (-15 -4027 ((-623 (-623 (-916 (-219)))) (-623 (-623 (-916 (-219)))) (-623 (-847)))) (-15 -3917 ((-623 (-219)) (-623 (-623 (-916 (-219)))))))) +((-2403 (($ $) NIL) (($ $ $) 11))) +(((-461 |#1| |#2| |#3|) (-10 -8 (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|))) (-462 |#2| |#3|) (-170) (-23)) (T -461)) +NIL +(-10 -8 (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2970 ((|#2| $) 19)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 15) (($ $ $) 13)) (-2391 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-462 |#1| |#2|) (-138) (-170) (-23)) (T -462)) -((-4290 (*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2979 (*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4180 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-1067) (-10 -8 (-15 -4290 (|t#2| $)) (-15 (-2979) ($) -4294) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4180 ($ $)) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2050 (((-3 (-618 (-473 |#1| |#2|)) "failed") (-618 (-473 |#1| |#2|)) (-618 (-836 |#1|))) 92)) (-2049 (((-618 (-618 (-241 |#1| |#2|))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|))) 90)) (-2051 (((-2 (|:| |dpolys| (-618 (-241 |#1| |#2|))) (|:| |coords| (-618 (-535)))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|))) 61))) -(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2049 ((-618 (-618 (-241 |#1| |#2|))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|)))) (-15 -2050 ((-3 (-618 (-473 |#1| |#2|)) "failed") (-618 (-473 |#1| |#2|)) (-618 (-836 |#1|)))) (-15 -2051 ((-2 (|:| |dpolys| (-618 (-241 |#1| |#2|))) (|:| |coords| (-618 (-535)))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|))))) (-618 (-1142)) (-444) (-444)) (T -463)) -((-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-836 *5))) (-14 *5 (-618 (-1142))) (-4 *6 (-444)) (-5 *2 (-2 (|:| |dpolys| (-618 (-241 *5 *6))) (|:| |coords| (-618 (-535))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-618 (-241 *5 *6))) (-4 *7 (-444)))) (-2050 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-473 *4 *5))) (-5 *3 (-618 (-836 *4))) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) (-4 *6 (-444)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-836 *5))) (-14 *5 (-618 (-1142))) (-4 *6 (-444)) (-5 *2 (-618 (-618 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-618 (-241 *5 *6))) (-4 *7 (-444))))) -(-10 -7 (-15 -2049 ((-618 (-618 (-241 |#1| |#2|))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|)))) (-15 -2050 ((-3 (-618 (-473 |#1| |#2|)) "failed") (-618 (-473 |#1| |#2|)) (-618 (-836 |#1|)))) (-15 -2051 ((-2 (|:| |dpolys| (-618 (-241 |#1| |#2|))) (|:| |coords| (-618 (-535)))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|))))) -((-3804 (((-3 $ "failed") $) 11)) (-3330 (($ $ $) 18)) (-2677 (($ $ $) 19)) (-4291 (($ $ $) 9)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 17))) -(((-464 |#1|) (-10 -8 (-15 -2677 (|#1| |#1| |#1|)) (-15 -3330 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -4291 (|#1| |#1| |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890)))) (-465)) (T -464)) -NIL -(-10 -8 (-15 -2677 (|#1| |#1| |#1|)) (-15 -3330 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -4291 (|#1| |#1| |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890)))) -((-2887 (((-112) $ $) 7)) (-3879 (($) 18 T CONST)) (-3804 (((-3 $ "failed") $) 15)) (-2493 (((-112) $) 17)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 24)) (-3577 (((-1086) $) 10)) (-3330 (($ $ $) 21)) (-2677 (($ $ $) 20)) (-4300 (((-835) $) 11)) (-2985 (($) 19 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-747)) 16) (($ $ (-535)) 22)) (* (($ $ $) 14))) +((-2970 (*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2626 (*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2403 (*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2391 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2403 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) +(-13 (-1068) (-10 -8 (-15 -2970 (|t#2| $)) (-15 (-2626) ($) -2258) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2403 ($ $)) (-15 -2391 ($ $ $)) (-15 -2403 ($ $ $)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-3722 (((-3 (-623 (-473 |#1| |#2|)) "failed") (-623 (-473 |#1| |#2|)) (-623 (-838 |#1|))) 92)) (-3599 (((-623 (-623 (-241 |#1| |#2|))) (-623 (-241 |#1| |#2|)) (-623 (-838 |#1|))) 90)) (-2656 (((-2 (|:| |dpolys| (-623 (-241 |#1| |#2|))) (|:| |coords| (-623 (-550)))) (-623 (-241 |#1| |#2|)) (-623 (-838 |#1|))) 61))) +(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -3599 ((-623 (-623 (-241 |#1| |#2|))) (-623 (-241 |#1| |#2|)) (-623 (-838 |#1|)))) (-15 -3722 ((-3 (-623 (-473 |#1| |#2|)) "failed") (-623 (-473 |#1| |#2|)) (-623 (-838 |#1|)))) (-15 -2656 ((-2 (|:| |dpolys| (-623 (-241 |#1| |#2|))) (|:| |coords| (-623 (-550)))) (-623 (-241 |#1| |#2|)) (-623 (-838 |#1|))))) (-623 (-1144)) (-444) (-444)) (T -463)) +((-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-838 *5))) (-14 *5 (-623 (-1144))) (-4 *6 (-444)) (-5 *2 (-2 (|:| |dpolys| (-623 (-241 *5 *6))) (|:| |coords| (-623 (-550))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-623 (-241 *5 *6))) (-4 *7 (-444)))) (-3722 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-473 *4 *5))) (-5 *3 (-623 (-838 *4))) (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) (-4 *6 (-444)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-838 *5))) (-14 *5 (-623 (-1144))) (-4 *6 (-444)) (-5 *2 (-623 (-623 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-623 (-241 *5 *6))) (-4 *7 (-444))))) +(-10 -7 (-15 -3599 ((-623 (-623 (-241 |#1| |#2|))) (-623 (-241 |#1| |#2|)) (-623 (-838 |#1|)))) (-15 -3722 ((-3 (-623 (-473 |#1| |#2|)) "failed") (-623 (-473 |#1| |#2|)) (-623 (-838 |#1|)))) (-15 -2656 ((-2 (|:| |dpolys| (-623 (-241 |#1| |#2|))) (|:| |coords| (-623 (-550)))) (-623 (-241 |#1| |#2|)) (-623 (-838 |#1|))))) +((-1386 (((-3 $ "failed") $) 11)) (-1270 (($ $ $) 18)) (-3292 (($ $ $) 19)) (-2414 (($ $ $) 9)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 17))) +(((-464 |#1|) (-10 -8 (-15 -3292 (|#1| |#1| |#1|)) (-15 -1270 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2414 (|#1| |#1| |#1|)) (-15 -1386 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-894)))) (-465)) (T -464)) +NIL +(-10 -8 (-15 -3292 (|#1| |#1| |#1|)) (-15 -1270 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2414 (|#1| |#1| |#1|)) (-15 -1386 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-894)))) +((-1504 (((-112) $ $) 7)) (-3513 (($) 18 T CONST)) (-1386 (((-3 $ "failed") $) 15)) (-3102 (((-112) $) 17)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 24)) (-3337 (((-1088) $) 10)) (-1270 (($ $ $) 21)) (-3292 (($ $ $) 20)) (-1518 (((-836) $) 11)) (-2636 (($) 19 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 23)) (** (($ $ (-894)) 13) (($ $ (-749)) 16) (($ $ (-550)) 22)) (* (($ $ $) 14))) (((-465) (-138)) (T -465)) -((-2725 (*1 *1 *1) (-4 *1 (-465))) (-4291 (*1 *1 *1 *1) (-4 *1 (-465))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-535)))) (-3330 (*1 *1 *1 *1) (-4 *1 (-465))) (-2677 (*1 *1 *1 *1) (-4 *1 (-465)))) -(-13 (-703) (-10 -8 (-15 -2725 ($ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ (-535))) (-6 -4333) (-15 -3330 ($ $ $)) (-15 -2677 ($ $ $)))) -(((-101) . T) ((-593 (-835)) . T) ((-703) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 17)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) NIL) (($ $ (-400 (-535)) (-400 (-535))) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) NIL) (((-400 (-535)) $ (-400 (-535))) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL) (($ $ (-400 (-535))) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) NIL) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 22)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 26 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 33 (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 27 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) NIL) (($ $ $) NIL (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 25 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $ (-1221 |#2|)) 15)) (-4290 (((-400 (-535)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1221 |#2|)) NIL) (($ (-1205 |#1| |#2| |#3|)) 9) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 18)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) 24)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-466 |#1| |#2| |#3|) (-13 (-1207 |#1|) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4300 ($ (-1205 |#1| |#2| |#3|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -466)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1205 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))) -(-13 (-1207 |#1|) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4300 ($ (-1205 |#1| |#2| |#3|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) 18)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) 19)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) 16)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-467 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2|) (-1067) (-1067) (-1155 |#1| |#2|) |#2|) (T -467)) -NIL -(-1155 |#1| |#2|) -((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) NIL)) (-4028 (((-618 $) (-618 |#4|)) NIL)) (-3405 (((-618 |#3|) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4034 ((|#4| |#4| $) NIL)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) 26 (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3221 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) NIL)) (-3490 (($ (-618 |#4|)) NIL)) (-4141 (((-3 $ #1#) $) 39)) (-4031 ((|#4| |#4| $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4029 ((|#4| |#4| $) NIL)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) NIL)) (-2063 (((-618 |#4|) $) 16 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 33)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 17 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 21)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-4140 (((-3 |#4| #1#) $) 37)) (-4043 (((-618 |#4|) $) NIL)) (-4037 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4032 ((|#4| |#4| $) NIL)) (-4045 (((-112) $ $) NIL)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4033 ((|#4| |#4| $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 |#4| #1#) $) 35)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4025 (((-3 $ #1#) $ |#4|) 47)) (-4111 (($ $ |#4|) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 15)) (-3911 (($) 13)) (-4290 (((-747) $) NIL)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) 12)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-3233 (($ $ |#3|) 44)) (-4030 (($ $) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) 31) (((-618 |#4|) $) 40)) (-4024 (((-747) $) NIL (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) NIL)) (-4276 (((-112) |#3| $) NIL)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-468 |#1| |#2| |#3| |#4|) (-1173 |#1| |#2| |#3| |#4|) (-542) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -468)) -NIL -(-1173 |#1| |#2| |#3| |#4|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3973 (($) 18)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4313 (((-371) $) 22) (((-219) $) 25) (((-400 (-1136 (-535))) $) 19) (((-524) $) 52)) (-4300 (((-835) $) 50) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (((-219) $) 24) (((-371) $) 21)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 36 T CONST)) (-2985 (($) 11 T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL))) -(((-469) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))) (-991) (-593 (-219)) (-593 (-371)) (-594 (-400 (-1136 (-535)))) (-594 (-524)) (-10 -8 (-15 -3973 ($))))) (T -469)) -((-3973 (*1 *1) (-5 *1 (-469)))) -(-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))) (-991) (-593 (-219)) (-593 (-371)) (-594 (-400 (-1136 (-535)))) (-594 (-524)) (-10 -8 (-15 -3973 ($)))) -((-2887 (((-112) $ $) NIL)) (-3865 (((-1101) $) 11)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-470) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))) (T -470)) -((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470))))) -(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $)))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) 16)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) 20)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) 18)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) 13)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 19)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 11 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) 15 (|has| $ (-6 -4336))))) -(((-471 |#1| |#2| |#3|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1067) (-1067) (-1124)) (T -471)) -NIL -(-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) -((-2052 (((-535) (-535) (-535)) 7)) (-2053 (((-112) (-535) (-535) (-535) (-535)) 11)) (-3794 (((-1224 (-618 (-535))) (-747) (-747)) 23))) -(((-472) (-10 -7 (-15 -2052 ((-535) (-535) (-535))) (-15 -2053 ((-112) (-535) (-535) (-535) (-535))) (-15 -3794 ((-1224 (-618 (-535))) (-747) (-747))))) (T -472)) -((-3794 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1224 (-618 (-535)))) (-5 *1 (-472)))) (-2053 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-112)) (-5 *1 (-472)))) (-2052 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-472))))) -(-10 -7 (-15 -2052 ((-535) (-535) (-535))) (-15 -2053 ((-112) (-535) (-535) (-535) (-535))) (-15 -3794 ((-1224 (-618 (-535))) (-747) (-747)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-836 |#1|)) $) NIL)) (-3407 (((-1136 $) $ (-836 |#1|)) NIL) (((-1136 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-836 |#1|))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-836 |#1|) #2#) $) NIL)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-836 |#1|) $) NIL)) (-4099 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-618 (-535))) NIL)) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| (-474 (-4299 |#1|) (-747)) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#2|) (-836 |#1|)) NIL) (($ (-1136 $) (-836 |#1|)) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#2| (-474 (-4299 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-836 |#1|)) NIL)) (-3141 (((-474 (-4299 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 (-474 (-4299 |#1|) (-747)) (-474 (-4299 |#1|) (-747))) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-3406 (((-3 (-836 |#1|) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-618 (-836 |#1|)) (-618 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-618 (-836 |#1|)) (-618 $)) NIL)) (-4100 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4290 (((-474 (-4299 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-836 |#1|) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#2| (-542)))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-474 (-4299 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-473 |#1| |#2|) (-13 (-921 |#2| (-474 (-4299 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) (-618 (-1142)) (-1018)) (T -473)) -((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-473 *3 *4)) (-14 *3 (-618 (-1142))) (-4 *4 (-1018))))) -(-13 (-921 |#2| (-474 (-4299 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) -((-2887 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3522 (((-112) $) NIL (|has| |#2| (-130)))) (-4053 (($ (-890)) NIL (|has| |#2| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#2| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#2| (-361)))) (-3969 (((-535) $) NIL (|has| |#2| (-821)))) (-4130 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1067)))) (-3490 (((-535) $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) ((|#2| $) NIL (|has| |#2| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#2| (-703)))) (-3315 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ (-535)) 11)) (-3520 (((-112) $) NIL (|has| |#2| (-821)))) (-2063 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (|has| |#2| (-703)))) (-3521 (((-112) $) NIL (|has| |#2| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#2| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#2| (-1067)))) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#2| (-361)))) (-3577 (((-1086) $) NIL (|has| |#2| (-1067)))) (-4143 ((|#2| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-535)) NIL)) (-4179 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-1520 (($ (-1224 |#2|)) NIL)) (-4254 (((-133)) NIL (|has| |#2| (-356)))) (-4153 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#2|) $) NIL) (($ (-535)) NIL (-3874 (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (($ |#2|) NIL (|has| |#2| (-1067))) (((-835) $) NIL (|has| |#2| (-593 (-835))))) (-3444 (((-747)) NIL (|has| |#2| (-1018)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#2| (-821)))) (-2979 (($) NIL (|has| |#2| (-130)) CONST)) (-2985 (($) NIL (|has| |#2| (-703)) CONST)) (-2990 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3375 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3005 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3006 (((-112) $ $) 15 (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-4182 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-890)) NIL (|has| |#2| (-703)))) (* (($ (-535) $) NIL (|has| |#2| (-1018))) (($ $ $) NIL (|has| |#2| (-703))) (($ $ |#2|) NIL (|has| |#2| (-703))) (($ |#2| $) NIL (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-474 |#1| |#2|) (-232 |#1| |#2|) (-747) (-769)) (T -474)) +((-3235 (*1 *1 *1) (-4 *1 (-465))) (-2414 (*1 *1 *1 *1) (-4 *1 (-465))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-550)))) (-1270 (*1 *1 *1 *1) (-4 *1 (-465))) (-3292 (*1 *1 *1 *1) (-4 *1 (-465)))) +(-13 (-705) (-10 -8 (-15 -3235 ($ $)) (-15 -2414 ($ $ $)) (-15 ** ($ $ (-550))) (-6 -4339) (-15 -1270 ($ $ $)) (-15 -3292 ($ $ $)))) +(((-101) . T) ((-595 (-836)) . T) ((-705) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 17)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-2370 (($ $ (-400 (-550))) NIL) (($ $ (-400 (-550)) (-400 (-550))) NIL)) (-2575 (((-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) NIL)) (-3123 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3103 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-3478 (((-112) $) NIL)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-400 (-550)) $) NIL) (((-400 (-550)) $ (-400 (-550))) NIL)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) NIL) (($ $ (-400 (-550))) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-400 (-550))) NIL) (($ $ (-1050) (-400 (-550))) NIL) (($ $ (-623 (-1050)) (-623 (-400 (-550)))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) 22)) (-2958 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-1489 (($ $) 26 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 33 (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166))))) (($ $ (-1223 |#2|)) 27 (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2272 (($ $ (-400 (-550))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1812 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ (-400 (-550))) NIL) (($ $ $) NIL (|has| (-400 (-550)) (-1080)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) 25 (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $ (-1223 |#2|)) 15)) (-2970 (((-400 (-550)) $) NIL)) (-3157 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1223 |#2|)) NIL) (($ (-1212 |#1| |#2| |#3|)) 9) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-2510 ((|#1| $ (-400 (-550))) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-3335 ((|#1| $) 18)) (-3187 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-400 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) 24)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-466 |#1| |#2| |#3|) (-13 (-1208 |#1|) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -1518 ($ (-1212 |#1| |#2| |#3|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) (-1020) (-1144) |#1|) (T -466)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-1020)) (-14 *4 (-1144)) (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3)))) +(-13 (-1208 |#1|) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -1518 ($ (-1212 |#1| |#2| |#3|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3029 (((-1232) $ |#1| |#1|) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#2| $ |#1| |#2|) 18)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 |#2| "failed") |#1| $) 19)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) 16)) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) NIL)) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 ((|#1| $) NIL (|has| |#1| (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 ((|#1| $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3531 (((-623 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-2325 (((-623 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-1293 ((|#2| $) NIL (|has| |#1| (-825)))) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))) (|has| |#2| (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-467 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2|) (-1068) (-1068) (-1157 |#1| |#2|) |#2|) (T -467)) +NIL +(-1157 |#1| |#2|) +((-1504 (((-112) $ $) NIL)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) NIL)) (-1779 (((-623 $) (-623 |#4|)) NIL)) (-3141 (((-623 |#3|) $) NIL)) (-2238 (((-112) $) NIL)) (-3670 (((-112) $) NIL (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4074 ((|#4| |#4| $) NIL)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4253 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3513 (($) NIL T CONST)) (-2976 (((-112) $) 26 (|has| |#1| (-542)))) (-3156 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3059 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3253 (((-112) $) NIL (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3774 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) NIL)) (-2726 (($ (-623 |#4|)) NIL)) (-1308 (((-3 $ "failed") $) 39)) (-2067 ((|#4| |#4| $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3137 (($ |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1878 ((|#4| |#4| $) NIL)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) NIL)) (-3450 (((-623 |#4|) $) 16 (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3952 ((|#3| $) 33)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#4|) $) 17 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3234 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 21)) (-2650 (((-623 |#3|) $) NIL)) (-2568 (((-112) |#3| $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-3159 (((-3 |#4| "failed") $) 37)) (-3671 (((-623 |#4|) $) NIL)) (-1296 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3900 ((|#4| |#4| $) NIL)) (-3831 (((-112) $ $) NIL)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3984 ((|#4| |#4| $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-3 |#4| "failed") $) 35)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2654 (((-3 $ "failed") $ |#4|) 47)) (-2272 (($ $ |#4|) NIL)) (-1543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 15)) (-3498 (($) 13)) (-2970 (((-749) $) NIL)) (-3350 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) 12)) (-4028 (((-526) $) NIL (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 20)) (-2315 (($ $ |#3|) 42)) (-2486 (($ $ |#3|) 44)) (-1969 (($ $) NIL)) (-2401 (($ $ |#3|) NIL)) (-1518 (((-836) $) 31) (((-623 |#4|) $) 40)) (-2580 (((-749) $) NIL (|has| |#3| (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) NIL)) (-1675 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) NIL)) (-1288 (((-112) |#3| $) NIL)) (-2316 (((-112) $ $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-468 |#1| |#2| |#3| |#4|) (-1174 |#1| |#2| |#3| |#4|) (-542) (-771) (-825) (-1034 |#1| |#2| |#3|)) (T -468)) +NIL +(-1174 |#1| |#2| |#3| |#4|) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL)) (-2726 (((-550) $) NIL) (((-400 (-550)) $) NIL)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-2734 (($) 18)) (-3102 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-4028 (((-372) $) 22) (((-219) $) 25) (((-400 (-1140 (-550))) $) 19) (((-526) $) 52)) (-1518 (((-836) $) 50) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (((-219) $) 24) (((-372) $) 21)) (-2390 (((-749)) NIL)) (-1345 (((-112) $ $) NIL)) (-2626 (($) 36 T CONST)) (-2636 (($) 11 T CONST)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) +(((-469) (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))) (-995) (-595 (-219)) (-595 (-372)) (-596 (-400 (-1140 (-550)))) (-596 (-526)) (-10 -8 (-15 -2734 ($))))) (T -469)) +((-2734 (*1 *1) (-5 *1 (-469)))) +(-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))) (-995) (-595 (-219)) (-595 (-372)) (-596 (-400 (-1140 (-550)))) (-596 (-526)) (-10 -8 (-15 -2734 ($)))) +((-1504 (((-112) $ $) NIL)) (-2874 (((-1103) $) 11)) (-2864 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 19) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-470) (-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1103) $))))) (T -470)) +((-2864 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-470)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-470))))) +(-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1103) $)))) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3029 (((-1232) $ |#1| |#1|) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#2| $ |#1| |#2|) 16)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 |#2| "failed") |#1| $) 20)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) 18)) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) NIL)) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 ((|#1| $) NIL (|has| |#1| (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 ((|#1| $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3531 (((-623 |#1|) $) 13)) (-2550 (((-112) |#1| $) NIL)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-2325 (((-623 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-1293 ((|#2| $) NIL (|has| |#1| (-825)))) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 19)) (-2680 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))) (|has| |#2| (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 11 (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3191 (((-749) $) 15 (|has| $ (-6 -4342))))) +(((-471 |#1| |#2| |#3|) (-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342))) (-1068) (-1068) (-1126)) (T -471)) +NIL +(-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342))) +((-2752 (((-550) (-550) (-550)) 7)) (-2871 (((-112) (-550) (-550) (-550) (-550)) 11)) (-4176 (((-1227 (-623 (-550))) (-749) (-749)) 23))) +(((-472) (-10 -7 (-15 -2752 ((-550) (-550) (-550))) (-15 -2871 ((-112) (-550) (-550) (-550) (-550))) (-15 -4176 ((-1227 (-623 (-550))) (-749) (-749))))) (T -472)) +((-4176 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1227 (-623 (-550)))) (-5 *1 (-472)))) (-2871 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-472)))) (-2752 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-472))))) +(-10 -7 (-15 -2752 ((-550) (-550) (-550))) (-15 -2871 ((-112) (-550) (-550) (-550) (-550))) (-15 -4176 ((-1227 (-623 (-550))) (-749) (-749)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-838 |#1|)) $) NIL)) (-3306 (((-1140 $) $ (-838 |#1|)) NIL) (((-1140 |#2|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-1447 (($ $) NIL (|has| |#2| (-542)))) (-4291 (((-112) $) NIL (|has| |#2| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-838 |#1|))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-1505 (($ $) NIL (|has| |#2| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#2| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-838 |#1|) "failed") $) NIL)) (-2726 ((|#2| $) NIL) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1011 (-550)))) (((-838 |#1|) $) NIL)) (-3340 (($ $ $ (-838 |#1|)) NIL (|has| |#2| (-170)))) (-2980 (($ $ (-623 (-550))) NIL)) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#2| (-444))) (($ $ (-838 |#1|)) NIL (|has| |#2| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#2| (-882)))) (-2613 (($ $ |#2| (-474 (-3191 |#1|) (-749)) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-838 |#1|) (-859 (-372))) (|has| |#2| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-838 |#1|) (-859 (-550))) (|has| |#2| (-859 (-550)))))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3129 (($ (-1140 |#2|) (-838 |#1|)) NIL) (($ (-1140 $) (-838 |#1|)) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#2| (-474 (-3191 |#1|) (-749))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-838 |#1|)) NIL)) (-1667 (((-474 (-3191 |#1|) (-749)) $) NIL) (((-749) $ (-838 |#1|)) NIL) (((-623 (-749)) $ (-623 (-838 |#1|))) NIL)) (-2707 (($ $ $) NIL (|has| |#2| (-825)))) (-4164 (($ $ $) NIL (|has| |#2| (-825)))) (-2688 (($ (-1 (-474 (-3191 |#1|) (-749)) (-474 (-3191 |#1|) (-749))) $) NIL)) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-2558 (((-3 (-838 |#1|) "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#2| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1825 (((-1126) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-838 |#1|)) (|:| -3521 (-749))) "failed") $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#2| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#2| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#2| (-882)))) (-1495 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-838 |#1|) |#2|) NIL) (($ $ (-623 (-838 |#1|)) (-623 |#2|)) NIL) (($ $ (-838 |#1|) $) NIL) (($ $ (-623 (-838 |#1|)) (-623 $)) NIL)) (-3453 (($ $ (-838 |#1|)) NIL (|has| |#2| (-170)))) (-2393 (($ $ (-838 |#1|)) NIL) (($ $ (-623 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2970 (((-474 (-3191 |#1|) (-749)) $) NIL) (((-749) $ (-838 |#1|)) NIL) (((-623 (-749)) $ (-623 (-838 |#1|))) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-838 |#1|) (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-838 |#1|) (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-838 |#1|) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-2503 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-838 |#1|)) NIL (|has| |#2| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-838 |#1|)) NIL) (($ (-400 (-550))) NIL (-1561 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#2| (-542)))) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ (-474 (-3191 |#1|) (-749))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#2| (-882))) (|has| |#2| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-838 |#1|)) NIL) (($ $ (-623 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2363 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-473 |#1| |#2|) (-13 (-922 |#2| (-474 (-3191 |#1|) (-749)) (-838 |#1|)) (-10 -8 (-15 -2980 ($ $ (-623 (-550)))))) (-623 (-1144)) (-1020)) (T -473)) +((-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-473 *3 *4)) (-14 *3 (-623 (-1144))) (-4 *4 (-1020))))) +(-13 (-922 |#2| (-474 (-3191 |#1|) (-749)) (-838 |#1|)) (-10 -8 (-15 -2980 ($ $ (-623 (-550)))))) +((-1504 (((-112) $ $) NIL (|has| |#2| (-1068)))) (-3433 (((-112) $) NIL (|has| |#2| (-130)))) (-3230 (($ (-894)) NIL (|has| |#2| (-1020)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-2270 (($ $ $) NIL (|has| |#2| (-771)))) (-3219 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-4047 (((-112) $ (-749)) NIL)) (-4319 (((-749)) NIL (|has| |#2| (-361)))) (-3712 (((-550) $) NIL (|has| |#2| (-823)))) (-1705 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1068)))) (-2726 (((-550) $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068)))) (((-400 (-550)) $) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) ((|#2| $) NIL (|has| |#2| (-1068)))) (-3780 (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL (|has| |#2| (-1020))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1020)))) (-1386 (((-3 $ "failed") $) NIL (|has| |#2| (-705)))) (-1741 (($) NIL (|has| |#2| (-361)))) (-3245 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ (-550)) 11)) (-1416 (((-112) $) NIL (|has| |#2| (-823)))) (-3450 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-3102 (((-112) $) NIL (|has| |#2| (-705)))) (-3329 (((-112) $) NIL (|has| |#2| (-823)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2689 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3234 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-2253 (((-894) $) NIL (|has| |#2| (-361)))) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#2| (-1068)))) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-2922 (($ (-894)) NIL (|has| |#2| (-361)))) (-3337 (((-1088) $) NIL (|has| |#2| (-1068)))) (-1293 ((|#2| $) NIL (|has| (-550) (-825)))) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL)) (-3440 ((|#2| $ $) NIL (|has| |#2| (-1020)))) (-3389 (($ (-1227 |#2|)) NIL)) (-2854 (((-133)) NIL (|has| |#2| (-356)))) (-2393 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1020))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1020)))) (-3350 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-1227 |#2|) $) NIL) (($ (-550)) NIL (-1561 (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068))) (|has| |#2| (-1020)))) (($ (-400 (-550))) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (($ |#2|) NIL (|has| |#2| (-1068))) (((-836) $) NIL (|has| |#2| (-595 (-836))))) (-2390 (((-749)) NIL (|has| |#2| (-1020)))) (-1675 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1635 (($ $) NIL (|has| |#2| (-823)))) (-2626 (($) NIL (|has| |#2| (-130)) CONST)) (-2636 (($) NIL (|has| |#2| (-705)) CONST)) (-4183 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1020))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1020)))) (-2363 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2345 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2316 (((-112) $ $) NIL (|has| |#2| (-1068)))) (-2354 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2335 (((-112) $ $) 15 (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $ $) NIL (|has| |#2| (-1020))) (($ $) NIL (|has| |#2| (-1020)))) (-2391 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-894)) NIL (|has| |#2| (-705)))) (* (($ (-550) $) NIL (|has| |#2| (-1020))) (($ $ $) NIL (|has| |#2| (-705))) (($ $ |#2|) NIL (|has| |#2| (-705))) (($ |#2| $) NIL (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-894) $) NIL (|has| |#2| (-25)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-474 |#1| |#2|) (-232 |#1| |#2|) (-749) (-771)) (T -474)) NIL (-232 |#1| |#2|) -((-2887 (((-112) $ $) NIL)) (-2055 (((-618 (-497)) $) 11)) (-3888 (((-497) $) 10)) (-3576 (((-1124) $) NIL)) (-2056 (($ (-497) (-618 (-497))) 9)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-475) (-13 (-1049) (-10 -8 (-15 -2056 ($ (-497) (-618 (-497)))) (-15 -3888 ((-497) $)) (-15 -2055 ((-618 (-497)) $))))) (T -475)) -((-2056 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-618 (-497))) (-5 *1 (-475))))) -(-13 (-1049) (-10 -8 (-15 -2056 ($ (-497) (-618 (-497)))) (-15 -3888 ((-497) $)) (-15 -2055 ((-618 (-497)) $)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-3180 (($ $ $) 32)) (-3855 (($ $ $) 31)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3661 ((|#1| $) 26)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) 27)) (-3953 (($ |#1| $) 10)) (-2057 (($ (-618 |#1|)) 12)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1327 ((|#1| $) 23)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 9)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 29)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) 21 (|has| $ (-6 -4336))))) -(((-476 |#1|) (-13 (-939 |#1|) (-10 -8 (-15 -2057 ($ (-618 |#1|))))) (-823)) (T -476)) -((-2057 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-476 *3))))) -(-13 (-939 |#1|) (-10 -8 (-15 -2057 ($ (-618 |#1|))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4185 (($ $) 69)) (-1747 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 44)) (-3577 (((-1086) $) NIL)) (-2492 (((-3 |#4| "failed") $) 107)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-535)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3777 (((-2 (|:| -2408 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4300 (((-835) $) 102)) (-2979 (($) 33 T CONST)) (-3375 (((-112) $ $) 109)) (-4180 (($ $) 72) (($ $ $) NIL)) (-4182 (($ $ $) 70)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 73))) -(((-477 |#1| |#2| |#3| |#4|) (-329 |#1| |#2| |#3| |#4|) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -477)) -NIL -(-329 |#1| |#2| |#3| |#4|) -((-2061 (((-535) (-618 (-535))) 30)) (-2058 ((|#1| (-618 |#1|)) 56)) (-2060 (((-618 |#1|) (-618 |#1|)) 57)) (-2059 (((-618 |#1|) (-618 |#1|)) 59)) (-3478 ((|#1| (-618 |#1|)) 58)) (-3138 (((-618 (-535)) (-618 |#1|)) 33))) -(((-478 |#1|) (-10 -7 (-15 -3478 (|#1| (-618 |#1|))) (-15 -2058 (|#1| (-618 |#1|))) (-15 -2059 ((-618 |#1|) (-618 |#1|))) (-15 -2060 ((-618 |#1|) (-618 |#1|))) (-15 -3138 ((-618 (-535)) (-618 |#1|))) (-15 -2061 ((-535) (-618 (-535))))) (-1200 (-535))) (T -478)) -((-2061 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-535)) (-5 *1 (-478 *4)) (-4 *4 (-1200 *2)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1200 (-535))) (-5 *2 (-618 (-535))) (-5 *1 (-478 *4)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1200 (-535))) (-5 *1 (-478 *3)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1200 (-535))) (-5 *1 (-478 *3)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1200 (-535))))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1200 (-535)))))) -(-10 -7 (-15 -3478 (|#1| (-618 |#1|))) (-15 -2058 (|#1| (-618 |#1|))) (-15 -2059 ((-618 |#1|) (-618 |#1|))) (-15 -2060 ((-618 |#1|) (-618 |#1|))) (-15 -3138 ((-618 (-535)) (-618 |#1|))) (-15 -2061 ((-535) (-618 (-535))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-535) $) NIL (|has| (-535) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-535) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-535) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-535) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-535) (-1009 (-535))))) (-3490 (((-535) $) NIL) (((-1142) $) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-535) (-1009 (-535)))) (((-535) $) NIL (|has| (-535) (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-535) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-535) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-535) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-535) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-535) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-535) (-1117)))) (-3521 (((-112) $) NIL (|has| (-535) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-535) (-823)))) (-4301 (($ (-1 (-535) (-535)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-535) (-1117)) CONST)) (-2062 (($ (-400 (-535))) 9)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-535) (-300))) (((-400 (-535)) $) NIL)) (-3448 (((-535) $) NIL (|has| (-535) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-535)) (-618 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-535) (-535)) NIL (|has| (-535) (-302 (-535)))) (($ $ (-286 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-286 (-535)))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-1142)) (-618 (-535))) NIL (|has| (-535) (-505 (-1142) (-535)))) (($ $ (-1142) (-535)) NIL (|has| (-535) (-505 (-1142) (-535))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-535)) NIL (|has| (-535) (-279 (-535) (-535))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-535) $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| (-535) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-535) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-535) (-594 (-524)))) (((-371) $) NIL (|has| (-535) (-991))) (((-219) $) NIL (|has| (-535) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-535) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 8) (($ (-535)) NIL) (($ (-1142)) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL) (((-975 16) $) 10)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-535) (-881))) (|has| (-535) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-535) $) NIL (|has| (-535) (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-535) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-535) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-535) (-823)))) (-4291 (($ $ $) NIL) (($ (-535) (-535)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-535) $) NIL) (($ $ (-535)) NIL))) -(((-479) (-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 16) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -2062 ($ (-400 (-535))))))) (T -479)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-975 16)) (-5 *1 (-479)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479))))) -(-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 16) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -2062 ($ (-400 (-535)))))) -((-2502 (((-618 |#2|) $) 23)) (-3579 (((-112) |#2| $) 28)) (-2065 (((-112) (-1 (-112) |#2|) $) 21)) (-4110 (($ $ (-618 (-286 |#2|))) 13) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-618 |#2|) (-618 |#2|)) NIL)) (-2064 (((-747) (-1 (-112) |#2|) $) 22) (((-747) |#2| $) 26)) (-4300 (((-835) $) 37)) (-2066 (((-112) (-1 (-112) |#2|) $) 20)) (-3375 (((-112) $ $) 31)) (-4299 (((-747) $) 17))) -(((-480 |#1| |#2|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -3579 ((-112) |#2| |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2502 ((-618 |#2|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|))) (-481 |#2|) (-1178)) (T -480)) -NIL -(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -3579 ((-112) |#2| |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2502 ((-618 |#2|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-481 |#1|) (-138) (-1178)) (T -481)) -((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1178)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1178)))) (-2066 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1178)) (-5 *2 (-112)))) (-2065 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1178)) (-5 *2 (-112)))) (-2064 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1178)) (-5 *2 (-747)))) (-2063 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-5 *2 (-618 *3)))) (-2502 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-5 *2 (-618 *3)))) (-2064 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-747)))) (-3579 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-1067)) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4337)) (-15 -2067 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4336)) (PROGN (-15 -2066 ((-112) (-1 (-112) |t#1|) $)) (-15 -2065 ((-112) (-1 (-112) |t#1|) $)) (-15 -2064 ((-747) (-1 (-112) |t#1|) $)) (-15 -2063 ((-618 |t#1|) $)) (-15 -2502 ((-618 |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -2064 ((-747) |t#1| $)) (-15 -3579 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2068 (($ (-1124)) 8)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 14) (((-1124) $) 11)) (-3375 (((-112) $ $) 10))) -(((-482) (-13 (-1067) (-593 (-1124)) (-10 -8 (-15 -2068 ($ (-1124)))))) (T -482)) -((-2068 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-482))))) -(-13 (-1067) (-593 (-1124)) (-10 -8 (-15 -2068 ($ (-1124))))) -((-3829 (($ $) 15)) (-3827 (($ $) 24)) (-3831 (($ $) 12)) (-3832 (($ $) 10)) (-3830 (($ $) 17)) (-3828 (($ $) 22))) -(((-483 |#1|) (-10 -8 (-15 -3828 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|))) (-484)) (T -483)) -NIL -(-10 -8 (-15 -3828 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|))) -((-3829 (($ $) 11)) (-3827 (($ $) 10)) (-3831 (($ $) 9)) (-3832 (($ $) 8)) (-3830 (($ $) 7)) (-3828 (($ $) 6))) +((-1504 (((-112) $ $) NIL)) (-3646 (((-623 (-497)) $) 11)) (-1916 (((-497) $) 10)) (-1825 (((-1126) $) NIL)) (-3077 (($ (-497) (-623 (-497))) 9)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 20) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-475) (-13 (-1051) (-10 -8 (-15 -3077 ($ (-497) (-623 (-497)))) (-15 -1916 ((-497) $)) (-15 -3646 ((-623 (-497)) $))))) (T -475)) +((-3077 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-623 (-497))) (-5 *1 (-475))))) +(-13 (-1051) (-10 -8 (-15 -3077 ($ (-497) (-623 (-497)))) (-15 -1916 ((-497) $)) (-15 -3646 ((-623 (-497)) $)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) NIL)) (-3513 (($) NIL T CONST)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3884 (($ $ $) 32)) (-1832 (($ $ $) 31)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-4164 ((|#1| $) 26)) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3638 ((|#1| $) 27)) (-1886 (($ |#1| $) 10)) (-3185 (($ (-623 |#1|)) 12)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3760 ((|#1| $) 23)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 9)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 29)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) 21 (|has| $ (-6 -4342))))) +(((-476 |#1|) (-13 (-941 |#1|) (-10 -8 (-15 -3185 ($ (-623 |#1|))))) (-825)) (T -476)) +((-3185 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-476 *3))))) +(-13 (-941 |#1|) (-10 -8 (-15 -3185 ($ (-623 |#1|))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2419 (($ $) 69)) (-2596 (((-112) $) NIL)) (-1825 (((-1126) $) NIL)) (-2135 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 44)) (-3337 (((-1088) $) NIL)) (-3935 (((-3 |#4| "failed") $) 107)) (-1524 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-550)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3417 (((-2 (|:| -2551 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1518 (((-836) $) 102)) (-2626 (($) 33 T CONST)) (-2316 (((-112) $ $) 109)) (-2403 (($ $) 72) (($ $ $) NIL)) (-2391 (($ $ $) 70)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 73))) +(((-477 |#1| |#2| |#3| |#4|) (-328 |#1| |#2| |#3| |#4|) (-356) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -477)) +NIL +(-328 |#1| |#2| |#3| |#4|) +((-2504 (((-550) (-623 (-550))) 30)) (-2198 ((|#1| (-623 |#1|)) 56)) (-2396 (((-623 |#1|) (-623 |#1|)) 57)) (-2295 (((-623 |#1|) (-623 |#1|)) 59)) (-3139 ((|#1| (-623 |#1|)) 58)) (-2503 (((-623 (-550)) (-623 |#1|)) 33))) +(((-478 |#1|) (-10 -7 (-15 -3139 (|#1| (-623 |#1|))) (-15 -2198 (|#1| (-623 |#1|))) (-15 -2295 ((-623 |#1|) (-623 |#1|))) (-15 -2396 ((-623 |#1|) (-623 |#1|))) (-15 -2503 ((-623 (-550)) (-623 |#1|))) (-15 -2504 ((-550) (-623 (-550))))) (-1203 (-550))) (T -478)) +((-2504 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-550)) (-5 *1 (-478 *4)) (-4 *4 (-1203 *2)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1203 (-550))) (-5 *2 (-623 (-550))) (-5 *1 (-478 *4)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1203 (-550))) (-5 *1 (-478 *3)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1203 (-550))) (-5 *1 (-478 *3)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1203 (-550))))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1203 (-550)))))) +(-10 -7 (-15 -3139 (|#1| (-623 |#1|))) (-15 -2198 (|#1| (-623 |#1|))) (-15 -2295 ((-623 |#1|) (-623 |#1|))) (-15 -2396 ((-623 |#1|) (-623 |#1|))) (-15 -2503 ((-623 (-550)) (-623 |#1|))) (-15 -2504 ((-550) (-623 (-550))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 (((-550) $) NIL (|has| (-550) (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| (-550) (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL (|has| (-550) (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-550) (-1011 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-550) (-1011 (-550))))) (-2726 (((-550) $) NIL) (((-1144) $) NIL (|has| (-550) (-1011 (-1144)))) (((-400 (-550)) $) NIL (|has| (-550) (-1011 (-550)))) (((-550) $) NIL (|has| (-550) (-1011 (-550))))) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-550) (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) NIL (|has| (-550) (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| (-550) (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| (-550) (-859 (-372))))) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL)) (-2705 (((-550) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| (-550) (-1119)))) (-3329 (((-112) $) NIL (|has| (-550) (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| (-550) (-825)))) (-3972 (($ (-1 (-550) (-550)) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-550) (-1119)) CONST)) (-2601 (($ (-400 (-550))) 9)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| (-550) (-300))) (((-400 (-550)) $) NIL)) (-1608 (((-550) $) NIL (|has| (-550) (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 (-550)) (-623 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-302 (-550)))) (($ $ (-287 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-287 (-550)))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-1144)) (-623 (-550))) NIL (|has| (-550) (-505 (-1144) (-550)))) (($ $ (-1144) (-550)) NIL (|has| (-550) (-505 (-1144) (-550))))) (-3542 (((-749) $) NIL)) (-2680 (($ $ (-550)) NIL (|has| (-550) (-279 (-550) (-550))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1144)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2639 (($ $) NIL)) (-2715 (((-550) $) NIL)) (-4028 (((-865 (-550)) $) NIL (|has| (-550) (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| (-550) (-596 (-865 (-372))))) (((-526) $) NIL (|has| (-550) (-596 (-526)))) (((-372) $) NIL (|has| (-550) (-995))) (((-219) $) NIL (|has| (-550) (-995)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-550) (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 8) (($ (-550)) NIL) (($ (-1144)) NIL (|has| (-550) (-1011 (-1144)))) (((-400 (-550)) $) NIL) (((-977 16) $) 10)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-550) (-882))) (|has| (-550) (-143))))) (-2390 (((-749)) NIL)) (-1754 (((-550) $) NIL (|has| (-550) (-535)))) (-1345 (((-112) $ $) NIL)) (-1635 (($ $) NIL (|has| (-550) (-798)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1144)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2363 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2414 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) +(((-479) (-13 (-965 (-550)) (-10 -8 (-15 -1518 ((-400 (-550)) $)) (-15 -1518 ((-977 16) $)) (-15 -3948 ((-400 (-550)) $)) (-15 -2601 ($ (-400 (-550))))))) (T -479)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-977 16)) (-5 *1 (-479)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479))))) +(-13 (-965 (-550)) (-10 -8 (-15 -1518 ((-400 (-550)) $)) (-15 -1518 ((-977 16) $)) (-15 -3948 ((-400 (-550)) $)) (-15 -2601 ($ (-400 (-550)))))) +((-2689 (((-623 |#2|) $) 23)) (-1921 (((-112) |#2| $) 28)) (-1543 (((-112) (-1 (-112) |#2|) $) 21)) (-3866 (($ $ (-623 (-287 |#2|))) 13) (($ $ (-287 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-623 |#2|) (-623 |#2|)) NIL)) (-3350 (((-749) (-1 (-112) |#2|) $) 22) (((-749) |#2| $) 26)) (-1518 (((-836) $) 37)) (-1675 (((-112) (-1 (-112) |#2|) $) 20)) (-2316 (((-112) $ $) 31)) (-3191 (((-749) $) 17))) +(((-480 |#1| |#2|) (-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -3866 (|#1| |#1| (-623 |#2|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#2| |#2|)) (-15 -3866 (|#1| |#1| (-287 |#2|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -1921 ((-112) |#2| |#1|)) (-15 -3350 ((-749) |#2| |#1|)) (-15 -2689 ((-623 |#2|) |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3191 ((-749) |#1|))) (-481 |#2|) (-1181)) (T -480)) +NIL +(-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -3866 (|#1| |#1| (-623 |#2|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#2| |#2|)) (-15 -3866 (|#1| |#1| (-287 |#2|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#2|)))) (-15 -1921 ((-112) |#2| |#1|)) (-15 -3350 ((-749) |#2| |#1|)) (-15 -2689 ((-623 |#2|) |#1|)) (-15 -3350 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3191 ((-749) |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-3513 (($) 7 T CONST)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-481 |#1|) (-138) (-1181)) (T -481)) +((-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1181)))) (-3234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4343)) (-4 *1 (-481 *3)) (-4 *3 (-1181)))) (-1675 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4342)) (-4 *1 (-481 *4)) (-4 *4 (-1181)) (-5 *2 (-112)))) (-1543 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4342)) (-4 *1 (-481 *4)) (-4 *4 (-1181)) (-5 *2 (-112)))) (-3350 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4342)) (-4 *1 (-481 *4)) (-4 *4 (-1181)) (-5 *2 (-749)))) (-3450 (*1 *2 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-481 *3)) (-4 *3 (-1181)) (-5 *2 (-623 *3)))) (-2689 (*1 *2 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-481 *3)) (-4 *3 (-1181)) (-5 *2 (-623 *3)))) (-3350 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-481 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)) (-5 *2 (-749)))) (-1921 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-481 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-595 (-836))) (-6 (-595 (-836))) |%noBranch|) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-1068)) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3972 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4343)) (-15 -3234 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4342)) (PROGN (-15 -1675 ((-112) (-1 (-112) |t#1|) $)) (-15 -1543 ((-112) (-1 (-112) |t#1|) $)) (-15 -3350 ((-749) (-1 (-112) |t#1|) $)) (-15 -3450 ((-623 |t#1|) $)) (-15 -2689 ((-623 |t#1|) $)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -3350 ((-749) |t#1| $)) (-15 -1921 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-1831 (($ (-1126)) 8)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 14) (((-1126) $) 11)) (-2316 (((-112) $ $) 10))) +(((-482) (-13 (-1068) (-595 (-1126)) (-10 -8 (-15 -1831 ($ (-1126)))))) (T -482)) +((-1831 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-482))))) +(-13 (-1068) (-595 (-1126)) (-10 -8 (-15 -1831 ($ (-1126))))) +((-3123 (($ $) 15)) (-3103 (($ $) 24)) (-3146 (($ $) 12)) (-3157 (($ $) 10)) (-3135 (($ $) 17)) (-3114 (($ $) 22))) +(((-483 |#1|) (-10 -8 (-15 -3114 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3123 (|#1| |#1|))) (-484)) (T -483)) +NIL +(-10 -8 (-15 -3114 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3123 (|#1| |#1|))) +((-3123 (($ $) 11)) (-3103 (($ $) 10)) (-3146 (($ $) 9)) (-3157 (($ $) 8)) (-3135 (($ $) 7)) (-3114 (($ $) 6))) (((-484) (-138)) (T -484)) -((-3829 (*1 *1 *1) (-4 *1 (-484))) (-3827 (*1 *1 *1) (-4 *1 (-484))) (-3831 (*1 *1 *1) (-4 *1 (-484))) (-3832 (*1 *1 *1) (-4 *1 (-484))) (-3830 (*1 *1 *1) (-4 *1 (-484))) (-3828 (*1 *1 *1) (-4 *1 (-484)))) -(-13 (-10 -8 (-15 -3828 ($ $)) (-15 -3830 ($ $)) (-15 -3832 ($ $)) (-15 -3831 ($ $)) (-15 -3827 ($ $)) (-15 -3829 ($ $)))) -((-4075 (((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)) 42))) -(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)))) (-356) (-1200 |#1|) (-13 (-356) (-145) (-701 |#1| |#2|)) (-1200 |#3|)) (T -485)) -((-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-4 *7 (-13 (-356) (-145) (-701 *5 *6))) (-5 *2 (-398 *3)) (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1200 *7))))) -(-10 -7 (-15 -4075 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)))) -((-2887 (((-112) $ $) NIL)) (-1662 (((-618 $) (-1136 $) (-1142)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-917 $)) NIL)) (-1258 (($ (-1136 $) (-1142)) NIL) (($ (-1136 $)) NIL) (($ (-917 $)) NIL)) (-3522 (((-112) $) 39)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2069 (((-112) $ $) 64)) (-1655 (((-618 (-591 $)) $) 48)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-1259 (((-618 $) (-1136 $) (-1142)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-917 $)) NIL)) (-3517 (($ (-1136 $) (-1142)) NIL) (($ (-1136 $)) NIL) (($ (-917 $)) NIL)) (-3491 (((-3 (-591 $) #1="failed") $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 (-400 (-535)) #1#) $) NIL)) (-3490 (((-591 $) $) NIL) (((-535) $) NIL) (((-400 (-535)) $) 50)) (-2883 (($ $ $) NIL)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-400 (-535)))) (|:| |vec| (-1224 (-400 (-535))))) (-665 $) (-1224 $)) NIL) (((-665 (-400 (-535))) (-665 $)) NIL)) (-4185 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2892 (($ $) NIL) (($ (-618 $)) NIL)) (-1654 (((-618 (-113)) $) NIL)) (-3368 (((-113) (-113)) NIL)) (-2493 (((-112) $) 42)) (-2994 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-3319 (((-1091 (-535) (-591 $)) $) 37)) (-3332 (($ $ (-535)) NIL)) (-3450 (((-1136 $) (-1136 $) (-591 $)) 78) (((-1136 $) (-1136 $) (-618 (-591 $))) 55) (($ $ (-591 $)) 67) (($ $ (-618 (-591 $))) 68)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-1652 (((-1136 $) (-591 $)) 65 (|has| $ (-1018)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 $ $) (-591 $)) NIL)) (-1657 (((-3 (-591 $) "failed") $) NIL)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-1656 (((-618 (-591 $)) $) NIL)) (-2308 (($ (-113) $) NIL) (($ (-113) (-618 $)) NIL)) (-2952 (((-112) $ (-113)) NIL) (((-112) $ (-1142)) NIL)) (-2725 (($ $) NIL)) (-2922 (((-747) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1699 (((-747) $) NIL)) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) 36)) (-3318 (((-1091 (-535) (-591 $)) $) 20)) (-3519 (($ $) NIL (|has| $ (-1018)))) (-4313 (((-371) $) 92) (((-219) $) 100) (((-166 (-371)) $) 108)) (-4300 (((-835) $) NIL) (($ (-591 $)) NIL) (($ (-400 (-535))) NIL) (($ $) NIL) (($ (-535)) NIL) (($ (-1091 (-535) (-591 $))) 21)) (-3444 (((-747)) NIL)) (-2909 (($ $) NIL) (($ (-618 $)) NIL)) (-2329 (((-112) (-113)) 84)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 10 T CONST)) (-2985 (($) 22 T CONST)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 24)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4291 (($ $ $) 44)) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-400 (-535))) NIL) (($ $ (-535)) 46) (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ $ $) 27) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL))) -(((-486) (-13 (-291) (-27) (-1009 (-535)) (-1009 (-400 (-535))) (-617 (-535)) (-991) (-617 (-400 (-535))) (-145) (-594 (-166 (-371))) (-227) (-10 -8 (-15 -4300 ($ (-1091 (-535) (-591 $)))) (-15 -3319 ((-1091 (-535) (-591 $)) $)) (-15 -3318 ((-1091 (-535) (-591 $)) $)) (-15 -4185 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -3450 ((-1136 $) (-1136 $) (-591 $))) (-15 -3450 ((-1136 $) (-1136 $) (-618 (-591 $)))) (-15 -3450 ($ $ (-591 $))) (-15 -3450 ($ $ (-618 (-591 $))))))) (T -486)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) (-4185 (*1 *1 *1) (-5 *1 (-486))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-486))) (-5 *3 (-591 (-486))) (-5 *1 (-486)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-486))) (-5 *3 (-618 (-591 (-486)))) (-5 *1 (-486)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-486))) (-5 *1 (-486)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-591 (-486)))) (-5 *1 (-486))))) -(-13 (-291) (-27) (-1009 (-535)) (-1009 (-400 (-535))) (-617 (-535)) (-991) (-617 (-400 (-535))) (-145) (-594 (-166 (-371))) (-227) (-10 -8 (-15 -4300 ($ (-1091 (-535) (-591 $)))) (-15 -3319 ((-1091 (-535) (-591 $)) $)) (-15 -3318 ((-1091 (-535) (-591 $)) $)) (-15 -4185 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -3450 ((-1136 $) (-1136 $) (-591 $))) (-15 -3450 ((-1136 $) (-1136 $) (-618 (-591 $)))) (-15 -3450 ($ $ (-591 $))) (-15 -3450 ($ $ (-618 (-591 $)))))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) 25 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 22 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 21)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 14)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 12 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) 23 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) 10 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 13)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) 24) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 9 (|has| $ (-6 -4336))))) -(((-487 |#1| |#2|) (-19 |#1|) (-1178) (-535)) (T -487)) +((-3123 (*1 *1 *1) (-4 *1 (-484))) (-3103 (*1 *1 *1) (-4 *1 (-484))) (-3146 (*1 *1 *1) (-4 *1 (-484))) (-3157 (*1 *1 *1) (-4 *1 (-484))) (-3135 (*1 *1 *1) (-4 *1 (-484))) (-3114 (*1 *1 *1) (-4 *1 (-484)))) +(-13 (-10 -8 (-15 -3114 ($ $)) (-15 -3135 ($ $)) (-15 -3157 ($ $)) (-15 -3146 ($ $)) (-15 -3103 ($ $)) (-15 -3123 ($ $)))) +((-3338 (((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)) 42))) +(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3338 ((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)))) (-356) (-1203 |#1|) (-13 (-356) (-145) (-703 |#1| |#2|)) (-1203 |#3|)) (T -485)) +((-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) (-4 *7 (-13 (-356) (-145) (-703 *5 *6))) (-5 *2 (-411 *3)) (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1203 *7))))) +(-10 -7 (-15 -3338 ((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)))) +((-1504 (((-112) $ $) NIL)) (-1384 (((-623 $) (-1140 $) (-1144)) NIL) (((-623 $) (-1140 $)) NIL) (((-623 $) (-925 $)) NIL)) (-4122 (($ (-1140 $) (-1144)) NIL) (($ (-1140 $)) NIL) (($ (-925 $)) NIL)) (-3433 (((-112) $) 39)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-1972 (((-112) $ $) 64)) (-3223 (((-623 (-594 $)) $) 48)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $ (-287 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3353 (($ $) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-4241 (((-623 $) (-1140 $) (-1144)) NIL) (((-623 $) (-1140 $)) NIL) (((-623 $) (-925 $)) NIL)) (-4146 (($ (-1140 $) (-1144)) NIL) (($ (-1140 $)) NIL) (($ (-925 $)) NIL)) (-3880 (((-3 (-594 $) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL)) (-2726 (((-594 $) $) NIL) (((-550) $) NIL) (((-400 (-550)) $) 50)) (-3349 (($ $ $) NIL)) (-3780 (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -1340 (-667 (-400 (-550)))) (|:| |vec| (-1227 (-400 (-550))))) (-667 $) (-1227 $)) NIL) (((-667 (-400 (-550))) (-667 $)) NIL)) (-2419 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1380 (($ $) NIL) (($ (-623 $)) NIL)) (-2029 (((-623 (-114)) $) NIL)) (-2926 (((-114) (-114)) NIL)) (-3102 (((-112) $) 42)) (-3718 (((-112) $) NIL (|has| $ (-1011 (-550))))) (-2705 (((-1093 (-550) (-594 $)) $) 37)) (-1460 (($ $ (-550)) NIL)) (-1389 (((-1140 $) (-1140 $) (-594 $)) 78) (((-1140 $) (-1140 $) (-623 (-594 $))) 55) (($ $ (-594 $)) 67) (($ $ (-623 (-594 $))) 68)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1843 (((-1140 $) (-594 $)) 65 (|has| $ (-1020)))) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 $ $) (-594 $)) NIL)) (-2106 (((-3 (-594 $) "failed") $) NIL)) (-3106 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3296 (((-623 (-594 $)) $) NIL)) (-2776 (($ (-114) $) NIL) (($ (-114) (-623 $)) NIL)) (-3890 (((-112) $ (-114)) NIL) (((-112) $ (-1144)) NIL)) (-3235 (($ $) NIL)) (-3142 (((-749) $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1938 (((-112) $ $) NIL) (((-112) $ (-1144)) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3777 (((-112) $) NIL (|has| $ (-1011 (-550))))) (-3866 (($ $ (-594 $) $) NIL) (($ $ (-623 (-594 $)) (-623 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-1144)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-1144) (-1 $ (-623 $))) NIL) (($ $ (-1144) (-1 $ $)) NIL) (($ $ (-623 (-114)) (-623 (-1 $ $))) NIL) (($ $ (-623 (-114)) (-623 (-1 $ (-623 $)))) NIL) (($ $ (-114) (-1 $ (-623 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3542 (((-749) $) NIL)) (-2680 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-623 $)) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3930 (($ $) NIL) (($ $ $) NIL)) (-2393 (($ $ (-749)) NIL) (($ $) 36)) (-2715 (((-1093 (-550) (-594 $)) $) 20)) (-1310 (($ $) NIL (|has| $ (-1020)))) (-4028 (((-372) $) 92) (((-219) $) 100) (((-167 (-372)) $) 108)) (-1518 (((-836) $) NIL) (($ (-594 $)) NIL) (($ (-400 (-550))) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-1093 (-550) (-594 $))) 21)) (-2390 (((-749)) NIL)) (-3716 (($ $) NIL) (($ (-623 $)) NIL)) (-2222 (((-112) (-114)) 84)) (-1345 (((-112) $ $) NIL)) (-2626 (($) 10 T CONST)) (-2636 (($) 22 T CONST)) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 24)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2414 (($ $ $) 44)) (-2403 (($ $ $) NIL) (($ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-400 (-550))) NIL) (($ $ (-550)) 46) (($ $ (-749)) NIL) (($ $ (-894)) NIL)) (* (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ $ $) 27) (($ (-550) $) NIL) (($ (-749) $) NIL) (($ (-894) $) NIL))) +(((-486) (-13 (-295) (-27) (-1011 (-550)) (-1011 (-400 (-550))) (-619 (-550)) (-995) (-619 (-400 (-550))) (-145) (-596 (-167 (-372))) (-227) (-10 -8 (-15 -1518 ($ (-1093 (-550) (-594 $)))) (-15 -2705 ((-1093 (-550) (-594 $)) $)) (-15 -2715 ((-1093 (-550) (-594 $)) $)) (-15 -2419 ($ $)) (-15 -1972 ((-112) $ $)) (-15 -1389 ((-1140 $) (-1140 $) (-594 $))) (-15 -1389 ((-1140 $) (-1140 $) (-623 (-594 $)))) (-15 -1389 ($ $ (-594 $))) (-15 -1389 ($ $ (-623 (-594 $))))))) (T -486)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1093 (-550) (-594 (-486)))) (-5 *1 (-486)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-1093 (-550) (-594 (-486)))) (-5 *1 (-486)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1093 (-550) (-594 (-486)))) (-5 *1 (-486)))) (-2419 (*1 *1 *1) (-5 *1 (-486))) (-1972 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))) (-1389 (*1 *2 *2 *3) (-12 (-5 *2 (-1140 (-486))) (-5 *3 (-594 (-486))) (-5 *1 (-486)))) (-1389 (*1 *2 *2 *3) (-12 (-5 *2 (-1140 (-486))) (-5 *3 (-623 (-594 (-486)))) (-5 *1 (-486)))) (-1389 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-486))) (-5 *1 (-486)))) (-1389 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-594 (-486)))) (-5 *1 (-486))))) +(-13 (-295) (-27) (-1011 (-550)) (-1011 (-400 (-550))) (-619 (-550)) (-995) (-619 (-400 (-550))) (-145) (-596 (-167 (-372))) (-227) (-10 -8 (-15 -1518 ($ (-1093 (-550) (-594 $)))) (-15 -2705 ((-1093 (-550) (-594 $)) $)) (-15 -2715 ((-1093 (-550) (-594 $)) $)) (-15 -2419 ($ $)) (-15 -1972 ((-112) $ $)) (-15 -1389 ((-1140 $) (-1140 $) (-594 $))) (-15 -1389 ((-1140 $) (-1140 $) (-623 (-594 $)))) (-15 -1389 ($ $ (-594 $))) (-15 -1389 ($ $ (-623 (-594 $)))))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) |#1|) 25 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) 22 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 21)) (-2302 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068)))) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2578 (($ (-749) |#1|) 14)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) 12 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) 23 (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) NIL (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) 10 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 13)) (-2680 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 24) (($ $ (-1194 (-550))) NIL)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-3227 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3191 (((-749) $) 9 (|has| $ (-6 -4342))))) +(((-487 |#1| |#2|) (-19 |#1|) (-1181) (-550)) (T -487)) NIL (-19 |#1|) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL)) (-1302 (($ $ (-535) (-487 |#1| |#3|)) NIL)) (-1301 (($ $ (-535) (-487 |#1| |#2|)) NIL)) (-3879 (($) NIL T CONST)) (-3430 (((-487 |#1| |#3|) $ (-535)) NIL)) (-1632 ((|#1| $ (-535) (-535) |#1|) NIL)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3433 (((-747) $) NIL)) (-3960 (($ (-747) (-747) |#1|) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 (((-487 |#1| |#2|) $ (-535)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-488 |#1| |#2| |#3|) (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) (-1178) (-535) (-535)) (T -488)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) (-550) |#1|) NIL)) (-1396 (($ $ (-550) (-487 |#1| |#3|)) NIL)) (-3693 (($ $ (-550) (-487 |#1| |#2|)) NIL)) (-3513 (($) NIL T CONST)) (-3719 (((-487 |#1| |#3|) $ (-550)) NIL)) (-3245 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3181 ((|#1| $ (-550) (-550)) NIL)) (-3450 (((-623 |#1|) $) NIL)) (-2115 (((-749) $) NIL)) (-2578 (($ (-749) (-749) |#1|) NIL)) (-2124 (((-749) $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-2938 (((-550) $) NIL)) (-3895 (((-550) $) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2828 (((-550) $) NIL)) (-3816 (((-550) $) NIL)) (-3234 (($ (-1 |#1| |#1|) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3111 (($ $ |#1|) NIL)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-3615 (((-487 |#1| |#2|) $ (-550)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-488 |#1| |#2| |#3|) (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) (-1181) (-550) (-550)) (T -488)) NIL (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) -((-2071 (((-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747)) 27)) (-2070 (((-618 (-1136 |#1|)) |#1| (-747) (-747) (-747)) 34)) (-2190 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-618 |#3|) (-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)) 85))) -(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -2070 ((-618 (-1136 |#1|)) |#1| (-747) (-747) (-747))) (-15 -2071 ((-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747))) (-15 -2190 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-618 |#3|) (-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)))) (-343) (-1200 |#1|) (-1200 |#2|)) (T -489)) -((-2190 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-2 (|:| -2123 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7))))) (-5 *5 (-747)) (-4 *8 (-1200 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -2123 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7)))) (-5 *1 (-489 *6 *7 *8)))) (-2071 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-4 *5 (-343)) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-2 (|:| -2123 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6))))) (-5 *1 (-489 *5 *6 *7)) (-5 *3 (-2 (|:| -2123 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6)))) (-4 *7 (-1200 *6)))) (-2070 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-747)) (-4 *3 (-343)) (-4 *5 (-1200 *3)) (-5 *2 (-618 (-1136 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1200 *5))))) -(-10 -7 (-15 -2070 ((-618 (-1136 |#1|)) |#1| (-747) (-747) (-747))) (-15 -2071 ((-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747))) (-15 -2190 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-618 |#3|) (-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)))) -((-2077 (((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))) 62)) (-2072 ((|#1| (-665 |#1|) |#1| (-747)) 25)) (-2074 (((-747) (-747) (-747)) 30)) (-2076 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 42)) (-2075 (((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|) 50) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 47)) (-2073 ((|#1| (-665 |#1|) (-665 |#1|) |#1| (-535)) 29)) (-3671 ((|#1| (-665 |#1|)) 18))) -(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3671 (|#1| (-665 |#1|))) (-15 -2072 (|#1| (-665 |#1|) |#1| (-747))) (-15 -2073 (|#1| (-665 |#1|) (-665 |#1|) |#1| (-535))) (-15 -2074 ((-747) (-747) (-747))) (-15 -2075 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2075 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2076 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2077 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))))) (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))) (-1200 |#1|) (-403 |#1| |#2|)) (T -490)) -((-2077 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2076 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2075 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2075 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2074 (*1 *2 *2 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2073 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-535)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *5 (-1200 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-2072 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-747)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *5 (-1200 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *4 (-1200 *2)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-403 *2 *4))))) -(-10 -7 (-15 -3671 (|#1| (-665 |#1|))) (-15 -2072 (|#1| (-665 |#1|) |#1| (-747))) (-15 -2073 (|#1| (-665 |#1|) (-665 |#1|) |#1| (-535))) (-15 -2074 ((-747) (-747) (-747))) (-15 -2075 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2075 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2076 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2077 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))))) -((-2887 (((-112) $ $) NIL)) (-3662 (($ $) NIL)) (-3658 (($ $ $) 35)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-823)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-3230 (($ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-112) $ (-1191 (-535)) (-112)) NIL (|has| $ (-6 -4337))) (((-112) $ (-535) (-112)) 36 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-3748 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-4185 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-1632 (((-112) $ (-535) (-112)) NIL (|has| $ (-6 -4337)))) (-3431 (((-112) $ (-535)) NIL)) (-3761 (((-535) (-112) $ (-535)) NIL (|has| (-112) (-1067))) (((-535) (-112) $) NIL (|has| (-112) (-1067))) (((-535) (-1 (-112) (-112)) $) NIL)) (-2063 (((-618 (-112)) $) NIL (|has| $ (-6 -4336)))) (-3178 (($ $ $) 33)) (-3659 (($ $) NIL)) (-1355 (($ $ $) NIL)) (-3960 (($ (-747) (-112)) 23)) (-1356 (($ $ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 8 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL)) (-3855 (($ $ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2502 (((-618 (-112)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL)) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ (-112) $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-112) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2297 (($ $ (-112)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-112)) (-618 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-618 (-286 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2303 (((-618 (-112)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 24)) (-4142 (($ $ (-1191 (-535))) NIL) (((-112) $ (-535)) 18) (((-112) $ (-535) (-112)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2064 (((-747) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067)))) (((-747) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) 25)) (-4313 (((-524) $) NIL (|has| (-112) (-594 (-524))))) (-3867 (($ (-618 (-112))) NIL)) (-4144 (($ (-618 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4300 (((-835) $) 22)) (-2066 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-3179 (($ $ $) 31)) (-3664 (($ $ $) NIL)) (-3655 (($ $ $) 39)) (-3657 (($ $) 37)) (-3656 (($ $ $) 38)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 26)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 27)) (-3663 (($ $ $) NIL)) (-4299 (((-747) $) 10 (|has| $ (-6 -4336))))) -(((-491 |#1|) (-13 (-123) (-10 -8 (-15 -3657 ($ $)) (-15 -3655 ($ $ $)) (-15 -3656 ($ $ $)))) (-535)) (T -491)) -((-3657 (*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535)))) (-3655 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535)))) (-3656 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535))))) -(-13 (-123) (-10 -8 (-15 -3657 ($ $)) (-15 -3655 ($ $ $)) (-15 -3656 ($ $ $)))) -((-2079 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1136 |#4|)) 35)) (-2078 (((-1136 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1136 |#4|)) 22)) (-2080 (((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1136 |#4|))) 46)) (-2081 (((-1136 (-1136 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2078 (|#2| (-1 |#1| |#4|) (-1136 |#4|))) (-15 -2078 ((-1136 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2079 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1136 |#4|))) (-15 -2080 ((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1136 |#4|)))) (-15 -2081 ((-1136 (-1136 |#4|)) (-1 |#4| |#1|) |#3|))) (-1018) (-1200 |#1|) (-1200 |#2|) (-1018)) (T -492)) -((-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *6 (-1200 *5)) (-5 *2 (-1136 (-1136 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1200 *6)))) (-2080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-665 (-1136 *8))) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-1200 *5)) (-5 *2 (-665 *6)) (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1200 *6)))) (-2079 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1136 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1200 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1200 *2)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *4 (-1200 *5)) (-5 *2 (-1136 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1200 *4)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1136 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1200 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1200 *2))))) -(-10 -7 (-15 -2078 (|#2| (-1 |#1| |#4|) (-1136 |#4|))) (-15 -2078 ((-1136 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2079 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1136 |#4|))) (-15 -2080 ((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1136 |#4|)))) (-15 -2081 ((-1136 (-1136 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2082 (((-1230) $) 19)) (-4142 (((-1124) $ (-1142)) 23)) (-3963 (((-1230) $) 15)) (-4300 (((-835) $) 21) (($ (-1124)) 20)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 9)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 8))) -(((-493) (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $)) (-15 -4300 ($ (-1124)))))) (T -493)) -((-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1124)) (-5 *1 (-493)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-493))))) -(-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $)) (-15 -4300 ($ (-1124))))) -((-4084 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4082 ((|#1| |#4|) 10)) (-4083 ((|#3| |#4|) 17))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4082 (|#1| |#4|)) (-15 -4083 (|#3| |#4|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-542) (-962 |#1|) (-365 |#1|) (-365 |#2|)) (T -494)) -((-4084 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-4 *2 (-365 *4)) (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) (-4082 (*1 *2 *3) (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-494 *2 *4 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-365 *4))))) -(-10 -7 (-15 -4082 (|#1| |#4|)) (-15 -4083 (|#3| |#4|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2887 (((-112) $ $) NIL)) (-2092 (((-112) $ (-618 |#3|)) 105) (((-112) $) 106)) (-3522 (((-112) $) 149)) (-2084 (($ $ |#4|) 97) (($ $ |#4| (-618 |#3|)) 101)) (-2083 (((-1131 (-618 (-917 |#1|)) (-618 (-286 (-917 |#1|)))) (-618 |#4|)) 142 (|has| |#3| (-594 (-1142))))) (-2091 (($ $ $) 91) (($ $ |#4|) 89)) (-2493 (((-112) $) 148)) (-2088 (($ $) 109)) (-3576 (((-1124) $) NIL)) (-3572 (($ $ $) 83) (($ (-618 $)) 85)) (-2093 (((-112) |#4| $) 108)) (-2094 (((-112) $ $) 72)) (-2087 (($ (-618 |#4|)) 90)) (-3577 (((-1086) $) NIL)) (-2086 (($ (-618 |#4|)) 146)) (-2085 (((-112) $) 147)) (-2326 (($ $) 74)) (-3016 (((-618 |#4|) $) 63)) (-2090 (((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-618 |#3|)) NIL)) (-2095 (((-112) |#4| $) 77)) (-4254 (((-535) $ (-618 |#3|)) 110) (((-535) $) 111)) (-4300 (((-835) $) 145) (($ (-618 |#4|)) 86)) (-2089 (($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $))) NIL)) (-3375 (((-112) $ $) 73)) (-4182 (($ $ $) 93)) (** (($ $ (-747)) 96)) (* (($ $ $) 95))) -(((-495 |#1| |#2| |#3| |#4|) (-13 (-1067) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 -4182 ($ $ $)) (-15 -2493 ((-112) $)) (-15 -3522 ((-112) $)) (-15 -2095 ((-112) |#4| $)) (-15 -2094 ((-112) $ $)) (-15 -2093 ((-112) |#4| $)) (-15 -2092 ((-112) $ (-618 |#3|))) (-15 -2092 ((-112) $)) (-15 -3572 ($ $ $)) (-15 -3572 ($ (-618 $))) (-15 -2091 ($ $ $)) (-15 -2091 ($ $ |#4|)) (-15 -2326 ($ $)) (-15 -2090 ((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-618 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)))) (-15 -4254 ((-535) $ (-618 |#3|))) (-15 -4254 ((-535) $)) (-15 -2088 ($ $)) (-15 -2087 ($ (-618 |#4|))) (-15 -2086 ($ (-618 |#4|))) (-15 -2085 ((-112) $)) (-15 -3016 ((-618 |#4|) $)) (-15 -4300 ($ (-618 |#4|))) (-15 -2084 ($ $ |#4|)) (-15 -2084 ($ $ |#4| (-618 |#3|))) (IF (|has| |#3| (-594 (-1142))) (-15 -2083 ((-1131 (-618 (-917 |#1|)) (-618 (-286 (-917 |#1|)))) (-618 |#4|))) |%noBranch|))) (-356) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -495)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-2493 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-3522 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-2095 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-2094 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-2093 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-2092 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) (-2092 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-3572 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-618 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-2091 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-2091 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-921 *3 *4 *5)))) (-2326 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-2090 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-2 (|:| |mval| (-665 *4)) (|:| |invmval| (-665 *4)) (|:| |genIdeal| (-495 *4 *5 *6 *7)))) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) (-2089 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-665 *3)) (|:| |invmval| (-665 *3)) (|:| |genIdeal| (-495 *3 *4 *5 *6)))) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-4254 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-535)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) (-4254 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-535)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-2088 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-2087 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2085 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-3016 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *6)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2084 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-921 *3 *4 *5)))) (-2084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-921 *4 *5 *6)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *6 (-594 (-1142))) (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1131 (-618 (-917 *4)) (-618 (-286 (-917 *4))))) (-5 *1 (-495 *4 *5 *6 *7))))) -(-13 (-1067) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 -4182 ($ $ $)) (-15 -2493 ((-112) $)) (-15 -3522 ((-112) $)) (-15 -2095 ((-112) |#4| $)) (-15 -2094 ((-112) $ $)) (-15 -2093 ((-112) |#4| $)) (-15 -2092 ((-112) $ (-618 |#3|))) (-15 -2092 ((-112) $)) (-15 -3572 ($ $ $)) (-15 -3572 ($ (-618 $))) (-15 -2091 ($ $ $)) (-15 -2091 ($ $ |#4|)) (-15 -2326 ($ $)) (-15 -2090 ((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-618 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)))) (-15 -4254 ((-535) $ (-618 |#3|))) (-15 -4254 ((-535) $)) (-15 -2088 ($ $)) (-15 -2087 ($ (-618 |#4|))) (-15 -2086 ($ (-618 |#4|))) (-15 -2085 ((-112) $)) (-15 -3016 ((-618 |#4|) $)) (-15 -4300 ($ (-618 |#4|))) (-15 -2084 ($ $ |#4|)) (-15 -2084 ($ $ |#4| (-618 |#3|))) (IF (|has| |#3| (-594 (-1142))) (-15 -2083 ((-1131 (-618 (-917 |#1|)) (-618 (-286 (-917 |#1|)))) (-618 |#4|))) |%noBranch|))) -((-2096 (((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) 150)) (-2097 (((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) 151)) (-2098 (((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) 108)) (-4069 (((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) NIL)) (-2099 (((-618 (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) 153)) (-2100 (((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-618 (-836 |#1|))) 165))) -(((-496 |#1| |#2|) (-10 -7 (-15 -2096 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2097 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -4069 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2098 ((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2099 ((-618 (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2100 ((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-618 (-836 |#1|))))) (-618 (-1142)) (-747)) (T -496)) -((-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) (-5 *3 (-618 (-836 *4))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *1 (-496 *4 *5)))) (-2099 (*1 *2 *3) (-12 (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-618 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535)))))) (-5 *1 (-496 *4 *5)) (-5 *3 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-495 (-400 (-535)) (-233 *4 (-747)) (-836 *3) (-241 *3 (-400 (-535))))) (-14 *3 (-618 (-1142))) (-14 *4 (-747)) (-5 *1 (-496 *3 *4)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5))))) -(-10 -7 (-15 -2096 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2097 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -4069 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2098 ((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2099 ((-618 (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2100 ((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-618 (-836 |#1|))))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1142) $) 8)) (-3375 (((-112) $ $) NIL))) -(((-497) (-13 (-1049) (-593 (-1142)))) (T -497)) -NIL -(-13 (-1049) (-593 (-1142))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) 12 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) 11) (($ $ $) 24)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 18))) -(((-498 |#1| |#2|) (-13 (-21) (-500 |#1| |#2|)) (-21) (-823)) (T -498)) +((-3931 (((-623 (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749)) 27)) (-2087 (((-623 (-1140 |#1|)) |#1| (-749) (-749) (-749)) 34)) (-2559 (((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-623 |#3|) (-623 (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)) 85))) +(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -2087 ((-623 (-1140 |#1|)) |#1| (-749) (-749) (-749))) (-15 -3931 ((-623 (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749))) (-15 -2559 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-623 |#3|) (-623 (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)))) (-342) (-1203 |#1|) (-1203 |#2|)) (T -489)) +((-2559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-2 (|:| -2437 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7))))) (-5 *5 (-749)) (-4 *8 (-1203 *7)) (-4 *7 (-1203 *6)) (-4 *6 (-342)) (-5 *2 (-2 (|:| -2437 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7)))) (-5 *1 (-489 *6 *7 *8)))) (-3931 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-4 *5 (-342)) (-4 *6 (-1203 *5)) (-5 *2 (-623 (-2 (|:| -2437 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6))))) (-5 *1 (-489 *5 *6 *7)) (-5 *3 (-2 (|:| -2437 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6)))) (-4 *7 (-1203 *6)))) (-2087 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-749)) (-4 *3 (-342)) (-4 *5 (-1203 *3)) (-5 *2 (-623 (-1140 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1203 *5))))) +(-10 -7 (-15 -2087 ((-623 (-1140 |#1|)) |#1| (-749) (-749) (-749))) (-15 -3931 ((-623 (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749))) (-15 -2559 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-623 |#3|) (-623 (-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)))) +((-3384 (((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))) 62)) (-4045 ((|#1| (-667 |#1|) |#1| (-749)) 25)) (-4274 (((-749) (-749) (-749)) 30)) (-3285 (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 42)) (-1336 (((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|) 50) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 47)) (-4147 ((|#1| (-667 |#1|) (-667 |#1|) |#1| (-550)) 29)) (-4105 ((|#1| (-667 |#1|)) 18))) +(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -4105 (|#1| (-667 |#1|))) (-15 -4045 (|#1| (-667 |#1|) |#1| (-749))) (-15 -4147 (|#1| (-667 |#1|) (-667 |#1|) |#1| (-550))) (-15 -4274 ((-749) (-749) (-749))) (-15 -1336 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -1336 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -3285 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3384 ((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))))) (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $)))) (-1203 |#1|) (-402 |#1| |#2|)) (T -490)) +((-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3285 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-1336 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-1336 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-4274 (*1 *2 *2 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-4147 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-667 *2)) (-5 *4 (-550)) (-4 *2 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *5 (-1203 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))) (-4045 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-667 *2)) (-5 *4 (-749)) (-4 *2 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-4 *5 (-1203 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-667 *2)) (-4 *4 (-1203 *2)) (-4 *2 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-402 *2 *4))))) +(-10 -7 (-15 -4105 (|#1| (-667 |#1|))) (-15 -4045 (|#1| (-667 |#1|) |#1| (-749))) (-15 -4147 (|#1| (-667 |#1|) (-667 |#1|) |#1| (-550))) (-15 -4274 ((-749) (-749) (-749))) (-15 -1336 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -1336 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -3285 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3384 ((-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2437 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))))) +((-1504 (((-112) $ $) NIL)) (-3239 (($ $) NIL)) (-2678 (($ $ $) 35)) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) $) NIL (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3491 (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| (-112) (-825)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4343)))) (-1674 (($ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-1705 (((-112) $ (-1194 (-550)) (-112)) NIL (|has| $ (-6 -4343))) (((-112) $ (-550) (-112)) 36 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-3137 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-2419 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-3245 (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4343)))) (-3181 (((-112) $ (-550)) NIL)) (-2302 (((-550) (-112) $ (-550)) NIL (|has| (-112) (-1068))) (((-550) (-112) $) NIL (|has| (-112) (-1068))) (((-550) (-1 (-112) (-112)) $) NIL)) (-3450 (((-623 (-112)) $) NIL (|has| $ (-6 -4342)))) (-3675 (($ $ $) 33)) (-3462 (($ $) NIL)) (-1406 (($ $ $) NIL)) (-2578 (($ (-749) (-112)) 23)) (-2896 (($ $ $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) 8 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL)) (-1832 (($ $ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2689 (((-623 (-112)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL)) (-3234 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-2055 (($ $ $ (-550)) NIL) (($ (-112) $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-112) $) NIL (|has| (-550) (-825)))) (-3321 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3111 (($ $ (-112)) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-112)) (-623 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-287 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068)))) (($ $ (-623 (-287 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068))))) (-2477 (((-623 (-112)) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 24)) (-2680 (($ $ (-1194 (-550))) NIL) (((-112) $ (-550)) 18) (((-112) $ (-550) (-112)) NIL)) (-1529 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-3350 (((-749) (-112) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-112) (-1068)))) (((-749) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342)))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) 25)) (-4028 (((-526) $) NIL (|has| (-112) (-596 (-526))))) (-1532 (($ (-623 (-112))) NIL)) (-3227 (($ (-623 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1518 (((-836) $) 22)) (-1675 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4342)))) (-1262 (($ $ $) 31)) (-1482 (($ $ $) NIL)) (-2611 (($ $ $) 39)) (-2622 (($ $) 37)) (-2602 (($ $ $) 38)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 26)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 27)) (-1466 (($ $ $) NIL)) (-3191 (((-749) $) 10 (|has| $ (-6 -4342))))) +(((-491 |#1|) (-13 (-123) (-10 -8 (-15 -2622 ($ $)) (-15 -2611 ($ $ $)) (-15 -2602 ($ $ $)))) (-550)) (T -491)) +((-2622 (*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) (-2611 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) (-2602 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550))))) +(-13 (-123) (-10 -8 (-15 -2622 ($ $)) (-15 -2611 ($ $ $)) (-15 -2602 ($ $ $)))) +((-3348 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1140 |#4|)) 35)) (-1421 (((-1140 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1140 |#4|)) 22)) (-3461 (((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1140 |#4|))) 46)) (-3548 (((-1140 (-1140 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1421 (|#2| (-1 |#1| |#4|) (-1140 |#4|))) (-15 -1421 ((-1140 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3348 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1140 |#4|))) (-15 -3461 ((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1140 |#4|)))) (-15 -3548 ((-1140 (-1140 |#4|)) (-1 |#4| |#1|) |#3|))) (-1020) (-1203 |#1|) (-1203 |#2|) (-1020)) (T -492)) +((-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1020)) (-4 *7 (-1020)) (-4 *6 (-1203 *5)) (-5 *2 (-1140 (-1140 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1203 *6)))) (-3461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-667 (-1140 *8))) (-4 *5 (-1020)) (-4 *8 (-1020)) (-4 *6 (-1203 *5)) (-5 *2 (-667 *6)) (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1203 *6)))) (-3348 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1140 *7)) (-4 *5 (-1020)) (-4 *7 (-1020)) (-4 *2 (-1203 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1203 *2)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1020)) (-4 *7 (-1020)) (-4 *4 (-1203 *5)) (-5 *2 (-1140 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1203 *4)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1140 *7)) (-4 *5 (-1020)) (-4 *7 (-1020)) (-4 *2 (-1203 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1203 *2))))) +(-10 -7 (-15 -1421 (|#2| (-1 |#1| |#4|) (-1140 |#4|))) (-15 -1421 ((-1140 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3348 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1140 |#4|))) (-15 -3461 ((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1140 |#4|)))) (-15 -3548 ((-1140 (-1140 |#4|)) (-1 |#4| |#1|) |#3|))) +((-1504 (((-112) $ $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3656 (((-1232) $) 19)) (-2680 (((-1126) $ (-1144)) 23)) (-2048 (((-1232) $) 15)) (-1518 (((-836) $) 21) (($ (-1126)) 20)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 9)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 8))) +(((-493) (-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $)) (-15 -1518 ($ (-1126)))))) (T -493)) +((-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1126)) (-5 *1 (-493)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-493)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-493)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-493))))) +(-13 (-825) (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) (-15 -3656 ((-1232) $)) (-15 -1518 ($ (-1126))))) +((-2346 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2156 ((|#1| |#4|) 10)) (-2249 ((|#3| |#4|) 17))) +(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2156 (|#1| |#4|)) (-15 -2249 (|#3| |#4|)) (-15 -2346 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-542) (-965 |#1|) (-366 |#1|) (-366 |#2|)) (T -494)) +((-2346 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-366 *4)) (-4 *3 (-366 *5)))) (-2249 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-965 *4)) (-4 *2 (-366 *4)) (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-366 *5)))) (-2156 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-542)) (-5 *1 (-494 *2 *4 *5 *3)) (-4 *5 (-366 *2)) (-4 *3 (-366 *4))))) +(-10 -7 (-15 -2156 (|#1| |#4|)) (-15 -2249 (|#3| |#4|)) (-15 -2346 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-1504 (((-112) $ $) NIL)) (-2159 (((-112) $ (-623 |#3|)) 105) (((-112) $) 106)) (-3433 (((-112) $) 149)) (-3855 (($ $ |#4|) 97) (($ $ |#4| (-623 |#3|)) 101)) (-3758 (((-1133 (-623 (-925 |#1|)) (-623 (-287 (-925 |#1|)))) (-623 |#4|)) 142 (|has| |#3| (-596 (-1144))))) (-3526 (($ $ $) 91) (($ $ |#4|) 89)) (-3102 (((-112) $) 148)) (-4270 (($ $) 109)) (-1825 (((-1126) $) NIL)) (-1623 (($ $ $) 83) (($ (-623 $)) 85)) (-1341 (((-112) |#4| $) 108)) (-1272 (((-112) $ $) 72)) (-2135 (($ (-623 |#4|)) 90)) (-3337 (((-1088) $) NIL)) (-2880 (($ (-623 |#4|)) 146)) (-2758 (((-112) $) 147)) (-3017 (($ $) 74)) (-1549 (((-623 |#4|) $) 63)) (-3399 (((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-623 |#3|)) NIL)) (-2492 (((-112) |#4| $) 77)) (-2854 (((-550) $ (-623 |#3|)) 110) (((-550) $) 111)) (-1518 (((-836) $) 145) (($ (-623 |#4|)) 86)) (-1344 (($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $))) NIL)) (-2316 (((-112) $ $) 73)) (-2391 (($ $ $) 93)) (** (($ $ (-749)) 96)) (* (($ $ $) 95))) +(((-495 |#1| |#2| |#3| |#4|) (-13 (-1068) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 -2391 ($ $ $)) (-15 -3102 ((-112) $)) (-15 -3433 ((-112) $)) (-15 -2492 ((-112) |#4| $)) (-15 -1272 ((-112) $ $)) (-15 -1341 ((-112) |#4| $)) (-15 -2159 ((-112) $ (-623 |#3|))) (-15 -2159 ((-112) $)) (-15 -1623 ($ $ $)) (-15 -1623 ($ (-623 $))) (-15 -3526 ($ $ $)) (-15 -3526 ($ $ |#4|)) (-15 -3017 ($ $)) (-15 -3399 ((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-623 |#3|))) (-15 -1344 ($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)))) (-15 -2854 ((-550) $ (-623 |#3|))) (-15 -2854 ((-550) $)) (-15 -4270 ($ $)) (-15 -2135 ($ (-623 |#4|))) (-15 -2880 ($ (-623 |#4|))) (-15 -2758 ((-112) $)) (-15 -1549 ((-623 |#4|) $)) (-15 -1518 ($ (-623 |#4|))) (-15 -3855 ($ $ |#4|)) (-15 -3855 ($ $ |#4| (-623 |#3|))) (IF (|has| |#3| (-596 (-1144))) (-15 -3758 ((-1133 (-623 (-925 |#1|)) (-623 (-287 (-925 |#1|)))) (-623 |#4|))) |%noBranch|))) (-356) (-771) (-825) (-922 |#1| |#2| |#3|)) (T -495)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-2391 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) (-3102 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-3433 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-2492 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6)))) (-1272 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-1341 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6)))) (-2159 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-922 *4 *5 *6)))) (-2159 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-1623 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) (-1623 (*1 *1 *2) (-12 (-5 *2 (-623 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-3526 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) (-3526 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-922 *3 *4 *5)))) (-3017 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) (-3399 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-2 (|:| |mval| (-667 *4)) (|:| |invmval| (-667 *4)) (|:| |genIdeal| (-495 *4 *5 *6 *7)))) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-922 *4 *5 *6)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-667 *3)) (|:| |invmval| (-667 *3)) (|:| |genIdeal| (-495 *3 *4 *5 *6)))) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-2854 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-550)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-922 *4 *5 *6)))) (-2854 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-550)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-4270 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2758 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-1549 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *6)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-3855 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-922 *3 *4 *5)))) (-3855 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-922 *4 *5 *6)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *5 *6)) (-4 *6 (-596 (-1144))) (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1133 (-623 (-925 *4)) (-623 (-287 (-925 *4))))) (-5 *1 (-495 *4 *5 *6 *7))))) +(-13 (-1068) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 -2391 ($ $ $)) (-15 -3102 ((-112) $)) (-15 -3433 ((-112) $)) (-15 -2492 ((-112) |#4| $)) (-15 -1272 ((-112) $ $)) (-15 -1341 ((-112) |#4| $)) (-15 -2159 ((-112) $ (-623 |#3|))) (-15 -2159 ((-112) $)) (-15 -1623 ($ $ $)) (-15 -1623 ($ (-623 $))) (-15 -3526 ($ $ $)) (-15 -3526 ($ $ |#4|)) (-15 -3017 ($ $)) (-15 -3399 ((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-623 |#3|))) (-15 -1344 ($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)))) (-15 -2854 ((-550) $ (-623 |#3|))) (-15 -2854 ((-550) $)) (-15 -4270 ($ $)) (-15 -2135 ($ (-623 |#4|))) (-15 -2880 ($ (-623 |#4|))) (-15 -2758 ((-112) $)) (-15 -1549 ((-623 |#4|) $)) (-15 -1518 ($ (-623 |#4|))) (-15 -3855 ($ $ |#4|)) (-15 -3855 ($ $ |#4| (-623 |#3|))) (IF (|has| |#3| (-596 (-1144))) (-15 -3758 ((-1133 (-623 (-925 |#1|)) (-623 (-287 (-925 |#1|)))) (-623 |#4|))) |%noBranch|))) +((-1506 (((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550))))) 150)) (-1652 (((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550))))) 151)) (-1613 (((-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550))))) 108)) (-3933 (((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550))))) NIL)) (-1808 (((-623 (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550))))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550))))) 153)) (-1434 (((-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-623 (-838 |#1|))) 165))) +(((-496 |#1| |#2|) (-10 -7 (-15 -1506 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1652 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -3933 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1613 ((-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1808 ((-623 (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550))))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1434 ((-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-623 (-838 |#1|))))) (-623 (-1144)) (-749)) (T -496)) +((-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) (-241 *4 (-400 (-550))))) (-5 *3 (-623 (-838 *4))) (-14 *4 (-623 (-1144))) (-14 *5 (-749)) (-5 *1 (-496 *4 *5)))) (-1808 (*1 *2 *3) (-12 (-14 *4 (-623 (-1144))) (-14 *5 (-749)) (-5 *2 (-623 (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) (-241 *4 (-400 (-550)))))) (-5 *1 (-496 *4 *5)) (-5 *3 (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) (-241 *4 (-400 (-550))))))) (-1613 (*1 *2 *2) (-12 (-5 *2 (-495 (-400 (-550)) (-234 *4 (-749)) (-838 *3) (-241 *3 (-400 (-550))))) (-14 *3 (-623 (-1144))) (-14 *4 (-749)) (-5 *1 (-496 *3 *4)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) (-241 *4 (-400 (-550))))) (-14 *4 (-623 (-1144))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) (-241 *4 (-400 (-550))))) (-14 *4 (-623 (-1144))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) (-241 *4 (-400 (-550))))) (-14 *4 (-623 (-1144))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5))))) +(-10 -7 (-15 -1506 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1652 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -3933 ((-112) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1613 ((-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1808 ((-623 (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550))))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))))) (-15 -1434 ((-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-495 (-400 (-550)) (-234 |#2| (-749)) (-838 |#1|) (-241 |#1| (-400 (-550)))) (-623 (-838 |#1|))))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 11) (((-1149) $) NIL) (($ (-1149)) NIL) (((-1144) $) 8)) (-2316 (((-112) $ $) NIL))) +(((-497) (-13 (-1051) (-595 (-1144)))) (T -497)) +NIL +(-13 (-1051) (-595 (-1144))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-3118 (($ |#1| |#2|) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1586 ((|#2| $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2626 (($) 12 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) 11) (($ $ $) 24)) (-2391 (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 18))) +(((-498 |#1| |#2|) (-13 (-21) (-500 |#1| |#2|)) (-21) (-825)) (T -498)) NIL (-13 (-21) (-500 |#1| |#2|)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 12)) (-3879 (($) NIL T CONST)) (-4302 (($ $) 28)) (-3214 (($ |#1| |#2|) 25)) (-4301 (($ (-1 |#1| |#1|) $) 27)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) 29)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) 10 T CONST)) (-3375 (((-112) $ $) NIL)) (-4182 (($ $ $) 18)) (* (($ (-890) $) NIL) (($ (-747) $) 23))) -(((-499 |#1| |#2|) (-13 (-23) (-500 |#1| |#2|)) (-23) (-823)) (T -499)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 12)) (-3513 (($) NIL T CONST)) (-3295 (($ $) 28)) (-3118 (($ |#1| |#2|) 25)) (-3972 (($ (-1 |#1| |#1|) $) 27)) (-1586 ((|#2| $) NIL)) (-3277 ((|#1| $) 29)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2626 (($) 10 T CONST)) (-2316 (((-112) $ $) NIL)) (-2391 (($ $ $) 18)) (* (($ (-894) $) NIL) (($ (-749) $) 23))) +(((-499 |#1| |#2|) (-13 (-23) (-500 |#1| |#2|)) (-23) (-825)) (T -499)) NIL (-13 (-23) (-500 |#1| |#2|)) -((-2887 (((-112) $ $) 7)) (-4302 (($ $) 13)) (-3214 (($ |#1| |#2|) 16)) (-4301 (($ (-1 |#1| |#1|) $) 17)) (-2101 ((|#2| $) 14)) (-3508 ((|#1| $) 15)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6))) -(((-500 |#1| |#2|) (-138) (-1067) (-823)) (T -500)) -((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-823)))) (-3214 (*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1067)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-823)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823))))) -(-13 (-1067) (-10 -8 (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (-15 -3214 ($ |t#1| |t#2|)) (-15 -3508 (|t#1| $)) (-15 -2101 (|t#2| $)) (-15 -4302 ($ $)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-4302 (($ $) 25)) (-3214 (($ |#1| |#2|) 22)) (-4301 (($ (-1 |#1| |#1|) $) 24)) (-2101 ((|#2| $) 27)) (-3508 ((|#1| $) 26)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21)) (-3375 (((-112) $ $) 14))) -(((-501 |#1| |#2|) (-500 |#1| |#2|) (-1067) (-823)) (T -501)) +((-1504 (((-112) $ $) 7)) (-3295 (($ $) 13)) (-3118 (($ |#1| |#2|) 16)) (-3972 (($ (-1 |#1| |#1|) $) 17)) (-1586 ((|#2| $) 14)) (-3277 ((|#1| $) 15)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6))) +(((-500 |#1| |#2|) (-138) (-1068) (-825)) (T -500)) +((-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-825)))) (-3118 (*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-825)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1068)))) (-1586 (*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-825)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-825))))) +(-13 (-1068) (-10 -8 (-15 -3972 ($ (-1 |t#1| |t#1|) $)) (-15 -3118 ($ |t#1| |t#2|)) (-15 -3277 (|t#1| $)) (-15 -1586 (|t#2| $)) (-15 -3295 ($ $)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-3118 (($ |#1| |#2|) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1586 ((|#2| $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2626 (($) NIL T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 13)) (-2391 (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL))) +(((-501 |#1| |#2|) (-13 (-770) (-500 |#1| |#2|)) (-770) (-825)) (T -501)) +NIL +(-13 (-770) (-500 |#1| |#2|)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-2270 (($ $ $) 16)) (-3219 (((-3 $ "failed") $ $) 13)) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-3118 (($ |#1| |#2|) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1586 ((|#2| $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL)) (-2626 (($) NIL T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2391 (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL))) +(((-502 |#1| |#2|) (-13 (-771) (-500 |#1| |#2|)) (-771) (-825)) (T -502)) +NIL +(-13 (-771) (-500 |#1| |#2|)) +((-1504 (((-112) $ $) NIL)) (-3295 (($ $) 25)) (-3118 (($ |#1| |#2|) 22)) (-3972 (($ (-1 |#1| |#1|) $) 24)) (-1586 ((|#2| $) 27)) (-3277 ((|#1| $) 26)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 21)) (-2316 (((-112) $ $) 14))) +(((-503 |#1| |#2|) (-500 |#1| |#2|) (-1068) (-825)) (T -503)) NIL (-500 |#1| |#2|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 13)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL))) -(((-502 |#1| |#2|) (-13 (-768) (-500 |#1| |#2|)) (-768) (-823)) (T -502)) +((-3866 (($ $ (-623 |#2|) (-623 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-504 |#1| |#2| |#3|) (-10 -8 (-15 -3866 (|#1| |#1| |#2| |#3|)) (-15 -3866 (|#1| |#1| (-623 |#2|) (-623 |#3|)))) (-505 |#2| |#3|) (-1068) (-1181)) (T -504)) NIL -(-13 (-768) (-500 |#1| |#2|)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2724 (($ $ $) 16)) (-1363 (((-3 $ "failed") $ $) 13)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL))) -(((-503 |#1| |#2|) (-13 (-769) (-500 |#1| |#2|)) (-769) (-823)) (T -503)) -NIL -(-13 (-769) (-500 |#1| |#2|)) -((-4110 (($ $ (-618 |#2|) (-618 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-504 |#1| |#2| |#3|) (-10 -8 (-15 -4110 (|#1| |#1| |#2| |#3|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#3|)))) (-505 |#2| |#3|) (-1067) (-1178)) (T -504)) -NIL -(-10 -8 (-15 -4110 (|#1| |#1| |#2| |#3|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#3|)))) -((-4110 (($ $ (-618 |#1|) (-618 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-505 |#1| |#2|) (-138) (-1067) (-1178)) (T -505)) -((-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1178)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1178))))) -(-13 (-10 -8 (-15 -4110 ($ $ |t#1| |t#2|)) (-15 -4110 ($ $ (-618 |t#1|) (-618 |t#2|))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 16)) (-4116 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $) 18)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2759 ((|#1| $ (-535)) 23)) (-1714 ((|#2| $ (-535)) 21)) (-2362 (($ (-1 |#1| |#1|) $) 46)) (-1713 (($ (-1 |#2| |#2|) $) 43)) (-3576 (((-1124) $) NIL)) (-1712 (($ $ $) 53 (|has| |#2| (-768)))) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 42) (($ |#1|) NIL)) (-4023 ((|#2| |#1| $) 49)) (-2979 (($) 11 T CONST)) (-3375 (((-112) $ $) 29)) (-4182 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-890) $) NIL) (($ (-747) $) 36) (($ |#2| |#1|) 31))) -(((-506 |#1| |#2| |#3|) (-316 |#1| |#2|) (-1067) (-130) |#2|) (T -506)) +(-10 -8 (-15 -3866 (|#1| |#1| |#2| |#3|)) (-15 -3866 (|#1| |#1| (-623 |#2|) (-623 |#3|)))) +((-3866 (($ $ (-623 |#1|) (-623 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-505 |#1| |#2|) (-138) (-1068) (-1181)) (T -505)) +((-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-1181)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1181))))) +(-13 (-10 -8 (-15 -3866 ($ $ |t#1| |t#2|)) (-15 -3866 ($ $ (-623 |t#1|) (-623 |t#2|))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 16)) (-2575 (((-623 (-2 (|:| |gen| |#1|) (|:| -1812 |#2|))) $) 18)) (-3219 (((-3 $ "failed") $ $) NIL)) (-4319 (((-749) $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-1980 ((|#1| $ (-550)) 23)) (-2468 ((|#2| $ (-550)) 21)) (-2808 (($ (-1 |#1| |#1|) $) 46)) (-2388 (($ (-1 |#2| |#2|) $) 43)) (-1825 (((-1126) $) NIL)) (-2314 (($ $ $) 53 (|has| |#2| (-770)))) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 42) (($ |#1|) NIL)) (-2510 ((|#2| |#1| $) 49)) (-2626 (($) 11 T CONST)) (-2316 (((-112) $ $) 29)) (-2391 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-894) $) NIL) (($ (-749) $) 36) (($ |#2| |#1|) 31))) +(((-506 |#1| |#2| |#3|) (-316 |#1| |#2|) (-1068) (-130) |#2|) (T -506)) NIL (-316 |#1| |#2|) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-2102 (((-112) (-112)) 25)) (-4130 ((|#1| $ (-535) |#1|) 28 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) 52)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-2446 (($ $) 56 (|has| |#1| (-1067)))) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) 44)) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2103 (($ $ (-535)) 13)) (-2104 (((-747) $) 11)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 23)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 21 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) 20 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3953 (($ $ $ (-535)) 51) (($ |#1| $ (-535)) 37)) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2105 (($ (-618 |#1|)) 29)) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) 19 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 40)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 16)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) 33) (($ $ (-1191 (-535))) NIL)) (-1627 (($ $ (-1191 (-535))) 50) (($ $ (-535)) 45)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) 41 (|has| $ (-6 -4337)))) (-3742 (($ $) 32)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4133 (($ $ $) 42) (($ $ |#1|) 39)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 17 (|has| $ (-6 -4336))))) -(((-507 |#1| |#2|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-618 |#1|))) (-15 -2104 ((-747) $)) (-15 -2103 ($ $ (-535))) (-15 -2102 ((-112) (-112))))) (-1178) (-535)) (T -507)) -((-2105 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-507 *3 *4)) (-14 *4 (-535)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 (-535)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 *2))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 (-535))))) -(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-618 |#1|))) (-15 -2104 ((-747) $)) (-15 -2103 ($ $ (-535))) (-15 -2102 ((-112) (-112))))) -((-2887 (((-112) $ $) NIL)) (-2107 (((-1101) $) 11)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2106 (((-1101) $) 13)) (-4265 (((-1101) $) 9)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-508) (-13 (-1049) (-10 -8 (-15 -4265 ((-1101) $)) (-15 -2107 ((-1101) $)) (-15 -2106 ((-1101) $))))) (T -508)) -((-4265 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508))))) -(-13 (-1049) (-10 -8 (-15 -4265 ((-1101) $)) (-15 -2107 ((-1101) $)) (-15 -2106 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (((-563 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-563 |#1|) (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-563 |#1|) (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| (-563 |#1|) (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-563 |#1|) "failed") $) NIL)) (-3490 (((-563 |#1|) $) NIL)) (-1906 (($ (-1224 (-563 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-563 |#1|) (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-563 |#1|) (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| (-563 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-563 |#1|) (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361)))) (($ $) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| (-563 |#1|) (-361))) (((-808 (-890)) $) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-563 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-563 |#1|) (-361)))) (-3450 (((-563 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-563 |#1|) (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-563 |#1|) (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 (-563 |#1|)) $) NIL) (((-1136 $) $ (-890)) NIL (|has| (-563 |#1|) (-361)))) (-2121 (((-890) $) NIL (|has| (-563 |#1|) (-361)))) (-1719 (((-1136 (-563 |#1|)) $) NIL (|has| (-563 |#1|) (-361)))) (-1718 (((-1136 (-563 |#1|)) $) NIL (|has| (-563 |#1|) (-361))) (((-3 (-1136 (-563 |#1|)) "failed") $ $) NIL (|has| (-563 |#1|) (-361)))) (-1720 (($ $ (-1136 (-563 |#1|))) NIL (|has| (-563 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-563 |#1|) (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| (-563 |#1|) (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL (|has| (-563 |#1|) (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-563 |#1|) (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| (-563 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 (-563 |#1|))) NIL)) (-1785 (($) NIL (|has| (-563 |#1|) (-361)))) (-1721 (($) NIL (|has| (-563 |#1|) (-361)))) (-3558 (((-1224 (-563 |#1|)) $) NIL) (((-665 (-563 |#1|)) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-563 |#1|) (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-563 |#1|)) NIL)) (-3023 (($ $) NIL (|has| (-563 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-2990 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ (-563 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-563 |#1|)) NIL) (($ (-563 |#1|) $) NIL))) -(((-509 |#1| |#2|) (-322 (-563 |#1|)) (-890) (-890)) (T -509)) -NIL -(-322 (-563 |#1|)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) 35)) (-1302 (($ $ (-535) |#4|) NIL)) (-1301 (($ $ (-535) |#5|) NIL)) (-3879 (($) NIL T CONST)) (-3430 ((|#4| $ (-535)) NIL)) (-1632 ((|#1| $ (-535) (-535) |#1|) 34)) (-3431 ((|#1| $ (-535) (-535)) 32)) (-2063 (((-618 |#1|) $) NIL)) (-3433 (((-747) $) 28)) (-3960 (($ (-747) (-747) |#1|) 25)) (-3432 (((-747) $) 30)) (-4065 (((-112) $ (-747)) NIL)) (-3437 (((-535) $) 26)) (-3435 (((-535) $) 27)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) 29)) (-3434 (((-535) $) 31)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) 38 (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 14)) (-3911 (($) 16)) (-4142 ((|#1| $ (-535) (-535)) 33) ((|#1| $ (-535) (-535) |#1|) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 ((|#5| $ (-535)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-510 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1178) (-535) (-535) (-365 |#1|) (-365 |#1|)) (T -510)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1734 (((-112) (-112)) 25)) (-1705 ((|#1| $ (-550) |#1|) 28 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343)))) (-3378 (($ (-1 (-112) |#1|) $) 52)) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-3912 (($ $) 56 (|has| |#1| (-1068)))) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3112 (($ |#1| $) NIL (|has| |#1| (-1068))) (($ (-1 (-112) |#1|) $) 44)) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-2302 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068)))) (-1884 (($ $ (-550)) 13)) (-3769 (((-749) $) 11)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2578 (($ (-749) |#1|) 23)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) 21 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-3884 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) 20 (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-1886 (($ $ $ (-550)) 51) (($ |#1| $ (-550)) 37)) (-2055 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3888 (($ (-623 |#1|)) 29)) (-1293 ((|#1| $) NIL (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) 19 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 40)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 16)) (-2680 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 33) (($ $ (-1194 (-550))) NIL)) (-3476 (($ $ (-1194 (-550))) 50) (($ $ (-550)) 45)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) 41 (|has| $ (-6 -4343)))) (-1731 (($ $) 32)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-3547 (($ $ $) 42) (($ $ |#1|) 39)) (-3227 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3191 (((-749) $) 17 (|has| $ (-6 -4342))))) +(((-507 |#1| |#2|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -3888 ($ (-623 |#1|))) (-15 -3769 ((-749) $)) (-15 -1884 ($ $ (-550))) (-15 -1734 ((-112) (-112))))) (-1181) (-550)) (T -507)) +((-3888 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-507 *3 *4)) (-14 *4 (-550)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1181)) (-14 *4 (-550)))) (-1884 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1181)) (-14 *4 *2))) (-1734 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1181)) (-14 *4 (-550))))) +(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -3888 ($ (-623 |#1|))) (-15 -3769 ((-749) $)) (-15 -1884 ($ $ (-550))) (-15 -1734 ((-112) (-112))))) +((-1504 (((-112) $ $) NIL)) (-4142 (((-1103) $) 11)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-4014 (((-1103) $) 13)) (-2817 (((-1103) $) 9)) (-1518 (((-836) $) 21) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-508) (-13 (-1051) (-10 -8 (-15 -2817 ((-1103) $)) (-15 -4142 ((-1103) $)) (-15 -4014 ((-1103) $))))) (T -508)) +((-2817 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-508)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-508)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-508))))) +(-13 (-1051) (-10 -8 (-15 -2817 ((-1103) $)) (-15 -4142 ((-1103) $)) (-15 -4014 ((-1103) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 (((-565 |#1|) $) NIL) (($ $ (-894)) NIL (|has| (-565 |#1|) (-361)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| (-565 |#1|) (-361)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL (|has| (-565 |#1|) (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-565 |#1|) "failed") $) NIL)) (-2726 (((-565 |#1|) $) NIL)) (-4110 (($ (-1227 (-565 |#1|))) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-565 |#1|) (-361)))) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-565 |#1|) (-361)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) NIL (|has| (-565 |#1|) (-361)))) (-3697 (((-112) $) NIL (|has| (-565 |#1|) (-361)))) (-3714 (($ $ (-749)) NIL (-1561 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361)))) (($ $) NIL (-1561 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-3933 (((-112) $) NIL)) (-2475 (((-894) $) NIL (|has| (-565 |#1|) (-361))) (((-811 (-894)) $) NIL (-1561 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-3102 (((-112) $) NIL)) (-2529 (($) NIL (|has| (-565 |#1|) (-361)))) (-2340 (((-112) $) NIL (|has| (-565 |#1|) (-361)))) (-1389 (((-565 |#1|) $) NIL) (($ $ (-894)) NIL (|has| (-565 |#1|) (-361)))) (-2826 (((-3 $ "failed") $) NIL (|has| (-565 |#1|) (-361)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 (-565 |#1|)) $) NIL) (((-1140 $) $ (-894)) NIL (|has| (-565 |#1|) (-361)))) (-2253 (((-894) $) NIL (|has| (-565 |#1|) (-361)))) (-4116 (((-1140 (-565 |#1|)) $) NIL (|has| (-565 |#1|) (-361)))) (-4008 (((-1140 (-565 |#1|)) $) NIL (|has| (-565 |#1|) (-361))) (((-3 (-1140 (-565 |#1|)) "failed") $ $) NIL (|has| (-565 |#1|) (-361)))) (-4235 (($ $ (-1140 (-565 |#1|))) NIL (|has| (-565 |#1|) (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-565 |#1|) (-361)) CONST)) (-2922 (($ (-894)) NIL (|has| (-565 |#1|) (-361)))) (-4100 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-3935 (($) NIL (|has| (-565 |#1|) (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| (-565 |#1|) (-361)))) (-3338 (((-411 $) $) NIL)) (-3990 (((-811 (-894))) NIL) (((-894)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-749) $) NIL (|has| (-565 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-1561 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-2854 (((-133)) NIL)) (-2393 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-2970 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-1310 (((-1140 (-565 |#1|))) NIL)) (-4288 (($) NIL (|has| (-565 |#1|) (-361)))) (-1273 (($) NIL (|has| (-565 |#1|) (-361)))) (-1373 (((-1227 (-565 |#1|)) $) NIL) (((-667 (-565 |#1|)) (-1227 $)) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| (-565 |#1|) (-361)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-565 |#1|)) NIL)) (-4242 (($ $) NIL (|has| (-565 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1561 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL) (((-1227 $) (-894)) NIL)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2072 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-4183 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL) (($ $ (-565 |#1|)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-565 |#1|)) NIL) (($ (-565 |#1|) $) NIL))) +(((-509 |#1| |#2|) (-322 (-565 |#1|)) (-894) (-894)) (T -509)) +NIL +(-322 (-565 |#1|)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) (-550) |#1|) 35)) (-1396 (($ $ (-550) |#4|) NIL)) (-3693 (($ $ (-550) |#5|) NIL)) (-3513 (($) NIL T CONST)) (-3719 ((|#4| $ (-550)) NIL)) (-3245 ((|#1| $ (-550) (-550) |#1|) 34)) (-3181 ((|#1| $ (-550) (-550)) 32)) (-3450 (((-623 |#1|) $) NIL)) (-2115 (((-749) $) 28)) (-2578 (($ (-749) (-749) |#1|) 25)) (-2124 (((-749) $) 30)) (-1859 (((-112) $ (-749)) NIL)) (-2938 (((-550) $) 26)) (-3895 (((-550) $) 27)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2828 (((-550) $) 29)) (-3816 (((-550) $) 31)) (-3234 (($ (-1 |#1| |#1|) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) 38 (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3111 (($ $ |#1|) NIL)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 14)) (-3498 (($) 16)) (-2680 ((|#1| $ (-550) (-550)) 33) ((|#1| $ (-550) (-550) |#1|) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-3615 ((|#5| $ (-550)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-510 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1181) (-550) (-550) (-366 |#1|) (-366 |#1|)) (T -510)) NIL (-56 |#1| |#4| |#5|) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-4137 ((|#1| $) NIL)) (-4139 (($ $) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 59 (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4337)))) (-3230 (($ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) 23 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 21 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4138 ((|#1| $) NIL)) (-3879 (($) NIL T CONST)) (-2368 (($ $) 28 (|has| $ (-6 -4337)))) (-2369 (($ $) 29)) (-4141 (($ $) 18) (($ $ (-747)) 32)) (-2446 (($ $) 55 (|has| |#1| (-1067)))) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3748 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-3761 (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067))) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) (-1 (-112) |#1|) $) NIL)) (-2063 (((-618 |#1|) $) 27 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 31 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3855 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3880 (($ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) 51 (|has| |#1| (-1067)))) (-4140 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-3953 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) 13) (($ $ (-747)) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3785 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 12)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) 17)) (-3911 (($) 16)) (-4142 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1191 (-535))) NIL) ((|#1| $ (-535)) NIL) ((|#1| $ (-535) |#1|) NIL)) (-3350 (((-535) $ $) NIL)) (-1627 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-3979 (((-112) $) 34)) (-4134 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) 36)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) 35)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 26)) (-4133 (($ $ $) 54) (($ $ |#1|) NIL)) (-4144 (($ $ $) NIL) (($ |#1| $) 10) (($ (-618 $)) NIL) (($ $ |#1|) NIL)) (-4300 (((-835) $) 46 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 48 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 9 (|has| $ (-6 -4336))))) -(((-511 |#1| |#2|) (-642 |#1|) (-1178) (-535)) (T -511)) -NIL -(-642 |#1|) -((-3428 ((|#4| |#4|) 27)) (-3427 (((-747) |#4|) 32)) (-3426 (((-747) |#4|) 33)) (-3425 (((-618 |#3|) |#4|) 40 (|has| |#3| (-6 -4337)))) (-3935 (((-3 |#4| "failed") |#4|) 51)) (-2108 ((|#4| |#4|) 44)) (-3670 ((|#1| |#4|) 43))) -(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3428 (|#4| |#4|)) (-15 -3427 ((-747) |#4|)) (-15 -3426 ((-747) |#4|)) (IF (|has| |#3| (-6 -4337)) (-15 -3425 ((-618 |#3|) |#4|)) |%noBranch|) (-15 -3670 (|#1| |#4|)) (-15 -2108 (|#4| |#4|)) (-15 -3935 ((-3 |#4| "failed") |#4|))) (-356) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|)) (T -512)) -((-3935 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-2108 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-356)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5)))) (-3425 (*1 *2 *3) (-12 (|has| *6 (-6 -4337)) (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-618 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(-10 -7 (-15 -3428 (|#4| |#4|)) (-15 -3427 ((-747) |#4|)) (-15 -3426 ((-747) |#4|)) (IF (|has| |#3| (-6 -4337)) (-15 -3425 ((-618 |#3|) |#4|)) |%noBranch|) (-15 -3670 (|#1| |#4|)) (-15 -2108 (|#4| |#4|)) (-15 -3935 ((-3 |#4| "failed") |#4|))) -((-3428 ((|#8| |#4|) 20)) (-3425 (((-618 |#3|) |#4|) 29 (|has| |#7| (-6 -4337)))) (-3935 (((-3 |#8| "failed") |#4|) 23))) -(((-513 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3428 (|#8| |#4|)) (-15 -3935 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4337)) (-15 -3425 ((-618 |#3|) |#4|)) |%noBranch|)) (-542) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|) (-962 |#1|) (-365 |#5|) (-365 |#5|) (-662 |#5| |#6| |#7|)) (T -513)) -((-3425 (*1 *2 *3) (-12 (|has| *9 (-6 -4337)) (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-962 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-618 *6)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-662 *4 *5 *6)) (-4 *10 (-662 *7 *8 *9)))) (-3935 (*1 *2 *3) (|partial| -12 (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-962 *4)) (-4 *2 (-662 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-662 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) (-3428 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-962 *4)) (-4 *2 (-662 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-662 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7))))) -(-10 -7 (-15 -3428 (|#8| |#4|)) (-15 -3935 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4337)) (-15 -3425 ((-618 |#3|) |#4|)) |%noBranch|)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747) (-747)) NIL)) (-2422 (($ $ $) NIL)) (-3756 (($ (-582 |#1| |#3|)) NIL) (($ $) NIL)) (-3439 (((-112) $) NIL)) (-2421 (($ $ (-535) (-535)) 12)) (-2420 (($ $ (-535) (-535)) NIL)) (-2419 (($ $ (-535) (-535) (-535) (-535)) NIL)) (-2424 (($ $) NIL)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-2418 (($ $ (-535) (-535) $) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535)) $) NIL)) (-1302 (($ $ (-535) (-582 |#1| |#3|)) NIL)) (-1301 (($ $ (-535) (-582 |#1| |#2|)) NIL)) (-3675 (($ (-747) |#1|) NIL)) (-3879 (($) NIL T CONST)) (-3428 (($ $) 21 (|has| |#1| (-300)))) (-3430 (((-582 |#1| |#3|) $ (-535)) NIL)) (-3427 (((-747) $) 24 (|has| |#1| (-542)))) (-1632 ((|#1| $ (-535) (-535) |#1|) NIL)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3426 (((-747) $) 26 (|has| |#1| (-542)))) (-3425 (((-618 (-582 |#1| |#2|)) $) 29 (|has| |#1| (-542)))) (-3433 (((-747) $) NIL)) (-3960 (($ (-747) (-747) |#1|) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#1| $) 19 (|has| |#1| (-6 (-4338 #1="*"))))) (-3437 (((-535) $) 10)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) 11)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#1|))) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3939 (((-618 (-618 |#1|)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3935 (((-3 $ #2="failed") $) 33 (|has| |#1| (-356)))) (-2423 (($ $ $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-3803 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-542)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535))) NIL)) (-3674 (($ (-618 |#1|)) NIL) (($ (-618 $)) NIL)) (-3440 (((-112) $) NIL)) (-3670 ((|#1| $) 17 (|has| |#1| (-6 (-4338 #1#))))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 (((-582 |#1| |#2|) $ (-535)) NIL)) (-4300 (($ (-582 |#1| |#2|)) NIL) (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-535) $) NIL) (((-582 |#1| |#2|) $ (-582 |#1| |#2|)) NIL) (((-582 |#1| |#3|) (-582 |#1| |#3|) $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-514 |#1| |#2| |#3|) (-662 |#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) (-1018) (-535) (-535)) (T -514)) -NIL -(-662 |#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2109 (((-618 (-1179)) $) 13)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL) (($ (-618 (-1179))) 11)) (-3375 (((-112) $ $) NIL))) -(((-515) (-13 (-1049) (-10 -8 (-15 -4300 ($ (-618 (-1179)))) (-15 -2109 ((-618 (-1179)) $))))) (T -515)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-515)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-515))))) -(-13 (-1049) (-10 -8 (-15 -4300 ($ (-618 (-1179)))) (-15 -2109 ((-618 (-1179)) $)))) -((-2887 (((-112) $ $) NIL)) (-2110 (((-1101) $) 14)) (-3576 (((-1124) $) NIL)) (-2111 (((-1142) $) 11)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-516) (-13 (-1049) (-10 -8 (-15 -2111 ((-1142) $)) (-15 -2110 ((-1101) $))))) (T -516)) -((-2111 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-516)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-516))))) -(-13 (-1049) (-10 -8 (-15 -2111 ((-1142) $)) (-15 -2110 ((-1101) $)))) -((-2112 (((-1086) $ (-129)) 17))) -(((-517 |#1|) (-10 -8 (-15 -2112 ((-1086) |#1| (-129)))) (-518)) (T -517)) -NIL -(-10 -8 (-15 -2112 ((-1086) |#1| (-129)))) -((-2112 (((-1086) $ (-129)) 7)) (-2113 (((-1086) $) 8)) (-1811 (($ $) 6))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) NIL)) (-3996 ((|#1| $) NIL)) (-4180 (($ $) NIL)) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) 59 (|has| $ (-6 -4343)))) (-3654 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3491 (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4343)))) (-1674 (($ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-2190 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-1431 (($ $ $) 23 (|has| $ (-6 -4343)))) (-1300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-3373 ((|#1| $ |#1|) 21 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4343))) (($ $ "rest" $) 24 (|has| $ (-6 -4343))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-3378 (($ (-1 (-112) |#1|) $) NIL)) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3985 ((|#1| $) NIL)) (-3513 (($) NIL T CONST)) (-2342 (($ $) 28 (|has| $ (-6 -4343)))) (-3243 (($ $) 29)) (-1308 (($ $) 18) (($ $ (-749)) 32)) (-3912 (($ $) 55 (|has| |#1| (-1068)))) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3112 (($ |#1| $) NIL (|has| |#1| (-1068))) (($ (-1 (-112) |#1|) $) NIL)) (-3137 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-3815 (((-112) $) NIL)) (-2302 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068))) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) (-1 (-112) |#1|) $) NIL)) (-3450 (((-623 |#1|) $) 27 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2578 (($ (-749) |#1|) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) 31 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-3884 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-1832 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4218 (($ |#1|) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) NIL)) (-1825 (((-1126) $) 51 (|has| |#1| (-1068)))) (-3159 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1886 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2055 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) 13) (($ $ (-749)) NIL)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-2719 (((-112) $) NIL)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 12)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) 17)) (-3498 (($) 16)) (-2680 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1194 (-550))) NIL) ((|#1| $ (-550)) NIL) ((|#1| $ (-550) |#1|) NIL)) (-2487 (((-550) $ $) NIL)) (-3476 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-1529 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-2136 (((-112) $) 34)) (-3635 (($ $) NIL)) (-3472 (($ $) NIL (|has| $ (-6 -4343)))) (-3728 (((-749) $) NIL)) (-3786 (($ $) 36)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) 35)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 26)) (-3547 (($ $ $) 54) (($ $ |#1|) NIL)) (-3227 (($ $ $) NIL) (($ |#1| $) 10) (($ (-623 $)) NIL) (($ $ |#1|) NIL)) (-1518 (((-836) $) 46 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) 48 (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3191 (((-749) $) 9 (|has| $ (-6 -4342))))) +(((-511 |#1| |#2|) (-644 |#1|) (-1181) (-550)) (T -511)) +NIL +(-644 |#1|) +((-3707 ((|#4| |#4|) 27)) (-2122 (((-749) |#4|) 32)) (-3613 (((-749) |#4|) 33)) (-3525 (((-623 |#3|) |#4|) 40 (|has| |#3| (-6 -4343)))) (-2031 (((-3 |#4| "failed") |#4|) 51)) (-4290 ((|#4| |#4|) 44)) (-4017 ((|#1| |#4|) 43))) +(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3707 (|#4| |#4|)) (-15 -2122 ((-749) |#4|)) (-15 -3613 ((-749) |#4|)) (IF (|has| |#3| (-6 -4343)) (-15 -3525 ((-623 |#3|) |#4|)) |%noBranch|) (-15 -4017 (|#1| |#4|)) (-15 -4290 (|#4| |#4|)) (-15 -2031 ((-3 |#4| "failed") |#4|))) (-356) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|)) (T -512)) +((-2031 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-4290 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-4017 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-356)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) (-3525 (*1 *2 *3) (-12 (|has| *6 (-6 -4343)) (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-623 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-2122 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) +(-10 -7 (-15 -3707 (|#4| |#4|)) (-15 -2122 ((-749) |#4|)) (-15 -3613 ((-749) |#4|)) (IF (|has| |#3| (-6 -4343)) (-15 -3525 ((-623 |#3|) |#4|)) |%noBranch|) (-15 -4017 (|#1| |#4|)) (-15 -4290 (|#4| |#4|)) (-15 -2031 ((-3 |#4| "failed") |#4|))) +((-3707 ((|#8| |#4|) 20)) (-3525 (((-623 |#3|) |#4|) 29 (|has| |#7| (-6 -4343)))) (-2031 (((-3 |#8| "failed") |#4|) 23))) +(((-513 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3707 (|#8| |#4|)) (-15 -2031 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4343)) (-15 -3525 ((-623 |#3|) |#4|)) |%noBranch|)) (-542) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|) (-965 |#1|) (-366 |#5|) (-366 |#5|) (-665 |#5| |#6| |#7|)) (T -513)) +((-3525 (*1 *2 *3) (-12 (|has| *9 (-6 -4343)) (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-965 *4)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)) (-5 *2 (-623 *6)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-665 *4 *5 *6)) (-4 *10 (-665 *7 *8 *9)))) (-2031 (*1 *2 *3) (|partial| -12 (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-965 *4)) (-4 *2 (-665 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-665 *4 *5 *6)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))) (-3707 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-965 *4)) (-4 *2 (-665 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-665 *4 *5 *6)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7))))) +(-10 -7 (-15 -3707 (|#8| |#4|)) (-15 -2031 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4343)) (-15 -3525 ((-623 |#3|) |#4|)) |%noBranch|)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2584 (($ (-749) (-749)) NIL)) (-3152 (($ $ $) NIL)) (-2633 (($ (-584 |#1| |#3|)) NIL) (($ $) NIL)) (-1294 (((-112) $) NIL)) (-4229 (($ $ (-550) (-550)) 12)) (-4090 (($ $ (-550) (-550)) NIL)) (-3958 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-3410 (($ $) NIL)) (-3483 (((-112) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-3839 (($ $ (-550) (-550) $) NIL)) (-1705 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550)) $) NIL)) (-1396 (($ $ (-550) (-584 |#1| |#3|)) NIL)) (-3693 (($ $ (-550) (-584 |#1| |#2|)) NIL)) (-1333 (($ (-749) |#1|) NIL)) (-3513 (($) NIL T CONST)) (-3707 (($ $) 21 (|has| |#1| (-300)))) (-3719 (((-584 |#1| |#3|) $ (-550)) NIL)) (-2122 (((-749) $) 24 (|has| |#1| (-542)))) (-3245 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3181 ((|#1| $ (-550) (-550)) NIL)) (-3450 (((-623 |#1|) $) NIL)) (-3613 (((-749) $) 26 (|has| |#1| (-542)))) (-3525 (((-623 (-584 |#1| |#2|)) $) 29 (|has| |#1| (-542)))) (-2115 (((-749) $) NIL)) (-2578 (($ (-749) (-749) |#1|) NIL)) (-2124 (((-749) $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3928 ((|#1| $) 19 (|has| |#1| (-6 (-4344 "*"))))) (-2938 (((-550) $) 10)) (-3895 (((-550) $) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2828 (((-550) $) 11)) (-3816 (((-550) $) NIL)) (-2458 (($ (-623 (-623 |#1|))) NIL)) (-3234 (($ (-1 |#1| |#1|) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4048 (((-623 (-623 |#1|)) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2031 (((-3 $ "failed") $) 33 (|has| |#1| (-356)))) (-3278 (($ $ $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3111 (($ $ |#1|) NIL)) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550))) NIL)) (-4296 (($ (-623 |#1|)) NIL) (($ (-623 $)) NIL)) (-1829 (((-112) $) NIL)) (-4017 ((|#1| $) 17 (|has| |#1| (-6 (-4344 "*"))))) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-3615 (((-584 |#1| |#2|) $ (-550)) NIL)) (-1518 (($ (-584 |#1| |#2|)) NIL) (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-1295 (((-112) $) NIL)) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $ $) NIL) (($ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-584 |#1| |#2|) $ (-584 |#1| |#2|)) NIL) (((-584 |#1| |#3|) (-584 |#1| |#3|) $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-514 |#1| |#2| |#3|) (-665 |#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) (-1020) (-550) (-550)) (T -514)) +NIL +(-665 |#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3204 (((-623 (-1180)) $) 13)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 20) (((-1149) $) NIL) (($ (-1149)) NIL) (($ (-623 (-1180))) 11)) (-2316 (((-112) $ $) NIL))) +(((-515) (-13 (-1051) (-10 -8 (-15 -1518 ($ (-623 (-1180)))) (-15 -3204 ((-623 (-1180)) $))))) (T -515)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-515)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-515))))) +(-13 (-1051) (-10 -8 (-15 -1518 ($ (-623 (-1180)))) (-15 -3204 ((-623 (-1180)) $)))) +((-1504 (((-112) $ $) NIL)) (-3326 (((-1103) $) 14)) (-1825 (((-1126) $) NIL)) (-3464 (((-1144) $) 11)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 21) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-516) (-13 (-1051) (-10 -8 (-15 -3464 ((-1144) $)) (-15 -3326 ((-1103) $))))) (T -516)) +((-3464 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-516)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-516))))) +(-13 (-1051) (-10 -8 (-15 -3464 ((-1144) $)) (-15 -3326 ((-1103) $)))) +((-3598 (((-1088) $ (-128)) 17))) +(((-517 |#1|) (-10 -8 (-15 -3598 ((-1088) |#1| (-128)))) (-518)) (T -517)) +NIL +(-10 -8 (-15 -3598 ((-1088) |#1| (-128)))) +((-3598 (((-1088) $ (-128)) 7)) (-3720 (((-1088) $) 8)) (-1951 (($ $) 6))) (((-518) (-138)) (T -518)) -((-2113 (*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1086)))) (-2112 (*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-129)) (-5 *2 (-1086))))) -(-13 (-171) (-10 -8 (-15 -2113 ((-1086) $)) (-15 -2112 ((-1086) $ (-129))))) +((-3720 (*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1088)))) (-3598 (*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-128)) (-5 *2 (-1088))))) +(-13 (-171) (-10 -8 (-15 -3720 ((-1088) $)) (-15 -3598 ((-1088) $ (-128))))) (((-171) . T)) -((-2116 (((-1136 |#1|) (-747)) 76)) (-3672 (((-1224 |#1|) (-1224 |#1|) (-890)) 69)) (-2114 (((-1230) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) |#1|) 84)) (-2118 (((-1224 |#1|) (-1224 |#1|) (-747)) 36)) (-3315 (((-1224 |#1|) (-890)) 71)) (-2120 (((-1224 |#1|) (-1224 |#1|) (-535)) 24)) (-2115 (((-1136 |#1|) (-1224 |#1|)) 77)) (-2124 (((-1224 |#1|) (-890)) 95)) (-2122 (((-112) (-1224 |#1|)) 80)) (-3450 (((-1224 |#1|) (-1224 |#1|) (-890)) 62)) (-2125 (((-1136 |#1|) (-1224 |#1|)) 89)) (-2121 (((-890) (-1224 |#1|)) 59)) (-2725 (((-1224 |#1|) (-1224 |#1|)) 30)) (-2483 (((-1224 |#1|) (-890) (-890)) 97)) (-2119 (((-1224 |#1|) (-1224 |#1|) (-1086) (-1086)) 23)) (-2117 (((-1224 |#1|) (-1224 |#1|) (-747) (-1086)) 37)) (-2123 (((-1224 (-1224 |#1|)) (-890)) 94)) (-4291 (((-1224 |#1|) (-1224 |#1|) (-1224 |#1|)) 81)) (** (((-1224 |#1|) (-1224 |#1|) (-535)) 45)) (* (((-1224 |#1|) (-1224 |#1|) (-1224 |#1|)) 25))) -(((-519 |#1|) (-10 -7 (-15 -2114 ((-1230) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) |#1|)) (-15 -3315 ((-1224 |#1|) (-890))) (-15 -2483 ((-1224 |#1|) (-890) (-890))) (-15 -2115 ((-1136 |#1|) (-1224 |#1|))) (-15 -2116 ((-1136 |#1|) (-747))) (-15 -2117 ((-1224 |#1|) (-1224 |#1|) (-747) (-1086))) (-15 -2118 ((-1224 |#1|) (-1224 |#1|) (-747))) (-15 -2119 ((-1224 |#1|) (-1224 |#1|) (-1086) (-1086))) (-15 -2120 ((-1224 |#1|) (-1224 |#1|) (-535))) (-15 ** ((-1224 |#1|) (-1224 |#1|) (-535))) (-15 * ((-1224 |#1|) (-1224 |#1|) (-1224 |#1|))) (-15 -4291 ((-1224 |#1|) (-1224 |#1|) (-1224 |#1|))) (-15 -3450 ((-1224 |#1|) (-1224 |#1|) (-890))) (-15 -3672 ((-1224 |#1|) (-1224 |#1|) (-890))) (-15 -2725 ((-1224 |#1|) (-1224 |#1|))) (-15 -2121 ((-890) (-1224 |#1|))) (-15 -2122 ((-112) (-1224 |#1|))) (-15 -2123 ((-1224 (-1224 |#1|)) (-890))) (-15 -2124 ((-1224 |#1|) (-890))) (-15 -2125 ((-1136 |#1|) (-1224 |#1|)))) (-343)) (T -519)) -((-2125 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 (-1224 *4))) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-519 *4)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-890)) (-5 *1 (-519 *4)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (-3672 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-890)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-890)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-4291 (*1 *2 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-535)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2120 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-535)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2119 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1086)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2118 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2117 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1224 *5)) (-5 *3 (-747)) (-5 *4 (-1086)) (-4 *5 (-343)) (-5 *1 (-519 *5)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)))) (-2483 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2114 (*1 *2 *3 *4) (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-4 *4 (-343)) (-5 *2 (-1230)) (-5 *1 (-519 *4))))) -(-10 -7 (-15 -2114 ((-1230) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) |#1|)) (-15 -3315 ((-1224 |#1|) (-890))) (-15 -2483 ((-1224 |#1|) (-890) (-890))) (-15 -2115 ((-1136 |#1|) (-1224 |#1|))) (-15 -2116 ((-1136 |#1|) (-747))) (-15 -2117 ((-1224 |#1|) (-1224 |#1|) (-747) (-1086))) (-15 -2118 ((-1224 |#1|) (-1224 |#1|) (-747))) (-15 -2119 ((-1224 |#1|) (-1224 |#1|) (-1086) (-1086))) (-15 -2120 ((-1224 |#1|) (-1224 |#1|) (-535))) (-15 ** ((-1224 |#1|) (-1224 |#1|) (-535))) (-15 * ((-1224 |#1|) (-1224 |#1|) (-1224 |#1|))) (-15 -4291 ((-1224 |#1|) (-1224 |#1|) (-1224 |#1|))) (-15 -3450 ((-1224 |#1|) (-1224 |#1|) (-890))) (-15 -3672 ((-1224 |#1|) (-1224 |#1|) (-890))) (-15 -2725 ((-1224 |#1|) (-1224 |#1|))) (-15 -2121 ((-890) (-1224 |#1|))) (-15 -2122 ((-112) (-1224 |#1|))) (-15 -2123 ((-1224 (-1224 |#1|)) (-890))) (-15 -2124 ((-1224 |#1|) (-890))) (-15 -2125 ((-1136 |#1|) (-1224 |#1|)))) -((-2127 (((-1 |#1| |#1|) |#1|) 11)) (-2126 (((-1 |#1| |#1|)) 10))) -(((-520 |#1|) (-10 -7 (-15 -2126 ((-1 |#1| |#1|))) (-15 -2127 ((-1 |#1| |#1|) |#1|))) (-13 (-703) (-25))) (T -520)) -((-2127 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))) (-2126 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25)))))) -(-10 -7 (-15 -2126 ((-1 |#1| |#1|))) (-15 -2127 ((-1 |#1| |#1|) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2724 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ (-747) |#1|) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 (-747) (-747)) $) NIL)) (-2101 ((|#1| $) NIL)) (-3508 (((-747) $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20)) (-2979 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL))) -(((-521 |#1|) (-13 (-769) (-500 (-747) |#1|)) (-823)) (T -521)) -NIL -(-13 (-769) (-500 (-747) |#1|)) -((-2129 (((-618 |#2|) (-1136 |#1|) |#3|) 83)) (-2130 (((-618 (-2 (|:| |outval| |#2|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-398 (-1136 |#1|)) (-1136 |#1|))) 100)) (-2128 (((-1136 |#1|) (-665 |#1|)) 95))) -(((-522 |#1| |#2| |#3|) (-10 -7 (-15 -2128 ((-1136 |#1|) (-665 |#1|))) (-15 -2129 ((-618 |#2|) (-1136 |#1|) |#3|)) (-15 -2130 ((-618 (-2 (|:| |outval| |#2|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-398 (-1136 |#1|)) (-1136 |#1|))))) (-356) (-356) (-13 (-356) (-821))) (T -522)) -((-2130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *6)) (-5 *5 (-1 (-398 (-1136 *6)) (-1136 *6))) (-4 *6 (-356)) (-5 *2 (-618 (-2 (|:| |outval| *7) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 *7)))))) (-5 *1 (-522 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-821))))) (-2129 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *5)) (-4 *5 (-356)) (-5 *2 (-618 *6)) (-5 *1 (-522 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *2 (-1136 *4)) (-5 *1 (-522 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-821)))))) -(-10 -7 (-15 -2128 ((-1136 |#1|) (-665 |#1|))) (-15 -2129 ((-618 |#2|) (-1136 |#1|) |#3|)) (-15 -2130 ((-618 (-2 (|:| |outval| |#2|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-398 (-1136 |#1|)) (-1136 |#1|))))) -((-2854 (((-815 (-535))) 12)) (-2853 (((-815 (-535))) 14)) (-2839 (((-808 (-535))) 9))) -(((-523) (-10 -7 (-15 -2839 ((-808 (-535)))) (-15 -2854 ((-815 (-535)))) (-15 -2853 ((-815 (-535)))))) (T -523)) -((-2853 (*1 *2) (-12 (-5 *2 (-815 (-535))) (-5 *1 (-523)))) (-2854 (*1 *2) (-12 (-5 *2 (-815 (-535))) (-5 *1 (-523)))) (-2839 (*1 *2) (-12 (-5 *2 (-808 (-535))) (-5 *1 (-523))))) -(-10 -7 (-15 -2839 ((-808 (-535)))) (-15 -2854 ((-815 (-535)))) (-15 -2853 ((-815 (-535))))) -((-2887 (((-112) $ $) NIL)) (-2134 (((-1124) $) 48)) (-3594 (((-112) $) 43)) (-3590 (((-1142) $) 44)) (-3595 (((-112) $) 41)) (-3881 (((-1124) $) 42)) (-2133 (($ (-1124)) 49)) (-3597 (((-112) $) NIL)) (-3599 (((-112) $) NIL)) (-3596 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-2136 (($ $ (-618 (-1142))) 20)) (-2139 (((-51) $) 22)) (-3593 (((-112) $) NIL)) (-3589 (((-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-2466 (($ $ (-618 (-1142)) (-1142)) 61)) (-3592 (((-112) $) NIL)) (-3588 (((-219) $) NIL)) (-2135 (($ $) 38)) (-3587 (((-835) $) NIL)) (-3600 (((-112) $ $) NIL)) (-4142 (($ $ (-535)) NIL) (($ $ (-618 (-535))) NIL)) (-3591 (((-618 $) $) 28)) (-2132 (((-1142) (-618 $)) 50)) (-4313 (($ (-618 $)) 54) (($ (-1124)) NIL) (($ (-1142)) 18) (($ (-535)) 8) (($ (-219)) 25) (($ (-835)) NIL) (((-1069) $) 11) (($ (-1069)) 12)) (-2131 (((-1142) (-1142) (-618 $)) 53)) (-4300 (((-835) $) 46)) (-3585 (($ $) 52)) (-3586 (($ $) 51)) (-2137 (($ $ (-618 $)) 58)) (-3598 (((-112) $) 27)) (-2979 (($) 9 T CONST)) (-2985 (($) 10 T CONST)) (-3375 (((-112) $ $) 62)) (-4291 (($ $ $) 67)) (-4182 (($ $ $) 63)) (** (($ $ (-747)) 66) (($ $ (-535)) 65)) (* (($ $ $) 64)) (-4299 (((-535) $) NIL))) -(((-524) (-13 (-1070 (-1124) (-1142) (-535) (-219) (-835)) (-594 (-1069)) (-10 -8 (-15 -2139 ((-51) $)) (-15 -4313 ($ (-1069))) (-15 -2137 ($ $ (-618 $))) (-15 -2466 ($ $ (-618 (-1142)) (-1142))) (-15 -2136 ($ $ (-618 (-1142)))) (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ (-535))) (-15 0 ($) -4294) (-15 1 ($) -4294) (-15 -2135 ($ $)) (-15 -2134 ((-1124) $)) (-15 -2133 ($ (-1124))) (-15 -2132 ((-1142) (-618 $))) (-15 -2131 ((-1142) (-1142) (-618 $)))))) (T -524)) -((-2139 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-524)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1069)) (-5 *1 (-524)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-524))) (-5 *1 (-524)))) (-2466 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-1142)) (-5 *1 (-524)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-524)))) (-4182 (*1 *1 *1 *1) (-5 *1 (-524))) (* (*1 *1 *1 *1) (-5 *1 (-524))) (-4291 (*1 *1 *1 *1) (-5 *1 (-524))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-524)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-524)))) (-2979 (*1 *1) (-5 *1 (-524))) (-2985 (*1 *1) (-5 *1 (-524))) (-2135 (*1 *1 *1) (-5 *1 (-524))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-524)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-524)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-618 (-524))) (-5 *2 (-1142)) (-5 *1 (-524)))) (-2131 (*1 *2 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-524))) (-5 *1 (-524))))) -(-13 (-1070 (-1124) (-1142) (-535) (-219) (-835)) (-594 (-1069)) (-10 -8 (-15 -2139 ((-51) $)) (-15 -4313 ($ (-1069))) (-15 -2137 ($ $ (-618 $))) (-15 -2466 ($ $ (-618 (-1142)) (-1142))) (-15 -2136 ($ $ (-618 (-1142)))) (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ (-535))) (-15 (-2979) ($) -4294) (-15 (-2985) ($) -4294) (-15 -2135 ($ $)) (-15 -2134 ((-1124) $)) (-15 -2133 ($ (-1124))) (-15 -2132 ((-1142) (-618 $))) (-15 -2131 ((-1142) (-1142) (-618 $))))) -((-2138 (((-524) (-1142)) 15)) (-2139 ((|#1| (-524)) 20))) -(((-525 |#1|) (-10 -7 (-15 -2138 ((-524) (-1142))) (-15 -2139 (|#1| (-524)))) (-1178)) (T -525)) -((-2139 (*1 *2 *3) (-12 (-5 *3 (-524)) (-5 *1 (-525 *2)) (-4 *2 (-1178)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-524)) (-5 *1 (-525 *4)) (-4 *4 (-1178))))) -(-10 -7 (-15 -2138 ((-524) (-1142))) (-15 -2139 (|#1| (-524)))) -((-3790 ((|#2| |#2|) 17)) (-3788 ((|#2| |#2|) 13)) (-3791 ((|#2| |#2| (-535) (-535)) 20)) (-3789 ((|#2| |#2|) 15))) -(((-526 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-535) (-535)))) (-13 (-542) (-145)) (-1217 |#1|)) (T -526)) -((-3791 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-535)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-526 *4 *2)) (-4 *2 (-1217 *4)))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3))))) -(-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-535) (-535)))) -((-2142 (((-618 (-286 (-917 |#2|))) (-618 |#2|) (-618 (-1142))) 32)) (-2140 (((-618 |#2|) (-917 |#1|) |#3|) 53) (((-618 |#2|) (-1136 |#1|) |#3|) 52)) (-2141 (((-618 (-618 |#2|)) (-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)) |#3|) 91))) -(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -2140 ((-618 |#2|) (-1136 |#1|) |#3|)) (-15 -2140 ((-618 |#2|) (-917 |#1|) |#3|)) (-15 -2141 ((-618 (-618 |#2|)) (-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)) |#3|)) (-15 -2142 ((-618 (-286 (-917 |#2|))) (-618 |#2|) (-618 (-1142))))) (-444) (-356) (-13 (-356) (-821))) (T -527)) -((-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-1142))) (-4 *6 (-356)) (-5 *2 (-618 (-286 (-917 *6)))) (-5 *1 (-527 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-13 (-356) (-821))))) (-2141 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-4 *6 (-444)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-527 *6 *7 *5)) (-4 *7 (-356)) (-4 *5 (-13 (-356) (-821))))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-917 *5)) (-4 *5 (-444)) (-5 *2 (-618 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *5)) (-4 *5 (-444)) (-5 *2 (-618 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821)))))) -(-10 -7 (-15 -2140 ((-618 |#2|) (-1136 |#1|) |#3|)) (-15 -2140 ((-618 |#2|) (-917 |#1|) |#3|)) (-15 -2141 ((-618 (-618 |#2|)) (-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)) |#3|)) (-15 -2142 ((-618 (-286 (-917 |#2|))) (-618 |#2|) (-618 (-1142))))) -((-2145 ((|#2| |#2| |#1|) 17)) (-2143 ((|#2| (-618 |#2|)) 27)) (-2144 ((|#2| (-618 |#2|)) 46))) -(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2143 (|#2| (-618 |#2|))) (-15 -2144 (|#2| (-618 |#2|))) (-15 -2145 (|#2| |#2| |#1|))) (-300) (-1200 |#1|) |#1| (-1 |#1| |#1| (-747))) (T -528)) -((-2145 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-747))) (-5 *1 (-528 *3 *2 *4 *5)) (-4 *2 (-1200 *3)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-528 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-528 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747)))))) -(-10 -7 (-15 -2143 (|#2| (-618 |#2|))) (-15 -2144 (|#2| (-618 |#2|))) (-15 -2145 (|#2| |#2| |#1|))) -((-4075 (((-398 (-1136 |#4|)) (-1136 |#4|) (-1 (-398 (-1136 |#3|)) (-1136 |#3|))) 80) (((-398 |#4|) |#4| (-1 (-398 (-1136 |#3|)) (-1136 |#3|))) 169))) -(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4| (-1 (-398 (-1136 |#3|)) (-1136 |#3|)))) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|) (-1 (-398 (-1136 |#3|)) (-1136 |#3|))))) (-823) (-769) (-13 (-300) (-145)) (-921 |#3| |#2| |#1|)) (T -529)) -((-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1136 *7)) (-1136 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-921 *7 *6 *5)) (-5 *2 (-398 (-1136 *8))) (-5 *1 (-529 *5 *6 *7 *8)) (-5 *3 (-1136 *8)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1136 *7)) (-1136 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-398 *3)) (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-921 *7 *6 *5))))) -(-10 -7 (-15 -4075 ((-398 |#4|) |#4| (-1 (-398 (-1136 |#3|)) (-1136 |#3|)))) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|) (-1 (-398 (-1136 |#3|)) (-1136 |#3|))))) -((-3790 ((|#4| |#4|) 74)) (-3788 ((|#4| |#4|) 70)) (-3791 ((|#4| |#4| (-535) (-535)) 76)) (-3789 ((|#4| |#4|) 72))) -(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3788 (|#4| |#4|)) (-15 -3789 (|#4| |#4|)) (-15 -3790 (|#4| |#4|)) (-15 -3791 (|#4| |#4| (-535) (-535)))) (-13 (-356) (-361) (-594 (-535))) (-1200 |#1|) (-701 |#1| |#2|) (-1217 |#3|)) (T -530)) -((-3791 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-535)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-4 *5 (-1200 *4)) (-4 *6 (-701 *4 *5)) (-5 *1 (-530 *4 *5 *6 *2)) (-4 *2 (-1217 *6)))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5))))) -(-10 -7 (-15 -3788 (|#4| |#4|)) (-15 -3789 (|#4| |#4|)) (-15 -3790 (|#4| |#4|)) (-15 -3791 (|#4| |#4| (-535) (-535)))) -((-3790 ((|#2| |#2|) 27)) (-3788 ((|#2| |#2|) 23)) (-3791 ((|#2| |#2| (-535) (-535)) 29)) (-3789 ((|#2| |#2|) 25))) -(((-531 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-535) (-535)))) (-13 (-356) (-361) (-594 (-535))) (-1217 |#1|)) (T -531)) -((-3791 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-535)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-5 *1 (-531 *4 *2)) (-4 *2 (-1217 *4)))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3))))) -(-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-535) (-535)))) -((-2146 (((-3 (-535) #1="failed") |#2| |#1| (-1 (-3 (-535) #1#) |#1|)) 14) (((-3 (-535) #1#) |#2| |#1| (-535) (-1 (-3 (-535) #1#) |#1|)) 13) (((-3 (-535) #1#) |#2| (-535) (-1 (-3 (-535) #1#) |#1|)) 26))) -(((-532 |#1| |#2|) (-10 -7 (-15 -2146 ((-3 (-535) #1="failed") |#2| (-535) (-1 (-3 (-535) #1#) |#1|))) (-15 -2146 ((-3 (-535) #1#) |#2| |#1| (-535) (-1 (-3 (-535) #1#) |#1|))) (-15 -2146 ((-3 (-535) #1#) |#2| |#1| (-1 (-3 (-535) #1#) |#1|)))) (-1018) (-1200 |#1|)) (T -532)) -((-2146 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-535) #1="failed") *4)) (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1200 *4)))) (-2146 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-535) #1#) *4)) (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1200 *4)))) (-2146 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-535) #1#) *5)) (-4 *5 (-1018)) (-5 *2 (-535)) (-5 *1 (-532 *5 *3)) (-4 *3 (-1200 *5))))) -(-10 -7 (-15 -2146 ((-3 (-535) #1="failed") |#2| (-535) (-1 (-3 (-535) #1#) |#1|))) (-15 -2146 ((-3 (-535) #1#) |#2| |#1| (-535) (-1 (-3 (-535) #1#) |#1|))) (-15 -2146 ((-3 (-535) #1#) |#2| |#1| (-1 (-3 (-535) #1#) |#1|)))) -((-2155 (($ $ $) 79)) (-4312 (((-398 $) $) 47)) (-3491 (((-3 (-535) "failed") $) 59)) (-3490 (((-535) $) 37)) (-3345 (((-3 (-400 (-535)) "failed") $) 74)) (-3344 (((-112) $) 24)) (-3343 (((-400 (-535)) $) 72)) (-4069 (((-112) $) 50)) (-2148 (($ $ $ $) 86)) (-3520 (((-112) $) 16)) (-1413 (($ $ $) 57)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 69)) (-3786 (((-3 $ "failed") $) 64)) (-2152 (($ $) 23)) (-2147 (($ $ $) 84)) (-3787 (($) 60)) (-1411 (($ $) 53)) (-4075 (((-398 $) $) 45)) (-2995 (((-112) $) 14)) (-1699 (((-747) $) 28)) (-4153 (($ $ (-747)) NIL) (($ $) 10)) (-3742 (($ $) 17)) (-4313 (((-535) $) NIL) (((-524) $) 36) (((-861 (-535)) $) 40) (((-371) $) 31) (((-219) $) 33)) (-3444 (((-747)) 8)) (-2157 (((-112) $ $) 20)) (-3420 (($ $ $) 55))) -(((-533 |#1|) (-10 -8 (-15 -2147 (|#1| |#1| |#1|)) (-15 -2148 (|#1| |#1| |#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -2155 (|#1| |#1| |#1|)) (-15 -2157 ((-112) |#1| |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) "failed") |#1|)) (-15 -4313 ((-535) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -3520 ((-112) |#1|)) (-15 -1699 ((-747) |#1|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -3444 ((-747)))) (-534)) (T -533)) -((-3444 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-533 *3)) (-4 *3 (-534))))) -(-10 -8 (-15 -2147 (|#1| |#1| |#1|)) (-15 -2148 (|#1| |#1| |#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -2155 (|#1| |#1| |#1|)) (-15 -2157 ((-112) |#1| |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) "failed") |#1|)) (-15 -4313 ((-535) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -3520 ((-112) |#1|)) (-15 -1699 ((-747) |#1|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -3444 ((-747)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-2155 (($ $ $) 82)) (-1363 (((-3 $ "failed") $ $) 19)) (-2150 (($ $ $ $) 71)) (-4117 (($ $) 49)) (-4312 (((-398 $) $) 50)) (-1700 (((-112) $ $) 122)) (-3969 (((-535) $) 111)) (-2681 (($ $ $) 85)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) "failed") $) 103)) (-3490 (((-535) $) 102)) (-2883 (($ $ $) 126)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 101) (((-665 (-535)) (-665 $)) 100)) (-3804 (((-3 $ "failed") $) 32)) (-3345 (((-3 (-400 (-535)) "failed") $) 79)) (-3344 (((-112) $) 81)) (-3343 (((-400 (-535)) $) 80)) (-3315 (($) 78) (($ $) 77)) (-2882 (($ $ $) 125)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 120)) (-4069 (((-112) $) 51)) (-2148 (($ $ $ $) 69)) (-2156 (($ $ $) 83)) (-3520 (((-112) $) 113)) (-1413 (($ $ $) 94)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 97)) (-2493 (((-112) $) 30)) (-2994 (((-112) $) 89)) (-3786 (((-3 $ "failed") $) 91)) (-3521 (((-112) $) 112)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 129)) (-2149 (($ $ $ $) 70)) (-3660 (($ $ $) 114)) (-3661 (($ $ $) 115)) (-2152 (($ $) 73)) (-4176 (($ $) 86)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2147 (($ $ $) 68)) (-3787 (($) 90 T CONST)) (-2154 (($ $) 75)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1411 (($ $) 95)) (-4075 (((-398 $) $) 48)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 127)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 121)) (-2995 (((-112) $) 88)) (-1699 (((-747) $) 123)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 124)) (-4153 (($ $ (-747)) 108) (($ $) 106)) (-2153 (($ $) 74)) (-3742 (($ $) 76)) (-4313 (((-535) $) 105) (((-524) $) 99) (((-861 (-535)) $) 98) (((-371) $) 93) (((-219) $) 92)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-535)) 104)) (-3444 (((-747)) 28)) (-2157 (((-112) $ $) 84)) (-3420 (($ $ $) 96)) (-3015 (($) 87)) (-2170 (((-112) $ $) 37)) (-2151 (($ $ $ $) 72)) (-3725 (($ $) 110)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-747)) 109) (($ $) 107)) (-2885 (((-112) $ $) 117)) (-2886 (((-112) $ $) 118)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 116)) (-3006 (((-112) $ $) 119)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-534) (-138)) (T -534)) -((-2994 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-3015 (*1 *1) (-4 *1 (-534))) (-4176 (*1 *1 *1) (-4 *1 (-534))) (-2681 (*1 *1 *1 *1) (-4 *1 (-534))) (-2157 (*1 *2 *1 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-2156 (*1 *1 *1 *1) (-4 *1 (-534))) (-2155 (*1 *1 *1 *1) (-4 *1 (-534))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-400 (-535))))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *1 (-534)) (-5 *2 (-400 (-535))))) (-3315 (*1 *1) (-4 *1 (-534))) (-3315 (*1 *1 *1) (-4 *1 (-534))) (-3742 (*1 *1 *1) (-4 *1 (-534))) (-2154 (*1 *1 *1) (-4 *1 (-534))) (-2153 (*1 *1 *1) (-4 *1 (-534))) (-2152 (*1 *1 *1) (-4 *1 (-534))) (-2151 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2150 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2149 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2148 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2147 (*1 *1 *1 *1) (-4 *1 (-534)))) -(-13 (-1183) (-300) (-796) (-227) (-594 (-535)) (-1009 (-535)) (-617 (-535)) (-594 (-524)) (-594 (-861 (-535))) (-857 (-535)) (-141) (-991) (-145) (-1117) (-10 -8 (-15 -2994 ((-112) $)) (-15 -2995 ((-112) $)) (-6 -4335) (-15 -3015 ($)) (-15 -4176 ($ $)) (-15 -2681 ($ $ $)) (-15 -2157 ((-112) $ $)) (-15 -2156 ($ $ $)) (-15 -2155 ($ $ $)) (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $)) (-15 -3315 ($)) (-15 -3315 ($ $)) (-15 -3742 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $ $ $)) (-15 -2150 ($ $ $ $)) (-15 -2149 ($ $ $ $)) (-15 -2148 ($ $ $ $)) (-15 -2147 ($ $ $)) (-6 -4334))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-141) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-371)) . T) ((-594 (-524)) . T) ((-594 (-535)) . T) ((-594 (-861 (-535))) . T) ((-227) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-617 (-535)) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-796) . T) ((-821) . T) ((-823) . T) ((-857 (-535)) . T) ((-892) . T) ((-991) . T) ((-1009 (-535)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) . T) ((-1183) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 25)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 88)) (-2171 (($ $) 89)) (-2169 (((-112) $) NIL)) (-2155 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2150 (($ $ $ $) 43)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-2681 (($ $ $) 82)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) "failed") $) NIL)) (-3490 (((-535) $) NIL)) (-2883 (($ $ $) 81)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 62) (((-665 (-535)) (-665 $)) 58)) (-3804 (((-3 $ "failed") $) 85)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL)) (-3344 (((-112) $) NIL)) (-3343 (((-400 (-535)) $) NIL)) (-3315 (($) 64) (($ $) 65)) (-2882 (($ $ $) 80)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2148 (($ $ $ $) NIL)) (-2156 (($ $ $) 55)) (-3520 (((-112) $) NIL)) (-1413 (($ $ $) NIL)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL)) (-2493 (((-112) $) 26)) (-2994 (((-112) $) 75)) (-3786 (((-3 $ "failed") $) NIL)) (-3521 (((-112) $) 35)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2149 (($ $ $ $) 44)) (-3660 (($ $ $) 77)) (-3661 (($ $ $) 76)) (-2152 (($ $) NIL)) (-4176 (($ $) 41)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) 54)) (-2147 (($ $ $) NIL)) (-3787 (($) NIL T CONST)) (-2154 (($ $) 31)) (-3577 (((-1086) $) 34)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 119)) (-3478 (($ $ $) 86) (($ (-618 $)) NIL)) (-1411 (($ $) NIL)) (-4075 (((-398 $) $) 105)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) 84)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 79)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-2153 (($ $) 32)) (-3742 (($ $) 30)) (-4313 (((-535) $) 40) (((-524) $) 52) (((-861 (-535)) $) NIL) (((-371) $) 47) (((-219) $) 49) (((-1124) $) 53)) (-4300 (((-835) $) 38) (($ (-535)) 39) (($ $) NIL) (($ (-535)) 39)) (-3444 (((-747)) NIL)) (-2157 (((-112) $ $) NIL)) (-3420 (($ $ $) NIL)) (-3015 (($) 29)) (-2170 (((-112) $ $) NIL)) (-2151 (($ $ $ $) 42)) (-3725 (($ $) 63)) (-2979 (($) 27 T CONST)) (-2985 (($) 28 T CONST)) (-2825 (((-1124) $) 20) (((-1124) $ (-112)) 22) (((-1230) (-799) $) 23) (((-1230) (-799) $ (-112)) 24)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 66)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 67)) (-4180 (($ $) 68) (($ $ $) 70)) (-4182 (($ $ $) 69)) (** (($ $ (-890)) NIL) (($ $ (-747)) 74)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 72) (($ $ $) 71))) -(((-535) (-13 (-534) (-594 (-1124)) (-797) (-10 -8 (-15 -3315 ($ $)) (-6 -4323) (-6 -4328) (-6 -4324) (-6 -4318)))) (T -535)) -((-3315 (*1 *1 *1) (-5 *1 (-535)))) -(-13 (-534) (-594 (-1124)) (-797) (-10 -8 (-15 -3315 ($ $)) (-6 -4323) (-6 -4328) (-6 -4324) (-6 -4318))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) NIL)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-536 |#1| |#2| |#3|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1067) (-1067) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336)))) (T -536)) -NIL -(-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) -((-2158 (((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1136 |#2|) (-1136 |#2|))) 51))) -(((-537 |#1| |#2|) (-10 -7 (-15 -2158 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1136 |#2|) (-1136 |#2|))))) (-13 (-823) (-542)) (-13 (-27) (-414 |#1|))) (T -537)) -((-2158 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-1 (-1136 *3) (-1136 *3))) (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-823) (-542))) (-5 *2 (-565 *3)) (-5 *1 (-537 *6 *3))))) -(-10 -7 (-15 -2158 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1136 |#2|) (-1136 |#2|))))) -((-2160 (((-565 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2161 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2159 (((-565 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-538 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2159 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2160 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2161 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-823) (-542) (-1009 (-535))) (-13 (-27) (-414 |#1|)) (-1200 |#2|) (-1200 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -538)) -((-2161 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-4 *7 (-1200 (-400 *6))) (-5 *1 (-538 *4 *5 *6 *7 *2)) (-4 *2 (-335 *5 *6 *7)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-4 *8 (-1200 (-400 *7))) (-5 *2 (-565 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-4 *8 (-1200 (-400 *7))) (-5 *2 (-565 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) -(-10 -7 (-15 -2159 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2160 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2161 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2164 (((-112) (-535) (-535)) 10)) (-2162 (((-535) (-535)) 7)) (-2163 (((-535) (-535) (-535)) 8))) -(((-539) (-10 -7 (-15 -2162 ((-535) (-535))) (-15 -2163 ((-535) (-535) (-535))) (-15 -2164 ((-112) (-535) (-535))))) (T -539)) -((-2164 (*1 *2 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-112)) (-5 *1 (-539)))) (-2163 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-539)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-539))))) -(-10 -7 (-15 -2162 ((-535) (-535))) (-15 -2163 ((-535) (-535) (-535))) (-15 -2164 ((-112) (-535) (-535)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2923 ((|#1| $) 59)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-3829 (($ $) 89)) (-3985 (($ $) 72)) (-2724 ((|#1| $) 60)) (-1363 (((-3 $ "failed") $ $) 19)) (-3358 (($ $) 71)) (-3827 (($ $) 88)) (-3984 (($ $) 73)) (-3831 (($ $) 87)) (-3983 (($ $) 74)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) "failed") $) 67)) (-3490 (((-535) $) 66)) (-3804 (((-3 $ "failed") $) 32)) (-2167 (($ |#1| |#1|) 64)) (-3520 (((-112) $) 58)) (-3973 (($) 99)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 70)) (-3521 (((-112) $) 57)) (-3660 (($ $ $) 105)) (-3661 (($ $ $) 104)) (-4285 (($ $) 96)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2168 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-400 (-535))) 62)) (-2166 ((|#1| $) 61)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3803 (((-3 $ "failed") $ $) 40)) (-4286 (($ $) 97)) (-3832 (($ $) 86)) (-3982 (($ $) 75)) (-3830 (($ $) 85)) (-3981 (($ $) 76)) (-3828 (($ $) 84)) (-3980 (($ $) 77)) (-2165 (((-112) $ |#1|) 56)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-535)) 68)) (-3444 (((-747)) 28)) (-3835 (($ $) 95)) (-3823 (($ $) 83)) (-2170 (((-112) $ $) 37)) (-3833 (($ $) 94)) (-3821 (($ $) 82)) (-3837 (($ $) 93)) (-3825 (($ $) 81)) (-3838 (($ $) 92)) (-3826 (($ $) 80)) (-3836 (($ $) 91)) (-3824 (($ $) 79)) (-3834 (($ $) 90)) (-3822 (($ $) 78)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 102)) (-2886 (((-112) $ $) 101)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 103)) (-3006 (((-112) $ $) 100)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ $) 98) (($ $ (-400 (-535))) 69)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-540 |#1|) (-138) (-13 (-397) (-1164))) (T -540)) -((-2168 (*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2167 (*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2168 (*1 *1 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2168 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))) (-2165 (*1 *2 *1 *3) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112))))) -(-13 (-444) (-823) (-1164) (-973) (-1009 (-535)) (-10 -8 (-6 -4112) (-15 -2168 ($ |t#1| |t#1|)) (-15 -2167 ($ |t#1| |t#1|)) (-15 -2168 ($ |t#1|)) (-15 -2168 ($ (-400 (-535)))) (-15 -2166 (|t#1| $)) (-15 -2724 (|t#1| $)) (-15 -2923 (|t#1| $)) (-15 -3520 ((-112) $)) (-15 -3521 ((-112) $)) (-15 -2165 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-277) . T) ((-283) . T) ((-444) . T) ((-484) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-973) . T) ((-1009 (-535)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) . T) ((-1167) . T)) -((-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 9)) (-2171 (($ $) 11)) (-2169 (((-112) $) 18)) (-3804 (((-3 $ "failed") $) 16)) (-2170 (((-112) $ $) 20))) -(((-541 |#1|) (-10 -8 (-15 -2169 ((-112) |#1|)) (-15 -2170 ((-112) |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|))) (-542)) (T -541)) -NIL -(-10 -8 (-15 -2169 ((-112) |#1|)) (-15 -2170 ((-112) |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) +((-2850 (((-1140 |#1|) (-749)) 76)) (-2252 (((-1227 |#1|) (-1227 |#1|) (-894)) 69)) (-2647 (((-1232) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) |#1|) 84)) (-3047 (((-1227 |#1|) (-1227 |#1|) (-749)) 36)) (-1741 (((-1227 |#1|) (-894)) 71)) (-2160 (((-1227 |#1|) (-1227 |#1|) (-550)) 24)) (-2739 (((-1140 |#1|) (-1227 |#1|)) 77)) (-2529 (((-1227 |#1|) (-894)) 95)) (-2340 (((-112) (-1227 |#1|)) 80)) (-1389 (((-1227 |#1|) (-1227 |#1|) (-894)) 62)) (-1428 (((-1140 |#1|) (-1227 |#1|)) 89)) (-2253 (((-894) (-1227 |#1|)) 59)) (-3235 (((-1227 |#1|) (-1227 |#1|)) 30)) (-2922 (((-1227 |#1|) (-894) (-894)) 97)) (-2068 (((-1227 |#1|) (-1227 |#1|) (-1088) (-1088)) 23)) (-2950 (((-1227 |#1|) (-1227 |#1|) (-749) (-1088)) 37)) (-2437 (((-1227 (-1227 |#1|)) (-894)) 94)) (-2414 (((-1227 |#1|) (-1227 |#1|) (-1227 |#1|)) 81)) (** (((-1227 |#1|) (-1227 |#1|) (-550)) 45)) (* (((-1227 |#1|) (-1227 |#1|) (-1227 |#1|)) 25))) +(((-519 |#1|) (-10 -7 (-15 -2647 ((-1232) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) |#1|)) (-15 -1741 ((-1227 |#1|) (-894))) (-15 -2922 ((-1227 |#1|) (-894) (-894))) (-15 -2739 ((-1140 |#1|) (-1227 |#1|))) (-15 -2850 ((-1140 |#1|) (-749))) (-15 -2950 ((-1227 |#1|) (-1227 |#1|) (-749) (-1088))) (-15 -3047 ((-1227 |#1|) (-1227 |#1|) (-749))) (-15 -2068 ((-1227 |#1|) (-1227 |#1|) (-1088) (-1088))) (-15 -2160 ((-1227 |#1|) (-1227 |#1|) (-550))) (-15 ** ((-1227 |#1|) (-1227 |#1|) (-550))) (-15 * ((-1227 |#1|) (-1227 |#1|) (-1227 |#1|))) (-15 -2414 ((-1227 |#1|) (-1227 |#1|) (-1227 |#1|))) (-15 -1389 ((-1227 |#1|) (-1227 |#1|) (-894))) (-15 -2252 ((-1227 |#1|) (-1227 |#1|) (-894))) (-15 -3235 ((-1227 |#1|) (-1227 |#1|))) (-15 -2253 ((-894) (-1227 |#1|))) (-15 -2340 ((-112) (-1227 |#1|))) (-15 -2437 ((-1227 (-1227 |#1|)) (-894))) (-15 -2529 ((-1227 |#1|) (-894))) (-15 -1428 ((-1140 |#1|) (-1227 |#1|)))) (-342)) (T -519)) +((-1428 (*1 *2 *3) (-12 (-5 *3 (-1227 *4)) (-4 *4 (-342)) (-5 *2 (-1140 *4)) (-5 *1 (-519 *4)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1227 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1227 (-1227 *4))) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-1227 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-519 *4)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-1227 *4)) (-4 *4 (-342)) (-5 *2 (-894)) (-5 *1 (-519 *4)))) (-3235 (*1 *2 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (-2252 (*1 *2 *2 *3) (-12 (-5 *2 (-1227 *4)) (-5 *3 (-894)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-1389 (*1 *2 *2 *3) (-12 (-5 *2 (-1227 *4)) (-5 *3 (-894)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2414 (*1 *2 *2 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1227 *4)) (-5 *3 (-550)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2160 (*1 *2 *2 *3) (-12 (-5 *2 (-1227 *4)) (-5 *3 (-550)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2068 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1227 *4)) (-5 *3 (-1088)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-3047 (*1 *2 *2 *3) (-12 (-5 *2 (-1227 *4)) (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2950 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1227 *5)) (-5 *3 (-749)) (-5 *4 (-1088)) (-4 *5 (-342)) (-5 *1 (-519 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1140 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-1227 *4)) (-4 *4 (-342)) (-5 *2 (-1140 *4)) (-5 *1 (-519 *4)))) (-2922 (*1 *2 *3 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1227 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1227 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) (-4 *4 (-342)) (-5 *2 (-1232)) (-5 *1 (-519 *4))))) +(-10 -7 (-15 -2647 ((-1232) (-1227 (-623 (-2 (|:| -3625 |#1|) (|:| -2922 (-1088))))) |#1|)) (-15 -1741 ((-1227 |#1|) (-894))) (-15 -2922 ((-1227 |#1|) (-894) (-894))) (-15 -2739 ((-1140 |#1|) (-1227 |#1|))) (-15 -2850 ((-1140 |#1|) (-749))) (-15 -2950 ((-1227 |#1|) (-1227 |#1|) (-749) (-1088))) (-15 -3047 ((-1227 |#1|) (-1227 |#1|) (-749))) (-15 -2068 ((-1227 |#1|) (-1227 |#1|) (-1088) (-1088))) (-15 -2160 ((-1227 |#1|) (-1227 |#1|) (-550))) (-15 ** ((-1227 |#1|) (-1227 |#1|) (-550))) (-15 * ((-1227 |#1|) (-1227 |#1|) (-1227 |#1|))) (-15 -2414 ((-1227 |#1|) (-1227 |#1|) (-1227 |#1|))) (-15 -1389 ((-1227 |#1|) (-1227 |#1|) (-894))) (-15 -2252 ((-1227 |#1|) (-1227 |#1|) (-894))) (-15 -3235 ((-1227 |#1|) (-1227 |#1|))) (-15 -2253 ((-894) (-1227 |#1|))) (-15 -2340 ((-112) (-1227 |#1|))) (-15 -2437 ((-1227 (-1227 |#1|)) (-894))) (-15 -2529 ((-1227 |#1|) (-894))) (-15 -1428 ((-1140 |#1|) (-1227 |#1|)))) +((-3598 (((-1088) $ (-128)) NIL)) (-3720 (((-1088) $) 21)) (-1781 (($ (-381)) 12) (($ (-1126)) 14)) (-2320 (((-112) $) 19)) (-2339 (((-112) $) 22)) (-1518 (((-836) $) 26)) (-1951 (($ $) 23))) +(((-520) (-13 (-518) (-595 (-836)) (-10 -8 (-15 -1781 ($ (-381))) (-15 -1781 ($ (-1126))) (-15 -2339 ((-112) $)) (-15 -2320 ((-112) $))))) (T -520)) +((-1781 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-520)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-520)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) +(-13 (-518) (-595 (-836)) (-10 -8 (-15 -1781 ($ (-381))) (-15 -1781 ($ (-1126))) (-15 -2339 ((-112) $)) (-15 -2320 ((-112) $)))) +((-4201 (((-1 |#1| |#1|) |#1|) 11)) (-1556 (((-1 |#1| |#1|)) 10))) +(((-521 |#1|) (-10 -7 (-15 -1556 ((-1 |#1| |#1|))) (-15 -4201 ((-1 |#1| |#1|) |#1|))) (-13 (-705) (-25))) (T -521)) +((-4201 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25))))) (-1556 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) +(-10 -7 (-15 -1556 ((-1 |#1| |#1|))) (-15 -4201 ((-1 |#1| |#1|) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-2270 (($ $ $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-3118 (($ (-749) |#1|) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 (-749) (-749)) $) NIL)) (-1586 ((|#1| $) NIL)) (-3277 (((-749) $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 20)) (-2626 (($) NIL T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2391 (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL))) +(((-522 |#1|) (-13 (-771) (-500 (-749) |#1|)) (-825)) (T -522)) +NIL +(-13 (-771) (-500 (-749) |#1|)) +((-1794 (((-623 |#2|) (-1140 |#1|) |#3|) 83)) (-1913 (((-623 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-411 (-1140 |#1|)) (-1140 |#1|))) 100)) (-1676 (((-1140 |#1|) (-667 |#1|)) 95))) +(((-523 |#1| |#2| |#3|) (-10 -7 (-15 -1676 ((-1140 |#1|) (-667 |#1|))) (-15 -1794 ((-623 |#2|) (-1140 |#1|) |#3|)) (-15 -1913 ((-623 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-411 (-1140 |#1|)) (-1140 |#1|))))) (-356) (-356) (-13 (-356) (-823))) (T -523)) +((-1913 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *6)) (-5 *5 (-1 (-411 (-1140 *6)) (-1140 *6))) (-4 *6 (-356)) (-5 *2 (-623 (-2 (|:| |outval| *7) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 *7)))))) (-5 *1 (-523 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-823))))) (-1794 (*1 *2 *3 *4) (-12 (-5 *3 (-1140 *5)) (-4 *5 (-356)) (-5 *2 (-623 *6)) (-5 *1 (-523 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *2 (-1140 *4)) (-5 *1 (-523 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-823)))))) +(-10 -7 (-15 -1676 ((-1140 |#1|) (-667 |#1|))) (-15 -1794 ((-623 |#2|) (-1140 |#1|) |#3|)) (-15 -1913 ((-623 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-411 (-1140 |#1|)) (-1140 |#1|))))) +((-2398 (((-818 (-550))) 12)) (-2410 (((-818 (-550))) 14)) (-2744 (((-811 (-550))) 9))) +(((-524) (-10 -7 (-15 -2744 ((-811 (-550)))) (-15 -2398 ((-818 (-550)))) (-15 -2410 ((-818 (-550)))))) (T -524)) +((-2410 (*1 *2) (-12 (-5 *2 (-818 (-550))) (-5 *1 (-524)))) (-2398 (*1 *2) (-12 (-5 *2 (-818 (-550))) (-5 *1 (-524)))) (-2744 (*1 *2) (-12 (-5 *2 (-811 (-550))) (-5 *1 (-524))))) +(-10 -7 (-15 -2744 ((-811 (-550)))) (-15 -2398 ((-818 (-550)))) (-15 -2410 ((-818 (-550))))) +((-4075 (((-526) (-1144)) 15)) (-2860 ((|#1| (-526)) 20))) +(((-525 |#1|) (-10 -7 (-15 -4075 ((-526) (-1144))) (-15 -2860 (|#1| (-526)))) (-1181)) (T -525)) +((-2860 (*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-525 *2)) (-4 *2 (-1181)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-526)) (-5 *1 (-525 *4)) (-4 *4 (-1181))))) +(-10 -7 (-15 -4075 ((-526) (-1144))) (-15 -2860 (|#1| (-526)))) +((-1504 (((-112) $ $) NIL)) (-3874 (((-1126) $) 48)) (-3259 (((-112) $) 43)) (-2790 (((-1144) $) 44)) (-3355 (((-112) $) 41)) (-4038 (((-1126) $) 42)) (-2028 (($ (-1126)) 49)) (-3552 (((-112) $) NIL)) (-3742 (((-112) $) NIL)) (-3452 (((-112) $) NIL)) (-1825 (((-1126) $) NIL)) (-3820 (($ $ (-623 (-1144))) 20)) (-2860 (((-52) $) 22)) (-1331 (((-112) $) NIL)) (-2815 (((-550) $) NIL)) (-3337 (((-1088) $) NIL)) (-2988 (($ $ (-623 (-1144)) (-1144)) 61)) (-4282 (((-112) $) NIL)) (-2708 (((-219) $) NIL)) (-1895 (($ $) 38)) (-1810 (((-836) $) NIL)) (-1721 (((-112) $ $) NIL)) (-2680 (($ $ (-550)) NIL) (($ $ (-623 (-550))) NIL)) (-3076 (((-623 $) $) 28)) (-1468 (((-1144) (-623 $)) 50)) (-4028 (($ (-623 $)) 54) (($ (-1126)) NIL) (($ (-1144)) 18) (($ (-550)) 8) (($ (-219)) 25) (($ (-836)) NIL) (((-1072) $) 11) (($ (-1072)) 12)) (-2959 (((-1144) (-1144) (-623 $)) 53)) (-1518 (((-836) $) 46)) (-4244 (($ $) 52)) (-4230 (($ $) 51)) (-3963 (($ $ (-623 $)) 58)) (-3650 (((-112) $) 27)) (-2626 (($) 9 T CONST)) (-2636 (($) 10 T CONST)) (-2316 (((-112) $ $) 62)) (-2414 (($ $ $) 67)) (-2391 (($ $ $) 63)) (** (($ $ (-749)) 66) (($ $ (-550)) 65)) (* (($ $ $) 64)) (-3191 (((-550) $) NIL))) +(((-526) (-13 (-1071 (-1126) (-1144) (-550) (-219) (-836)) (-596 (-1072)) (-10 -8 (-15 -2860 ((-52) $)) (-15 -4028 ($ (-1072))) (-15 -3963 ($ $ (-623 $))) (-15 -2988 ($ $ (-623 (-1144)) (-1144))) (-15 -3820 ($ $ (-623 (-1144)))) (-15 -2391 ($ $ $)) (-15 * ($ $ $)) (-15 -2414 ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ (-550))) (-15 0 ($) -2258) (-15 1 ($) -2258) (-15 -1895 ($ $)) (-15 -3874 ((-1126) $)) (-15 -2028 ($ (-1126))) (-15 -1468 ((-1144) (-623 $))) (-15 -2959 ((-1144) (-1144) (-623 $)))))) (T -526)) +((-2860 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-526)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-526)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-526))) (-5 *1 (-526)))) (-2988 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-1144)) (-5 *1 (-526)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-526)))) (-2391 (*1 *1 *1 *1) (-5 *1 (-526))) (* (*1 *1 *1 *1) (-5 *1 (-526))) (-2414 (*1 *1 *1 *1) (-5 *1 (-526))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-526)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-526)))) (-2626 (*1 *1) (-5 *1 (-526))) (-2636 (*1 *1) (-5 *1 (-526))) (-1895 (*1 *1 *1) (-5 *1 (-526))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-526)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-526)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-623 (-526))) (-5 *2 (-1144)) (-5 *1 (-526)))) (-2959 (*1 *2 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-526))) (-5 *1 (-526))))) +(-13 (-1071 (-1126) (-1144) (-550) (-219) (-836)) (-596 (-1072)) (-10 -8 (-15 -2860 ((-52) $)) (-15 -4028 ($ (-1072))) (-15 -3963 ($ $ (-623 $))) (-15 -2988 ($ $ (-623 (-1144)) (-1144))) (-15 -3820 ($ $ (-623 (-1144)))) (-15 -2391 ($ $ $)) (-15 * ($ $ $)) (-15 -2414 ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ (-550))) (-15 (-2626) ($) -2258) (-15 (-2636) ($) -2258) (-15 -1895 ($ $)) (-15 -3874 ((-1126) $)) (-15 -2028 ($ (-1126))) (-15 -1468 ((-1144) (-623 $))) (-15 -2959 ((-1144) (-1144) (-623 $))))) +((-2620 ((|#2| |#2|) 17)) (-2793 ((|#2| |#2|) 13)) (-4307 ((|#2| |#2| (-550) (-550)) 20)) (-2909 ((|#2| |#2|) 15))) +(((-527 |#1| |#2|) (-10 -7 (-15 -2793 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2620 (|#2| |#2|)) (-15 -4307 (|#2| |#2| (-550) (-550)))) (-13 (-542) (-145)) (-1218 |#1|)) (T -527)) +((-4307 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-527 *4 *2)) (-4 *2 (-1218 *4)))) (-2620 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1218 *3)))) (-2909 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1218 *3)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1218 *3))))) +(-10 -7 (-15 -2793 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2620 (|#2| |#2|)) (-15 -4307 (|#2| |#2| (-550) (-550)))) +((-3776 (((-623 (-287 (-925 |#2|))) (-623 |#2|) (-623 (-1144))) 32)) (-4185 (((-623 |#2|) (-925 |#1|) |#3|) 53) (((-623 |#2|) (-1140 |#1|) |#3|) 52)) (-3695 (((-623 (-623 |#2|)) (-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144)) |#3|) 91))) +(((-528 |#1| |#2| |#3|) (-10 -7 (-15 -4185 ((-623 |#2|) (-1140 |#1|) |#3|)) (-15 -4185 ((-623 |#2|) (-925 |#1|) |#3|)) (-15 -3695 ((-623 (-623 |#2|)) (-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144)) |#3|)) (-15 -3776 ((-623 (-287 (-925 |#2|))) (-623 |#2|) (-623 (-1144))))) (-444) (-356) (-13 (-356) (-823))) (T -528)) +((-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-1144))) (-4 *6 (-356)) (-5 *2 (-623 (-287 (-925 *6)))) (-5 *1 (-528 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-13 (-356) (-823))))) (-3695 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-623 (-925 *6))) (-5 *4 (-623 (-1144))) (-4 *6 (-444)) (-5 *2 (-623 (-623 *7))) (-5 *1 (-528 *6 *7 *5)) (-4 *7 (-356)) (-4 *5 (-13 (-356) (-823))))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-925 *5)) (-4 *5 (-444)) (-5 *2 (-623 *6)) (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-1140 *5)) (-4 *5 (-444)) (-5 *2 (-623 *6)) (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -4185 ((-623 |#2|) (-1140 |#1|) |#3|)) (-15 -4185 ((-623 |#2|) (-925 |#1|) |#3|)) (-15 -3695 ((-623 (-623 |#2|)) (-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144)) |#3|)) (-15 -3776 ((-623 (-287 (-925 |#2|))) (-623 |#2|) (-623 (-1144))))) +((-2824 ((|#2| |#2| |#1|) 17)) (-2683 ((|#2| (-623 |#2|)) 27)) (-2737 ((|#2| (-623 |#2|)) 46))) +(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2683 (|#2| (-623 |#2|))) (-15 -2737 (|#2| (-623 |#2|))) (-15 -2824 (|#2| |#2| |#1|))) (-300) (-1203 |#1|) |#1| (-1 |#1| |#1| (-749))) (T -529)) +((-2824 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-749))) (-5 *1 (-529 *3 *2 *4 *5)) (-4 *2 (-1203 *3)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-1203 *4)) (-5 *1 (-529 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749))))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-1203 *4)) (-5 *1 (-529 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) +(-10 -7 (-15 -2683 (|#2| (-623 |#2|))) (-15 -2737 (|#2| (-623 |#2|))) (-15 -2824 (|#2| |#2| |#1|))) +((-3338 (((-411 (-1140 |#4|)) (-1140 |#4|) (-1 (-411 (-1140 |#3|)) (-1140 |#3|))) 80) (((-411 |#4|) |#4| (-1 (-411 (-1140 |#3|)) (-1140 |#3|))) 169))) +(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3338 ((-411 |#4|) |#4| (-1 (-411 (-1140 |#3|)) (-1140 |#3|)))) (-15 -3338 ((-411 (-1140 |#4|)) (-1140 |#4|) (-1 (-411 (-1140 |#3|)) (-1140 |#3|))))) (-825) (-771) (-13 (-300) (-145)) (-922 |#3| |#2| |#1|)) (T -530)) +((-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 (-1140 *7)) (-1140 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-922 *7 *6 *5)) (-5 *2 (-411 (-1140 *8))) (-5 *1 (-530 *5 *6 *7 *8)) (-5 *3 (-1140 *8)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 (-1140 *7)) (-1140 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-411 *3)) (-5 *1 (-530 *5 *6 *7 *3)) (-4 *3 (-922 *7 *6 *5))))) +(-10 -7 (-15 -3338 ((-411 |#4|) |#4| (-1 (-411 (-1140 |#3|)) (-1140 |#3|)))) (-15 -3338 ((-411 (-1140 |#4|)) (-1140 |#4|) (-1 (-411 (-1140 |#3|)) (-1140 |#3|))))) +((-2620 ((|#4| |#4|) 74)) (-2793 ((|#4| |#4|) 70)) (-4307 ((|#4| |#4| (-550) (-550)) 76)) (-2909 ((|#4| |#4|) 72))) +(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2793 (|#4| |#4|)) (-15 -2909 (|#4| |#4|)) (-15 -2620 (|#4| |#4|)) (-15 -4307 (|#4| |#4| (-550) (-550)))) (-13 (-356) (-361) (-596 (-550))) (-1203 |#1|) (-703 |#1| |#2|) (-1218 |#3|)) (T -531)) +((-4307 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-4 *5 (-1203 *4)) (-4 *6 (-703 *4 *5)) (-5 *1 (-531 *4 *5 *6 *2)) (-4 *2 (-1218 *6)))) (-2620 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1203 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1218 *5)))) (-2909 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1203 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1218 *5)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1203 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1218 *5))))) +(-10 -7 (-15 -2793 (|#4| |#4|)) (-15 -2909 (|#4| |#4|)) (-15 -2620 (|#4| |#4|)) (-15 -4307 (|#4| |#4| (-550) (-550)))) +((-2620 ((|#2| |#2|) 27)) (-2793 ((|#2| |#2|) 23)) (-4307 ((|#2| |#2| (-550) (-550)) 29)) (-2909 ((|#2| |#2|) 25))) +(((-532 |#1| |#2|) (-10 -7 (-15 -2793 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2620 (|#2| |#2|)) (-15 -4307 (|#2| |#2| (-550) (-550)))) (-13 (-356) (-361) (-596 (-550))) (-1218 |#1|)) (T -532)) +((-4307 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-5 *1 (-532 *4 *2)) (-4 *2 (-1218 *4)))) (-2620 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1218 *3)))) (-2909 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1218 *3)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1218 *3))))) +(-10 -7 (-15 -2793 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2620 (|#2| |#2|)) (-15 -4307 (|#2| |#2| (-550) (-550)))) +((-2917 (((-3 (-550) "failed") |#2| |#1| (-1 (-3 (-550) "failed") |#1|)) 14) (((-3 (-550) "failed") |#2| |#1| (-550) (-1 (-3 (-550) "failed") |#1|)) 13) (((-3 (-550) "failed") |#2| (-550) (-1 (-3 (-550) "failed") |#1|)) 26))) +(((-533 |#1| |#2|) (-10 -7 (-15 -2917 ((-3 (-550) "failed") |#2| (-550) (-1 (-3 (-550) "failed") |#1|))) (-15 -2917 ((-3 (-550) "failed") |#2| |#1| (-550) (-1 (-3 (-550) "failed") |#1|))) (-15 -2917 ((-3 (-550) "failed") |#2| |#1| (-1 (-3 (-550) "failed") |#1|)))) (-1020) (-1203 |#1|)) (T -533)) +((-2917 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-550) "failed") *4)) (-4 *4 (-1020)) (-5 *2 (-550)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1203 *4)))) (-2917 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-550) "failed") *4)) (-4 *4 (-1020)) (-5 *2 (-550)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1203 *4)))) (-2917 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-550) "failed") *5)) (-4 *5 (-1020)) (-5 *2 (-550)) (-5 *1 (-533 *5 *3)) (-4 *3 (-1203 *5))))) +(-10 -7 (-15 -2917 ((-3 (-550) "failed") |#2| (-550) (-1 (-3 (-550) "failed") |#1|))) (-15 -2917 ((-3 (-550) "failed") |#2| |#1| (-550) (-1 (-3 (-550) "failed") |#1|))) (-15 -2917 ((-3 (-550) "failed") |#2| |#1| (-1 (-3 (-550) "failed") |#1|)))) +((-2347 (($ $ $) 79)) (-3564 (((-411 $) $) 47)) (-3880 (((-3 (-550) "failed") $) 59)) (-2726 (((-550) $) 37)) (-3207 (((-3 (-400 (-550)) "failed") $) 74)) (-3122 (((-112) $) 24)) (-3042 (((-400 (-550)) $) 72)) (-3933 (((-112) $) 50)) (-3064 (($ $ $ $) 86)) (-1416 (((-112) $) 16)) (-3388 (($ $ $) 57)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 69)) (-2826 (((-3 $ "failed") $) 64)) (-3833 (($ $) 23)) (-2996 (($ $ $) 84)) (-3862 (($) 60)) (-1289 (($ $) 53)) (-3338 (((-411 $) $) 45)) (-3777 (((-112) $) 14)) (-3542 (((-749) $) 28)) (-2393 (($ $ (-749)) NIL) (($ $) 10)) (-1731 (($ $) 17)) (-4028 (((-550) $) NIL) (((-526) $) 36) (((-865 (-550)) $) 40) (((-372) $) 31) (((-219) $) 33)) (-2390 (((-749)) 8)) (-2520 (((-112) $ $) 20)) (-4224 (($ $ $) 55))) +(((-534 |#1|) (-10 -8 (-15 -2996 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2520 ((-112) |#1| |#1|)) (-15 -3777 ((-112) |#1|)) (-15 -3862 (|#1|)) (-15 -2826 ((-3 |#1| "failed") |#1|)) (-15 -4028 ((-219) |#1|)) (-15 -4028 ((-372) |#1|)) (-15 -3388 (|#1| |#1| |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -4224 (|#1| |#1| |#1|)) (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|))) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -4028 ((-550) |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -1416 ((-112) |#1|)) (-15 -3542 ((-749) |#1|)) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -2390 ((-749)))) (-535)) (T -534)) +((-2390 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-534 *3)) (-4 *3 (-535))))) +(-10 -8 (-15 -2996 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2520 ((-112) |#1| |#1|)) (-15 -3777 ((-112) |#1|)) (-15 -3862 (|#1|)) (-15 -2826 ((-3 |#1| "failed") |#1|)) (-15 -4028 ((-219) |#1|)) (-15 -4028 ((-372) |#1|)) (-15 -3388 (|#1| |#1| |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -4224 (|#1| |#1| |#1|)) (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|))) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -4028 ((-550) |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -1416 ((-112) |#1|)) (-15 -3542 ((-749) |#1|)) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -2390 ((-749)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-2347 (($ $ $) 82)) (-3219 (((-3 $ "failed") $ $) 19)) (-2181 (($ $ $ $) 71)) (-1505 (($ $) 49)) (-3564 (((-411 $) $) 50)) (-3631 (((-112) $ $) 122)) (-3712 (((-550) $) 111)) (-3827 (($ $ $) 85)) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 103)) (-2726 (((-550) $) 102)) (-3349 (($ $ $) 126)) (-3780 (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 101) (((-667 (-550)) (-667 $)) 100)) (-1386 (((-3 $ "failed") $) 32)) (-3207 (((-3 (-400 (-550)) "failed") $) 79)) (-3122 (((-112) $) 81)) (-3042 (((-400 (-550)) $) 80)) (-1741 (($) 78) (($ $) 77)) (-1519 (($ $ $) 125)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 120)) (-3933 (((-112) $) 51)) (-3064 (($ $ $ $) 69)) (-2434 (($ $ $) 83)) (-1416 (((-112) $) 113)) (-3388 (($ $ $) 94)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 97)) (-3102 (((-112) $) 30)) (-3718 (((-112) $) 89)) (-2826 (((-3 $ "failed") $) 91)) (-3329 (((-112) $) 112)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 129)) (-3178 (($ $ $ $) 70)) (-2707 (($ $ $) 114)) (-4164 (($ $ $) 115)) (-3833 (($ $) 73)) (-3772 (($ $) 86)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-2996 (($ $ $) 68)) (-3862 (($) 90 T CONST)) (-3463 (($ $) 75)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-1289 (($ $) 95)) (-3338 (((-411 $) $) 48)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 127)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 121)) (-3777 (((-112) $) 88)) (-3542 (((-749) $) 123)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 124)) (-2393 (($ $ (-749)) 108) (($ $) 106)) (-2092 (($ $) 74)) (-1731 (($ $) 76)) (-4028 (((-550) $) 105) (((-526) $) 99) (((-865 (-550)) $) 98) (((-372) $) 93) (((-219) $) 92)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-550)) 104)) (-2390 (((-749)) 28)) (-2520 (((-112) $ $) 84)) (-4224 (($ $ $) 96)) (-1860 (($) 87)) (-1345 (((-112) $ $) 37)) (-2260 (($ $ $ $) 72)) (-1635 (($ $) 110)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-749)) 109) (($ $) 107)) (-2363 (((-112) $ $) 117)) (-2345 (((-112) $ $) 118)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 116)) (-2335 (((-112) $ $) 119)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-535) (-138)) (T -535)) +((-3718 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-1860 (*1 *1) (-4 *1 (-535))) (-3772 (*1 *1 *1) (-4 *1 (-535))) (-3827 (*1 *1 *1 *1) (-4 *1 (-535))) (-2520 (*1 *2 *1 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-2434 (*1 *1 *1 *1) (-4 *1 (-535))) (-2347 (*1 *1 *1 *1) (-4 *1 (-535))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-400 (-550))))) (-3207 (*1 *2 *1) (|partial| -12 (-4 *1 (-535)) (-5 *2 (-400 (-550))))) (-1741 (*1 *1) (-4 *1 (-535))) (-1741 (*1 *1 *1) (-4 *1 (-535))) (-1731 (*1 *1 *1) (-4 *1 (-535))) (-3463 (*1 *1 *1) (-4 *1 (-535))) (-2092 (*1 *1 *1) (-4 *1 (-535))) (-3833 (*1 *1 *1) (-4 *1 (-535))) (-2260 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2181 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-3178 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-3064 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2996 (*1 *1 *1 *1) (-4 *1 (-535)))) +(-13 (-1185) (-300) (-798) (-227) (-596 (-550)) (-1011 (-550)) (-619 (-550)) (-596 (-526)) (-596 (-865 (-550))) (-859 (-550)) (-141) (-995) (-145) (-1119) (-10 -8 (-15 -3718 ((-112) $)) (-15 -3777 ((-112) $)) (-6 -4341) (-15 -1860 ($)) (-15 -3772 ($ $)) (-15 -3827 ($ $ $)) (-15 -2520 ((-112) $ $)) (-15 -2434 ($ $ $)) (-15 -2347 ($ $ $)) (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $)) (-15 -1741 ($)) (-15 -1741 ($ $)) (-15 -1731 ($ $)) (-15 -3463 ($ $)) (-15 -2092 ($ $)) (-15 -3833 ($ $)) (-15 -2260 ($ $ $ $)) (-15 -2181 ($ $ $ $)) (-15 -3178 ($ $ $ $)) (-15 -3064 ($ $ $ $)) (-15 -2996 ($ $ $)) (-6 -4340))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-836)) . T) ((-141) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-372)) . T) ((-596 (-526)) . T) ((-596 (-550)) . T) ((-596 (-865 (-550))) . T) ((-227) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-619 (-550)) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-798) . T) ((-823) . T) ((-825) . T) ((-859 (-550)) . T) ((-893) . T) ((-995) . T) ((-1011 (-550)) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) . T) ((-1185) . T)) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3029 (((-1232) $ |#1| |#1|) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#2| $ |#1| |#2|) NIL)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 |#2| "failed") |#1| $) NIL)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) NIL)) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) NIL)) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 ((|#1| $) NIL (|has| |#1| (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 ((|#1| $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3531 (((-623 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-2325 (((-623 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-1293 ((|#2| $) NIL (|has| |#1| (-825)))) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))) (|has| |#2| (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-536 |#1| |#2| |#3|) (-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342))) (-1068) (-1068) (-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342)))) (T -536)) +NIL +(-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342))) +((-2597 (((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-1 (-1140 |#2|) (-1140 |#2|))) 51))) +(((-537 |#1| |#2|) (-10 -7 (-15 -2597 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-1 (-1140 |#2|) (-1140 |#2|))))) (-13 (-825) (-542)) (-13 (-27) (-423 |#1|))) (T -537)) +((-2597 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-594 *3)) (-5 *5 (-1 (-1140 *3) (-1140 *3))) (-4 *3 (-13 (-27) (-423 *6))) (-4 *6 (-13 (-825) (-542))) (-5 *2 (-569 *3)) (-5 *1 (-537 *6 *3))))) +(-10 -7 (-15 -2597 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-1 (-1140 |#2|) (-1140 |#2|))))) +((-1625 (((-569 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-1738 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-1513 (((-569 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-538 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1513 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1625 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1738 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-825) (-542) (-1011 (-550))) (-13 (-27) (-423 |#1|)) (-1203 |#2|) (-1203 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -538)) +((-1738 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-27) (-423 *4))) (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) (-4 *7 (-1203 (-400 *6))) (-5 *1 (-538 *4 *5 *6 *7 *2)) (-4 *2 (-335 *5 *6 *7)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1203 *6)) (-4 *6 (-13 (-27) (-423 *5))) (-4 *5 (-13 (-825) (-542) (-1011 (-550)))) (-4 *8 (-1203 (-400 *7))) (-5 *2 (-569 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1203 *6)) (-4 *6 (-13 (-27) (-423 *5))) (-4 *5 (-13 (-825) (-542) (-1011 (-550)))) (-4 *8 (-1203 (-400 *7))) (-5 *2 (-569 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) +(-10 -7 (-15 -1513 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1625 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1738 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2057 (((-112) (-550) (-550)) 10)) (-1851 (((-550) (-550)) 7)) (-1955 (((-550) (-550) (-550)) 8))) +(((-539) (-10 -7 (-15 -1851 ((-550) (-550))) (-15 -1955 ((-550) (-550) (-550))) (-15 -2057 ((-112) (-550) (-550))))) (T -539)) +((-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-539)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539))))) +(-10 -7 (-15 -1851 ((-550) (-550))) (-15 -1955 ((-550) (-550) (-550))) (-15 -2057 ((-112) (-550) (-550)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1776 ((|#1| $) 59)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3123 (($ $) 89)) (-3005 (($ $) 72)) (-2270 ((|#1| $) 60)) (-3219 (((-3 $ "failed") $ $) 19)) (-3353 (($ $) 71)) (-3103 (($ $) 88)) (-2984 (($ $) 73)) (-3146 (($ $) 87)) (-3025 (($ $) 74)) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 67)) (-2726 (((-550) $) 66)) (-1386 (((-3 $ "failed") $) 32)) (-4084 (($ |#1| |#1|) 64)) (-1416 (((-112) $) 58)) (-2734 (($) 99)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 70)) (-3329 (((-112) $) 57)) (-2707 (($ $ $) 105)) (-4164 (($ $ $) 104)) (-2958 (($ $) 96)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-4181 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-400 (-550))) 62)) (-3983 ((|#1| $) 61)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-1495 (((-3 $ "failed") $ $) 40)) (-1812 (($ $) 97)) (-3157 (($ $) 86)) (-3033 (($ $) 75)) (-3135 (($ $) 85)) (-3016 (($ $) 76)) (-3114 (($ $) 84)) (-2995 (($ $) 77)) (-2140 (((-112) $ |#1|) 56)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-550)) 68)) (-2390 (((-749)) 28)) (-3187 (($ $) 95)) (-3060 (($ $) 83)) (-1345 (((-112) $ $) 37)) (-3167 (($ $) 94)) (-3043 (($ $) 82)) (-3209 (($ $) 93)) (-3081 (($ $) 81)) (-3294 (($ $) 92)) (-3094 (($ $) 80)) (-3198 (($ $) 91)) (-3072 (($ $) 79)) (-3176 (($ $) 90)) (-3052 (($ $) 78)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2363 (((-112) $ $) 102)) (-2345 (((-112) $ $) 101)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 103)) (-2335 (((-112) $ $) 100)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ $) 98) (($ $ (-400 (-550))) 69)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-540 |#1|) (-138) (-13 (-397) (-1166))) (T -540)) +((-4181 (*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) (-4084 (*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) (-4181 (*1 *1 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) (-4181 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1166))))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1166))) (-5 *2 (-112)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1166))) (-5 *2 (-112)))) (-2140 (*1 *2 *1 *3) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1166))) (-5 *2 (-112))))) +(-13 (-444) (-825) (-1166) (-975) (-1011 (-550)) (-10 -8 (-6 -2001) (-15 -4181 ($ |t#1| |t#1|)) (-15 -4084 ($ |t#1| |t#1|)) (-15 -4181 ($ |t#1|)) (-15 -4181 ($ (-400 (-550)))) (-15 -3983 (|t#1| $)) (-15 -2270 (|t#1| $)) (-15 -1776 (|t#1| $)) (-15 -1416 ((-112) $)) (-15 -3329 ((-112) $)) (-15 -2140 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-277) . T) ((-283) . T) ((-444) . T) ((-484) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-975) . T) ((-1011 (-550)) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1166) . T) ((-1169) . T)) +((-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 9)) (-1447 (($ $) 11)) (-4291 (((-112) $) 18)) (-1386 (((-3 $ "failed") $) 16)) (-1345 (((-112) $ $) 20))) +(((-541 |#1|) (-10 -8 (-15 -4291 ((-112) |#1|)) (-15 -1345 ((-112) |#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -3368 ((-2 (|:| -3090 |#1|) (|:| -4329 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1386 ((-3 |#1| "failed") |#1|))) (-542)) (T -541)) +NIL +(-10 -8 (-15 -4291 ((-112) |#1|)) (-15 -1345 ((-112) |#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -3368 ((-2 (|:| -3090 |#1|) (|:| -4329 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1386 ((-3 |#1| "failed") |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ $) 40)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-542) (-138)) (T -542)) -((-3803 (*1 *1 *1 *1) (|partial| -4 *1 (-542))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1887 *1) (|:| -4323 *1) (|:| |associate| *1))) (-4 *1 (-542)))) (-2171 (*1 *1 *1) (-4 *1 (-542))) (-2170 (*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) -(-13 (-170) (-38 $) (-283) (-10 -8 (-15 -3803 ((-3 $ "failed") $ $)) (-15 -2172 ((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $)) (-15 -2171 ($ $)) (-15 -2170 ((-112) $ $)) (-15 -2169 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2174 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-618 |#2|)) 37)) (-2176 (((-565 |#2|) |#2| (-1142)) 62)) (-2175 (((-3 |#2| "failed") |#2| (-1142)) 152)) (-2177 (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1142) (-591 |#2|) (-618 (-591 |#2|))) 155)) (-2173 (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1142) |#2|) 40))) -(((-543 |#1| |#2|) (-10 -7 (-15 -2173 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1142) |#2|)) (-15 -2174 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-618 |#2|))) (-15 -2175 ((-3 |#2| "failed") |#2| (-1142))) (-15 -2176 ((-565 |#2|) |#2| (-1142))) (-15 -2177 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1142) (-591 |#2|) (-618 (-591 |#2|))))) (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -543)) -((-2177 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1142)) (-5 *6 (-618 (-591 *3))) (-5 *5 (-591 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-543 *7 *3)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2175 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-543 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-2174 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *6 *3)))) (-2173 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))) -(-10 -7 (-15 -2173 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1142) |#2|)) (-15 -2174 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-618 |#2|))) (-15 -2175 ((-3 |#2| "failed") |#2| (-1142))) (-15 -2176 ((-565 |#2|) |#2| (-1142))) (-15 -2177 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1142) (-591 |#2|) (-618 (-591 |#2|))))) -((-4312 (((-398 |#1|) |#1|) 18)) (-4075 (((-398 |#1|) |#1|) 33)) (-2179 (((-3 |#1| "failed") |#1|) 44)) (-2178 (((-398 |#1|) |#1|) 51))) -(((-544 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -2178 ((-398 |#1|) |#1|)) (-15 -2179 ((-3 |#1| "failed") |#1|))) (-534)) (T -544)) -((-2179 (*1 *2 *2) (|partial| -12 (-5 *1 (-544 *2)) (-4 *2 (-534)))) (-2178 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534)))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534))))) -(-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -2178 ((-398 |#1|) |#1|)) (-15 -2179 ((-3 |#1| "failed") |#1|))) -((-2180 (($) 9)) (-2183 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 35)) (-2735 (((-618 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 32)) (-3953 (($ (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2182 (($ (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2184 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-2303 (((-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2181 (((-1230)) 12))) -(((-545) (-10 -8 (-15 -2180 ($)) (-15 -2181 ((-1230))) (-15 -2735 ((-618 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2182 ($ (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3953 ($ (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2183 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2303 ((-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2184 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -545)) -((-2184 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-545)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-545)))) (-2183 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-545)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-545)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-545)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-545)))) (-2181 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-545)))) (-2180 (*1 *1) (-5 *1 (-545)))) -(-10 -8 (-15 -2180 ($)) (-15 -2181 ((-1230))) (-15 -2735 ((-618 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2182 ($ (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3953 ($ (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2183 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2303 ((-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2184 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-3407 (((-1136 (-400 (-1136 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1136 |#2|)) 32)) (-2187 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) |#2| (-1136 |#2|)) 110)) (-2185 (((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))) 80) (((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|)) 52)) (-2186 (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-400 (-1136 |#2|))) 87) (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1136 |#2|)) 109)) (-2188 (((-3 |#2| #3="failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) (-591 |#2|) |#2| (-400 (-1136 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) |#2| (-1136 |#2|)) 111)) (-2189 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))) 128 (|has| |#3| (-634 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|)) 127 (|has| |#3| (-634 |#2|)))) (-3408 ((|#2| (-1136 (-400 (-1136 |#2|))) (-591 |#2|) |#2|) 50)) (-3401 (((-1136 (-400 (-1136 |#2|))) (-1136 |#2|) (-591 |#2|)) 31))) -(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2185 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|))) (-15 -2185 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2186 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1136 |#2|))) (-15 -2186 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) |#2| (-1136 |#2|))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2188 ((-3 |#2| #3="failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) |#2| (-1136 |#2|))) (-15 -2188 ((-3 |#2| #3#) |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -3407 ((-1136 (-400 (-1136 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1136 |#2|))) (-15 -3408 (|#2| (-1136 (-400 (-1136 |#2|))) (-591 |#2|) |#2|)) (-15 -3401 ((-1136 (-400 (-1136 |#2|))) (-1136 |#2|) (-591 |#2|))) (IF (|has| |#3| (-634 |#2|)) (PROGN (-15 -2189 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|))) (-15 -2189 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))))) |%noBranch|)) (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))) (-13 (-414 |#1|) (-27) (-1164)) (-1067)) (T -546)) -((-2189 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-400 (-1136 *4))) (-4 *4 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))) (-2189 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-1136 *4)) (-4 *4 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4)))) (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-1136 (-400 (-1136 *6)))) (-5 *1 (-546 *5 *6 *7)) (-5 *3 (-1136 *6)) (-4 *7 (-1067)))) (-3408 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1136 (-400 (-1136 *2)))) (-5 *4 (-591 *2)) (-4 *2 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *1 (-546 *5 *2 *6)) (-4 *6 (-1067)))) (-3407 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-1136 (-400 (-1136 *3)))) (-5 *1 (-546 *6 *3 *7)) (-5 *5 (-1136 *3)) (-4 *7 (-1067)))) (-2188 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1142))) (-5 *5 (-400 (-1136 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1067)))) (-2188 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1142))) (-5 *5 (-1136 *2)) (-4 *2 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1067)))) (-2187 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-5 *6 (-400 (-1136 *3))) (-4 *3 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1067)))) (-2187 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-5 *6 (-1136 *3)) (-4 *3 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1067)))) (-2186 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-400 (-1136 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))) (-2186 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-1136 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))) (-2185 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-400 (-1136 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))) (-2185 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-1136 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067))))) -(-10 -7 (-15 -2185 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|))) (-15 -2185 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2186 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1136 |#2|))) (-15 -2186 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) |#2| (-1136 |#2|))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2188 ((-3 |#2| #3="failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) |#2| (-1136 |#2|))) (-15 -2188 ((-3 |#2| #3#) |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -3407 ((-1136 (-400 (-1136 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1136 |#2|))) (-15 -3408 (|#2| (-1136 (-400 (-1136 |#2|))) (-591 |#2|) |#2|)) (-15 -3401 ((-1136 (-400 (-1136 |#2|))) (-1136 |#2|) (-591 |#2|))) (IF (|has| |#3| (-634 |#2|)) (PROGN (-15 -2189 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|))) (-15 -2189 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))))) |%noBranch|)) -((-2199 (((-535) (-535) (-747)) 66)) (-2198 (((-535) (-535)) 65)) (-2197 (((-535) (-535)) 64)) (-2196 (((-535) (-535)) 69)) (-3126 (((-535) (-535) (-535)) 49)) (-2195 (((-535) (-535) (-535)) 46)) (-2194 (((-400 (-535)) (-535)) 20)) (-2193 (((-535) (-535)) 21)) (-2192 (((-535) (-535)) 58)) (-3123 (((-535) (-535)) 32)) (-2191 (((-618 (-535)) (-535)) 63)) (-2190 (((-535) (-535) (-535) (-535) (-535)) 44)) (-3119 (((-400 (-535)) (-535)) 41))) -(((-547) (-10 -7 (-15 -3119 ((-400 (-535)) (-535))) (-15 -2190 ((-535) (-535) (-535) (-535) (-535))) (-15 -2191 ((-618 (-535)) (-535))) (-15 -3123 ((-535) (-535))) (-15 -2192 ((-535) (-535))) (-15 -2193 ((-535) (-535))) (-15 -2194 ((-400 (-535)) (-535))) (-15 -2195 ((-535) (-535) (-535))) (-15 -3126 ((-535) (-535) (-535))) (-15 -2196 ((-535) (-535))) (-15 -2197 ((-535) (-535))) (-15 -2198 ((-535) (-535))) (-15 -2199 ((-535) (-535) (-747))))) (T -547)) -((-2199 (*1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-747)) (-5 *1 (-547)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-3126 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2195 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2194 (*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-547)) (-5 *3 (-535)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-3123 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2191 (*1 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-547)) (-5 *3 (-535)))) (-2190 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-547)) (-5 *3 (-535))))) -(-10 -7 (-15 -3119 ((-400 (-535)) (-535))) (-15 -2190 ((-535) (-535) (-535) (-535) (-535))) (-15 -2191 ((-618 (-535)) (-535))) (-15 -3123 ((-535) (-535))) (-15 -2192 ((-535) (-535))) (-15 -2193 ((-535) (-535))) (-15 -2194 ((-400 (-535)) (-535))) (-15 -2195 ((-535) (-535) (-535))) (-15 -3126 ((-535) (-535) (-535))) (-15 -2196 ((-535) (-535))) (-15 -2197 ((-535) (-535))) (-15 -2198 ((-535) (-535))) (-15 -2199 ((-535) (-535) (-747)))) -((-2200 (((-2 (|:| |answer| |#4|) (|:| -2241 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-548 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2200 ((-2 (|:| |answer| |#4|) (|:| -2241 |#4|)) |#4| (-1 |#2| |#2|)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -548)) -((-2200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-4 *7 (-1200 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2241 *3))) (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7))))) -(-10 -7 (-15 -2200 ((-2 (|:| |answer| |#4|) (|:| -2241 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2200 (((-2 (|:| |answer| (-400 |#2|)) (|:| -2241 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 18))) -(((-549 |#1| |#2|) (-10 -7 (-15 -2200 ((-2 (|:| |answer| (-400 |#2|)) (|:| -2241 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1200 |#1|)) (T -549)) -((-2200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| (-400 *6)) (|:| -2241 (-400 *6)) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-549 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -2200 ((-2 (|:| |answer| (-400 |#2|)) (|:| -2241 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) -((-2989 (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745) (-1030)) 108) (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745)) 110)) (-4155 (((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1142)) 172) (((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1124)) 171) (((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371) (-1030)) 176) (((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371)) 177) (((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371)) 178) (((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371))))) 179) (((-1006) (-307 (-371)) (-1055 (-815 (-371)))) 167) (((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371)) 166) (((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371)) 162) (((-1006) (-745)) 155) (((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371) (-1030)) 161))) -(((-550) (-10 -7 (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371) (-1030))) (-15 -4155 ((-1006) (-745))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371) (-1030))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745) (-1030))) (-15 -4155 ((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1124))) (-15 -4155 ((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1142))))) (T -550)) -((-4155 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1058 (-815 (-371)))) (-5 *5 (-1142)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1058 (-815 (-371)))) (-5 *5 (-1124)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) (-5 *1 (-550)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) (-5 *5 (-371)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550))))) -(-10 -7 (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371) (-1030))) (-15 -4155 ((-1006) (-745))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371) (-1030))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745) (-1030))) (-15 -4155 ((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1124))) (-15 -4155 ((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1142)))) -((-2203 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|)) 184)) (-2201 (((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|)) 98)) (-2202 (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|) 180)) (-2204 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1142))) 189)) (-2205 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1142)) 197 (|has| |#3| (-634 |#2|))))) -(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -2201 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|))) (-15 -2202 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|)) (-15 -2203 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|))) (-15 -2204 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1142)))) (IF (|has| |#3| (-634 |#2|)) (-15 -2205 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1142))) |%noBranch|)) (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))) (-13 (-414 |#1|) (-27) (-1164)) (-1067)) (T -551)) -((-2205 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-1142)) (-4 *4 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-551 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))) (-2204 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1142))) (-4 *2 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *1 (-551 *5 *2 *6)) (-4 *6 (-1067)))) (-2203 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *6 *3 *7)) (-4 *7 (-1067)))) (-2202 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067)))) (-2201 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067))))) -(-10 -7 (-15 -2201 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|))) (-15 -2202 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|)) (-15 -2203 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|))) (-15 -2204 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1142)))) (IF (|has| |#3| (-634 |#2|)) (-15 -2205 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1142))) |%noBranch|)) -((-2206 (((-2 (|:| -2410 |#2|) (|:| |nconst| |#2|)) |#2| (-1142)) 64)) (-2208 (((-3 |#2| "failed") |#2| (-1142) (-815 |#2|) (-815 |#2|)) 164 (-12 (|has| |#2| (-1105)) (|has| |#1| (-594 (-861 (-535)))) (|has| |#1| (-857 (-535))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)) 147 (-12 (|has| |#2| (-608)) (|has| |#1| (-594 (-861 (-535)))) (|has| |#1| (-857 (-535)))))) (-2207 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)) 148 (-12 (|has| |#2| (-608)) (|has| |#1| (-594 (-861 (-535)))) (|has| |#1| (-857 (-535))))))) -(((-552 |#1| |#2|) (-10 -7 (-15 -2206 ((-2 (|:| -2410 |#2|) (|:| |nconst| |#2|)) |#2| (-1142))) (IF (|has| |#1| (-594 (-861 (-535)))) (IF (|has| |#1| (-857 (-535))) (PROGN (IF (|has| |#2| (-608)) (PROGN (-15 -2207 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) (-15 -2208 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) (IF (|has| |#2| (-1105)) (-15 -2208 ((-3 |#2| "failed") |#2| (-1142) (-815 |#2|) (-815 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-823) (-1009 (-535)) (-444) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -552)) -((-2208 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1142)) (-5 *4 (-815 *2)) (-4 *2 (-1105)) (-4 *2 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-594 (-861 (-535)))) (-4 *5 (-857 (-535))) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) (-5 *1 (-552 *5 *2)))) (-2208 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-861 (-535)))) (-4 *5 (-857 (-535))) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-608)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2207 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-861 (-535)))) (-4 *5 (-857 (-535))) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-608)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2206 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) (-5 *2 (-2 (|:| -2410 *3) (|:| |nconst| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))) -(-10 -7 (-15 -2206 ((-2 (|:| -2410 |#2|) (|:| |nconst| |#2|)) |#2| (-1142))) (IF (|has| |#1| (-594 (-861 (-535)))) (IF (|has| |#1| (-857 (-535))) (PROGN (IF (|has| |#2| (-608)) (PROGN (-15 -2207 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) (-15 -2208 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) (IF (|has| |#2| (-1105)) (-15 -2208 ((-3 |#2| "failed") |#2| (-1142) (-815 |#2|) (-815 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2211 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-618 (-400 |#2|))) 41)) (-4155 (((-565 (-400 |#2|)) (-400 |#2|)) 28)) (-2209 (((-3 (-400 |#2|) "failed") (-400 |#2|)) 17)) (-2210 (((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|)) 48))) -(((-553 |#1| |#2|) (-10 -7 (-15 -4155 ((-565 (-400 |#2|)) (-400 |#2|))) (-15 -2209 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2210 ((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2211 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-618 (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-535))) (-1200 |#1|)) (T -553)) -((-2211 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-618 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-553 *5 *6)))) (-2210 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -2242 (-400 *5)) (|:| |coeff| (-400 *5)))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))) (-2209 (*1 *2 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145) (-1009 (-535)))) (-5 *1 (-553 *3 *4)))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) (-5 *2 (-565 (-400 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5))))) -(-10 -7 (-15 -4155 ((-565 (-400 |#2|)) (-400 |#2|))) (-15 -2209 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2210 ((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2211 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-618 (-400 |#2|))))) -((-2212 (((-3 (-535) "failed") |#1|) 14)) (-3593 (((-112) |#1|) 13)) (-3589 (((-535) |#1|) 9))) -(((-554 |#1|) (-10 -7 (-15 -3589 ((-535) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -2212 ((-3 (-535) "failed") |#1|))) (-1009 (-535))) (T -554)) -((-2212 (*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))) (-3593 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-554 *3)) (-4 *3 (-1009 (-535))))) (-3589 (*1 *2 *3) (-12 (-5 *2 (-535)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2))))) -(-10 -7 (-15 -3589 ((-535) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -2212 ((-3 (-535) "failed") |#1|))) -((-2215 (((-3 (-2 (|:| |mainpart| (-400 (-917 |#1|))) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 (-917 |#1|))) (|:| |logand| (-400 (-917 |#1|))))))) "failed") (-400 (-917 |#1|)) (-1142) (-618 (-400 (-917 |#1|)))) 48)) (-2213 (((-565 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-1142)) 28)) (-2214 (((-3 (-400 (-917 |#1|)) "failed") (-400 (-917 |#1|)) (-1142)) 23)) (-2216 (((-3 (-2 (|:| -2242 (-400 (-917 |#1|))) (|:| |coeff| (-400 (-917 |#1|)))) "failed") (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|))) 35))) -(((-555 |#1|) (-10 -7 (-15 -2213 ((-565 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -2214 ((-3 (-400 (-917 |#1|)) "failed") (-400 (-917 |#1|)) (-1142))) (-15 -2215 ((-3 (-2 (|:| |mainpart| (-400 (-917 |#1|))) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 (-917 |#1|))) (|:| |logand| (-400 (-917 |#1|))))))) "failed") (-400 (-917 |#1|)) (-1142) (-618 (-400 (-917 |#1|))))) (-15 -2216 ((-3 (-2 (|:| -2242 (-400 (-917 |#1|))) (|:| |coeff| (-400 (-917 |#1|)))) "failed") (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|))))) (-13 (-542) (-1009 (-535)) (-145))) (T -555)) -((-2216 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-1009 (-535)) (-145))) (-5 *2 (-2 (|:| -2242 (-400 (-917 *5))) (|:| |coeff| (-400 (-917 *5))))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-917 *5))))) (-2215 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 (-400 (-917 *6)))) (-5 *3 (-400 (-917 *6))) (-4 *6 (-13 (-542) (-1009 (-535)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6)))) (-2214 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-400 (-917 *4))) (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-1009 (-535)) (-145))) (-5 *1 (-555 *4)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-1009 (-535)) (-145))) (-5 *2 (-565 (-400 (-917 *5)))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-917 *5)))))) -(-10 -7 (-15 -2213 ((-565 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -2214 ((-3 (-400 (-917 |#1|)) "failed") (-400 (-917 |#1|)) (-1142))) (-15 -2215 ((-3 (-2 (|:| |mainpart| (-400 (-917 |#1|))) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 (-917 |#1|))) (|:| |logand| (-400 (-917 |#1|))))))) "failed") (-400 (-917 |#1|)) (-1142) (-618 (-400 (-917 |#1|))))) (-15 -2216 ((-3 (-2 (|:| -2242 (-400 (-917 |#1|))) (|:| |coeff| (-400 (-917 |#1|)))) "failed") (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|))))) -((-2887 (((-112) $ $) 58)) (-3522 (((-112) $) 36)) (-2923 ((|#1| $) 30)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) 62)) (-3829 (($ $) 122)) (-3985 (($ $) 102)) (-2724 ((|#1| $) 28)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL)) (-3827 (($ $) 124)) (-3984 (($ $) 98)) (-3831 (($ $) 126)) (-3983 (($ $) 106)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) "failed") $) 77)) (-3490 (((-535) $) 79)) (-3804 (((-3 $ "failed") $) 61)) (-2167 (($ |#1| |#1|) 26)) (-3520 (((-112) $) 33)) (-3973 (($) 88)) (-2493 (((-112) $) 43)) (-3332 (($ $ (-535)) NIL)) (-3521 (((-112) $) 34)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4285 (($ $) 90)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2168 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-400 (-535))) 76)) (-2166 ((|#1| $) 27)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) 64) (($ (-618 $)) NIL)) (-3803 (((-3 $ "failed") $ $) 63)) (-4286 (($ $) 92)) (-3832 (($ $) 130)) (-3982 (($ $) 104)) (-3830 (($ $) 132)) (-3981 (($ $) 108)) (-3828 (($ $) 128)) (-3980 (($ $) 100)) (-2165 (((-112) $ |#1|) 31)) (-4300 (((-835) $) 84) (($ (-535)) 66) (($ $) NIL) (($ (-535)) 66)) (-3444 (((-747)) 86)) (-3835 (($ $) 144)) (-3823 (($ $) 114)) (-2170 (((-112) $ $) NIL)) (-3833 (($ $) 142)) (-3821 (($ $) 110)) (-3837 (($ $) 140)) (-3825 (($ $) 120)) (-3838 (($ $) 138)) (-3826 (($ $) 118)) (-3836 (($ $) 136)) (-3824 (($ $) 116)) (-3834 (($ $) 134)) (-3822 (($ $) 112)) (-2979 (($) 21 T CONST)) (-2985 (($) 10 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 37)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 35)) (-4180 (($ $) 41) (($ $ $) 42)) (-4182 (($ $ $) 40)) (** (($ $ (-890)) 54) (($ $ (-747)) NIL) (($ $ $) 94) (($ $ (-400 (-535))) 146)) (* (($ (-890) $) 51) (($ (-747) $) NIL) (($ (-535) $) 50) (($ $ $) 48))) -(((-556 |#1|) (-540 |#1|) (-13 (-397) (-1164))) (T -556)) +((-1495 (*1 *1 *1 *1) (|partial| -4 *1 (-542))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3090 *1) (|:| -4329 *1) (|:| |associate| *1))) (-4 *1 (-542)))) (-1447 (*1 *1 *1) (-4 *1 (-542))) (-1345 (*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112)))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) +(-13 (-170) (-38 $) (-283) (-10 -8 (-15 -1495 ((-3 $ "failed") $ $)) (-15 -3368 ((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $)) (-15 -1447 ($ $)) (-15 -1345 ((-112) $ $)) (-15 -4291 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3565 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1144) (-623 |#2|)) 37)) (-3763 (((-569 |#2|) |#2| (-1144)) 62)) (-3661 (((-3 |#2| "failed") |#2| (-1144)) 152)) (-3860 (((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1144) (-594 |#2|) (-623 (-594 |#2|))) 155)) (-3467 (((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1144) |#2|) 40))) +(((-543 |#1| |#2|) (-10 -7 (-15 -3467 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1144) |#2|)) (-15 -3565 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1144) (-623 |#2|))) (-15 -3661 ((-3 |#2| "failed") |#2| (-1144))) (-15 -3763 ((-569 |#2|) |#2| (-1144))) (-15 -3860 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1144) (-594 |#2|) (-623 (-594 |#2|))))) (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|))) (T -543)) +((-3860 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1144)) (-5 *6 (-623 (-594 *3))) (-5 *5 (-594 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *7))) (-4 *7 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) (-5 *1 (-543 *7 *3)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-3661 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1144)) (-4 *4 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-543 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))))) (-3565 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-623 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *6 *3)))) (-3467 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1144)) (-4 *5 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5)))))) +(-10 -7 (-15 -3467 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1144) |#2|)) (-15 -3565 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1144) (-623 |#2|))) (-15 -3661 ((-3 |#2| "failed") |#2| (-1144))) (-15 -3763 ((-569 |#2|) |#2| (-1144))) (-15 -3860 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1144) (-594 |#2|) (-623 (-594 |#2|))))) +((-3564 (((-411 |#1|) |#1|) 18)) (-3338 (((-411 |#1|) |#1|) 33)) (-2875 (((-3 |#1| "failed") |#1|) 44)) (-2774 (((-411 |#1|) |#1|) 51))) +(((-544 |#1|) (-10 -7 (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -2774 ((-411 |#1|) |#1|)) (-15 -2875 ((-3 |#1| "failed") |#1|))) (-535)) (T -544)) +((-2875 (*1 *2 *2) (|partial| -12 (-5 *1 (-544 *2)) (-4 *2 (-535)))) (-2774 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535)))) (-3564 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535)))) (-3338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535))))) +(-10 -7 (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -2774 ((-411 |#1|) |#1|)) (-15 -2875 ((-3 |#1| "failed") |#1|))) +((-2965 (($) 9)) (-2212 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 35)) (-3531 (((-623 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 32)) (-1886 (($ (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3143 (($ (-623 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2119 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-2477 (((-623 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3048 (((-1232)) 12))) +(((-545) (-10 -8 (-15 -2965 ($)) (-15 -3048 ((-1232))) (-15 -3531 ((-623 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -3143 ($ (-623 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1886 ($ (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2212 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2477 ((-623 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2119 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -545)) +((-2119 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-545)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-545)))) (-2212 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-545)))) (-1886 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-545)))) (-3143 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-545)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-545)))) (-3048 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-545)))) (-2965 (*1 *1) (-5 *1 (-545)))) +(-10 -8 (-15 -2965 ($)) (-15 -3048 ((-1232))) (-15 -3531 ((-623 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -3143 ($ (-623 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1886 ($ (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2212 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2477 ((-623 (-2 (|:| -2763 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2119 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) +((-3306 (((-1140 (-400 (-1140 |#2|))) |#2| (-594 |#2|) (-594 |#2|) (-1140 |#2|)) 32)) (-2306 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) |#2| (-1140 |#2|)) 110)) (-3242 (((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|))) 80) (((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) |#2| (-1140 |#2|)) 52)) (-2228 (((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| (-594 |#2|) |#2| (-400 (-1140 |#2|))) 87) (((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| |#2| (-1140 |#2|)) 109)) (-2389 (((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144)) (-594 |#2|) |#2| (-400 (-1140 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144)) |#2| (-1140 |#2|)) 111)) (-2476 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|))) 128 (|has| |#3| (-634 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) |#2| (-1140 |#2|)) 127 (|has| |#3| (-634 |#2|)))) (-3129 ((|#2| (-1140 (-400 (-1140 |#2|))) (-594 |#2|) |#2|) 50)) (-2407 (((-1140 (-400 (-1140 |#2|))) (-1140 |#2|) (-594 |#2|)) 31))) +(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -3242 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) |#2| (-1140 |#2|))) (-15 -3242 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|)))) (-15 -2228 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| |#2| (-1140 |#2|))) (-15 -2228 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| (-594 |#2|) |#2| (-400 (-1140 |#2|)))) (-15 -2306 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) |#2| (-1140 |#2|))) (-15 -2306 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|)))) (-15 -2389 ((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144)) |#2| (-1140 |#2|))) (-15 -2389 ((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144)) (-594 |#2|) |#2| (-400 (-1140 |#2|)))) (-15 -3306 ((-1140 (-400 (-1140 |#2|))) |#2| (-594 |#2|) (-594 |#2|) (-1140 |#2|))) (-15 -3129 (|#2| (-1140 (-400 (-1140 |#2|))) (-594 |#2|) |#2|)) (-15 -2407 ((-1140 (-400 (-1140 |#2|))) (-1140 |#2|) (-594 |#2|))) (IF (|has| |#3| (-634 |#2|)) (PROGN (-15 -2476 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) |#2| (-1140 |#2|))) (-15 -2476 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|))))) |%noBranch|)) (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550))) (-13 (-423 |#1|) (-27) (-1166)) (-1068)) (T -546)) +((-2476 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-594 *4)) (-5 *6 (-400 (-1140 *4))) (-4 *4 (-13 (-423 *7) (-27) (-1166))) (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1068)))) (-2476 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-594 *4)) (-5 *6 (-1140 *4)) (-4 *4 (-13 (-423 *7) (-27) (-1166))) (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1068)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *6)) (-4 *6 (-13 (-423 *5) (-27) (-1166))) (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-1140 (-400 (-1140 *6)))) (-5 *1 (-546 *5 *6 *7)) (-5 *3 (-1140 *6)) (-4 *7 (-1068)))) (-3129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1140 (-400 (-1140 *2)))) (-5 *4 (-594 *2)) (-4 *2 (-13 (-423 *5) (-27) (-1166))) (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *1 (-546 *5 *2 *6)) (-4 *6 (-1068)))) (-3306 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1166))) (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-1140 (-400 (-1140 *3)))) (-5 *1 (-546 *6 *3 *7)) (-5 *5 (-1140 *3)) (-4 *7 (-1068)))) (-2389 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-594 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1144))) (-5 *5 (-400 (-1140 *2))) (-4 *2 (-13 (-423 *6) (-27) (-1166))) (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1068)))) (-2389 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-594 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1144))) (-5 *5 (-1140 *2)) (-4 *2 (-13 (-423 *6) (-27) (-1166))) (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1068)))) (-2306 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) (-5 *6 (-400 (-1140 *3))) (-4 *3 (-13 (-423 *7) (-27) (-1166))) (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1068)))) (-2306 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) (-5 *6 (-1140 *3)) (-4 *3 (-13 (-423 *7) (-27) (-1166))) (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1068)))) (-2228 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-400 (-1140 *3))) (-4 *3 (-13 (-423 *6) (-27) (-1166))) (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1068)))) (-2228 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-1140 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1166))) (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1068)))) (-3242 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-594 *3)) (-5 *5 (-400 (-1140 *3))) (-4 *3 (-13 (-423 *6) (-27) (-1166))) (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1068)))) (-3242 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-594 *3)) (-5 *5 (-1140 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1166))) (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1068))))) +(-10 -7 (-15 -3242 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) |#2| (-1140 |#2|))) (-15 -3242 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|)))) (-15 -2228 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| |#2| (-1140 |#2|))) (-15 -2228 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2| (-594 |#2|) |#2| (-400 (-1140 |#2|)))) (-15 -2306 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) |#2| (-1140 |#2|))) (-15 -2306 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|)))) (-15 -2389 ((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144)) |#2| (-1140 |#2|))) (-15 -2389 ((-3 |#2| "failed") |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144)) (-594 |#2|) |#2| (-400 (-1140 |#2|)))) (-15 -3306 ((-1140 (-400 (-1140 |#2|))) |#2| (-594 |#2|) (-594 |#2|) (-1140 |#2|))) (-15 -3129 (|#2| (-1140 (-400 (-1140 |#2|))) (-594 |#2|) |#2|)) (-15 -2407 ((-1140 (-400 (-1140 |#2|))) (-1140 |#2|) (-594 |#2|))) (IF (|has| |#3| (-634 |#2|)) (PROGN (-15 -2476 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) |#2| (-1140 |#2|))) (-15 -2476 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-594 |#2|) |#2| (-400 (-1140 |#2|))))) |%noBranch|)) +((-4013 (((-550) (-550) (-749)) 66)) (-2171 (((-550) (-550)) 65)) (-2089 (((-550) (-550)) 64)) (-1997 (((-550) (-550)) 69)) (-3768 (((-550) (-550) (-550)) 49)) (-1892 (((-550) (-550) (-550)) 46)) (-1797 (((-400 (-550)) (-550)) 20)) (-1677 (((-550) (-550)) 21)) (-1572 (((-550) (-550)) 58)) (-3474 (((-550) (-550)) 32)) (-2641 (((-623 (-550)) (-550)) 63)) (-2559 (((-550) (-550) (-550) (-550) (-550)) 44)) (-3303 (((-400 (-550)) (-550)) 41))) +(((-547) (-10 -7 (-15 -3303 ((-400 (-550)) (-550))) (-15 -2559 ((-550) (-550) (-550) (-550) (-550))) (-15 -2641 ((-623 (-550)) (-550))) (-15 -3474 ((-550) (-550))) (-15 -1572 ((-550) (-550))) (-15 -1677 ((-550) (-550))) (-15 -1797 ((-400 (-550)) (-550))) (-15 -1892 ((-550) (-550) (-550))) (-15 -3768 ((-550) (-550) (-550))) (-15 -1997 ((-550) (-550))) (-15 -2089 ((-550) (-550))) (-15 -2171 ((-550) (-550))) (-15 -4013 ((-550) (-550) (-749))))) (T -547)) +((-4013 (*1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-749)) (-5 *1 (-547)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-3768 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-1892 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-1797 (*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-547)) (-5 *3 (-550)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-2641 (*1 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-547)) (-5 *3 (-550)))) (-2559 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) (-3303 (*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-547)) (-5 *3 (-550))))) +(-10 -7 (-15 -3303 ((-400 (-550)) (-550))) (-15 -2559 ((-550) (-550) (-550) (-550) (-550))) (-15 -2641 ((-623 (-550)) (-550))) (-15 -3474 ((-550) (-550))) (-15 -1572 ((-550) (-550))) (-15 -1677 ((-550) (-550))) (-15 -1797 ((-400 (-550)) (-550))) (-15 -1892 ((-550) (-550) (-550))) (-15 -3768 ((-550) (-550) (-550))) (-15 -1997 ((-550) (-550))) (-15 -2089 ((-550) (-550))) (-15 -2171 ((-550) (-550))) (-15 -4013 ((-550) (-550) (-749)))) +((-4119 (((-2 (|:| |answer| |#4|) (|:| -1557 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-548 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4119 ((-2 (|:| |answer| |#4|) (|:| -1557 |#4|)) |#4| (-1 |#2| |#2|)))) (-356) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -548)) +((-4119 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) (-4 *7 (-1203 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1557 *3))) (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7))))) +(-10 -7 (-15 -4119 ((-2 (|:| |answer| |#4|) (|:| -1557 |#4|)) |#4| (-1 |#2| |#2|)))) +((-4119 (((-2 (|:| |answer| (-400 |#2|)) (|:| -1557 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 18))) +(((-549 |#1| |#2|) (-10 -7 (-15 -4119 ((-2 (|:| |answer| (-400 |#2|)) (|:| -1557 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1203 |#1|)) (T -549)) +((-4119 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| (-400 *6)) (|:| -1557 (-400 *6)) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-549 *5 *6)) (-5 *3 (-400 *6))))) +(-10 -7 (-15 -4119 ((-2 (|:| |answer| (-400 |#2|)) (|:| -1557 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 25)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 88)) (-1447 (($ $) 89)) (-4291 (((-112) $) NIL)) (-2347 (($ $ $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-2181 (($ $ $ $) 43)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL)) (-3827 (($ $ $) 82)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL)) (-2726 (((-550) $) NIL)) (-3349 (($ $ $) 81)) (-3780 (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 62) (((-667 (-550)) (-667 $)) 58)) (-1386 (((-3 $ "failed") $) 85)) (-3207 (((-3 (-400 (-550)) "failed") $) NIL)) (-3122 (((-112) $) NIL)) (-3042 (((-400 (-550)) $) NIL)) (-1741 (($) 64) (($ $) 65)) (-1519 (($ $ $) 80)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-3064 (($ $ $ $) NIL)) (-2434 (($ $ $) 55)) (-1416 (((-112) $) NIL)) (-3388 (($ $ $) NIL)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL)) (-3102 (((-112) $) 26)) (-3718 (((-112) $) 75)) (-2826 (((-3 $ "failed") $) NIL)) (-3329 (((-112) $) 35)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3178 (($ $ $ $) 44)) (-2707 (($ $ $) 77)) (-4164 (($ $ $) 76)) (-3833 (($ $) NIL)) (-3772 (($ $) 41)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) 54)) (-2996 (($ $ $) NIL)) (-3862 (($) NIL T CONST)) (-3463 (($ $) 31)) (-3337 (((-1088) $) 34)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 119)) (-3139 (($ $ $) 86) (($ (-623 $)) NIL)) (-1289 (($ $) NIL)) (-3338 (((-411 $) $) 105)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL)) (-1495 (((-3 $ "failed") $ $) 84)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3777 (((-112) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 79)) (-2393 (($ $ (-749)) NIL) (($ $) NIL)) (-2092 (($ $) 32)) (-1731 (($ $) 30)) (-4028 (((-550) $) 40) (((-526) $) 52) (((-865 (-550)) $) NIL) (((-372) $) 47) (((-219) $) 49) (((-1126) $) 53)) (-1518 (((-836) $) 38) (($ (-550)) 39) (($ $) NIL) (($ (-550)) 39)) (-2390 (((-749)) NIL)) (-2520 (((-112) $ $) NIL)) (-4224 (($ $ $) NIL)) (-1860 (($) 29)) (-1345 (((-112) $ $) NIL)) (-2260 (($ $ $ $) 42)) (-1635 (($ $) 63)) (-2626 (($) 27 T CONST)) (-2636 (($) 28 T CONST)) (-3040 (((-1126) $) 20) (((-1126) $ (-112)) 22) (((-1232) (-800) $) 23) (((-1232) (-800) $ (-112)) 24)) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 66)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 67)) (-2403 (($ $) 68) (($ $ $) 70)) (-2391 (($ $ $) 69)) (** (($ $ (-894)) NIL) (($ $ (-749)) 74)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 72) (($ $ $) 71))) +(((-550) (-13 (-535) (-596 (-1126)) (-806) (-10 -8 (-15 -1741 ($ $)) (-6 -4329) (-6 -4334) (-6 -4330) (-6 -4324)))) (T -550)) +((-1741 (*1 *1 *1) (-5 *1 (-550)))) +(-13 (-535) (-596 (-1126)) (-806) (-10 -8 (-15 -1741 ($ $)) (-6 -4329) (-6 -4334) (-6 -4330) (-6 -4324))) +((-3459 (((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008))) (-747) (-1032)) 108) (((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008))) (-747)) 110)) (-1489 (((-3 (-1008) "failed") (-309 (-372)) (-1060 (-818 (-372))) (-1144)) 172) (((-3 (-1008) "failed") (-309 (-372)) (-1060 (-818 (-372))) (-1126)) 171) (((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372) (-372) (-1032)) 176) (((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372) (-372)) 177) (((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372)) 178) (((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372))))) 179) (((-1008) (-309 (-372)) (-1062 (-818 (-372)))) 167) (((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372)) 166) (((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372) (-372)) 162) (((-1008) (-747)) 155) (((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372) (-372) (-1032)) 161))) +(((-551) (-10 -7 (-15 -1489 ((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372) (-372) (-1032))) (-15 -1489 ((-1008) (-747))) (-15 -1489 ((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372) (-372))) (-15 -1489 ((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372))) (-15 -1489 ((-1008) (-309 (-372)) (-1062 (-818 (-372))))) (-15 -1489 ((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))))) (-15 -1489 ((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372))) (-15 -1489 ((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372) (-372))) (-15 -1489 ((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372) (-372) (-1032))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008))) (-747))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008))) (-747) (-1032))) (-15 -1489 ((-3 (-1008) "failed") (-309 (-372)) (-1060 (-818 (-372))) (-1126))) (-15 -1489 ((-3 (-1008) "failed") (-309 (-372)) (-1060 (-818 (-372))) (-1144))))) (T -551)) +((-1489 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-818 (-372)))) (-5 *5 (-1144)) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-818 (-372)))) (-5 *5 (-1126)) (-5 *2 (-1008)) (-5 *1 (-551)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1032)) (-5 *2 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008)))) (-5 *1 (-551)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008)))) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1062 (-818 (-372))))) (-5 *5 (-372)) (-5 *6 (-1032)) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1062 (-818 (-372))))) (-5 *5 (-372)) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1062 (-818 (-372))))) (-5 *5 (-372)) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1062 (-818 (-372))))) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1062 (-818 (-372)))) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1062 (-818 (-372)))) (-5 *5 (-372)) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1062 (-818 (-372)))) (-5 *5 (-372)) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1008)) (-5 *1 (-551)))) (-1489 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1062 (-818 (-372)))) (-5 *5 (-372)) (-5 *6 (-1032)) (-5 *2 (-1008)) (-5 *1 (-551))))) +(-10 -7 (-15 -1489 ((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372) (-372) (-1032))) (-15 -1489 ((-1008) (-747))) (-15 -1489 ((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372) (-372))) (-15 -1489 ((-1008) (-309 (-372)) (-1062 (-818 (-372))) (-372))) (-15 -1489 ((-1008) (-309 (-372)) (-1062 (-818 (-372))))) (-15 -1489 ((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))))) (-15 -1489 ((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372))) (-15 -1489 ((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372) (-372))) (-15 -1489 ((-1008) (-309 (-372)) (-623 (-1062 (-818 (-372)))) (-372) (-372) (-1032))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008))) (-747))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008))) (-747) (-1032))) (-15 -1489 ((-3 (-1008) "failed") (-309 (-372)) (-1060 (-818 (-372))) (-1126))) (-15 -1489 ((-3 (-1008) "failed") (-309 (-372)) (-1060 (-818 (-372))) (-1144)))) +((-4162 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|)) 184)) (-4238 (((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|)) 98)) (-4069 (((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2|) 180)) (-4276 (((-3 |#2| "failed") |#2| |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144))) 189)) (-1302 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-1144)) 197 (|has| |#3| (-634 |#2|))))) +(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -4238 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|))) (-15 -4069 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2|)) (-15 -4162 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|))) (-15 -4276 ((-3 |#2| "failed") |#2| |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144)))) (IF (|has| |#3| (-634 |#2|)) (-15 -1302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-1144))) |%noBranch|)) (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550))) (-13 (-423 |#1|) (-27) (-1166)) (-1068)) (T -552)) +((-1302 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-594 *4)) (-5 *6 (-1144)) (-4 *4 (-13 (-423 *7) (-27) (-1166))) (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) (-5 *1 (-552 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1068)))) (-4276 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-594 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1144))) (-4 *2 (-13 (-423 *5) (-27) (-1166))) (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *1 (-552 *5 *2 *6)) (-4 *6 (-1068)))) (-4162 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1166))) (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-552 *6 *3 *7)) (-4 *7 (-1068)))) (-4069 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1166))) (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1068)))) (-4238 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1166))) (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) (-5 *2 (-569 *3)) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1068))))) +(-10 -7 (-15 -4238 ((-569 |#2|) |#2| (-594 |#2|) (-594 |#2|))) (-15 -4069 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-594 |#2|) (-594 |#2|) |#2|)) (-15 -4162 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|) (-594 |#2|) (-623 |#2|))) (-15 -4276 ((-3 |#2| "failed") |#2| |#2| |#2| (-594 |#2|) (-594 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1144)))) (IF (|has| |#3| (-634 |#2|)) (-15 -1302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2437 (-623 |#2|))) |#3| |#2| (-594 |#2|) (-594 |#2|) (-1144))) |%noBranch|)) +((-1399 (((-2 (|:| -1441 |#2|) (|:| |nconst| |#2|)) |#2| (-1144)) 64)) (-1471 (((-3 |#2| "failed") |#2| (-1144) (-818 |#2|) (-818 |#2|)) 164 (-12 (|has| |#2| (-1107)) (|has| |#1| (-596 (-865 (-550)))) (|has| |#1| (-859 (-550))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144)) 147 (-12 (|has| |#2| (-609)) (|has| |#1| (-596 (-865 (-550)))) (|has| |#1| (-859 (-550)))))) (-1493 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144)) 148 (-12 (|has| |#2| (-609)) (|has| |#1| (-596 (-865 (-550)))) (|has| |#1| (-859 (-550))))))) +(((-553 |#1| |#2|) (-10 -7 (-15 -1399 ((-2 (|:| -1441 |#2|) (|:| |nconst| |#2|)) |#2| (-1144))) (IF (|has| |#1| (-596 (-865 (-550)))) (IF (|has| |#1| (-859 (-550))) (PROGN (IF (|has| |#2| (-609)) (PROGN (-15 -1493 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144))) (-15 -1471 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144)))) |%noBranch|) (IF (|has| |#2| (-1107)) (-15 -1471 ((-3 |#2| "failed") |#2| (-1144) (-818 |#2|) (-818 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-825) (-1011 (-550)) (-444) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|))) (T -553)) +((-1471 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1144)) (-5 *4 (-818 *2)) (-4 *2 (-1107)) (-4 *2 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-596 (-865 (-550)))) (-4 *5 (-859 (-550))) (-4 *5 (-13 (-825) (-1011 (-550)) (-444) (-619 (-550)))) (-5 *1 (-553 *5 *2)))) (-1471 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1144)) (-4 *5 (-596 (-865 (-550)))) (-4 *5 (-859 (-550))) (-4 *5 (-13 (-825) (-1011 (-550)) (-444) (-619 (-550)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-609)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-1493 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1144)) (-4 *5 (-596 (-865 (-550)))) (-4 *5 (-859 (-550))) (-4 *5 (-13 (-825) (-1011 (-550)) (-444) (-619 (-550)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-609)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-1399 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-825) (-1011 (-550)) (-444) (-619 (-550)))) (-5 *2 (-2 (|:| -1441 *3) (|:| |nconst| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5)))))) +(-10 -7 (-15 -1399 ((-2 (|:| -1441 |#2|) (|:| |nconst| |#2|)) |#2| (-1144))) (IF (|has| |#1| (-596 (-865 (-550)))) (IF (|has| |#1| (-859 (-550))) (PROGN (IF (|has| |#2| (-609)) (PROGN (-15 -1493 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144))) (-15 -1471 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144)))) |%noBranch|) (IF (|has| |#2| (-1107)) (-15 -1471 ((-3 |#2| "failed") |#2| (-1144) (-818 |#2|) (-818 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1749 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-623 (-400 |#2|))) 41)) (-1489 (((-569 (-400 |#2|)) (-400 |#2|)) 28)) (-1548 (((-3 (-400 |#2|) "failed") (-400 |#2|)) 17)) (-1647 (((-3 (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|)) 48))) +(((-554 |#1| |#2|) (-10 -7 (-15 -1489 ((-569 (-400 |#2|)) (-400 |#2|))) (-15 -1548 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -1647 ((-3 (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -1749 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-623 (-400 |#2|))))) (-13 (-356) (-145) (-1011 (-550))) (-1203 |#1|)) (T -554)) +((-1749 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-623 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *5 *6)))) (-1647 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1011 (-550)))) (-4 *5 (-1203 *4)) (-5 *2 (-2 (|:| -1653 (-400 *5)) (|:| |coeff| (-400 *5)))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5)))) (-1548 (*1 *2 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-13 (-356) (-145) (-1011 (-550)))) (-5 *1 (-554 *3 *4)))) (-1489 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-550)))) (-4 *5 (-1203 *4)) (-5 *2 (-569 (-400 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5))))) +(-10 -7 (-15 -1489 ((-569 (-400 |#2|)) (-400 |#2|))) (-15 -1548 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -1647 ((-3 (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -1749 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-623 (-400 |#2|))))) +((-1852 (((-3 (-550) "failed") |#1|) 14)) (-1331 (((-112) |#1|) 13)) (-2815 (((-550) |#1|) 9))) +(((-555 |#1|) (-10 -7 (-15 -2815 ((-550) |#1|)) (-15 -1331 ((-112) |#1|)) (-15 -1852 ((-3 (-550) "failed") |#1|))) (-1011 (-550))) (T -555)) +((-1852 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-555 *3)) (-4 *3 (-1011 *2)))) (-1331 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-555 *3)) (-4 *3 (-1011 (-550))))) (-2815 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-555 *3)) (-4 *3 (-1011 *2))))) +(-10 -7 (-15 -2815 ((-550) |#1|)) (-15 -1331 ((-112) |#1|)) (-15 -1852 ((-3 (-550) "failed") |#1|))) +((-3889 (((-3 (-2 (|:| |mainpart| (-400 (-925 |#1|))) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 (-925 |#1|))) (|:| |logand| (-400 (-925 |#1|))))))) "failed") (-400 (-925 |#1|)) (-1144) (-623 (-400 (-925 |#1|)))) 48)) (-1954 (((-569 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-1144)) 28)) (-2054 (((-3 (-400 (-925 |#1|)) "failed") (-400 (-925 |#1|)) (-1144)) 23)) (-3981 (((-3 (-2 (|:| -1653 (-400 (-925 |#1|))) (|:| |coeff| (-400 (-925 |#1|)))) "failed") (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|))) 35))) +(((-556 |#1|) (-10 -7 (-15 -1954 ((-569 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-1144))) (-15 -2054 ((-3 (-400 (-925 |#1|)) "failed") (-400 (-925 |#1|)) (-1144))) (-15 -3889 ((-3 (-2 (|:| |mainpart| (-400 (-925 |#1|))) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 (-925 |#1|))) (|:| |logand| (-400 (-925 |#1|))))))) "failed") (-400 (-925 |#1|)) (-1144) (-623 (-400 (-925 |#1|))))) (-15 -3981 ((-3 (-2 (|:| -1653 (-400 (-925 |#1|))) (|:| |coeff| (-400 (-925 |#1|)))) "failed") (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|))))) (-13 (-542) (-1011 (-550)) (-145))) (T -556)) +((-3981 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1144)) (-4 *5 (-13 (-542) (-1011 (-550)) (-145))) (-5 *2 (-2 (|:| -1653 (-400 (-925 *5))) (|:| |coeff| (-400 (-925 *5))))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-925 *5))))) (-3889 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-623 (-400 (-925 *6)))) (-5 *3 (-400 (-925 *6))) (-4 *6 (-13 (-542) (-1011 (-550)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6)))) (-2054 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-400 (-925 *4))) (-5 *3 (-1144)) (-4 *4 (-13 (-542) (-1011 (-550)) (-145))) (-5 *1 (-556 *4)))) (-1954 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-542) (-1011 (-550)) (-145))) (-5 *2 (-569 (-400 (-925 *5)))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-925 *5)))))) +(-10 -7 (-15 -1954 ((-569 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-1144))) (-15 -2054 ((-3 (-400 (-925 |#1|)) "failed") (-400 (-925 |#1|)) (-1144))) (-15 -3889 ((-3 (-2 (|:| |mainpart| (-400 (-925 |#1|))) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 (-925 |#1|))) (|:| |logand| (-400 (-925 |#1|))))))) "failed") (-400 (-925 |#1|)) (-1144) (-623 (-400 (-925 |#1|))))) (-15 -3981 ((-3 (-2 (|:| -1653 (-400 (-925 |#1|))) (|:| |coeff| (-400 (-925 |#1|)))) "failed") (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|))))) +((-1504 (((-112) $ $) 58)) (-3433 (((-112) $) 36)) (-1776 ((|#1| $) 30)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) 62)) (-3123 (($ $) 122)) (-3005 (($ $) 102)) (-2270 ((|#1| $) 28)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3353 (($ $) NIL)) (-3103 (($ $) 124)) (-2984 (($ $) 98)) (-3146 (($ $) 126)) (-3025 (($ $) 106)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) 77)) (-2726 (((-550) $) 79)) (-1386 (((-3 $ "failed") $) 61)) (-4084 (($ |#1| |#1|) 26)) (-1416 (((-112) $) 33)) (-2734 (($) 88)) (-3102 (((-112) $) 43)) (-1460 (($ $ (-550)) NIL)) (-3329 (((-112) $) 34)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-2958 (($ $) 90)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-4181 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-400 (-550))) 76)) (-3983 ((|#1| $) 27)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) 64) (($ (-623 $)) NIL)) (-1495 (((-3 $ "failed") $ $) 63)) (-1812 (($ $) 92)) (-3157 (($ $) 130)) (-3033 (($ $) 104)) (-3135 (($ $) 132)) (-3016 (($ $) 108)) (-3114 (($ $) 128)) (-2995 (($ $) 100)) (-2140 (((-112) $ |#1|) 31)) (-1518 (((-836) $) 84) (($ (-550)) 66) (($ $) NIL) (($ (-550)) 66)) (-2390 (((-749)) 86)) (-3187 (($ $) 144)) (-3060 (($ $) 114)) (-1345 (((-112) $ $) NIL)) (-3167 (($ $) 142)) (-3043 (($ $) 110)) (-3209 (($ $) 140)) (-3081 (($ $) 120)) (-3294 (($ $) 138)) (-3094 (($ $) 118)) (-3198 (($ $) 136)) (-3072 (($ $) 116)) (-3176 (($ $) 134)) (-3052 (($ $) 112)) (-2626 (($) 21 T CONST)) (-2636 (($) 10 T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 37)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 35)) (-2403 (($ $) 41) (($ $ $) 42)) (-2391 (($ $ $) 40)) (** (($ $ (-894)) 54) (($ $ (-749)) NIL) (($ $ $) 94) (($ $ (-400 (-550))) 146)) (* (($ (-894) $) 51) (($ (-749) $) NIL) (($ (-550) $) 50) (($ $ $) 48))) +(((-557 |#1|) (-540 |#1|) (-13 (-397) (-1166))) (T -557)) NIL (-540 |#1|) -((-3025 (((-3 (-618 (-1136 (-535))) "failed") (-618 (-1136 (-535))) (-1136 (-535))) 24))) -(((-557) (-10 -7 (-15 -3025 ((-3 (-618 (-1136 (-535))) "failed") (-618 (-1136 (-535))) (-1136 (-535)))))) (T -557)) -((-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 (-535)))) (-5 *3 (-1136 (-535))) (-5 *1 (-557))))) -(-10 -7 (-15 -3025 ((-3 (-618 (-1136 (-535))) "failed") (-618 (-1136 (-535))) (-1136 (-535))))) -((-2217 (((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-1142)) 19)) (-2220 (((-618 (-591 |#2|)) (-618 |#2|) (-1142)) 23)) (-3568 (((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-618 (-591 |#2|))) 11)) (-2221 ((|#2| |#2| (-1142)) 54 (|has| |#1| (-542)))) (-2222 ((|#2| |#2| (-1142)) 78 (-12 (|has| |#2| (-277)) (|has| |#1| (-444))))) (-2219 (((-591 |#2|) (-591 |#2|) (-618 (-591 |#2|)) (-1142)) 25)) (-2218 (((-591 |#2|) (-618 (-591 |#2|))) 24)) (-2223 (((-565 |#2|) |#2| (-1142) (-1 (-565 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) 103 (-12 (|has| |#2| (-277)) (|has| |#2| (-608)) (|has| |#2| (-1009 (-1142))) (|has| |#1| (-594 (-861 (-535)))) (|has| |#1| (-444)) (|has| |#1| (-857 (-535))))))) -(((-558 |#1| |#2|) (-10 -7 (-15 -2217 ((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-1142))) (-15 -2218 ((-591 |#2|) (-618 (-591 |#2|)))) (-15 -2219 ((-591 |#2|) (-591 |#2|) (-618 (-591 |#2|)) (-1142))) (-15 -3568 ((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-618 (-591 |#2|)))) (-15 -2220 ((-618 (-591 |#2|)) (-618 |#2|) (-1142))) (IF (|has| |#1| (-542)) (-15 -2221 (|#2| |#2| (-1142))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2222 (|#2| |#2| (-1142))) (IF (|has| |#1| (-594 (-861 (-535)))) (IF (|has| |#1| (-857 (-535))) (IF (|has| |#2| (-608)) (IF (|has| |#2| (-1009 (-1142))) (-15 -2223 ((-565 |#2|) |#2| (-1142) (-1 (-565 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-823) (-414 |#1|)) (T -558)) -((-2223 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-565 *3) *3 (-1142))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1142))) (-4 *3 (-277)) (-4 *3 (-608)) (-4 *3 (-1009 *4)) (-4 *3 (-414 *7)) (-5 *4 (-1142)) (-4 *7 (-594 (-861 (-535)))) (-4 *7 (-444)) (-4 *7 (-857 (-535))) (-4 *7 (-823)) (-5 *2 (-565 *3)) (-5 *1 (-558 *7 *3)))) (-2222 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-444)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) (-4 *2 (-277)) (-4 *2 (-414 *4)))) (-2221 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-542)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) (-4 *2 (-414 *4)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-1142)) (-4 *6 (-414 *5)) (-4 *5 (-823)) (-5 *2 (-618 (-591 *6))) (-5 *1 (-558 *5 *6)))) (-3568 (*1 *2 *2 *2) (-12 (-5 *2 (-618 (-591 *4))) (-4 *4 (-414 *3)) (-4 *3 (-823)) (-5 *1 (-558 *3 *4)))) (-2219 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-618 (-591 *6))) (-5 *4 (-1142)) (-5 *2 (-591 *6)) (-4 *6 (-414 *5)) (-4 *5 (-823)) (-5 *1 (-558 *5 *6)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-618 (-591 *5))) (-4 *4 (-823)) (-5 *2 (-591 *5)) (-5 *1 (-558 *4 *5)) (-4 *5 (-414 *4)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-591 *5))) (-5 *3 (-1142)) (-4 *5 (-414 *4)) (-4 *4 (-823)) (-5 *1 (-558 *4 *5))))) -(-10 -7 (-15 -2217 ((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-1142))) (-15 -2218 ((-591 |#2|) (-618 (-591 |#2|)))) (-15 -2219 ((-591 |#2|) (-591 |#2|) (-618 (-591 |#2|)) (-1142))) (-15 -3568 ((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-618 (-591 |#2|)))) (-15 -2220 ((-618 (-591 |#2|)) (-618 |#2|) (-1142))) (IF (|has| |#1| (-542)) (-15 -2221 (|#2| |#2| (-1142))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2222 (|#2| |#2| (-1142))) (IF (|has| |#1| (-594 (-861 (-535)))) (IF (|has| |#1| (-857 (-535))) (IF (|has| |#2| (-608)) (IF (|has| |#2| (-1009 (-1142))) (-15 -2223 ((-565 |#2|) |#2| (-1142) (-1 (-565 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2226 (((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-618 |#1|) "failed") (-535) |#1| |#1|)) 172)) (-2229 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-618 (-400 |#2|))) 148)) (-2232 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-618 (-400 |#2|))) 145)) (-2233 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2224 (((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2231 (((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|)) 175)) (-2227 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|)) 178)) (-2235 (((-2 (|:| |ir| (-565 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 84)) (-2236 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2230 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-618 (-400 |#2|))) 152)) (-2234 (((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|)) 137)) (-2225 (((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|)) 162)) (-2228 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-400 |#2|)) 183))) -(((-559 |#1| |#2|) (-10 -7 (-15 -2224 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2225 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|))) (-15 -2226 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-618 |#1|) "failed") (-535) |#1| |#1|))) (-15 -2227 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|))) (-15 -2228 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-400 |#2|))) (-15 -2229 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-618 (-400 |#2|)))) (-15 -2230 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-618 (-400 |#2|)))) (-15 -2231 ((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2232 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-618 (-400 |#2|)))) (-15 -2233 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2234 ((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|))) (-15 -2235 ((-2 (|:| |ir| (-565 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2236 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-356) (-1200 |#1|)) (T -559)) -((-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-559 *5 *3)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |ir| (-565 (-400 *6))) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))) (-2234 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-601 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3455 *4) (|:| |sol?| (-112))) (-535) *4)) (-4 *4 (-356)) (-4 *5 (-1200 *4)) (-5 *1 (-559 *4 *5)))) (-2233 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-356)) (-5 *1 (-559 *4 *2)) (-4 *2 (-1200 *4)))) (-2232 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-618 (-400 *7))) (-4 *7 (-1200 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *7)))) (-2231 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2242 (-400 *6)) (|:| |coeff| (-400 *6)))) (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))) (-2230 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3455 *7) (|:| |sol?| (-112))) (-535) *7)) (-5 *6 (-618 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1200 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-559 *7 *8)))) (-2229 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2242 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-618 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1200 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-559 *7 *8)))) (-2228 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3455 *6) (|:| |sol?| (-112))) (-535) *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2242 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2227 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2242 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2242 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2226 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-618 *6) "failed") (-535) *6 *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2225 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3455 *6) (|:| |sol?| (-112))) (-535) *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2224 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2242 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7))))) -(-10 -7 (-15 -2224 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2225 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|))) (-15 -2226 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-618 |#1|) "failed") (-535) |#1| |#1|))) (-15 -2227 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|))) (-15 -2228 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-400 |#2|))) (-15 -2229 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-618 (-400 |#2|)))) (-15 -2230 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-618 (-400 |#2|)))) (-15 -2231 ((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2232 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-618 (-400 |#2|)))) (-15 -2233 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2234 ((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|))) (-15 -2235 ((-2 (|:| |ir| (-565 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2236 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2237 (((-3 |#2| "failed") |#2| (-1142) (-1142)) 10))) -(((-560 |#1| |#2|) (-10 -7 (-15 -2237 ((-3 |#2| "failed") |#2| (-1142) (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-931) (-1105) (-29 |#1|))) (T -560)) -((-2237 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-1164) (-931) (-1105) (-29 *4)))))) -(-10 -7 (-15 -2237 ((-3 |#2| "failed") |#2| (-1142) (-1142)))) -((-2880 (((-1086) $ (-129)) 12)) (-2881 (((-1086) $ (-128)) 11)) (-2112 (((-1086) $ (-129)) 7)) (-2113 (((-1086) $) 8)) (-1811 (($ $) 6))) -(((-561) (-138)) (T -561)) -NIL -(-13 (-518) (-834)) -(((-171) . T) ((-518) . T) ((-834) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $ (-535)) 66)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2928 (($ (-1136 (-535)) (-535)) 72)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) 58)) (-2929 (($ $) 34)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4114 (((-747) $) 15)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 (((-535)) 29)) (-2930 (((-535) $) 32)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4111 (($ $ (-535)) 21)) (-3803 (((-3 $ "failed") $ $) 59)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) 16)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 61)) (-2932 (((-1119 (-535)) $) 18)) (-3212 (($ $) 23)) (-4300 (((-835) $) 87) (($ (-535)) 52) (($ $) NIL)) (-3444 (((-747)) 14)) (-2170 (((-112) $ $) NIL)) (-4112 (((-535) $ (-535)) 36)) (-2979 (($) 35 T CONST)) (-2985 (($) 19 T CONST)) (-3375 (((-112) $ $) 39)) (-4180 (($ $) 51) (($ $ $) 37)) (-4182 (($ $ $) 50)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 54) (($ $ $) 55))) -(((-562 |#1| |#2|) (-841 |#1|) (-535) (-112)) (T -562)) -NIL -(-841 |#1|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 21)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (($ $ (-890)) NIL (|has| $ (-361))) (($ $) NIL)) (-1786 (((-1151 (-890) (-747)) (-535)) 47)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 $ "failed") $) 75)) (-3490 (($ $) 74)) (-1906 (($ (-1224 $)) 73)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) 32)) (-3315 (($) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) 49)) (-1791 (((-112) $) NIL)) (-1881 (($ $) NIL) (($ $ (-747)) NIL)) (-4069 (((-112) $) NIL)) (-4114 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-2493 (((-112) $) NIL)) (-2124 (($) 37 (|has| $ (-361)))) (-2122 (((-112) $) NIL (|has| $ (-361)))) (-3450 (($ $ (-890)) NIL (|has| $ (-361))) (($ $) NIL)) (-3786 (((-3 $ "failed") $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 $) $ (-890)) NIL (|has| $ (-361))) (((-1136 $) $) 83)) (-2121 (((-890) $) 55)) (-1719 (((-1136 $) $) NIL (|has| $ (-361)))) (-1718 (((-3 (-1136 $) "failed") $ $) NIL (|has| $ (-361))) (((-1136 $) $) NIL (|has| $ (-361)))) (-1720 (($ $ (-1136 $)) NIL (|has| $ (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL T CONST)) (-2483 (($ (-890)) 48)) (-4274 (((-112) $) 67)) (-3577 (((-1086) $) NIL)) (-2492 (($) 19 (|has| $ (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 42)) (-4075 (((-398 $) $) NIL)) (-4273 (((-890)) 66) (((-808 (-890))) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-3 (-747) "failed") $ $) NIL) (((-747) $) NIL)) (-4254 (((-133)) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-4290 (((-890) $) 65) (((-808 (-890)) $) NIL)) (-3519 (((-1136 $)) 82)) (-1785 (($) 54)) (-1721 (($) 38 (|has| $ (-361)))) (-3558 (((-665 $) (-1224 $)) NIL) (((-1224 $) $) 71)) (-4313 (((-535) $) 28)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) 30) (($ $) NIL) (($ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3444 (((-747)) 39)) (-2123 (((-1224 $) (-890)) 77) (((-1224 $)) 76)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) 22 T CONST)) (-2985 (($) 18 T CONST)) (-4271 (($ $ (-747)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 26)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 61) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL))) -(((-563 |#1|) (-13 (-343) (-322 $) (-594 (-535))) (-890)) (T -563)) -NIL -(-13 (-343) (-322 $) (-594 (-535))) -((-2238 (((-1230) (-1124)) 10))) -(((-564) (-10 -7 (-15 -2238 ((-1230) (-1124))))) (T -564)) -((-2238 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-564))))) -(-10 -7 (-15 -2238 ((-1230) (-1124)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) 69)) (-3490 ((|#1| $) NIL)) (-2242 ((|#1| $) 26)) (-2240 (((-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2243 (($ |#1| (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) (-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2241 (((-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) $) 27)) (-3576 (((-1124) $) NIL)) (-3153 (($ |#1| |#1|) 33) (($ |#1| (-1142)) 44 (|has| |#1| (-1009 (-1142))))) (-3577 (((-1086) $) NIL)) (-2239 (((-112) $) 30)) (-4153 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1142)) 82 (|has| |#1| (-871 (-1142))))) (-4300 (((-835) $) 96) (($ |#1|) 25)) (-2979 (($) 16 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) 15) (($ $ $) NIL)) (-4182 (($ $ $) 78)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 14) (($ (-400 (-535)) $) 36) (($ $ (-400 (-535))) NIL))) -(((-565 |#1|) (-13 (-694 (-400 (-535))) (-1009 |#1|) (-10 -8 (-15 -2243 ($ |#1| (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) (-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2242 (|#1| $)) (-15 -2241 ((-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) $)) (-15 -2240 ((-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2239 ((-112) $)) (-15 -3153 ($ |#1| |#1|)) (-15 -4153 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-871 (-1142))) (-15 -4153 (|#1| $ (-1142))) |%noBranch|) (IF (|has| |#1| (-1009 (-1142))) (-15 -3153 ($ |#1| (-1142))) |%noBranch|))) (-356)) (T -565)) -((-2243 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 *2)) (|:| |logand| (-1136 *2))))) (-5 *4 (-618 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) (-5 *1 (-565 *2)))) (-2242 (*1 *2 *1) (-12 (-5 *1 (-565 *2)) (-4 *2 (-356)))) (-2241 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 *3)) (|:| |logand| (-1136 *3))))) (-5 *1 (-565 *3)) (-4 *3 (-356)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-565 *3)) (-4 *3 (-356)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-565 *3)) (-4 *3 (-356)))) (-3153 (*1 *1 *2 *2) (-12 (-5 *1 (-565 *2)) (-4 *2 (-356)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-565 *2)) (-4 *2 (-356)))) (-4153 (*1 *2 *1 *3) (-12 (-4 *2 (-356)) (-4 *2 (-871 *3)) (-5 *1 (-565 *2)) (-5 *3 (-1142)))) (-3153 (*1 *1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *1 (-565 *2)) (-4 *2 (-1009 *3)) (-4 *2 (-356))))) -(-13 (-694 (-400 (-535))) (-1009 |#1|) (-10 -8 (-15 -2243 ($ |#1| (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) (-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2242 (|#1| $)) (-15 -2241 ((-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) $)) (-15 -2240 ((-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2239 ((-112) $)) (-15 -3153 ($ |#1| |#1|)) (-15 -4153 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-871 (-1142))) (-15 -4153 (|#1| $ (-1142))) |%noBranch|) (IF (|has| |#1| (-1009 (-1142))) (-15 -3153 ($ |#1| (-1142))) |%noBranch|))) -((-4301 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|)) 30))) -(((-566 |#1| |#2|) (-10 -7 (-15 -4301 ((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|))) (-15 -4301 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4301 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-356) (-356)) (T -566)) -((-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-566 *5 *6)))) (-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-566 *5 *2)))) (-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2242 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -2242 *6) (|:| |coeff| *6))) (-5 *1 (-566 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-565 *5)) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-565 *6)) (-5 *1 (-566 *5 *6))))) -(-10 -7 (-15 -4301 ((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|))) (-15 -4301 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4301 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3760 (((-565 |#2|) (-565 |#2|)) 40)) (-4306 (((-618 |#2|) (-565 |#2|)) 42)) (-2251 ((|#2| (-565 |#2|)) 48))) -(((-567 |#1| |#2|) (-10 -7 (-15 -3760 ((-565 |#2|) (-565 |#2|))) (-15 -4306 ((-618 |#2|) (-565 |#2|))) (-15 -2251 (|#2| (-565 |#2|)))) (-13 (-444) (-1009 (-535)) (-823) (-617 (-535))) (-13 (-29 |#1|) (-1164))) (T -567)) -((-2251 (*1 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-29 *4) (-1164))) (-5 *1 (-567 *4 *2)) (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-13 (-29 *4) (-1164))) (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-618 *5)) (-5 *1 (-567 *4 *5)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-565 *4)) (-4 *4 (-13 (-29 *3) (-1164))) (-4 *3 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *1 (-567 *3 *4))))) -(-10 -7 (-15 -3760 ((-565 |#2|) (-565 |#2|))) (-15 -4306 ((-618 |#2|) (-565 |#2|))) (-15 -2251 (|#2| (-565 |#2|)))) -((-2247 (((-112) |#1|) 16)) (-2248 (((-3 |#1| "failed") |#1|) 14)) (-2245 (((-2 (|:| -3015 |#1|) (|:| -2484 (-747))) |#1|) 31) (((-3 |#1| "failed") |#1| (-747)) 18)) (-2244 (((-112) |#1| (-747)) 19)) (-2249 ((|#1| |#1|) 32)) (-2246 ((|#1| |#1| (-747)) 34))) -(((-568 |#1|) (-10 -7 (-15 -2244 ((-112) |#1| (-747))) (-15 -2245 ((-3 |#1| "failed") |#1| (-747))) (-15 -2245 ((-2 (|:| -3015 |#1|) (|:| -2484 (-747))) |#1|)) (-15 -2246 (|#1| |#1| (-747))) (-15 -2247 ((-112) |#1|)) (-15 -2248 ((-3 |#1| "failed") |#1|)) (-15 -2249 (|#1| |#1|))) (-534)) (T -568)) -((-2249 (*1 *2 *2) (-12 (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2248 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2247 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))) (-2246 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2245 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3015 *3) (|:| -2484 (-747)))) (-5 *1 (-568 *3)) (-4 *3 (-534)))) (-2245 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2244 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534))))) -(-10 -7 (-15 -2244 ((-112) |#1| (-747))) (-15 -2245 ((-3 |#1| "failed") |#1| (-747))) (-15 -2245 ((-2 (|:| -3015 |#1|) (|:| -2484 (-747))) |#1|)) (-15 -2246 (|#1| |#1| (-747))) (-15 -2247 ((-112) |#1|)) (-15 -2248 ((-3 |#1| "failed") |#1|)) (-15 -2249 (|#1| |#1|))) -((-2250 (((-1136 |#1|) (-890)) 27))) -(((-569 |#1|) (-10 -7 (-15 -2250 ((-1136 |#1|) (-890)))) (-343)) (T -569)) -((-2250 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-569 *4)) (-4 *4 (-343))))) -(-10 -7 (-15 -2250 ((-1136 |#1|) (-890)))) -((-3760 (((-565 (-400 (-917 |#1|))) (-565 (-400 (-917 |#1|)))) 27)) (-4155 (((-3 (-307 |#1|) (-618 (-307 |#1|))) (-400 (-917 |#1|)) (-1142)) 34 (|has| |#1| (-145)))) (-4306 (((-618 (-307 |#1|)) (-565 (-400 (-917 |#1|)))) 19)) (-2252 (((-307 |#1|) (-400 (-917 |#1|)) (-1142)) 32 (|has| |#1| (-145)))) (-2251 (((-307 |#1|) (-565 (-400 (-917 |#1|)))) 21))) -(((-570 |#1|) (-10 -7 (-15 -3760 ((-565 (-400 (-917 |#1|))) (-565 (-400 (-917 |#1|))))) (-15 -4306 ((-618 (-307 |#1|)) (-565 (-400 (-917 |#1|))))) (-15 -2251 ((-307 |#1|) (-565 (-400 (-917 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4155 ((-3 (-307 |#1|) (-618 (-307 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -2252 ((-307 |#1|) (-400 (-917 |#1|)) (-1142)))) |%noBranch|)) (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (T -570)) -((-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-307 *5)) (-5 *1 (-570 *5)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-3 (-307 *5) (-618 (-307 *5)))) (-5 *1 (-570 *5)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-565 (-400 (-917 *4)))) (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-307 *4)) (-5 *1 (-570 *4)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-565 (-400 (-917 *4)))) (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-618 (-307 *4))) (-5 *1 (-570 *4)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-565 (-400 (-917 *3)))) (-4 *3 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *1 (-570 *3))))) -(-10 -7 (-15 -3760 ((-565 (-400 (-917 |#1|))) (-565 (-400 (-917 |#1|))))) (-15 -4306 ((-618 (-307 |#1|)) (-565 (-400 (-917 |#1|))))) (-15 -2251 ((-307 |#1|) (-565 (-400 (-917 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4155 ((-3 (-307 |#1|) (-618 (-307 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -2252 ((-307 |#1|) (-400 (-917 |#1|)) (-1142)))) |%noBranch|)) -((-2254 (((-618 (-665 (-535))) (-618 (-535)) (-618 (-873 (-535)))) 46) (((-618 (-665 (-535))) (-618 (-535))) 47) (((-665 (-535)) (-618 (-535)) (-873 (-535))) 42)) (-2253 (((-747) (-618 (-535))) 40))) -(((-571) (-10 -7 (-15 -2253 ((-747) (-618 (-535)))) (-15 -2254 ((-665 (-535)) (-618 (-535)) (-873 (-535)))) (-15 -2254 ((-618 (-665 (-535))) (-618 (-535)))) (-15 -2254 ((-618 (-665 (-535))) (-618 (-535)) (-618 (-873 (-535))))))) (T -571)) -((-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-535))) (-5 *4 (-618 (-873 (-535)))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-571)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-571)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-535))) (-5 *4 (-873 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-571)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-747)) (-5 *1 (-571))))) -(-10 -7 (-15 -2253 ((-747) (-618 (-535)))) (-15 -2254 ((-665 (-535)) (-618 (-535)) (-873 (-535)))) (-15 -2254 ((-618 (-665 (-535))) (-618 (-535)))) (-15 -2254 ((-618 (-665 (-535))) (-618 (-535)) (-618 (-873 (-535)))))) -((-3547 (((-618 |#5|) |#5| (-112)) 73)) (-2255 (((-112) |#5| (-618 |#5|)) 30))) -(((-572 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3547 ((-618 |#5|) |#5| (-112))) (-15 -2255 ((-112) |#5| (-618 |#5|)))) (-13 (-300) (-145)) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -572)) -((-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1075 *5 *6 *7 *8)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-572 *5 *6 *7 *8 *3)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-618 *3)) (-5 *1 (-572 *5 *6 *7 *8 *3)) (-4 *3 (-1075 *5 *6 *7 *8))))) -(-10 -7 (-15 -3547 ((-618 |#5|) |#5| (-112))) (-15 -2255 ((-112) |#5| (-618 |#5|)))) -((-2887 (((-112) $ $) NIL)) (-3865 (((-1101) $) 11)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-573) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))) (T -573)) -((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573))))) -(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $)))) -((-2887 (((-112) $ $) NIL (|has| (-142) (-1067)))) (-3768 (($ $) 34)) (-3769 (($ $) NIL)) (-3759 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-3766 (((-112) $ $) 51)) (-3765 (((-112) $ $ (-535)) 46)) (-3760 (((-618 $) $ (-142)) 60) (((-618 $) $ (-139)) 61)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-823)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-823))))) (-3230 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-142) $ (-535) (-142)) 45 (|has| $ (-6 -4337))) (((-142) $ (-1191 (-535)) (-142)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-3757 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-3762 (($ $ (-1191 (-535)) $) 44)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3748 (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-142) $ (-535) (-142)) NIL (|has| $ (-6 -4337)))) (-3431 (((-142) $ (-535)) NIL)) (-3767 (((-112) $ $) 72)) (-3761 (((-535) (-1 (-112) (-142)) $) NIL) (((-535) (-142) $) NIL (|has| (-142) (-1067))) (((-535) (-142) $ (-535)) 48 (|has| (-142) (-1067))) (((-535) $ $ (-535)) 47) (((-535) (-139) $ (-535)) 50)) (-2063 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-142)) 9)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 28 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| (-142) (-823)))) (-3855 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2299 (((-535) $) 42 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-142) (-823)))) (-3763 (((-112) $ $ (-142)) 73)) (-3764 (((-747) $ $ (-142)) 70)) (-2067 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3770 (($ $) 37)) (-3771 (($ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3758 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-3576 (((-1124) $) 38 (|has| (-142) (-1067)))) (-2373 (($ (-142) $ (-535)) NIL) (($ $ $ (-535)) 23)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-535) $) 69) (((-1086) $) NIL (|has| (-142) (-1067)))) (-4143 (((-142) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2297 (($ $ (-142)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-142)) (-618 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2303 (((-618 (-142)) $) NIL)) (-3745 (((-112) $) 12)) (-3911 (($) 10)) (-4142 (((-142) $ (-535) (-142)) NIL) (((-142) $ (-535)) 52) (($ $ (-1191 (-535))) 21) (($ $ $) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-1842 (($ $ $ (-535)) 66 (|has| $ (-6 -4337)))) (-3742 (($ $) 17)) (-4313 (((-524) $) NIL (|has| (-142) (-594 (-524))))) (-3867 (($ (-618 (-142))) NIL)) (-4144 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-618 $)) 67)) (-4300 (($ (-142)) NIL) (((-835) $) 27 (|has| (-142) (-593 (-835))))) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3375 (((-112) $ $) 14 (|has| (-142) (-1067)))) (-3005 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3006 (((-112) $ $) 15 (|has| (-142) (-823)))) (-4299 (((-747) $) 13 (|has| $ (-6 -4336))))) -(((-574 |#1|) (-13 (-1110) (-10 -8 (-15 -3577 ((-535) $)))) (-535)) (T -574)) -((-3577 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-574 *3)) (-14 *3 *2)))) -(-13 (-1110) (-10 -8 (-15 -3577 ((-535) $)))) -((-3869 (((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2| (-1055 |#4|)) 32))) -(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3869 ((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2| (-1055 |#4|))) (-15 -3869 ((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2|))) (-769) (-823) (-542) (-921 |#3| |#1| |#2|)) (T -575)) -((-3869 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-535)))) (-5 *1 (-575 *5 *4 *6 *3)) (-4 *3 (-921 *6 *5 *4)))) (-3869 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1055 *3)) (-4 *3 (-921 *7 *6 *4)) (-4 *6 (-769)) (-4 *4 (-823)) (-4 *7 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-535)))) (-5 *1 (-575 *6 *4 *7 *3))))) -(-10 -7 (-15 -3869 ((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2| (-1055 |#4|))) (-15 -3869 ((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 63)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-535)) 54) (($ $ (-535) (-535)) 55)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 60)) (-2286 (($ $) 100)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2284 (((-835) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) (-997 (-815 (-535))) (-1142) |#1| (-400 (-535))) 224)) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 34)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3213 (((-112) $) NIL)) (-4114 (((-535) $) 58) (((-535) $ (-535)) 59)) (-2493 (((-112) $) NIL)) (-4119 (($ $ (-890)) 76)) (-4158 (($ (-1 |#1| (-535)) $) 73)) (-4280 (((-112) $) 25)) (-3214 (($ |#1| (-535)) 22) (($ $ (-1048) (-535)) NIL) (($ $ (-618 (-1048)) (-618 (-535))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 67)) (-2290 (($ (-997 (-815 (-535))) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 13)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4155 (($ $) 150 (|has| |#1| (-38 (-400 (-535)))))) (-2287 (((-3 $ "failed") $ $ (-112)) 99)) (-2285 (($ $ $) 108)) (-3577 (((-1086) $) NIL)) (-2288 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 15)) (-2289 (((-997 (-815 (-535))) $) 14)) (-4111 (($ $ (-535)) 45)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-535)))))) (-4142 ((|#1| $ (-535)) 57) (($ $ $) NIL (|has| (-535) (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (-4290 (((-535) $) NIL)) (-3212 (($ $) 46)) (-4300 (((-835) $) NIL) (($ (-535)) 28) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 27 (|has| |#1| (-170)))) (-4023 ((|#1| $ (-535)) 56)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 37)) (-4115 ((|#1| $) NIL)) (-2265 (($ $) 186 (|has| |#1| (-38 (-400 (-535)))))) (-2277 (($ $) 158 (|has| |#1| (-38 (-400 (-535)))))) (-2267 (($ $) 190 (|has| |#1| (-38 (-400 (-535)))))) (-2279 (($ $) 163 (|has| |#1| (-38 (-400 (-535)))))) (-2263 (($ $) 189 (|has| |#1| (-38 (-400 (-535)))))) (-2275 (($ $) 162 (|has| |#1| (-38 (-400 (-535)))))) (-2282 (($ $ (-400 (-535))) 166 (|has| |#1| (-38 (-400 (-535)))))) (-2283 (($ $ |#1|) 146 (|has| |#1| (-38 (-400 (-535)))))) (-2280 (($ $) 192 (|has| |#1| (-38 (-400 (-535)))))) (-2281 (($ $) 149 (|has| |#1| (-38 (-400 (-535)))))) (-2262 (($ $) 191 (|has| |#1| (-38 (-400 (-535)))))) (-2274 (($ $) 164 (|has| |#1| (-38 (-400 (-535)))))) (-2264 (($ $) 187 (|has| |#1| (-38 (-400 (-535)))))) (-2276 (($ $) 160 (|has| |#1| (-38 (-400 (-535)))))) (-2266 (($ $) 188 (|has| |#1| (-38 (-400 (-535)))))) (-2278 (($ $) 161 (|has| |#1| (-38 (-400 (-535)))))) (-2259 (($ $) 197 (|has| |#1| (-38 (-400 (-535)))))) (-2271 (($ $) 173 (|has| |#1| (-38 (-400 (-535)))))) (-2261 (($ $) 194 (|has| |#1| (-38 (-400 (-535)))))) (-2273 (($ $) 168 (|has| |#1| (-38 (-400 (-535)))))) (-2257 (($ $) 201 (|has| |#1| (-38 (-400 (-535)))))) (-2269 (($ $) 177 (|has| |#1| (-38 (-400 (-535)))))) (-2256 (($ $) 203 (|has| |#1| (-38 (-400 (-535)))))) (-2268 (($ $) 179 (|has| |#1| (-38 (-400 (-535)))))) (-2258 (($ $) 199 (|has| |#1| (-38 (-400 (-535)))))) (-2270 (($ $) 175 (|has| |#1| (-38 (-400 (-535)))))) (-2260 (($ $) 196 (|has| |#1| (-38 (-400 (-535)))))) (-2272 (($ $) 171 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4112 ((|#1| $ (-535)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-2979 (($) 29 T CONST)) (-2985 (($) 38 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (-3375 (((-112) $ $) 65)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) 84) (($ $ $) 64)) (-4182 (($ $ $) 81)) (** (($ $ (-890)) NIL) (($ $ (-747)) 103)) (* (($ (-890) $) 89) (($ (-747) $) 87) (($ (-535) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-576 |#1|) (-13 (-1203 |#1| (-535)) (-10 -8 (-15 -2290 ($ (-997 (-815 (-535))) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))))) (-15 -2289 ((-997 (-815 (-535))) $)) (-15 -2288 ((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $)) (-15 -4161 ($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))))) (-15 -4280 ((-112) $)) (-15 -4158 ($ (-1 |#1| (-535)) $)) (-15 -2287 ((-3 $ "failed") $ $ (-112))) (-15 -2286 ($ $)) (-15 -2285 ($ $ $)) (-15 -2284 ((-835) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) (-997 (-815 (-535))) (-1142) |#1| (-400 (-535)))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (-15 -2283 ($ $ |#1|)) (-15 -2282 ($ $ (-400 (-535)))) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $))) |%noBranch|))) (-1018)) (T -576)) -((-4280 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2290 (*1 *1 *2 *3) (-12 (-5 *2 (-997 (-815 (-535)))) (-5 *3 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *4)))) (-4 *4 (-1018)) (-5 *1 (-576 *4)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-997 (-815 (-535)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-535))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) (-2287 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))) (-2284 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *6)))) (-5 *4 (-997 (-815 (-535)))) (-5 *5 (-1142)) (-5 *7 (-400 (-535))) (-4 *6 (-1018)) (-5 *2 (-835)) (-5 *1 (-576 *6)))) (-4155 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2283 (*1 *1 *1 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2282 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-576 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1018)))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2280 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2278 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2262 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2259 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2258 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(-13 (-1203 |#1| (-535)) (-10 -8 (-15 -2290 ($ (-997 (-815 (-535))) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))))) (-15 -2289 ((-997 (-815 (-535))) $)) (-15 -2288 ((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $)) (-15 -4161 ($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))))) (-15 -4280 ((-112) $)) (-15 -4158 ($ (-1 |#1| (-535)) $)) (-15 -2287 ((-3 $ "failed") $ $ (-112))) (-15 -2286 ($ $)) (-15 -2285 ($ $ $)) (-15 -2284 ((-835) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) (-997 (-815 (-535))) (-1142) |#1| (-400 (-535)))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (-15 -2283 ($ $ |#1|)) (-15 -2282 ($ $ (-400 (-535)))) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $))) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4161 (($ (-1119 |#1|)) 9)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) 42)) (-3213 (((-112) $) 52)) (-4114 (((-747) $) 55) (((-747) $ (-747)) 54)) (-2493 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ "failed") $ $) 44 (|has| |#1| (-542)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-1119 |#1|) $) 23)) (-3444 (((-747)) 51)) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 10 T CONST)) (-2985 (($) 14 T CONST)) (-3375 (((-112) $ $) 22)) (-4180 (($ $) 30) (($ $ $) 16)) (-4182 (($ $ $) 25)) (** (($ $ (-890)) NIL) (($ $ (-747)) 49)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-535)) 36))) -(((-577 |#1|) (-13 (-1018) (-10 -8 (-15 -4160 ((-1119 |#1|) $)) (-15 -4161 ($ (-1119 |#1|))) (-15 -3213 ((-112) $)) (-15 -4114 ((-747) $)) (-15 -4114 ((-747) $ (-747))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-535))) (IF (|has| |#1| (-542)) (-6 (-542)) |%noBranch|))) (-1018)) (T -577)) -((-4160 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-577 *3)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-4114 (*1 *2 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))) -(-13 (-1018) (-10 -8 (-15 -4160 ((-1119 |#1|) $)) (-15 -4161 ($ (-1119 |#1|))) (-15 -3213 ((-112) $)) (-15 -4114 ((-747) $)) (-15 -4114 ((-747) $ (-747))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-535))) (IF (|has| |#1| (-542)) (-6 (-542)) |%noBranch|))) -((-4301 (((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)) 15))) -(((-578 |#1| |#2|) (-10 -7 (-15 -4301 ((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)))) (-1178) (-1178)) (T -578)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-581 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-581 *6)) (-5 *1 (-578 *5 *6))))) -(-10 -7 (-15 -4301 ((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)))) -((-4301 (((-1119 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1119 |#2|)) 20) (((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-581 |#2|)) 19) (((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|)) 18))) -(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|))) (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-581 |#2|))) (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1119 |#2|)))) (-1178) (-1178) (-1178)) (T -579)) -((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-1119 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) (-5 *1 (-579 *6 *7 *8)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1119 *6)) (-5 *5 (-581 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) (-5 *1 (-579 *6 *7 *8)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-581 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-581 *8)) (-5 *1 (-579 *6 *7 *8))))) -(-10 -7 (-15 -4301 ((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|))) (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-581 |#2|))) (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1119 |#2|)))) -((-2295 ((|#3| |#3| (-618 (-591 |#3|)) (-618 (-1142))) 55)) (-2294 (((-166 |#2|) |#3|) 117)) (-2291 ((|#3| (-166 |#2|)) 44)) (-2292 ((|#2| |#3|) 19)) (-2293 ((|#3| |#2|) 33))) -(((-580 |#1| |#2| |#3|) (-10 -7 (-15 -2291 (|#3| (-166 |#2|))) (-15 -2292 (|#2| |#3|)) (-15 -2293 (|#3| |#2|)) (-15 -2294 ((-166 |#2|) |#3|)) (-15 -2295 (|#3| |#3| (-618 (-591 |#3|)) (-618 (-1142))))) (-13 (-542) (-823)) (-13 (-414 |#1|) (-973) (-1164)) (-13 (-414 (-166 |#1|)) (-973) (-1164))) (T -580)) -((-2295 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-618 (-591 *2))) (-5 *4 (-618 (-1142))) (-4 *2 (-13 (-414 (-166 *5)) (-973) (-1164))) (-4 *5 (-13 (-542) (-823))) (-5 *1 (-580 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-973) (-1164))))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823))) (-5 *2 (-166 *5)) (-5 *1 (-580 *4 *5 *3)) (-4 *5 (-13 (-414 *4) (-973) (-1164))) (-4 *3 (-13 (-414 (-166 *4)) (-973) (-1164))))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 (-166 *4)) (-973) (-1164))) (-5 *1 (-580 *4 *3 *2)) (-4 *3 (-13 (-414 *4) (-973) (-1164))))) (-2292 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 *4) (-973) (-1164))) (-5 *1 (-580 *4 *2 *3)) (-4 *3 (-13 (-414 (-166 *4)) (-973) (-1164))))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-414 *4) (-973) (-1164))) (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 (-166 *4)) (-973) (-1164))) (-5 *1 (-580 *4 *5 *2))))) -(-10 -7 (-15 -2291 (|#3| (-166 |#2|))) (-15 -2292 (|#2| |#3|)) (-15 -2293 (|#3| |#2|)) (-15 -2294 ((-166 |#2|) |#3|)) (-15 -2295 (|#3| |#3| (-618 (-591 |#3|)) (-618 (-1142))))) -((-4056 (($ (-1 (-112) |#1|) $) 17)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3794 (($ (-1 |#1| |#1|) |#1|) 9)) (-3793 (($ (-1 (-112) |#1|) $) 13)) (-3792 (($ (-1 (-112) |#1|) $) 15)) (-3867 (((-1119 |#1|) $) 18)) (-4300 (((-835) $) NIL))) -(((-581 |#1|) (-13 (-593 (-835)) (-10 -8 (-15 -4301 ($ (-1 |#1| |#1|) $)) (-15 -3793 ($ (-1 (-112) |#1|) $)) (-15 -3792 ($ (-1 (-112) |#1|) $)) (-15 -4056 ($ (-1 (-112) |#1|) $)) (-15 -3794 ($ (-1 |#1| |#1|) |#1|)) (-15 -3867 ((-1119 |#1|) $)))) (-1178)) (T -581)) -((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-3793 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-3792 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-4056 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1178))))) -(-13 (-593 (-835)) (-10 -8 (-15 -4301 ($ (-1 |#1| |#1|) $)) (-15 -3793 ($ (-1 (-112) |#1|) $)) (-15 -3792 ($ (-1 (-112) |#1|) $)) (-15 -4056 ($ (-1 (-112) |#1|) $)) (-15 -3794 ($ (-1 |#1| |#1|) |#1|)) (-15 -3867 ((-1119 |#1|) $)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747)) NIL (|has| |#1| (-23)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4175 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4062 (((-112) $ (-747)) NIL)) (-4176 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4179 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4177 (($ $ $) NIL (|has| |#1| (-1018)))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4182 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-535) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-582 |#1| |#2|) (-1223 |#1|) (-1178) (-535)) (T -582)) -NIL -(-1223 |#1|) -((-2296 (((-1230) $ |#2| |#2|) 36)) (-2298 ((|#2| $) 23)) (-2299 ((|#2| $) 21)) (-2067 (($ (-1 |#3| |#3|) $) 32)) (-4301 (($ (-1 |#3| |#3|) $) 30)) (-4143 ((|#3| $) 26)) (-2297 (($ $ |#3|) 33)) (-2300 (((-112) |#3| $) 17)) (-2303 (((-618 |#3|) $) 15)) (-4142 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-583 |#1| |#2| |#3|) (-10 -8 (-15 -2296 ((-1230) |#1| |#2| |#2|)) (-15 -2297 (|#1| |#1| |#3|)) (-15 -4143 (|#3| |#1|)) (-15 -2298 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -2300 ((-112) |#3| |#1|)) (-15 -2303 ((-618 |#3|) |#1|)) (-15 -4142 (|#3| |#1| |#2|)) (-15 -4142 (|#3| |#1| |#2| |#3|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|))) (-584 |#2| |#3|) (-1067) (-1178)) (T -583)) -NIL -(-10 -8 (-15 -2296 ((-1230) |#1| |#2| |#2|)) (-15 -2297 (|#1| |#1| |#3|)) (-15 -4143 (|#3| |#1|)) (-15 -2298 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -2300 ((-112) |#3| |#1|)) (-15 -2303 ((-618 |#3|) |#1|)) (-15 -4142 (|#3| |#1| |#2|)) (-15 -4142 (|#3| |#1| |#2| |#3|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#2| (-1067)))) (-2296 (((-1230) $ |#1| |#1|) 40 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-1632 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) 51)) (-2063 (((-618 |#2|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2298 ((|#1| $) 43 (|has| |#1| (-823)))) (-2502 (((-618 |#2|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-2299 ((|#1| $) 44 (|has| |#1| (-823)))) (-2067 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#2| (-1067)))) (-2301 (((-618 |#1|) $) 46)) (-2302 (((-112) |#1| $) 47)) (-3577 (((-1086) $) 21 (|has| |#2| (-1067)))) (-4143 ((|#2| $) 42 (|has| |#1| (-823)))) (-2297 (($ $ |#2|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2064 (((-747) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4336))) (((-747) |#2| $) 28 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#2| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#2| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-584 |#1| |#2|) (-138) (-1067) (-1178)) (T -584)) -((-2303 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-618 *4)))) (-2302 (*1 *2 *3 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-112)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-618 *3)))) (-2300 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-584 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1178)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-2298 (*1 *2 *1) (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1178)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *3 (-823)) (-4 *2 (-1178)))) (-2297 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) (-2296 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-1230))))) -(-13 (-481 |t#2|) (-281 |t#1| |t#2|) (-10 -8 (-15 -2303 ((-618 |t#2|) $)) (-15 -2302 ((-112) |t#1| $)) (-15 -2301 ((-618 |t#1|) $)) (IF (|has| |t#2| (-1067)) (IF (|has| $ (-6 -4336)) (-15 -2300 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-15 -2299 (|t#1| $)) (-15 -2298 (|t#1| $)) (-15 -4143 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -2297 ($ $ |t#2|)) (-15 -2296 ((-1230) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#2| (-1067)) ((-593 (-835)) -3874 (|has| |#2| (-1067)) (|has| |#2| (-593 (-835)))) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-1067) |has| |#2| (-1067)) ((-1178) . T)) -((-4300 (((-835) $) 19) (((-128) $) 14) (($ (-128)) 13))) -(((-585) (-13 (-593 (-835)) (-593 (-128)) (-10 -8 (-15 -4300 ($ (-128)))))) (T -585)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-585))))) -(-13 (-593 (-835)) (-593 (-128)) (-10 -8 (-15 -4300 ($ (-128))))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1179) $) 14) (($ (-618 (-1179))) 13)) (-2304 (((-618 (-1179)) $) 10)) (-3375 (((-112) $ $) NIL))) -(((-586) (-13 (-1049) (-593 (-1179)) (-10 -8 (-15 -4300 ($ (-618 (-1179)))) (-15 -2304 ((-618 (-1179)) $))))) (T -586)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-586)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-586))))) -(-13 (-1049) (-593 (-1179)) (-10 -8 (-15 -4300 ($ (-618 (-1179)))) (-15 -2304 ((-618 (-1179)) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1224 (-665 |#1|)) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1840 (((-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-3879 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1814 (((-3 $ #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1902 (((-665 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1838 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1900 (((-665 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2487 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2017 (((-1136 (-917 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2490 (($ $ (-890)) NIL)) (-1836 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1816 (((-1136 |#1|) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1904 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1834 (((-1136 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1906 (($ (-1224 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1224 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-3804 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-3427 (((-890)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2515 (($ $ (-890)) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1819 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1823 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1815 (((-3 $ #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1903 (((-665 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1839 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1901 (((-665 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2488 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2021 (((-1136 (-917 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2489 (($ $ (-890)) NIL)) (-1837 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1817 (((-1136 |#1|) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1905 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1835 (((-1136 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1822 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3577 (((-1086) $) NIL)) (-1827 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4142 ((|#1| $ (-535)) NIL (|has| |#2| (-411 |#1|)))) (-3558 (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-411 |#1|))) (((-1224 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $) (-1224 $)) NIL (|has| |#2| (-360 |#1|))) (((-1224 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-4313 (($ (-1224 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1224 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2009 (((-618 (-917 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-618 (-917 |#1|)) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2677 (($ $ $) NIL)) (-1833 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4300 (((-835) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2123 (((-1224 $)) NIL (|has| |#2| (-411 |#1|)))) (-1818 (((-618 (-1224 |#1|))) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2871 (($ (-665 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2676 (($ $ $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) 24)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-587 |#1| |#2|) (-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -4300 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-721 |#1|)) (T -587)) -((-4300 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-587 *3 *2)) (-4 *2 (-721 *3))))) -(-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -4300 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-1808 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) 33)) (-3943 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL) (($) NIL)) (-2296 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-1124) |#1|) 43)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#1| #1="failed") (-1124) $) 46)) (-3879 (($) NIL T CONST)) (-1812 (($ $ (-1124)) 24)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-3747 (((-3 |#1| #1#) (-1124) $) 47) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (|has| $ (-6 -4336)))) (-3748 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-4185 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-1809 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) 32)) (-1632 ((|#1| $ (-1124) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-1124)) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2346 (($ $) 48)) (-1813 (($ (-381)) 22) (($ (-381) (-1124)) 21)) (-3888 (((-381) $) 34)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (((-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-2299 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2735 (((-618 (-1124)) $) 39)) (-2306 (((-112) (-1124) $) NIL)) (-1810 (((-1124) $) 35)) (-1326 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-2301 (((-618 (-1124)) $) NIL)) (-2302 (((-112) (-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 ((|#1| $) NIL (|has| (-1124) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) "failed") (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-618 (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 37)) (-4142 ((|#1| $ (-1124) |#1|) NIL) ((|#1| $ (-1124)) 42)) (-1518 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL) (($) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (((-747) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (((-747) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-4300 (((-835) $) 20)) (-1811 (($ $) 25)) (-1328 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 19)) (-4299 (((-747) $) 41 (|has| $ (-6 -4336))))) -(((-588 |#1|) (-13 (-358 (-381) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) (-1155 (-1124) |#1|) (-10 -8 (-6 -4336) (-15 -2346 ($ $)))) (-1067)) (T -588)) -((-2346 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1067))))) -(-13 (-358 (-381) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) (-1155 (-1124) |#1|) (-10 -8 (-6 -4336) (-15 -2346 ($ $)))) -((-3579 (((-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 15)) (-2735 (((-618 |#2|) $) 19)) (-2306 (((-112) |#2| $) 12))) -(((-589 |#1| |#2| |#3|) (-10 -8 (-15 -2735 ((-618 |#2|) |#1|)) (-15 -2306 ((-112) |#2| |#1|)) (-15 -3579 ((-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|))) (-590 |#2| |#3|) (-1067) (-1067)) (T -589)) -NIL -(-10 -8 (-15 -2735 ((-618 |#2|) |#1|)) (-15 -2306 ((-112) |#2| |#1|)) (-15 -3579 ((-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|))) -((-2887 (((-112) $ $) 19 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 55 (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| "failed") |#1| $) 61)) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) 62)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 54 (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 56 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-2735 (((-618 |#1|) $) 63)) (-2306 (((-112) |#1| $) 64)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 39)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 40)) (-3577 (((-1086) $) 21 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 51)) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 41)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) 26 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 25 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 24 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 23 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-1518 (($) 49) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 48)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 50)) (-4300 (((-835) $) 18 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 42)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-590 |#1| |#2|) (-138) (-1067) (-1067)) (T -590)) -((-2306 (*1 *2 *3 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-618 *3)))) (-3747 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-2305 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))) -(-13 (-223 (-2 (|:| -4203 |t#1|) (|:| -2184 |t#2|))) (-10 -8 (-15 -2306 ((-112) |t#1| $)) (-15 -2735 ((-618 |t#1|) $)) (-15 -3747 ((-3 |t#2| "failed") |t#1| $)) (-15 -2305 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-106 #1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((-101) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) ((-593 (-835)) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835)))) ((-149 #1#) . T) ((-594 (-524)) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))) ((-223 #1#) . T) ((-229 #1#) . T) ((-302 #1#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-481 #1#) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-1067) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-2307 (((-3 (-1142) "failed") $) 37)) (-1364 (((-1230) $ (-747)) 26)) (-3761 (((-747) $) 25)) (-3368 (((-113) $) 12)) (-3888 (((-1142) $) 20)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2308 (($ (-113) (-618 |#1|) (-747)) 30) (($ (-1142)) 31)) (-2952 (((-112) $ (-113)) 18) (((-112) $ (-1142)) 16)) (-2922 (((-747) $) 22)) (-3577 (((-1086) $) NIL)) (-4313 (((-861 (-535)) $) 77 (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) 84 (|has| |#1| (-594 (-861 (-371))))) (((-524) $) 69 (|has| |#1| (-594 (-524))))) (-4300 (((-835) $) 55)) (-2309 (((-618 |#1|) $) 24)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 41)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 42))) -(((-591 |#1|) (-13 (-131) (-855 |#1|) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -3368 ((-113) $)) (-15 -2309 ((-618 |#1|) $)) (-15 -2922 ((-747) $)) (-15 -2308 ($ (-113) (-618 |#1|) (-747))) (-15 -2308 ($ (-1142))) (-15 -2307 ((-3 (-1142) "failed") $)) (-15 -2952 ((-112) $ (-113))) (-15 -2952 ((-112) $ (-1142))) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|))) (-823)) (T -591)) -((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2309 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2308 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-618 *5)) (-5 *4 (-747)) (-4 *5 (-823)) (-5 *1 (-591 *5)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2307 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-823)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-823))))) -(-13 (-131) (-855 |#1|) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -3368 ((-113) $)) (-15 -2309 ((-618 |#1|) $)) (-15 -2922 ((-747) $)) (-15 -2308 ($ (-113) (-618 |#1|) (-747))) (-15 -2308 ($ (-1142))) (-15 -2307 ((-3 (-1142) "failed") $)) (-15 -2952 ((-112) $ (-113))) (-15 -2952 ((-112) $ (-1142))) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|))) -((-2310 (((-591 |#2|) |#1|) 15)) (-2311 (((-3 |#1| "failed") (-591 |#2|)) 19))) -(((-592 |#1| |#2|) (-10 -7 (-15 -2310 ((-591 |#2|) |#1|)) (-15 -2311 ((-3 |#1| "failed") (-591 |#2|)))) (-823) (-823)) (T -592)) -((-2311 (*1 *2 *3) (|partial| -12 (-5 *3 (-591 *4)) (-4 *4 (-823)) (-4 *2 (-823)) (-5 *1 (-592 *2 *4)))) (-2310 (*1 *2 *3) (-12 (-5 *2 (-591 *4)) (-5 *1 (-592 *3 *4)) (-4 *3 (-823)) (-4 *4 (-823))))) -(-10 -7 (-15 -2310 ((-591 |#2|) |#1|)) (-15 -2311 ((-3 |#1| "failed") (-591 |#2|)))) -((-4300 ((|#1| $) 6))) -(((-593 |#1|) (-138) (-1178)) (T -593)) -((-4300 (*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1178))))) -(-13 (-10 -8 (-15 -4300 (|t#1| $)))) -((-4313 ((|#1| $) 6))) -(((-594 |#1|) (-138) (-1178)) (T -594)) -((-4313 (*1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1178))))) -(-13 (-10 -8 (-15 -4313 (|t#1| $)))) -((-2312 (((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)) 15) (((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 16))) -(((-595 |#1| |#2|) (-10 -7 (-15 -2312 ((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2312 ((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)))) (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -595)) -((-2312 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-1136 (-400 *6))) (-5 *1 (-595 *5 *6)) (-5 *3 (-400 *6)))) (-2312 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-1136 (-400 *5))) (-5 *1 (-595 *4 *5)) (-5 *3 (-400 *5))))) -(-10 -7 (-15 -2312 ((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2312 ((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)))) -((-2887 (((-112) $ $) NIL)) (-2314 (($) 11 T CONST)) (-2313 (($) 12 T CONST)) (-3178 (($ $ $) 24)) (-3659 (($ $) 22)) (-3576 (((-1124) $) NIL)) (-3177 (($ $ $) 25)) (-3577 (((-1086) $) NIL)) (-2315 (($) 10 T CONST)) (-3176 (($ $ $) 26)) (-4300 (((-835) $) 30)) (-3912 (((-112) $ (|[\|\|]| -2315)) 19) (((-112) $ (|[\|\|]| -2314)) 21) (((-112) $ (|[\|\|]| -2313)) 17)) (-3179 (($ $ $) 23)) (-3375 (((-112) $ $) 15))) -(((-596) (-13 (-938) (-10 -8 (-15 -2315 ($) -4294) (-15 -2314 ($) -4294) (-15 -2313 ($) -4294) (-15 -3912 ((-112) $ (|[\|\|]| -2315))) (-15 -3912 ((-112) $ (|[\|\|]| -2314))) (-15 -3912 ((-112) $ (|[\|\|]| -2313)))))) (T -596)) -((-2315 (*1 *1) (-5 *1 (-596))) (-2314 (*1 *1) (-5 *1 (-596))) (-2313 (*1 *1) (-5 *1 (-596))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2315)) (-5 *2 (-112)) (-5 *1 (-596)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2314)) (-5 *2 (-112)) (-5 *1 (-596)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2313)) (-5 *2 (-112)) (-5 *1 (-596))))) -(-13 (-938) (-10 -8 (-15 -2315 ($) -4294) (-15 -2314 ($) -4294) (-15 -2313 ($) -4294) (-15 -3912 ((-112) $ (|[\|\|]| -2315))) (-15 -3912 ((-112) $ (|[\|\|]| -2314))) (-15 -3912 ((-112) $ (|[\|\|]| -2313))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3969 (((-535) $) NIL (|has| |#1| (-821)))) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-3520 (((-112) $) NIL (|has| |#1| (-821)))) (-2493 (((-112) $) NIL)) (-3319 ((|#1| $) 13)) (-3521 (((-112) $) NIL (|has| |#1| (-821)))) (-3660 (($ $ $) NIL (|has| |#1| (-821)))) (-3661 (($ $ $) NIL (|has| |#1| (-821)))) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3318 ((|#3| $) 15)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL)) (-3444 (((-747)) 20)) (-3725 (($ $) NIL (|has| |#1| (-821)))) (-2979 (($) NIL T CONST)) (-2985 (($) 12 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-821)))) (-4291 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-597 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (-15 -4291 ($ $ |#3|)) (-15 -4291 ($ |#1| |#3|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-703) |#2|)) (T -597)) -((-4291 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-703) *4)))) (-4291 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-703) *4)))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-703) *3)))) (-3318 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (-15 -4291 ($ $ |#3|)) (-15 -4291 ($ |#1| |#3|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#3| $)))) -((-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) 10))) -(((-598 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-599 |#2|) (-1018)) (T -598)) -NIL -(-10 -8 (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 34)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ |#1| $) 35))) -(((-599 |#1|) (-138) (-1018)) (T -599)) -((-4300 (*1 *1 *2) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1018))))) -(-13 (-1018) (-624 |t#1|) (-10 -8 (-15 -4300 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2316 ((|#2| |#2| (-1142) (-1142)) 18))) -(((-600 |#1| |#2|) (-10 -7 (-15 -2316 (|#2| |#2| (-1142) (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-931) (-29 |#1|))) (T -600)) -((-2316 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-600 *4 *2)) (-4 *2 (-13 (-1164) (-931) (-29 *4)))))) -(-10 -7 (-15 -2316 (|#2| |#2| (-1142) (-1142)))) -((-2887 (((-112) $ $) 56)) (-3522 (((-112) $) 52)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2317 ((|#1| $) 49)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4094 (((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)) 97 (|has| |#1| (-356)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) 24)) (-3804 (((-3 $ "failed") $) 75)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4114 (((-535) $) 19)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) 36)) (-3214 (($ |#1| (-535)) 21)) (-3508 ((|#1| $) 51)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) 87 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ $) 79)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-1699 (((-747) $) 99 (|has| |#1| (-356)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 98 (|has| |#1| (-356)))) (-4153 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-4290 (((-535) $) 34)) (-4313 (((-400 |#2|) $) 42)) (-4300 (((-835) $) 62) (($ (-535)) 32) (($ $) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 31) (($ |#2|) 22)) (-4023 ((|#1| $ (-535)) 63)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 29)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 9 T CONST)) (-2985 (($) 12 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3375 (((-112) $ $) 17)) (-4180 (($ $) 46) (($ $ $) NIL)) (-4182 (($ $ $) 76)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 26) (($ $ $) 44))) -(((-601 |#1| |#2|) (-13 (-225 |#2|) (-542) (-594 (-400 |#2|)) (-405 |#1|) (-1009 |#2|) (-10 -8 (-15 -4280 ((-112) $)) (-15 -4290 ((-535) $)) (-15 -4114 ((-535) $)) (-15 -4302 ($ $)) (-15 -3508 (|#1| $)) (-15 -2317 (|#1| $)) (-15 -4023 (|#1| $ (-535))) (-15 -3214 ($ |#1| (-535))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4094 ((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) (-542) (-1200 |#1|)) (T -601)) -((-4280 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-112)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) (-4290 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-535)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) (-4114 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-535)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) (-4302 (*1 *1 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))) (-3508 (*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))) (-2317 (*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *2 (-542)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1200 *2)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-4 *2 (-542)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1200 *2)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-542)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -1879 (-601 *4 *5)) (|:| -1878 (-400 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-400 *5))))) -(-13 (-225 |#2|) (-542) (-594 (-400 |#2|)) (-405 |#1|) (-1009 |#2|) (-10 -8 (-15 -4280 ((-112) $)) (-15 -4290 ((-535) $)) (-15 -4114 ((-535) $)) (-15 -4302 ($ $)) (-15 -3508 (|#1| $)) (-15 -2317 (|#1| $)) (-15 -4023 (|#1| $ (-535))) (-15 -3214 ($ |#1| (-535))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4094 ((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) -((-4028 (((-618 |#6|) (-618 |#4|) (-112)) 47)) (-2318 ((|#6| |#6|) 40))) -(((-602 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2318 (|#6| |#6|)) (-15 -4028 ((-618 |#6|) (-618 |#4|) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|) (-1075 |#1| |#2| |#3| |#4|)) (T -602)) -((-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 *10)) (-5 *1 (-602 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *10 (-1075 *5 *6 *7 *8)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-602 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *2 (-1075 *3 *4 *5 *6))))) -(-10 -7 (-15 -2318 (|#6| |#6|)) (-15 -4028 ((-618 |#6|) (-618 |#4|) (-112)))) -((-2319 (((-112) |#3| (-747) (-618 |#3|)) 23)) (-2320 (((-3 (-2 (|:| |polfac| (-618 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-618 (-1136 |#3|)))) "failed") |#3| (-618 (-1136 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2758 (-618 (-2 (|:| |irr| |#4|) (|:| -2478 (-535)))))) (-618 |#3|) (-618 |#1|) (-618 |#3|)) 55))) -(((-603 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 ((-112) |#3| (-747) (-618 |#3|))) (-15 -2320 ((-3 (-2 (|:| |polfac| (-618 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-618 (-1136 |#3|)))) "failed") |#3| (-618 (-1136 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2758 (-618 (-2 (|:| |irr| |#4|) (|:| -2478 (-535)))))) (-618 |#3|) (-618 |#1|) (-618 |#3|)))) (-823) (-769) (-300) (-921 |#3| |#2| |#1|)) (T -603)) -((-2320 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2758 (-618 (-2 (|:| |irr| *10) (|:| -2478 (-535))))))) (-5 *6 (-618 *3)) (-5 *7 (-618 *8)) (-4 *8 (-823)) (-4 *3 (-300)) (-4 *10 (-921 *3 *9 *8)) (-4 *9 (-769)) (-5 *2 (-2 (|:| |polfac| (-618 *10)) (|:| |correct| *3) (|:| |corrfact| (-618 (-1136 *3))))) (-5 *1 (-603 *8 *9 *3 *10)) (-5 *4 (-618 (-1136 *3))))) (-2319 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-747)) (-5 *5 (-618 *3)) (-4 *3 (-300)) (-4 *6 (-823)) (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-603 *6 *7 *3 *8)) (-4 *8 (-921 *3 *7 *6))))) -(-10 -7 (-15 -2319 ((-112) |#3| (-747) (-618 |#3|))) (-15 -2320 ((-3 (-2 (|:| |polfac| (-618 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-618 (-1136 |#3|)))) "failed") |#3| (-618 (-1136 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2758 (-618 (-2 (|:| |irr| |#4|) (|:| -2478 (-535)))))) (-618 |#3|) (-618 |#1|) (-618 |#3|)))) -((-2887 (((-112) $ $) NIL)) (-3865 (((-1101) $) 11)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-604) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))) (T -604)) -((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604))))) -(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-4279 (($ $) 67)) (-4285 (((-640 |#1| |#2|) $) 52)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 70)) (-2321 (((-618 (-286 |#2|)) $ $) 33)) (-3577 (((-1086) $) NIL)) (-4286 (($ (-640 |#1| |#2|)) 48)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 58) (((-1240 |#1| |#2|) $) NIL) (((-1245 |#1| |#2|) $) 66)) (-2985 (($) 53 T CONST)) (-2322 (((-618 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $) 31)) (-2323 (((-618 (-640 |#1| |#2|)) (-618 |#1|)) 65)) (-2984 (((-618 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $) 37)) (-3375 (((-112) $ $) 54)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ $ $) 44))) -(((-605 |#1| |#2| |#3|) (-13 (-465) (-10 -8 (-15 -4286 ($ (-640 |#1| |#2|))) (-15 -4285 ((-640 |#1| |#2|) $)) (-15 -2984 ((-618 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $)) (-15 -4300 ((-1240 |#1| |#2|) $)) (-15 -4300 ((-1245 |#1| |#2|) $)) (-15 -4279 ($ $)) (-15 -4277 ((-618 |#1|) $)) (-15 -2323 ((-618 (-640 |#1| |#2|)) (-618 |#1|))) (-15 -2322 ((-618 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $)) (-15 -2321 ((-618 (-286 |#2|)) $ $)))) (-823) (-13 (-170) (-694 (-400 (-535)))) (-890)) (T -605)) -((-4286 (*1 *1 *2) (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-5 *1 (-605 *3 *4 *5)) (-14 *5 (-890)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-640 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |k| (-864 *3)) (|:| |c| *4)))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-4279 (*1 *1 *1) (-12 (-5 *1 (-605 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-13 (-170) (-694 (-400 (-535))))) (-14 *4 (-890)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-823)) (-5 *2 (-618 (-640 *4 *5))) (-5 *1 (-605 *4 *5 *6)) (-4 *5 (-13 (-170) (-694 (-400 (-535))))) (-14 *6 (-890)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |k| (-648 *3)) (|:| |c| *4)))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-2321 (*1 *2 *1 *1) (-12 (-5 *2 (-618 (-286 *4))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890))))) -(-13 (-465) (-10 -8 (-15 -4286 ($ (-640 |#1| |#2|))) (-15 -4285 ((-640 |#1| |#2|) $)) (-15 -2984 ((-618 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $)) (-15 -4300 ((-1240 |#1| |#2|) $)) (-15 -4300 ((-1245 |#1| |#2|) $)) (-15 -4279 ($ $)) (-15 -4277 ((-618 |#1|) $)) (-15 -2323 ((-618 (-640 |#1| |#2|)) (-618 |#1|))) (-15 -2322 ((-618 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $)) (-15 -2321 ((-618 (-286 |#2|)) $ $)))) -((-4028 (((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112)) 72) (((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112)) 58)) (-2324 (((-112) (-618 (-756 |#1| (-836 |#2|)))) 23)) (-2328 (((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112)) 71)) (-2327 (((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112)) 57)) (-2326 (((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|)))) 27)) (-2325 (((-3 (-618 (-756 |#1| (-836 |#2|))) "failed") (-618 (-756 |#1| (-836 |#2|)))) 26))) -(((-606 |#1| |#2|) (-10 -7 (-15 -2324 ((-112) (-618 (-756 |#1| (-836 |#2|))))) (-15 -2325 ((-3 (-618 (-756 |#1| (-836 |#2|))) "failed") (-618 (-756 |#1| (-836 |#2|))))) (-15 -2326 ((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))))) (-15 -2327 ((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2328 ((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -4028 ((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -4028 ((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112)))) (-444) (-618 (-1142))) (T -606)) -((-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) (-5 *1 (-606 *5 *6)))) (-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) (-5 *1 (-606 *5 *6)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) (-2326 (*1 *2 *2) (-12 (-5 *2 (-618 (-756 *3 (-836 *4)))) (-4 *3 (-444)) (-14 *4 (-618 (-1142))) (-5 *1 (-606 *3 *4)))) (-2325 (*1 *2 *2) (|partial| -12 (-5 *2 (-618 (-756 *3 (-836 *4)))) (-4 *3 (-444)) (-14 *4 (-618 (-1142))) (-5 *1 (-606 *3 *4)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-618 (-756 *4 (-836 *5)))) (-4 *4 (-444)) (-14 *5 (-618 (-1142))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5))))) -(-10 -7 (-15 -2324 ((-112) (-618 (-756 |#1| (-836 |#2|))))) (-15 -2325 ((-3 (-618 (-756 |#1| (-836 |#2|))) "failed") (-618 (-756 |#1| (-836 |#2|))))) (-15 -2326 ((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))))) (-15 -2327 ((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2328 ((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -4028 ((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -4028 ((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112)))) -((-3368 (((-113) (-113)) 83)) (-2332 ((|#2| |#2|) 30)) (-3153 ((|#2| |#2| (-1058 |#2|)) 79) ((|#2| |#2| (-1142)) 52)) (-2330 ((|#2| |#2|) 29)) (-2331 ((|#2| |#2|) 31)) (-2329 (((-112) (-113)) 34)) (-2334 ((|#2| |#2|) 26)) (-2335 ((|#2| |#2|) 28)) (-2333 ((|#2| |#2|) 27))) -(((-607 |#1| |#2|) (-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -2335 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2331 (|#2| |#2|)) (-15 -3153 (|#2| |#2| (-1142))) (-15 -3153 (|#2| |#2| (-1058 |#2|)))) (-13 (-823) (-542)) (-13 (-414 |#1|) (-973) (-1164))) (T -607)) -((-3153 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-414 *4) (-973) (-1164))) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-607 *4 *2)))) (-3153 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-607 *4 *2)) (-4 *2 (-13 (-414 *4) (-973) (-1164))))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *4)) (-4 *4 (-13 (-414 *3) (-973) (-1164))))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-607 *4 *5)) (-4 *5 (-13 (-414 *4) (-973) (-1164)))))) -(-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -2335 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2331 (|#2| |#2|)) (-15 -3153 (|#2| |#2| (-1142))) (-15 -3153 (|#2| |#2| (-1058 |#2|)))) -((-3829 (($ $) 38)) (-3985 (($ $) 21)) (-3827 (($ $) 37)) (-3984 (($ $) 22)) (-3831 (($ $) 36)) (-3983 (($ $) 23)) (-3973 (($) 48)) (-4285 (($ $) 45)) (-2332 (($ $) 17)) (-3153 (($ $ (-1058 $)) 7) (($ $ (-1142)) 6)) (-4286 (($ $) 46)) (-2330 (($ $) 15)) (-2331 (($ $) 16)) (-3832 (($ $) 35)) (-3982 (($ $) 24)) (-3830 (($ $) 34)) (-3981 (($ $) 25)) (-3828 (($ $) 33)) (-3980 (($ $) 26)) (-3835 (($ $) 44)) (-3823 (($ $) 32)) (-3833 (($ $) 43)) (-3821 (($ $) 31)) (-3837 (($ $) 42)) (-3825 (($ $) 30)) (-3838 (($ $) 41)) (-3826 (($ $) 29)) (-3836 (($ $) 40)) (-3824 (($ $) 28)) (-3834 (($ $) 39)) (-3822 (($ $) 27)) (-2334 (($ $) 19)) (-2335 (($ $) 20)) (-2333 (($ $) 18)) (** (($ $ $) 47))) -(((-608) (-138)) (T -608)) -((-2335 (*1 *1 *1) (-4 *1 (-608))) (-2334 (*1 *1 *1) (-4 *1 (-608))) (-2333 (*1 *1 *1) (-4 *1 (-608))) (-2332 (*1 *1 *1) (-4 *1 (-608))) (-2331 (*1 *1 *1) (-4 *1 (-608))) (-2330 (*1 *1 *1) (-4 *1 (-608)))) -(-13 (-931) (-1164) (-10 -8 (-15 -2335 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $)) (-15 -2332 ($ $)) (-15 -2331 ($ $)) (-15 -2330 ($ $)))) -(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-931) . T) ((-1164) . T) ((-1167) . T)) -((-2345 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 53)) (-2338 (((-618 (-241 |#1| |#2|)) (-618 (-473 |#1| |#2|))) 68)) (-2339 (((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-836 |#1|)) 70) (((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)) (-836 |#1|)) 69)) (-2336 (((-2 (|:| |gblist| (-618 (-241 |#1| |#2|))) (|:| |gvlist| (-618 (-535)))) (-618 (-473 |#1| |#2|))) 108)) (-2343 (((-618 (-473 |#1| |#2|)) (-836 |#1|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|))) 83)) (-2337 (((-2 (|:| |glbase| (-618 (-241 |#1| |#2|))) (|:| |glval| (-618 (-535)))) (-618 (-241 |#1| |#2|))) 118)) (-2341 (((-1224 |#2|) (-473 |#1| |#2|) (-618 (-473 |#1| |#2|))) 58)) (-2340 (((-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|))) 41)) (-2344 (((-241 |#1| |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|))) 50)) (-2342 (((-241 |#1| |#2|) (-618 |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|))) 91))) -(((-609 |#1| |#2|) (-10 -7 (-15 -2336 ((-2 (|:| |gblist| (-618 (-241 |#1| |#2|))) (|:| |gvlist| (-618 (-535)))) (-618 (-473 |#1| |#2|)))) (-15 -2337 ((-2 (|:| |glbase| (-618 (-241 |#1| |#2|))) (|:| |glval| (-618 (-535)))) (-618 (-241 |#1| |#2|)))) (-15 -2338 ((-618 (-241 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2339 ((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2339 ((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2340 ((-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2341 ((-1224 |#2|) (-473 |#1| |#2|) (-618 (-473 |#1| |#2|)))) (-15 -2342 ((-241 |#1| |#2|) (-618 |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|)))) (-15 -2343 ((-618 (-473 |#1| |#2|)) (-836 |#1|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2344 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|)))) (-15 -2345 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) (-618 (-1142)) (-444)) (T -609)) -((-2345 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *2 (-473 *4 *5)) (-5 *1 (-609 *4 *5)))) (-2344 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))) (-2343 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-618 (-473 *4 *5))) (-5 *3 (-836 *4)) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))) (-2342 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-241 *5 *6))) (-4 *6 (-444)) (-5 *2 (-241 *5 *6)) (-14 *5 (-618 (-1142))) (-5 *1 (-609 *5 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-618 (-1142))) (-4 *6 (-444)) (-5 *2 (-1224 *6)) (-5 *1 (-609 *5 *6)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-618 (-473 *3 *4))) (-14 *3 (-618 (-1142))) (-4 *4 (-444)) (-5 *1 (-609 *3 *4)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-618 (-1142))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) (-2339 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-618 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-618 (-1142))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-618 (-473 *4 *5))) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *2 (-618 (-241 *4 *5))) (-5 *1 (-609 *4 *5)))) (-2337 (*1 *2 *3) (-12 (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |glbase| (-618 (-241 *4 *5))) (|:| |glval| (-618 (-535))))) (-5 *1 (-609 *4 *5)) (-5 *3 (-618 (-241 *4 *5))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-618 (-473 *4 *5))) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |gblist| (-618 (-241 *4 *5))) (|:| |gvlist| (-618 (-535))))) (-5 *1 (-609 *4 *5))))) -(-10 -7 (-15 -2336 ((-2 (|:| |gblist| (-618 (-241 |#1| |#2|))) (|:| |gvlist| (-618 (-535)))) (-618 (-473 |#1| |#2|)))) (-15 -2337 ((-2 (|:| |glbase| (-618 (-241 |#1| |#2|))) (|:| |glval| (-618 (-535)))) (-618 (-241 |#1| |#2|)))) (-15 -2338 ((-618 (-241 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2339 ((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2339 ((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2340 ((-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2341 ((-1224 |#2|) (-473 |#1| |#2|) (-618 (-473 |#1| |#2|)))) (-15 -2342 ((-241 |#1| |#2|) (-618 |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|)))) (-15 -2343 ((-618 (-473 |#1| |#2|)) (-836 |#1|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2344 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|)))) (-15 -2345 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL)) (-2296 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-51) $ (-1124) (-51)) 16) (((-51) $ (-1142) (-51)) 17)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 (-51) #1="failed") (-1124) $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-3747 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-51) #1#) (-1124) $) NIL)) (-3748 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-51) $ (-1124) (-51)) NIL (|has| $ (-6 -4337)))) (-3431 (((-51) $ (-1124)) NIL)) (-2063 (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-2346 (($ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2502 (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2299 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2347 (($ (-381)) 9)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-2735 (((-618 (-1124)) $) NIL)) (-2306 (((-112) (-1124) $) NIL)) (-1326 (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL)) (-2301 (((-618 (-1124)) $) NIL)) (-2302 (((-112) (-1124) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-4143 (((-51) $) NIL (|has| (-1124) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) "failed") (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL)) (-2297 (($ $ (-51)) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ $ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-51)) (-618 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-618 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2303 (((-618 (-51)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-51) $ (-1124)) 14) (((-51) $ (-1124) (-51)) NIL) (((-51) $ (-1142)) 15)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (((-747) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067)))) (((-747) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-593 (-835))) (|has| (-51) (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-610) (-13 (-1155 (-1124) (-51)) (-10 -8 (-15 -2347 ($ (-381))) (-15 -2346 ($ $)) (-15 -4142 ((-51) $ (-1142))) (-15 -4130 ((-51) $ (-1142) (-51)))))) (T -610)) -((-2347 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-610)))) (-2346 (*1 *1 *1) (-5 *1 (-610))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-51)) (-5 *1 (-610)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1142)) (-5 *1 (-610))))) -(-13 (-1155 (-1124) (-51)) (-10 -8 (-15 -2347 ($ (-381))) (-15 -2346 ($ $)) (-15 -4142 ((-51) $ (-1142))) (-15 -4130 ((-51) $ (-1142) (-51))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1224 (-665 |#1|)) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1840 (((-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-3879 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1814 (((-3 $ #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1902 (((-665 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1838 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1900 (((-665 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2487 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2017 (((-1136 (-917 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2490 (($ $ (-890)) NIL)) (-1836 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1816 (((-1136 |#1|) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1904 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1834 (((-1136 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1906 (($ (-1224 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1224 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-3804 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-3427 (((-890)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2515 (($ $ (-890)) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1819 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1823 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1815 (((-3 $ #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1903 (((-665 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1839 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1901 (((-665 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2488 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2021 (((-1136 (-917 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2489 (($ $ (-890)) NIL)) (-1837 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1817 (((-1136 |#1|) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1905 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1835 (((-1136 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1822 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3577 (((-1086) $) NIL)) (-1827 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4142 ((|#1| $ (-535)) NIL (|has| |#2| (-411 |#1|)))) (-3558 (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-411 |#1|))) (((-1224 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $) (-1224 $)) NIL (|has| |#2| (-360 |#1|))) (((-1224 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-4313 (($ (-1224 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1224 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2009 (((-618 (-917 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-618 (-917 |#1|)) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2677 (($ $ $) NIL)) (-1833 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4300 (((-835) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2123 (((-1224 $)) NIL (|has| |#2| (-411 |#1|)))) (-1818 (((-618 (-1224 |#1|))) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2871 (($ (-665 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2676 (($ $ $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2979 (($) 15 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) 17)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-611 |#1| |#2|) (-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -4300 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-721 |#1|)) (T -611)) -((-4300 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-611 *3 *2)) (-4 *2 (-721 *3))))) -(-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -4300 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) -((-4291 (($ $ |#2|) 10))) -(((-612 |#1| |#2|) (-10 -8 (-15 -4291 (|#1| |#1| |#2|))) (-613 |#2|) (-170)) (T -612)) -NIL -(-10 -8 (-15 -4291 (|#1| |#1| |#2|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3867 (($ $ $) 29)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 28 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-613 |#1|) (-138) (-170)) (T -613)) -((-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-170)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(-13 (-694 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3867 ($ $ $)) (IF (|has| |t#1| (-356)) (-15 -4291 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T)) -((-2349 (((-3 (-815 |#2|) #1="failed") |#2| (-286 |#2|) (-1124)) 82) (((-3 (-815 |#2|) (-2 (|:| |leftHandLimit| (-3 (-815 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-815 |#2|) #1#))) "failed") |#2| (-286 (-815 |#2|))) 104)) (-2348 (((-3 (-808 |#2|) "failed") |#2| (-286 (-808 |#2|))) 109))) -(((-614 |#1| |#2|) (-10 -7 (-15 -2349 ((-3 (-815 |#2|) (-2 (|:| |leftHandLimit| (-3 (-815 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-815 |#2|) #1#))) "failed") |#2| (-286 (-815 |#2|)))) (-15 -2348 ((-3 (-808 |#2|) "failed") |#2| (-286 (-808 |#2|)))) (-15 -2349 ((-3 (-815 |#2|) #1#) |#2| (-286 |#2|) (-1124)))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -614)) -((-2349 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1124)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-815 *3)) (-5 *1 (-614 *6 *3)))) (-2348 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-286 (-808 *3))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-808 *3)) (-5 *1 (-614 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-815 *3))) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (-815 *3) (-2 (|:| |leftHandLimit| (-3 (-815 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-815 *3) #1#))) "failed")) (-5 *1 (-614 *5 *3))))) -(-10 -7 (-15 -2349 ((-3 (-815 |#2|) (-2 (|:| |leftHandLimit| (-3 (-815 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-815 |#2|) #1#))) "failed") |#2| (-286 (-815 |#2|)))) (-15 -2348 ((-3 (-808 |#2|) "failed") |#2| (-286 (-808 |#2|)))) (-15 -2349 ((-3 (-815 |#2|) #1#) |#2| (-286 |#2|) (-1124)))) -((-2349 (((-3 (-815 (-400 (-917 |#1|))) #1="failed") (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))) (-1124)) 80) (((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2="failed") (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|)))) 20) (((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2#) (-400 (-917 |#1|)) (-286 (-815 (-917 |#1|)))) 35)) (-2348 (((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|)))) 23) (((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-808 (-917 |#1|)))) 43))) -(((-615 |#1|) (-10 -7 (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2="failed") (-400 (-917 |#1|)) (-286 (-815 (-917 |#1|))))) (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2#) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -2348 ((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-808 (-917 |#1|))))) (-15 -2348 ((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) #1#) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))) (-1124)))) (-444)) (T -615)) -((-2349 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 (-400 (-917 *6)))) (-5 *5 (-1124)) (-5 *3 (-400 (-917 *6))) (-4 *6 (-444)) (-5 *2 (-815 *3)) (-5 *1 (-615 *6)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-444)) (-5 *2 (-808 *3)) (-5 *1 (-615 *5)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-808 (-917 *5)))) (-4 *5 (-444)) (-5 *2 (-808 (-400 (-917 *5)))) (-5 *1 (-615 *5)) (-5 *3 (-400 (-917 *5))))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-444)) (-5 *2 (-3 (-815 *3) (-2 (|:| |leftHandLimit| (-3 (-815 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-815 *3) #1#))) #2="failed")) (-5 *1 (-615 *5)))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-815 (-917 *5)))) (-4 *5 (-444)) (-5 *2 (-3 (-815 (-400 (-917 *5))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 *5))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 *5))) #1#))) #2#)) (-5 *1 (-615 *5)) (-5 *3 (-400 (-917 *5)))))) -(-10 -7 (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2="failed") (-400 (-917 |#1|)) (-286 (-815 (-917 |#1|))))) (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2#) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -2348 ((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-808 (-917 |#1|))))) (-15 -2348 ((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) #1#) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))) (-1124)))) -((-2352 (((-3 (-1224 (-400 |#1|)) "failed") (-1224 |#2|) |#2|) 57 (-3659 (|has| |#1| (-356)))) (((-3 (-1224 |#1|) "failed") (-1224 |#2|) |#2|) 42 (|has| |#1| (-356)))) (-2350 (((-112) (-1224 |#2|)) 30)) (-2351 (((-3 (-1224 |#1|) "failed") (-1224 |#2|)) 33))) -(((-616 |#1| |#2|) (-10 -7 (-15 -2350 ((-112) (-1224 |#2|))) (-15 -2351 ((-3 (-1224 |#1|) "failed") (-1224 |#2|))) (IF (|has| |#1| (-356)) (-15 -2352 ((-3 (-1224 |#1|) "failed") (-1224 |#2|) |#2|)) (-15 -2352 ((-3 (-1224 (-400 |#1|)) "failed") (-1224 |#2|) |#2|)))) (-542) (-617 |#1|)) (T -616)) -((-2352 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 *5)) (-3659 (-4 *5 (-356))) (-4 *5 (-542)) (-5 *2 (-1224 (-400 *5))) (-5 *1 (-616 *5 *4)))) (-2352 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 *5)) (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 (-1224 *5)) (-5 *1 (-616 *5 *4)))) (-2351 (*1 *2 *3) (|partial| -12 (-5 *3 (-1224 *5)) (-4 *5 (-617 *4)) (-4 *4 (-542)) (-5 *2 (-1224 *4)) (-5 *1 (-616 *4 *5)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-1224 *5)) (-4 *5 (-617 *4)) (-4 *4 (-542)) (-5 *2 (-112)) (-5 *1 (-616 *4 *5))))) -(-10 -7 (-15 -2350 ((-112) (-1224 |#2|))) (-15 -2351 ((-3 (-1224 |#1|) "failed") (-1224 |#2|))) (IF (|has| |#1| (-356)) (-15 -2352 ((-3 (-1224 |#1|) "failed") (-1224 |#2|) |#2|)) (-15 -2352 ((-3 (-1224 (-400 |#1|)) "failed") (-1224 |#2|) |#2|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2353 (((-665 |#1|) (-665 $)) 34) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 33)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-617 |#1|) (-138) (-1018)) (T -617)) -((-2353 (*1 *2 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-617 *4)) (-4 *4 (-1018)) (-5 *2 (-665 *4)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *1)) (-5 *4 (-1224 *1)) (-4 *1 (-617 *5)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -1695 (-665 *5)) (|:| |vec| (-1224 *5))))))) -(-13 (-1018) (-10 -8 (-15 -2353 ((-665 |t#1|) (-665 $))) (-15 -2353 ((-2 (|:| -1695 (-665 |t#1|)) (|:| |vec| (-1224 |t#1|))) (-665 $) (-1224 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-4137 ((|#1| $) NIL)) (-4139 (($ $) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-3230 (($ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) NIL (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-2356 (($ $ $) 32 (|has| |#1| (-1067)))) (-2355 (($ $ $) 34 (|has| |#1| (-1067)))) (-2354 (($ $ $) 37 (|has| |#1| (-1067)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4138 ((|#1| $) NIL)) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-4141 (($ $) NIL) (($ $ (-747)) NIL)) (-2446 (($ $) NIL (|has| |#1| (-1067)))) (-1394 (($ $) 31 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3748 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-3761 (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067))) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) (-1 (-112) |#1|) $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2358 (((-112) $) 9)) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2359 (($) 7)) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3880 (($ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-4140 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-3953 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3785 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1191 (-535))) NIL) ((|#1| $ (-535)) 36) ((|#1| $ (-535) |#1|) NIL)) (-3350 (((-535) $ $) NIL)) (-1627 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-3979 (((-112) $) NIL)) (-4134 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 45 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-3798 (($ |#1| $) 10)) (-4133 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4144 (($ $ $) 30) (($ |#1| $) NIL) (($ (-618 $)) NIL) (($ $ |#1|) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2357 (($ $ $) 11)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2825 (((-1124) $) 26 (|has| |#1| (-797))) (((-1124) $ (-112)) 27 (|has| |#1| (-797))) (((-1230) (-799) $) 28 (|has| |#1| (-797))) (((-1230) (-799) $ (-112)) 29 (|has| |#1| (-797)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-618 |#1|) (-13 (-642 |#1|) (-10 -8 (-15 -2359 ($)) (-15 -2358 ((-112) $)) (-15 -3798 ($ |#1| $)) (-15 -2357 ($ $ $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -2356 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -2354 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) (-1178)) (T -618)) -((-2359 (*1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))) (-2358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-618 *3)) (-4 *3 (-1178)))) (-3798 (*1 *1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))) (-2357 (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))) (-2356 (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)))) (-2355 (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)))) (-2354 (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178))))) -(-13 (-642 |#1|) (-10 -8 (-15 -2359 ($)) (-15 -2358 ((-112) $)) (-15 -3798 ($ |#1| $)) (-15 -2357 ($ $ $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -2356 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -2354 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) -((-4184 (((-618 |#2|) (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|) 16)) (-4185 ((|#2| (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|) 18)) (-4301 (((-618 |#2|) (-1 |#2| |#1|) (-618 |#1|)) 13))) -(((-619 |#1| |#2|) (-10 -7 (-15 -4184 ((-618 |#2|) (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|)) (-15 -4301 ((-618 |#2|) (-1 |#2| |#1|) (-618 |#1|)))) (-1178) (-1178)) (T -619)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-618 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-618 *6)) (-5 *1 (-619 *5 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-618 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-619 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-618 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-5 *2 (-618 *5)) (-5 *1 (-619 *6 *5))))) -(-10 -7 (-15 -4184 ((-618 |#2|) (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|)) (-15 -4301 ((-618 |#2|) (-1 |#2| |#1|) (-618 |#1|)))) -((-3764 ((|#2| (-618 |#1|) (-618 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-618 |#1|) (-618 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) |#2|) 17) ((|#2| (-618 |#1|) (-618 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|)) 12))) -(((-620 |#1| |#2|) (-10 -7 (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|))) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1|)) (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) |#2|)) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1| |#2|)) (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) (-1 |#2| |#1|))) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1| (-1 |#2| |#1|)))) (-1067) (-1178)) (T -620)) -((-3764 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1067)) (-4 *2 (-1178)) (-5 *1 (-620 *5 *2)))) (-3764 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-618 *5)) (-5 *4 (-618 *6)) (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *1 (-620 *5 *6)))) (-3764 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-4 *5 (-1067)) (-4 *2 (-1178)) (-5 *1 (-620 *5 *2)))) (-3764 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 *5)) (-4 *6 (-1067)) (-4 *5 (-1178)) (-5 *2 (-1 *5 *6)) (-5 *1 (-620 *6 *5)))) (-3764 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-4 *5 (-1067)) (-4 *2 (-1178)) (-5 *1 (-620 *5 *2)))) (-3764 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *6)) (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *6))))) -(-10 -7 (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|))) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1|)) (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) |#2|)) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1| |#2|)) (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) (-1 |#2| |#1|))) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1| (-1 |#2| |#1|)))) -((-4301 (((-618 |#3|) (-1 |#3| |#1| |#2|) (-618 |#1|) (-618 |#2|)) 13))) -(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-618 |#3|) (-1 |#3| |#1| |#2|) (-618 |#1|) (-618 |#2|)))) (-1178) (-1178) (-1178)) (T -621)) -((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-618 *6)) (-5 *5 (-618 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-618 *8)) (-5 *1 (-621 *6 *7 *8))))) -(-10 -7 (-15 -4301 ((-618 |#3|) (-1 |#3| |#1| |#2|) (-618 |#1|) (-618 |#2|)))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11) (((-1147) $) NIL) (($ (-1147)) NIL) ((|#1| $) 8)) (-3375 (((-112) $ $) NIL))) -(((-622 |#1|) (-13 (-1049) (-593 |#1|)) (-1067)) (T -622)) -NIL -(-13 (-1049) (-593 |#1|)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2360 (($ |#1| |#1| $) 43)) (-1264 (((-112) $ (-747)) NIL)) (-1626 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2446 (($ $) 45)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) 52 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 9 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 37)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) 46)) (-3953 (($ |#1| $) 26) (($ |#1| $ (-747)) 42)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1327 ((|#1| $) 48)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 21)) (-3911 (($) 25)) (-2361 (((-112) $) 50)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 59)) (-1518 (($) 23) (($ (-618 |#1|)) 18)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) 56 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 19)) (-4313 (((-524) $) 34 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4300 (((-835) $) 14 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 22)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 61 (|has| |#1| (-1067)))) (-4299 (((-747) $) 16 (|has| $ (-6 -4336))))) -(((-623 |#1|) (-13 (-671 |#1|) (-10 -8 (-6 -4336) (-15 -2361 ((-112) $)) (-15 -2360 ($ |#1| |#1| $)))) (-1067)) (T -623)) -((-2361 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1067)))) (-2360 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1067))))) -(-13 (-671 |#1|) (-10 -8 (-6 -4336) (-15 -2361 ((-112) $)) (-15 -2360 ($ |#1| |#1| $)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23))) -(((-624 |#1|) (-138) (-1025)) (T -624)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1025))))) +((-3297 (((-3 (-623 (-1140 (-550))) "failed") (-623 (-1140 (-550))) (-1140 (-550))) 24))) +(((-558) (-10 -7 (-15 -3297 ((-3 (-623 (-1140 (-550))) "failed") (-623 (-1140 (-550))) (-1140 (-550)))))) (T -558)) +((-3297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1140 (-550)))) (-5 *3 (-1140 (-550))) (-5 *1 (-558))))) +(-10 -7 (-15 -3297 ((-3 (-623 (-1140 (-550))) "failed") (-623 (-1140 (-550))) (-1140 (-550))))) +((-4081 (((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-1144)) 19)) (-1364 (((-623 (-594 |#2|)) (-623 |#2|) (-1144)) 23)) (-3965 (((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-623 (-594 |#2|))) 11)) (-3289 ((|#2| |#2| (-1144)) 54 (|has| |#1| (-542)))) (-3390 ((|#2| |#2| (-1144)) 78 (-12 (|has| |#2| (-277)) (|has| |#1| (-444))))) (-4316 (((-594 |#2|) (-594 |#2|) (-623 (-594 |#2|)) (-1144)) 25)) (-4192 (((-594 |#2|) (-623 (-594 |#2|))) 24)) (-3486 (((-569 |#2|) |#2| (-1144) (-1 (-569 |#2|) |#2| (-1144)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144))) 103 (-12 (|has| |#2| (-277)) (|has| |#2| (-609)) (|has| |#2| (-1011 (-1144))) (|has| |#1| (-596 (-865 (-550)))) (|has| |#1| (-444)) (|has| |#1| (-859 (-550))))))) +(((-559 |#1| |#2|) (-10 -7 (-15 -4081 ((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-1144))) (-15 -4192 ((-594 |#2|) (-623 (-594 |#2|)))) (-15 -4316 ((-594 |#2|) (-594 |#2|) (-623 (-594 |#2|)) (-1144))) (-15 -3965 ((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-623 (-594 |#2|)))) (-15 -1364 ((-623 (-594 |#2|)) (-623 |#2|) (-1144))) (IF (|has| |#1| (-542)) (-15 -3289 (|#2| |#2| (-1144))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -3390 (|#2| |#2| (-1144))) (IF (|has| |#1| (-596 (-865 (-550)))) (IF (|has| |#1| (-859 (-550))) (IF (|has| |#2| (-609)) (IF (|has| |#2| (-1011 (-1144))) (-15 -3486 ((-569 |#2|) |#2| (-1144) (-1 (-569 |#2|) |#2| (-1144)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-825) (-423 |#1|)) (T -559)) +((-3486 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-569 *3) *3 (-1144))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1144))) (-4 *3 (-277)) (-4 *3 (-609)) (-4 *3 (-1011 *4)) (-4 *3 (-423 *7)) (-5 *4 (-1144)) (-4 *7 (-596 (-865 (-550)))) (-4 *7 (-444)) (-4 *7 (-859 (-550))) (-4 *7 (-825)) (-5 *2 (-569 *3)) (-5 *1 (-559 *7 *3)))) (-3390 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-444)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) (-4 *2 (-277)) (-4 *2 (-423 *4)))) (-3289 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-542)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) (-4 *2 (-423 *4)))) (-1364 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-1144)) (-4 *6 (-423 *5)) (-4 *5 (-825)) (-5 *2 (-623 (-594 *6))) (-5 *1 (-559 *5 *6)))) (-3965 (*1 *2 *2 *2) (-12 (-5 *2 (-623 (-594 *4))) (-4 *4 (-423 *3)) (-4 *3 (-825)) (-5 *1 (-559 *3 *4)))) (-4316 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-623 (-594 *6))) (-5 *4 (-1144)) (-5 *2 (-594 *6)) (-4 *6 (-423 *5)) (-4 *5 (-825)) (-5 *1 (-559 *5 *6)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-623 (-594 *5))) (-4 *4 (-825)) (-5 *2 (-594 *5)) (-5 *1 (-559 *4 *5)) (-4 *5 (-423 *4)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-594 *5))) (-5 *3 (-1144)) (-4 *5 (-423 *4)) (-4 *4 (-825)) (-5 *1 (-559 *4 *5))))) +(-10 -7 (-15 -4081 ((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-1144))) (-15 -4192 ((-594 |#2|) (-623 (-594 |#2|)))) (-15 -4316 ((-594 |#2|) (-594 |#2|) (-623 (-594 |#2|)) (-1144))) (-15 -3965 ((-623 (-594 |#2|)) (-623 (-594 |#2|)) (-623 (-594 |#2|)))) (-15 -1364 ((-623 (-594 |#2|)) (-623 |#2|) (-1144))) (IF (|has| |#1| (-542)) (-15 -3289 (|#2| |#2| (-1144))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -3390 (|#2| |#2| (-1144))) (IF (|has| |#1| (-596 (-865 (-550)))) (IF (|has| |#1| (-859 (-550))) (IF (|has| |#2| (-609)) (IF (|has| |#2| (-1011 (-1144))) (-15 -3486 ((-569 |#2|) |#2| (-1144) (-1 (-569 |#2|) |#2| (-1144)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1144)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3771 (((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-623 |#1|) "failed") (-550) |#1| |#1|)) 172)) (-2852 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-623 (-400 |#2|))) 148)) (-3108 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-623 (-400 |#2|))) 145)) (-3194 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3587 (((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3023 (((-3 (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|)) 175)) (-2686 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|)) 178)) (-2271 (((-2 (|:| |ir| (-569 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 84)) (-2341 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2931 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-623 (-400 |#2|))) 152)) (-2188 (((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|)) 137)) (-3678 (((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|)) 162)) (-2760 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-400 |#2|)) 183))) +(((-560 |#1| |#2|) (-10 -7 (-15 -3587 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3678 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -3771 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-623 |#1|) "failed") (-550) |#1| |#1|))) (-15 -2686 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|))) (-15 -2760 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-400 |#2|))) (-15 -2852 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-623 (-400 |#2|)))) (-15 -2931 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-623 (-400 |#2|)))) (-15 -3023 ((-3 (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -3108 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-623 (-400 |#2|)))) (-15 -3194 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2188 ((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -2271 ((-2 (|:| |ir| (-569 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2341 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-356) (-1203 |#1|)) (T -560)) +((-2341 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-560 *5 *3)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |ir| (-569 (-400 *6))) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6)))) (-2188 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-603 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2682 *4) (|:| |sol?| (-112))) (-550) *4)) (-4 *4 (-356)) (-4 *5 (-1203 *4)) (-5 *1 (-560 *4 *5)))) (-3194 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1653 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-356)) (-5 *1 (-560 *4 *2)) (-4 *2 (-1203 *4)))) (-3108 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-623 (-400 *7))) (-4 *7 (-1203 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *7)))) (-3023 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -1653 (-400 *6)) (|:| |coeff| (-400 *6)))) (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6)))) (-2931 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2682 *7) (|:| |sol?| (-112))) (-550) *7)) (-5 *6 (-623 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1203 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-560 *7 *8)))) (-2852 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1653 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-623 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1203 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-560 *7 *8)))) (-2760 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2682 *6) (|:| |sol?| (-112))) (-550) *6)) (-4 *6 (-356)) (-4 *7 (-1203 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -1653 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2686 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1653 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-356)) (-4 *7 (-1203 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -1653 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-3771 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-623 *6) "failed") (-550) *6 *6)) (-4 *6 (-356)) (-4 *7 (-1203 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-3678 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2682 *6) (|:| |sol?| (-112))) (-550) *6)) (-4 *6 (-356)) (-4 *7 (-1203 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-3587 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1653 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-356)) (-4 *7 (-1203 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(-10 -7 (-15 -3587 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3678 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -3771 ((-2 (|:| |answer| (-569 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-623 |#1|) "failed") (-550) |#1| |#1|))) (-15 -2686 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|))) (-15 -2760 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-400 |#2|))) (-15 -2852 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-623 (-400 |#2|)))) (-15 -2931 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-623 (-400 |#2|)))) (-15 -3023 ((-3 (-2 (|:| -1653 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -3108 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-623 (-400 |#2|)))) (-15 -3194 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2188 ((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2682 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -2271 ((-2 (|:| |ir| (-569 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2341 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2421 (((-3 |#2| "failed") |#2| (-1144) (-1144)) 10))) +(((-561 |#1| |#2|) (-10 -7 (-15 -2421 ((-3 |#2| "failed") |#2| (-1144) (-1144)))) (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550))) (-13 (-1166) (-932) (-1107) (-29 |#1|))) (T -561)) +((-2421 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1144)) (-4 *4 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1166) (-932) (-1107) (-29 *4)))))) +(-10 -7 (-15 -2421 ((-3 |#2| "failed") |#2| (-1144) (-1144)))) +((-2141 (((-1088) $ (-128)) 12)) (-3974 (((-1088) $ (-129)) 11)) (-3598 (((-1088) $ (-128)) 7)) (-3720 (((-1088) $) 8)) (-1951 (($ $) 6))) +(((-562) (-138)) (T -562)) +NIL +(-13 (-518) (-835)) +(((-171) . T) ((-518) . T) ((-835) . T)) +((-1504 (((-112) $ $) NIL)) (-4190 (($) 7 T CONST)) (-1825 (((-1126) $) NIL)) (-2095 (($) 6 T CONST)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 14)) (-3535 (($) 8 T CONST)) (-2316 (((-112) $ $) 10))) +(((-563) (-13 (-1068) (-10 -8 (-15 -2095 ($) -2258) (-15 -4190 ($) -2258) (-15 -3535 ($) -2258)))) (T -563)) +((-2095 (*1 *1) (-5 *1 (-563))) (-4190 (*1 *1) (-5 *1 (-563))) (-3535 (*1 *1) (-5 *1 (-563)))) +(-13 (-1068) (-10 -8 (-15 -2095 ($) -2258) (-15 -4190 ($) -2258) (-15 -3535 ($) -2258))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3353 (($ $ (-550)) 66)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-2172 (($ (-1140 (-550)) (-550)) 72)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) 58)) (-3989 (($ $) 34)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-2475 (((-749) $) 15)) (-3102 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-4189 (((-550)) 29)) (-4088 (((-550) $) 32)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2272 (($ $ (-550)) 21)) (-1495 (((-3 $ "failed") $ $) 59)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) 16)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 61)) (-4302 (((-1124 (-550)) $) 18)) (-3380 (($ $) 23)) (-1518 (((-836) $) 87) (($ (-550)) 52) (($ $) NIL)) (-2390 (((-749)) 14)) (-1345 (((-112) $ $) NIL)) (-2001 (((-550) $ (-550)) 36)) (-2626 (($) 35 T CONST)) (-2636 (($) 19 T CONST)) (-2316 (((-112) $ $) 39)) (-2403 (($ $) 51) (($ $ $) 37)) (-2391 (($ $ $) 50)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 54) (($ $ $) 55))) +(((-564 |#1| |#2|) (-842 |#1|) (-550) (-112)) (T -564)) +NIL +(-842 |#1|) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 21)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 (($ $ (-894)) NIL (|has| $ (-361))) (($ $) NIL)) (-1337 (((-1154 (-894) (-749)) (-550)) 47)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 $ "failed") $) 75)) (-2726 (($ $) 74)) (-4110 (($ (-1227 $)) 73)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) 32)) (-1741 (($) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) 49)) (-3697 (((-112) $) NIL)) (-3714 (($ $) NIL) (($ $ (-749)) NIL)) (-3933 (((-112) $) NIL)) (-2475 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-3102 (((-112) $) NIL)) (-2529 (($) 37 (|has| $ (-361)))) (-2340 (((-112) $) NIL (|has| $ (-361)))) (-1389 (($ $ (-894)) NIL (|has| $ (-361))) (($ $) NIL)) (-2826 (((-3 $ "failed") $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 $) $ (-894)) NIL (|has| $ (-361))) (((-1140 $) $) 83)) (-2253 (((-894) $) 55)) (-4116 (((-1140 $) $) NIL (|has| $ (-361)))) (-4008 (((-3 (-1140 $) "failed") $ $) NIL (|has| $ (-361))) (((-1140 $) $) NIL (|has| $ (-361)))) (-4235 (($ $ (-1140 $)) NIL (|has| $ (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL T CONST)) (-2922 (($ (-894)) 48)) (-4100 (((-112) $) 67)) (-3337 (((-1088) $) NIL)) (-3935 (($) 19 (|has| $ (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 42)) (-3338 (((-411 $) $) NIL)) (-3990 (((-894)) 66) (((-811 (-894))) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-3 (-749) "failed") $ $) NIL) (((-749) $) NIL)) (-2854 (((-133)) NIL)) (-2393 (($ $ (-749)) NIL) (($ $) NIL)) (-2970 (((-894) $) 65) (((-811 (-894)) $) NIL)) (-1310 (((-1140 $)) 82)) (-4288 (($) 54)) (-1273 (($) 38 (|has| $ (-361)))) (-1373 (((-667 $) (-1227 $)) NIL) (((-1227 $) $) 71)) (-4028 (((-550) $) 28)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) 30) (($ $) NIL) (($ (-400 (-550))) NIL)) (-4242 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2390 (((-749)) 39)) (-2437 (((-1227 $) (-894)) 77) (((-1227 $)) 76)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) 22 T CONST)) (-2636 (($) 18 T CONST)) (-2072 (($ $ (-749)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 26)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 61) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) +(((-565 |#1|) (-13 (-342) (-322 $) (-596 (-550))) (-894)) (T -565)) +NIL +(-13 (-342) (-322 $) (-596 (-550))) +((-2496 (((-1232) (-1126)) 10))) +(((-566) (-10 -7 (-15 -2496 ((-1232) (-1126))))) (T -566)) +((-2496 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-566))))) +(-10 -7 (-15 -2496 ((-1232) (-1126)))) +((-1716 (((-569 |#2|) (-569 |#2|)) 40)) (-4214 (((-623 |#2|) (-569 |#2|)) 42)) (-4209 ((|#2| (-569 |#2|)) 48))) +(((-567 |#1| |#2|) (-10 -7 (-15 -1716 ((-569 |#2|) (-569 |#2|))) (-15 -4214 ((-623 |#2|) (-569 |#2|))) (-15 -4209 (|#2| (-569 |#2|)))) (-13 (-444) (-1011 (-550)) (-825) (-619 (-550))) (-13 (-29 |#1|) (-1166))) (T -567)) +((-4209 (*1 *2 *3) (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-29 *4) (-1166))) (-5 *1 (-567 *4 *2)) (-4 *4 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-569 *5)) (-4 *5 (-13 (-29 *4) (-1166))) (-4 *4 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) (-5 *2 (-623 *5)) (-5 *1 (-567 *4 *5)))) (-1716 (*1 *2 *2) (-12 (-5 *2 (-569 *4)) (-4 *4 (-13 (-29 *3) (-1166))) (-4 *3 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) (-5 *1 (-567 *3 *4))))) +(-10 -7 (-15 -1716 ((-569 |#2|) (-569 |#2|))) (-15 -4214 ((-623 |#2|) (-569 |#2|))) (-15 -4209 (|#2| (-569 |#2|)))) +((-3972 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|)) 30))) +(((-568 |#1| |#2|) (-10 -7 (-15 -3972 ((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|))) (-15 -3972 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3972 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3972 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-356) (-356)) (T -568)) +((-3972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-568 *5 *6)))) (-3972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-568 *5 *2)))) (-3972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1653 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -1653 *6) (|:| |coeff| *6))) (-5 *1 (-568 *5 *6)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-569 *5)) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-569 *6)) (-5 *1 (-568 *5 *6))))) +(-10 -7 (-15 -3972 ((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|))) (-15 -3972 ((-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1653 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3972 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3972 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) 69)) (-2726 ((|#1| $) NIL)) (-1653 ((|#1| $) 26)) (-1451 (((-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-1753 (($ |#1| (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 |#1|)) (|:| |logand| (-1140 |#1|)))) (-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1557 (((-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 |#1|)) (|:| |logand| (-1140 |#1|)))) $) 27)) (-1825 (((-1126) $) NIL)) (-3336 (($ |#1| |#1|) 33) (($ |#1| (-1144)) 44 (|has| |#1| (-1011 (-1144))))) (-3337 (((-1088) $) NIL)) (-2565 (((-112) $) 30)) (-2393 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1144)) 82 (|has| |#1| (-873 (-1144))))) (-1518 (((-836) $) 96) (($ |#1|) 25)) (-2626 (($) 16 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) 15) (($ $ $) NIL)) (-2391 (($ $ $) 78)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 14) (($ (-400 (-550)) $) 36) (($ $ (-400 (-550))) NIL))) +(((-569 |#1|) (-13 (-696 (-400 (-550))) (-1011 |#1|) (-10 -8 (-15 -1753 ($ |#1| (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 |#1|)) (|:| |logand| (-1140 |#1|)))) (-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1653 (|#1| $)) (-15 -1557 ((-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 |#1|)) (|:| |logand| (-1140 |#1|)))) $)) (-15 -1451 ((-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2565 ((-112) $)) (-15 -3336 ($ |#1| |#1|)) (-15 -2393 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-873 (-1144))) (-15 -2393 (|#1| $ (-1144))) |%noBranch|) (IF (|has| |#1| (-1011 (-1144))) (-15 -3336 ($ |#1| (-1144))) |%noBranch|))) (-356)) (T -569)) +((-1753 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 *2)) (|:| |logand| (-1140 *2))))) (-5 *4 (-623 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) (-5 *1 (-569 *2)))) (-1653 (*1 *2 *1) (-12 (-5 *1 (-569 *2)) (-4 *2 (-356)))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 *3)) (|:| |logand| (-1140 *3))))) (-5 *1 (-569 *3)) (-4 *3 (-356)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-569 *3)) (-4 *3 (-356)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-356)))) (-3336 (*1 *1 *2 *2) (-12 (-5 *1 (-569 *2)) (-4 *2 (-356)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-569 *2)) (-4 *2 (-356)))) (-2393 (*1 *2 *1 *3) (-12 (-4 *2 (-356)) (-4 *2 (-873 *3)) (-5 *1 (-569 *2)) (-5 *3 (-1144)))) (-3336 (*1 *1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *1 (-569 *2)) (-4 *2 (-1011 *3)) (-4 *2 (-356))))) +(-13 (-696 (-400 (-550))) (-1011 |#1|) (-10 -8 (-15 -1753 ($ |#1| (-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 |#1|)) (|:| |logand| (-1140 |#1|)))) (-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1653 (|#1| $)) (-15 -1557 ((-623 (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 |#1|)) (|:| |logand| (-1140 |#1|)))) $)) (-15 -1451 ((-623 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2565 ((-112) $)) (-15 -3336 ($ |#1| |#1|)) (-15 -2393 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-873 (-1144))) (-15 -2393 (|#1| $ (-1144))) |%noBranch|) (IF (|has| |#1| (-1011 (-1144))) (-15 -3336 ($ |#1| (-1144))) |%noBranch|))) +((-3864 (((-112) |#1|) 16)) (-3943 (((-3 |#1| "failed") |#1|) 14)) (-1948 (((-2 (|:| -1860 |#1|) (|:| -3521 (-749))) |#1|) 31) (((-3 |#1| "failed") |#1| (-749)) 18)) (-1856 (((-112) |#1| (-749)) 19)) (-4046 ((|#1| |#1|) 32)) (-2040 ((|#1| |#1| (-749)) 34))) +(((-570 |#1|) (-10 -7 (-15 -1856 ((-112) |#1| (-749))) (-15 -1948 ((-3 |#1| "failed") |#1| (-749))) (-15 -1948 ((-2 (|:| -1860 |#1|) (|:| -3521 (-749))) |#1|)) (-15 -2040 (|#1| |#1| (-749))) (-15 -3864 ((-112) |#1|)) (-15 -3943 ((-3 |#1| "failed") |#1|)) (-15 -4046 (|#1| |#1|))) (-535)) (T -570)) +((-4046 (*1 *2 *2) (-12 (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-3943 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-3864 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535)))) (-2040 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-1948 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1860 *3) (|:| -3521 (-749)))) (-5 *1 (-570 *3)) (-4 *3 (-535)))) (-1948 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) +(-10 -7 (-15 -1856 ((-112) |#1| (-749))) (-15 -1948 ((-3 |#1| "failed") |#1| (-749))) (-15 -1948 ((-2 (|:| -1860 |#1|) (|:| -3521 (-749))) |#1|)) (-15 -2040 (|#1| |#1| (-749))) (-15 -3864 ((-112) |#1|)) (-15 -3943 ((-3 |#1| "failed") |#1|)) (-15 -4046 (|#1| |#1|))) +((-4128 (((-1140 |#1|) (-894)) 27))) +(((-571 |#1|) (-10 -7 (-15 -4128 ((-1140 |#1|) (-894)))) (-342)) (T -571)) +((-4128 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-571 *4)) (-4 *4 (-342))))) +(-10 -7 (-15 -4128 ((-1140 |#1|) (-894)))) +((-1716 (((-569 (-400 (-925 |#1|))) (-569 (-400 (-925 |#1|)))) 27)) (-1489 (((-3 (-309 |#1|) (-623 (-309 |#1|))) (-400 (-925 |#1|)) (-1144)) 34 (|has| |#1| (-145)))) (-4214 (((-623 (-309 |#1|)) (-569 (-400 (-925 |#1|)))) 19)) (-4309 (((-309 |#1|) (-400 (-925 |#1|)) (-1144)) 32 (|has| |#1| (-145)))) (-4209 (((-309 |#1|) (-569 (-400 (-925 |#1|)))) 21))) +(((-572 |#1|) (-10 -7 (-15 -1716 ((-569 (-400 (-925 |#1|))) (-569 (-400 (-925 |#1|))))) (-15 -4214 ((-623 (-309 |#1|)) (-569 (-400 (-925 |#1|))))) (-15 -4209 ((-309 |#1|) (-569 (-400 (-925 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -1489 ((-3 (-309 |#1|) (-623 (-309 |#1|))) (-400 (-925 |#1|)) (-1144))) (-15 -4309 ((-309 |#1|) (-400 (-925 |#1|)) (-1144)))) |%noBranch|)) (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) (T -572)) +((-4309 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) (-5 *2 (-309 *5)) (-5 *1 (-572 *5)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) (-5 *2 (-3 (-309 *5) (-623 (-309 *5)))) (-5 *1 (-572 *5)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-569 (-400 (-925 *4)))) (-4 *4 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) (-5 *2 (-309 *4)) (-5 *1 (-572 *4)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-569 (-400 (-925 *4)))) (-4 *4 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) (-5 *2 (-623 (-309 *4))) (-5 *1 (-572 *4)))) (-1716 (*1 *2 *2) (-12 (-5 *2 (-569 (-400 (-925 *3)))) (-4 *3 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) (-5 *1 (-572 *3))))) +(-10 -7 (-15 -1716 ((-569 (-400 (-925 |#1|))) (-569 (-400 (-925 |#1|))))) (-15 -4214 ((-623 (-309 |#1|)) (-569 (-400 (-925 |#1|))))) (-15 -4209 ((-309 |#1|) (-569 (-400 (-925 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -1489 ((-3 (-309 |#1|) (-623 (-309 |#1|))) (-400 (-925 |#1|)) (-1144))) (-15 -4309 ((-309 |#1|) (-400 (-925 |#1|)) (-1144)))) |%noBranch|)) +((-3276 (((-623 (-667 (-550))) (-623 (-550)) (-623 (-878 (-550)))) 46) (((-623 (-667 (-550))) (-623 (-550))) 47) (((-667 (-550)) (-623 (-550)) (-878 (-550))) 42)) (-1347 (((-749) (-623 (-550))) 40))) +(((-573) (-10 -7 (-15 -1347 ((-749) (-623 (-550)))) (-15 -3276 ((-667 (-550)) (-623 (-550)) (-878 (-550)))) (-15 -3276 ((-623 (-667 (-550))) (-623 (-550)))) (-15 -3276 ((-623 (-667 (-550))) (-623 (-550)) (-623 (-878 (-550))))))) (T -573)) +((-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-550))) (-5 *4 (-623 (-878 (-550)))) (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-573)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-573)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-550))) (-5 *4 (-878 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-573)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-749)) (-5 *1 (-573))))) +(-10 -7 (-15 -1347 ((-749) (-623 (-550)))) (-15 -3276 ((-667 (-550)) (-623 (-550)) (-878 (-550)))) (-15 -3276 ((-623 (-667 (-550))) (-623 (-550)))) (-15 -3276 ((-623 (-667 (-550))) (-623 (-550)) (-623 (-878 (-550)))))) +((-1758 (((-623 |#5|) |#5| (-112)) 73)) (-3359 (((-112) |#5| (-623 |#5|)) 30))) +(((-574 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1758 ((-623 |#5|) |#5| (-112))) (-15 -3359 ((-112) |#5| (-623 |#5|)))) (-13 (-300) (-145)) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -574)) +((-3359 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-574 *5 *6 *7 *8 *3)))) (-1758 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) (-5 *2 (-623 *3)) (-5 *1 (-574 *5 *6 *7 *8 *3)) (-4 *3 (-1077 *5 *6 *7 *8))))) +(-10 -7 (-15 -1758 ((-623 |#5|) |#5| (-112))) (-15 -3359 ((-112) |#5| (-623 |#5|)))) +((-1504 (((-112) $ $) NIL)) (-2874 (((-1103) $) 11)) (-2864 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 19) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-575) (-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1103) $))))) (T -575)) +((-2864 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-575)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-575))))) +(-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1103) $)))) +((-1504 (((-112) $ $) NIL (|has| (-142) (-1068)))) (-1869 (($ $) 34)) (-2009 (($ $) NIL)) (-1583 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3745 (((-112) $ $) 51)) (-3725 (((-112) $ $ (-550)) 46)) (-1716 (((-623 $) $ (-142)) 60) (((-623 $) $ (-139)) 61)) (-3654 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-825)))) (-3491 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| (-142) (-825))))) (-1674 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 (((-142) $ (-550) (-142)) 45 (|has| $ (-6 -4343))) (((-142) $ (-1194 (-550)) (-142)) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2999 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1727 (($ $ (-1194 (-550)) $) 44)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-3137 (($ (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4342))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3245 (((-142) $ (-550) (-142)) NIL (|has| $ (-6 -4343)))) (-3181 (((-142) $ (-550)) NIL)) (-3764 (((-112) $ $) 72)) (-2302 (((-550) (-1 (-112) (-142)) $) NIL) (((-550) (-142) $) NIL (|has| (-142) (-1068))) (((-550) (-142) $ (-550)) 48 (|has| (-142) (-1068))) (((-550) $ $ (-550)) 47) (((-550) (-139) $ (-550)) 50)) (-3450 (((-623 (-142)) $) NIL (|has| $ (-6 -4342)))) (-2578 (($ (-749) (-142)) 9)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) 28 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| (-142) (-825)))) (-1832 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-825)))) (-2689 (((-623 (-142)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-3283 (((-550) $) 42 (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| (-142) (-825)))) (-1764 (((-112) $ $ (-142)) 73)) (-3658 (((-749) $ $ (-142)) 70)) (-3234 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3865 (($ $) 37)) (-3966 (($ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-3010 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-1825 (((-1126) $) 38 (|has| (-142) (-1068)))) (-2055 (($ (-142) $ (-550)) NIL) (($ $ $ (-550)) 23)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-550) $) 69) (((-1088) $) NIL (|has| (-142) (-1068)))) (-1293 (((-142) $) NIL (|has| (-550) (-825)))) (-3321 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3111 (($ $ (-142)) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-623 (-142)) (-623 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-2477 (((-623 (-142)) $) NIL)) (-2902 (((-112) $) 12)) (-3498 (($) 10)) (-2680 (((-142) $ (-550) (-142)) NIL) (((-142) $ (-550)) 52) (($ $ (-1194 (-550))) 21) (($ $ $) NIL)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3350 (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342))) (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-3593 (($ $ $ (-550)) 66 (|has| $ (-6 -4343)))) (-1731 (($ $) 17)) (-4028 (((-526) $) NIL (|has| (-142) (-596 (-526))))) (-1532 (($ (-623 (-142))) NIL)) (-3227 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-623 $)) 67)) (-1518 (($ (-142)) NIL) (((-836) $) 27 (|has| (-142) (-595 (-836))))) (-1675 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2316 (((-112) $ $) 14 (|has| (-142) (-1068)))) (-2354 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2335 (((-112) $ $) 15 (|has| (-142) (-825)))) (-3191 (((-749) $) 13 (|has| $ (-6 -4342))))) +(((-576 |#1|) (-13 (-1112) (-10 -8 (-15 -3337 ((-550) $)))) (-550)) (T -576)) +((-3337 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-576 *3)) (-14 *3 *2)))) +(-13 (-1112) (-10 -8 (-15 -3337 ((-550) $)))) +((-3601 (((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1062 |#4|)) 32))) +(((-577 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3601 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1062 |#4|))) (-15 -3601 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|))) (-771) (-825) (-542) (-922 |#3| |#1| |#2|)) (T -577)) +((-3601 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) (-5 *1 (-577 *5 *4 *6 *3)) (-4 *3 (-922 *6 *5 *4)))) (-3601 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1062 *3)) (-4 *3 (-922 *7 *6 *4)) (-4 *6 (-771)) (-4 *4 (-825)) (-4 *7 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) (-5 *1 (-577 *6 *4 *7 *3))))) +(-10 -7 (-15 -3601 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1062 |#4|))) (-15 -3601 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 63)) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-2370 (($ $ (-550)) 54) (($ $ (-550) (-550)) 55)) (-2575 (((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 60)) (-3369 (($ $) 100)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1353 (((-836) (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-999 (-818 (-550))) (-1144) |#1| (-400 (-550))) 224)) (-2672 (($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 34)) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3478 (((-112) $) NIL)) (-2475 (((-550) $) 58) (((-550) $ (-550)) 59)) (-3102 (((-112) $) NIL)) (-1784 (($ $ (-894)) 76)) (-3315 (($ (-1 |#1| (-550)) $) 73)) (-3439 (((-112) $) 25)) (-3118 (($ |#1| (-550)) 22) (($ $ (-1050) (-550)) NIL) (($ $ (-623 (-1050)) (-623 (-550))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) 67)) (-3723 (($ (-999 (-818 (-550))) (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 13)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-1489 (($ $) 150 (|has| |#1| (-38 (-400 (-550)))))) (-3468 (((-3 $ "failed") $ $ (-112)) 99)) (-1448 (($ $ $) 108)) (-3337 (((-1088) $) NIL)) (-3554 (((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 15)) (-3640 (((-999 (-818 (-550))) $) 14)) (-2272 (($ $ (-550)) 45)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3866 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550)))))) (-2680 ((|#1| $ (-550)) 57) (($ $ $) NIL (|has| (-550) (-1080)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-2970 (((-550) $) NIL)) (-3380 (($ $) 46)) (-1518 (((-836) $) NIL) (($ (-550)) 28) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 27 (|has| |#1| (-170)))) (-2510 ((|#1| $ (-550)) 56)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) 37)) (-3335 ((|#1| $) NIL)) (-2175 (($ $) 186 (|has| |#1| (-38 (-400 (-550)))))) (-2034 (($ $) 158 (|has| |#1| (-38 (-400 (-550)))))) (-2318 (($ $) 190 (|has| |#1| (-38 (-400 (-550)))))) (-3951 (($ $) 163 (|has| |#1| (-38 (-400 (-550)))))) (-3107 (($ $) 189 (|has| |#1| (-38 (-400 (-550)))))) (-1841 (($ $) 162 (|has| |#1| (-38 (-400 (-550)))))) (-4219 (($ $ (-400 (-550))) 166 (|has| |#1| (-38 (-400 (-550)))))) (-4320 (($ $ |#1|) 146 (|has| |#1| (-38 (-400 (-550)))))) (-4041 (($ $) 192 (|has| |#1| (-38 (-400 (-550)))))) (-4125 (($ $) 149 (|has| |#1| (-38 (-400 (-550)))))) (-3019 (($ $) 191 (|has| |#1| (-38 (-400 (-550)))))) (-1739 (($ $) 164 (|has| |#1| (-38 (-400 (-550)))))) (-3200 (($ $) 187 (|has| |#1| (-38 (-400 (-550)))))) (-1934 (($ $) 160 (|has| |#1| (-38 (-400 (-550)))))) (-2250 (($ $) 188 (|has| |#1| (-38 (-400 (-550)))))) (-2120 (($ $) 161 (|has| |#1| (-38 (-400 (-550)))))) (-2746 (($ $) 197 (|has| |#1| (-38 (-400 (-550)))))) (-2628 (($ $) 173 (|has| |#1| (-38 (-400 (-550)))))) (-2927 (($ $) 194 (|has| |#1| (-38 (-400 (-550)))))) (-1636 (($ $) 168 (|has| |#1| (-38 (-400 (-550)))))) (-3546 (($ $) 201 (|has| |#1| (-38 (-400 (-550)))))) (-2480 (($ $) 177 (|has| |#1| (-38 (-400 (-550)))))) (-3447 (($ $) 203 (|has| |#1| (-38 (-400 (-550)))))) (-2405 (($ $) 179 (|has| |#1| (-38 (-400 (-550)))))) (-3836 (($ $) 199 (|has| |#1| (-38 (-400 (-550)))))) (-2554 (($ $) 175 (|has| |#1| (-38 (-400 (-550)))))) (-2857 (($ $) 196 (|has| |#1| (-38 (-400 (-550)))))) (-1537 (($ $) 171 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2001 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-2626 (($) 29 T CONST)) (-2636 (($) 38 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-2316 (((-112) $ $) 65)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) 84) (($ $ $) 64)) (-2391 (($ $ $) 81)) (** (($ $ (-894)) NIL) (($ $ (-749)) 103)) (* (($ (-894) $) 89) (($ (-749) $) 87) (($ (-550) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-578 |#1|) (-13 (-1205 |#1| (-550)) (-10 -8 (-15 -3723 ($ (-999 (-818 (-550))) (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -3640 ((-999 (-818 (-550))) $)) (-15 -3554 ((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $)) (-15 -2672 ($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -3439 ((-112) $)) (-15 -3315 ($ (-1 |#1| (-550)) $)) (-15 -3468 ((-3 $ "failed") $ $ (-112))) (-15 -3369 ($ $)) (-15 -1448 ($ $ $)) (-15 -1353 ((-836) (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-999 (-818 (-550))) (-1144) |#1| (-400 (-550)))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $)) (-15 -4320 ($ $ |#1|)) (-15 -4219 ($ $ (-400 (-550)))) (-15 -4125 ($ $)) (-15 -4041 ($ $)) (-15 -3951 ($ $)) (-15 -2120 ($ $)) (-15 -2034 ($ $)) (-15 -1934 ($ $)) (-15 -1841 ($ $)) (-15 -1739 ($ $)) (-15 -1636 ($ $)) (-15 -1537 ($ $)) (-15 -2628 ($ $)) (-15 -2554 ($ $)) (-15 -2480 ($ $)) (-15 -2405 ($ $)) (-15 -2318 ($ $)) (-15 -2250 ($ $)) (-15 -2175 ($ $)) (-15 -3200 ($ $)) (-15 -3107 ($ $)) (-15 -3019 ($ $)) (-15 -2927 ($ $)) (-15 -2857 ($ $)) (-15 -2746 ($ $)) (-15 -3836 ($ $)) (-15 -3546 ($ $)) (-15 -3447 ($ $))) |%noBranch|))) (-1020)) (T -578)) +((-3439 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1020)))) (-3723 (*1 *1 *2 *3) (-12 (-5 *2 (-999 (-818 (-550)))) (-5 *3 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *4)))) (-4 *4 (-1020)) (-5 *1 (-578 *4)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-999 (-818 (-550)))) (-5 *1 (-578 *3)) (-4 *3 (-1020)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-5 *1 (-578 *3)) (-4 *3 (-1020)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-4 *3 (-1020)) (-5 *1 (-578 *3)))) (-3315 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *3 (-1020)) (-5 *1 (-578 *3)))) (-3468 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1020)))) (-3369 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1020)))) (-1448 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1020)))) (-1353 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *6)))) (-5 *4 (-999 (-818 (-550)))) (-5 *5 (-1144)) (-5 *7 (-400 (-550))) (-4 *6 (-1020)) (-5 *2 (-836)) (-5 *1 (-578 *6)))) (-1489 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-4320 (*1 *1 *1 *2) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-578 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1020)))) (-4125 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-4041 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2120 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2034 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-1934 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-1841 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-1739 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-1636 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-1537 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2628 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2554 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2480 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2405 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2318 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2250 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-3107 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-3019 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2927 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2857 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-2746 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-3836 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-3546 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) (-3447 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(-13 (-1205 |#1| (-550)) (-10 -8 (-15 -3723 ($ (-999 (-818 (-550))) (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -3640 ((-999 (-818 (-550))) $)) (-15 -3554 ((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $)) (-15 -2672 ($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -3439 ((-112) $)) (-15 -3315 ($ (-1 |#1| (-550)) $)) (-15 -3468 ((-3 $ "failed") $ $ (-112))) (-15 -3369 ($ $)) (-15 -1448 ($ $ $)) (-15 -1353 ((-836) (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-999 (-818 (-550))) (-1144) |#1| (-400 (-550)))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $)) (-15 -4320 ($ $ |#1|)) (-15 -4219 ($ $ (-400 (-550)))) (-15 -4125 ($ $)) (-15 -4041 ($ $)) (-15 -3951 ($ $)) (-15 -2120 ($ $)) (-15 -2034 ($ $)) (-15 -1934 ($ $)) (-15 -1841 ($ $)) (-15 -1739 ($ $)) (-15 -1636 ($ $)) (-15 -1537 ($ $)) (-15 -2628 ($ $)) (-15 -2554 ($ $)) (-15 -2480 ($ $)) (-15 -2405 ($ $)) (-15 -2318 ($ $)) (-15 -2250 ($ $)) (-15 -2175 ($ $)) (-15 -3200 ($ $)) (-15 -3107 ($ $)) (-15 -3019 ($ $)) (-15 -2927 ($ $)) (-15 -2857 ($ $)) (-15 -2746 ($ $)) (-15 -3836 ($ $)) (-15 -3546 ($ $)) (-15 -3447 ($ $))) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-2672 (($ (-1124 |#1|)) 9)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) 42)) (-3478 (((-112) $) 52)) (-2475 (((-749) $) 55) (((-749) $ (-749)) 54)) (-3102 (((-112) $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1495 (((-3 $ "failed") $ $) 44 (|has| |#1| (-542)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-1124 |#1|) $) 23)) (-2390 (((-749)) 51)) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) 10 T CONST)) (-2636 (($) 14 T CONST)) (-2316 (((-112) $ $) 22)) (-2403 (($ $) 30) (($ $ $) 16)) (-2391 (($ $ $) 25)) (** (($ $ (-894)) NIL) (($ $ (-749)) 49)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-550)) 36))) +(((-579 |#1|) (-13 (-1020) (-10 -8 (-15 -3511 ((-1124 |#1|) $)) (-15 -2672 ($ (-1124 |#1|))) (-15 -3478 ((-112) $)) (-15 -2475 ((-749) $)) (-15 -2475 ((-749) $ (-749))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-550))) (IF (|has| |#1| (-542)) (-6 (-542)) |%noBranch|))) (-1020)) (T -579)) +((-3511 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-579 *3)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) (-2475 (*1 *2 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-579 *3)) (-4 *3 (-1020))))) +(-13 (-1020) (-10 -8 (-15 -3511 ((-1124 |#1|) $)) (-15 -2672 ($ (-1124 |#1|))) (-15 -3478 ((-112) $)) (-15 -2475 ((-749) $)) (-15 -2475 ((-749) $ (-749))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-550))) (IF (|has| |#1| (-542)) (-6 (-542)) |%noBranch|))) +((-3972 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 15))) +(((-580 |#1| |#2|) (-10 -7 (-15 -3972 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1181) (-1181)) (T -580)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-583 *6)) (-5 *1 (-580 *5 *6))))) +(-10 -7 (-15 -3972 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) +((-3972 (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)) 20) (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|)) 19) (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 18))) +(((-581 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))) (-15 -3972 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|))) (-15 -3972 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)))) (-1181) (-1181) (-1181)) (T -581)) +((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-1124 *7)) (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-1124 *8)) (-5 *1 (-581 *6 *7 *8)))) (-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-1124 *8)) (-5 *1 (-581 *6 *7 *8)))) (-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-583 *8)) (-5 *1 (-581 *6 *7 *8))))) +(-10 -7 (-15 -3972 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))) (-15 -3972 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|))) (-15 -3972 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)))) +((-2955 ((|#3| |#3| (-623 (-594 |#3|)) (-623 (-1144))) 55)) (-2876 (((-167 |#2|) |#3|) 117)) (-3802 ((|#3| (-167 |#2|)) 44)) (-3882 ((|#2| |#3|) 19)) (-2785 ((|#3| |#2|) 33))) +(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -3802 (|#3| (-167 |#2|))) (-15 -3882 (|#2| |#3|)) (-15 -2785 (|#3| |#2|)) (-15 -2876 ((-167 |#2|) |#3|)) (-15 -2955 (|#3| |#3| (-623 (-594 |#3|)) (-623 (-1144))))) (-13 (-542) (-825)) (-13 (-423 |#1|) (-975) (-1166)) (-13 (-423 (-167 |#1|)) (-975) (-1166))) (T -582)) +((-2955 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-623 (-594 *2))) (-5 *4 (-623 (-1144))) (-4 *2 (-13 (-423 (-167 *5)) (-975) (-1166))) (-4 *5 (-13 (-542) (-825))) (-5 *1 (-582 *5 *6 *2)) (-4 *6 (-13 (-423 *5) (-975) (-1166))))) (-2876 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825))) (-5 *2 (-167 *5)) (-5 *1 (-582 *4 *5 *3)) (-4 *5 (-13 (-423 *4) (-975) (-1166))) (-4 *3 (-13 (-423 (-167 *4)) (-975) (-1166))))) (-2785 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825))) (-4 *2 (-13 (-423 (-167 *4)) (-975) (-1166))) (-5 *1 (-582 *4 *3 *2)) (-4 *3 (-13 (-423 *4) (-975) (-1166))))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-825))) (-4 *2 (-13 (-423 *4) (-975) (-1166))) (-5 *1 (-582 *4 *2 *3)) (-4 *3 (-13 (-423 (-167 *4)) (-975) (-1166))))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-423 *4) (-975) (-1166))) (-4 *4 (-13 (-542) (-825))) (-4 *2 (-13 (-423 (-167 *4)) (-975) (-1166))) (-5 *1 (-582 *4 *5 *2))))) +(-10 -7 (-15 -3802 (|#3| (-167 |#2|))) (-15 -3882 (|#2| |#3|)) (-15 -2785 (|#3| |#2|)) (-15 -2876 ((-167 |#2|) |#3|)) (-15 -2955 (|#3| |#3| (-623 (-594 |#3|)) (-623 (-1144))))) +((-4253 (($ (-1 (-112) |#1|) $) 17)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-4176 (($ (-1 |#1| |#1|) |#1|) 9)) (-4228 (($ (-1 (-112) |#1|) $) 13)) (-4240 (($ (-1 (-112) |#1|) $) 15)) (-1532 (((-1124 |#1|) $) 18)) (-1518 (((-836) $) NIL))) +(((-583 |#1|) (-13 (-595 (-836)) (-10 -8 (-15 -3972 ($ (-1 |#1| |#1|) $)) (-15 -4228 ($ (-1 (-112) |#1|) $)) (-15 -4240 ($ (-1 (-112) |#1|) $)) (-15 -4253 ($ (-1 (-112) |#1|) $)) (-15 -4176 ($ (-1 |#1| |#1|) |#1|)) (-15 -1532 ((-1124 |#1|) $)))) (-1181)) (T -583)) +((-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) (-4228 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) (-4240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) (-4253 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) (-4176 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1181))))) +(-13 (-595 (-836)) (-10 -8 (-15 -3972 ($ (-1 |#1| |#1|) $)) (-15 -4228 ($ (-1 (-112) |#1|) $)) (-15 -4240 ($ (-1 (-112) |#1|) $)) (-15 -4253 ($ (-1 (-112) |#1|) $)) (-15 -4176 ($ (-1 |#1| |#1|) |#1|)) (-15 -1532 ((-1124 |#1|) $)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2584 (($ (-749)) NIL (|has| |#1| (-23)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-2302 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068)))) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2012 (((-667 |#1|) $ $) NIL (|has| |#1| (-1020)))) (-2578 (($ (-749) |#1|) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3182 ((|#1| $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1020))))) (-1573 (((-112) $ (-749)) NIL)) (-3772 ((|#1| $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1020))))) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) NIL (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3440 ((|#1| $ $) NIL (|has| |#1| (-1020)))) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3305 (($ $ $) NIL (|has| |#1| (-1020)))) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-3227 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2403 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2391 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-584 |#1| |#2|) (-1225 |#1|) (-1181) (-550)) (T -584)) +NIL +(-1225 |#1|) +((-3029 (((-1232) $ |#2| |#2|) 36)) (-3195 ((|#2| $) 23)) (-3283 ((|#2| $) 21)) (-3234 (($ (-1 |#3| |#3|) $) 32)) (-3972 (($ (-1 |#3| |#3|) $) 30)) (-1293 ((|#3| $) 26)) (-3111 (($ $ |#3|) 33)) (-2256 (((-112) |#3| $) 17)) (-2477 (((-623 |#3|) $) 15)) (-2680 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-585 |#1| |#2| |#3|) (-10 -8 (-15 -3029 ((-1232) |#1| |#2| |#2|)) (-15 -3111 (|#1| |#1| |#3|)) (-15 -1293 (|#3| |#1|)) (-15 -3195 (|#2| |#1|)) (-15 -3283 (|#2| |#1|)) (-15 -2256 ((-112) |#3| |#1|)) (-15 -2477 ((-623 |#3|) |#1|)) (-15 -2680 (|#3| |#1| |#2|)) (-15 -2680 (|#3| |#1| |#2| |#3|)) (-15 -3234 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3972 (|#1| (-1 |#3| |#3|) |#1|))) (-586 |#2| |#3|) (-1068) (-1181)) (T -585)) +NIL +(-10 -8 (-15 -3029 ((-1232) |#1| |#2| |#2|)) (-15 -3111 (|#1| |#1| |#3|)) (-15 -1293 (|#3| |#1|)) (-15 -3195 (|#2| |#1|)) (-15 -3283 (|#2| |#1|)) (-15 -2256 ((-112) |#3| |#1|)) (-15 -2477 ((-623 |#3|) |#1|)) (-15 -2680 (|#3| |#1| |#2|)) (-15 -2680 (|#3| |#1| |#2| |#3|)) (-15 -3234 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3972 (|#1| (-1 |#3| |#3|) |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#2| (-1068)))) (-3029 (((-1232) $ |#1| |#1|) 40 (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4343)))) (-3513 (($) 7 T CONST)) (-3245 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) 51)) (-3450 (((-623 |#2|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-3195 ((|#1| $) 43 (|has| |#1| (-825)))) (-2689 (((-623 |#2|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342))))) (-3283 ((|#1| $) 44 (|has| |#1| (-825)))) (-3234 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#2| |#2|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#2| (-1068)))) (-2325 (((-623 |#1|) $) 46)) (-2400 (((-112) |#1| $) 47)) (-3337 (((-1088) $) 21 (|has| |#2| (-1068)))) (-1293 ((|#2| $) 42 (|has| |#1| (-825)))) (-3111 (($ $ |#2|) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3350 (((-749) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4342))) (((-749) |#2| $) 28 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#2| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#2| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-586 |#1| |#2|) (-138) (-1068) (-1181)) (T -586)) +((-2477 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1181)) (-5 *2 (-623 *4)))) (-2400 (*1 *2 *3 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1181)) (-5 *2 (-112)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1181)) (-5 *2 (-623 *3)))) (-2256 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-586 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-1181)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1181)) (-4 *2 (-1068)) (-4 *2 (-825)))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1181)) (-4 *2 (-1068)) (-4 *2 (-825)))) (-1293 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *2)) (-4 *3 (-1068)) (-4 *3 (-825)) (-4 *2 (-1181)))) (-3111 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-586 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181)))) (-3029 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-586 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1181)) (-5 *2 (-1232))))) +(-13 (-481 |t#2|) (-281 |t#1| |t#2|) (-10 -8 (-15 -2477 ((-623 |t#2|) $)) (-15 -2400 ((-112) |t#1| $)) (-15 -2325 ((-623 |t#1|) $)) (IF (|has| |t#2| (-1068)) (IF (|has| $ (-6 -4342)) (-15 -2256 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-15 -3283 (|t#1| $)) (-15 -3195 (|t#1| $)) (-15 -1293 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4343)) (PROGN (-15 -3111 ($ $ |t#2|)) (-15 -3029 ((-1232) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#2| (-1068)) ((-595 (-836)) -1561 (|has| |#2| (-1068)) (|has| |#2| (-595 (-836)))) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-1068) |has| |#2| (-1068)) ((-1181) . T)) +((-1518 (((-836) $) 19) (((-129) $) 14) (($ (-129)) 13))) +(((-587) (-13 (-595 (-836)) (-595 (-129)) (-10 -8 (-15 -1518 ($ (-129)))))) (T -587)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-587))))) +(-13 (-595 (-836)) (-595 (-129)) (-10 -8 (-15 -1518 ($ (-129))))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL) (((-1149) $) NIL) (($ (-1149)) NIL) (((-1180) $) 14) (($ (-623 (-1180))) 13)) (-3266 (((-623 (-1180)) $) 10)) (-2316 (((-112) $ $) NIL))) +(((-588) (-13 (-1051) (-595 (-1180)) (-10 -8 (-15 -1518 ($ (-623 (-1180)))) (-15 -3266 ((-623 (-1180)) $))))) (T -588)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-588)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-588))))) +(-13 (-1051) (-595 (-1180)) (-10 -8 (-15 -1518 ($ (-623 (-1180)))) (-15 -3266 ((-623 (-1180)) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3090 (((-3 $ "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1265 (((-1227 (-667 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-1227 (-667 |#1|)) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3406 (((-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3513 (($) NIL T CONST)) (-3726 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3947 (((-3 $ "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2043 (((-667 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-1958 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2042 (((-667 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) $ (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3818 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1870 (((-1140 (-925 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2923 (($ $ (-894)) NIL)) (-1729 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-4215 (((-1140 |#1|) $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3945 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-1474 (((-1140 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2105 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4110 (($ (-1227 |#1|)) NIL (|has| |#2| (-410 |#1|))) (($ (-1227 |#1|) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-1386 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2122 (((-894)) NIL (|has| |#2| (-360 |#1|)))) (-2890 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1494 (($ $ (-894)) NIL)) (-3657 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3400 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2685 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2662 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-4080 (((-3 $ "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2116 (((-667 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3813 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2127 (((-667 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) $ (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-2732 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3480 (((-1140 (-925 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2834 (($ $ (-894)) NIL)) (-1842 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1305 (((-1140 |#1|) $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-4012 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-1603 (((-1140 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2197 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-1126) $) NIL)) (-3528 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2591 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2781 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3337 (((-1088) $) NIL)) (-3089 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2680 ((|#1| $ (-550)) NIL (|has| |#2| (-410 |#1|)))) (-1373 (((-667 |#1|) (-1227 $)) NIL (|has| |#2| (-410 |#1|))) (((-1227 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1227 $) (-1227 $)) NIL (|has| |#2| (-360 |#1|))) (((-1227 |#1|) $ (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-4028 (($ (-1227 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-1227 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-2361 (((-623 (-925 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-623 (-925 |#1|)) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3292 (($ $ $) NIL)) (-2564 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1518 (((-836) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2437 (((-1227 $)) NIL (|has| |#2| (-410 |#1|)))) (-3268 (((-623 (-1227 |#1|))) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3395 (($ $ $ $) NIL)) (-2376 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4292 (($ (-667 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-1358 (($ $ $) NIL)) (-2473 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2286 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2990 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2626 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) 24)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-589 |#1| |#2|) (-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -1518 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-723 |#1|)) (T -589)) +((-1518 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-589 *3 *2)) (-4 *2 (-723 *3))))) +(-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -1518 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-1510 (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) 33)) (-2570 (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL) (($) NIL)) (-3029 (((-1232) $ (-1126) (-1126)) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-1126) |#1|) 43)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 |#1| "failed") (-1126) $) 46)) (-3513 (($) NIL T CONST)) (-3826 (($ $ (-1126)) 24)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068))))) (-3112 (((-3 |#1| "failed") (-1126) $) 47) (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (($ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL (|has| $ (-6 -4342)))) (-3137 (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (($ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068))))) (-2419 (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068))))) (-1656 (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) 32)) (-3245 ((|#1| $ (-1126) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-1126)) NIL)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342))) (((-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-4318 (($ $) 48)) (-3257 (($ (-381)) 22) (($ (-381) (-1126)) 21)) (-1916 (((-381) $) 34)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-1126) $) NIL (|has| (-1126) (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342))) (((-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (((-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068))))) (-3283 (((-1126) $) NIL (|has| (-1126) (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-3531 (((-623 (-1126)) $) 39)) (-2550 (((-112) (-1126) $) NIL)) (-1811 (((-1126) $) 35)) (-3638 (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL)) (-2325 (((-623 (-1126)) $) NIL)) (-2400 (((-112) (-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 ((|#1| $) NIL (|has| (-1126) (-825)))) (-3321 (((-3 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) "failed") (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (($ $ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (($ $ (-623 (-287 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 37)) (-2680 ((|#1| $ (-1126) |#1|) NIL) ((|#1| $ (-1126)) 42)) (-2729 (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL) (($) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (((-749) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (((-749) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL)) (-1518 (((-836) $) 20)) (-1951 (($ $) 25)) (-3685 (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 19)) (-3191 (((-749) $) 41 (|has| $ (-6 -4342))))) +(((-590 |#1|) (-13 (-357 (-381) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) (-1157 (-1126) |#1|) (-10 -8 (-6 -4342) (-15 -4318 ($ $)))) (-1068)) (T -590)) +((-4318 (*1 *1 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1068))))) +(-13 (-357 (-381) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) (-1157 (-1126) |#1|) (-10 -8 (-6 -4342) (-15 -4318 ($ $)))) +((-1921 (((-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) $) 15)) (-3531 (((-623 |#2|) $) 19)) (-2550 (((-112) |#2| $) 12))) +(((-591 |#1| |#2| |#3|) (-10 -8 (-15 -3531 ((-623 |#2|) |#1|)) (-15 -2550 ((-112) |#2| |#1|)) (-15 -1921 ((-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|))) (-592 |#2| |#3|) (-1068) (-1068)) (T -591)) +NIL +(-10 -8 (-15 -3531 ((-623 |#2|) |#1|)) (-15 -2550 ((-112) |#2| |#1|)) (-15 -1921 ((-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|))) +((-1504 (((-112) $ $) 19 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 45 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 55 (|has| $ (-6 -4342)))) (-2908 (((-3 |#2| "failed") |#1| $) 61)) (-3513 (($) 7 T CONST)) (-1328 (($ $) 58 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 46 (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) 62)) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 54 (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 56 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 53 (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 52 (|has| $ (-6 -4342)))) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3531 (((-623 |#1|) $) 63)) (-2550 (((-112) |#1| $) 64)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 39)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 40)) (-3337 (((-1088) $) 21 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 51)) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 41)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) 26 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 25 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 24 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 23 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2729 (($) 49) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 48)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 31 (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 50)) (-1518 (((-836) $) 18 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 42)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-592 |#1| |#2|) (-138) (-1068) (-1068)) (T -592)) +((-2550 (*1 *2 *3 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-5 *2 (-623 *3)))) (-3112 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068)))) (-2908 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068))))) +(-13 (-223 (-2 (|:| -2763 |t#1|) (|:| -2119 |t#2|))) (-10 -8 (-15 -2550 ((-112) |t#1| $)) (-15 -3531 ((-623 |t#1|) $)) (-15 -3112 ((-3 |t#2| "failed") |t#1| $)) (-15 -2908 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T) ((-101) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) ((-595 (-836)) -1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836)))) ((-149 #0#) . T) ((-596 (-526)) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))) ((-223 #0#) . T) ((-229 #0#) . T) ((-302 #0#) -12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) ((-481 #0#) . T) ((-505 #0# #0#) -12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) ((-1068) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) ((-1181) . T)) +((-1619 (((-594 |#2|) |#1|) 15)) (-1718 (((-3 |#1| "failed") (-594 |#2|)) 19))) +(((-593 |#1| |#2|) (-10 -7 (-15 -1619 ((-594 |#2|) |#1|)) (-15 -1718 ((-3 |#1| "failed") (-594 |#2|)))) (-825) (-825)) (T -593)) +((-1718 (*1 *2 *3) (|partial| -12 (-5 *3 (-594 *4)) (-4 *4 (-825)) (-4 *2 (-825)) (-5 *1 (-593 *2 *4)))) (-1619 (*1 *2 *3) (-12 (-5 *2 (-594 *4)) (-5 *1 (-593 *3 *4)) (-4 *3 (-825)) (-4 *4 (-825))))) +(-10 -7 (-15 -1619 ((-594 |#2|) |#1|)) (-15 -1718 ((-3 |#1| "failed") (-594 |#2|)))) +((-1504 (((-112) $ $) NIL)) (-2624 (((-3 (-1144) "failed") $) 37)) (-3702 (((-1232) $ (-749)) 26)) (-2302 (((-749) $) 25)) (-2926 (((-114) $) 12)) (-1916 (((-1144) $) 20)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-2776 (($ (-114) (-623 |#1|) (-749)) 30) (($ (-1144)) 31)) (-3890 (((-112) $ (-114)) 18) (((-112) $ (-1144)) 16)) (-3142 (((-749) $) 22)) (-3337 (((-1088) $) NIL)) (-4028 (((-865 (-550)) $) 77 (|has| |#1| (-596 (-865 (-550))))) (((-865 (-372)) $) 84 (|has| |#1| (-596 (-865 (-372))))) (((-526) $) 69 (|has| |#1| (-596 (-526))))) (-1518 (((-836) $) 55)) (-2696 (((-623 |#1|) $) 24)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 41)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 42))) +(((-594 |#1|) (-13 (-131) (-857 |#1|) (-10 -8 (-15 -1916 ((-1144) $)) (-15 -2926 ((-114) $)) (-15 -2696 ((-623 |#1|) $)) (-15 -3142 ((-749) $)) (-15 -2776 ($ (-114) (-623 |#1|) (-749))) (-15 -2776 ($ (-1144))) (-15 -2624 ((-3 (-1144) "failed") $)) (-15 -3890 ((-112) $ (-114))) (-15 -3890 ((-112) $ (-1144))) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) (-825)) (T -594)) +((-1916 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-2776 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-623 *5)) (-5 *4 (-749)) (-4 *5 (-825)) (-5 *1 (-594 *5)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-2624 (*1 *2 *1) (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) (-3890 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-594 *4)) (-4 *4 (-825)))) (-3890 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-112)) (-5 *1 (-594 *4)) (-4 *4 (-825))))) +(-13 (-131) (-857 |#1|) (-10 -8 (-15 -1916 ((-1144) $)) (-15 -2926 ((-114) $)) (-15 -2696 ((-623 |#1|) $)) (-15 -3142 ((-749) $)) (-15 -2776 ($ (-114) (-623 |#1|) (-749))) (-15 -2776 ($ (-1144))) (-15 -2624 ((-3 (-1144) "failed") $)) (-15 -3890 ((-112) $ (-114))) (-15 -3890 ((-112) $ (-1144))) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) +((-1518 ((|#1| $) 6))) +(((-595 |#1|) (-138) (-1181)) (T -595)) +((-1518 (*1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1181))))) +(-13 (-10 -8 (-15 -1518 (|t#1| $)))) +((-4028 ((|#1| $) 6))) +(((-596 |#1|) (-138) (-1181)) (T -596)) +((-4028 (*1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1181))))) +(-13 (-10 -8 (-15 -4028 (|t#1| $)))) +((-1820 (((-3 (-1140 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)) 15) (((-3 (-1140 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 16))) +(((-597 |#1| |#2|) (-10 -7 (-15 -1820 ((-3 (-1140 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -1820 ((-3 (-1140 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)))) (-13 (-145) (-27) (-1011 (-550)) (-1011 (-400 (-550)))) (-1203 |#1|)) (T -597)) +((-1820 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-145) (-27) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-1140 (-400 *6))) (-5 *1 (-597 *5 *6)) (-5 *3 (-400 *6)))) (-1820 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *5 (-1203 *4)) (-5 *2 (-1140 (-400 *5))) (-5 *1 (-597 *4 *5)) (-5 *3 (-400 *5))))) +(-10 -7 (-15 -1820 ((-3 (-1140 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -1820 ((-3 (-1140 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3006 (($) 11 T CONST)) (-4311 (($) 12 T CONST)) (-3675 (($ $ $) 24)) (-3462 (($ $) 22)) (-1825 (((-1126) $) NIL)) (-2659 (($ $ $) 25)) (-3337 (((-1088) $) NIL)) (-3150 (($) 10 T CONST)) (-2039 (($ $ $) 26)) (-1518 (((-836) $) 30)) (-2615 (((-112) $ (|[\|\|]| -3150)) 19) (((-112) $ (|[\|\|]| -3006)) 21) (((-112) $ (|[\|\|]| -4311)) 17)) (-1262 (($ $ $) 23)) (-2316 (((-112) $ $) 15))) +(((-598) (-13 (-940) (-10 -8 (-15 -3150 ($) -2258) (-15 -3006 ($) -2258) (-15 -4311 ($) -2258) (-15 -2615 ((-112) $ (|[\|\|]| -3150))) (-15 -2615 ((-112) $ (|[\|\|]| -3006))) (-15 -2615 ((-112) $ (|[\|\|]| -4311)))))) (T -598)) +((-3150 (*1 *1) (-5 *1 (-598))) (-3006 (*1 *1) (-5 *1 (-598))) (-4311 (*1 *1) (-5 *1 (-598))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3150)) (-5 *2 (-112)) (-5 *1 (-598)))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3006)) (-5 *2 (-112)) (-5 *1 (-598)))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4311)) (-5 *2 (-112)) (-5 *1 (-598))))) +(-13 (-940) (-10 -8 (-15 -3150 ($) -2258) (-15 -3006 ($) -2258) (-15 -4311 ($) -2258) (-15 -2615 ((-112) $ (|[\|\|]| -3150))) (-15 -2615 ((-112) $ (|[\|\|]| -3006))) (-15 -2615 ((-112) $ (|[\|\|]| -4311))))) +((-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) 10))) +(((-599 |#1| |#2|) (-10 -8 (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) (-600 |#2|) (-1020)) (T -599)) +NIL +(-10 -8 (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 34)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +(((-600 |#1|) (-138) (-1020)) (T -600)) +((-1518 (*1 *1 *2) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1020))))) +(-13 (-1020) (-626 |t#1|) (-10 -8 (-15 -1518 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-705) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3712 (((-550) $) NIL (|has| |#1| (-823)))) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-1416 (((-112) $) NIL (|has| |#1| (-823)))) (-3102 (((-112) $) NIL)) (-2705 ((|#1| $) 13)) (-3329 (((-112) $) NIL (|has| |#1| (-823)))) (-2707 (($ $ $) NIL (|has| |#1| (-823)))) (-4164 (($ $ $) NIL (|has| |#1| (-823)))) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2715 ((|#3| $) 15)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL)) (-2390 (((-749)) 20)) (-1635 (($ $) NIL (|has| |#1| (-823)))) (-2626 (($) NIL T CONST)) (-2636 (($) 12 T CONST)) (-2363 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2414 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-601 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (-15 -2414 ($ $ |#3|)) (-15 -2414 ($ |#1| |#3|)) (-15 -2705 (|#1| $)) (-15 -2715 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-705) |#2|)) (T -601)) +((-2414 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-705) *4)))) (-2414 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-705) *4)))) (-2705 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-601 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-705) *3)))) (-2715 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (-15 -2414 ($ $ |#3|)) (-15 -2414 ($ |#1| |#3|)) (-15 -2705 (|#1| $)) (-15 -2715 (|#3| $)))) +((-1917 ((|#2| |#2| (-1144) (-1144)) 18))) +(((-602 |#1| |#2|) (-10 -7 (-15 -1917 (|#2| |#2| (-1144) (-1144)))) (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550))) (-13 (-1166) (-932) (-29 |#1|))) (T -602)) +((-1917 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-602 *4 *2)) (-4 *2 (-13 (-1166) (-932) (-29 *4)))))) +(-10 -7 (-15 -1917 (|#2| |#2| (-1144) (-1144)))) +((-1504 (((-112) $ $) 56)) (-3433 (((-112) $) 52)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-1998 ((|#1| $) 49)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4005 (((-2 (|:| -3509 $) (|:| -3413 (-400 |#2|))) (-400 |#2|)) 97 (|has| |#1| (-356)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) 24)) (-1386 (((-3 $ "failed") $) 75)) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2475 (((-550) $) 19)) (-3102 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) 36)) (-3118 (($ |#1| (-550)) 21)) (-3277 ((|#1| $) 51)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) 87 (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-1495 (((-3 $ "failed") $ $) 79)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3542 (((-749) $) 99 (|has| |#1| (-356)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 98 (|has| |#1| (-356)))) (-2393 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2970 (((-550) $) 34)) (-4028 (((-400 |#2|) $) 42)) (-1518 (((-836) $) 62) (($ (-550)) 32) (($ $) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) 31) (($ |#2|) 22)) (-2510 ((|#1| $ (-550)) 63)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) 29)) (-1345 (((-112) $ $) NIL)) (-2626 (($) 9 T CONST)) (-2636 (($) 12 T CONST)) (-4183 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2316 (((-112) $ $) 17)) (-2403 (($ $) 46) (($ $ $) NIL)) (-2391 (($ $ $) 76)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 26) (($ $ $) 44))) +(((-603 |#1| |#2|) (-13 (-225 |#2|) (-542) (-596 (-400 |#2|)) (-404 |#1|) (-1011 |#2|) (-10 -8 (-15 -3439 ((-112) $)) (-15 -2970 ((-550) $)) (-15 -2475 ((-550) $)) (-15 -3295 ($ $)) (-15 -3277 (|#1| $)) (-15 -1998 (|#1| $)) (-15 -2510 (|#1| $ (-550))) (-15 -3118 ($ |#1| (-550))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4005 ((-2 (|:| -3509 $) (|:| -3413 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) (-542) (-1203 |#1|)) (T -603)) +((-3439 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-112)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1203 *3)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-550)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1203 *3)))) (-2475 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-550)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1203 *3)))) (-3295 (*1 *1 *1) (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1203 *2)))) (-3277 (*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1203 *2)))) (-1998 (*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1203 *2)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-542)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1203 *2)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-4 *2 (-542)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1203 *2)))) (-4005 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-542)) (-4 *5 (-1203 *4)) (-5 *2 (-2 (|:| -3509 (-603 *4 *5)) (|:| -3413 (-400 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-400 *5))))) +(-13 (-225 |#2|) (-542) (-596 (-400 |#2|)) (-404 |#1|) (-1011 |#2|) (-10 -8 (-15 -3439 ((-112) $)) (-15 -2970 ((-550) $)) (-15 -2475 ((-550) $)) (-15 -3295 ($ $)) (-15 -3277 (|#1| $)) (-15 -1998 (|#1| $)) (-15 -2510 (|#1| $ (-550))) (-15 -3118 ($ |#1| (-550))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4005 ((-2 (|:| -3509 $) (|:| -3413 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) +((-1779 (((-623 |#6|) (-623 |#4|) (-112)) 47)) (-2083 ((|#6| |#6|) 40))) +(((-604 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2083 (|#6| |#6|)) (-15 -1779 ((-623 |#6|) (-623 |#4|) (-112)))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1040 |#1| |#2| |#3| |#4|) (-1077 |#1| |#2| |#3| |#4|)) (T -604)) +((-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 *10)) (-5 *1 (-604 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *10 (-1077 *5 *6 *7 *8)))) (-2083 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *1 (-604 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *2 (-1077 *3 *4 *5 *6))))) +(-10 -7 (-15 -2083 (|#6| |#6|)) (-15 -1779 ((-623 |#6|) (-623 |#4|) (-112)))) +((-2154 (((-112) |#3| (-749) (-623 |#3|)) 23)) (-3534 (((-3 (-2 (|:| |polfac| (-623 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-623 (-1140 |#3|)))) "failed") |#3| (-623 (-1140 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1877 (-623 (-2 (|:| |irr| |#4|) (|:| -4245 (-550)))))) (-623 |#3|) (-623 |#1|) (-623 |#3|)) 55))) +(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2154 ((-112) |#3| (-749) (-623 |#3|))) (-15 -3534 ((-3 (-2 (|:| |polfac| (-623 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-623 (-1140 |#3|)))) "failed") |#3| (-623 (-1140 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1877 (-623 (-2 (|:| |irr| |#4|) (|:| -4245 (-550)))))) (-623 |#3|) (-623 |#1|) (-623 |#3|)))) (-825) (-771) (-300) (-922 |#3| |#2| |#1|)) (T -605)) +((-3534 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1877 (-623 (-2 (|:| |irr| *10) (|:| -4245 (-550))))))) (-5 *6 (-623 *3)) (-5 *7 (-623 *8)) (-4 *8 (-825)) (-4 *3 (-300)) (-4 *10 (-922 *3 *9 *8)) (-4 *9 (-771)) (-5 *2 (-2 (|:| |polfac| (-623 *10)) (|:| |correct| *3) (|:| |corrfact| (-623 (-1140 *3))))) (-5 *1 (-605 *8 *9 *3 *10)) (-5 *4 (-623 (-1140 *3))))) (-2154 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-749)) (-5 *5 (-623 *3)) (-4 *3 (-300)) (-4 *6 (-825)) (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-605 *6 *7 *3 *8)) (-4 *8 (-922 *3 *7 *6))))) +(-10 -7 (-15 -2154 ((-112) |#3| (-749) (-623 |#3|))) (-15 -3534 ((-3 (-2 (|:| |polfac| (-623 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-623 (-1140 |#3|)))) "failed") |#3| (-623 (-1140 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1877 (-623 (-2 (|:| |irr| |#4|) (|:| -4245 (-550)))))) (-623 |#3|) (-623 |#1|) (-623 |#3|)))) +((-1504 (((-112) $ $) NIL)) (-2874 (((-1103) $) 11)) (-2864 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 19) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-606) (-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1103) $))))) (T -606)) +((-2864 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-606)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-606))))) +(-13 (-1051) (-10 -8 (-15 -2864 ((-1103) $)) (-15 -2874 ((-1103) $)))) +((-1504 (((-112) $ $) NIL)) (-1540 (((-623 |#1|) $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-1522 (($ $) 67)) (-2958 (((-642 |#1| |#2|) $) 52)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 70)) (-3663 (((-623 (-287 |#2|)) $ $) 33)) (-3337 (((-1088) $) NIL)) (-1812 (($ (-642 |#1| |#2|)) 48)) (-1270 (($ $ $) NIL)) (-3292 (($ $ $) NIL)) (-1518 (((-836) $) 58) (((-1242 |#1| |#2|) $) NIL) (((-1247 |#1| |#2|) $) 66)) (-2636 (($) 53 T CONST)) (-2616 (((-623 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $) 31)) (-2698 (((-623 (-642 |#1| |#2|)) (-623 |#1|)) 65)) (-4237 (((-623 (-2 (|:| |k| (-866 |#1|)) (|:| |c| |#2|))) $) 37)) (-2316 (((-112) $ $) 54)) (-2414 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 44))) +(((-607 |#1| |#2| |#3|) (-13 (-465) (-10 -8 (-15 -1812 ($ (-642 |#1| |#2|))) (-15 -2958 ((-642 |#1| |#2|) $)) (-15 -4237 ((-623 (-2 (|:| |k| (-866 |#1|)) (|:| |c| |#2|))) $)) (-15 -1518 ((-1242 |#1| |#2|) $)) (-15 -1518 ((-1247 |#1| |#2|) $)) (-15 -1522 ($ $)) (-15 -1540 ((-623 |#1|) $)) (-15 -2698 ((-623 (-642 |#1| |#2|)) (-623 |#1|))) (-15 -2616 ((-623 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $)) (-15 -3663 ((-623 (-287 |#2|)) $ $)))) (-825) (-13 (-170) (-696 (-400 (-550)))) (-894)) (T -607)) +((-1812 (*1 *1 *2) (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-5 *1 (-607 *3 *4 *5)) (-14 *5 (-894)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-642 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) (-4237 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |k| (-866 *3)) (|:| |c| *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) (-1522 (*1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-13 (-170) (-696 (-400 (-550))))) (-14 *4 (-894)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-825)) (-5 *2 (-623 (-642 *4 *5))) (-5 *1 (-607 *4 *5 *6)) (-4 *5 (-13 (-170) (-696 (-400 (-550))))) (-14 *6 (-894)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |k| (-650 *3)) (|:| |c| *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) (-3663 (*1 *2 *1 *1) (-12 (-5 *2 (-623 (-287 *4))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894))))) +(-13 (-465) (-10 -8 (-15 -1812 ($ (-642 |#1| |#2|))) (-15 -2958 ((-642 |#1| |#2|) $)) (-15 -4237 ((-623 (-2 (|:| |k| (-866 |#1|)) (|:| |c| |#2|))) $)) (-15 -1518 ((-1242 |#1| |#2|) $)) (-15 -1518 ((-1247 |#1| |#2|) $)) (-15 -1522 ($ $)) (-15 -1540 ((-623 |#1|) $)) (-15 -2698 ((-623 (-642 |#1| |#2|)) (-623 |#1|))) (-15 -2616 ((-623 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $)) (-15 -3663 ((-623 (-287 |#2|)) $ $)))) +((-1779 (((-623 (-1114 |#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|)))) (-623 (-758 |#1| (-838 |#2|))) (-112)) 72) (((-623 (-1017 |#1| |#2|)) (-623 (-758 |#1| (-838 |#2|))) (-112)) 58)) (-2813 (((-112) (-623 (-758 |#1| (-838 |#2|)))) 23)) (-2129 (((-623 (-1114 |#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|)))) (-623 (-758 |#1| (-838 |#2|))) (-112)) 71)) (-3105 (((-623 (-1017 |#1| |#2|)) (-623 (-758 |#1| (-838 |#2|))) (-112)) 57)) (-3017 (((-623 (-758 |#1| (-838 |#2|))) (-623 (-758 |#1| (-838 |#2|)))) 27)) (-2915 (((-3 (-623 (-758 |#1| (-838 |#2|))) "failed") (-623 (-758 |#1| (-838 |#2|)))) 26))) +(((-608 |#1| |#2|) (-10 -7 (-15 -2813 ((-112) (-623 (-758 |#1| (-838 |#2|))))) (-15 -2915 ((-3 (-623 (-758 |#1| (-838 |#2|))) "failed") (-623 (-758 |#1| (-838 |#2|))))) (-15 -3017 ((-623 (-758 |#1| (-838 |#2|))) (-623 (-758 |#1| (-838 |#2|))))) (-15 -3105 ((-623 (-1017 |#1| |#2|)) (-623 (-758 |#1| (-838 |#2|))) (-112))) (-15 -2129 ((-623 (-1114 |#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|)))) (-623 (-758 |#1| (-838 |#2|))) (-112))) (-15 -1779 ((-623 (-1017 |#1| |#2|)) (-623 (-758 |#1| (-838 |#2|))) (-112))) (-15 -1779 ((-623 (-1114 |#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|)))) (-623 (-758 |#1| (-838 |#2|))) (-112)))) (-444) (-623 (-1144))) (T -608)) +((-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-1114 *5 (-522 (-838 *6)) (-838 *6) (-758 *5 (-838 *6))))) (-5 *1 (-608 *5 *6)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-1017 *5 *6))) (-5 *1 (-608 *5 *6)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-1114 *5 (-522 (-838 *6)) (-838 *6) (-758 *5 (-838 *6))))) (-5 *1 (-608 *5 *6)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-1017 *5 *6))) (-5 *1 (-608 *5 *6)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-623 (-758 *3 (-838 *4)))) (-4 *3 (-444)) (-14 *4 (-623 (-1144))) (-5 *1 (-608 *3 *4)))) (-2915 (*1 *2 *2) (|partial| -12 (-5 *2 (-623 (-758 *3 (-838 *4)))) (-4 *3 (-444)) (-14 *4 (-623 (-1144))) (-5 *1 (-608 *3 *4)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-623 (-758 *4 (-838 *5)))) (-4 *4 (-444)) (-14 *5 (-623 (-1144))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5))))) +(-10 -7 (-15 -2813 ((-112) (-623 (-758 |#1| (-838 |#2|))))) (-15 -2915 ((-3 (-623 (-758 |#1| (-838 |#2|))) "failed") (-623 (-758 |#1| (-838 |#2|))))) (-15 -3017 ((-623 (-758 |#1| (-838 |#2|))) (-623 (-758 |#1| (-838 |#2|))))) (-15 -3105 ((-623 (-1017 |#1| |#2|)) (-623 (-758 |#1| (-838 |#2|))) (-112))) (-15 -2129 ((-623 (-1114 |#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|)))) (-623 (-758 |#1| (-838 |#2|))) (-112))) (-15 -1779 ((-623 (-1017 |#1| |#2|)) (-623 (-758 |#1| (-838 |#2|))) (-112))) (-15 -1779 ((-623 (-1114 |#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|)))) (-623 (-758 |#1| (-838 |#2|))) (-112)))) +((-3123 (($ $) 38)) (-3005 (($ $) 21)) (-3103 (($ $) 37)) (-2984 (($ $) 22)) (-3146 (($ $) 36)) (-3025 (($ $) 23)) (-2734 (($) 48)) (-2958 (($ $) 45)) (-2634 (($ $) 17)) (-3336 (($ $ (-1060 $)) 7) (($ $ (-1144)) 6)) (-1812 (($ $) 46)) (-2944 (($ $) 15)) (-2974 (($ $) 16)) (-3157 (($ $) 35)) (-3033 (($ $) 24)) (-3135 (($ $) 34)) (-3016 (($ $) 25)) (-3114 (($ $) 33)) (-2995 (($ $) 26)) (-3187 (($ $) 44)) (-3060 (($ $) 32)) (-3167 (($ $) 43)) (-3043 (($ $) 31)) (-3209 (($ $) 42)) (-3081 (($ $) 30)) (-3294 (($ $) 41)) (-3094 (($ $) 29)) (-3198 (($ $) 40)) (-3072 (($ $) 28)) (-3176 (($ $) 39)) (-3052 (($ $) 27)) (-2425 (($ $) 19)) (-2518 (($ $) 20)) (-2317 (($ $) 18)) (** (($ $ $) 47))) +(((-609) (-138)) (T -609)) +((-2518 (*1 *1 *1) (-4 *1 (-609))) (-2425 (*1 *1 *1) (-4 *1 (-609))) (-2317 (*1 *1 *1) (-4 *1 (-609))) (-2634 (*1 *1 *1) (-4 *1 (-609))) (-2974 (*1 *1 *1) (-4 *1 (-609))) (-2944 (*1 *1 *1) (-4 *1 (-609)))) +(-13 (-932) (-1166) (-10 -8 (-15 -2518 ($ $)) (-15 -2425 ($ $)) (-15 -2317 ($ $)) (-15 -2634 ($ $)) (-15 -2974 ($ $)) (-15 -2944 ($ $)))) +(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-932) . T) ((-1166) . T) ((-1169) . T)) +((-2926 (((-114) (-114)) 83)) (-2634 ((|#2| |#2|) 30)) (-3336 ((|#2| |#2| (-1060 |#2|)) 79) ((|#2| |#2| (-1144)) 52)) (-2944 ((|#2| |#2|) 29)) (-2974 ((|#2| |#2|) 31)) (-2222 (((-112) (-114)) 34)) (-2425 ((|#2| |#2|) 26)) (-2518 ((|#2| |#2|) 28)) (-2317 ((|#2| |#2|) 27))) +(((-610 |#1| |#2|) (-10 -7 (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -2518 (|#2| |#2|)) (-15 -2425 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2944 (|#2| |#2|)) (-15 -2974 (|#2| |#2|)) (-15 -3336 (|#2| |#2| (-1144))) (-15 -3336 (|#2| |#2| (-1060 |#2|)))) (-13 (-825) (-542)) (-13 (-423 |#1|) (-975) (-1166))) (T -610)) +((-3336 (*1 *2 *2 *3) (-12 (-5 *3 (-1060 *2)) (-4 *2 (-13 (-423 *4) (-975) (-1166))) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-610 *4 *2)))) (-3336 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-610 *4 *2)) (-4 *2 (-13 (-423 *4) (-975) (-1166))))) (-2974 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-975) (-1166))))) (-2944 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-975) (-1166))))) (-2634 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-975) (-1166))))) (-2317 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-975) (-1166))))) (-2425 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-975) (-1166))))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) (-4 *2 (-13 (-423 *3) (-975) (-1166))))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *4)) (-4 *4 (-13 (-423 *3) (-975) (-1166))))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5)) (-4 *5 (-13 (-423 *4) (-975) (-1166)))))) +(-10 -7 (-15 -2222 ((-112) (-114))) (-15 -2926 ((-114) (-114))) (-15 -2518 (|#2| |#2|)) (-15 -2425 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2944 (|#2| |#2|)) (-15 -2974 (|#2| |#2|)) (-15 -3336 (|#2| |#2| (-1144))) (-15 -3336 (|#2| |#2| (-1060 |#2|)))) +((-4193 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 53)) (-1657 (((-623 (-241 |#1| |#2|)) (-623 (-473 |#1| |#2|))) 68)) (-1788 (((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-838 |#1|)) 70) (((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)) (-838 |#1|)) 69)) (-1411 (((-2 (|:| |gblist| (-623 (-241 |#1| |#2|))) (|:| |gvlist| (-623 (-550)))) (-623 (-473 |#1| |#2|))) 108)) (-3971 (((-623 (-473 |#1| |#2|)) (-838 |#1|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|))) 83)) (-1536 (((-2 (|:| |glbase| (-623 (-241 |#1| |#2|))) (|:| |glval| (-623 (-550)))) (-623 (-241 |#1| |#2|))) 118)) (-2023 (((-1227 |#2|) (-473 |#1| |#2|) (-623 (-473 |#1| |#2|))) 58)) (-1908 (((-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|))) 41)) (-4082 (((-241 |#1| |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|))) 50)) (-3869 (((-241 |#1| |#2|) (-623 |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|))) 91))) +(((-611 |#1| |#2|) (-10 -7 (-15 -1411 ((-2 (|:| |gblist| (-623 (-241 |#1| |#2|))) (|:| |gvlist| (-623 (-550)))) (-623 (-473 |#1| |#2|)))) (-15 -1536 ((-2 (|:| |glbase| (-623 (-241 |#1| |#2|))) (|:| |glval| (-623 (-550)))) (-623 (-241 |#1| |#2|)))) (-15 -1657 ((-623 (-241 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -1788 ((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)) (-838 |#1|))) (-15 -1788 ((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-838 |#1|))) (-15 -1908 ((-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -2023 ((-1227 |#2|) (-473 |#1| |#2|) (-623 (-473 |#1| |#2|)))) (-15 -3869 ((-241 |#1| |#2|) (-623 |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|)))) (-15 -3971 ((-623 (-473 |#1| |#2|)) (-838 |#1|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -4082 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|)))) (-15 -4193 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) (-623 (-1144)) (-444)) (T -611)) +((-4193 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *2 (-473 *4 *5)) (-5 *1 (-611 *4 *5)))) (-4082 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5)))) (-3971 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-623 (-473 *4 *5))) (-5 *3 (-838 *4)) (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5)))) (-3869 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-241 *5 *6))) (-4 *6 (-444)) (-5 *2 (-241 *5 *6)) (-14 *5 (-623 (-1144))) (-5 *1 (-611 *5 *6)))) (-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-623 (-1144))) (-4 *6 (-444)) (-5 *2 (-1227 *6)) (-5 *1 (-611 *5 *6)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-623 (-473 *3 *4))) (-14 *3 (-623 (-1144))) (-4 *4 (-444)) (-5 *1 (-611 *3 *4)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-473 *5 *6))) (-5 *4 (-838 *5)) (-14 *5 (-623 (-1144))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) (-1788 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-623 (-473 *5 *6))) (-5 *4 (-838 *5)) (-14 *5 (-623 (-1144))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-623 (-473 *4 *5))) (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *2 (-623 (-241 *4 *5))) (-5 *1 (-611 *4 *5)))) (-1536 (*1 *2 *3) (-12 (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |glbase| (-623 (-241 *4 *5))) (|:| |glval| (-623 (-550))))) (-5 *1 (-611 *4 *5)) (-5 *3 (-623 (-241 *4 *5))))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-623 (-473 *4 *5))) (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |gblist| (-623 (-241 *4 *5))) (|:| |gvlist| (-623 (-550))))) (-5 *1 (-611 *4 *5))))) +(-10 -7 (-15 -1411 ((-2 (|:| |gblist| (-623 (-241 |#1| |#2|))) (|:| |gvlist| (-623 (-550)))) (-623 (-473 |#1| |#2|)))) (-15 -1536 ((-2 (|:| |glbase| (-623 (-241 |#1| |#2|))) (|:| |glval| (-623 (-550)))) (-623 (-241 |#1| |#2|)))) (-15 -1657 ((-623 (-241 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -1788 ((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)) (-838 |#1|))) (-15 -1788 ((-473 |#1| |#2|) (-623 (-473 |#1| |#2|)) (-838 |#1|))) (-15 -1908 ((-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -2023 ((-1227 |#2|) (-473 |#1| |#2|) (-623 (-473 |#1| |#2|)))) (-15 -3869 ((-241 |#1| |#2|) (-623 |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|)))) (-15 -3971 ((-623 (-473 |#1| |#2|)) (-838 |#1|) (-623 (-473 |#1| |#2|)) (-623 (-473 |#1| |#2|)))) (-15 -4082 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-623 (-241 |#1| |#2|)))) (-15 -4193 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) NIL)) (-3029 (((-1232) $ (-1126) (-1126)) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 (((-52) $ (-1126) (-52)) 16) (((-52) $ (-1144) (-52)) 17)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 (-52) "failed") (-1126) $) NIL)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068))))) (-3112 (($ (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-3 (-52) "failed") (-1126) $) NIL)) (-3137 (($ (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $ (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068)))) (((-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $ (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-3245 (((-52) $ (-1126) (-52)) NIL (|has| $ (-6 -4343)))) (-3181 (((-52) $ (-1126)) NIL)) (-3450 (((-623 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-623 (-52)) $) NIL (|has| $ (-6 -4342)))) (-4318 (($ $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-1126) $) NIL (|has| (-1126) (-825)))) (-2689 (((-623 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-623 (-52)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068))))) (-3283 (((-1126) $) NIL (|has| (-1126) (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4343))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2104 (($ (-381)) 9)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068))))) (-3531 (((-623 (-1126)) $) NIL)) (-2550 (((-112) (-1126) $) NIL)) (-3638 (((-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) $) NIL)) (-1886 (($ (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) $) NIL)) (-2325 (((-623 (-1126)) $) NIL)) (-2400 (((-112) (-1126) $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068))))) (-1293 (((-52) $) NIL (|has| (-1126) (-825)))) (-3321 (((-3 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) "failed") (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL)) (-3111 (($ $ (-52)) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068)))) (($ $ (-287 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068)))) (($ $ (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068)))) (($ $ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068)))) (($ $ (-623 (-52)) (-623 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-623 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068))))) (-2477 (((-623 (-52)) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 (((-52) $ (-1126)) 14) (((-52) $ (-1126) (-52)) NIL) (((-52) $ (-1144)) 15)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068)))) (((-749) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068)))) (((-749) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-52) (-595 (-836))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 (-52))) (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-612) (-13 (-1157 (-1126) (-52)) (-10 -8 (-15 -2104 ($ (-381))) (-15 -4318 ($ $)) (-15 -2680 ((-52) $ (-1144))) (-15 -1705 ((-52) $ (-1144) (-52)))))) (T -612)) +((-2104 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-612)))) (-4318 (*1 *1 *1) (-5 *1 (-612))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-52)) (-5 *1 (-612)))) (-1705 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1144)) (-5 *1 (-612))))) +(-13 (-1157 (-1126) (-52)) (-10 -8 (-15 -2104 ($ (-381))) (-15 -4318 ($ $)) (-15 -2680 ((-52) $ (-1144))) (-15 -1705 ((-52) $ (-1144) (-52))))) +((-2414 (($ $ |#2|) 10))) +(((-613 |#1| |#2|) (-10 -8 (-15 -2414 (|#1| |#1| |#2|))) (-614 |#2|) (-170)) (T -613)) +NIL +(-10 -8 (-15 -2414 (|#1| |#1| |#2|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1532 (($ $ $) 29)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 28 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-614 |#1|) (-138) (-170)) (T -614)) +((-1532 (*1 *1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-170)))) (-2414 (*1 *1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) +(-13 (-696 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1532 ($ $ $)) (IF (|has| |t#1| (-356)) (-15 -2414 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-1026 |#1|) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3090 (((-3 $ "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1265 (((-1227 (-667 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-1227 (-667 |#1|)) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3406 (((-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3513 (($) NIL T CONST)) (-3726 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3947 (((-3 $ "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2043 (((-667 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-1958 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2042 (((-667 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) $ (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3818 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-1870 (((-1140 (-925 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2923 (($ $ (-894)) NIL)) (-1729 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-4215 (((-1140 |#1|) $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3945 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-1474 (((-1140 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2105 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4110 (($ (-1227 |#1|)) NIL (|has| |#2| (-410 |#1|))) (($ (-1227 |#1|) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-1386 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2122 (((-894)) NIL (|has| |#2| (-360 |#1|)))) (-2890 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1494 (($ $ (-894)) NIL)) (-3657 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3400 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2685 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2662 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-4080 (((-3 $ "failed")) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-2116 (((-667 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3813 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2127 (((-667 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) $ (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-2732 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3480 (((-1140 (-925 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2834 (($ $ (-894)) NIL)) (-1842 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1305 (((-1140 |#1|) $) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-4012 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-1603 (((-1140 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2197 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-1126) $) NIL)) (-3528 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2591 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2781 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3337 (((-1088) $) NIL)) (-3089 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2680 ((|#1| $ (-550)) NIL (|has| |#2| (-410 |#1|)))) (-1373 (((-667 |#1|) (-1227 $)) NIL (|has| |#2| (-410 |#1|))) (((-1227 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-667 |#1|) (-1227 $) (-1227 $)) NIL (|has| |#2| (-360 |#1|))) (((-1227 |#1|) $ (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-4028 (($ (-1227 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-1227 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-2361 (((-623 (-925 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-623 (-925 |#1|)) (-1227 $)) NIL (|has| |#2| (-360 |#1|)))) (-3292 (($ $ $) NIL)) (-2564 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1518 (((-836) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2437 (((-1227 $)) NIL (|has| |#2| (-410 |#1|)))) (-3268 (((-623 (-1227 |#1|))) NIL (-1561 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-542)))))) (-3395 (($ $ $ $) NIL)) (-2376 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4292 (($ (-667 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-1358 (($ $ $) NIL)) (-2473 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2286 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2990 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2626 (($) 15 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) 17)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-615 |#1| |#2|) (-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -1518 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-723 |#1|)) (T -615)) +((-1518 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-615 *3 *2)) (-4 *2 (-723 *3))))) +(-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -1518 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) +((-3307 (((-3 (-818 |#2|) "failed") |#2| (-287 |#2|) (-1126)) 82) (((-3 (-818 |#2|) (-2 (|:| |leftHandLimit| (-3 (-818 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-818 |#2|) "failed"))) "failed") |#2| (-287 (-818 |#2|))) 104)) (-1376 (((-3 (-811 |#2|) "failed") |#2| (-287 (-811 |#2|))) 109))) +(((-616 |#1| |#2|) (-10 -7 (-15 -3307 ((-3 (-818 |#2|) (-2 (|:| |leftHandLimit| (-3 (-818 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-818 |#2|) "failed"))) "failed") |#2| (-287 (-818 |#2|)))) (-15 -1376 ((-3 (-811 |#2|) "failed") |#2| (-287 (-811 |#2|)))) (-15 -3307 ((-3 (-818 |#2|) "failed") |#2| (-287 |#2|) (-1126)))) (-13 (-444) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|))) (T -616)) +((-3307 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-287 *3)) (-5 *5 (-1126)) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-818 *3)) (-5 *1 (-616 *6 *3)))) (-1376 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-287 (-811 *3))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-811 *3)) (-5 *1 (-616 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))))) (-3307 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-818 *3))) (-4 *3 (-13 (-27) (-1166) (-423 *5))) (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-3 (-818 *3) (-2 (|:| |leftHandLimit| (-3 (-818 *3) "failed")) (|:| |rightHandLimit| (-3 (-818 *3) "failed"))) "failed")) (-5 *1 (-616 *5 *3))))) +(-10 -7 (-15 -3307 ((-3 (-818 |#2|) (-2 (|:| |leftHandLimit| (-3 (-818 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-818 |#2|) "failed"))) "failed") |#2| (-287 (-818 |#2|)))) (-15 -1376 ((-3 (-811 |#2|) "failed") |#2| (-287 (-811 |#2|)))) (-15 -3307 ((-3 (-818 |#2|) "failed") |#2| (-287 |#2|) (-1126)))) +((-3307 (((-3 (-818 (-400 (-925 |#1|))) "failed") (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))) (-1126)) 80) (((-3 (-818 (-400 (-925 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed"))) "failed") (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|)))) 20) (((-3 (-818 (-400 (-925 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed"))) "failed") (-400 (-925 |#1|)) (-287 (-818 (-925 |#1|)))) 35)) (-1376 (((-811 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|)))) 23) (((-811 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-287 (-811 (-925 |#1|)))) 43))) +(((-617 |#1|) (-10 -7 (-15 -3307 ((-3 (-818 (-400 (-925 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed"))) "failed") (-400 (-925 |#1|)) (-287 (-818 (-925 |#1|))))) (-15 -3307 ((-3 (-818 (-400 (-925 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed"))) "failed") (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))))) (-15 -1376 ((-811 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-287 (-811 (-925 |#1|))))) (-15 -1376 ((-811 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))))) (-15 -3307 ((-3 (-818 (-400 (-925 |#1|))) "failed") (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))) (-1126)))) (-444)) (T -617)) +((-3307 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-287 (-400 (-925 *6)))) (-5 *5 (-1126)) (-5 *3 (-400 (-925 *6))) (-4 *6 (-444)) (-5 *2 (-818 *3)) (-5 *1 (-617 *6)))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-400 (-925 *5)))) (-5 *3 (-400 (-925 *5))) (-4 *5 (-444)) (-5 *2 (-811 *3)) (-5 *1 (-617 *5)))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-811 (-925 *5)))) (-4 *5 (-444)) (-5 *2 (-811 (-400 (-925 *5)))) (-5 *1 (-617 *5)) (-5 *3 (-400 (-925 *5))))) (-3307 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-400 (-925 *5)))) (-5 *3 (-400 (-925 *5))) (-4 *5 (-444)) (-5 *2 (-3 (-818 *3) (-2 (|:| |leftHandLimit| (-3 (-818 *3) "failed")) (|:| |rightHandLimit| (-3 (-818 *3) "failed"))) "failed")) (-5 *1 (-617 *5)))) (-3307 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-818 (-925 *5)))) (-4 *5 (-444)) (-5 *2 (-3 (-818 (-400 (-925 *5))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-925 *5))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-925 *5))) "failed"))) "failed")) (-5 *1 (-617 *5)) (-5 *3 (-400 (-925 *5)))))) +(-10 -7 (-15 -3307 ((-3 (-818 (-400 (-925 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed"))) "failed") (-400 (-925 |#1|)) (-287 (-818 (-925 |#1|))))) (-15 -3307 ((-3 (-818 (-400 (-925 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-818 (-400 (-925 |#1|))) "failed"))) "failed") (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))))) (-15 -1376 ((-811 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-287 (-811 (-925 |#1|))))) (-15 -1376 ((-811 (-400 (-925 |#1|))) (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))))) (-15 -3307 ((-3 (-818 (-400 (-925 |#1|))) "failed") (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))) (-1126)))) +((-3659 (((-3 (-1227 (-400 |#1|)) "failed") (-1227 |#2|) |#2|) 57 (-3462 (|has| |#1| (-356)))) (((-3 (-1227 |#1|) "failed") (-1227 |#2|) |#2|) 42 (|has| |#1| (-356)))) (-3421 (((-112) (-1227 |#2|)) 30)) (-3530 (((-3 (-1227 |#1|) "failed") (-1227 |#2|)) 33))) +(((-618 |#1| |#2|) (-10 -7 (-15 -3421 ((-112) (-1227 |#2|))) (-15 -3530 ((-3 (-1227 |#1|) "failed") (-1227 |#2|))) (IF (|has| |#1| (-356)) (-15 -3659 ((-3 (-1227 |#1|) "failed") (-1227 |#2|) |#2|)) (-15 -3659 ((-3 (-1227 (-400 |#1|)) "failed") (-1227 |#2|) |#2|)))) (-542) (-619 |#1|)) (T -618)) +((-3659 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1227 *4)) (-4 *4 (-619 *5)) (-3462 (-4 *5 (-356))) (-4 *5 (-542)) (-5 *2 (-1227 (-400 *5))) (-5 *1 (-618 *5 *4)))) (-3659 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1227 *4)) (-4 *4 (-619 *5)) (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 (-1227 *5)) (-5 *1 (-618 *5 *4)))) (-3530 (*1 *2 *3) (|partial| -12 (-5 *3 (-1227 *5)) (-4 *5 (-619 *4)) (-4 *4 (-542)) (-5 *2 (-1227 *4)) (-5 *1 (-618 *4 *5)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-1227 *5)) (-4 *5 (-619 *4)) (-4 *4 (-542)) (-5 *2 (-112)) (-5 *1 (-618 *4 *5))))) +(-10 -7 (-15 -3421 ((-112) (-1227 |#2|))) (-15 -3530 ((-3 (-1227 |#1|) "failed") (-1227 |#2|))) (IF (|has| |#1| (-356)) (-15 -3659 ((-3 (-1227 |#1|) "failed") (-1227 |#2|) |#2|)) (-15 -3659 ((-3 (-1227 (-400 |#1|)) "failed") (-1227 |#2|) |#2|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3780 (((-667 |#1|) (-667 $)) 34) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 33)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-619 |#1|) (-138) (-1020)) (T -619)) +((-3780 (*1 *2 *3) (-12 (-5 *3 (-667 *1)) (-4 *1 (-619 *4)) (-4 *4 (-1020)) (-5 *2 (-667 *4)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *1)) (-5 *4 (-1227 *1)) (-4 *1 (-619 *5)) (-4 *5 (-1020)) (-5 *2 (-2 (|:| -1340 (-667 *5)) (|:| |vec| (-1227 *5))))))) +(-13 (-1020) (-10 -8 (-15 -3780 ((-667 |t#1|) (-667 $))) (-15 -3780 ((-2 (|:| -1340 (-667 |t#1|)) (|:| |vec| (-1227 |t#1|))) (-667 $) (-1227 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3658 ((|#2| (-623 |#1|) (-623 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-623 |#1|) (-623 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) |#2|) 17) ((|#2| (-623 |#1|) (-623 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|)) 12))) +(((-620 |#1| |#2|) (-10 -7 (-15 -3658 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|))) (-15 -3658 (|#2| (-623 |#1|) (-623 |#2|) |#1|)) (-15 -3658 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) |#2|)) (-15 -3658 (|#2| (-623 |#1|) (-623 |#2|) |#1| |#2|)) (-15 -3658 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) (-1 |#2| |#1|))) (-15 -3658 (|#2| (-623 |#1|) (-623 |#2|) |#1| (-1 |#2| |#1|)))) (-1068) (-1181)) (T -620)) +((-3658 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1068)) (-4 *2 (-1181)) (-5 *1 (-620 *5 *2)))) (-3658 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-623 *5)) (-5 *4 (-623 *6)) (-4 *5 (-1068)) (-4 *6 (-1181)) (-5 *1 (-620 *5 *6)))) (-3658 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-4 *5 (-1068)) (-4 *2 (-1181)) (-5 *1 (-620 *5 *2)))) (-3658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 *5)) (-4 *6 (-1068)) (-4 *5 (-1181)) (-5 *2 (-1 *5 *6)) (-5 *1 (-620 *6 *5)))) (-3658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-4 *5 (-1068)) (-4 *2 (-1181)) (-5 *1 (-620 *5 *2)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *6)) (-4 *5 (-1068)) (-4 *6 (-1181)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *6))))) +(-10 -7 (-15 -3658 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|))) (-15 -3658 (|#2| (-623 |#1|) (-623 |#2|) |#1|)) (-15 -3658 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) |#2|)) (-15 -3658 (|#2| (-623 |#1|) (-623 |#2|) |#1| |#2|)) (-15 -3658 ((-1 |#2| |#1|) (-623 |#1|) (-623 |#2|) (-1 |#2| |#1|))) (-15 -3658 (|#2| (-623 |#1|) (-623 |#2|) |#1| (-1 |#2| |#1|)))) +((-3572 (((-623 |#2|) (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|) 16)) (-2419 ((|#2| (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|) 18)) (-3972 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 13))) +(((-621 |#1| |#2|) (-10 -7 (-15 -3572 ((-623 |#2|) (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|)) (-15 -2419 (|#2| (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|)) (-15 -3972 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-1181) (-1181)) (T -621)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-623 *6)) (-5 *1 (-621 *5 *6)))) (-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-623 *5)) (-4 *5 (-1181)) (-4 *2 (-1181)) (-5 *1 (-621 *5 *2)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-623 *6)) (-4 *6 (-1181)) (-4 *5 (-1181)) (-5 *2 (-623 *5)) (-5 *1 (-621 *6 *5))))) +(-10 -7 (-15 -3572 ((-623 |#2|) (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|)) (-15 -2419 (|#2| (-1 |#2| |#1| |#2|) (-623 |#1|) |#2|)) (-15 -3972 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) +((-3972 (((-623 |#3|) (-1 |#3| |#1| |#2|) (-623 |#1|) (-623 |#2|)) 13))) +(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-623 |#3|) (-1 |#3| |#1| |#2|) (-623 |#1|) (-623 |#2|)))) (-1181) (-1181) (-1181)) (T -622)) +((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-623 *6)) (-5 *5 (-623 *7)) (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-623 *8)) (-5 *1 (-622 *6 *7 *8))))) +(-10 -7 (-15 -3972 ((-623 |#3|) (-1 |#3| |#1| |#2|) (-623 |#1|) (-623 |#2|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) NIL)) (-3996 ((|#1| $) NIL)) (-4180 (($ $) NIL)) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3491 (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-1674 (($ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-2190 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-1431 (($ $ $) NIL (|has| $ (-6 -4343)))) (-1300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-3373 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4343))) (($ $ "rest" $) NIL (|has| $ (-6 -4343))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-4280 (($ $ $) 32 (|has| |#1| (-1068)))) (-4266 (($ $ $) 34 (|has| |#1| (-1068)))) (-4257 (($ $ $) 37 (|has| |#1| (-1068)))) (-3378 (($ (-1 (-112) |#1|) $) NIL)) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3985 ((|#1| $) NIL)) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1308 (($ $) NIL) (($ $ (-749)) NIL)) (-3912 (($ $) NIL (|has| |#1| (-1068)))) (-1328 (($ $) 31 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3112 (($ |#1| $) NIL (|has| |#1| (-1068))) (($ (-1 (-112) |#1|) $) NIL)) (-3137 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-3815 (((-112) $) NIL)) (-2302 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068))) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) (-1 (-112) |#1|) $) NIL)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2605 (((-112) $) 9)) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-1964 (($) 7)) (-2578 (($ (-749) |#1|) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-3884 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1832 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4218 (($ |#1|) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3159 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1886 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2055 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-2719 (((-112) $) NIL)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1194 (-550))) NIL) ((|#1| $ (-550)) 36) ((|#1| $ (-550) |#1|) NIL)) (-2487 (((-550) $ $) NIL)) (-3476 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-1529 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-2136 (((-112) $) NIL)) (-3635 (($ $) NIL)) (-3472 (($ $) NIL (|has| $ (-6 -4343)))) (-3728 (((-749) $) NIL)) (-3786 (($ $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) 45 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-1413 (($ |#1| $) 10)) (-3547 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3227 (($ $ $) 30) (($ |#1| $) NIL) (($ (-623 $)) NIL) (($ $ |#1|) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3127 (($ $ $) 11)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3040 (((-1126) $) 26 (|has| |#1| (-806))) (((-1126) $ (-112)) 27 (|has| |#1| (-806))) (((-1232) (-800) $) 28 (|has| |#1| (-806))) (((-1232) (-800) $ (-112)) 29 (|has| |#1| (-806)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-623 |#1|) (-13 (-644 |#1|) (-10 -8 (-15 -1964 ($)) (-15 -2605 ((-112) $)) (-15 -1413 ($ |#1| $)) (-15 -3127 ($ $ $)) (IF (|has| |#1| (-1068)) (PROGN (-15 -4280 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -4257 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|))) (-1181)) (T -623)) +((-1964 (*1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1181)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1181)))) (-1413 (*1 *1 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1181)))) (-3127 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1181)))) (-4280 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1068)) (-4 *2 (-1181)))) (-4266 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1068)) (-4 *2 (-1181)))) (-4257 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1068)) (-4 *2 (-1181))))) +(-13 (-644 |#1|) (-10 -8 (-15 -1964 ($)) (-15 -2605 ((-112) $)) (-15 -1413 ($ |#1| $)) (-15 -3127 ($ $ $)) (IF (|has| |#1| (-1068)) (PROGN (-15 -4280 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -4257 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-806)) (-6 (-806)) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 11) (((-1149) $) NIL) (($ (-1149)) NIL) ((|#1| $) 8)) (-2316 (((-112) $ $) NIL))) +(((-624 |#1|) (-13 (-1051) (-595 |#1|)) (-1068)) (T -624)) +NIL +(-13 (-1051) (-595 |#1|)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-1317 (($ |#1| |#1| $) 43)) (-4047 (((-112) $ (-749)) NIL)) (-3378 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-3912 (($ $) 45)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3112 (($ |#1| $) 52 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4342)))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3450 (((-623 |#1|) $) 9 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 37)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3638 ((|#1| $) 46)) (-1886 (($ |#1| $) 26) (($ |#1| $ (-749)) 42)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3760 ((|#1| $) 48)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 21)) (-3498 (($) 25)) (-2702 (((-112) $) 50)) (-3821 (((-623 (-2 (|:| -2119 |#1|) (|:| -3350 (-749)))) $) 59)) (-2729 (($) 23) (($ (-623 |#1|)) 18)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) 56 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) 19)) (-4028 (((-526) $) 34 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-1518 (((-836) $) 14 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 22)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 61 (|has| |#1| (-1068)))) (-3191 (((-749) $) 16 (|has| $ (-6 -4342))))) +(((-625 |#1|) (-13 (-673 |#1|) (-10 -8 (-6 -4342) (-15 -2702 ((-112) $)) (-15 -1317 ($ |#1| |#1| $)))) (-1068)) (T -625)) +((-2702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1068)))) (-1317 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1068))))) +(-13 (-673 |#1|) (-10 -8 (-6 -4342) (-15 -2702 ((-112) $)) (-15 -1317 ($ |#1| |#1| $)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23))) +(((-626 |#1|) (-138) (-1027)) (T -626)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1027))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3454 (((-747) $) 15)) (-2366 (($ $ |#1|) 56)) (-2368 (($ $) 32)) (-2369 (($ $) 31)) (-3491 (((-3 |#1| "failed") $) 48)) (-3490 ((|#1| $) NIL)) (-2398 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3870 (((-835) $ (-1 (-835) (-835) (-835)) (-1 (-835) (-835) (-835)) (-535)) 46)) (-2759 ((|#1| $ (-535)) 30)) (-2760 ((|#2| $ (-535)) 29)) (-2362 (($ (-1 |#1| |#1|) $) 34)) (-2363 (($ (-1 |#2| |#2|) $) 38)) (-2367 (($) 10)) (-2371 (($ |#1| |#2|) 22)) (-2370 (($ (-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|)))) 23)) (-2372 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $) 13)) (-2365 (($ |#1| $) 57)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2364 (((-112) $ $) 60)) (-4300 (((-835) $) 19) (($ |#1|) 16)) (-3375 (((-112) $ $) 25))) -(((-625 |#1| |#2| |#3|) (-13 (-1067) (-1009 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-1 (-835) (-835) (-835)) (-1 (-835) (-835) (-835)) (-535))) (-15 -2372 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $)) (-15 -2371 ($ |#1| |#2|)) (-15 -2370 ($ (-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))))) (-15 -2760 (|#2| $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2369 ($ $)) (-15 -2368 ($ $)) (-15 -3454 ((-747) $)) (-15 -2367 ($)) (-15 -2366 ($ $ |#1|)) (-15 -2365 ($ |#1| $)) (-15 -2398 ($ |#1| |#2| $)) (-15 -2398 ($ $ $)) (-15 -2364 ((-112) $ $)) (-15 -2363 ($ (-1 |#2| |#2|) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)))) (-1067) (-23) |#2|) (T -625)) -((-3870 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-835) (-835) (-835))) (-5 *4 (-535)) (-5 *2 (-835)) (-5 *1 (-625 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-23)) (-14 *7 *6))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-2371 (*1 *1 *2 *3) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *2 (-23)) (-5 *1 (-625 *4 *2 *5)) (-4 *4 (-1067)) (-14 *5 *2))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *2 (-1067)) (-5 *1 (-625 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2369 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-2367 (*1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2366 (*1 *1 *1 *2) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2365 (*1 *1 *2 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2398 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2398 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2364 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-2363 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)))) (-2362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-625 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1067) (-1009 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-1 (-835) (-835) (-835)) (-1 (-835) (-835) (-835)) (-535))) (-15 -2372 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $)) (-15 -2371 ($ |#1| |#2|)) (-15 -2370 ($ (-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))))) (-15 -2760 (|#2| $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2369 ($ $)) (-15 -2368 ($ $)) (-15 -3454 ((-747) $)) (-15 -2367 ($)) (-15 -2366 ($ $ |#1|)) (-15 -2365 ($ |#1| $)) (-15 -2398 ($ |#1| |#2| $)) (-15 -2398 ($ $ $)) (-15 -2364 ((-112) $ $)) (-15 -2363 ($ (-1 |#2| |#2|) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)))) -((-2299 (((-535) $) 24)) (-2373 (($ |#2| $ (-535)) 22) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) 12)) (-2302 (((-112) (-535) $) 15)) (-4144 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-618 $)) NIL))) -(((-626 |#1| |#2|) (-10 -8 (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -2299 ((-535) |#1|)) (-15 -2301 ((-618 (-535)) |#1|)) (-15 -2302 ((-112) (-535) |#1|))) (-627 |#2|) (-1178)) (T -626)) -NIL -(-10 -8 (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -2299 ((-535) |#1|)) (-15 -2301 ((-618 (-535)) |#1|)) (-15 -2302 ((-112) (-535) |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-627 |#1|) (-138) (-1178)) (T -627)) -((-3960 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-4144 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) (-4144 (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) (-4144 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) (-4144 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-4301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-2374 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-2374 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-2373 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-627 *2)) (-4 *2 (-1178)))) (-2373 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1191 (-535))) (|has| *1 (-6 -4337)) (-4 *1 (-627 *2)) (-4 *2 (-1178))))) -(-13 (-584 (-535) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3960 ($ (-747) |t#1|)) (-15 -4144 ($ $ |t#1|)) (-15 -4144 ($ |t#1| $)) (-15 -4144 ($ $ $)) (-15 -4144 ($ (-618 $))) (-15 -4301 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4142 ($ $ (-1191 (-535)))) (-15 -2374 ($ $ (-535))) (-15 -2374 ($ $ (-1191 (-535)))) (-15 -2373 ($ |t#1| $ (-535))) (-15 -2373 ($ $ $ (-535))) (IF (|has| $ (-6 -4337)) (-15 -4130 (|t#1| $ (-1191 (-535)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 15)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3319 ((|#1| $) 21)) (-3660 (($ $ $) NIL (|has| |#1| (-767)))) (-3661 (($ $ $) NIL (|has| |#1| (-767)))) (-3576 (((-1124) $) 46)) (-3577 (((-1086) $) NIL)) (-3318 ((|#3| $) 22)) (-4300 (((-835) $) 42)) (-2979 (($) 10 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-767)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-767)))) (-3375 (((-112) $ $) 20)) (-3005 (((-112) $ $) NIL (|has| |#1| (-767)))) (-3006 (((-112) $ $) 24 (|has| |#1| (-767)))) (-4291 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4180 (($ $) 17) (($ $ $) NIL)) (-4182 (($ $ $) 27)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-628 |#1| |#2| |#3|) (-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) (-15 -4291 ($ $ |#3|)) (-15 -4291 ($ |#1| |#3|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#3| $)))) (-694 |#2|) (-170) (|SubsetCategory| (-703) |#2|)) (T -628)) -((-4291 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-628 *3 *4 *2)) (-4 *3 (-694 *4)) (-4 *2 (|SubsetCategory| (-703) *4)))) (-4291 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-628 *2 *4 *3)) (-4 *2 (-694 *4)) (-4 *3 (|SubsetCategory| (-703) *4)))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-694 *3)) (-5 *1 (-628 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-703) *3)))) (-3318 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) (-5 *1 (-628 *3 *4 *2)) (-4 *3 (-694 *4))))) -(-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) (-15 -4291 ($ $ |#3|)) (-15 -4291 ($ |#1| |#3|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#3| $)))) -((-3919 (((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-618 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) "failed") |#3| |#2| (-1142)) 44))) -(((-629 |#1| |#2| |#3|) (-10 -7 (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) "failed") |#3| |#2| (-1142))) (-15 -3919 ((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-618 |#2|)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931)) (-634 |#2|)) (T -629)) -((-3919 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-629 *6 *2 *3)) (-4 *3 (-634 *2)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-4 *4 (-13 (-29 *6) (-1164) (-931))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-618 *4)))) (-5 *1 (-629 *6 *4 *3)) (-4 *3 (-634 *4))))) -(-10 -7 (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) "failed") |#3| |#2| (-1142))) (-15 -3919 ((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-618 |#2|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-356)))) (-2377 (($ $ $) 28 (|has| |#1| (-356)))) (-2378 (($ $ (-747)) 31 (|has| |#1| (-356)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2860 (($ $ $) NIL (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-2493 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (($ $ $) NIL (|has| |#1| (-356)))) (-2858 (($ $ $) NIL (|has| |#1| (-356)))) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-542)))) (-4142 ((|#1| $ |#1|) 24)) (-2379 (($ $ $) 33 (|has| |#1| (-356)))) (-4290 (((-747) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) 20) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#1| $ |#1| |#1|) 23)) (-2845 (($ $) NIL)) (-2979 (($) 21 T CONST)) (-2985 (($) 8 T CONST)) (-2990 (($) NIL)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-630 |#1| |#2|) (-634 |#1|) (-1018) (-1 |#1| |#1|)) (T -630)) -NIL -(-634 |#1|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-356)))) (-2377 (($ $ $) NIL (|has| |#1| (-356)))) (-2378 (($ $ (-747)) NIL (|has| |#1| (-356)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2860 (($ $ $) NIL (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-2493 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (($ $ $) NIL (|has| |#1| (-356)))) (-2858 (($ $ $) NIL (|has| |#1| (-356)))) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-542)))) (-4142 ((|#1| $ |#1|) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-356)))) (-4290 (((-747) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#1| $ |#1| |#1|) NIL)) (-2845 (($ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($) NIL)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-4319 (((-749) $) 15)) (-2145 (($ $ |#1|) 56)) (-2342 (($ $) 32)) (-3243 (($ $) 31)) (-3880 (((-3 |#1| "failed") $) 48)) (-2726 ((|#1| $) NIL)) (-1688 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3425 (((-836) $ (-1 (-836) (-836) (-836)) (-1 (-836) (-836) (-836)) (-550)) 46)) (-1980 ((|#1| $ (-550)) 30)) (-2076 ((|#2| $ (-550)) 29)) (-2808 (($ (-1 |#1| |#1|) $) 34)) (-2921 (($ (-1 |#2| |#2|) $) 38)) (-2244 (($) 10)) (-2545 (($ |#1| |#2|) 22)) (-2446 (($ (-623 (-2 (|:| |gen| |#1|) (|:| -1812 |#2|)))) 23)) (-1462 (((-623 (-2 (|:| |gen| |#1|) (|:| -1812 |#2|))) $) 13)) (-3132 (($ |#1| $) 57)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3031 (((-112) $ $) 60)) (-1518 (((-836) $) 19) (($ |#1|) 16)) (-2316 (((-112) $ $) 25))) +(((-627 |#1| |#2| |#3|) (-13 (-1068) (-1011 |#1|) (-10 -8 (-15 -3425 ((-836) $ (-1 (-836) (-836) (-836)) (-1 (-836) (-836) (-836)) (-550))) (-15 -1462 ((-623 (-2 (|:| |gen| |#1|) (|:| -1812 |#2|))) $)) (-15 -2545 ($ |#1| |#2|)) (-15 -2446 ($ (-623 (-2 (|:| |gen| |#1|) (|:| -1812 |#2|))))) (-15 -2076 (|#2| $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -3243 ($ $)) (-15 -2342 ($ $)) (-15 -4319 ((-749) $)) (-15 -2244 ($)) (-15 -2145 ($ $ |#1|)) (-15 -3132 ($ |#1| $)) (-15 -1688 ($ |#1| |#2| $)) (-15 -1688 ($ $ $)) (-15 -3031 ((-112) $ $)) (-15 -2921 ($ (-1 |#2| |#2|) $)) (-15 -2808 ($ (-1 |#1| |#1|) $)))) (-1068) (-23) |#2|) (T -627)) +((-3425 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-836) (-836) (-836))) (-5 *4 (-550)) (-5 *2 (-836)) (-5 *1 (-627 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-23)) (-14 *7 *6))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-23)) (-14 *5 *4))) (-2545 (*1 *1 *2 *3) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) (-14 *4 *3))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 *4)))) (-4 *3 (-1068)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-23)) (-5 *1 (-627 *4 *2 *5)) (-4 *4 (-1068)) (-14 *5 *2))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-1068)) (-5 *1 (-627 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3243 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) (-14 *4 *3))) (-2342 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) (-14 *4 *3))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-23)) (-14 *5 *4))) (-2244 (*1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) (-14 *4 *3))) (-2145 (*1 *1 *1 *2) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) (-14 *4 *3))) (-3132 (*1 *1 *2 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) (-14 *4 *3))) (-1688 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) (-14 *4 *3))) (-1688 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) (-14 *4 *3))) (-3031 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-23)) (-14 *5 *4))) (-2921 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1068)))) (-2808 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-627 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1068) (-1011 |#1|) (-10 -8 (-15 -3425 ((-836) $ (-1 (-836) (-836) (-836)) (-1 (-836) (-836) (-836)) (-550))) (-15 -1462 ((-623 (-2 (|:| |gen| |#1|) (|:| -1812 |#2|))) $)) (-15 -2545 ($ |#1| |#2|)) (-15 -2446 ($ (-623 (-2 (|:| |gen| |#1|) (|:| -1812 |#2|))))) (-15 -2076 (|#2| $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -3243 ($ $)) (-15 -2342 ($ $)) (-15 -4319 ((-749) $)) (-15 -2244 ($)) (-15 -2145 ($ $ |#1|)) (-15 -3132 ($ |#1| $)) (-15 -1688 ($ |#1| |#2| $)) (-15 -1688 ($ $ $)) (-15 -3031 ((-112) $ $)) (-15 -2921 ($ (-1 |#2| |#2|) $)) (-15 -2808 ($ (-1 |#1| |#1|) $)))) +((-3283 (((-550) $) 24)) (-2055 (($ |#2| $ (-550)) 22) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) 12)) (-2400 (((-112) (-550) $) 15)) (-3227 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-623 $)) NIL))) +(((-628 |#1| |#2|) (-10 -8 (-15 -2055 (|#1| |#1| |#1| (-550))) (-15 -2055 (|#1| |#2| |#1| (-550))) (-15 -3227 (|#1| (-623 |#1|))) (-15 -3227 (|#1| |#1| |#1|)) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#2|)) (-15 -3283 ((-550) |#1|)) (-15 -2325 ((-623 (-550)) |#1|)) (-15 -2400 ((-112) (-550) |#1|))) (-629 |#2|) (-1181)) (T -628)) +NIL +(-10 -8 (-15 -2055 (|#1| |#1| |#1| (-550))) (-15 -2055 (|#1| |#2| |#1| (-550))) (-15 -3227 (|#1| (-623 |#1|))) (-15 -3227 (|#1| |#1| |#1|)) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#2|)) (-15 -3283 ((-550) |#1|)) (-15 -2325 ((-623 (-550)) |#1|)) (-15 -2400 ((-112) (-550) |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 58 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-1328 (($ $) 78 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#1| $) 77 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 51)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2578 (($ (-749) |#1|) 69)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 42 (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3111 (($ $ |#1|) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1194 (-550))) 63)) (-1529 (($ $ (-550)) 62) (($ $ (-1194 (-550))) 61)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 70)) (-3227 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-629 |#1|) (-138) (-1181)) (T -629)) +((-2578 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) (-3227 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1181)))) (-3227 (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1181)))) (-3227 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1181)))) (-3227 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) (-3972 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-1194 (-550))) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) (-1529 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) (-1529 (*1 *1 *1 *2) (-12 (-5 *2 (-1194 (-550))) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) (-2055 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-629 *2)) (-4 *2 (-1181)))) (-2055 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) (-1705 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1194 (-550))) (|has| *1 (-6 -4343)) (-4 *1 (-629 *2)) (-4 *2 (-1181))))) +(-13 (-586 (-550) |t#1|) (-149 |t#1|) (-10 -8 (-15 -2578 ($ (-749) |t#1|)) (-15 -3227 ($ $ |t#1|)) (-15 -3227 ($ |t#1| $)) (-15 -3227 ($ $ $)) (-15 -3227 ($ (-623 $))) (-15 -3972 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2680 ($ $ (-1194 (-550)))) (-15 -1529 ($ $ (-550))) (-15 -1529 ($ $ (-1194 (-550)))) (-15 -2055 ($ |t#1| $ (-550))) (-15 -2055 ($ $ $ (-550))) (IF (|has| $ (-6 -4343)) (-15 -1705 (|t#1| $ (-1194 (-550)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-2903 (((-3 |#2| "failed") |#3| |#2| (-1144) |#2| (-623 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) "failed") |#3| |#2| (-1144)) 44))) +(((-630 |#1| |#2| |#3|) (-10 -7 (-15 -2903 ((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) "failed") |#3| |#2| (-1144))) (-15 -2903 ((-3 |#2| "failed") |#3| |#2| (-1144) |#2| (-623 |#2|)))) (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1166) (-932)) (-634 |#2|)) (T -630)) +((-2903 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-623 *2)) (-4 *2 (-13 (-29 *6) (-1166) (-932))) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *1 (-630 *6 *2 *3)) (-4 *3 (-634 *2)))) (-2903 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1144)) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-4 *4 (-13 (-29 *6) (-1166) (-932))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2437 (-623 *4)))) (-5 *1 (-630 *6 *4 *3)) (-4 *3 (-634 *4))))) +(-10 -7 (-15 -2903 ((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) "failed") |#3| |#2| (-1144))) (-15 -2903 ((-3 |#2| "failed") |#3| |#2| (-1144) |#2| (-623 |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1605 (($ $) NIL (|has| |#1| (-356)))) (-1890 (($ $ $) NIL (|has| |#1| (-356)))) (-2030 (($ $ (-749)) NIL (|has| |#1| (-356)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2848 (($ $ $) NIL (|has| |#1| (-356)))) (-2936 (($ $ $) NIL (|has| |#1| (-356)))) (-2194 (($ $ $) NIL (|has| |#1| (-356)))) (-2700 (($ $ $) NIL (|has| |#1| (-356)))) (-3796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-1766 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444)))) (-3102 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) NIL)) (-1566 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-2646 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-1667 (((-749) $) NIL)) (-2500 (($ $ $) NIL (|has| |#1| (-356)))) (-2572 (($ $ $) NIL (|has| |#1| (-356)))) (-3717 (($ $ $) NIL (|has| |#1| (-356)))) (-2338 (($ $ $) NIL (|has| |#1| (-356)))) (-2268 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2427 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-1659 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-2680 ((|#1| $ |#1|) NIL)) (-3885 (($ $ $) NIL (|has| |#1| (-356)))) (-2970 (((-749) $) NIL)) (-2503 ((|#1| $) NIL (|has| |#1| (-444)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) NIL)) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-749)) NIL)) (-2390 (((-749)) NIL)) (-4292 ((|#1| $ |#1| |#1|) NIL)) (-4067 (($ $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($) NIL)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-631 |#1|) (-634 |#1|) (-227)) (T -631)) NIL (-634 |#1|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-356)))) (-2377 (($ $ $) NIL (|has| |#1| (-356)))) (-2378 (($ $ (-747)) NIL (|has| |#1| (-356)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2860 (($ $ $) NIL (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-2493 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (($ $ $) NIL (|has| |#1| (-356)))) (-2858 (($ $ $) NIL (|has| |#1| (-356)))) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-542)))) (-4142 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2379 (($ $ $) NIL (|has| |#1| (-356)))) (-4290 (((-747) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#1| $ |#1| |#1|) NIL)) (-2845 (($ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($) NIL)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-632 |#1| |#2|) (-13 (-634 |#1|) (-279 |#2| |#2|)) (-227) (-13 (-624 |#1|) (-10 -8 (-15 -4153 ($ $))))) (T -632)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1605 (($ $) NIL (|has| |#1| (-356)))) (-1890 (($ $ $) NIL (|has| |#1| (-356)))) (-2030 (($ $ (-749)) NIL (|has| |#1| (-356)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2848 (($ $ $) NIL (|has| |#1| (-356)))) (-2936 (($ $ $) NIL (|has| |#1| (-356)))) (-2194 (($ $ $) NIL (|has| |#1| (-356)))) (-2700 (($ $ $) NIL (|has| |#1| (-356)))) (-3796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-1766 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444)))) (-3102 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) NIL)) (-1566 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-2646 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-1667 (((-749) $) NIL)) (-2500 (($ $ $) NIL (|has| |#1| (-356)))) (-2572 (($ $ $) NIL (|has| |#1| (-356)))) (-3717 (($ $ $) NIL (|has| |#1| (-356)))) (-2338 (($ $ $) NIL (|has| |#1| (-356)))) (-2268 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2427 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-1659 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-2680 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3885 (($ $ $) NIL (|has| |#1| (-356)))) (-2970 (((-749) $) NIL)) (-2503 ((|#1| $) NIL (|has| |#1| (-444)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) NIL)) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-749)) NIL)) (-2390 (((-749)) NIL)) (-4292 ((|#1| $ |#1| |#1|) NIL)) (-4067 (($ $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($) NIL)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-632 |#1| |#2|) (-13 (-634 |#1|) (-279 |#2| |#2|)) (-227) (-13 (-626 |#1|) (-10 -8 (-15 -2393 ($ $))))) (T -632)) NIL (-13 (-634 |#1|) (-279 |#2| |#2|)) -((-2375 (($ $) 26)) (-2845 (($ $) 24)) (-2990 (($) 12))) -(((-633 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2845 (|#1| |#1|)) (-15 -2990 (|#1|))) (-634 |#2|) (-1018)) (T -633)) -NIL -(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2845 (|#1| |#1|)) (-15 -2990 (|#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2375 (($ $) 80 (|has| |#1| (-356)))) (-2377 (($ $ $) 82 (|has| |#1| (-356)))) (-2378 (($ $ (-747)) 81 (|has| |#1| (-356)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2862 (($ $ $) 43 (|has| |#1| (-356)))) (-2863 (($ $ $) 44 (|has| |#1| (-356)))) (-2864 (($ $ $) 46 (|has| |#1| (-356)))) (-2860 (($ $ $) 41 (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 40 (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) 42 (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 45 (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) 72 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) 70 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) 67)) (-3490 (((-535) $) 73 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 71 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 66)) (-4302 (($ $) 62)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 53 (|has| |#1| (-444)))) (-2493 (((-112) $) 30)) (-3214 (($ |#1| (-747)) 60)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55 (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 56 (|has| |#1| (-542)))) (-3141 (((-747) $) 64)) (-2868 (($ $ $) 50 (|has| |#1| (-356)))) (-2869 (($ $ $) 51 (|has| |#1| (-356)))) (-2858 (($ $ $) 39 (|has| |#1| (-356)))) (-2866 (($ $ $) 48 (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 47 (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) 49 (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 52 (|has| |#1| (-356)))) (-3508 ((|#1| $) 63)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ #1#) $ |#1|) 57 (|has| |#1| (-542)))) (-4142 ((|#1| $ |#1|) 85)) (-2379 (($ $ $) 79 (|has| |#1| (-356)))) (-4290 (((-747) $) 65)) (-3138 ((|#1| $) 54 (|has| |#1| (-444)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 69 (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 68)) (-4160 (((-618 |#1|) $) 59)) (-4023 ((|#1| $ (-747)) 61)) (-3444 (((-747)) 28)) (-2871 ((|#1| $ |#1| |#1|) 58)) (-2845 (($ $) 83)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($) 84)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-634 |#1|) (-138) (-1018)) (T -634)) -((-2990 (*1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)))) (-2845 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)))) (-2377 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-634 *3)) (-4 *3 (-1018)) (-4 *3 (-356)))) (-2375 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2379 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(-13 (-825 |t#1|) (-279 |t#1| |t#1|) (-10 -8 (-15 -2990 ($)) (-15 -2845 ($ $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2377 ($ $ $)) (-15 -2378 ($ $ (-747))) (-15 -2375 ($ $)) (-15 -2379 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-279 |#1| |#1|) . T) ((-405 |#1|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-825 |#1|) . T)) -((-2376 (((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|))) 74 (|has| |#1| (-27)))) (-4075 (((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|))) 73 (|has| |#1| (-27))) (((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|)) 17))) -(((-635 |#1| |#2|) (-10 -7 (-15 -4075 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4075 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)))) (-15 -2376 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|))))) |%noBranch|)) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -635)) -((-2376 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-631 (-400 *6)))) (-5 *1 (-635 *5 *6)) (-5 *3 (-631 (-400 *6)))))) -(-10 -7 (-15 -4075 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4075 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)))) (-15 -2376 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|))))) |%noBranch|)) -((-2377 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2378 ((|#2| |#2| (-747) (-1 |#1| |#1|)) 40)) (-2379 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-636 |#1| |#2|) (-10 -7 (-15 -2377 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2378 (|#2| |#2| (-747) (-1 |#1| |#1|))) (-15 -2379 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-356) (-634 |#1|)) (T -636)) -((-2379 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-636 *4 *2)) (-4 *2 (-634 *4)))) (-2378 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-636 *5 *2)) (-4 *2 (-634 *5)))) (-2377 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-636 *4 *2)) (-4 *2 (-634 *4))))) -(-10 -7 (-15 -2377 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2378 (|#2| |#2| (-747) (-1 |#1| |#1|))) (-15 -2379 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3664 (($ $ $) 9))) -(((-637 |#1|) (-10 -8 (-15 -3664 (|#1| |#1| |#1|))) (-638)) (T -637)) -NIL -(-10 -8 (-15 -3664 (|#1| |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3662 (($ $) 10)) (-3664 (($ $ $) 8)) (-3375 (((-112) $ $) 6)) (-3663 (($ $ $) 9))) -(((-638) (-138)) (T -638)) -((-3662 (*1 *1 *1) (-4 *1 (-638))) (-3663 (*1 *1 *1 *1) (-4 *1 (-638))) (-3664 (*1 *1 *1 *1) (-4 *1 (-638)))) -(-13 (-101) (-10 -8 (-15 -3662 ($ $)) (-15 -3663 ($ $ $)) (-15 -3664 ($ $ $)))) +((-1605 (($ $) 26)) (-4067 (($ $) 24)) (-4183 (($) 12))) +(((-633 |#1| |#2|) (-10 -8 (-15 -1605 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4183 (|#1|))) (-634 |#2|) (-1020)) (T -633)) +NIL +(-10 -8 (-15 -1605 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4183 (|#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1605 (($ $) 80 (|has| |#1| (-356)))) (-1890 (($ $ $) 82 (|has| |#1| (-356)))) (-2030 (($ $ (-749)) 81 (|has| |#1| (-356)))) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-2848 (($ $ $) 43 (|has| |#1| (-356)))) (-2936 (($ $ $) 44 (|has| |#1| (-356)))) (-2194 (($ $ $) 46 (|has| |#1| (-356)))) (-2700 (($ $ $) 41 (|has| |#1| (-356)))) (-3796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 40 (|has| |#1| (-356)))) (-2756 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-1766 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 45 (|has| |#1| (-356)))) (-3880 (((-3 (-550) "failed") $) 72 (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 70 (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 67)) (-2726 (((-550) $) 73 (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) 71 (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 66)) (-3295 (($ $) 62)) (-1386 (((-3 $ "failed") $) 32)) (-2674 (($ $) 53 (|has| |#1| (-444)))) (-3102 (((-112) $) 30)) (-3118 (($ |#1| (-749)) 60)) (-1566 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55 (|has| |#1| (-542)))) (-2646 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 56 (|has| |#1| (-542)))) (-1667 (((-749) $) 64)) (-2500 (($ $ $) 50 (|has| |#1| (-356)))) (-2572 (($ $ $) 51 (|has| |#1| (-356)))) (-3717 (($ $ $) 39 (|has| |#1| (-356)))) (-2338 (($ $ $) 48 (|has| |#1| (-356)))) (-2268 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 47 (|has| |#1| (-356)))) (-2427 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-1659 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 52 (|has| |#1| (-356)))) (-3277 ((|#1| $) 63)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-542)))) (-2680 ((|#1| $ |#1|) 85)) (-3885 (($ $ $) 79 (|has| |#1| (-356)))) (-2970 (((-749) $) 65)) (-2503 ((|#1| $) 54 (|has| |#1| (-444)))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 69 (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) 68)) (-3511 (((-623 |#1|) $) 59)) (-2510 ((|#1| $ (-749)) 61)) (-2390 (((-749)) 28)) (-4292 ((|#1| $ |#1| |#1|) 58)) (-4067 (($ $) 83)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($) 84)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-634 |#1|) (-138) (-1020)) (T -634)) +((-4183 (*1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)))) (-4067 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)))) (-1890 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-634 *3)) (-4 *3 (-1020)) (-4 *3 (-356)))) (-1605 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-3885 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(-13 (-827 |t#1|) (-279 |t#1| |t#1|) (-10 -8 (-15 -4183 ($)) (-15 -4067 ($ $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -1890 ($ $ $)) (-15 -2030 ($ $ (-749))) (-15 -1605 ($ $)) (-15 -3885 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-279 |#1| |#1|) . T) ((-404 |#1|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1026 |#1|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-827 |#1|) . T)) +((-1744 (((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|))) 74 (|has| |#1| (-27)))) (-3338 (((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|))) 73 (|has| |#1| (-27))) (((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|)) 17))) +(((-635 |#1| |#2|) (-10 -7 (-15 -3338 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3338 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)))) (-15 -1744 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|))))) |%noBranch|)) (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550)))) (-1203 |#1|)) (T -635)) +((-1744 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *5 (-1203 *4)) (-5 *2 (-623 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *5 (-1203 *4)) (-5 *2 (-623 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) (-5 *2 (-623 (-631 (-400 *6)))) (-5 *1 (-635 *5 *6)) (-5 *3 (-631 (-400 *6)))))) +(-10 -7 (-15 -3338 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3338 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|)))) (-15 -1744 ((-623 (-631 (-400 |#2|))) (-631 (-400 |#2|))))) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1605 (($ $) NIL (|has| |#1| (-356)))) (-1890 (($ $ $) 28 (|has| |#1| (-356)))) (-2030 (($ $ (-749)) 31 (|has| |#1| (-356)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2848 (($ $ $) NIL (|has| |#1| (-356)))) (-2936 (($ $ $) NIL (|has| |#1| (-356)))) (-2194 (($ $ $) NIL (|has| |#1| (-356)))) (-2700 (($ $ $) NIL (|has| |#1| (-356)))) (-3796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-1766 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444)))) (-3102 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) NIL)) (-1566 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-2646 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-1667 (((-749) $) NIL)) (-2500 (($ $ $) NIL (|has| |#1| (-356)))) (-2572 (($ $ $) NIL (|has| |#1| (-356)))) (-3717 (($ $ $) NIL (|has| |#1| (-356)))) (-2338 (($ $ $) NIL (|has| |#1| (-356)))) (-2268 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2427 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-1659 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-2680 ((|#1| $ |#1|) 24)) (-3885 (($ $ $) 33 (|has| |#1| (-356)))) (-2970 (((-749) $) NIL)) (-2503 ((|#1| $) NIL (|has| |#1| (-444)))) (-1518 (((-836) $) 20) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) NIL)) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-749)) NIL)) (-2390 (((-749)) NIL)) (-4292 ((|#1| $ |#1| |#1|) 23)) (-4067 (($ $) NIL)) (-2626 (($) 21 T CONST)) (-2636 (($) 8 T CONST)) (-4183 (($) NIL)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-636 |#1| |#2|) (-634 |#1|) (-1020) (-1 |#1| |#1|)) (T -636)) +NIL +(-634 |#1|) +((-1890 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2030 ((|#2| |#2| (-749) (-1 |#1| |#1|)) 40)) (-3885 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-637 |#1| |#2|) (-10 -7 (-15 -1890 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2030 (|#2| |#2| (-749) (-1 |#1| |#1|))) (-15 -3885 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-356) (-634 |#1|)) (T -637)) +((-3885 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-637 *4 *2)) (-4 *2 (-634 *4)))) (-2030 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-637 *5 *2)) (-4 *2 (-634 *5)))) (-1890 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-637 *4 *2)) (-4 *2 (-634 *4))))) +(-10 -7 (-15 -1890 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2030 (|#2| |#2| (-749) (-1 |#1| |#1|))) (-15 -3885 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-1482 (($ $ $) 9))) +(((-638 |#1|) (-10 -8 (-15 -1482 (|#1| |#1| |#1|))) (-639)) (T -638)) +NIL +(-10 -8 (-15 -1482 (|#1| |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3239 (($ $) 10)) (-1482 (($ $ $) 8)) (-2316 (((-112) $ $) 6)) (-1466 (($ $ $) 9))) +(((-639) (-138)) (T -639)) +((-3239 (*1 *1 *1) (-4 *1 (-639))) (-1466 (*1 *1 *1 *1) (-4 *1 (-639))) (-1482 (*1 *1 *1 *1) (-4 *1 (-639)))) +(-13 (-101) (-10 -8 (-15 -3239 ($ $)) (-15 -1466 ($ $ $)) (-15 -1482 ($ $ $)))) (((-101) . T)) -((-2380 (((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|)) 33))) -(((-639 |#1|) (-10 -7 (-15 -2380 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|)))) (-881)) (T -639)) -((-2380 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *4))) (-5 *3 (-1136 *4)) (-4 *4 (-881)) (-5 *1 (-639 *4))))) -(-10 -7 (-15 -2380 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4277 (((-618 |#1|) $) 82)) (-4289 (($ $ (-747)) 90)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4282 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 48)) (-3491 (((-3 (-648 |#1|) "failed") $) NIL)) (-3490 (((-648 |#1|) $) NIL)) (-4302 (($ $) 89)) (-2501 (((-747) $) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-648 |#1|) |#2|) 68)) (-4279 (($ $) 86)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-4283 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 47)) (-1860 (((-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3215 (((-648 |#1|) $) NIL)) (-3508 ((|#2| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4110 (($ $ |#1| $) 30) (($ $ (-618 |#1|) (-618 $)) 32)) (-4290 (((-747) $) 88)) (-3867 (($ $ $) 20) (($ (-648 |#1|) (-648 |#1|)) 77) (($ (-648 |#1|) $) 75) (($ $ (-648 |#1|)) 76)) (-4300 (((-835) $) NIL) (($ |#1|) 74) (((-1240 |#1| |#2|) $) 58) (((-1249 |#1| |#2|) $) 41) (($ (-648 |#1|)) 25)) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-648 |#1|)) NIL)) (-4296 ((|#2| (-1249 |#1| |#2|) $) 43)) (-2979 (($) 23 T CONST)) (-2984 (((-618 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4288 (((-3 $ "failed") (-1240 |#1| |#2|)) 60)) (-1844 (($ (-648 |#1|)) 14)) (-3375 (((-112) $ $) 44)) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) 66) (($ $ $) NIL)) (-4182 (($ $ $) 29)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-648 |#1|)) NIL))) -(((-640 |#1| |#2|) (-13 (-367 |#1| |#2|) (-377 |#2| (-648 |#1|)) (-10 -8 (-15 -4288 ((-3 $ "failed") (-1240 |#1| |#2|))) (-15 -3867 ($ (-648 |#1|) (-648 |#1|))) (-15 -3867 ($ (-648 |#1|) $)) (-15 -3867 ($ $ (-648 |#1|))))) (-823) (-170)) (T -640)) -((-4288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *1 (-640 *3 *4)))) (-3867 (*1 *1 *2 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) (-3867 (*1 *1 *2 *1) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) (-3867 (*1 *1 *1 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170))))) -(-13 (-367 |#1| |#2|) (-377 |#2| (-648 |#1|)) (-10 -8 (-15 -4288 ((-3 $ "failed") (-1240 |#1| |#2|))) (-15 -3867 ($ (-648 |#1|) (-648 |#1|))) (-15 -3867 ($ (-648 |#1|) $)) (-15 -3867 ($ $ (-648 |#1|))))) -((-1843 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-1841 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1626 (($ (-1 (-112) |#2|) $) 28)) (-2368 (($ $) 56)) (-2446 (($ $) 64)) (-3747 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-4185 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3761 (((-535) |#2| $ (-535)) 61) (((-535) |#2| $) NIL) (((-535) (-1 (-112) |#2|) $) 47)) (-3960 (($ (-747) |#2|) 54)) (-3180 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3855 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4301 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3880 (($ |#2|) 15)) (-3953 (($ $ $ (-535)) 36) (($ |#2| $ (-535)) 34)) (-1395 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-1627 (($ $ (-1191 (-535))) 44) (($ $ (-535)) 38)) (-1842 (($ $ $ (-535)) 60)) (-3742 (($ $) 58)) (-3006 (((-112) $ $) 66))) -(((-641 |#1| |#2|) (-10 -8 (-15 -3880 (|#1| |#2|)) (-15 -1627 (|#1| |#1| (-535))) (-15 -1627 (|#1| |#1| (-1191 (-535)))) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3953 (|#1| |#2| |#1| (-535))) (-15 -3953 (|#1| |#1| |#1| (-535))) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -3180 (|#1| |#1| |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3855 (|#1| |#1| |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#1| (-535))) (-15 -2368 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-747) |#2|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1|))) (-642 |#2|) (-1178)) (T -641)) -NIL -(-10 -8 (-15 -3880 (|#1| |#2|)) (-15 -1627 (|#1| |#1| (-535))) (-15 -1627 (|#1| |#1| (-1191 (-535)))) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3953 (|#1| |#2| |#1| (-535))) (-15 -3953 (|#1| |#1| |#1| (-535))) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -3180 (|#1| |#1| |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3855 (|#1| |#1| |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#1| (-535))) (-15 -2368 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-747) |#2|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4137 ((|#1| $) 65)) (-4139 (($ $) 67)) (-2296 (((-1230) $ (-535) (-535)) 97 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 52 (|has| $ (-6 -4337)))) (-1843 (((-112) $) 142 (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1841 (($ $) 146 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4337)))) (-3230 (($ $) 141 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) 86 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) 129)) (-4056 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4336)))) (-4138 ((|#1| $) 66)) (-3879 (($) 7 T CONST)) (-2368 (($ $) 144 (|has| $ (-6 -4337)))) (-2369 (($ $) 134)) (-4141 (($ $) 73) (($ $ (-747)) 71)) (-2446 (($ $) 131 (|has| |#1| (-1067)))) (-1394 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 130 (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) 125)) (-3748 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4336))) (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1632 ((|#1| $ (-535) |#1|) 85 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 87)) (-3784 (((-112) $) 83)) (-3761 (((-535) |#1| $ (-535)) 139 (|has| |#1| (-1067))) (((-535) |#1| $) 138 (|has| |#1| (-1067))) (((-535) (-1 (-112) |#1|) $) 137)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) 108)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 95 (|has| (-535) (-823)))) (-3660 (($ $ $) 147 (|has| |#1| (-823)))) (-3180 (($ $ $) 132 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3855 (($ $ $) 140 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 94 (|has| (-535) (-823)))) (-3661 (($ $ $) 148 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3880 (($ |#1|) 122)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 70) (($ $ (-747)) 68)) (-3953 (($ $ $ (-535)) 127) (($ |#1| $ (-535)) 126)) (-2373 (($ $ $ (-535)) 116) (($ |#1| $ (-535)) 115)) (-2301 (((-618 (-535)) $) 92)) (-2302 (((-112) (-535) $) 91)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 76) (($ $ (-747)) 74)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2297 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-3785 (((-112) $) 84)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 90)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1191 (-535))) 112) ((|#1| $ (-535)) 89) ((|#1| $ (-535) |#1|) 88)) (-3350 (((-535) $ $) 44)) (-1627 (($ $ (-1191 (-535))) 124) (($ $ (-535)) 123)) (-2374 (($ $ (-1191 (-535))) 114) (($ $ (-535)) 113)) (-3979 (((-112) $) 46)) (-4134 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 63)) (-4136 (($ $) 64)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 143 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 98 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 107)) (-4133 (($ $ $) 61) (($ $ |#1|) 60)) (-4144 (($ $ $) 78) (($ |#1| $) 77) (($ (-618 $)) 110) (($ $ |#1|) 109)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 150 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 151 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 149 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 152 (|has| |#1| (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-642 |#1|) (-138) (-1178)) (T -642)) -((-3880 (*1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1178))))) -(-13 (-1115 |t#1|) (-365 |t#1|) (-275 |t#1|) (-10 -8 (-15 -3880 ($ |t#1|)))) -(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-275 |#1|) . T) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-981 |#1|) . T) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1115 |#1|) . T) ((-1178) . T) ((-1213 |#1|) . T)) -((-3919 (((-618 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-618 |#3|)))) |#4| (-618 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-618 |#3|))) |#4| |#3|) 45)) (-3427 (((-747) |#4| |#3|) 17)) (-3682 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2381 (((-112) |#4| |#3|) 13))) -(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3919 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|)) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-618 |#3|)))) |#4| (-618 |#3|))) (-15 -3682 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2381 ((-112) |#4| |#3|)) (-15 -3427 ((-747) |#4| |#3|))) (-356) (-13 (-365 |#1|) (-10 -7 (-6 -4337))) (-13 (-365 |#1|) (-10 -7 (-6 -4337))) (-662 |#1| |#2| |#3|)) (T -643)) -((-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-747)) (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) (-2381 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-112)) (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) (-3682 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4337)))) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))) (-5 *1 (-643 *4 *5 *2 *3)) (-4 *3 (-662 *4 *5 *2)))) (-3919 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-618 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2123 (-618 *7))))) (-5 *1 (-643 *5 *6 *7 *3)) (-5 *4 (-618 *7)) (-4 *3 (-662 *5 *6 *7)))) (-3919 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4)))) (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4))))) -(-10 -7 (-15 -3919 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|)) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-618 |#3|)))) |#4| (-618 |#3|))) (-15 -3682 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2381 ((-112) |#4| |#3|)) (-15 -3427 ((-747) |#4| |#3|))) -((-3919 (((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1="failed")) (|:| -2123 (-618 (-1224 |#1|))))) (-618 (-618 |#1|)) (-618 (-1224 |#1|))) 22) (((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-665 |#1|) (-618 (-1224 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|)))) (-618 (-618 |#1|)) (-1224 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|)) 14)) (-3427 (((-747) (-665 |#1|) (-1224 |#1|)) 30)) (-3682 (((-3 (-1224 |#1|) #1#) (-665 |#1|) (-1224 |#1|)) 24)) (-2381 (((-112) (-665 |#1|) (-1224 |#1|)) 27))) -(((-644 |#1|) (-10 -7 (-15 -3919 ((-2 (|:| |particular| (-3 (-1224 |#1|) #1="failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|))) (-15 -3919 ((-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|)))) (-618 (-618 |#1|)) (-1224 |#1|))) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-665 |#1|) (-618 (-1224 |#1|)))) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-618 (-618 |#1|)) (-618 (-1224 |#1|)))) (-15 -3682 ((-3 (-1224 |#1|) #1#) (-665 |#1|) (-1224 |#1|))) (-15 -2381 ((-112) (-665 |#1|) (-1224 |#1|))) (-15 -3427 ((-747) (-665 |#1|) (-1224 |#1|)))) (-356)) (T -644)) -((-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-5 *2 (-747)) (-5 *1 (-644 *5)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-5 *2 (-112)) (-5 *1 (-644 *5)))) (-3682 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1224 *4)) (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *1 (-644 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 *5))) (-4 *5 (-356)) (-5 *2 (-618 (-2 (|:| |particular| (-3 (-1224 *5) #1="failed")) (|:| -2123 (-618 (-1224 *5)))))) (-5 *1 (-644 *5)) (-5 *4 (-618 (-1224 *5))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-618 (-2 (|:| |particular| (-3 (-1224 *5) #1#)) (|:| -2123 (-618 (-1224 *5)))))) (-5 *1 (-644 *5)) (-5 *4 (-618 (-1224 *5))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 *5))) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1224 *5) #1#)) (|:| -2123 (-618 (-1224 *5))))) (-5 *1 (-644 *5)) (-5 *4 (-1224 *5)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1224 *5) #1#)) (|:| -2123 (-618 (-1224 *5))))) (-5 *1 (-644 *5)) (-5 *4 (-1224 *5))))) -(-10 -7 (-15 -3919 ((-2 (|:| |particular| (-3 (-1224 |#1|) #1="failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|))) (-15 -3919 ((-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|)))) (-618 (-618 |#1|)) (-1224 |#1|))) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-665 |#1|) (-618 (-1224 |#1|)))) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-618 (-618 |#1|)) (-618 (-1224 |#1|)))) (-15 -3682 ((-3 (-1224 |#1|) #1#) (-665 |#1|) (-1224 |#1|))) (-15 -2381 ((-112) (-665 |#1|) (-1224 |#1|))) (-15 -3427 ((-747) (-665 |#1|) (-1224 |#1|)))) -((-2382 (((-2 (|:| |particular| (-3 (-1224 (-400 |#4|)) "failed")) (|:| -2123 (-618 (-1224 (-400 |#4|))))) (-618 |#4|) (-618 |#3|)) 45))) -(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2382 ((-2 (|:| |particular| (-3 (-1224 (-400 |#4|)) "failed")) (|:| -2123 (-618 (-1224 (-400 |#4|))))) (-618 |#4|) (-618 |#3|)))) (-542) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -645)) -((-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *7)) (-4 *7 (-823)) (-4 *8 (-921 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-5 *2 (-2 (|:| |particular| (-3 (-1224 (-400 *8)) "failed")) (|:| -2123 (-618 (-1224 (-400 *8)))))) (-5 *1 (-645 *5 *6 *7 *8))))) -(-10 -7 (-15 -2382 ((-2 (|:| |particular| (-3 (-1224 (-400 |#4|)) "failed")) (|:| -2123 (-618 (-1224 (-400 |#4|))))) (-618 |#4|) (-618 |#3|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| |#2| (-542)))) (-3672 ((|#2| $) NIL)) (-3439 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 |#2|))) NIL) (((-1224 (-665 |#2|)) (-1224 $)) NIL)) (-3441 (((-112) $) NIL)) (-1840 (((-1224 $)) 37)) (-1264 (((-112) $ (-747)) NIL)) (-3675 (($ |#2|) NIL)) (-3879 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| |#2| (-300)))) (-3430 (((-233 |#1| |#2|) $ (-535)) NIL)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (|has| |#2| (-542)))) (-1814 (((-3 $ #1#)) NIL (|has| |#2| (-542)))) (-1902 (((-665 |#2|)) NIL) (((-665 |#2|) (-1224 $)) NIL)) (-1838 ((|#2| $) NIL)) (-1900 (((-665 |#2|) $) NIL) (((-665 |#2|) $ (-1224 $)) NIL)) (-2487 (((-3 $ #1#) $) NIL (|has| |#2| (-542)))) (-2017 (((-1136 (-917 |#2|))) NIL (|has| |#2| (-356)))) (-2490 (($ $ (-890)) NIL)) (-1836 ((|#2| $) NIL)) (-1816 (((-1136 |#2|) $) NIL (|has| |#2| (-542)))) (-1904 ((|#2|) NIL) ((|#2| (-1224 $)) NIL)) (-1834 (((-1136 |#2|) $) NIL)) (-1828 (((-112)) NIL)) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 |#2| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) ((|#2| $) NIL)) (-1906 (($ (-1224 |#2|)) NIL) (($ (-1224 |#2|) (-1224 $)) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3427 (((-747) $) NIL (|has| |#2| (-542))) (((-890)) 38)) (-3431 ((|#2| $ (-535) (-535)) NIL)) (-1825 (((-112)) NIL)) (-2515 (($ $ (-890)) NIL)) (-2063 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL)) (-3426 (((-747) $) NIL (|has| |#2| (-542)))) (-3425 (((-618 (-233 |#1| |#2|)) $) NIL (|has| |#2| (-542)))) (-3433 (((-747) $) NIL)) (-1821 (((-112)) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#2| $) NIL (|has| |#2| (-6 (-4338 #3="*"))))) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#2|))) NIL)) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3939 (((-618 (-618 |#2|)) $) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (|has| |#2| (-542)))) (-1815 (((-3 $ #1#)) NIL (|has| |#2| (-542)))) (-1903 (((-665 |#2|)) NIL) (((-665 |#2|) (-1224 $)) NIL)) (-1839 ((|#2| $) NIL)) (-1901 (((-665 |#2|) $) NIL) (((-665 |#2|) $ (-1224 $)) NIL)) (-2488 (((-3 $ #1#) $) NIL (|has| |#2| (-542)))) (-2021 (((-1136 (-917 |#2|))) NIL (|has| |#2| (-356)))) (-2489 (($ $ (-890)) NIL)) (-1837 ((|#2| $) NIL)) (-1817 (((-1136 |#2|) $) NIL (|has| |#2| (-542)))) (-1905 ((|#2|) NIL) ((|#2| (-1224 $)) NIL)) (-1835 (((-1136 |#2|) $) NIL)) (-1829 (((-112)) NIL)) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) NIL)) (-1822 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-3935 (((-3 $ "failed") $) NIL (|has| |#2| (-356)))) (-3577 (((-1086) $) NIL)) (-1827 (((-112)) NIL)) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) (-535) |#2|) NIL) ((|#2| $ (-535) (-535)) 22) ((|#2| $ (-535)) NIL)) (-4153 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3671 ((|#2| $) NIL)) (-3674 (($ (-618 |#2|)) NIL)) (-3440 (((-112) $) NIL)) (-3673 (((-233 |#1| |#2|) $) NIL)) (-3670 ((|#2| $) NIL (|has| |#2| (-6 (-4338 #3#))))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-3558 (((-665 |#2|) (-1224 $)) NIL) (((-1224 |#2|) $) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) NIL) (((-1224 |#2|) $ (-1224 $)) 25)) (-4313 (($ (-1224 |#2|)) NIL) (((-1224 |#2|) $) NIL)) (-2009 (((-618 (-917 |#2|))) NIL) (((-618 (-917 |#2|)) (-1224 $)) NIL)) (-2677 (($ $ $) NIL)) (-1833 (((-112)) NIL)) (-3429 (((-233 |#1| |#2|) $ (-535)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#2| (-1009 (-400 (-535))))) (($ |#2|) NIL) (((-665 |#2|) $) NIL)) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) 36)) (-1818 (((-618 (-1224 |#2|))) NIL (|has| |#2| (-542)))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) NIL)) (-2871 (($ (-665 |#2|) $) NIL)) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-2676 (($ $ $) NIL)) (-1832 (((-112)) NIL)) (-1830 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#2| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) NIL) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-646 |#1| |#2|) (-13 (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-593 (-665 |#2|)) (-411 |#2|)) (-890) (-170)) (T -646)) -NIL -(-13 (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-593 (-665 |#2|)) (-411 |#2|)) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3582 (((-618 (-1101)) $) 10)) (-4300 (((-835) $) 18) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-647) (-13 (-1049) (-10 -8 (-15 -3582 ((-618 (-1101)) $))))) (T -647)) -((-3582 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-647))))) -(-13 (-1049) (-10 -8 (-15 -3582 ((-618 (-1101)) $)))) -((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) NIL)) (-3455 (($ $) 52)) (-2983 (((-112) $) NIL)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2385 (((-3 $ "failed") (-795 |#1|)) 23)) (-2387 (((-112) (-795 |#1|)) 15)) (-2386 (($ (-795 |#1|)) 24)) (-2764 (((-112) $ $) 30)) (-4176 (((-890) $) 37)) (-3456 (($ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4075 (((-618 $) (-795 |#1|)) 17)) (-4300 (((-835) $) 43) (($ |#1|) 34) (((-795 |#1|) $) 39) (((-653 |#1|) $) 44)) (-2384 (((-57 (-618 $)) (-618 |#1|) (-890)) 57)) (-2383 (((-618 $) (-618 |#1|) (-890)) 60)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 53)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 38))) -(((-648 |#1|) (-13 (-823) (-1009 |#1|) (-10 -8 (-15 -2983 ((-112) $)) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -4176 ((-890) $)) (-15 -2764 ((-112) $ $)) (-15 -4300 ((-795 |#1|) $)) (-15 -4300 ((-653 |#1|) $)) (-15 -4075 ((-618 $) (-795 |#1|))) (-15 -2387 ((-112) (-795 |#1|))) (-15 -2386 ($ (-795 |#1|))) (-15 -2385 ((-3 $ "failed") (-795 |#1|))) (-15 -4277 ((-618 |#1|) $)) (-15 -2384 ((-57 (-618 $)) (-618 |#1|) (-890))) (-15 -2383 ((-618 $) (-618 |#1|) (-890))))) (-823)) (T -648)) -((-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-3456 (*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) (-3455 (*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-2764 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-618 (-648 *4))) (-5 *1 (-648 *4)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-112)) (-5 *1 (-648 *4)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))) (-2385 (*1 *1 *2) (|partial| -12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-890)) (-4 *5 (-823)) (-5 *2 (-57 (-618 (-648 *5)))) (-5 *1 (-648 *5)))) (-2383 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-890)) (-4 *5 (-823)) (-5 *2 (-618 (-648 *5))) (-5 *1 (-648 *5))))) -(-13 (-823) (-1009 |#1|) (-10 -8 (-15 -2983 ((-112) $)) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -4176 ((-890) $)) (-15 -2764 ((-112) $ $)) (-15 -4300 ((-795 |#1|) $)) (-15 -4300 ((-653 |#1|) $)) (-15 -4075 ((-618 $) (-795 |#1|))) (-15 -2387 ((-112) (-795 |#1|))) (-15 -2386 ($ (-795 |#1|))) (-15 -2385 ((-3 $ "failed") (-795 |#1|))) (-15 -4277 ((-618 |#1|) $)) (-15 -2384 ((-57 (-618 $)) (-618 |#1|) (-890))) (-15 -2383 ((-618 $) (-618 |#1|) (-890))))) -((-3744 ((|#2| $) 76)) (-4139 (($ $) 96)) (-1264 (((-112) $ (-747)) 26)) (-4141 (($ $) 85) (($ $ (-747)) 88)) (-3784 (((-112) $) 97)) (-3352 (((-618 $) $) 72)) (-3348 (((-112) $ $) 71)) (-4065 (((-112) $ (-747)) 24)) (-2298 (((-535) $) 46)) (-2299 (((-535) $) 45)) (-4062 (((-112) $ (-747)) 22)) (-3864 (((-112) $) 74)) (-4140 ((|#2| $) 89) (($ $ (-747)) 92)) (-2373 (($ $ $ (-535)) 62) (($ |#2| $ (-535)) 61)) (-2301 (((-618 (-535)) $) 44)) (-2302 (((-112) (-535) $) 42)) (-4143 ((|#2| $) NIL) (($ $ (-747)) 84)) (-4111 (($ $ (-535)) 100)) (-3785 (((-112) $) 99)) (-2065 (((-112) (-1 (-112) |#2|) $) 32)) (-2303 (((-618 |#2|) $) 33)) (-4142 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1191 (-535))) 58) ((|#2| $ (-535)) 40) ((|#2| $ (-535) |#2|) 41)) (-3350 (((-535) $ $) 70)) (-2374 (($ $ (-1191 (-535))) 57) (($ $ (-535)) 51)) (-3979 (((-112) $) 66)) (-4134 (($ $) 81)) (-4135 (((-747) $) 80)) (-4136 (($ $) 79)) (-3867 (($ (-618 |#2|)) 37)) (-3212 (($ $) 101)) (-3859 (((-618 $) $) 69)) (-3349 (((-112) $ $) 68)) (-2066 (((-112) (-1 (-112) |#2|) $) 31)) (-3375 (((-112) $ $) 18)) (-4299 (((-747) $) 29))) -(((-649 |#1| |#2|) (-10 -8 (-15 -3212 (|#1| |#1|)) (-15 -4111 (|#1| |#1| (-535))) (-15 -3784 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -2303 ((-618 |#2|) |#1|)) (-15 -2302 ((-112) (-535) |#1|)) (-15 -2301 ((-618 (-535)) |#1|)) (-15 -2299 ((-535) |#1|)) (-15 -2298 ((-535) |#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -4134 (|#1| |#1|)) (-15 -4135 ((-747) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4140 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "last")) (-15 -4140 (|#2| |#1|)) (-15 -4141 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| "rest")) (-15 -4141 (|#1| |#1|)) (-15 -4143 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "first")) (-15 -4143 (|#2| |#1|)) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3349 ((-112) |#1| |#1|)) (-15 -3350 ((-535) |#1| |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| "value")) (-15 -3744 (|#2| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747)))) (-650 |#2|) (-1178)) (T -649)) -NIL -(-10 -8 (-15 -3212 (|#1| |#1|)) (-15 -4111 (|#1| |#1| (-535))) (-15 -3784 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -2303 ((-618 |#2|) |#1|)) (-15 -2302 ((-112) (-535) |#1|)) (-15 -2301 ((-618 (-535)) |#1|)) (-15 -2299 ((-535) |#1|)) (-15 -2298 ((-535) |#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -4134 (|#1| |#1|)) (-15 -4135 ((-747) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4140 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "last")) (-15 -4140 (|#2| |#1|)) (-15 -4141 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| "rest")) (-15 -4141 (|#1| |#1|)) (-15 -4143 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "first")) (-15 -4143 (|#2| |#1|)) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3349 ((-112) |#1| |#1|)) (-15 -3350 ((-535) |#1| |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| "value")) (-15 -3744 (|#2| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747)))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4137 ((|#1| $) 65)) (-4139 (($ $) 67)) (-2296 (((-1230) $ (-535) (-535)) 97 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 52 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) 86 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 102)) (-4138 ((|#1| $) 66)) (-3879 (($) 7 T CONST)) (-2389 (($ $) 124)) (-4141 (($ $) 73) (($ $ (-747)) 71)) (-1394 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 103)) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1632 ((|#1| $ (-535) |#1|) 85 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 87)) (-3784 (((-112) $) 83)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-2388 (((-747) $) 123)) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) 108)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 95 (|has| (-535) (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 94 (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-2391 (($ $) 126)) (-2392 (((-112) $) 127)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 70) (($ $ (-747)) 68)) (-2373 (($ $ $ (-535)) 116) (($ |#1| $ (-535)) 115)) (-2301 (((-618 (-535)) $) 92)) (-2302 (((-112) (-535) $) 91)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2390 ((|#1| $) 125)) (-4143 ((|#1| $) 76) (($ $ (-747)) 74)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2297 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-4111 (($ $ (-535)) 122)) (-3785 (((-112) $) 84)) (-2393 (((-112) $) 128)) (-2394 (((-112) $) 129)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 90)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1191 (-535))) 112) ((|#1| $ (-535)) 89) ((|#1| $ (-535) |#1|) 88)) (-3350 (((-535) $ $) 44)) (-2374 (($ $ (-1191 (-535))) 114) (($ $ (-535)) 113)) (-3979 (((-112) $) 46)) (-4134 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 63)) (-4136 (($ $) 64)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 98 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 107)) (-4133 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-4144 (($ $ $) 78) (($ |#1| $) 77) (($ (-618 $)) 110) (($ $ |#1|) 109)) (-3212 (($ $) 121)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-650 |#1|) (-138) (-1178)) (T -650)) -((-3748 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) (-4056 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-2391 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))) (-2389 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) (-3212 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178))))) -(-13 (-1115 |t#1|) (-10 -8 (-15 -3748 ($ (-1 (-112) |t#1|) $)) (-15 -4056 ($ (-1 (-112) |t#1|) $)) (-15 -2394 ((-112) $)) (-15 -2393 ((-112) $)) (-15 -2392 ((-112) $)) (-15 -2391 ($ $)) (-15 -2390 (|t#1| $)) (-15 -2389 ($ $)) (-15 -2388 ((-747) $)) (-15 -4111 ($ $ (-535))) (-15 -3212 ($ $)))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1115 |#1|) . T) ((-1178) . T) ((-1213 |#1|) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2400 (($ (-747) (-747) (-747)) 33 (|has| |#1| (-1018)))) (-1264 (((-112) $ (-747)) NIL)) (-2397 ((|#1| $ (-747) (-747) (-747) |#1|) 27)) (-3879 (($) NIL T CONST)) (-2398 (($ $ $) 37 (|has| |#1| (-1018)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2395 (((-1224 (-747)) $) 9)) (-2396 (($ (-1142) $ $) 22)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2399 (($ (-747)) 35 (|has| |#1| (-1018)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-747) (-747) (-747)) 25)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3867 (($ (-618 (-618 (-618 |#1|)))) 44)) (-4300 (($ (-929 (-929 (-929 |#1|)))) 15) (((-929 (-929 (-929 |#1|))) $) 12) (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-651 |#1|) (-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1018)) (PROGN (-15 -2400 ($ (-747) (-747) (-747))) (-15 -2399 ($ (-747))) (-15 -2398 ($ $ $))) |%noBranch|) (-15 -3867 ($ (-618 (-618 (-618 |#1|))))) (-15 -4142 (|#1| $ (-747) (-747) (-747))) (-15 -2397 (|#1| $ (-747) (-747) (-747) |#1|)) (-15 -4300 ($ (-929 (-929 (-929 |#1|))))) (-15 -4300 ((-929 (-929 (-929 |#1|))) $)) (-15 -2396 ($ (-1142) $ $)) (-15 -2395 ((-1224 (-747)) $)))) (-1067)) (T -651)) -((-2400 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067)))) (-2398 (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1018)) (-4 *2 (-1067)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-618 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3)))) (-4142 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))) (-2397 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-5 *1 (-651 *3)) (-4 *3 (-1067)))) (-2396 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-651 *3)) (-4 *3 (-1067)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-1224 (-747))) (-5 *1 (-651 *3)) (-4 *3 (-1067))))) -(-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1018)) (PROGN (-15 -2400 ($ (-747) (-747) (-747))) (-15 -2399 ($ (-747))) (-15 -2398 ($ $ $))) |%noBranch|) (-15 -3867 ($ (-618 (-618 (-618 |#1|))))) (-15 -4142 (|#1| $ (-747) (-747) (-747))) (-15 -2397 (|#1| $ (-747) (-747) (-747) |#1|)) (-15 -4300 ($ (-929 (-929 (-929 |#1|))))) (-15 -4300 ((-929 (-929 (-929 |#1|))) $)) (-15 -2396 ($ (-1142) $ $)) (-15 -2395 ((-1224 (-747)) $)))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3512 (((-475) $) 10)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 12)) (-3375 (((-112) $ $) NIL))) -(((-652) (-13 (-1049) (-10 -8 (-15 -3512 ((-475) $)) (-15 -3567 ((-1101) $))))) (T -652)) -((-3512 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-652)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-652))))) -(-13 (-1049) (-10 -8 (-15 -3512 ((-475) $)) (-15 -3567 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) 14)) (-3455 (($ $) 18)) (-2983 (((-112) $) 19)) (-3491 (((-3 |#1| "failed") $) 22)) (-3490 ((|#1| $) 20)) (-4141 (($ $) 36)) (-4279 (($ $) 24)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2764 (((-112) $ $) 42)) (-4176 (((-890) $) 38)) (-3456 (($ $) 17)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 ((|#1| $) 35)) (-4300 (((-835) $) 31) (($ |#1|) 23) (((-795 |#1|) $) 27)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 12)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 40)) (* (($ $ $) 34))) -(((-653 |#1|) (-13 (-823) (-1009 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4300 ((-795 |#1|) $)) (-15 -4143 (|#1| $)) (-15 -3456 ($ $)) (-15 -4176 ((-890) $)) (-15 -2764 ((-112) $ $)) (-15 -4279 ($ $)) (-15 -4141 ($ $)) (-15 -2983 ((-112) $)) (-15 -3455 ($ $)) (-15 -4277 ((-618 |#1|) $)))) (-823)) (T -653)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-4143 (*1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3456 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-2764 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-4279 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-3455 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823))))) -(-13 (-823) (-1009 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4300 ((-795 |#1|) $)) (-15 -4143 (|#1| $)) (-15 -3456 ($ $)) (-15 -4176 ((-890) $)) (-15 -2764 ((-112) $ $)) (-15 -4279 ($ $)) (-15 -4141 ($ $)) (-15 -2983 ((-112) $)) (-15 -3455 ($ $)) (-15 -4277 ((-618 |#1|) $)))) -((-2409 ((|#1| (-1 |#1| (-747) |#1|) (-747) |#1|) 11)) (-2401 ((|#1| (-1 |#1| |#1|) (-747) |#1|) 9))) -(((-654 |#1|) (-10 -7 (-15 -2401 (|#1| (-1 |#1| |#1|) (-747) |#1|)) (-15 -2409 (|#1| (-1 |#1| (-747) |#1|) (-747) |#1|))) (-1067)) (T -654)) -((-2409 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-747) *2)) (-5 *4 (-747)) (-4 *2 (-1067)) (-5 *1 (-654 *2)))) (-2401 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-747)) (-4 *2 (-1067)) (-5 *1 (-654 *2))))) -(-10 -7 (-15 -2401 (|#1| (-1 |#1| |#1|) (-747) |#1|)) (-15 -2409 (|#1| (-1 |#1| (-747) |#1|) (-747) |#1|))) -((-2403 ((|#2| |#1| |#2|) 9)) (-2402 ((|#1| |#1| |#2|) 8))) -(((-655 |#1| |#2|) (-10 -7 (-15 -2402 (|#1| |#1| |#2|)) (-15 -2403 (|#2| |#1| |#2|))) (-1067) (-1067)) (T -655)) -((-2403 (*1 *2 *3 *2) (-12 (-5 *1 (-655 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *1 (-655 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))) -(-10 -7 (-15 -2402 (|#1| |#1| |#2|)) (-15 -2403 (|#2| |#1| |#2|))) -((-2404 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-656 |#1| |#2| |#3|) (-10 -7 (-15 -2404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1067) (-1067) (-1067)) (T -656)) -((-2404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)) (-5 *1 (-656 *5 *6 *2))))) -(-10 -7 (-15 -2404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3652 (((-1179) $) 20)) (-3651 (((-618 (-1179)) $) 18)) (-2405 (($ (-618 (-1179)) (-1179)) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 29) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1179) $) 21) (($ (-1081)) 10)) (-3375 (((-112) $ $) NIL))) -(((-657) (-13 (-1049) (-593 (-1179)) (-10 -8 (-15 -4300 ($ (-1081))) (-15 -2405 ($ (-618 (-1179)) (-1179))) (-15 -3651 ((-618 (-1179)) $)) (-15 -3652 ((-1179) $))))) (T -657)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-657)))) (-2405 (*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1179))) (-5 *3 (-1179)) (-5 *1 (-657)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-657)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-657))))) -(-13 (-1049) (-593 (-1179)) (-10 -8 (-15 -4300 ($ (-1081))) (-15 -2405 ($ (-618 (-1179)) (-1179))) (-15 -3651 ((-618 (-1179)) $)) (-15 -3652 ((-1179) $)))) -((-2409 (((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)) 23)) (-2406 (((-1 |#1|) |#1|) 8)) (-2408 ((|#1| |#1|) 16)) (-2407 (((-618 |#1|) (-1 (-618 |#1|) (-618 |#1|)) (-535)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4300 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-747)) 20))) -(((-658 |#1|) (-10 -7 (-15 -2406 ((-1 |#1|) |#1|)) (-15 -4300 ((-1 |#1|) |#1|)) (-15 -2407 (|#1| (-1 |#1| |#1|))) (-15 -2407 ((-618 |#1|) (-1 (-618 |#1|) (-618 |#1|)) (-535))) (-15 -2408 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-747))) (-15 -2409 ((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)))) (-1067)) (T -658)) -((-2409 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-747) *3)) (-4 *3 (-1067)) (-5 *1 (-658 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *4 (-1067)) (-5 *1 (-658 *4)))) (-2408 (*1 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1067)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-618 *5) (-618 *5))) (-5 *4 (-535)) (-5 *2 (-618 *5)) (-5 *1 (-658 *5)) (-4 *5 (-1067)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-658 *2)) (-4 *2 (-1067)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067)))) (-2406 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067))))) -(-10 -7 (-15 -2406 ((-1 |#1|) |#1|)) (-15 -4300 ((-1 |#1|) |#1|)) (-15 -2407 (|#1| (-1 |#1| |#1|))) (-15 -2407 ((-618 |#1|) (-1 (-618 |#1|) (-618 |#1|)) (-535))) (-15 -2408 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-747))) (-15 -2409 ((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)))) -((-2412 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2411 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4294 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2410 (((-1 |#2| |#1|) |#2|) 11))) -(((-659 |#1| |#2|) (-10 -7 (-15 -2410 ((-1 |#2| |#1|) |#2|)) (-15 -2411 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4294 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2412 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1067) (-1067)) (T -659)) -((-2412 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)) (-4 *4 (-1067)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5)) (-5 *1 (-659 *4 *5)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-659 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-1067))))) -(-10 -7 (-15 -2410 ((-1 |#2| |#1|) |#2|)) (-15 -2411 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4294 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2412 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2417 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2413 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2414 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2415 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2416 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -2413 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2414 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2415 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2416 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2417 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1067) (-1067) (-1067)) (T -660)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-1 *7 *5)) (-5 *1 (-660 *5 *6 *7)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-660 *4 *5 *6)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *4 (-1067)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *5 (-1067)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *4 *5 *6)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1067)) (-4 *4 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *5 *4 *6))))) -(-10 -7 (-15 -2413 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2414 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2415 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2416 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2417 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-4181 (($ (-747) (-747)) 33)) (-2422 (($ $ $) 56)) (-3756 (($ |#3|) 52) (($ $) 53)) (-3439 (((-112) $) 28)) (-2421 (($ $ (-535) (-535)) 58)) (-2420 (($ $ (-535) (-535)) 59)) (-2419 (($ $ (-535) (-535) (-535) (-535)) 63)) (-2424 (($ $) 54)) (-3441 (((-112) $) 14)) (-2418 (($ $ (-535) (-535) $) 64)) (-4130 ((|#2| $ (-535) (-535) |#2|) NIL) (($ $ (-618 (-535)) (-618 (-535)) $) 62)) (-3675 (($ (-747) |#2|) 39)) (-3442 (($ (-618 (-618 |#2|))) 37)) (-3939 (((-618 (-618 |#2|)) $) 57)) (-2423 (($ $ $) 55)) (-3803 (((-3 $ "failed") $ |#2|) 91)) (-4142 ((|#2| $ (-535) (-535)) NIL) ((|#2| $ (-535) (-535) |#2|) NIL) (($ $ (-618 (-535)) (-618 (-535))) 61)) (-3674 (($ (-618 |#2|)) 40) (($ (-618 $)) 42)) (-3440 (((-112) $) 24)) (-4300 (($ |#4|) 47) (((-835) $) NIL)) (-3438 (((-112) $) 30)) (-4291 (($ $ |#2|) 93)) (-4180 (($ $ $) 68) (($ $) 71)) (-4182 (($ $ $) 66)) (** (($ $ (-747)) 80) (($ $ (-535)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-535) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-661 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -4291 (|#1| |#1| |#2|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1| (-535) (-535) |#1|)) (-15 -2419 (|#1| |#1| (-535) (-535) (-535) (-535))) (-15 -2420 (|#1| |#1| (-535) (-535))) (-15 -2421 (|#1| |#1| (-535) (-535))) (-15 -4130 (|#1| |#1| (-618 (-535)) (-618 (-535)) |#1|)) (-15 -4142 (|#1| |#1| (-618 (-535)) (-618 (-535)))) (-15 -3939 ((-618 (-618 |#2|)) |#1|)) (-15 -2422 (|#1| |#1| |#1|)) (-15 -2423 (|#1| |#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#3|)) (-15 -4300 (|#1| |#4|)) (-15 -3674 (|#1| (-618 |#1|))) (-15 -3674 (|#1| (-618 |#2|))) (-15 -3675 (|#1| (-747) |#2|)) (-15 -3442 (|#1| (-618 (-618 |#2|)))) (-15 -4181 (|#1| (-747) (-747))) (-15 -3438 ((-112) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3440 ((-112) |#1|)) (-15 -3441 ((-112) |#1|)) (-15 -4130 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535)))) (-662 |#2| |#3| |#4|) (-1018) (-365 |#2|) (-365 |#2|)) (T -661)) -NIL -(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -4291 (|#1| |#1| |#2|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1| (-535) (-535) |#1|)) (-15 -2419 (|#1| |#1| (-535) (-535) (-535) (-535))) (-15 -2420 (|#1| |#1| (-535) (-535))) (-15 -2421 (|#1| |#1| (-535) (-535))) (-15 -4130 (|#1| |#1| (-618 (-535)) (-618 (-535)) |#1|)) (-15 -4142 (|#1| |#1| (-618 (-535)) (-618 (-535)))) (-15 -3939 ((-618 (-618 |#2|)) |#1|)) (-15 -2422 (|#1| |#1| |#1|)) (-15 -2423 (|#1| |#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#3|)) (-15 -4300 (|#1| |#4|)) (-15 -3674 (|#1| (-618 |#1|))) (-15 -3674 (|#1| (-618 |#2|))) (-15 -3675 (|#1| (-747) |#2|)) (-15 -3442 (|#1| (-618 (-618 |#2|)))) (-15 -4181 (|#1| (-747) (-747))) (-15 -3438 ((-112) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3440 ((-112) |#1|)) (-15 -3441 ((-112) |#1|)) (-15 -4130 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535)))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4181 (($ (-747) (-747)) 97)) (-2422 (($ $ $) 87)) (-3756 (($ |#2|) 91) (($ $) 90)) (-3439 (((-112) $) 99)) (-2421 (($ $ (-535) (-535)) 83)) (-2420 (($ $ (-535) (-535)) 82)) (-2419 (($ $ (-535) (-535) (-535) (-535)) 81)) (-2424 (($ $) 89)) (-3441 (((-112) $) 101)) (-1264 (((-112) $ (-747)) 8)) (-2418 (($ $ (-535) (-535) $) 80)) (-4130 ((|#1| $ (-535) (-535) |#1|) 44) (($ $ (-618 (-535)) (-618 (-535)) $) 84)) (-1302 (($ $ (-535) |#2|) 42)) (-1301 (($ $ (-535) |#3|) 41)) (-3675 (($ (-747) |#1|) 95)) (-3879 (($) 7 T CONST)) (-3428 (($ $) 67 (|has| |#1| (-300)))) (-3430 ((|#2| $ (-535)) 46)) (-3427 (((-747) $) 66 (|has| |#1| (-542)))) (-1632 ((|#1| $ (-535) (-535) |#1|) 43)) (-3431 ((|#1| $ (-535) (-535)) 48)) (-2063 (((-618 |#1|) $) 30)) (-3426 (((-747) $) 65 (|has| |#1| (-542)))) (-3425 (((-618 |#3|) $) 64 (|has| |#1| (-542)))) (-3433 (((-747) $) 51)) (-3960 (($ (-747) (-747) |#1|) 57)) (-3432 (((-747) $) 50)) (-4065 (((-112) $ (-747)) 9)) (-3669 ((|#1| $) 62 (|has| |#1| (-6 (-4338 #1="*"))))) (-3437 (((-535) $) 55)) (-3435 (((-535) $) 53)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3436 (((-535) $) 54)) (-3434 (((-535) $) 52)) (-3442 (($ (-618 (-618 |#1|))) 96)) (-2067 (($ (-1 |#1| |#1|) $) 34)) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3939 (((-618 (-618 |#1|)) $) 86)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3935 (((-3 $ "failed") $) 61 (|has| |#1| (-356)))) (-2423 (($ $ $) 88)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) 56)) (-3803 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-542)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) (-535)) 49) ((|#1| $ (-535) (-535) |#1|) 47) (($ $ (-618 (-535)) (-618 (-535))) 85)) (-3674 (($ (-618 |#1|)) 94) (($ (-618 $)) 93)) (-3440 (((-112) $) 100)) (-3670 ((|#1| $) 63 (|has| |#1| (-6 (-4338 #1#))))) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-3429 ((|#3| $ (-535)) 45)) (-4300 (($ |#3|) 92) (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3438 (((-112) $) 98)) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) 68 (|has| |#1| (-356)))) (-4180 (($ $ $) 78) (($ $) 77)) (-4182 (($ $ $) 79)) (** (($ $ (-747)) 70) (($ $ (-535)) 60 (|has| |#1| (-356)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-535) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-662 |#1| |#2| |#3|) (-138) (-1018) (-365 |t#1|) (-365 |t#1|)) (T -662)) -((-3441 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-4181 (*1 *1 *2 *2) (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3675 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *2)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (-3756 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-662 *3 *2 *4)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (-3756 (*1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2423 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2422 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-618 (-618 *3))))) (-4142 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4130 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-618 (-535))) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2421 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2420 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2419 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2418 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4180 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-662 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-662 *3 *2 *4)) (-4 *3 (-1018)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-542)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-356)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-300)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-747)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-747)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-618 *5)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4338 #1="*"))) (-4 *2 (-1018)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4338 #1#))) (-4 *2 (-1018)))) (-3935 (*1 *1 *1) (|partial| -12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-356))))) -(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3441 ((-112) $)) (-15 -3440 ((-112) $)) (-15 -3439 ((-112) $)) (-15 -3438 ((-112) $)) (-15 -4181 ($ (-747) (-747))) (-15 -3442 ($ (-618 (-618 |t#1|)))) (-15 -3675 ($ (-747) |t#1|)) (-15 -3674 ($ (-618 |t#1|))) (-15 -3674 ($ (-618 $))) (-15 -4300 ($ |t#3|)) (-15 -3756 ($ |t#2|)) (-15 -3756 ($ $)) (-15 -2424 ($ $)) (-15 -2423 ($ $ $)) (-15 -2422 ($ $ $)) (-15 -3939 ((-618 (-618 |t#1|)) $)) (-15 -4142 ($ $ (-618 (-535)) (-618 (-535)))) (-15 -4130 ($ $ (-618 (-535)) (-618 (-535)) $)) (-15 -2421 ($ $ (-535) (-535))) (-15 -2420 ($ $ (-535) (-535))) (-15 -2419 ($ $ (-535) (-535) (-535) (-535))) (-15 -2418 ($ $ (-535) (-535) $)) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4180 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-535) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-747))) (IF (|has| |t#1| (-542)) (-15 -3803 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -4291 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-300)) (-15 -3428 ($ $)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -3427 ((-747) $)) (-15 -3426 ((-747) $)) (-15 -3425 ((-618 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4338 "*"))) (PROGN (-15 -3670 (|t#1| $)) (-15 -3669 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3935 ((-3 $ "failed") $)) (-15 ** ($ $ (-535)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-56 |#1| |#2| |#3|) . T) ((-1178) . T)) -((-4185 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4301 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-663 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4301 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4301 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4185 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1018) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|) (-1018) (-365 |#5|) (-365 |#5|) (-662 |#5| |#6| |#7|)) (T -663)) -((-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) (-5 *1 (-663 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-662 *5 *6 *7)) (-4 *10 (-662 *2 *8 *9)))) (-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-662 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-662 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-662 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-662 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8))))) -(-10 -7 (-15 -4301 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4301 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4185 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3428 ((|#4| |#4|) 72 (|has| |#1| (-300)))) (-3427 (((-747) |#4|) 99 (|has| |#1| (-542)))) (-3426 (((-747) |#4|) 76 (|has| |#1| (-542)))) (-3425 (((-618 |#3|) |#4|) 83 (|has| |#1| (-542)))) (-2462 (((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|) 111 (|has| |#1| (-300)))) (-3669 ((|#1| |#4|) 35)) (-2429 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-542)))) (-3935 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-356)))) (-2428 ((|#4| |#4|) 68 (|has| |#1| (-542)))) (-2426 ((|#4| |#4| |#1| (-535) (-535)) 43)) (-2425 ((|#4| |#4| (-535) (-535)) 38)) (-2427 ((|#4| |#4| |#1| (-535) (-535)) 48)) (-3670 ((|#1| |#4|) 78)) (-2845 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-542))))) -(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3670 (|#1| |#4|)) (-15 -3669 (|#1| |#4|)) (-15 -2425 (|#4| |#4| (-535) (-535))) (-15 -2426 (|#4| |#4| |#1| (-535) (-535))) (-15 -2427 (|#4| |#4| |#1| (-535) (-535))) (IF (|has| |#1| (-542)) (PROGN (-15 -3427 ((-747) |#4|)) (-15 -3426 ((-747) |#4|)) (-15 -3425 ((-618 |#3|) |#4|)) (-15 -2428 (|#4| |#4|)) (-15 -2429 ((-3 |#4| "failed") |#4|)) (-15 -2845 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3428 (|#4| |#4|)) (-15 -2462 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3935 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|)) (T -664)) -((-3935 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-2462 (*1 *2 *3 *3) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-664 *3 *4 *5 *6)) (-4 *6 (-662 *3 *4 *5)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-2845 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-2429 (*1 *2 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-3425 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-618 *6)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-2427 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-535)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-662 *3 *5 *6)))) (-2426 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-535)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-662 *3 *5 *6)))) (-2425 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-535)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *1 (-664 *4 *5 *6 *2)) (-4 *2 (-662 *4 *5 *6)))) (-3669 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5)))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5))))) -(-10 -7 (-15 -3670 (|#1| |#4|)) (-15 -3669 (|#1| |#4|)) (-15 -2425 (|#4| |#4| (-535) (-535))) (-15 -2426 (|#4| |#4| |#1| (-535) (-535))) (-15 -2427 (|#4| |#4| |#1| (-535) (-535))) (IF (|has| |#1| (-542)) (PROGN (-15 -3427 ((-747) |#4|)) (-15 -3426 ((-747) |#4|)) (-15 -3425 ((-618 |#3|) |#4|)) (-15 -2428 (|#4| |#4|)) (-15 -2429 ((-3 |#4| "failed") |#4|)) (-15 -2845 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3428 (|#4| |#4|)) (-15 -2462 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3935 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747) (-747)) 47)) (-2422 (($ $ $) NIL)) (-3756 (($ (-1224 |#1|)) NIL) (($ $) NIL)) (-3439 (((-112) $) NIL)) (-2421 (($ $ (-535) (-535)) 12)) (-2420 (($ $ (-535) (-535)) NIL)) (-2419 (($ $ (-535) (-535) (-535) (-535)) NIL)) (-2424 (($ $) NIL)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-2418 (($ $ (-535) (-535) $) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535)) $) NIL)) (-1302 (($ $ (-535) (-1224 |#1|)) NIL)) (-1301 (($ $ (-535) (-1224 |#1|)) NIL)) (-3675 (($ (-747) |#1|) 22)) (-3879 (($) NIL T CONST)) (-3428 (($ $) 31 (|has| |#1| (-300)))) (-3430 (((-1224 |#1|) $ (-535)) NIL)) (-3427 (((-747) $) 33 (|has| |#1| (-542)))) (-1632 ((|#1| $ (-535) (-535) |#1|) 51)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3426 (((-747) $) 35 (|has| |#1| (-542)))) (-3425 (((-618 (-1224 |#1|)) $) 38 (|has| |#1| (-542)))) (-3433 (((-747) $) 20)) (-3960 (($ (-747) (-747) |#1|) 16)) (-3432 (((-747) $) 21)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#1| $) 29 (|has| |#1| (-6 (-4338 #1="*"))))) (-3437 (((-535) $) 9)) (-3435 (((-535) $) 10)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) 11)) (-3434 (((-535) $) 48)) (-3442 (($ (-618 (-618 |#1|))) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3939 (((-618 (-618 |#1|)) $) 60)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3935 (((-3 $ #2="failed") $) 45 (|has| |#1| (-356)))) (-2423 (($ $ $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-3803 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-542)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535))) NIL)) (-3674 (($ (-618 |#1|)) NIL) (($ (-618 $)) NIL) (($ (-1224 |#1|)) 52)) (-3440 (((-112) $) NIL)) (-3670 ((|#1| $) 27 (|has| |#1| (-6 (-4338 #1#))))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 64 (|has| |#1| (-594 (-524))))) (-3429 (((-1224 |#1|) $ (-535)) NIL)) (-4300 (($ (-1224 |#1|)) NIL) (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) 23) (($ $ (-535)) 46 (|has| |#1| (-356)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-535) $) NIL) (((-1224 |#1|) $ (-1224 |#1|)) NIL) (((-1224 |#1|) (-1224 |#1|) $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-665 |#1|) (-13 (-662 |#1| (-1224 |#1|) (-1224 |#1|)) (-10 -8 (-15 -3674 ($ (-1224 |#1|))) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3935 ((-3 $ "failed") $)) |%noBranch|))) (-1018)) (T -665)) -((-3935 (*1 *1 *1) (|partial| -12 (-5 *1 (-665 *2)) (-4 *2 (-356)) (-4 *2 (-1018)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1018)) (-5 *1 (-665 *3))))) -(-13 (-662 |#1| (-1224 |#1|) (-1224 |#1|)) (-10 -8 (-15 -3674 ($ (-1224 |#1|))) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3935 ((-3 $ "failed") $)) |%noBranch|))) -((-2435 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 25)) (-2434 (((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|) 21)) (-2436 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747)) 26)) (-2431 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 14)) (-2432 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 18) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 16)) (-2433 (((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|)) 20)) (-2430 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 12)) (** (((-665 |#1|) (-665 |#1|) (-747)) 30))) -(((-666 |#1|) (-10 -7 (-15 -2430 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2431 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2432 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2432 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2433 ((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|))) (-15 -2434 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2435 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2436 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747))) (-15 ** ((-665 |#1|) (-665 |#1|) (-747)))) (-1018)) (T -666)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) (-2436 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) (-2435 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2434 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2433 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2432 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2432 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2431 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2430 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))) -(-10 -7 (-15 -2430 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2431 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2432 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2432 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2433 ((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|))) (-15 -2434 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2435 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2436 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747))) (-15 ** ((-665 |#1|) (-665 |#1|) (-747)))) -((-2437 (($) 8 T CONST)) (-4300 (((-835) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3912 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2437)) 16)) (-3918 ((|#1| $) 11))) -(((-667 |#1|) (-13 (-1220) (-593 (-835)) (-10 -8 (-15 -3912 ((-112) $ (|[\|\|]| |#1|))) (-15 -3912 ((-112) $ (|[\|\|]| -2437))) (-15 -4300 ($ |#1|)) (-15 -4300 (|#1| $)) (-15 -3918 (|#1| $)) (-15 -2437 ($) -4294))) (-593 (-835))) (T -667)) -((-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-593 (-835))) (-5 *2 (-112)) (-5 *1 (-667 *4)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2437)) (-5 *2 (-112)) (-5 *1 (-667 *4)) (-4 *4 (-593 (-835))))) (-4300 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) (-4300 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) (-3918 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) (-2437 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835)))))) -(-13 (-1220) (-593 (-835)) (-10 -8 (-15 -3912 ((-112) $ (|[\|\|]| |#1|))) (-15 -3912 ((-112) $ (|[\|\|]| -2437))) (-15 -4300 ($ |#1|)) (-15 -4300 (|#1| $)) (-15 -3918 (|#1| $)) (-15 -2437 ($) -4294))) -((-2440 ((|#2| |#2| |#4|) 25)) (-2443 (((-665 |#2|) |#3| |#4|) 31)) (-2441 (((-665 |#2|) |#2| |#4|) 30)) (-2438 (((-1224 |#2|) |#2| |#4|) 16)) (-2439 ((|#2| |#3| |#4|) 24)) (-2444 (((-665 |#2|) |#3| |#4| (-747) (-747)) 38)) (-2442 (((-665 |#2|) |#2| |#4| (-747)) 37))) -(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2438 ((-1224 |#2|) |#2| |#4|)) (-15 -2439 (|#2| |#3| |#4|)) (-15 -2440 (|#2| |#2| |#4|)) (-15 -2441 ((-665 |#2|) |#2| |#4|)) (-15 -2442 ((-665 |#2|) |#2| |#4| (-747))) (-15 -2443 ((-665 |#2|) |#3| |#4|)) (-15 -2444 ((-665 |#2|) |#3| |#4| (-747) (-747)))) (-1067) (-871 |#1|) (-365 |#2|) (-13 (-365 |#1|) (-10 -7 (-6 -4336)))) (T -668)) -((-2444 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *7 (-871 *6)) (-5 *2 (-665 *7)) (-5 *1 (-668 *6 *7 *3 *4)) (-4 *3 (-365 *7)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4336)))))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *6 (-871 *5)) (-5 *2 (-665 *6)) (-5 *1 (-668 *5 *6 *3 *4)) (-4 *3 (-365 *6)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))) (-2442 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *3 (-871 *6)) (-5 *2 (-665 *3)) (-5 *1 (-668 *6 *3 *7 *4)) (-4 *7 (-365 *3)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4336)))))) (-2441 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-665 *3)) (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))) (-2440 (*1 *2 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-871 *4)) (-5 *1 (-668 *4 *2 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4336)))))) (-2439 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *2 (-871 *5)) (-5 *1 (-668 *5 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))) (-2438 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-1224 *3)) (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336))))))) -(-10 -7 (-15 -2438 ((-1224 |#2|) |#2| |#4|)) (-15 -2439 (|#2| |#3| |#4|)) (-15 -2440 (|#2| |#2| |#4|)) (-15 -2441 ((-665 |#2|) |#2| |#4|)) (-15 -2442 ((-665 |#2|) |#2| |#4| (-747))) (-15 -2443 ((-665 |#2|) |#3| |#4|)) (-15 -2444 ((-665 |#2|) |#3| |#4| (-747) (-747)))) -((-4084 (((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)) 20)) (-4082 ((|#1| (-665 |#2|)) 9)) (-4083 (((-665 |#1|) (-665 |#2|)) 18))) -(((-669 |#1| |#2|) (-10 -7 (-15 -4082 (|#1| (-665 |#2|))) (-15 -4083 ((-665 |#1|) (-665 |#2|))) (-15 -4084 ((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)))) (-542) (-962 |#1|)) (T -669)) -((-4084 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-962 *4)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |num| (-665 *4)) (|:| |den| *4))) (-5 *1 (-669 *4 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-962 *4)) (-4 *4 (-542)) (-5 *2 (-665 *4)) (-5 *1 (-669 *4 *5)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-669 *2 *4))))) -(-10 -7 (-15 -4082 (|#1| (-665 |#2|))) (-15 -4083 ((-665 |#1|) (-665 |#2|))) (-15 -4084 ((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1896 (((-665 (-675))) NIL) (((-665 (-675)) (-1224 $)) NIL)) (-3672 (((-675) $) NIL)) (-3829 (($ $) NIL (|has| (-675) (-1164)))) (-3985 (($ $) NIL (|has| (-675) (-1164)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-675) (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-881))))) (-4117 (($ $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| (-675) (-881))) (|has| (-675) (-356))))) (-4312 (((-398 $) $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| (-675) (-881))) (|has| (-675) (-356))))) (-3358 (($ $) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-881))))) (-1700 (((-112) $ $) NIL (|has| (-675) (-300)))) (-3454 (((-747)) NIL (|has| (-675) (-361)))) (-3827 (($ $) NIL (|has| (-675) (-1164)))) (-3984 (($ $) NIL (|has| (-675) (-1164)))) (-3831 (($ $) NIL (|has| (-675) (-1164)))) (-3983 (($ $) NIL (|has| (-675) (-1164)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL) (((-3 (-675) #2#) $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-675) (-1009 (-400 (-535)))))) (-3490 (((-535) $) NIL) (((-675) $) NIL) (((-400 (-535)) $) NIL (|has| (-675) (-1009 (-400 (-535)))))) (-1906 (($ (-1224 (-675))) NIL) (($ (-1224 (-675)) (-1224 $)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-675) (-343)))) (-2883 (($ $ $) NIL (|has| (-675) (-300)))) (-1895 (((-665 (-675)) $) NIL) (((-665 (-675)) $ (-1224 $)) NIL)) (-2353 (((-665 (-675)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-675))) (|:| |vec| (-1224 (-675)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-675) (-617 (-535)))) (((-665 (-535)) (-665 $)) NIL (|has| (-675) (-617 (-535))))) (-4185 (((-3 $ "failed") (-400 (-1136 (-675)))) NIL (|has| (-675) (-356))) (($ (-1136 (-675))) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3989 (((-675) $) 29)) (-3345 (((-3 (-400 (-535)) #3="failed") $) NIL (|has| (-675) (-534)))) (-3344 (((-112) $) NIL (|has| (-675) (-534)))) (-3343 (((-400 (-535)) $) NIL (|has| (-675) (-534)))) (-3427 (((-890)) NIL)) (-3315 (($) NIL (|has| (-675) (-361)))) (-2882 (($ $ $) NIL (|has| (-675) (-300)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| (-675) (-300)))) (-3154 (($) NIL (|has| (-675) (-343)))) (-1791 (((-112) $) NIL (|has| (-675) (-343)))) (-1881 (($ $) NIL (|has| (-675) (-343))) (($ $ (-747)) NIL (|has| (-675) (-343)))) (-4069 (((-112) $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| (-675) (-881))) (|has| (-675) (-356))))) (-1419 (((-2 (|:| |r| (-675)) (|:| |phi| (-675))) $) NIL (-12 (|has| (-675) (-1027)) (|has| (-675) (-1164))))) (-3973 (($) NIL (|has| (-675) (-1164)))) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-675) (-857 (-371)))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-675) (-857 (-535))))) (-4114 (((-808 (-890)) $) NIL (|has| (-675) (-343))) (((-890) $) NIL (|has| (-675) (-343)))) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164))))) (-3450 (((-675) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-675) (-343)))) (-1697 (((-3 (-618 $) #4="failed") (-618 $) $) NIL (|has| (-675) (-300)))) (-2125 (((-1136 (-675)) $) NIL (|has| (-675) (-356)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 (-675) (-675)) $) NIL)) (-2121 (((-890) $) NIL (|has| (-675) (-361)))) (-4285 (($ $) NIL (|has| (-675) (-1164)))) (-3401 (((-1136 (-675)) $) NIL)) (-2008 (($ (-618 $)) NIL (|has| (-675) (-300))) (($ $ $) NIL (|has| (-675) (-300)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| (-675) (-356)))) (-3787 (($) NIL (|has| (-675) (-343)) CONST)) (-2483 (($ (-890)) NIL (|has| (-675) (-361)))) (-1421 (($) NIL)) (-3990 (((-675) $) 31)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| (-675) (-300)))) (-3478 (($ (-618 $)) NIL (|has| (-675) (-300))) (($ $ $) NIL (|has| (-675) (-300)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-675) (-343)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-881))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-881))))) (-4075 (((-398 $) $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| (-675) (-881))) (|has| (-675) (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-675) (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| (-675) (-300)))) (-3803 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-675)) NIL (|has| (-675) (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| (-675) (-300)))) (-4286 (($ $) NIL (|has| (-675) (-1164)))) (-4110 (($ $ (-1142) (-675)) NIL (|has| (-675) (-505 (-1142) (-675)))) (($ $ (-618 (-1142)) (-618 (-675))) NIL (|has| (-675) (-505 (-1142) (-675)))) (($ $ (-618 (-286 (-675)))) NIL (|has| (-675) (-302 (-675)))) (($ $ (-286 (-675))) NIL (|has| (-675) (-302 (-675)))) (($ $ (-675) (-675)) NIL (|has| (-675) (-302 (-675)))) (($ $ (-618 (-675)) (-618 (-675))) NIL (|has| (-675) (-302 (-675))))) (-1699 (((-747) $) NIL (|has| (-675) (-300)))) (-4142 (($ $ (-675)) NIL (|has| (-675) (-279 (-675) (-675))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| (-675) (-300)))) (-4100 (((-675)) NIL) (((-675) (-1224 $)) NIL)) (-1882 (((-3 (-747) "failed") $ $) NIL (|has| (-675) (-343))) (((-747) $) NIL (|has| (-675) (-343)))) (-4153 (($ $ (-1 (-675) (-675))) NIL) (($ $ (-1 (-675) (-675)) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-747)) NIL (|has| (-675) (-227))) (($ $) NIL (|has| (-675) (-227)))) (-2491 (((-665 (-675)) (-1224 $) (-1 (-675) (-675))) NIL (|has| (-675) (-356)))) (-3519 (((-1136 (-675))) NIL)) (-3832 (($ $) NIL (|has| (-675) (-1164)))) (-3982 (($ $) NIL (|has| (-675) (-1164)))) (-1785 (($) NIL (|has| (-675) (-343)))) (-3830 (($ $) NIL (|has| (-675) (-1164)))) (-3981 (($ $) NIL (|has| (-675) (-1164)))) (-3828 (($ $) NIL (|has| (-675) (-1164)))) (-3980 (($ $) NIL (|has| (-675) (-1164)))) (-3558 (((-665 (-675)) (-1224 $)) NIL) (((-1224 (-675)) $) NIL) (((-665 (-675)) (-1224 $) (-1224 $)) NIL) (((-1224 (-675)) $ (-1224 $)) NIL)) (-4313 (((-524) $) NIL (|has| (-675) (-594 (-524)))) (((-166 (-219)) $) NIL (|has| (-675) (-991))) (((-166 (-371)) $) NIL (|has| (-675) (-991))) (((-861 (-371)) $) NIL (|has| (-675) (-594 (-861 (-371))))) (((-861 (-535)) $) NIL (|has| (-675) (-594 (-861 (-535))))) (($ (-1136 (-675))) NIL) (((-1136 (-675)) $) NIL) (($ (-1224 (-675))) NIL) (((-1224 (-675)) $) NIL)) (-3330 (($ $) NIL)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| $ (-143)) (|has| (-675) (-881))) (|has| (-675) (-343))))) (-1420 (($ (-675) (-675)) 12)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-535)) NIL) (($ (-675)) NIL) (($ (-166 (-371))) 13) (($ (-166 (-535))) 19) (($ (-166 (-675))) 28) (($ (-166 (-677))) 25) (((-166 (-371)) $) 33) (($ (-400 (-535))) NIL (-3874 (|has| (-675) (-356)) (|has| (-675) (-1009 (-400 (-535))))))) (-3023 (($ $) NIL (|has| (-675) (-343))) (((-3 $ #1#) $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| $ (-143)) (|has| (-675) (-881))) (|has| (-675) (-143))))) (-2689 (((-1136 (-675)) $) NIL)) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL)) (-3835 (($ $) NIL (|has| (-675) (-1164)))) (-3823 (($ $) NIL (|has| (-675) (-1164)))) (-2170 (((-112) $ $) NIL)) (-3833 (($ $) NIL (|has| (-675) (-1164)))) (-3821 (($ $) NIL (|has| (-675) (-1164)))) (-3837 (($ $) NIL (|has| (-675) (-1164)))) (-3825 (($ $) NIL (|has| (-675) (-1164)))) (-2309 (((-675) $) NIL (|has| (-675) (-1164)))) (-3838 (($ $) NIL (|has| (-675) (-1164)))) (-3826 (($ $) NIL (|has| (-675) (-1164)))) (-3836 (($ $) NIL (|has| (-675) (-1164)))) (-3824 (($ $) NIL (|has| (-675) (-1164)))) (-3834 (($ $) NIL (|has| (-675) (-1164)))) (-3822 (($ $) NIL (|has| (-675) (-1164)))) (-3725 (($ $) NIL (|has| (-675) (-1027)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1 (-675) (-675))) NIL) (($ $ (-1 (-675) (-675)) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-747)) NIL (|has| (-675) (-227))) (($ $) NIL (|has| (-675) (-227)))) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL (|has| (-675) (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ $) NIL (|has| (-675) (-1164))) (($ $ (-400 (-535))) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164)))) (($ $ (-535)) NIL (|has| (-675) (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ (-675) $) NIL) (($ $ (-675)) NIL) (($ (-400 (-535)) $) NIL (|has| (-675) (-356))) (($ $ (-400 (-535))) NIL (|has| (-675) (-356))))) -(((-670) (-13 (-380) (-164 (-675)) (-10 -8 (-15 -4300 ($ (-166 (-371)))) (-15 -4300 ($ (-166 (-535)))) (-15 -4300 ($ (-166 (-675)))) (-15 -4300 ($ (-166 (-677)))) (-15 -4300 ((-166 (-371)) $))))) (T -670)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-670)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-166 (-535))) (-5 *1 (-670)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-670)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-166 (-677))) (-5 *1 (-670)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-670))))) -(-13 (-380) (-164 (-675)) (-10 -8 (-15 -4300 ($ (-166 (-371)))) (-15 -4300 ($ (-166 (-535)))) (-15 -4300 ($ (-166 (-675)))) (-15 -4300 ($ (-166 (-677)))) (-15 -4300 ((-166 (-371)) $)))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2446 (($ $) 62)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 61)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-671 |#1|) (-138) (-1067)) (T -671)) -((-3953 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-671 *2)) (-4 *2 (-1067)))) (-2446 (*1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1067)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-671 *3)) (-4 *3 (-1067)) (-5 *2 (-618 (-2 (|:| -2184 *3) (|:| -2064 (-747)))))))) -(-13 (-229 |t#1|) (-10 -8 (-15 -3953 ($ |t#1| $ (-747))) (-15 -2446 ($ $)) (-15 -2445 ((-618 (-2 (|:| -2184 |t#1|) (|:| -2064 (-747)))) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2449 (((-618 |#1|) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) (-535)) 47)) (-2447 ((|#1| |#1| (-535)) 46)) (-3478 ((|#1| |#1| |#1| (-535)) 36)) (-4075 (((-618 |#1|) |#1| (-535)) 39)) (-2450 ((|#1| |#1| (-535) |#1| (-535)) 32)) (-2448 (((-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) |#1| (-535)) 45))) -(((-672 |#1|) (-10 -7 (-15 -3478 (|#1| |#1| |#1| (-535))) (-15 -2447 (|#1| |#1| (-535))) (-15 -4075 ((-618 |#1|) |#1| (-535))) (-15 -2448 ((-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) |#1| (-535))) (-15 -2449 ((-618 |#1|) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) (-535))) (-15 -2450 (|#1| |#1| (-535) |#1| (-535)))) (-1200 (-535))) (T -672)) -((-2450 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| -4075 *5) (|:| -4290 (-535))))) (-5 *4 (-535)) (-4 *5 (-1200 *4)) (-5 *2 (-618 *5)) (-5 *1 (-672 *5)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-5 *2 (-618 (-2 (|:| -4075 *3) (|:| -4290 *4)))) (-5 *1 (-672 *3)) (-4 *3 (-1200 *4)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-5 *2 (-618 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1200 *4)))) (-2447 (*1 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3)))) (-3478 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3))))) -(-10 -7 (-15 -3478 (|#1| |#1| |#1| (-535))) (-15 -2447 (|#1| |#1| (-535))) (-15 -4075 ((-618 |#1|) |#1| (-535))) (-15 -2448 ((-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) |#1| (-535))) (-15 -2449 ((-618 |#1|) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) (-535))) (-15 -2450 (|#1| |#1| (-535) |#1| (-535)))) -((-2454 (((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 17)) (-2451 (((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254))) 40) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254))) 42) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1055 (-219)) (-1055 (-219)) (-618 (-254))) 44)) (-2453 (((-1099 (-219)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-618 (-254))) NIL)) (-2452 (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1055 (-219)) (-1055 (-219)) (-618 (-254))) 45))) -(((-673) (-10 -7 (-15 -2451 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2451 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2451 ((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2452 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2453 ((-1099 (-219)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2454 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -673)) -((-2454 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1 (-219) (-219) (-219) (-219))) (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *1 (-673)))) (-2453 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-2452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined")) (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-2451 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-219))) (-5 *5 (-618 (-254))) (-5 *1 (-673)))) (-2451 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-219))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-2451 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) #1#)) (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673))))) -(-10 -7 (-15 -2451 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2451 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2451 ((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2452 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2453 ((-1099 (-219)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2454 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) -((-4075 (((-398 (-1136 |#4|)) (-1136 |#4|)) 73) (((-398 |#4|) |#4|) 221))) -(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4|)) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|)))) (-823) (-769) (-343) (-921 |#3| |#2| |#1|)) (T -674)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-343)) (-4 *7 (-921 *6 *5 *4)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4))))) -(-10 -7 (-15 -4075 ((-398 |#4|) |#4|)) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 84)) (-3447 (((-535) $) 30)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4113 (($ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-3879 (($) NIL T CONST)) (-3445 (($ $) NIL)) (-3491 (((-3 (-535) #1="failed") $) 73) (((-3 (-400 (-535)) #1#) $) 26) (((-3 (-371) #1#) $) 70)) (-3490 (((-535) $) 75) (((-400 (-535)) $) 67) (((-371) $) 68)) (-2883 (($ $ $) 96)) (-3804 (((-3 $ "failed") $) 87)) (-2882 (($ $ $) 95)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2457 (((-890)) 77) (((-890) (-890)) 76)) (-3520 (((-112) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL)) (-4114 (((-535) $) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL)) (-3450 (($ $) NIL)) (-3521 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-2455 (((-535) (-535)) 81) (((-535)) 82)) (-3660 (($ $ $) NIL) (($) NIL (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-2456 (((-535) (-535)) 79) (((-535)) 80)) (-3661 (($ $ $) NIL) (($) NIL (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-2458 (((-535) $) 16)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 91)) (-1884 (((-890) (-535)) NIL (|has| $ (-6 -4327)))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL)) (-3448 (($ $) NIL)) (-3588 (($ (-535) (-535)) NIL) (($ (-535) (-535) (-890)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) 92)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2484 (((-535) $) 22)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 94)) (-2932 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-1883 (((-890) (-535)) NIL (|has| $ (-6 -4327)))) (-4313 (((-371) $) NIL) (((-219) $) NIL) (((-861 (-371)) $) NIL)) (-4300 (((-835) $) 52) (($ (-535)) 63) (($ $) NIL) (($ (-400 (-535))) 66) (($ (-535)) 63) (($ (-400 (-535))) 66) (($ (-371)) 60) (((-371) $) 50) (($ (-677)) 55)) (-3444 (((-747)) 103)) (-3268 (($ (-535) (-535) (-890)) 44)) (-3449 (($ $) NIL)) (-1885 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-3015 (((-890)) 35) (((-890) (-890)) 78)) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL)) (-2979 (($) 32 T CONST)) (-2985 (($) 17 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 83)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 101)) (-4291 (($ $ $) 65)) (-4180 (($ $) 99) (($ $ $) 100)) (-4182 (($ $ $) 98)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL) (($ $ (-400 (-535))) 90)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 97) (($ $ $) 88) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL))) -(((-675) (-13 (-397) (-380) (-356) (-1009 (-371)) (-1009 (-400 (-535))) (-145) (-10 -8 (-15 -2457 ((-890) (-890))) (-15 -2457 ((-890))) (-15 -3015 ((-890) (-890))) (-15 -2456 ((-535) (-535))) (-15 -2456 ((-535))) (-15 -2455 ((-535) (-535))) (-15 -2455 ((-535))) (-15 -4300 ((-371) $)) (-15 -4300 ($ (-677))) (-15 -2458 ((-535) $)) (-15 -2484 ((-535) $)) (-15 -3268 ($ (-535) (-535) (-890)))))) (T -675)) -((-2484 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2457 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2456 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2455 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-675)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-677)) (-5 *1 (-675)))) (-3268 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-890)) (-5 *1 (-675))))) -(-13 (-397) (-380) (-356) (-1009 (-371)) (-1009 (-400 (-535))) (-145) (-10 -8 (-15 -2457 ((-890) (-890))) (-15 -2457 ((-890))) (-15 -3015 ((-890) (-890))) (-15 -2456 ((-535) (-535))) (-15 -2456 ((-535))) (-15 -2455 ((-535) (-535))) (-15 -2455 ((-535))) (-15 -4300 ((-371) $)) (-15 -4300 ($ (-677))) (-15 -2458 ((-535) $)) (-15 -2484 ((-535) $)) (-15 -3268 ($ (-535) (-535) (-890))))) -((-2461 (((-665 |#1|) (-665 |#1|) |#1| |#1|) 65)) (-3428 (((-665 |#1|) (-665 |#1|) |#1|) 48)) (-2460 (((-665 |#1|) (-665 |#1|) |#1|) 66)) (-2459 (((-665 |#1|) (-665 |#1|)) 49)) (-2462 (((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|) 64))) -(((-676 |#1|) (-10 -7 (-15 -2459 ((-665 |#1|) (-665 |#1|))) (-15 -3428 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -2460 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -2461 ((-665 |#1|) (-665 |#1|) |#1| |#1|)) (-15 -2462 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|))) (-300)) (T -676)) -((-2462 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-676 *3)) (-4 *3 (-300)))) (-2461 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-3428 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3))))) -(-10 -7 (-15 -2459 ((-665 |#1|) (-665 |#1|))) (-15 -3428 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -2460 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -2461 ((-665 |#1|) (-665 |#1|) |#1| |#1|)) (-15 -2462 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2155 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2150 (($ $ $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-2681 (($ $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) "failed") $) 27)) (-3490 (((-535) $) 25)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL)) (-3344 (((-112) $) NIL)) (-3343 (((-400 (-535)) $) NIL)) (-3315 (($ $) NIL) (($) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2148 (($ $ $ $) NIL)) (-2156 (($ $ $) NIL)) (-3520 (((-112) $) NIL)) (-1413 (($ $ $) NIL)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL)) (-2493 (((-112) $) NIL)) (-2994 (((-112) $) NIL)) (-3786 (((-3 $ "failed") $) NIL)) (-3521 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2149 (($ $ $ $) NIL)) (-3660 (($ $ $) NIL)) (-2463 (((-890) (-890)) 10) (((-890)) 9)) (-3661 (($ $ $) NIL)) (-2152 (($ $) NIL)) (-4176 (($ $) NIL)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2147 (($ $ $) NIL)) (-3787 (($) NIL T CONST)) (-2154 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-1411 (($ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL) (($ $ (-747)) NIL)) (-2153 (($ $) NIL)) (-3742 (($ $) NIL)) (-4313 (((-219) $) NIL) (((-371) $) NIL) (((-861 (-535)) $) NIL) (((-524) $) NIL) (((-535) $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) 24) (($ $) NIL) (($ (-535)) 24) (((-307 $) (-307 (-535))) 18)) (-3444 (((-747)) NIL)) (-2157 (((-112) $ $) NIL)) (-3420 (($ $ $) NIL)) (-3015 (($) NIL)) (-2170 (((-112) $ $) NIL)) (-2151 (($ $ $ $) NIL)) (-3725 (($ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL) (($ $ (-747)) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL))) -(((-677) (-13 (-380) (-534) (-10 -8 (-15 -2463 ((-890) (-890))) (-15 -2463 ((-890))) (-15 -4300 ((-307 $) (-307 (-535))))))) (T -677)) -((-2463 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-677)))) (-2463 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-677)))) (-4300 (*1 *2 *3) (-12 (-5 *3 (-307 (-535))) (-5 *2 (-307 (-677))) (-5 *1 (-677))))) -(-13 (-380) (-534) (-10 -8 (-15 -2463 ((-890) (-890))) (-15 -2463 ((-890))) (-15 -4300 ((-307 $) (-307 (-535)))))) -((-2469 (((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142)) 19)) (-2464 (((-1 |#4| |#2| |#3|) (-1142)) 12))) -(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2464 ((-1 |#4| |#2| |#3|) (-1142))) (-15 -2469 ((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142)))) (-594 (-524)) (-1178) (-1178) (-1178)) (T -678)) -((-2469 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *3 *5 *6 *7)) (-4 *3 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *7 (-1178)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *4 *5 *6 *7)) (-4 *4 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *7 (-1178))))) -(-10 -7 (-15 -2464 ((-1 |#4| |#2| |#3|) (-1142))) (-15 -2469 ((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142)))) -((-2887 (((-112) $ $) NIL)) (-1364 (((-1230) $ (-747)) 14)) (-3761 (((-747) $) 12)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 25)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 24))) -(((-679 |#1|) (-13 (-131) (-593 |#1|) (-10 -8 (-15 -4300 ($ |#1|)))) (-1067)) (T -679)) -((-4300 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1067))))) -(-13 (-131) (-593 |#1|) (-10 -8 (-15 -4300 ($ |#1|)))) -((-2465 (((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142)) 34) (((-1 (-219) (-219)) |#1| (-1142)) 39))) -(((-680 |#1|) (-10 -7 (-15 -2465 ((-1 (-219) (-219)) |#1| (-1142))) (-15 -2465 ((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142)))) (-594 (-524))) (T -680)) -((-2465 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-680 *3)) (-4 *3 (-594 (-524))))) (-2465 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-680 *3)) (-4 *3 (-594 (-524)))))) -(-10 -7 (-15 -2465 ((-1 (-219) (-219)) |#1| (-1142))) (-15 -2465 ((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142)))) -((-2466 (((-1142) |#1| (-1142) (-618 (-1142))) 9) (((-1142) |#1| (-1142) (-1142) (-1142)) 12) (((-1142) |#1| (-1142) (-1142)) 11) (((-1142) |#1| (-1142)) 10))) -(((-681 |#1|) (-10 -7 (-15 -2466 ((-1142) |#1| (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-1142) (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-618 (-1142))))) (-594 (-524))) (T -681)) -((-2466 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-618 (-1142))) (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) (-2466 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) (-2466 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) (-2466 (*1 *2 *3 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524)))))) -(-10 -7 (-15 -2466 ((-1142) |#1| (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-1142) (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-618 (-1142))))) -((-2467 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-682 |#1| |#2|) (-10 -7 (-15 -2467 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1178) (-1178)) (T -682)) -((-2467 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-682 *3 *4)) (-4 *3 (-1178)) (-4 *4 (-1178))))) -(-10 -7 (-15 -2467 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2468 (((-1 |#3| |#2|) (-1142)) 11)) (-2469 (((-1 |#3| |#2|) |#1| (-1142)) 21))) -(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -2468 ((-1 |#3| |#2|) (-1142))) (-15 -2469 ((-1 |#3| |#2|) |#1| (-1142)))) (-594 (-524)) (-1178) (-1178)) (T -683)) -((-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *3 *5 *6)) (-4 *3 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *4 *5 *6)) (-4 *4 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178))))) -(-10 -7 (-15 -2468 ((-1 |#3| |#2|) (-1142))) (-15 -2469 ((-1 |#3| |#2|) |#1| (-1142)))) -((-2472 (((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#4|)) (-618 |#3|) (-618 |#4|) (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#4|)))) (-618 (-747)) (-1224 (-618 (-1136 |#3|))) |#3|) 62)) (-2471 (((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#3|)) (-618 |#3|) (-618 |#4|) (-618 (-747)) |#3|) 75)) (-2470 (((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 |#3|) (-618 (-747)) (-618 (-1136 |#4|)) (-1224 (-618 (-1136 |#3|))) |#3|) 34))) -(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2470 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 |#3|) (-618 (-747)) (-618 (-1136 |#4|)) (-1224 (-618 (-1136 |#3|))) |#3|)) (-15 -2471 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#3|)) (-618 |#3|) (-618 |#4|) (-618 (-747)) |#3|)) (-15 -2472 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#4|)) (-618 |#3|) (-618 |#4|) (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#4|)))) (-618 (-747)) (-1224 (-618 (-1136 |#3|))) |#3|))) (-769) (-823) (-300) (-921 |#3| |#1| |#2|)) (T -684)) -((-2472 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-618 (-1136 *13))) (-5 *3 (-1136 *13)) (-5 *4 (-618 *12)) (-5 *5 (-618 *10)) (-5 *6 (-618 *13)) (-5 *7 (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| *13))))) (-5 *8 (-618 (-747))) (-5 *9 (-1224 (-618 (-1136 *10)))) (-4 *12 (-823)) (-4 *10 (-300)) (-4 *13 (-921 *10 *11 *12)) (-4 *11 (-769)) (-5 *1 (-684 *11 *12 *10 *13)))) (-2471 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-618 *11)) (-5 *5 (-618 (-1136 *9))) (-5 *6 (-618 *9)) (-5 *7 (-618 *12)) (-5 *8 (-618 (-747))) (-4 *11 (-823)) (-4 *9 (-300)) (-4 *12 (-921 *9 *10 *11)) (-4 *10 (-769)) (-5 *2 (-618 (-1136 *12))) (-5 *1 (-684 *10 *11 *9 *12)) (-5 *3 (-1136 *12)))) (-2470 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-618 (-1136 *11))) (-5 *3 (-1136 *11)) (-5 *4 (-618 *10)) (-5 *5 (-618 *8)) (-5 *6 (-618 (-747))) (-5 *7 (-1224 (-618 (-1136 *8)))) (-4 *10 (-823)) (-4 *8 (-300)) (-4 *11 (-921 *8 *9 *10)) (-4 *9 (-769)) (-5 *1 (-684 *9 *10 *8 *11))))) -(-10 -7 (-15 -2470 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 |#3|) (-618 (-747)) (-618 (-1136 |#4|)) (-1224 (-618 (-1136 |#3|))) |#3|)) (-15 -2471 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#3|)) (-618 |#3|) (-618 |#4|) (-618 (-747)) |#3|)) (-15 -2472 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#4|)) (-618 |#3|) (-618 |#4|) (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#4|)))) (-618 (-747)) (-1224 (-618 (-1136 |#3|))) |#3|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4302 (($ $) 39)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3214 (($ |#1| (-747)) 37)) (-3141 (((-747) $) 41)) (-3508 ((|#1| $) 40)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4290 (((-747) $) 42)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-4023 ((|#1| $ (-747)) 38)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) -(((-685 |#1|) (-138) (-1018)) (T -685)) -((-4290 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018))))) -(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4290 ((-747) $)) (-15 -3141 ((-747) $)) (-15 -3508 (|t#1| $)) (-15 -4302 ($ $)) (-15 -4023 (|t#1| $ (-747))) (-15 -3214 ($ |t#1| (-747))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-4301 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-686 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4301 (|#6| (-1 |#4| |#1|) |#3|))) (-542) (-1200 |#1|) (-1200 (-400 |#2|)) (-542) (-1200 |#4|) (-1200 (-400 |#5|))) (T -686)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-542)) (-4 *7 (-542)) (-4 *6 (-1200 *5)) (-4 *2 (-1200 (-400 *8))) (-5 *1 (-686 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1200 (-400 *6))) (-4 *8 (-1200 *7))))) -(-10 -7 (-15 -4301 (|#6| (-1 |#4| |#1|) |#3|))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2473 (((-1124) (-835)) 31)) (-3963 (((-1230) (-1124)) 28)) (-2475 (((-1124) (-835)) 24)) (-2474 (((-1124) (-835)) 25)) (-4300 (((-835) $) NIL) (((-1124) (-835)) 23)) (-3375 (((-112) $ $) NIL))) -(((-687) (-13 (-1067) (-10 -7 (-15 -4300 ((-1124) (-835))) (-15 -2475 ((-1124) (-835))) (-15 -2474 ((-1124) (-835))) (-15 -2473 ((-1124) (-835))) (-15 -3963 ((-1230) (-1124)))))) (T -687)) -((-4300 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-687))))) -(-13 (-1067) (-10 -7 (-15 -4300 ((-1124) (-835))) (-15 -2475 ((-1124) (-835))) (-15 -2474 ((-1124) (-835))) (-15 -2473 ((-1124) (-835))) (-15 -3963 ((-1230) (-1124))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL)) (-4185 (($ |#1| |#2|) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 ((|#2| $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2485 (((-3 $ "failed") $ $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) ((|#1| $) NIL)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL))) -(((-688 |#1| |#2| |#3| |#4| |#5|) (-13 (-356) (-10 -8 (-15 -2931 (|#2| $)) (-15 -4300 (|#1| $)) (-15 -4185 ($ |#1| |#2|)) (-15 -2485 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -688)) -((-2931 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-688 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4300 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4185 (*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-356) (-10 -8 (-15 -2931 (|#2| $)) (-15 -4300 (|#1| $)) (-15 -4185 ($ |#1| |#2|)) (-15 -2485 ((-3 $ "failed") $ $)))) -((-2887 (((-112) $ $) 78)) (-3522 (((-112) $) 30)) (-4109 (((-1224 |#1|) $ (-747)) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4107 (($ (-1136 |#1|)) NIL)) (-3407 (((-1136 $) $ (-1048)) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4098 (($ $ $) NIL (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3454 (((-747)) 47 (|has| |#1| (-361)))) (-4103 (($ $ (-747)) NIL)) (-4102 (($ $ (-747)) NIL)) (-2482 ((|#2| |#2|) 44)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1048) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1048) $) NIL)) (-4099 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) 34)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-4185 (($ |#2|) 42)) (-3804 (((-3 $ "failed") $) 86)) (-3315 (($) 51 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4101 (($ $ $) NIL)) (-4096 (($ $ $) NIL (|has| |#1| (-542)))) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-2478 (((-929 $)) 80)) (-1716 (($ $ |#1| (-747) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1048) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1048) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ $) NIL (|has| |#1| (-542)))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-3408 (($ (-1136 |#1|) (-1048)) NIL) (($ (-1136 $) (-1048)) NIL)) (-4119 (($ $ (-747)) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) 77) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) NIL) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2931 ((|#2|) 45)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4108 (((-1136 |#1|) $) NIL)) (-3406 (((-3 (-1048) #4="failed") $) NIL)) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-3401 ((|#2| $) 41)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) 28)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) NIL)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) NIL)) (-4155 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (|has| |#1| (-1117)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2476 (($ $) 79 (|has| |#1| (-343)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-618 (-1048)) (-618 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-618 (-1048)) (-618 $)) NIL)) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-4106 (((-3 $ #5="failed") $ (-747)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 87 (|has| |#1| (-356)))) (-4100 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4290 (((-747) $) 32) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1048) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-2477 (((-929 $)) 36)) (-4097 (((-3 $ #5#) $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-542)))) (-4300 (((-835) $) 61) (($ (-535)) NIL) (($ |#1|) 58) (($ (-1048)) NIL) (($ |#2|) 68) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) 63) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 20 T CONST)) (-2481 (((-1224 |#1|) $) 75)) (-2480 (($ (-1224 |#1|)) 50)) (-2985 (($) 8 T CONST)) (-2990 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2479 (((-1224 |#1|) $) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 69)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) 72) (($ $ $) NIL)) (-4182 (($ $ $) 33)) (** (($ $ (-890)) NIL) (($ $ (-747)) 81)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 57) (($ $ $) 74) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-689 |#1| |#2|) (-13 (-1200 |#1|) (-10 -8 (-15 -2482 (|#2| |#2|)) (-15 -2931 (|#2|)) (-15 -4185 ($ |#2|)) (-15 -3401 (|#2| $)) (-15 -4300 ($ |#2|)) (-15 -2481 ((-1224 |#1|) $)) (-15 -2480 ($ (-1224 |#1|))) (-15 -2479 ((-1224 |#1|) $)) (-15 -2478 ((-929 $))) (-15 -2477 ((-929 $))) (IF (|has| |#1| (-343)) (-15 -2476 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) (-1018) (-1200 |#1|)) (T -689)) -((-2482 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))) (-2931 (*1 *2) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) (-4185 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))) (-3401 (*1 *2 *1) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))) (-2481 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-1224 *3)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2480 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1018)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2479 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-1224 *3)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2478 (*1 *2) (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2477 (*1 *2) (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2476 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *2 (-1018)) (-5 *1 (-689 *2 *3)) (-4 *3 (-1200 *2))))) -(-13 (-1200 |#1|) (-10 -8 (-15 -2482 (|#2| |#2|)) (-15 -2931 (|#2|)) (-15 -4185 ($ |#2|)) (-15 -3401 (|#2| $)) (-15 -4300 ($ |#2|)) (-15 -2481 ((-1224 |#1|) $)) (-15 -2480 ($ (-1224 |#1|))) (-15 -2479 ((-1224 |#1|) $)) (-15 -2478 ((-929 $))) (-15 -2477 ((-929 $))) (IF (|has| |#1| (-343)) (-15 -2476 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2483 ((|#1| $) 13)) (-3577 (((-1086) $) NIL)) (-2484 ((|#2| $) 12)) (-3867 (($ |#1| |#2|) 16)) (-4300 (((-835) $) NIL) (($ (-2 (|:| -2483 |#1|) (|:| -2484 |#2|))) 15) (((-2 (|:| -2483 |#1|) (|:| -2484 |#2|)) $) 14)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 11))) -(((-690 |#1| |#2| |#3|) (-13 (-823) (-10 -8 (-15 -2484 (|#2| $)) (-15 -2483 (|#1| $)) (-15 -4300 ($ (-2 (|:| -2483 |#1|) (|:| -2484 |#2|)))) (-15 -4300 ((-2 (|:| -2483 |#1|) (|:| -2484 |#2|)) $)) (-15 -3867 ($ |#1| |#2|)))) (-823) (-1067) (-1 (-112) (-2 (|:| -2483 |#1|) (|:| -2484 |#2|)) (-2 (|:| -2483 |#1|) (|:| -2484 |#2|)))) (T -690)) -((-2484 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-690 *3 *2 *4)) (-4 *3 (-823)) (-14 *4 (-1 (-112) (-2 (|:| -2483 *3) (|:| -2484 *2)) (-2 (|:| -2483 *3) (|:| -2484 *2)))))) (-2483 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-690 *2 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *3)) (-2 (|:| -2483 *2) (|:| -2484 *3)))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2483 *3) (|:| -2484 *4))) (-4 *3 (-823)) (-4 *4 (-1067)) (-5 *1 (-690 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2483 *3) (|:| -2484 *4))) (-5 *1 (-690 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-1067)) (-14 *5 (-1 (-112) *2 *2)))) (-3867 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-1067)) (-14 *4 (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *3)) (-2 (|:| -2483 *2) (|:| -2484 *3))))))) -(-13 (-823) (-10 -8 (-15 -2484 (|#2| $)) (-15 -2483 (|#1| $)) (-15 -4300 ($ (-2 (|:| -2483 |#1|) (|:| -2484 |#2|)))) (-15 -4300 ((-2 (|:| -2483 |#1|) (|:| -2484 |#2|)) $)) (-15 -3867 ($ |#1| |#2|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 59)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3490 ((|#1| $) NIL) (((-113) $) 39)) (-3804 (((-3 $ "failed") $) 90)) (-2841 ((|#2| (-113) |#2|) 82)) (-2493 (((-112) $) NIL)) (-2840 (($ |#1| (-354 (-113))) 14)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2842 (($ $ (-1 |#2| |#2|)) 58)) (-2843 (($ $ (-1 |#2| |#2|)) 44)) (-4142 ((|#2| $ |#2|) 33)) (-2844 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-4300 (((-835) $) 66) (($ (-535)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 37)) (-2845 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2979 (($) 21 T CONST)) (-2985 (($) 9 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) 48) (($ $ $) NIL)) (-4182 (($ $ $) 73)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ (-113) (-535)) NIL) (($ $ (-535)) 57)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) -(((-691 |#1| |#2|) (-13 (-1018) (-1009 |#1|) (-1009 (-113)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2845 ($ $)) (-15 -2845 ($ $ $)) (-15 -2844 (|#1| |#1|))) |%noBranch|) (-15 -2843 ($ $ (-1 |#2| |#2|))) (-15 -2842 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-535))) (-15 ** ($ $ (-535))) (-15 -2841 (|#2| (-113) |#2|)) (-15 -2840 ($ |#1| (-354 (-113)))))) (-1018) (-624 |#1|)) (T -691)) -((-2845 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-2845 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-2844 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)))) (-2842 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *5)) (-4 *5 (-624 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)) (-4 *4 (-624 *3)))) (-2841 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *2)) (-4 *2 (-624 *4)))) (-2840 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-4 *2 (-1018)) (-5 *1 (-691 *2 *4)) (-4 *4 (-624 *2))))) -(-13 (-1018) (-1009 |#1|) (-1009 (-113)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2845 ($ $)) (-15 -2845 ($ $ $)) (-15 -2844 (|#1| |#1|))) |%noBranch|) (-15 -2843 ($ $ (-1 |#2| |#2|))) (-15 -2842 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-535))) (-15 ** ($ $ (-535))) (-15 -2841 (|#2| (-113) |#2|)) (-15 -2840 ($ |#1| (-354 (-113)))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 33)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4185 (($ |#1| |#2|) 25)) (-3804 (((-3 $ "failed") $) 48)) (-2493 (((-112) $) 35)) (-2931 ((|#2| $) 12)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 49)) (-3577 (((-1086) $) NIL)) (-2485 (((-3 $ "failed") $ $) 47)) (-4300 (((-835) $) 24) (($ (-535)) 19) ((|#1| $) 13)) (-3444 (((-747)) 28)) (-2979 (($) 16 T CONST)) (-2985 (($) 30 T CONST)) (-3375 (((-112) $ $) 38)) (-4180 (($ $) 43) (($ $ $) 37)) (-4182 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 21) (($ $ $) 20))) -(((-692 |#1| |#2| |#3| |#4| |#5|) (-13 (-1018) (-10 -8 (-15 -2931 (|#2| $)) (-15 -4300 (|#1| $)) (-15 -4185 ($ |#1| |#2|)) (-15 -2485 ((-3 $ "failed") $ $)) (-15 -3804 ((-3 $ "failed") $)) (-15 -2725 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -692)) -((-3804 (*1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2931 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4300 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4185 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2725 (*1 *1 *1) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-1018) (-10 -8 (-15 -2931 (|#2| $)) (-15 -4300 (|#1| $)) (-15 -4185 ($ |#1| |#2|)) (-15 -2485 ((-3 $ "failed") $ $)) (-15 -3804 ((-3 $ "failed") $)) (-15 -2725 ($ $)))) -((* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-693 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-694 |#2|) (-170)) (T -693)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-694 |#1|) (-138) (-170)) (T -694)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 15)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2705 ((|#1| $) 21)) (-2707 (($ $ $) NIL (|has| |#1| (-769)))) (-4164 (($ $ $) NIL (|has| |#1| (-769)))) (-1825 (((-1126) $) 46)) (-3337 (((-1088) $) NIL)) (-2715 ((|#3| $) 22)) (-1518 (((-836) $) 42)) (-2626 (($) 10 T CONST)) (-2363 (((-112) $ $) NIL (|has| |#1| (-769)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-769)))) (-2316 (((-112) $ $) 20)) (-2354 (((-112) $ $) NIL (|has| |#1| (-769)))) (-2335 (((-112) $ $) 24 (|has| |#1| (-769)))) (-2414 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2403 (($ $) 17) (($ $ $) NIL)) (-2391 (($ $ $) 27)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-640 |#1| |#2| |#3|) (-13 (-696 |#2|) (-10 -8 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) (-15 -2414 ($ $ |#3|)) (-15 -2414 ($ |#1| |#3|)) (-15 -2705 (|#1| $)) (-15 -2715 (|#3| $)))) (-696 |#2|) (-170) (|SubsetCategory| (-705) |#2|)) (T -640)) +((-2414 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-696 *4)) (-4 *2 (|SubsetCategory| (-705) *4)))) (-2414 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-640 *2 *4 *3)) (-4 *2 (-696 *4)) (-4 *3 (|SubsetCategory| (-705) *4)))) (-2705 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-696 *3)) (-5 *1 (-640 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-705) *3)))) (-2715 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-696 *4))))) +(-13 (-696 |#2|) (-10 -8 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) (-15 -2414 ($ $ |#3|)) (-15 -2414 ($ |#1| |#3|)) (-15 -2705 (|#1| $)) (-15 -2715 (|#3| $)))) +((-3988 (((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|)) 33))) +(((-641 |#1|) (-10 -7 (-15 -3988 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|)))) (-882)) (T -641)) +((-3988 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1140 *4))) (-5 *3 (-1140 *4)) (-4 *4 (-882)) (-5 *1 (-641 *4))))) +(-10 -7 (-15 -3988 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1540 (((-623 |#1|) $) 82)) (-2859 (($ $ (-749)) 90)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3527 (((-1251 |#1| |#2|) (-1251 |#1| |#2|) $) 48)) (-3880 (((-3 (-650 |#1|) "failed") $) NIL)) (-2726 (((-650 |#1|) $) NIL)) (-3295 (($ $) 89)) (-2603 (((-749) $) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-1792 (($ (-650 |#1|) |#2|) 68)) (-1522 (($ $) 86)) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-3636 (((-1251 |#1| |#2|) (-1251 |#1| |#2|) $) 47)) (-1565 (((-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3267 (((-650 |#1|) $) NIL)) (-3277 ((|#2| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3866 (($ $ |#1| $) 30) (($ $ (-623 |#1|) (-623 $)) 32)) (-2970 (((-749) $) 88)) (-1532 (($ $ $) 20) (($ (-650 |#1|) (-650 |#1|)) 77) (($ (-650 |#1|) $) 75) (($ $ (-650 |#1|)) 76)) (-1518 (((-836) $) NIL) (($ |#1|) 74) (((-1242 |#1| |#2|) $) 58) (((-1251 |#1| |#2|) $) 41) (($ (-650 |#1|)) 25)) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ (-650 |#1|)) NIL)) (-2855 ((|#2| (-1251 |#1| |#2|) $) 43)) (-2626 (($) 23 T CONST)) (-4237 (((-623 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3915 (((-3 $ "failed") (-1242 |#1| |#2|)) 60)) (-3737 (($ (-650 |#1|)) 14)) (-2316 (((-112) $ $) 44)) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $) 66) (($ $ $) NIL)) (-2391 (($ $ $) 29)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-650 |#1|)) NIL))) +(((-642 |#1| |#2|) (-13 (-367 |#1| |#2|) (-375 |#2| (-650 |#1|)) (-10 -8 (-15 -3915 ((-3 $ "failed") (-1242 |#1| |#2|))) (-15 -1532 ($ (-650 |#1|) (-650 |#1|))) (-15 -1532 ($ (-650 |#1|) $)) (-15 -1532 ($ $ (-650 |#1|))))) (-825) (-170)) (T -642)) +((-3915 (*1 *1 *2) (|partial| -12 (-5 *2 (-1242 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *1 (-642 *3 *4)))) (-1532 (*1 *1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) (-1532 (*1 *1 *2 *1) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) (-1532 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170))))) +(-13 (-367 |#1| |#2|) (-375 |#2| (-650 |#1|)) (-10 -8 (-15 -3915 ((-3 $ "failed") (-1242 |#1| |#2|))) (-15 -1532 ($ (-650 |#1|) (-650 |#1|))) (-15 -1532 ($ (-650 |#1|) $)) (-15 -1532 ($ $ (-650 |#1|))))) +((-3654 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-3491 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3378 (($ (-1 (-112) |#2|) $) 28)) (-2342 (($ $) 56)) (-3912 (($ $) 64)) (-3112 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2419 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2302 (((-550) |#2| $ (-550)) 61) (((-550) |#2| $) NIL) (((-550) (-1 (-112) |#2|) $) 47)) (-2578 (($ (-749) |#2|) 54)) (-3884 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-1832 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3972 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-4218 (($ |#2|) 15)) (-1886 (($ $ $ (-550)) 36) (($ |#2| $ (-550)) 34)) (-3321 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-3476 (($ $ (-1194 (-550))) 44) (($ $ (-550)) 38)) (-3593 (($ $ $ (-550)) 60)) (-1731 (($ $) 58)) (-2335 (((-112) $ $) 66))) +(((-643 |#1| |#2|) (-10 -8 (-15 -4218 (|#1| |#2|)) (-15 -3476 (|#1| |#1| (-550))) (-15 -3476 (|#1| |#1| (-1194 (-550)))) (-15 -3112 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1886 (|#1| |#2| |#1| (-550))) (-15 -1886 (|#1| |#1| |#1| (-550))) (-15 -3884 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3378 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3112 (|#1| |#2| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3884 (|#1| |#1| |#1|)) (-15 -1832 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3654 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2302 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -2302 ((-550) |#2| |#1|)) (-15 -2302 ((-550) |#2| |#1| (-550))) (-15 -1832 (|#1| |#1| |#1|)) (-15 -3654 ((-112) |#1|)) (-15 -3593 (|#1| |#1| |#1| (-550))) (-15 -2342 (|#1| |#1|)) (-15 -3491 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -2335 ((-112) |#1| |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3321 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2578 (|#1| (-749) |#2|)) (-15 -3972 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1731 (|#1| |#1|))) (-644 |#2|) (-1181)) (T -643)) +NIL +(-10 -8 (-15 -4218 (|#1| |#2|)) (-15 -3476 (|#1| |#1| (-550))) (-15 -3476 (|#1| |#1| (-1194 (-550)))) (-15 -3112 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1886 (|#1| |#2| |#1| (-550))) (-15 -1886 (|#1| |#1| |#1| (-550))) (-15 -3884 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3378 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3112 (|#1| |#2| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3884 (|#1| |#1| |#1|)) (-15 -1832 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3654 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2302 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -2302 ((-550) |#2| |#1|)) (-15 -2302 ((-550) |#2| |#1| (-550))) (-15 -1832 (|#1| |#1| |#1|)) (-15 -3654 ((-112) |#1|)) (-15 -3593 (|#1| |#1| |#1| (-550))) (-15 -2342 (|#1| |#1|)) (-15 -3491 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -2335 ((-112) |#1| |#1|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2419 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3321 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2578 (|#1| (-749) |#2|)) (-15 -3972 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1731 (|#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3625 ((|#1| $) 48)) (-3996 ((|#1| $) 65)) (-4180 (($ $) 67)) (-3029 (((-1232) $ (-550) (-550)) 97 (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) 52 (|has| $ (-6 -4343)))) (-3654 (((-112) $) 142 (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-3491 (($ $) 146 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4343)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4343)))) (-1674 (($ $) 141 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-4047 (((-112) $ (-749)) 8)) (-2190 ((|#1| $ |#1|) 39 (|has| $ (-6 -4343)))) (-1431 (($ $ $) 56 (|has| $ (-6 -4343)))) (-1300 ((|#1| $ |#1|) 54 (|has| $ (-6 -4343)))) (-3373 ((|#1| $ |#1|) 58 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4343))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4343))) (($ $ "rest" $) 55 (|has| $ (-6 -4343))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 117 (|has| $ (-6 -4343))) ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-3378 (($ (-1 (-112) |#1|) $) 129)) (-4253 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4342)))) (-3985 ((|#1| $) 66)) (-3513 (($) 7 T CONST)) (-2342 (($ $) 144 (|has| $ (-6 -4343)))) (-3243 (($ $) 134)) (-1308 (($ $) 73) (($ $ (-749)) 71)) (-3912 (($ $) 131 (|has| |#1| (-1068)))) (-1328 (($ $) 99 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ |#1| $) 130 (|has| |#1| (-1068))) (($ (-1 (-112) |#1|) $) 125)) (-3137 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4342))) (($ |#1| $) 100 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3245 ((|#1| $ (-550) |#1|) 85 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 87)) (-3815 (((-112) $) 83)) (-2302 (((-550) |#1| $ (-550)) 139 (|has| |#1| (-1068))) (((-550) |#1| $) 138 (|has| |#1| (-1068))) (((-550) (-1 (-112) |#1|) $) 137)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 50)) (-2333 (((-112) $ $) 42 (|has| |#1| (-1068)))) (-2578 (($ (-749) |#1|) 108)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 95 (|has| (-550) (-825)))) (-2707 (($ $ $) 147 (|has| |#1| (-825)))) (-3884 (($ $ $) 132 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-1832 (($ $ $) 140 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 94 (|has| (-550) (-825)))) (-4164 (($ $ $) 148 (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4218 (($ |#1|) 122)) (-1573 (((-112) $ (-749)) 10)) (-2513 (((-623 |#1|) $) 45)) (-3312 (((-112) $) 49)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3159 ((|#1| $) 70) (($ $ (-749)) 68)) (-1886 (($ $ $ (-550)) 127) (($ |#1| $ (-550)) 126)) (-2055 (($ $ $ (-550)) 116) (($ |#1| $ (-550)) 115)) (-2325 (((-623 (-550)) $) 92)) (-2400 (((-112) (-550) $) 91)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 76) (($ $ (-749)) 74)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3111 (($ $ |#1|) 96 (|has| $ (-6 -4343)))) (-2719 (((-112) $) 84)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 90)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1194 (-550))) 112) ((|#1| $ (-550)) 89) ((|#1| $ (-550) |#1|) 88)) (-2487 (((-550) $ $) 44)) (-3476 (($ $ (-1194 (-550))) 124) (($ $ (-550)) 123)) (-1529 (($ $ (-1194 (-550))) 114) (($ $ (-550)) 113)) (-2136 (((-112) $) 46)) (-3635 (($ $) 62)) (-3472 (($ $) 59 (|has| $ (-6 -4343)))) (-3728 (((-749) $) 63)) (-3786 (($ $) 64)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3593 (($ $ $ (-550)) 143 (|has| $ (-6 -4343)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 98 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 107)) (-3547 (($ $ $) 61) (($ $ |#1|) 60)) (-3227 (($ $ $) 78) (($ |#1| $) 77) (($ (-623 $)) 110) (($ $ |#1|) 109)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 51)) (-2413 (((-112) $ $) 43 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) 150 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 151 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-2354 (((-112) $ $) 149 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 152 (|has| |#1| (-825)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-644 |#1|) (-138) (-1181)) (T -644)) +((-4218 (*1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1181))))) +(-13 (-1117 |t#1|) (-366 |t#1|) (-275 |t#1|) (-10 -8 (-15 -4218 ($ |t#1|)))) +(((-34) . T) ((-101) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-275 |#1|) . T) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-983 |#1|) . T) ((-1068) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-1117 |#1|) . T) ((-1181) . T) ((-1215 |#1|) . T)) +((-2903 (((-623 (-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|))))) (-623 (-623 |#1|)) (-623 (-1227 |#1|))) 22) (((-623 (-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|))))) (-667 |#1|) (-623 (-1227 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-623 (-623 |#1|)) (-1227 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-667 |#1|) (-1227 |#1|)) 14)) (-2122 (((-749) (-667 |#1|) (-1227 |#1|)) 30)) (-3784 (((-3 (-1227 |#1|) "failed") (-667 |#1|) (-1227 |#1|)) 24)) (-4095 (((-112) (-667 |#1|) (-1227 |#1|)) 27))) +(((-645 |#1|) (-10 -7 (-15 -2903 ((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-667 |#1|) (-1227 |#1|))) (-15 -2903 ((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-623 (-623 |#1|)) (-1227 |#1|))) (-15 -2903 ((-623 (-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|))))) (-667 |#1|) (-623 (-1227 |#1|)))) (-15 -2903 ((-623 (-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|))))) (-623 (-623 |#1|)) (-623 (-1227 |#1|)))) (-15 -3784 ((-3 (-1227 |#1|) "failed") (-667 |#1|) (-1227 |#1|))) (-15 -4095 ((-112) (-667 |#1|) (-1227 |#1|))) (-15 -2122 ((-749) (-667 |#1|) (-1227 |#1|)))) (-356)) (T -645)) +((-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-5 *4 (-1227 *5)) (-4 *5 (-356)) (-5 *2 (-749)) (-5 *1 (-645 *5)))) (-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-5 *4 (-1227 *5)) (-4 *5 (-356)) (-5 *2 (-112)) (-5 *1 (-645 *5)))) (-3784 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1227 *4)) (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *1 (-645 *4)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 *5))) (-4 *5 (-356)) (-5 *2 (-623 (-2 (|:| |particular| (-3 (-1227 *5) "failed")) (|:| -2437 (-623 (-1227 *5)))))) (-5 *1 (-645 *5)) (-5 *4 (-623 (-1227 *5))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-623 (-2 (|:| |particular| (-3 (-1227 *5) "failed")) (|:| -2437 (-623 (-1227 *5)))))) (-5 *1 (-645 *5)) (-5 *4 (-623 (-1227 *5))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 *5))) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1227 *5) "failed")) (|:| -2437 (-623 (-1227 *5))))) (-5 *1 (-645 *5)) (-5 *4 (-1227 *5)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1227 *5) "failed")) (|:| -2437 (-623 (-1227 *5))))) (-5 *1 (-645 *5)) (-5 *4 (-1227 *5))))) +(-10 -7 (-15 -2903 ((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-667 |#1|) (-1227 |#1|))) (-15 -2903 ((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-623 (-623 |#1|)) (-1227 |#1|))) (-15 -2903 ((-623 (-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|))))) (-667 |#1|) (-623 (-1227 |#1|)))) (-15 -2903 ((-623 (-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|))))) (-623 (-623 |#1|)) (-623 (-1227 |#1|)))) (-15 -3784 ((-3 (-1227 |#1|) "failed") (-667 |#1|) (-1227 |#1|))) (-15 -4095 ((-112) (-667 |#1|) (-1227 |#1|))) (-15 -2122 ((-749) (-667 |#1|) (-1227 |#1|)))) +((-2903 (((-623 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|)))) |#4| (-623 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|))) |#4| |#3|) 45)) (-2122 (((-749) |#4| |#3|) 17)) (-3784 (((-3 |#3| "failed") |#4| |#3|) 20)) (-4095 (((-112) |#4| |#3|) 13))) +(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2903 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|))) |#4| |#3|)) (-15 -2903 ((-623 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|)))) |#4| (-623 |#3|))) (-15 -3784 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4095 ((-112) |#4| |#3|)) (-15 -2122 ((-749) |#4| |#3|))) (-356) (-13 (-366 |#1|) (-10 -7 (-6 -4343))) (-13 (-366 |#1|) (-10 -7 (-6 -4343))) (-665 |#1| |#2| |#3|)) (T -646)) +((-2122 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-5 *2 (-749)) (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) (-4095 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-5 *2 (-112)) (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) (-3784 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-366 *4) (-10 -7 (-6 -4343)))) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4343)))) (-5 *1 (-646 *4 *5 *2 *3)) (-4 *3 (-665 *4 *5 *2)))) (-2903 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-4 *7 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-5 *2 (-623 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2437 (-623 *7))))) (-5 *1 (-646 *5 *6 *7 *3)) (-5 *4 (-623 *7)) (-4 *3 (-665 *5 *6 *7)))) (-2903 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4))))) +(-10 -7 (-15 -2903 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|))) |#4| |#3|)) (-15 -2903 ((-623 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|)))) |#4| (-623 |#3|))) (-15 -3784 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4095 ((-112) |#4| |#3|)) (-15 -2122 ((-749) |#4| |#3|))) +((-4210 (((-2 (|:| |particular| (-3 (-1227 (-400 |#4|)) "failed")) (|:| -2437 (-623 (-1227 (-400 |#4|))))) (-623 |#4|) (-623 |#3|)) 45))) +(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4210 ((-2 (|:| |particular| (-3 (-1227 (-400 |#4|)) "failed")) (|:| -2437 (-623 (-1227 (-400 |#4|))))) (-623 |#4|) (-623 |#3|)))) (-542) (-771) (-825) (-922 |#1| |#2| |#3|)) (T -647)) +((-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *7)) (-4 *7 (-825)) (-4 *8 (-922 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-5 *2 (-2 (|:| |particular| (-3 (-1227 (-400 *8)) "failed")) (|:| -2437 (-623 (-1227 (-400 *8)))))) (-5 *1 (-647 *5 *6 *7 *8))))) +(-10 -7 (-15 -4210 ((-2 (|:| |particular| (-3 (-1227 (-400 |#4|)) "failed")) (|:| -2437 (-623 (-1227 (-400 |#4|))))) (-623 |#4|) (-623 |#3|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3090 (((-3 $ "failed")) NIL (|has| |#2| (-542)))) (-2252 ((|#2| $) NIL)) (-1294 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1265 (((-1227 (-667 |#2|))) NIL) (((-1227 (-667 |#2|)) (-1227 $)) NIL)) (-3483 (((-112) $) NIL)) (-3406 (((-1227 $)) 37)) (-4047 (((-112) $ (-749)) NIL)) (-1333 (($ |#2|) NIL)) (-3513 (($) NIL T CONST)) (-3707 (($ $) NIL (|has| |#2| (-300)))) (-3719 (((-234 |#1| |#2|) $ (-550)) NIL)) (-3726 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL (|has| |#2| (-542)))) (-3947 (((-3 $ "failed")) NIL (|has| |#2| (-542)))) (-2043 (((-667 |#2|)) NIL) (((-667 |#2|) (-1227 $)) NIL)) (-1958 ((|#2| $) NIL)) (-2042 (((-667 |#2|) $) NIL) (((-667 |#2|) $ (-1227 $)) NIL)) (-3818 (((-3 $ "failed") $) NIL (|has| |#2| (-542)))) (-1870 (((-1140 (-925 |#2|))) NIL (|has| |#2| (-356)))) (-2923 (($ $ (-894)) NIL)) (-1729 ((|#2| $) NIL)) (-4215 (((-1140 |#2|) $) NIL (|has| |#2| (-542)))) (-3945 ((|#2|) NIL) ((|#2| (-1227 $)) NIL)) (-1474 (((-1140 |#2|) $) NIL)) (-2105 (((-112)) NIL)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-3 |#2| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#2| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-400 (-550))))) ((|#2| $) NIL)) (-4110 (($ (-1227 |#2|)) NIL) (($ (-1227 |#2|) (-1227 $)) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2122 (((-749) $) NIL (|has| |#2| (-542))) (((-894)) 38)) (-3181 ((|#2| $ (-550) (-550)) NIL)) (-2890 (((-112)) NIL)) (-1494 (($ $ (-894)) NIL)) (-3450 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-3102 (((-112) $) NIL)) (-3613 (((-749) $) NIL (|has| |#2| (-542)))) (-3525 (((-623 (-234 |#1| |#2|)) $) NIL (|has| |#2| (-542)))) (-2115 (((-749) $) NIL)) (-3657 (((-112)) NIL)) (-2124 (((-749) $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3928 ((|#2| $) NIL (|has| |#2| (-6 (-4344 "*"))))) (-2938 (((-550) $) NIL)) (-3895 (((-550) $) NIL)) (-2689 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2828 (((-550) $) NIL)) (-3816 (((-550) $) NIL)) (-2458 (($ (-623 (-623 |#2|))) NIL)) (-3234 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4048 (((-623 (-623 |#2|)) $) NIL)) (-3400 (((-112)) NIL)) (-2685 (((-112)) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2662 (((-3 (-2 (|:| |particular| $) (|:| -2437 (-623 $))) "failed")) NIL (|has| |#2| (-542)))) (-4080 (((-3 $ "failed")) NIL (|has| |#2| (-542)))) (-2116 (((-667 |#2|)) NIL) (((-667 |#2|) (-1227 $)) NIL)) (-3813 ((|#2| $) NIL)) (-2127 (((-667 |#2|) $) NIL) (((-667 |#2|) $ (-1227 $)) NIL)) (-2732 (((-3 $ "failed") $) NIL (|has| |#2| (-542)))) (-3480 (((-1140 (-925 |#2|))) NIL (|has| |#2| (-356)))) (-2834 (($ $ (-894)) NIL)) (-1842 ((|#2| $) NIL)) (-1305 (((-1140 |#2|) $) NIL (|has| |#2| (-542)))) (-4012 ((|#2|) NIL) ((|#2| (-1227 $)) NIL)) (-1603 (((-1140 |#2|) $) NIL)) (-2197 (((-112)) NIL)) (-1825 (((-1126) $) NIL)) (-3528 (((-112)) NIL)) (-2591 (((-112)) NIL)) (-2781 (((-112)) NIL)) (-2031 (((-3 $ "failed") $) NIL (|has| |#2| (-356)))) (-3337 (((-1088) $) NIL)) (-3089 (((-112)) NIL)) (-1495 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-1543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ (-550) (-550) |#2|) NIL) ((|#2| $ (-550) (-550)) 22) ((|#2| $ (-550)) NIL)) (-2393 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-4105 ((|#2| $) NIL)) (-4296 (($ (-623 |#2|)) NIL)) (-1829 (((-112) $) NIL)) (-4195 (((-234 |#1| |#2|) $) NIL)) (-4017 ((|#2| $) NIL (|has| |#2| (-6 (-4344 "*"))))) (-3350 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-1731 (($ $) NIL)) (-1373 (((-667 |#2|) (-1227 $)) NIL) (((-1227 |#2|) $) NIL) (((-667 |#2|) (-1227 $) (-1227 $)) NIL) (((-1227 |#2|) $ (-1227 $)) 25)) (-4028 (($ (-1227 |#2|)) NIL) (((-1227 |#2|) $) NIL)) (-2361 (((-623 (-925 |#2|))) NIL) (((-623 (-925 |#2|)) (-1227 $)) NIL)) (-3292 (($ $ $) NIL)) (-2564 (((-112)) NIL)) (-3615 (((-234 |#1| |#2|) $ (-550)) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#2| (-1011 (-400 (-550))))) (($ |#2|) NIL) (((-667 |#2|) $) NIL)) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) 36)) (-3268 (((-623 (-1227 |#2|))) NIL (|has| |#2| (-542)))) (-3395 (($ $ $ $) NIL)) (-2376 (((-112)) NIL)) (-4292 (($ (-667 |#2|) $) NIL)) (-1675 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1295 (((-112) $) NIL)) (-1358 (($ $ $) NIL)) (-2473 (((-112)) NIL)) (-2286 (((-112)) NIL)) (-2990 (((-112)) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#2| (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-234 |#1| |#2|) $ (-234 |#1| |#2|)) NIL) (((-234 |#1| |#2|) (-234 |#1| |#2|) $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-648 |#1| |#2|) (-13 (-1091 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-595 (-667 |#2|)) (-410 |#2|)) (-894) (-170)) (T -648)) +NIL +(-13 (-1091 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-595 (-667 |#2|)) (-410 |#2|)) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3949 (((-623 (-1103)) $) 10)) (-1518 (((-836) $) 18) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-649) (-13 (-1051) (-10 -8 (-15 -3949 ((-623 (-1103)) $))))) (T -649)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-649))))) +(-13 (-1051) (-10 -8 (-15 -3949 ((-623 (-1103)) $)))) +((-1504 (((-112) $ $) NIL)) (-1540 (((-623 |#1|) $) NIL)) (-2682 (($ $) 52)) (-4118 (((-112) $) NIL)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3333 (((-3 $ "failed") (-797 |#1|)) 23)) (-3514 (((-112) (-797 |#1|)) 15)) (-3437 (($ (-797 |#1|)) 24)) (-4206 (((-112) $ $) 30)) (-3772 (((-894) $) 37)) (-2671 (($ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3338 (((-623 $) (-797 |#1|)) 17)) (-1518 (((-836) $) 43) (($ |#1|) 34) (((-797 |#1|) $) 39) (((-655 |#1|) $) 44)) (-1398 (((-58 (-623 $)) (-623 |#1|) (-894)) 57)) (-1260 (((-623 $) (-623 |#1|) (-894)) 60)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 53)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 38))) +(((-650 |#1|) (-13 (-825) (-1011 |#1|) (-10 -8 (-15 -4118 ((-112) $)) (-15 -2671 ($ $)) (-15 -2682 ($ $)) (-15 -3772 ((-894) $)) (-15 -4206 ((-112) $ $)) (-15 -1518 ((-797 |#1|) $)) (-15 -1518 ((-655 |#1|) $)) (-15 -3338 ((-623 $) (-797 |#1|))) (-15 -3514 ((-112) (-797 |#1|))) (-15 -3437 ($ (-797 |#1|))) (-15 -3333 ((-3 $ "failed") (-797 |#1|))) (-15 -1540 ((-623 |#1|) $)) (-15 -1398 ((-58 (-623 $)) (-623 |#1|) (-894))) (-15 -1260 ((-623 $) (-623 |#1|) (-894))))) (-825)) (T -650)) +((-4118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2671 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) (-2682 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-894)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-4206 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-623 (-650 *4))) (-5 *1 (-650 *4)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-112)) (-5 *1 (-650 *4)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3)))) (-3333 (*1 *1 *2) (|partial| -12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-1398 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-894)) (-4 *5 (-825)) (-5 *2 (-58 (-623 (-650 *5)))) (-5 *1 (-650 *5)))) (-1260 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-894)) (-4 *5 (-825)) (-5 *2 (-623 (-650 *5))) (-5 *1 (-650 *5))))) +(-13 (-825) (-1011 |#1|) (-10 -8 (-15 -4118 ((-112) $)) (-15 -2671 ($ $)) (-15 -2682 ($ $)) (-15 -3772 ((-894) $)) (-15 -4206 ((-112) $ $)) (-15 -1518 ((-797 |#1|) $)) (-15 -1518 ((-655 |#1|) $)) (-15 -3338 ((-623 $) (-797 |#1|))) (-15 -3514 ((-112) (-797 |#1|))) (-15 -3437 ($ (-797 |#1|))) (-15 -3333 ((-3 $ "failed") (-797 |#1|))) (-15 -1540 ((-623 |#1|) $)) (-15 -1398 ((-58 (-623 $)) (-623 |#1|) (-894))) (-15 -1260 ((-623 $) (-623 |#1|) (-894))))) +((-3625 ((|#2| $) 76)) (-4180 (($ $) 96)) (-4047 (((-112) $ (-749)) 26)) (-1308 (($ $) 85) (($ $ (-749)) 88)) (-3815 (((-112) $) 97)) (-2560 (((-623 $) $) 72)) (-2333 (((-112) $ $) 71)) (-1859 (((-112) $ (-749)) 24)) (-3195 (((-550) $) 46)) (-3283 (((-550) $) 45)) (-1573 (((-112) $ (-749)) 22)) (-3312 (((-112) $) 74)) (-3159 ((|#2| $) 89) (($ $ (-749)) 92)) (-2055 (($ $ $ (-550)) 62) (($ |#2| $ (-550)) 61)) (-2325 (((-623 (-550)) $) 44)) (-2400 (((-112) (-550) $) 42)) (-1293 ((|#2| $) NIL) (($ $ (-749)) 84)) (-2272 (($ $ (-550)) 100)) (-2719 (((-112) $) 99)) (-1543 (((-112) (-1 (-112) |#2|) $) 32)) (-2477 (((-623 |#2|) $) 33)) (-2680 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1194 (-550))) 58) ((|#2| $ (-550)) 40) ((|#2| $ (-550) |#2|) 41)) (-2487 (((-550) $ $) 70)) (-1529 (($ $ (-1194 (-550))) 57) (($ $ (-550)) 51)) (-2136 (((-112) $) 66)) (-3635 (($ $) 81)) (-3728 (((-749) $) 80)) (-3786 (($ $) 79)) (-1532 (($ (-623 |#2|)) 37)) (-3380 (($ $) 101)) (-3997 (((-623 $) $) 69)) (-2413 (((-112) $ $) 68)) (-1675 (((-112) (-1 (-112) |#2|) $) 31)) (-2316 (((-112) $ $) 18)) (-3191 (((-749) $) 29))) +(((-651 |#1| |#2|) (-10 -8 (-15 -3380 (|#1| |#1|)) (-15 -2272 (|#1| |#1| (-550))) (-15 -3815 ((-112) |#1|)) (-15 -2719 ((-112) |#1|)) (-15 -2680 (|#2| |#1| (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550))) (-15 -2477 ((-623 |#2|) |#1|)) (-15 -2400 ((-112) (-550) |#1|)) (-15 -2325 ((-623 (-550)) |#1|)) (-15 -3283 ((-550) |#1|)) (-15 -3195 ((-550) |#1|)) (-15 -1532 (|#1| (-623 |#2|))) (-15 -2680 (|#1| |#1| (-1194 (-550)))) (-15 -1529 (|#1| |#1| (-550))) (-15 -1529 (|#1| |#1| (-1194 (-550)))) (-15 -2055 (|#1| |#2| |#1| (-550))) (-15 -2055 (|#1| |#1| |#1| (-550))) (-15 -3635 (|#1| |#1|)) (-15 -3728 ((-749) |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -3159 (|#1| |#1| (-749))) (-15 -2680 (|#2| |#1| "last")) (-15 -3159 (|#2| |#1|)) (-15 -1308 (|#1| |#1| (-749))) (-15 -2680 (|#1| |#1| "rest")) (-15 -1308 (|#1| |#1|)) (-15 -1293 (|#1| |#1| (-749))) (-15 -2680 (|#2| |#1| "first")) (-15 -1293 (|#2| |#1|)) (-15 -2333 ((-112) |#1| |#1|)) (-15 -2413 ((-112) |#1| |#1|)) (-15 -2487 ((-550) |#1| |#1|)) (-15 -2136 ((-112) |#1|)) (-15 -2680 (|#2| |#1| "value")) (-15 -3625 (|#2| |#1|)) (-15 -3312 ((-112) |#1|)) (-15 -2560 ((-623 |#1|) |#1|)) (-15 -3997 ((-623 |#1|) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3191 ((-749) |#1|)) (-15 -4047 ((-112) |#1| (-749))) (-15 -1859 ((-112) |#1| (-749))) (-15 -1573 ((-112) |#1| (-749)))) (-652 |#2|) (-1181)) (T -651)) +NIL +(-10 -8 (-15 -3380 (|#1| |#1|)) (-15 -2272 (|#1| |#1| (-550))) (-15 -3815 ((-112) |#1|)) (-15 -2719 ((-112) |#1|)) (-15 -2680 (|#2| |#1| (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550))) (-15 -2477 ((-623 |#2|) |#1|)) (-15 -2400 ((-112) (-550) |#1|)) (-15 -2325 ((-623 (-550)) |#1|)) (-15 -3283 ((-550) |#1|)) (-15 -3195 ((-550) |#1|)) (-15 -1532 (|#1| (-623 |#2|))) (-15 -2680 (|#1| |#1| (-1194 (-550)))) (-15 -1529 (|#1| |#1| (-550))) (-15 -1529 (|#1| |#1| (-1194 (-550)))) (-15 -2055 (|#1| |#2| |#1| (-550))) (-15 -2055 (|#1| |#1| |#1| (-550))) (-15 -3635 (|#1| |#1|)) (-15 -3728 ((-749) |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -3159 (|#1| |#1| (-749))) (-15 -2680 (|#2| |#1| "last")) (-15 -3159 (|#2| |#1|)) (-15 -1308 (|#1| |#1| (-749))) (-15 -2680 (|#1| |#1| "rest")) (-15 -1308 (|#1| |#1|)) (-15 -1293 (|#1| |#1| (-749))) (-15 -2680 (|#2| |#1| "first")) (-15 -1293 (|#2| |#1|)) (-15 -2333 ((-112) |#1| |#1|)) (-15 -2413 ((-112) |#1| |#1|)) (-15 -2487 ((-550) |#1| |#1|)) (-15 -2136 ((-112) |#1|)) (-15 -2680 (|#2| |#1| "value")) (-15 -3625 (|#2| |#1|)) (-15 -3312 ((-112) |#1|)) (-15 -2560 ((-623 |#1|) |#1|)) (-15 -3997 ((-623 |#1|) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -1543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3191 ((-749) |#1|)) (-15 -4047 ((-112) |#1| (-749))) (-15 -1859 ((-112) |#1| (-749))) (-15 -1573 ((-112) |#1| (-749)))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3625 ((|#1| $) 48)) (-3996 ((|#1| $) 65)) (-4180 (($ $) 67)) (-3029 (((-1232) $ (-550) (-550)) 97 (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) 52 (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) 8)) (-2190 ((|#1| $ |#1|) 39 (|has| $ (-6 -4343)))) (-1431 (($ $ $) 56 (|has| $ (-6 -4343)))) (-1300 ((|#1| $ |#1|) 54 (|has| $ (-6 -4343)))) (-3373 ((|#1| $ |#1|) 58 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4343))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4343))) (($ $ "rest" $) 55 (|has| $ (-6 -4343))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 117 (|has| $ (-6 -4343))) ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) 102)) (-3985 ((|#1| $) 66)) (-3513 (($) 7 T CONST)) (-3696 (($ $) 124)) (-1308 (($ $) 73) (($ $ (-749)) 71)) (-1328 (($ $) 99 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#1| $) 100 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 103)) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3245 ((|#1| $ (-550) |#1|) 85 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 87)) (-3815 (((-112) $) 83)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-3604 (((-749) $) 123)) (-2560 (((-623 $) $) 50)) (-2333 (((-112) $ $) 42 (|has| |#1| (-1068)))) (-2578 (($ (-749) |#1|) 108)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 95 (|has| (-550) (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 94 (|has| (-550) (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1573 (((-112) $ (-749)) 10)) (-2513 (((-623 |#1|) $) 45)) (-3312 (((-112) $) 49)) (-3708 (($ $) 126)) (-3807 (((-112) $) 127)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3159 ((|#1| $) 70) (($ $ (-749)) 68)) (-2055 (($ $ $ (-550)) 116) (($ |#1| $ (-550)) 115)) (-2325 (((-623 (-550)) $) 92)) (-2400 (((-112) (-550) $) 91)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3606 ((|#1| $) 125)) (-1293 ((|#1| $) 76) (($ $ (-749)) 74)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3111 (($ $ |#1|) 96 (|has| $ (-6 -4343)))) (-2272 (($ $ (-550)) 122)) (-2719 (((-112) $) 84)) (-3887 (((-112) $) 128)) (-2818 (((-112) $) 129)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 90)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1194 (-550))) 112) ((|#1| $ (-550)) 89) ((|#1| $ (-550) |#1|) 88)) (-2487 (((-550) $ $) 44)) (-1529 (($ $ (-1194 (-550))) 114) (($ $ (-550)) 113)) (-2136 (((-112) $) 46)) (-3635 (($ $) 62)) (-3472 (($ $) 59 (|has| $ (-6 -4343)))) (-3728 (((-749) $) 63)) (-3786 (($ $) 64)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 98 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 107)) (-3547 (($ $ $) 61 (|has| $ (-6 -4343))) (($ $ |#1|) 60 (|has| $ (-6 -4343)))) (-3227 (($ $ $) 78) (($ |#1| $) 77) (($ (-623 $)) 110) (($ $ |#1|) 109)) (-3380 (($ $) 121)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 51)) (-2413 (((-112) $ $) 43 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-652 |#1|) (-138) (-1181)) (T -652)) +((-3137 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1181)))) (-4253 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1181)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1181)) (-5 *2 (-112)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1181)) (-5 *2 (-112)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1181)) (-5 *2 (-112)))) (-3708 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1181)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1181)))) (-3696 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1181)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1181)) (-5 *2 (-749)))) (-2272 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-652 *3)) (-4 *3 (-1181)))) (-3380 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1181))))) +(-13 (-1117 |t#1|) (-10 -8 (-15 -3137 ($ (-1 (-112) |t#1|) $)) (-15 -4253 ($ (-1 (-112) |t#1|) $)) (-15 -2818 ((-112) $)) (-15 -3887 ((-112) $)) (-15 -3807 ((-112) $)) (-15 -3708 ($ $)) (-15 -3606 (|t#1| $)) (-15 -3696 ($ $)) (-15 -3604 ((-749) $)) (-15 -2272 ($ $ (-550))) (-15 -3380 ($ $)))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-629 |#1|) . T) ((-983 |#1|) . T) ((-1068) |has| |#1| (-1068)) ((-1117 |#1|) . T) ((-1181) . T) ((-1215 |#1|) . T)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3473 (($ (-749) (-749) (-749)) 33 (|has| |#1| (-1020)))) (-4047 (((-112) $ (-749)) NIL)) (-1282 ((|#1| $ (-749) (-749) (-749) |#1|) 27)) (-3513 (($) NIL T CONST)) (-1688 (($ $ $) 37 (|has| |#1| (-1020)))) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2929 (((-1227 (-749)) $) 9)) (-4233 (($ (-1144) $ $) 22)) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-1817 (($ (-749)) 35 (|has| |#1| (-1020)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-749) (-749) (-749)) 25)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-1532 (($ (-623 (-623 (-623 |#1|)))) 44)) (-1518 (($ (-931 (-931 (-931 |#1|)))) 15) (((-931 (-931 (-931 |#1|))) $) 12) (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-653 |#1|) (-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1020)) (PROGN (-15 -3473 ($ (-749) (-749) (-749))) (-15 -1817 ($ (-749))) (-15 -1688 ($ $ $))) |%noBranch|) (-15 -1532 ($ (-623 (-623 (-623 |#1|))))) (-15 -2680 (|#1| $ (-749) (-749) (-749))) (-15 -1282 (|#1| $ (-749) (-749) (-749) |#1|)) (-15 -1518 ($ (-931 (-931 (-931 |#1|))))) (-15 -1518 ((-931 (-931 (-931 |#1|))) $)) (-15 -4233 ($ (-1144) $ $)) (-15 -2929 ((-1227 (-749)) $)))) (-1068)) (T -653)) +((-3473 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1020)) (-4 *3 (-1068)))) (-1817 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1020)) (-4 *3 (-1068)))) (-1688 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1020)) (-4 *2 (-1068)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-623 *3)))) (-4 *3 (-1068)) (-5 *1 (-653 *3)))) (-2680 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1068)))) (-1282 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1068)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-931 (-931 (-931 *3)))) (-4 *3 (-1068)) (-5 *1 (-653 *3)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-931 (-931 (-931 *3)))) (-5 *1 (-653 *3)) (-4 *3 (-1068)))) (-4233 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-653 *3)) (-4 *3 (-1068)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1227 (-749))) (-5 *1 (-653 *3)) (-4 *3 (-1068))))) +(-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1020)) (PROGN (-15 -3473 ($ (-749) (-749) (-749))) (-15 -1817 ($ (-749))) (-15 -1688 ($ $ $))) |%noBranch|) (-15 -1532 ($ (-623 (-623 (-623 |#1|))))) (-15 -2680 (|#1| $ (-749) (-749) (-749))) (-15 -1282 (|#1| $ (-749) (-749) (-749) |#1|)) (-15 -1518 ($ (-931 (-931 (-931 |#1|))))) (-15 -1518 ((-931 (-931 (-931 |#1|))) $)) (-15 -4233 ($ (-1144) $ $)) (-15 -2929 ((-1227 (-749)) $)))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-2026 (((-475) $) 10)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 21) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-1103) $) 12)) (-2316 (((-112) $ $) NIL))) +(((-654) (-13 (-1051) (-10 -8 (-15 -2026 ((-475) $)) (-15 -1925 ((-1103) $))))) (T -654)) +((-2026 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-654)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-654))))) +(-13 (-1051) (-10 -8 (-15 -2026 ((-475) $)) (-15 -1925 ((-1103) $)))) +((-1504 (((-112) $ $) NIL)) (-1540 (((-623 |#1|) $) 14)) (-2682 (($ $) 18)) (-4118 (((-112) $) 19)) (-3880 (((-3 |#1| "failed") $) 22)) (-2726 ((|#1| $) 20)) (-1308 (($ $) 36)) (-1522 (($ $) 24)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-4206 (((-112) $ $) 42)) (-3772 (((-894) $) 38)) (-2671 (($ $) 17)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 ((|#1| $) 35)) (-1518 (((-836) $) 31) (($ |#1|) 23) (((-797 |#1|) $) 27)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 12)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 40)) (* (($ $ $) 34))) +(((-655 |#1|) (-13 (-825) (-1011 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1518 ((-797 |#1|) $)) (-15 -1293 (|#1| $)) (-15 -2671 ($ $)) (-15 -3772 ((-894) $)) (-15 -4206 ((-112) $ $)) (-15 -1522 ($ $)) (-15 -1308 ($ $)) (-15 -4118 ((-112) $)) (-15 -2682 ($ $)) (-15 -1540 ((-623 |#1|) $)))) (-825)) (T -655)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-1293 (*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-2671 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-894)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-4206 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-1522 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-1308 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-2682 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825))))) +(-13 (-825) (-1011 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1518 ((-797 |#1|) $)) (-15 -1293 (|#1| $)) (-15 -2671 ($ $)) (-15 -3772 ((-894) $)) (-15 -4206 ((-112) $ $)) (-15 -1522 ($ $)) (-15 -1308 ($ $)) (-15 -4118 ((-112) $)) (-15 -2682 ($ $)) (-15 -1540 ((-623 |#1|) $)))) +((-3936 ((|#1| (-1 |#1| (-749) |#1|) (-749) |#1|) 11)) (-1735 ((|#1| (-1 |#1| |#1|) (-749) |#1|) 9))) +(((-656 |#1|) (-10 -7 (-15 -1735 (|#1| (-1 |#1| |#1|) (-749) |#1|)) (-15 -3936 (|#1| (-1 |#1| (-749) |#1|) (-749) |#1|))) (-1068)) (T -656)) +((-3936 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-749) *2)) (-5 *4 (-749)) (-4 *2 (-1068)) (-5 *1 (-656 *2)))) (-1735 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-749)) (-4 *2 (-1068)) (-5 *1 (-656 *2))))) +(-10 -7 (-15 -1735 (|#1| (-1 |#1| |#1|) (-749) |#1|)) (-15 -3936 (|#1| (-1 |#1| (-749) |#1|) (-749) |#1|))) +((-3627 ((|#2| |#1| |#2|) 9)) (-3616 ((|#1| |#1| |#2|) 8))) +(((-657 |#1| |#2|) (-10 -7 (-15 -3616 (|#1| |#1| |#2|)) (-15 -3627 (|#2| |#1| |#2|))) (-1068) (-1068)) (T -657)) +((-3627 (*1 *2 *3 *2) (-12 (-5 *1 (-657 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *1 (-657 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068))))) +(-10 -7 (-15 -3616 (|#1| |#1| |#2|)) (-15 -3627 (|#2| |#1| |#2|))) +((-3179 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -3179 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1068) (-1068) (-1068)) (T -658)) +((-3179 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)) (-5 *1 (-658 *5 *6 *2))))) +(-10 -7 (-15 -3179 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-1504 (((-112) $ $) NIL)) (-1551 (((-1180) $) 20)) (-1486 (((-623 (-1180)) $) 18)) (-1702 (($ (-623 (-1180)) (-1180)) 13)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 29) (((-1149) $) NIL) (($ (-1149)) NIL) (((-1180) $) 21) (($ (-1086)) 10)) (-2316 (((-112) $ $) NIL))) +(((-659) (-13 (-1051) (-595 (-1180)) (-10 -8 (-15 -1518 ($ (-1086))) (-15 -1702 ($ (-623 (-1180)) (-1180))) (-15 -1486 ((-623 (-1180)) $)) (-15 -1551 ((-1180) $))))) (T -659)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-659)))) (-1702 (*1 *1 *2 *3) (-12 (-5 *2 (-623 (-1180))) (-5 *3 (-1180)) (-5 *1 (-659)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-659)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-659))))) +(-13 (-1051) (-595 (-1180)) (-10 -8 (-15 -1518 ($ (-1086))) (-15 -1702 ($ (-623 (-1180)) (-1180))) (-15 -1486 ((-623 (-1180)) $)) (-15 -1551 ((-1180) $)))) +((-3936 (((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)) 23)) (-4221 (((-1 |#1|) |#1|) 8)) (-2551 ((|#1| |#1|) 16)) (-3351 (((-623 |#1|) (-1 (-623 |#1|) (-623 |#1|)) (-550)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1518 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-749)) 20))) +(((-660 |#1|) (-10 -7 (-15 -4221 ((-1 |#1|) |#1|)) (-15 -1518 ((-1 |#1|) |#1|)) (-15 -3351 (|#1| (-1 |#1| |#1|))) (-15 -3351 ((-623 |#1|) (-1 (-623 |#1|) (-623 |#1|)) (-550))) (-15 -2551 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-749))) (-15 -3936 ((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)))) (-1068)) (T -660)) +((-3936 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-749) *3)) (-4 *3 (-1068)) (-5 *1 (-660 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *4 (-1068)) (-5 *1 (-660 *4)))) (-2551 (*1 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1068)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-623 *5) (-623 *5))) (-5 *4 (-550)) (-5 *2 (-623 *5)) (-5 *1 (-660 *5)) (-4 *5 (-1068)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-660 *2)) (-4 *2 (-1068)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1068)))) (-4221 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1068))))) +(-10 -7 (-15 -4221 ((-1 |#1|) |#1|)) (-15 -1518 ((-1 |#1|) |#1|)) (-15 -3351 (|#1| (-1 |#1| |#1|))) (-15 -3351 ((-623 |#1|) (-1 (-623 |#1|) (-623 |#1|)) (-550))) (-15 -2551 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-749))) (-15 -3936 ((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)))) +((-1745 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1593 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2258 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1441 (((-1 |#2| |#1|) |#2|) 11))) +(((-661 |#1| |#2|) (-10 -7 (-15 -1441 ((-1 |#2| |#1|) |#2|)) (-15 -1593 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2258 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1745 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1068) (-1068)) (T -661)) +((-1745 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1068)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)) (-4 *4 (-1068)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-5 *2 (-1 *5)) (-5 *1 (-661 *4 *5)))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-661 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-1068))))) +(-10 -7 (-15 -1441 ((-1 |#2| |#1|) |#2|)) (-15 -1593 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2258 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1745 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-1965 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1375 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1523 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1668 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1824 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -1375 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1523 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1668 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1824 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1965 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1068) (-1068) (-1068)) (T -662)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-1 *7 *5)) (-5 *1 (-662 *5 *6 *7)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-662 *4 *5 *6)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *4 (-1068)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *5 (-1068)))) (-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *4 *5 *6)))) (-1375 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1068)) (-4 *4 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *4 *6))))) +(-10 -7 (-15 -1375 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1523 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1668 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1824 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1965 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2419 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3972 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-663 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3972 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3972 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2419 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1020) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|) (-1020) (-366 |#5|) (-366 |#5|) (-665 |#5| |#6| |#7|)) (T -663)) +((-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1020)) (-4 *2 (-1020)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *8 (-366 *2)) (-4 *9 (-366 *2)) (-5 *1 (-663 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-665 *5 *6 *7)) (-4 *10 (-665 *2 *8 *9)))) (-3972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1020)) (-4 *8 (-1020)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-665 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-665 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1020)) (-4 *8 (-1020)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-665 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-665 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8))))) +(-10 -7 (-15 -3972 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3972 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2419 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2584 (($ (-749) (-749)) 33)) (-3152 (($ $ $) 56)) (-2633 (($ |#3|) 52) (($ $) 53)) (-1294 (((-112) $) 28)) (-4229 (($ $ (-550) (-550)) 58)) (-4090 (($ $ (-550) (-550)) 59)) (-3958 (($ $ (-550) (-550) (-550) (-550)) 63)) (-3410 (($ $) 54)) (-3483 (((-112) $) 14)) (-3839 (($ $ (-550) (-550) $) 64)) (-1705 ((|#2| $ (-550) (-550) |#2|) NIL) (($ $ (-623 (-550)) (-623 (-550)) $) 62)) (-1333 (($ (-749) |#2|) 39)) (-2458 (($ (-623 (-623 |#2|))) 37)) (-4048 (((-623 (-623 |#2|)) $) 57)) (-3278 (($ $ $) 55)) (-1495 (((-3 $ "failed") $ |#2|) 91)) (-2680 ((|#2| $ (-550) (-550)) NIL) ((|#2| $ (-550) (-550) |#2|) NIL) (($ $ (-623 (-550)) (-623 (-550))) 61)) (-4296 (($ (-623 |#2|)) 40) (($ (-623 $)) 42)) (-1829 (((-112) $) 24)) (-1518 (($ |#4|) 47) (((-836) $) NIL)) (-1295 (((-112) $) 30)) (-2414 (($ $ |#2|) 93)) (-2403 (($ $ $) 68) (($ $) 71)) (-2391 (($ $ $) 66)) (** (($ $ (-749)) 80) (($ $ (-550)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-550) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-664 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1518 ((-836) |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2414 (|#1| |#1| |#2|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| (-550) (-550) |#1|)) (-15 -3958 (|#1| |#1| (-550) (-550) (-550) (-550))) (-15 -4090 (|#1| |#1| (-550) (-550))) (-15 -4229 (|#1| |#1| (-550) (-550))) (-15 -1705 (|#1| |#1| (-623 (-550)) (-623 (-550)) |#1|)) (-15 -2680 (|#1| |#1| (-623 (-550)) (-623 (-550)))) (-15 -4048 ((-623 (-623 |#2|)) |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -2633 (|#1| |#1|)) (-15 -2633 (|#1| |#3|)) (-15 -1518 (|#1| |#4|)) (-15 -4296 (|#1| (-623 |#1|))) (-15 -4296 (|#1| (-623 |#2|))) (-15 -1333 (|#1| (-749) |#2|)) (-15 -2458 (|#1| (-623 (-623 |#2|)))) (-15 -2584 (|#1| (-749) (-749))) (-15 -1295 ((-112) |#1|)) (-15 -1294 ((-112) |#1|)) (-15 -1829 ((-112) |#1|)) (-15 -3483 ((-112) |#1|)) (-15 -1705 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550) (-550)))) (-665 |#2| |#3| |#4|) (-1020) (-366 |#2|) (-366 |#2|)) (T -664)) +NIL +(-10 -8 (-15 -1518 ((-836) |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2414 (|#1| |#1| |#2|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| (-550) (-550) |#1|)) (-15 -3958 (|#1| |#1| (-550) (-550) (-550) (-550))) (-15 -4090 (|#1| |#1| (-550) (-550))) (-15 -4229 (|#1| |#1| (-550) (-550))) (-15 -1705 (|#1| |#1| (-623 (-550)) (-623 (-550)) |#1|)) (-15 -2680 (|#1| |#1| (-623 (-550)) (-623 (-550)))) (-15 -4048 ((-623 (-623 |#2|)) |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -2633 (|#1| |#1|)) (-15 -2633 (|#1| |#3|)) (-15 -1518 (|#1| |#4|)) (-15 -4296 (|#1| (-623 |#1|))) (-15 -4296 (|#1| (-623 |#2|))) (-15 -1333 (|#1| (-749) |#2|)) (-15 -2458 (|#1| (-623 (-623 |#2|)))) (-15 -2584 (|#1| (-749) (-749))) (-15 -1295 ((-112) |#1|)) (-15 -1294 ((-112) |#1|)) (-15 -1829 ((-112) |#1|)) (-15 -3483 ((-112) |#1|)) (-15 -1705 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550) (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550) (-550)))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-2584 (($ (-749) (-749)) 97)) (-3152 (($ $ $) 87)) (-2633 (($ |#2|) 91) (($ $) 90)) (-1294 (((-112) $) 99)) (-4229 (($ $ (-550) (-550)) 83)) (-4090 (($ $ (-550) (-550)) 82)) (-3958 (($ $ (-550) (-550) (-550) (-550)) 81)) (-3410 (($ $) 89)) (-3483 (((-112) $) 101)) (-4047 (((-112) $ (-749)) 8)) (-3839 (($ $ (-550) (-550) $) 80)) (-1705 ((|#1| $ (-550) (-550) |#1|) 44) (($ $ (-623 (-550)) (-623 (-550)) $) 84)) (-1396 (($ $ (-550) |#2|) 42)) (-3693 (($ $ (-550) |#3|) 41)) (-1333 (($ (-749) |#1|) 95)) (-3513 (($) 7 T CONST)) (-3707 (($ $) 67 (|has| |#1| (-300)))) (-3719 ((|#2| $ (-550)) 46)) (-2122 (((-749) $) 66 (|has| |#1| (-542)))) (-3245 ((|#1| $ (-550) (-550) |#1|) 43)) (-3181 ((|#1| $ (-550) (-550)) 48)) (-3450 (((-623 |#1|) $) 30)) (-3613 (((-749) $) 65 (|has| |#1| (-542)))) (-3525 (((-623 |#3|) $) 64 (|has| |#1| (-542)))) (-2115 (((-749) $) 51)) (-2578 (($ (-749) (-749) |#1|) 57)) (-2124 (((-749) $) 50)) (-1859 (((-112) $ (-749)) 9)) (-3928 ((|#1| $) 62 (|has| |#1| (-6 (-4344 "*"))))) (-2938 (((-550) $) 55)) (-3895 (((-550) $) 53)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-2828 (((-550) $) 54)) (-3816 (((-550) $) 52)) (-2458 (($ (-623 (-623 |#1|))) 96)) (-3234 (($ (-1 |#1| |#1|) $) 34)) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4048 (((-623 (-623 |#1|)) $) 86)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-2031 (((-3 $ "failed") $) 61 (|has| |#1| (-356)))) (-3278 (($ $ $) 88)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3111 (($ $ |#1|) 56)) (-1495 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-542)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ (-550) (-550)) 49) ((|#1| $ (-550) (-550) |#1|) 47) (($ $ (-623 (-550)) (-623 (-550))) 85)) (-4296 (($ (-623 |#1|)) 94) (($ (-623 $)) 93)) (-1829 (((-112) $) 100)) (-4017 ((|#1| $) 63 (|has| |#1| (-6 (-4344 "*"))))) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-3615 ((|#3| $ (-550)) 45)) (-1518 (($ |#3|) 92) (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-1295 (((-112) $) 98)) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-2414 (($ $ |#1|) 68 (|has| |#1| (-356)))) (-2403 (($ $ $) 78) (($ $) 77)) (-2391 (($ $ $) 79)) (** (($ $ (-749)) 70) (($ $ (-550)) 60 (|has| |#1| (-356)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-550) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-665 |#1| |#2| |#3|) (-138) (-1020) (-366 |t#1|) (-366 |t#1|)) (T -665)) +((-3483 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-1829 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-1294 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-1295 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-2584 (*1 *1 *2 *2) (-12 (-5 *2 (-749)) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1333 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1518 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *2)) (-4 *4 (-366 *3)) (-4 *2 (-366 *3)))) (-2633 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-4 *1 (-665 *3 *2 *4)) (-4 *2 (-366 *3)) (-4 *4 (-366 *3)))) (-2633 (*1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3410 (*1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3278 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3152 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-623 (-623 *3))))) (-2680 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-623 (-550))) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1705 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-623 (-550))) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-4229 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-4090 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3958 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3839 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2391 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2403 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2403 (*1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-665 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *2 (-366 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-665 *3 *2 *4)) (-4 *3 (-1020)) (-4 *2 (-366 *3)) (-4 *4 (-366 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1495 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-542)))) (-2414 (*1 *1 *1 *2) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) (-3707 (*1 *1 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-300)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-749)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-749)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-623 *5)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (|has| *2 (-6 (-4344 "*"))) (-4 *2 (-1020)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (|has| *2 (-6 (-4344 "*"))) (-4 *2 (-1020)))) (-2031 (*1 *1 *1) (|partial| -12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-356))))) +(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4343) (-6 -4342) (-15 -3483 ((-112) $)) (-15 -1829 ((-112) $)) (-15 -1294 ((-112) $)) (-15 -1295 ((-112) $)) (-15 -2584 ($ (-749) (-749))) (-15 -2458 ($ (-623 (-623 |t#1|)))) (-15 -1333 ($ (-749) |t#1|)) (-15 -4296 ($ (-623 |t#1|))) (-15 -4296 ($ (-623 $))) (-15 -1518 ($ |t#3|)) (-15 -2633 ($ |t#2|)) (-15 -2633 ($ $)) (-15 -3410 ($ $)) (-15 -3278 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -4048 ((-623 (-623 |t#1|)) $)) (-15 -2680 ($ $ (-623 (-550)) (-623 (-550)))) (-15 -1705 ($ $ (-623 (-550)) (-623 (-550)) $)) (-15 -4229 ($ $ (-550) (-550))) (-15 -4090 ($ $ (-550) (-550))) (-15 -3958 ($ $ (-550) (-550) (-550) (-550))) (-15 -3839 ($ $ (-550) (-550) $)) (-15 -2391 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2403 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-550) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-749))) (IF (|has| |t#1| (-542)) (-15 -1495 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -2414 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-300)) (-15 -3707 ($ $)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -2122 ((-749) $)) (-15 -3613 ((-749) $)) (-15 -3525 ((-623 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4344 "*"))) (PROGN (-15 -4017 (|t#1| $)) (-15 -3928 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -2031 ((-3 $ "failed") $)) (-15 ** ($ $ (-550)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-56 |#1| |#2| |#3|) . T) ((-1181) . T)) +((-3707 ((|#4| |#4|) 72 (|has| |#1| (-300)))) (-2122 (((-749) |#4|) 99 (|has| |#1| (-542)))) (-3613 (((-749) |#4|) 76 (|has| |#1| (-542)))) (-3525 (((-623 |#3|) |#4|) 83 (|has| |#1| (-542)))) (-2310 (((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|) 111 (|has| |#1| (-300)))) (-3928 ((|#1| |#4|) 35)) (-2795 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-542)))) (-2031 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-356)))) (-2693 ((|#4| |#4|) 68 (|has| |#1| (-542)))) (-3667 ((|#4| |#4| |#1| (-550) (-550)) 43)) (-3539 ((|#4| |#4| (-550) (-550)) 38)) (-2599 ((|#4| |#4| |#1| (-550) (-550)) 48)) (-4017 ((|#1| |#4|) 78)) (-4067 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-542))))) +(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4017 (|#1| |#4|)) (-15 -3928 (|#1| |#4|)) (-15 -3539 (|#4| |#4| (-550) (-550))) (-15 -3667 (|#4| |#4| |#1| (-550) (-550))) (-15 -2599 (|#4| |#4| |#1| (-550) (-550))) (IF (|has| |#1| (-542)) (PROGN (-15 -2122 ((-749) |#4|)) (-15 -3613 ((-749) |#4|)) (-15 -3525 ((-623 |#3|) |#4|)) (-15 -2693 (|#4| |#4|)) (-15 -2795 ((-3 |#4| "failed") |#4|)) (-15 -4067 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3707 (|#4| |#4|)) (-15 -2310 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -2031 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|)) (T -666)) +((-2031 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-2310 (*1 *2 *3 *3) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-666 *3 *4 *5 *6)) (-4 *6 (-665 *3 *4 *5)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-4067 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-2795 (*1 *2 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-2693 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-3525 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-623 *6)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-2122 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-2599 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-550)) (-4 *3 (-170)) (-4 *5 (-366 *3)) (-4 *6 (-366 *3)) (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-665 *3 *5 *6)))) (-3667 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-550)) (-4 *3 (-170)) (-4 *5 (-366 *3)) (-4 *6 (-366 *3)) (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-665 *3 *5 *6)))) (-3539 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *1 (-666 *4 *5 *6 *2)) (-4 *2 (-665 *4 *5 *6)))) (-3928 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) (-4017 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5))))) +(-10 -7 (-15 -4017 (|#1| |#4|)) (-15 -3928 (|#1| |#4|)) (-15 -3539 (|#4| |#4| (-550) (-550))) (-15 -3667 (|#4| |#4| |#1| (-550) (-550))) (-15 -2599 (|#4| |#4| |#1| (-550) (-550))) (IF (|has| |#1| (-542)) (PROGN (-15 -2122 ((-749) |#4|)) (-15 -3613 ((-749) |#4|)) (-15 -3525 ((-623 |#3|) |#4|)) (-15 -2693 (|#4| |#4|)) (-15 -2795 ((-3 |#4| "failed") |#4|)) (-15 -4067 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3707 (|#4| |#4|)) (-15 -2310 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -2031 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2584 (($ (-749) (-749)) 47)) (-3152 (($ $ $) NIL)) (-2633 (($ (-1227 |#1|)) NIL) (($ $) NIL)) (-1294 (((-112) $) NIL)) (-4229 (($ $ (-550) (-550)) 12)) (-4090 (($ $ (-550) (-550)) NIL)) (-3958 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-3410 (($ $) NIL)) (-3483 (((-112) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-3839 (($ $ (-550) (-550) $) NIL)) (-1705 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550)) $) NIL)) (-1396 (($ $ (-550) (-1227 |#1|)) NIL)) (-3693 (($ $ (-550) (-1227 |#1|)) NIL)) (-1333 (($ (-749) |#1|) 22)) (-3513 (($) NIL T CONST)) (-3707 (($ $) 31 (|has| |#1| (-300)))) (-3719 (((-1227 |#1|) $ (-550)) NIL)) (-2122 (((-749) $) 33 (|has| |#1| (-542)))) (-3245 ((|#1| $ (-550) (-550) |#1|) 51)) (-3181 ((|#1| $ (-550) (-550)) NIL)) (-3450 (((-623 |#1|) $) NIL)) (-3613 (((-749) $) 35 (|has| |#1| (-542)))) (-3525 (((-623 (-1227 |#1|)) $) 38 (|has| |#1| (-542)))) (-2115 (((-749) $) 20)) (-2578 (($ (-749) (-749) |#1|) 16)) (-2124 (((-749) $) 21)) (-1859 (((-112) $ (-749)) NIL)) (-3928 ((|#1| $) 29 (|has| |#1| (-6 (-4344 "*"))))) (-2938 (((-550) $) 9)) (-3895 (((-550) $) 10)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2828 (((-550) $) 11)) (-3816 (((-550) $) 48)) (-2458 (($ (-623 (-623 |#1|))) NIL)) (-3234 (($ (-1 |#1| |#1|) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4048 (((-623 (-623 |#1|)) $) 60)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2031 (((-3 $ "failed") $) 45 (|has| |#1| (-356)))) (-3278 (($ $ $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3111 (($ $ |#1|) NIL)) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-623 (-550)) (-623 (-550))) NIL)) (-4296 (($ (-623 |#1|)) NIL) (($ (-623 $)) NIL) (($ (-1227 |#1|)) 52)) (-1829 (((-112) $) NIL)) (-4017 ((|#1| $) 27 (|has| |#1| (-6 (-4344 "*"))))) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-4028 (((-526) $) 64 (|has| |#1| (-596 (-526))))) (-3615 (((-1227 |#1|) $ (-550)) NIL)) (-1518 (($ (-1227 |#1|)) NIL) (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-1295 (((-112) $) NIL)) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $ $) NIL) (($ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) 23) (($ $ (-550)) 46 (|has| |#1| (-356)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-1227 |#1|) $ (-1227 |#1|)) NIL) (((-1227 |#1|) (-1227 |#1|) $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-667 |#1|) (-13 (-665 |#1| (-1227 |#1|) (-1227 |#1|)) (-10 -8 (-15 -4296 ($ (-1227 |#1|))) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -2031 ((-3 $ "failed") $)) |%noBranch|))) (-1020)) (T -667)) +((-2031 (*1 *1 *1) (|partial| -12 (-5 *1 (-667 *2)) (-4 *2 (-356)) (-4 *2 (-1020)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-1020)) (-5 *1 (-667 *3))))) +(-13 (-665 |#1| (-1227 |#1|) (-1227 |#1|)) (-10 -8 (-15 -4296 ($ (-1227 |#1|))) (IF (|has| |#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -2031 ((-3 $ "failed") $)) |%noBranch|))) +((-2294 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 25)) (-2207 (((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|) 21)) (-2385 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749)) 26)) (-3001 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 14)) (-3099 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 18) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 16)) (-2114 (((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|)) 20)) (-2900 (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 12)) (** (((-667 |#1|) (-667 |#1|) (-749)) 30))) +(((-668 |#1|) (-10 -7 (-15 -2900 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3001 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3099 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3099 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2114 ((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|))) (-15 -2207 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2294 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2385 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749))) (-15 ** ((-667 |#1|) (-667 |#1|) (-749)))) (-1020)) (T -668)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1020)) (-5 *1 (-668 *4)))) (-2385 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1020)) (-5 *1 (-668 *4)))) (-2294 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3)))) (-2207 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3)))) (-2114 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3)))) (-3099 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3)))) (-3099 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3)))) (-3001 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3)))) (-2900 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3))))) +(-10 -7 (-15 -2900 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3001 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3099 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3099 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2114 ((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|))) (-15 -2207 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2294 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2385 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749))) (-15 ** ((-667 |#1|) (-667 |#1|) (-749)))) +((-3544 (($) 8 T CONST)) (-1518 (((-836) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2615 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3544)) 16)) (-1771 ((|#1| $) 11))) +(((-669 |#1|) (-13 (-1222) (-595 (-836)) (-10 -8 (-15 -2615 ((-112) $ (|[\|\|]| |#1|))) (-15 -2615 ((-112) $ (|[\|\|]| -3544))) (-15 -1518 ($ |#1|)) (-15 -1518 (|#1| $)) (-15 -1771 (|#1| $)) (-15 -3544 ($) -2258))) (-595 (-836))) (T -669)) +((-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-595 (-836))) (-5 *2 (-112)) (-5 *1 (-669 *4)))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3544)) (-5 *2 (-112)) (-5 *1 (-669 *4)) (-4 *4 (-595 (-836))))) (-1518 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-836))))) (-1518 (*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-836))))) (-1771 (*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-836))))) (-3544 (*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-836)))))) +(-13 (-1222) (-595 (-836)) (-10 -8 (-15 -2615 ((-112) $ (|[\|\|]| |#1|))) (-15 -2615 ((-112) $ (|[\|\|]| -3544))) (-15 -1518 ($ |#1|)) (-15 -1518 (|#1| $)) (-15 -1771 (|#1| $)) (-15 -3544 ($) -2258))) +((-1488 ((|#2| |#2| |#4|) 25)) (-1855 (((-667 |#2|) |#3| |#4|) 31)) (-1616 (((-667 |#2|) |#2| |#4|) 30)) (-2483 (((-1227 |#2|) |#2| |#4|) 16)) (-1370 ((|#2| |#3| |#4|) 24)) (-1971 (((-667 |#2|) |#3| |#4| (-749) (-749)) 38)) (-1743 (((-667 |#2|) |#2| |#4| (-749)) 37))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2483 ((-1227 |#2|) |#2| |#4|)) (-15 -1370 (|#2| |#3| |#4|)) (-15 -1488 (|#2| |#2| |#4|)) (-15 -1616 ((-667 |#2|) |#2| |#4|)) (-15 -1743 ((-667 |#2|) |#2| |#4| (-749))) (-15 -1855 ((-667 |#2|) |#3| |#4|)) (-15 -1971 ((-667 |#2|) |#3| |#4| (-749) (-749)))) (-1068) (-873 |#1|) (-366 |#2|) (-13 (-366 |#1|) (-10 -7 (-6 -4342)))) (T -670)) +((-1971 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-749)) (-4 *6 (-1068)) (-4 *7 (-873 *6)) (-5 *2 (-667 *7)) (-5 *1 (-670 *6 *7 *3 *4)) (-4 *3 (-366 *7)) (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4342)))))) (-1855 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-4 *6 (-873 *5)) (-5 *2 (-667 *6)) (-5 *1 (-670 *5 *6 *3 *4)) (-4 *3 (-366 *6)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4342)))))) (-1743 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-1068)) (-4 *3 (-873 *6)) (-5 *2 (-667 *3)) (-5 *1 (-670 *6 *3 *7 *4)) (-4 *7 (-366 *3)) (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4342)))))) (-1616 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-4 *3 (-873 *5)) (-5 *2 (-667 *3)) (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-366 *3)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4342)))))) (-1488 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-873 *4)) (-5 *1 (-670 *4 *2 *5 *3)) (-4 *5 (-366 *2)) (-4 *3 (-13 (-366 *4) (-10 -7 (-6 -4342)))))) (-1370 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-4 *2 (-873 *5)) (-5 *1 (-670 *5 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4342)))))) (-2483 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-4 *3 (-873 *5)) (-5 *2 (-1227 *3)) (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-366 *3)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4342))))))) +(-10 -7 (-15 -2483 ((-1227 |#2|) |#2| |#4|)) (-15 -1370 (|#2| |#3| |#4|)) (-15 -1488 (|#2| |#2| |#4|)) (-15 -1616 ((-667 |#2|) |#2| |#4|)) (-15 -1743 ((-667 |#2|) |#2| |#4| (-749))) (-15 -1855 ((-667 |#2|) |#3| |#4|)) (-15 -1971 ((-667 |#2|) |#3| |#4| (-749) (-749)))) +((-2346 (((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)) 20)) (-2156 ((|#1| (-667 |#2|)) 9)) (-2249 (((-667 |#1|) (-667 |#2|)) 18))) +(((-671 |#1| |#2|) (-10 -7 (-15 -2156 (|#1| (-667 |#2|))) (-15 -2249 ((-667 |#1|) (-667 |#2|))) (-15 -2346 ((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)))) (-542) (-965 |#1|)) (T -671)) +((-2346 (*1 *2 *3) (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |num| (-667 *4)) (|:| |den| *4))) (-5 *1 (-671 *4 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-542)) (-5 *2 (-667 *4)) (-5 *1 (-671 *4 *5)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-667 *4)) (-4 *4 (-965 *2)) (-4 *2 (-542)) (-5 *1 (-671 *2 *4))))) +(-10 -7 (-15 -2156 (|#1| (-667 |#2|))) (-15 -2249 ((-667 |#1|) (-667 |#2|))) (-15 -2346 ((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-1615 (((-667 (-677))) NIL) (((-667 (-677)) (-1227 $)) NIL)) (-2252 (((-677) $) NIL)) (-3123 (($ $) NIL (|has| (-677) (-1166)))) (-3005 (($ $) NIL (|has| (-677) (-1166)))) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| (-677) (-342)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-882))))) (-1505 (($ $) NIL (-1561 (-12 (|has| (-677) (-300)) (|has| (-677) (-882))) (|has| (-677) (-356))))) (-3564 (((-411 $) $) NIL (-1561 (-12 (|has| (-677) (-300)) (|has| (-677) (-882))) (|has| (-677) (-356))))) (-3353 (($ $) NIL (-12 (|has| (-677) (-975)) (|has| (-677) (-1166))))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-882))))) (-3631 (((-112) $ $) NIL (|has| (-677) (-300)))) (-4319 (((-749)) NIL (|has| (-677) (-361)))) (-3103 (($ $) NIL (|has| (-677) (-1166)))) (-2984 (($ $) NIL (|has| (-677) (-1166)))) (-3146 (($ $) NIL (|has| (-677) (-1166)))) (-3025 (($ $) NIL (|has| (-677) (-1166)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-677) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-677) (-1011 (-400 (-550)))))) (-2726 (((-550) $) NIL) (((-677) $) NIL) (((-400 (-550)) $) NIL (|has| (-677) (-1011 (-400 (-550)))))) (-4110 (($ (-1227 (-677))) NIL) (($ (-1227 (-677)) (-1227 $)) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-677) (-342)))) (-3349 (($ $ $) NIL (|has| (-677) (-300)))) (-2677 (((-667 (-677)) $) NIL) (((-667 (-677)) $ (-1227 $)) NIL)) (-3780 (((-667 (-677)) (-667 $)) NIL) (((-2 (|:| -1340 (-667 (-677))) (|:| |vec| (-1227 (-677)))) (-667 $) (-1227 $)) NIL) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-677) (-619 (-550)))) (((-667 (-550)) (-667 $)) NIL (|has| (-677) (-619 (-550))))) (-2419 (((-3 $ "failed") (-400 (-1140 (-677)))) NIL (|has| (-677) (-356))) (($ (-1140 (-677))) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3365 (((-677) $) 29)) (-3207 (((-3 (-400 (-550)) "failed") $) NIL (|has| (-677) (-535)))) (-3122 (((-112) $) NIL (|has| (-677) (-535)))) (-3042 (((-400 (-550)) $) NIL (|has| (-677) (-535)))) (-2122 (((-894)) NIL)) (-1741 (($) NIL (|has| (-677) (-361)))) (-1519 (($ $ $) NIL (|has| (-677) (-300)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| (-677) (-300)))) (-3485 (($) NIL (|has| (-677) (-342)))) (-3697 (((-112) $) NIL (|has| (-677) (-342)))) (-3714 (($ $) NIL (|has| (-677) (-342))) (($ $ (-749)) NIL (|has| (-677) (-342)))) (-3933 (((-112) $) NIL (-1561 (-12 (|has| (-677) (-300)) (|has| (-677) (-882))) (|has| (-677) (-356))))) (-3953 (((-2 (|:| |r| (-677)) (|:| |phi| (-677))) $) NIL (-12 (|has| (-677) (-1029)) (|has| (-677) (-1166))))) (-2734 (($) NIL (|has| (-677) (-1166)))) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| (-677) (-859 (-372)))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| (-677) (-859 (-550))))) (-2475 (((-811 (-894)) $) NIL (|has| (-677) (-342))) (((-894) $) NIL (|has| (-677) (-342)))) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (-12 (|has| (-677) (-975)) (|has| (-677) (-1166))))) (-1389 (((-677) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| (-677) (-342)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-677) (-300)))) (-1428 (((-1140 (-677)) $) NIL (|has| (-677) (-356)))) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3972 (($ (-1 (-677) (-677)) $) NIL)) (-2253 (((-894) $) NIL (|has| (-677) (-361)))) (-2958 (($ $) NIL (|has| (-677) (-1166)))) (-2407 (((-1140 (-677)) $) NIL)) (-3106 (($ (-623 $)) NIL (|has| (-677) (-300))) (($ $ $) NIL (|has| (-677) (-300)))) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| (-677) (-356)))) (-3862 (($) NIL (|has| (-677) (-342)) CONST)) (-2922 (($ (-894)) NIL (|has| (-677) (-361)))) (-4065 (($) NIL)) (-3377 (((-677) $) 31)) (-3337 (((-1088) $) NIL)) (-3935 (($) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| (-677) (-300)))) (-3139 (($ (-623 $)) NIL (|has| (-677) (-300))) (($ $ $) NIL (|has| (-677) (-300)))) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| (-677) (-342)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-882))))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-882))))) (-3338 (((-411 $) $) NIL (-1561 (-12 (|has| (-677) (-300)) (|has| (-677) (-882))) (|has| (-677) (-356))))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-677) (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| (-677) (-300)))) (-1495 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-677)) NIL (|has| (-677) (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-677) (-300)))) (-1812 (($ $) NIL (|has| (-677) (-1166)))) (-3866 (($ $ (-1144) (-677)) NIL (|has| (-677) (-505 (-1144) (-677)))) (($ $ (-623 (-1144)) (-623 (-677))) NIL (|has| (-677) (-505 (-1144) (-677)))) (($ $ (-623 (-287 (-677)))) NIL (|has| (-677) (-302 (-677)))) (($ $ (-287 (-677))) NIL (|has| (-677) (-302 (-677)))) (($ $ (-677) (-677)) NIL (|has| (-677) (-302 (-677)))) (($ $ (-623 (-677)) (-623 (-677))) NIL (|has| (-677) (-302 (-677))))) (-3542 (((-749) $) NIL (|has| (-677) (-300)))) (-2680 (($ $ (-677)) NIL (|has| (-677) (-279 (-677) (-677))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| (-677) (-300)))) (-3453 (((-677)) NIL) (((-677) (-1227 $)) NIL)) (-3811 (((-3 (-749) "failed") $ $) NIL (|has| (-677) (-342))) (((-749) $) NIL (|has| (-677) (-342)))) (-2393 (($ $ (-1 (-677) (-677))) NIL) (($ $ (-1 (-677) (-677)) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-677) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-677) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-677) (-873 (-1144)))) (($ $ (-1144)) NIL (|has| (-677) (-873 (-1144)))) (($ $ (-749)) NIL (|has| (-677) (-227))) (($ $) NIL (|has| (-677) (-227)))) (-3013 (((-667 (-677)) (-1227 $) (-1 (-677) (-677))) NIL (|has| (-677) (-356)))) (-1310 (((-1140 (-677))) NIL)) (-3157 (($ $) NIL (|has| (-677) (-1166)))) (-3033 (($ $) NIL (|has| (-677) (-1166)))) (-4288 (($) NIL (|has| (-677) (-342)))) (-3135 (($ $) NIL (|has| (-677) (-1166)))) (-3016 (($ $) NIL (|has| (-677) (-1166)))) (-3114 (($ $) NIL (|has| (-677) (-1166)))) (-2995 (($ $) NIL (|has| (-677) (-1166)))) (-1373 (((-667 (-677)) (-1227 $)) NIL) (((-1227 (-677)) $) NIL) (((-667 (-677)) (-1227 $) (-1227 $)) NIL) (((-1227 (-677)) $ (-1227 $)) NIL)) (-4028 (((-526) $) NIL (|has| (-677) (-596 (-526)))) (((-167 (-219)) $) NIL (|has| (-677) (-995))) (((-167 (-372)) $) NIL (|has| (-677) (-995))) (((-865 (-372)) $) NIL (|has| (-677) (-596 (-865 (-372))))) (((-865 (-550)) $) NIL (|has| (-677) (-596 (-865 (-550))))) (($ (-1140 (-677))) NIL) (((-1140 (-677)) $) NIL) (($ (-1227 (-677))) NIL) (((-1227 (-677)) $) NIL)) (-1270 (($ $) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-1561 (-12 (|has| (-677) (-300)) (|has| $ (-143)) (|has| (-677) (-882))) (|has| (-677) (-342))))) (-2738 (($ (-677) (-677)) 12)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-677)) NIL) (($ (-167 (-372))) 13) (($ (-167 (-550))) 19) (($ (-167 (-677))) 28) (($ (-167 (-679))) 25) (((-167 (-372)) $) 33) (($ (-400 (-550))) NIL (-1561 (|has| (-677) (-1011 (-400 (-550)))) (|has| (-677) (-356))))) (-4242 (($ $) NIL (|has| (-677) (-342))) (((-3 $ "failed") $) NIL (-1561 (-12 (|has| (-677) (-300)) (|has| $ (-143)) (|has| (-677) (-882))) (|has| (-677) (-143))))) (-2608 (((-1140 (-677)) $) NIL)) (-2390 (((-749)) NIL)) (-2437 (((-1227 $)) NIL)) (-3187 (($ $) NIL (|has| (-677) (-1166)))) (-3060 (($ $) NIL (|has| (-677) (-1166)))) (-1345 (((-112) $ $) NIL)) (-3167 (($ $) NIL (|has| (-677) (-1166)))) (-3043 (($ $) NIL (|has| (-677) (-1166)))) (-3209 (($ $) NIL (|has| (-677) (-1166)))) (-3081 (($ $) NIL (|has| (-677) (-1166)))) (-2696 (((-677) $) NIL (|has| (-677) (-1166)))) (-3294 (($ $) NIL (|has| (-677) (-1166)))) (-3094 (($ $) NIL (|has| (-677) (-1166)))) (-3198 (($ $) NIL (|has| (-677) (-1166)))) (-3072 (($ $) NIL (|has| (-677) (-1166)))) (-3176 (($ $) NIL (|has| (-677) (-1166)))) (-3052 (($ $) NIL (|has| (-677) (-1166)))) (-1635 (($ $) NIL (|has| (-677) (-1029)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-1 (-677) (-677))) NIL) (($ $ (-1 (-677) (-677)) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-677) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-677) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-677) (-873 (-1144)))) (($ $ (-1144)) NIL (|has| (-677) (-873 (-1144)))) (($ $ (-749)) NIL (|has| (-677) (-227))) (($ $) NIL (|has| (-677) (-227)))) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL (|has| (-677) (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ $) NIL (|has| (-677) (-1166))) (($ $ (-400 (-550))) NIL (-12 (|has| (-677) (-975)) (|has| (-677) (-1166)))) (($ $ (-550)) NIL (|has| (-677) (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ (-677) $) NIL) (($ $ (-677)) NIL) (($ (-400 (-550)) $) NIL (|has| (-677) (-356))) (($ $ (-400 (-550))) NIL (|has| (-677) (-356))))) +(((-672) (-13 (-380) (-164 (-677)) (-10 -8 (-15 -1518 ($ (-167 (-372)))) (-15 -1518 ($ (-167 (-550)))) (-15 -1518 ($ (-167 (-677)))) (-15 -1518 ($ (-167 (-679)))) (-15 -1518 ((-167 (-372)) $))))) (T -672)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-672)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-167 (-550))) (-5 *1 (-672)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-167 (-677))) (-5 *1 (-672)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-167 (-679))) (-5 *1 (-672)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-672))))) +(-13 (-380) (-164 (-677)) (-10 -8 (-15 -1518 ($ (-167 (-372)))) (-15 -1518 ($ (-167 (-550)))) (-15 -1518 ($ (-167 (-677)))) (-15 -1518 ($ (-167 (-679)))) (-15 -1518 ((-167 (-372)) $)))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-3378 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-3912 (($ $) 62)) (-1328 (($ $) 58 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ |#1| $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4342)))) (-3137 (($ |#1| $) 57 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4342)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-3821 (((-623 (-2 (|:| -2119 |#1|) (|:| -3350 (-749)))) $) 61)) (-2729 (($) 49) (($ (-623 |#1|)) 48)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 50)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-673 |#1|) (-138) (-1068)) (T -673)) +((-1886 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-673 *2)) (-4 *2 (-1068)))) (-3912 (*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1068)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1068)) (-5 *2 (-623 (-2 (|:| -2119 *3) (|:| -3350 (-749)))))))) +(-13 (-229 |t#1|) (-10 -8 (-15 -1886 ($ |t#1| $ (-749))) (-15 -3912 ($ $)) (-15 -3821 ((-623 (-2 (|:| -2119 |t#1|) (|:| -3350 (-749)))) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-4247 (((-623 |#1|) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))) (-550)) 47)) (-4019 ((|#1| |#1| (-550)) 46)) (-3139 ((|#1| |#1| |#1| (-550)) 36)) (-3338 (((-623 |#1|) |#1| (-550)) 39)) (-1284 ((|#1| |#1| (-550) |#1| (-550)) 32)) (-4127 (((-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))) |#1| (-550)) 45))) +(((-674 |#1|) (-10 -7 (-15 -3139 (|#1| |#1| |#1| (-550))) (-15 -4019 (|#1| |#1| (-550))) (-15 -3338 ((-623 |#1|) |#1| (-550))) (-15 -4127 ((-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))) |#1| (-550))) (-15 -4247 ((-623 |#1|) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))) (-550))) (-15 -1284 (|#1| |#1| (-550) |#1| (-550)))) (-1203 (-550))) (T -674)) +((-1284 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1203 *3)))) (-4247 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| -3338 *5) (|:| -2970 (-550))))) (-5 *4 (-550)) (-4 *5 (-1203 *4)) (-5 *2 (-623 *5)) (-5 *1 (-674 *5)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-623 (-2 (|:| -3338 *3) (|:| -2970 *4)))) (-5 *1 (-674 *3)) (-4 *3 (-1203 *4)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-623 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1203 *4)))) (-4019 (*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1203 *3)))) (-3139 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1203 *3))))) +(-10 -7 (-15 -3139 (|#1| |#1| |#1| (-550))) (-15 -4019 (|#1| |#1| (-550))) (-15 -3338 ((-623 |#1|) |#1| (-550))) (-15 -4127 ((-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))) |#1| (-550))) (-15 -4247 ((-623 |#1|) (-623 (-2 (|:| -3338 |#1|) (|:| -2970 (-550)))) (-550))) (-15 -1284 (|#1| |#1| (-550) |#1| (-550)))) +((-2878 (((-1 (-916 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 17)) (-3231 (((-1101 (-219)) (-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-623 (-256))) 40) (((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-623 (-256))) 42) (((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1062 (-219)) (-1062 (-219)) (-623 (-256))) 44)) (-2791 (((-1101 (-219)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-623 (-256))) NIL)) (-3331 (((-1101 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1062 (-219)) (-1062 (-219)) (-623 (-256))) 45))) +(((-675) (-10 -7 (-15 -3231 ((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1062 (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -3231 ((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -3231 ((-1101 (-219)) (-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -3331 ((-1101 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1062 (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -2791 ((-1101 (-219)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -2878 ((-1 (-916 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -675)) +((-2878 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1 (-219) (-219) (-219) (-219))) (-5 *2 (-1 (-916 (-219)) (-219) (-219))) (-5 *1 (-675)))) (-2791 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1062 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-675)))) (-3331 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) (-5 *5 (-1062 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-675)))) (-3231 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1101 (-219))) (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-219))) (-5 *5 (-623 (-256))) (-5 *1 (-675)))) (-3231 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-219))) (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-675)))) (-3231 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) (-5 *5 (-1062 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-675))))) +(-10 -7 (-15 -3231 ((-1101 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1062 (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -3231 ((-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -3231 ((-1101 (-219)) (-1101 (-219)) (-1 (-916 (-219)) (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -3331 ((-1101 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1062 (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -2791 ((-1101 (-219)) (-309 (-550)) (-309 (-550)) (-309 (-550)) (-1 (-219) (-219)) (-1062 (-219)) (-623 (-256)))) (-15 -2878 ((-1 (-916 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) +((-3338 (((-411 (-1140 |#4|)) (-1140 |#4|)) 73) (((-411 |#4|) |#4|) 221))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3338 ((-411 |#4|) |#4|)) (-15 -3338 ((-411 (-1140 |#4|)) (-1140 |#4|)))) (-825) (-771) (-342) (-922 |#3| |#2| |#1|)) (T -676)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-342)) (-4 *7 (-922 *6 *5 *4)) (-5 *2 (-411 (-1140 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-922 *6 *5 *4))))) +(-10 -7 (-15 -3338 ((-411 |#4|) |#4|)) (-15 -3338 ((-411 (-1140 |#4|)) (-1140 |#4|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 84)) (-1453 (((-550) $) 30)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-2370 (($ $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3353 (($ $) NIL)) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL)) (-3513 (($) NIL T CONST)) (-3364 (($ $) NIL)) (-3880 (((-3 (-550) "failed") $) 73) (((-3 (-400 (-550)) "failed") $) 26) (((-3 (-372) "failed") $) 70)) (-2726 (((-550) $) 75) (((-400 (-550)) $) 67) (((-372) $) 68)) (-3349 (($ $ $) 96)) (-1386 (((-3 $ "failed") $) 87)) (-1519 (($ $ $) 95)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-2236 (((-894)) 77) (((-894) (-894)) 76)) (-1416 (((-112) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL)) (-2475 (((-550) $) NIL)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL)) (-1389 (($ $) NIL)) (-3329 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2969 (((-550) (-550)) 81) (((-550)) 82)) (-2707 (($ $ $) NIL) (($) NIL (-12 (-3462 (|has| $ (-6 -4325))) (-3462 (|has| $ (-6 -4333)))))) (-3027 (((-550) (-550)) 79) (((-550)) 80)) (-4164 (($ $ $) NIL) (($) NIL (-12 (-3462 (|has| $ (-6 -4325))) (-3462 (|has| $ (-6 -4333)))))) (-3357 (((-550) $) 16)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 91)) (-2822 (((-894) (-550)) NIL (|has| $ (-6 -4333)))) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL)) (-1608 (($ $) NIL)) (-2708 (($ (-550) (-550)) NIL) (($ (-550) (-550) (-894)) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) 92)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3521 (((-550) $) 22)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 94)) (-4302 (((-894)) NIL) (((-894) (-894)) NIL (|has| $ (-6 -4333)))) (-2723 (((-894) (-550)) NIL (|has| $ (-6 -4333)))) (-4028 (((-372) $) NIL) (((-219) $) NIL) (((-865 (-372)) $) NIL)) (-1518 (((-836) $) 52) (($ (-550)) 63) (($ $) NIL) (($ (-400 (-550))) 66) (($ (-550)) 63) (($ (-400 (-550))) 66) (($ (-372)) 60) (((-372) $) 50) (($ (-679)) 55)) (-2390 (((-749)) 103)) (-3609 (($ (-550) (-550) (-894)) 44)) (-1754 (($ $) NIL)) (-2913 (((-894)) NIL) (((-894) (-894)) NIL (|has| $ (-6 -4333)))) (-1860 (((-894)) 35) (((-894) (-894)) 78)) (-1345 (((-112) $ $) NIL)) (-1635 (($ $) NIL)) (-2626 (($) 32 T CONST)) (-2636 (($) 17 T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 83)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 101)) (-2414 (($ $ $) 65)) (-2403 (($ $) 99) (($ $ $) 100)) (-2391 (($ $ $) 98)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL) (($ $ (-400 (-550))) 90)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 97) (($ $ $) 88) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) +(((-677) (-13 (-397) (-380) (-356) (-1011 (-372)) (-1011 (-400 (-550))) (-145) (-10 -8 (-15 -2236 ((-894) (-894))) (-15 -2236 ((-894))) (-15 -1860 ((-894) (-894))) (-15 -3027 ((-550) (-550))) (-15 -3027 ((-550))) (-15 -2969 ((-550) (-550))) (-15 -2969 ((-550))) (-15 -1518 ((-372) $)) (-15 -1518 ($ (-679))) (-15 -3357 ((-550) $)) (-15 -3521 ((-550) $)) (-15 -3609 ($ (-550) (-550) (-894)))))) (T -677)) +((-3521 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-2236 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-677)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-677)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-677)))) (-3027 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-3027 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-2969 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-372)) (-5 *1 (-677)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-679)) (-5 *1 (-677)))) (-3609 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-894)) (-5 *1 (-677))))) +(-13 (-397) (-380) (-356) (-1011 (-372)) (-1011 (-400 (-550))) (-145) (-10 -8 (-15 -2236 ((-894) (-894))) (-15 -2236 ((-894))) (-15 -1860 ((-894) (-894))) (-15 -3027 ((-550) (-550))) (-15 -3027 ((-550))) (-15 -2969 ((-550) (-550))) (-15 -2969 ((-550))) (-15 -1518 ((-372) $)) (-15 -1518 ($ (-679))) (-15 -3357 ((-550) $)) (-15 -3521 ((-550) $)) (-15 -3609 ($ (-550) (-550) (-894))))) +((-2231 (((-667 |#1|) (-667 |#1|) |#1| |#1|) 65)) (-3707 (((-667 |#1|) (-667 |#1|) |#1|) 48)) (-2157 (((-667 |#1|) (-667 |#1|) |#1|) 66)) (-3136 (((-667 |#1|) (-667 |#1|)) 49)) (-2310 (((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|) 64))) +(((-678 |#1|) (-10 -7 (-15 -3136 ((-667 |#1|) (-667 |#1|))) (-15 -3707 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2157 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2231 ((-667 |#1|) (-667 |#1|) |#1| |#1|)) (-15 -2310 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|))) (-300)) (T -678)) +((-2310 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-678 *3)) (-4 *3 (-300)))) (-2231 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-2157 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-3707 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-3136 (*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) +(-10 -7 (-15 -3136 ((-667 |#1|) (-667 |#1|))) (-15 -3707 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2157 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2231 ((-667 |#1|) (-667 |#1|) |#1| |#1|)) (-15 -2310 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-2347 (($ $ $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-2181 (($ $ $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL)) (-3827 (($ $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) 27)) (-2726 (((-550) $) 25)) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3207 (((-3 (-400 (-550)) "failed") $) NIL)) (-3122 (((-112) $) NIL)) (-3042 (((-400 (-550)) $) NIL)) (-1741 (($ $) NIL) (($) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-3064 (($ $ $ $) NIL)) (-2434 (($ $ $) NIL)) (-1416 (((-112) $) NIL)) (-3388 (($ $ $) NIL)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL)) (-3102 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-2826 (((-3 $ "failed") $) NIL)) (-3329 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3178 (($ $ $ $) NIL)) (-2707 (($ $ $) NIL)) (-2395 (((-894) (-894)) 10) (((-894)) 9)) (-4164 (($ $ $) NIL)) (-3833 (($ $) NIL)) (-3772 (($ $) NIL)) (-3106 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-2996 (($ $ $) NIL)) (-3862 (($) NIL T CONST)) (-3463 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1289 (($ $) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3777 (((-112) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL) (($ $ (-749)) NIL)) (-2092 (($ $) NIL)) (-1731 (($ $) NIL)) (-4028 (((-219) $) NIL) (((-372) $) NIL) (((-865 (-550)) $) NIL) (((-526) $) NIL) (((-550) $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) 24) (($ $) NIL) (($ (-550)) 24) (((-309 $) (-309 (-550))) 18)) (-2390 (((-749)) NIL)) (-2520 (((-112) $ $) NIL)) (-4224 (($ $ $) NIL)) (-1860 (($) NIL)) (-1345 (((-112) $ $) NIL)) (-2260 (($ $ $ $) NIL)) (-1635 (($ $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $) NIL) (($ $ (-749)) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) +(((-679) (-13 (-380) (-535) (-10 -8 (-15 -2395 ((-894) (-894))) (-15 -2395 ((-894))) (-15 -1518 ((-309 $) (-309 (-550))))))) (T -679)) +((-2395 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-679)))) (-2395 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-679)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-309 (-550))) (-5 *2 (-309 (-679))) (-5 *1 (-679))))) +(-13 (-380) (-535) (-10 -8 (-15 -2395 ((-894) (-894))) (-15 -2395 ((-894))) (-15 -1518 ((-309 $) (-309 (-550)))))) +((-1578 (((-1 |#4| |#2| |#3|) |#1| (-1144) (-1144)) 19)) (-2481 (((-1 |#4| |#2| |#3|) (-1144)) 12))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2481 ((-1 |#4| |#2| |#3|) (-1144))) (-15 -1578 ((-1 |#4| |#2| |#3|) |#1| (-1144) (-1144)))) (-596 (-526)) (-1181) (-1181) (-1181)) (T -680)) +((-1578 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1144)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *3 *5 *6 *7)) (-4 *3 (-596 (-526))) (-4 *5 (-1181)) (-4 *6 (-1181)) (-4 *7 (-1181)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *4 (-596 (-526))) (-4 *5 (-1181)) (-4 *6 (-1181)) (-4 *7 (-1181))))) +(-10 -7 (-15 -2481 ((-1 |#4| |#2| |#3|) (-1144))) (-15 -1578 ((-1 |#4| |#2| |#3|) |#1| (-1144) (-1144)))) +((-1504 (((-112) $ $) NIL)) (-3702 (((-1232) $ (-749)) 14)) (-2302 (((-749) $) 12)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 25)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 24))) +(((-681 |#1|) (-13 (-131) (-595 |#1|) (-10 -8 (-15 -1518 ($ |#1|)))) (-1068)) (T -681)) +((-1518 (*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1068))))) +(-13 (-131) (-595 |#1|) (-10 -8 (-15 -1518 ($ |#1|)))) +((-2562 (((-1 (-219) (-219) (-219)) |#1| (-1144) (-1144)) 34) (((-1 (-219) (-219)) |#1| (-1144)) 39))) +(((-682 |#1|) (-10 -7 (-15 -2562 ((-1 (-219) (-219)) |#1| (-1144))) (-15 -2562 ((-1 (-219) (-219) (-219)) |#1| (-1144) (-1144)))) (-596 (-526))) (T -682)) +((-2562 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1144)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-682 *3)) (-4 *3 (-596 (-526))))) (-2562 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-682 *3)) (-4 *3 (-596 (-526)))))) +(-10 -7 (-15 -2562 ((-1 (-219) (-219)) |#1| (-1144))) (-15 -2562 ((-1 (-219) (-219) (-219)) |#1| (-1144) (-1144)))) +((-2988 (((-1144) |#1| (-1144) (-623 (-1144))) 9) (((-1144) |#1| (-1144) (-1144) (-1144)) 12) (((-1144) |#1| (-1144) (-1144)) 11) (((-1144) |#1| (-1144)) 10))) +(((-683 |#1|) (-10 -7 (-15 -2988 ((-1144) |#1| (-1144))) (-15 -2988 ((-1144) |#1| (-1144) (-1144))) (-15 -2988 ((-1144) |#1| (-1144) (-1144) (-1144))) (-15 -2988 ((-1144) |#1| (-1144) (-623 (-1144))))) (-596 (-526))) (T -683)) +((-2988 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-623 (-1144))) (-5 *2 (-1144)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) (-2988 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) (-2988 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) (-2988 (*1 *2 *3 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526)))))) +(-10 -7 (-15 -2988 ((-1144) |#1| (-1144))) (-15 -2988 ((-1144) |#1| (-1144) (-1144))) (-15 -2988 ((-1144) |#1| (-1144) (-1144) (-1144))) (-15 -2988 ((-1144) |#1| (-1144) (-623 (-1144))))) +((-2053 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-684 |#1| |#2|) (-10 -7 (-15 -2053 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1181) (-1181)) (T -684)) +((-2053 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-1181)) (-4 *4 (-1181))))) +(-10 -7 (-15 -2053 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2645 (((-1 |#3| |#2|) (-1144)) 11)) (-1578 (((-1 |#3| |#2|) |#1| (-1144)) 21))) +(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -2645 ((-1 |#3| |#2|) (-1144))) (-15 -1578 ((-1 |#3| |#2|) |#1| (-1144)))) (-596 (-526)) (-1181) (-1181)) (T -685)) +((-1578 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *3 *5 *6)) (-4 *3 (-596 (-526))) (-4 *5 (-1181)) (-4 *6 (-1181)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-596 (-526))) (-4 *5 (-1181)) (-4 *6 (-1181))))) +(-10 -7 (-15 -2645 ((-1 |#3| |#2|) (-1144))) (-15 -1578 ((-1 |#3| |#2|) |#1| (-1144)))) +((-1910 (((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 (-1140 |#4|)) (-623 |#3|) (-623 |#4|) (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| |#4|)))) (-623 (-749)) (-1227 (-623 (-1140 |#3|))) |#3|) 62)) (-1802 (((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 (-1140 |#3|)) (-623 |#3|) (-623 |#4|) (-623 (-749)) |#3|) 75)) (-1686 (((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 |#3|) (-623 (-749)) (-623 (-1140 |#4|)) (-1227 (-623 (-1140 |#3|))) |#3|) 34))) +(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1686 ((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 |#3|) (-623 (-749)) (-623 (-1140 |#4|)) (-1227 (-623 (-1140 |#3|))) |#3|)) (-15 -1802 ((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 (-1140 |#3|)) (-623 |#3|) (-623 |#4|) (-623 (-749)) |#3|)) (-15 -1910 ((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 (-1140 |#4|)) (-623 |#3|) (-623 |#4|) (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| |#4|)))) (-623 (-749)) (-1227 (-623 (-1140 |#3|))) |#3|))) (-771) (-825) (-300) (-922 |#3| |#1| |#2|)) (T -686)) +((-1910 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-623 (-1140 *13))) (-5 *3 (-1140 *13)) (-5 *4 (-623 *12)) (-5 *5 (-623 *10)) (-5 *6 (-623 *13)) (-5 *7 (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| *13))))) (-5 *8 (-623 (-749))) (-5 *9 (-1227 (-623 (-1140 *10)))) (-4 *12 (-825)) (-4 *10 (-300)) (-4 *13 (-922 *10 *11 *12)) (-4 *11 (-771)) (-5 *1 (-686 *11 *12 *10 *13)))) (-1802 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-623 *11)) (-5 *5 (-623 (-1140 *9))) (-5 *6 (-623 *9)) (-5 *7 (-623 *12)) (-5 *8 (-623 (-749))) (-4 *11 (-825)) (-4 *9 (-300)) (-4 *12 (-922 *9 *10 *11)) (-4 *10 (-771)) (-5 *2 (-623 (-1140 *12))) (-5 *1 (-686 *10 *11 *9 *12)) (-5 *3 (-1140 *12)))) (-1686 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-623 (-1140 *11))) (-5 *3 (-1140 *11)) (-5 *4 (-623 *10)) (-5 *5 (-623 *8)) (-5 *6 (-623 (-749))) (-5 *7 (-1227 (-623 (-1140 *8)))) (-4 *10 (-825)) (-4 *8 (-300)) (-4 *11 (-922 *8 *9 *10)) (-4 *9 (-771)) (-5 *1 (-686 *9 *10 *8 *11))))) +(-10 -7 (-15 -1686 ((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 |#3|) (-623 (-749)) (-623 (-1140 |#4|)) (-1227 (-623 (-1140 |#3|))) |#3|)) (-15 -1802 ((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 (-1140 |#3|)) (-623 |#3|) (-623 |#4|) (-623 (-749)) |#3|)) (-15 -1910 ((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-623 |#2|) (-623 (-1140 |#4|)) (-623 |#3|) (-623 |#4|) (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| |#4|)))) (-623 (-749)) (-1227 (-623 (-1140 |#3|))) |#3|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3295 (($ $) 39)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-3118 (($ |#1| (-749)) 37)) (-1667 (((-749) $) 41)) (-3277 ((|#1| $) 40)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2970 (((-749) $) 42)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-2510 ((|#1| $ (-749)) 38)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +(((-687 |#1|) (-138) (-1020)) (T -687)) +((-2970 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1020)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1020)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1020)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1020))))) +(-13 (-1020) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2970 ((-749) $)) (-15 -1667 ((-749) $)) (-15 -3277 (|t#1| $)) (-15 -3295 ($ $)) (-15 -2510 (|t#1| $ (-749))) (-15 -3118 ($ |t#1| (-749))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1026 |#1|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3972 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-688 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3972 (|#6| (-1 |#4| |#1|) |#3|))) (-542) (-1203 |#1|) (-1203 (-400 |#2|)) (-542) (-1203 |#4|) (-1203 (-400 |#5|))) (T -688)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-542)) (-4 *7 (-542)) (-4 *6 (-1203 *5)) (-4 *2 (-1203 (-400 *8))) (-5 *1 (-688 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1203 (-400 *6))) (-4 *8 (-1203 *7))))) +(-10 -7 (-15 -3972 (|#6| (-1 |#4| |#1|) |#3|))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2016 (((-1126) (-836)) 31)) (-2048 (((-1232) (-1126)) 28)) (-3941 (((-1126) (-836)) 24)) (-2103 (((-1126) (-836)) 25)) (-1518 (((-836) $) NIL) (((-1126) (-836)) 23)) (-2316 (((-112) $ $) NIL))) +(((-689) (-13 (-1068) (-10 -7 (-15 -1518 ((-1126) (-836))) (-15 -3941 ((-1126) (-836))) (-15 -2103 ((-1126) (-836))) (-15 -2016 ((-1126) (-836))) (-15 -2048 ((-1232) (-1126)))))) (T -689)) +((-1518 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1126)) (-5 *1 (-689)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1126)) (-5 *1 (-689)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1126)) (-5 *1 (-689)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1126)) (-5 *1 (-689)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-689))))) +(-13 (-1068) (-10 -7 (-15 -1518 ((-1126) (-836))) (-15 -3941 ((-1126) (-836))) (-15 -2103 ((-1126) (-836))) (-15 -2016 ((-1126) (-836))) (-15 -2048 ((-1232) (-1126))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-3349 (($ $ $) NIL)) (-2419 (($ |#1| |#2|) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-3102 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-4189 ((|#2| $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3620 (((-3 $ "failed") $ $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) ((|#1| $) NIL)) (-2390 (((-749)) NIL)) (-1345 (((-112) $ $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) +(((-690 |#1| |#2| |#3| |#4| |#5|) (-13 (-356) (-10 -8 (-15 -4189 (|#2| $)) (-15 -1518 (|#1| $)) (-15 -2419 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -690)) +((-4189 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1518 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2419 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-356) (-10 -8 (-15 -4189 (|#2| $)) (-15 -1518 (|#1| $)) (-15 -2419 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)))) +((-1504 (((-112) $ $) 78)) (-3433 (((-112) $) 30)) (-2170 (((-1227 |#1|) $ (-749)) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-3058 (($ (-1140 |#1|)) NIL)) (-3306 (((-1140 $) $ (-1050)) NIL) (((-1140 |#1|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-1050))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3238 (($ $ $) NIL (|has| |#1| (-542)))) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4319 (((-749)) 47 (|has| |#1| (-361)))) (-3810 (($ $ (-749)) NIL)) (-3690 (($ $ (-749)) NIL)) (-3423 ((|#2| |#2|) 44)) (-4005 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-1050) "failed") $) NIL)) (-2726 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-1050) $) NIL)) (-3340 (($ $ $ (-1050)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) 34)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-2419 (($ |#2|) 42)) (-1386 (((-3 $ "failed") $) 86)) (-1741 (($) 51 (|has| |#1| (-361)))) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3563 (($ $ $) NIL)) (-4232 (($ $ $) NIL (|has| |#1| (-542)))) (-4113 (((-2 (|:| -2855 |#1|) (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2674 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1050)) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-4245 (((-931 $)) 80)) (-2613 (($ $ |#1| (-749) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-1050) (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-1050) (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-2475 (((-749) $ $) NIL (|has| |#1| (-542)))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-1119)))) (-3129 (($ (-1140 |#1|) (-1050)) NIL) (($ (-1140 $) (-1050)) NIL)) (-1784 (($ $ (-749)) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) 77) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-1050)) NIL) (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-4189 ((|#2|) 45)) (-1667 (((-749) $) NIL) (((-749) $ (-1050)) NIL) (((-623 (-749)) $ (-623 (-1050))) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-749) (-749)) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (((-1140 |#1|) $) NIL)) (-2558 (((-3 (-1050) "failed") $) NIL)) (-2253 (((-894) $) NIL (|has| |#1| (-361)))) (-2407 ((|#2| $) 41)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) 28)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1825 (((-1126) $) NIL)) (-2731 (((-2 (|:| -3526 $) (|:| -2786 $)) $ (-749)) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-1050)) (|:| -3521 (-749))) "failed") $) NIL)) (-1489 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3862 (($) NIL (|has| |#1| (-1119)) CONST)) (-2922 (($ (-894)) NIL (|has| |#1| (-361)))) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-4042 (($ $) 79 (|has| |#1| (-342)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-882)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1050) |#1|) NIL) (($ $ (-623 (-1050)) (-623 |#1|)) NIL) (($ $ (-1050) $) NIL) (($ $ (-623 (-1050)) (-623 $)) NIL)) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-2953 (((-3 $ "failed") $ (-749)) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 87 (|has| |#1| (-356)))) (-3453 (($ $ (-1050)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-2393 (($ $ (-1050)) NIL) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2970 (((-749) $) 32) (((-749) $ (-1050)) NIL) (((-623 (-749)) $ (-623 (-1050))) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-1050) (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-1050) (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-1050) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1050)) NIL (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-4135 (((-931 $)) 36)) (-1292 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-542)))) (-1518 (((-836) $) 61) (($ (-550)) NIL) (($ |#1|) 58) (($ (-1050)) NIL) (($ |#2|) 68) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-749)) 63) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) 20 T CONST)) (-3319 (((-1227 |#1|) $) 75)) (-1404 (($ (-1227 |#1|)) 50)) (-2636 (($) 8 T CONST)) (-4183 (($ $ (-1050)) NIL) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1290 (((-1227 |#1|) $) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) 69)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) 72) (($ $ $) NIL)) (-2391 (($ $ $) 33)) (** (($ $ (-894)) NIL) (($ $ (-749)) 81)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 57) (($ $ $) 74) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-691 |#1| |#2|) (-13 (-1203 |#1|) (-10 -8 (-15 -3423 (|#2| |#2|)) (-15 -4189 (|#2|)) (-15 -2419 ($ |#2|)) (-15 -2407 (|#2| $)) (-15 -1518 ($ |#2|)) (-15 -3319 ((-1227 |#1|) $)) (-15 -1404 ($ (-1227 |#1|))) (-15 -1290 ((-1227 |#1|) $)) (-15 -4245 ((-931 $))) (-15 -4135 ((-931 $))) (IF (|has| |#1| (-342)) (-15 -4042 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) (-1020) (-1203 |#1|)) (T -691)) +((-3423 (*1 *2 *2) (-12 (-4 *3 (-1020)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1203 *3)))) (-4189 (*1 *2) (-12 (-4 *2 (-1203 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1020)))) (-2419 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1203 *3)))) (-2407 (*1 *2 *1) (-12 (-4 *2 (-1203 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1020)))) (-1518 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1203 *3)))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-5 *2 (-1227 *3)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1203 *3)))) (-1404 (*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-1020)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1203 *3)))) (-1290 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-5 *2 (-1227 *3)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1203 *3)))) (-4245 (*1 *2) (-12 (-4 *3 (-1020)) (-5 *2 (-931 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) (-4 *4 (-1203 *3)))) (-4135 (*1 *2) (-12 (-4 *3 (-1020)) (-5 *2 (-931 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) (-4 *4 (-1203 *3)))) (-4042 (*1 *1 *1) (-12 (-4 *2 (-342)) (-4 *2 (-1020)) (-5 *1 (-691 *2 *3)) (-4 *3 (-1203 *2))))) +(-13 (-1203 |#1|) (-10 -8 (-15 -3423 (|#2| |#2|)) (-15 -4189 (|#2|)) (-15 -2419 ($ |#2|)) (-15 -2407 (|#2| $)) (-15 -1518 ($ |#2|)) (-15 -3319 ((-1227 |#1|) $)) (-15 -1404 ($ (-1227 |#1|))) (-15 -1290 ((-1227 |#1|) $)) (-15 -4245 ((-931 $))) (-15 -4135 ((-931 $))) (IF (|has| |#1| (-342)) (-15 -4042 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-2922 ((|#1| $) 13)) (-3337 (((-1088) $) NIL)) (-3521 ((|#2| $) 12)) (-1532 (($ |#1| |#2|) 16)) (-1518 (((-836) $) NIL) (($ (-2 (|:| -2922 |#1|) (|:| -3521 |#2|))) 15) (((-2 (|:| -2922 |#1|) (|:| -3521 |#2|)) $) 14)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 11))) +(((-692 |#1| |#2| |#3|) (-13 (-825) (-10 -8 (-15 -3521 (|#2| $)) (-15 -2922 (|#1| $)) (-15 -1518 ($ (-2 (|:| -2922 |#1|) (|:| -3521 |#2|)))) (-15 -1518 ((-2 (|:| -2922 |#1|) (|:| -3521 |#2|)) $)) (-15 -1532 ($ |#1| |#2|)))) (-825) (-1068) (-1 (-112) (-2 (|:| -2922 |#1|) (|:| -3521 |#2|)) (-2 (|:| -2922 |#1|) (|:| -3521 |#2|)))) (T -692)) +((-3521 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-692 *3 *2 *4)) (-4 *3 (-825)) (-14 *4 (-1 (-112) (-2 (|:| -2922 *3) (|:| -3521 *2)) (-2 (|:| -2922 *3) (|:| -3521 *2)))))) (-2922 (*1 *2 *1) (-12 (-4 *2 (-825)) (-5 *1 (-692 *2 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-1 (-112) (-2 (|:| -2922 *2) (|:| -3521 *3)) (-2 (|:| -2922 *2) (|:| -3521 *3)))))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2922 *3) (|:| -3521 *4))) (-4 *3 (-825)) (-4 *4 (-1068)) (-5 *1 (-692 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2922 *3) (|:| -3521 *4))) (-5 *1 (-692 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-1068)) (-14 *5 (-1 (-112) *2 *2)))) (-1532 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-1068)) (-14 *4 (-1 (-112) (-2 (|:| -2922 *2) (|:| -3521 *3)) (-2 (|:| -2922 *2) (|:| -3521 *3))))))) +(-13 (-825) (-10 -8 (-15 -3521 (|#2| $)) (-15 -2922 (|#1| $)) (-15 -1518 ($ (-2 (|:| -2922 |#1|) (|:| -3521 |#2|)))) (-15 -1518 ((-2 (|:| -2922 |#1|) (|:| -3521 |#2|)) $)) (-15 -1532 ($ |#1| |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 59)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2726 ((|#1| $) NIL) (((-114) $) 39)) (-1386 (((-3 $ "failed") $) 90)) (-1973 ((|#2| (-114) |#2|) 82)) (-3102 (((-112) $) NIL)) (-1881 (($ |#1| (-354 (-114))) 14)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2060 (($ $ (-1 |#2| |#2|)) 58)) (-3886 (($ $ (-1 |#2| |#2|)) 44)) (-2680 ((|#2| $ |#2|) 33)) (-3964 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-1518 (((-836) $) 66) (($ (-550)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) 37)) (-4067 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2626 (($) 21 T CONST)) (-2636 (($) 9 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) 48) (($ $ $) NIL)) (-2391 (($ $ $) 73)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ (-114) (-550)) NIL) (($ $ (-550)) 57)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) +(((-693 |#1| |#2|) (-13 (-1020) (-1011 |#1|) (-1011 (-114)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -4067 ($ $)) (-15 -4067 ($ $ $)) (-15 -3964 (|#1| |#1|))) |%noBranch|) (-15 -3886 ($ $ (-1 |#2| |#2|))) (-15 -2060 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-550))) (-15 ** ($ $ (-550))) (-15 -1973 (|#2| (-114) |#2|)) (-15 -1881 ($ |#1| (-354 (-114)))))) (-1020) (-626 |#1|)) (T -693)) +((-4067 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1020)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-4067 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1020)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-3964 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1020)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1020)) (-5 *1 (-693 *3 *4)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1020)) (-5 *1 (-693 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-550)) (-4 *4 (-1020)) (-5 *1 (-693 *4 *5)) (-4 *5 (-626 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *3 (-1020)) (-5 *1 (-693 *3 *4)) (-4 *4 (-626 *3)))) (-1973 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1020)) (-5 *1 (-693 *4 *2)) (-4 *2 (-626 *4)))) (-1881 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-114))) (-4 *2 (-1020)) (-5 *1 (-693 *2 *4)) (-4 *4 (-626 *2))))) +(-13 (-1020) (-1011 |#1|) (-1011 (-114)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -4067 ($ $)) (-15 -4067 ($ $ $)) (-15 -3964 (|#1| |#1|))) |%noBranch|) (-15 -3886 ($ $ (-1 |#2| |#2|))) (-15 -2060 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-550))) (-15 ** ($ $ (-550))) (-15 -1973 (|#2| (-114) |#2|)) (-15 -1881 ($ |#1| (-354 (-114)))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 33)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2419 (($ |#1| |#2|) 25)) (-1386 (((-3 $ "failed") $) 48)) (-3102 (((-112) $) 35)) (-4189 ((|#2| $) 12)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 49)) (-3337 (((-1088) $) NIL)) (-3620 (((-3 $ "failed") $ $) 47)) (-1518 (((-836) $) 24) (($ (-550)) 19) ((|#1| $) 13)) (-2390 (((-749)) 28)) (-2626 (($) 16 T CONST)) (-2636 (($) 30 T CONST)) (-2316 (((-112) $ $) 38)) (-2403 (($ $) 43) (($ $ $) 37)) (-2391 (($ $ $) 40)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 21) (($ $ $) 20))) +(((-694 |#1| |#2| |#3| |#4| |#5|) (-13 (-1020) (-10 -8 (-15 -4189 (|#2| $)) (-15 -1518 (|#1| $)) (-15 -2419 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -1386 ((-3 $ "failed") $)) (-15 -3235 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -694)) +((-1386 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4189 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1518 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2419 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3235 (*1 *1 *1) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1020) (-10 -8 (-15 -4189 (|#2| $)) (-15 -1518 (|#1| $)) (-15 -2419 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -1386 ((-3 $ "failed") $)) (-15 -3235 ($ $)))) +((* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-695 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) (-696 |#2|) (-170)) (T -695)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-696 |#1|) (-138) (-170)) (T -696)) NIL (-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-2681 (($ |#1|) 17) (($ $ |#1|) 20)) (-4190 (($ |#1|) 18) (($ $ |#1|) 21)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2493 (((-112) $) NIL)) (-2486 (($ |#1| |#1| |#1| |#1|) 8)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 16)) (-3577 (((-1086) $) NIL)) (-4110 ((|#1| $ |#1|) 24) (((-808 |#1|) $ (-808 |#1|)) 32)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 39)) (-2985 (($) 9 T CONST)) (-3375 (((-112) $ $) 44)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ $ $) 14))) -(((-695 |#1|) (-13 (-465) (-10 -8 (-15 -2486 ($ |#1| |#1| |#1| |#1|)) (-15 -2681 ($ |#1|)) (-15 -4190 ($ |#1|)) (-15 -3804 ($)) (-15 -2681 ($ $ |#1|)) (-15 -4190 ($ $ |#1|)) (-15 -3804 ($ $)) (-15 -4110 (|#1| $ |#1|)) (-15 -4110 ((-808 |#1|) $ (-808 |#1|))))) (-356)) (T -695)) -((-2486 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2681 (*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4190 (*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-3804 (*1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4190 (*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4110 (*1 *2 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4110 (*1 *2 *1 *2) (-12 (-5 *2 (-808 *3)) (-4 *3 (-356)) (-5 *1 (-695 *3))))) -(-13 (-465) (-10 -8 (-15 -2486 ($ |#1| |#1| |#1| |#1|)) (-15 -2681 ($ |#1|)) (-15 -4190 ($ |#1|)) (-15 -3804 ($)) (-15 -2681 ($ $ |#1|)) (-15 -4190 ($ $ |#1|)) (-15 -3804 ($ $)) (-15 -4110 (|#1| $ |#1|)) (-15 -4110 ((-808 |#1|) $ (-808 |#1|))))) -((-2490 (($ $ (-890)) 12)) (-2489 (($ $ (-890)) 13)) (** (($ $ (-890)) 10))) -(((-696 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -2489 (|#1| |#1| (-890))) (-15 -2490 (|#1| |#1| (-890)))) (-697)) (T -696)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -2489 (|#1| |#1| (-890))) (-15 -2490 (|#1| |#1| (-890)))) -((-2887 (((-112) $ $) 7)) (-2490 (($ $ (-890)) 15)) (-2489 (($ $ (-890)) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 16))) -(((-697) (-138)) (T -697)) -((* (*1 *1 *1 *1) (-4 *1 (-697))) (-2490 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890)))) (-2489 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890))))) -(-13 (-1067) (-10 -8 (-15 * ($ $ $)) (-15 -2490 ($ $ (-890))) (-15 -2489 ($ $ (-890))) (-15 ** ($ $ (-890))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2490 (($ $ (-890)) NIL) (($ $ (-747)) 17)) (-2493 (((-112) $) 10)) (-2489 (($ $ (-890)) NIL) (($ $ (-747)) 18)) (** (($ $ (-890)) NIL) (($ $ (-747)) 15))) -(((-698 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-747))) (-15 -2489 (|#1| |#1| (-747))) (-15 -2490 (|#1| |#1| (-747))) (-15 -2493 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -2489 (|#1| |#1| (-890))) (-15 -2490 (|#1| |#1| (-890)))) (-699)) (T -698)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-747))) (-15 -2489 (|#1| |#1| (-747))) (-15 -2490 (|#1| |#1| (-747))) (-15 -2493 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -2489 (|#1| |#1| (-890))) (-15 -2490 (|#1| |#1| (-890)))) -((-2887 (((-112) $ $) 7)) (-2487 (((-3 $ "failed") $) 17)) (-2490 (($ $ (-890)) 15) (($ $ (-747)) 22)) (-3804 (((-3 $ "failed") $) 19)) (-2493 (((-112) $) 23)) (-2488 (((-3 $ "failed") $) 18)) (-2489 (($ $ (-890)) 14) (($ $ (-747)) 21)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2985 (($) 24 T CONST)) (-3375 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-747)) 20)) (* (($ $ $) 16))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-1026 |#1|) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3827 (($ |#1|) 17) (($ $ |#1|) 20)) (-2720 (($ |#1|) 18) (($ $ |#1|) 21)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3102 (((-112) $) NIL)) (-3724 (($ |#1| |#1| |#1| |#1|) 8)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 16)) (-3337 (((-1088) $) NIL)) (-3866 ((|#1| $ |#1|) 24) (((-811 |#1|) $ (-811 |#1|)) 32)) (-1270 (($ $ $) NIL)) (-3292 (($ $ $) NIL)) (-1518 (((-836) $) 39)) (-2636 (($) 9 T CONST)) (-2316 (((-112) $ $) 44)) (-2414 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 14))) +(((-697 |#1|) (-13 (-465) (-10 -8 (-15 -3724 ($ |#1| |#1| |#1| |#1|)) (-15 -3827 ($ |#1|)) (-15 -2720 ($ |#1|)) (-15 -1386 ($)) (-15 -3827 ($ $ |#1|)) (-15 -2720 ($ $ |#1|)) (-15 -1386 ($ $)) (-15 -3866 (|#1| $ |#1|)) (-15 -3866 ((-811 |#1|) $ (-811 |#1|))))) (-356)) (T -697)) +((-3724 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3827 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-2720 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-1386 (*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3827 (*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-2720 (*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-1386 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3866 (*1 *2 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3866 (*1 *2 *1 *2) (-12 (-5 *2 (-811 *3)) (-4 *3 (-356)) (-5 *1 (-697 *3))))) +(-13 (-465) (-10 -8 (-15 -3724 ($ |#1| |#1| |#1| |#1|)) (-15 -3827 ($ |#1|)) (-15 -2720 ($ |#1|)) (-15 -1386 ($)) (-15 -3827 ($ $ |#1|)) (-15 -2720 ($ $ |#1|)) (-15 -1386 ($ $)) (-15 -3866 (|#1| $ |#1|)) (-15 -3866 ((-811 |#1|) $ (-811 |#1|))))) +((-2923 (($ $ (-894)) 12)) (-2834 (($ $ (-894)) 13)) (** (($ $ (-894)) 10))) +(((-698 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-894))) (-15 -2834 (|#1| |#1| (-894))) (-15 -2923 (|#1| |#1| (-894)))) (-699)) (T -698)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-894))) (-15 -2834 (|#1| |#1| (-894))) (-15 -2923 (|#1| |#1| (-894)))) +((-1504 (((-112) $ $) 7)) (-2923 (($ $ (-894)) 15)) (-2834 (($ $ (-894)) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6)) (** (($ $ (-894)) 13)) (* (($ $ $) 16))) (((-699) (-138)) (T -699)) -((-2985 (*1 *1) (-4 *1 (-699))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-699)) (-5 *2 (-112)))) (-2490 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (-2489 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (-3804 (*1 *1 *1) (|partial| -4 *1 (-699))) (-2488 (*1 *1 *1) (|partial| -4 *1 (-699))) (-2487 (*1 *1 *1) (|partial| -4 *1 (-699)))) -(-13 (-697) (-10 -8 (-15 (-2985) ($) -4294) (-15 -2493 ((-112) $)) (-15 -2490 ($ $ (-747))) (-15 -2489 ($ $ (-747))) (-15 ** ($ $ (-747))) (-15 -3804 ((-3 $ "failed") $)) (-15 -2488 ((-3 $ "failed") $)) (-15 -2487 ((-3 $ "failed") $)))) -(((-101) . T) ((-593 (-835)) . T) ((-697) . T) ((-1067) . T)) -((-3454 (((-747)) 34)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#2| $) 22)) (-4185 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) 44)) (-3804 (((-3 $ "failed") $) 64)) (-3315 (($) 38)) (-3450 ((|#2| $) 20)) (-2492 (($) 17)) (-4153 (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-2491 (((-665 |#2|) (-1224 $) (-1 |#2| |#2|)) 59)) (-4313 (((-1224 |#2|) $) NIL) (($ (-1224 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2689 ((|#3| $) 32)) (-2123 (((-1224 $)) 29))) -(((-700 |#1| |#2| |#3|) (-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -3315 (|#1|)) (-15 -3454 ((-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2491 ((-665 |#2|) (-1224 |#1|) (-1 |#2| |#2|))) (-15 -4185 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4313 (|#1| |#3|)) (-15 -4185 (|#1| |#3|)) (-15 -2492 (|#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 (|#3| |#1|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -2123 ((-1224 |#1|))) (-15 -2689 (|#3| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|))) (-701 |#2| |#3|) (-170) (-1200 |#2|)) (T -700)) -((-3454 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-747)) (-5 *1 (-700 *3 *4 *5)) (-4 *3 (-701 *4 *5))))) -(-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -3315 (|#1|)) (-15 -3454 ((-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2491 ((-665 |#2|) (-1224 |#1|) (-1 |#2| |#2|))) (-15 -4185 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4313 (|#1| |#3|)) (-15 -4185 (|#1| |#3|)) (-15 -2492 (|#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 (|#3| |#1|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -2123 ((-1224 |#1|))) (-15 -2689 (|#3| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (|has| |#1| (-356)))) (-2171 (($ $) 92 (|has| |#1| (-356)))) (-2169 (((-112) $) 94 (|has| |#1| (-356)))) (-1896 (((-665 |#1|) (-1224 $)) 44) (((-665 |#1|)) 59)) (-3672 ((|#1| $) 50)) (-1786 (((-1151 (-890) (-747)) (-535)) 144 (|has| |#1| (-343)))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 111 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 112 (|has| |#1| (-356)))) (-1700 (((-112) $ $) 102 (|has| |#1| (-356)))) (-3454 (((-747)) 85 (|has| |#1| (-361)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 166 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 164 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 163)) (-3490 (((-535) $) 167 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 165 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 162)) (-1906 (($ (-1224 |#1|) (-1224 $)) 46) (($ (-1224 |#1|)) 62)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2883 (($ $ $) 106 (|has| |#1| (-356)))) (-1895 (((-665 |#1|) $ (-1224 $)) 51) (((-665 |#1|) $) 57)) (-2353 (((-665 (-535)) (-665 $)) 161 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 160 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 159) (((-665 |#1|) (-665 $)) 158)) (-4185 (($ |#2|) 155) (((-3 $ "failed") (-400 |#2|)) 152 (|has| |#1| (-356)))) (-3804 (((-3 $ "failed") $) 32)) (-3427 (((-890)) 52)) (-3315 (($) 88 (|has| |#1| (-361)))) (-2882 (($ $ $) 105 (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 100 (|has| |#1| (-356)))) (-3154 (($) 146 (|has| |#1| (-343)))) (-1791 (((-112) $) 147 (|has| |#1| (-343)))) (-1881 (($ $ (-747)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-4069 (((-112) $) 113 (|has| |#1| (-356)))) (-4114 (((-890) $) 149 (|has| |#1| (-343))) (((-808 (-890)) $) 135 (|has| |#1| (-343)))) (-2493 (((-112) $) 30)) (-3450 ((|#1| $) 49)) (-3786 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 109 (|has| |#1| (-356)))) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-2121 (((-890) $) 87 (|has| |#1| (-361)))) (-3401 ((|#2| $) 153)) (-2008 (($ (-618 $)) 98 (|has| |#1| (-356))) (($ $ $) 97 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 114 (|has| |#1| (-356)))) (-3787 (($) 140 (|has| |#1| (-343)) CONST)) (-2483 (($ (-890)) 86 (|has| |#1| (-361)))) (-3577 (((-1086) $) 10)) (-2492 (($) 157)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 99 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 96 (|has| |#1| (-356))) (($ $ $) 95 (|has| |#1| (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 143 (|has| |#1| (-343)))) (-4075 (((-398 $) $) 110 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 107 (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ $) 90 (|has| |#1| (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 101 (|has| |#1| (-356)))) (-1699 (((-747) $) 103 (|has| |#1| (-356)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 104 (|has| |#1| (-356)))) (-4100 ((|#1| (-1224 $)) 45) ((|#1|) 58)) (-1882 (((-747) $) 148 (|has| |#1| (-343))) (((-3 (-747) "failed") $ $) 136 (|has| |#1| (-343)))) (-4153 (($ $) 134 (-3874 (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-747)) 132 (-3874 (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1142)) 130 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-618 (-1142))) 129 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1142) (-747)) 128 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 (-747))) 127 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-747)) 120 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-356)))) (-2491 (((-665 |#1|) (-1224 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3519 ((|#2|) 156)) (-1785 (($) 145 (|has| |#1| (-343)))) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) 47) (((-1224 |#1|) $) 64) (((-665 |#1|) (-1224 $)) 63)) (-4313 (((-1224 |#1|) $) 61) (($ (-1224 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 142 (|has| |#1| (-343)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-356))) (($ (-400 (-535))) 84 (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2689 ((|#2| $) 43)) (-3444 (((-747)) 28)) (-2123 (((-1224 $)) 65)) (-2170 (((-112) $ $) 93 (|has| |#1| (-356)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $) 133 (-3874 (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-747)) 131 (-3874 (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1142)) 126 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-618 (-1142))) 125 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1142) (-747)) 124 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 (-747))) 123 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-747)) 122 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-356)))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 118 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 115 (|has| |#1| (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-535)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-535))) 116 (|has| |#1| (-356))))) -(((-701 |#1| |#2|) (-138) (-170) (-1200 |t#1|)) (T -701)) -((-2492 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-701 *2 *3)) (-4 *3 (-1200 *2)))) (-3519 (*1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) (-4185 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1200 *3)))) (-4313 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1200 *3)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) (-4185 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-356)) (-4 *3 (-170)) (-4 *1 (-701 *3 *4)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-1224 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-4 *1 (-701 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1200 *5)) (-5 *2 (-665 *5))))) -(-13 (-403 |t#1| |t#2|) (-170) (-594 |t#2|) (-405 |t#1|) (-370 |t#1|) (-10 -8 (-15 -2492 ($)) (-15 -3519 (|t#2|)) (-15 -4185 ($ |t#2|)) (-15 -4313 ($ |t#2|)) (-15 -3401 (|t#2| $)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-356)) (-6 (-225 |t#1|)) (-15 -4185 ((-3 $ "failed") (-400 |t#2|))) (-15 -2491 ((-665 |t#1|) (-1224 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-101) . T) ((-111 #1# #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| |#1| (-343)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 |#2|) . T) ((-225 |#1|) |has| |#1| (-356)) ((-227) -3874 (|has| |#1| (-343)) (-12 (|has| |#1| (-227)) (|has| |#1| (-356)))) ((-237) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-283) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-300) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-356) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-395) |has| |#1| (-343)) ((-361) -3874 (|has| |#1| (-343)) (|has| |#1| (-361))) ((-343) |has| |#1| (-343)) ((-363 |#1| |#2|) . T) ((-403 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-542) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-624 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-694 |#1|) . T) ((-694 $) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142)))) ((-892) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-343)) ((-1183) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)))) -((-3879 (($) 11)) (-3804 (((-3 $ "failed") $) 13)) (-2493 (((-112) $) 10)) (** (($ $ (-890)) NIL) (($ $ (-747)) 18))) -(((-702 |#1|) (-10 -8 (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 -2493 ((-112) |#1|)) (-15 -3879 (|#1|)) (-15 ** (|#1| |#1| (-890)))) (-703)) (T -702)) -NIL -(-10 -8 (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 -2493 ((-112) |#1|)) (-15 -3879 (|#1|)) (-15 ** (|#1| |#1| (-890)))) -((-2887 (((-112) $ $) 7)) (-3879 (($) 18 T CONST)) (-3804 (((-3 $ "failed") $) 15)) (-2493 (((-112) $) 17)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2985 (($) 19 T CONST)) (-3375 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-747)) 16)) (* (($ $ $) 14))) -(((-703) (-138)) (T -703)) -((-2985 (*1 *1) (-4 *1 (-703))) (-3879 (*1 *1) (-4 *1 (-703))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-747)))) (-3804 (*1 *1 *1) (|partial| -4 *1 (-703)))) -(-13 (-1078) (-10 -8 (-15 (-2985) ($) -4294) (-15 -3879 ($) -4294) (-15 -2493 ((-112) $)) (-15 ** ($ $ (-747))) (-15 -3804 ((-3 $ "failed") $)))) -(((-101) . T) ((-593 (-835)) . T) ((-1078) . T) ((-1067) . T)) -((-2494 (((-2 (|:| -3413 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3760 (((-2 (|:| -3413 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2495 ((|#2| (-400 |#2|) (-1 |#2| |#2|)) 13)) (-3777 (((-2 (|:| |poly| |#2|) (|:| -3413 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)) 47))) -(((-704 |#1| |#2|) (-10 -7 (-15 -3760 ((-2 (|:| -3413 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2494 ((-2 (|:| -3413 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2495 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3777 ((-2 (|:| |poly| |#2|) (|:| -3413 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1200 |#1|)) (T -704)) -((-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3413 (-400 *6)) (|:| |special| (-400 *6)))) (-5 *1 (-704 *5 *6)) (-5 *3 (-400 *6)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1200 *5)) (-5 *1 (-704 *5 *2)) (-4 *5 (-356)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3413 (-398 *3)) (|:| |special| (-398 *3)))) (-5 *1 (-704 *5 *3)))) (-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3413 *3) (|:| |special| *3))) (-5 *1 (-704 *5 *3))))) -(-10 -7 (-15 -3760 ((-2 (|:| -3413 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2494 ((-2 (|:| -3413 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2495 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3777 ((-2 (|:| |poly| |#2|) (|:| -3413 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) -((-2496 ((|#7| (-618 |#5|) |#6|) NIL)) (-4301 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-705 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4301 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2496 (|#7| (-618 |#5|) |#6|))) (-823) (-769) (-769) (-1018) (-1018) (-921 |#4| |#2| |#1|) (-921 |#5| |#3| |#1|)) (T -705)) -((-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *9)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-1018)) (-4 *2 (-921 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769)) (-4 *4 (-921 *8 *6 *5)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1018)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *2 (-921 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769)) (-4 *4 (-921 *8 *6 *5))))) -(-10 -7 (-15 -4301 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2496 (|#7| (-618 |#5|) |#6|))) -((-4301 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-706 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4301 (|#7| (-1 |#2| |#1|) |#6|))) (-823) (-823) (-769) (-769) (-1018) (-921 |#5| |#3| |#1|) (-921 |#5| |#4| |#2|)) (T -706)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-4 *7 (-769)) (-4 *9 (-1018)) (-4 *2 (-921 *9 *8 *6)) (-5 *1 (-706 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-769)) (-4 *4 (-921 *9 *7 *5))))) -(-10 -7 (-15 -4301 (|#7| (-1 |#2| |#1|) |#6|))) -((-4075 (((-398 |#4|) |#4|) 41))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4|))) (-769) (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))) (-300) (-921 (-917 |#3|) |#1| |#2|)) (T -707)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142)))))) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-921 (-917 *6) *4 *5))))) -(-10 -7 (-15 -4075 ((-398 |#4|) |#4|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-836 |#1|)) $) NIL)) (-3407 (((-1136 $) $ (-836 |#1|)) NIL) (((-1136 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-836 |#1|))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-836 |#1|) #2#) $) NIL)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-836 |#1|) $) NIL)) (-4099 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| (-521 (-836 |#1|)) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#2|) (-836 |#1|)) NIL) (($ (-1136 $) (-836 |#1|)) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#2| (-521 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-836 |#1|)) NIL)) (-3141 (((-521 (-836 |#1|)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 (-521 (-836 |#1|)) (-521 (-836 |#1|))) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-3406 (((-3 (-836 |#1|) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-618 (-836 |#1|)) (-618 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-618 (-836 |#1|)) (-618 $)) NIL)) (-4100 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4290 (((-521 (-836 |#1|)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-836 |#1|) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ $) NIL (|has| |#2| (-542))) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535))))))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-521 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-708 |#1| |#2|) (-921 |#2| (-521 (-836 |#1|)) (-836 |#1|)) (-618 (-1142)) (-1018)) (T -708)) -NIL -(-921 |#2| (-521 (-836 |#1|)) (-836 |#1|)) -((-2497 (((-2 (|:| -2724 (-917 |#3|)) (|:| -2166 (-917 |#3|))) |#4|) 14)) (-3307 ((|#4| |#4| |#2|) 33)) (-2500 ((|#4| (-400 (-917 |#3|)) |#2|) 64)) (-2499 ((|#4| (-1136 (-917 |#3|)) |#2|) 77)) (-2498 ((|#4| (-1136 |#4|) |#2|) 51)) (-3306 ((|#4| |#4| |#2|) 54)) (-4075 (((-398 |#4|) |#4|) 40))) -(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 ((-2 (|:| -2724 (-917 |#3|)) (|:| -2166 (-917 |#3|))) |#4|)) (-15 -3306 (|#4| |#4| |#2|)) (-15 -2498 (|#4| (-1136 |#4|) |#2|)) (-15 -3307 (|#4| |#4| |#2|)) (-15 -2499 (|#4| (-1136 (-917 |#3|)) |#2|)) (-15 -2500 (|#4| (-400 (-917 |#3|)) |#2|)) (-15 -4075 ((-398 |#4|) |#4|))) (-769) (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)))) (-542) (-921 (-400 (-917 |#3|)) |#1| |#2|)) (T -709)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *6 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-921 (-400 (-917 *6)) *4 *5)))) (-2500 (*1 *2 *3 *4) (-12 (-4 *6 (-542)) (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-5 *3 (-400 (-917 *6))) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 (-917 *6))) (-4 *6 (-542)) (-4 *2 (-921 (-400 (-917 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))))) (-3307 (*1 *2 *2 *3) (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *5 (-542)) (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-921 (-400 (-917 *5)) *4 *3)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *2)) (-4 *2 (-921 (-400 (-917 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *6 (-542)))) (-3306 (*1 *2 *2 *3) (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *5 (-542)) (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-921 (-400 (-917 *5)) *4 *3)))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *6 (-542)) (-5 *2 (-2 (|:| -2724 (-917 *6)) (|:| -2166 (-917 *6)))) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-921 (-400 (-917 *6)) *4 *5))))) -(-10 -7 (-15 -2497 ((-2 (|:| -2724 (-917 |#3|)) (|:| -2166 (-917 |#3|))) |#4|)) (-15 -3306 (|#4| |#4| |#2|)) (-15 -2498 (|#4| (-1136 |#4|) |#2|)) (-15 -3307 (|#4| |#4| |#2|)) (-15 -2499 (|#4| (-1136 (-917 |#3|)) |#2|)) (-15 -2500 (|#4| (-400 (-917 |#3|)) |#2|)) (-15 -4075 ((-398 |#4|) |#4|))) -((-4075 (((-398 |#4|) |#4|) 52))) -(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4|))) (-769) (-823) (-13 (-300) (-145)) (-921 (-400 |#3|) |#1| |#2|)) (T -710)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-921 (-400 *6) *4 *5))))) -(-10 -7 (-15 -4075 ((-398 |#4|) |#4|))) -((-4301 (((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)) 18))) -(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)))) (-1018) (-1018) (-703)) (T -711)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-712 *5 *7)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-703)) (-5 *2 (-712 *6 *7)) (-5 *1 (-711 *5 *6 *7))))) -(-10 -7 (-15 -4301 ((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 28)) (-4116 (((-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))) $) 29)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747)) 20 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3490 ((|#2| $) NIL) ((|#1| $) NIL)) (-4302 (($ $) 79 (|has| |#2| (-823)))) (-3804 (((-3 $ "failed") $) 65)) (-3315 (($) 35 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) 55)) (-3142 (((-618 $) $) 39)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| |#2|) 16)) (-4301 (($ (-1 |#1| |#1|) $) 54)) (-2121 (((-890) $) 32 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3215 ((|#2| $) 78 (|has| |#2| (-823)))) (-3508 ((|#1| $) 77 (|has| |#2| (-823)))) (-3576 (((-1124) $) NIL)) (-2483 (($ (-890)) 27 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 76) (($ (-535)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|)))) 11)) (-4160 (((-618 |#1|) $) 41)) (-4023 ((|#1| $ |#2|) 88)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-2979 (($) 12 T CONST)) (-2985 (($) 33 T CONST)) (-3375 (((-112) $ $) 80)) (-4180 (($ $) 47) (($ $ $) NIL)) (-4182 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-712 |#1| |#2|) (-13 (-1018) (-1009 |#2|) (-1009 |#1|) (-10 -8 (-15 -3214 ($ |#1| |#2|)) (-15 -4023 (|#1| $ |#2|)) (-15 -4300 ($ (-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))))) (-15 -4116 ((-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))) $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (-15 -4280 ((-112) $)) (-15 -4160 ((-618 |#1|) $)) (-15 -3142 ((-618 $) $)) (-15 -2501 ((-747) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-823)) (PROGN (-15 -3215 (|#2| $)) (-15 -3508 (|#1| $)) (-15 -4302 ($ $))) |%noBranch|))) (-1018) (-703)) (T -712)) -((-3214 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-703)))) (-4023 (*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-703)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4296 *3) (|:| -4281 *4)))) (-4 *3 (-1018)) (-4 *4 (-703)) (-5 *1 (-712 *3 *4)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| -4296 *3) (|:| -4281 *4)))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-712 *3 *4)) (-4 *4 (-703)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-618 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-3215 (*1 *2 *1) (-12 (-4 *2 (-703)) (-4 *2 (-823)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1018)))) (-3508 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *3 (-703)))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1018)) (-4 *3 (-703))))) -(-13 (-1018) (-1009 |#2|) (-1009 |#1|) (-10 -8 (-15 -3214 ($ |#1| |#2|)) (-15 -4023 (|#1| $ |#2|)) (-15 -4300 ($ (-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))))) (-15 -4116 ((-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))) $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (-15 -4280 ((-112) $)) (-15 -4160 ((-618 |#1|) $)) (-15 -3142 ((-618 $) $)) (-15 -2501 ((-747) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-823)) (PROGN (-15 -3215 (|#2| $)) (-15 -3508 (|#1| $)) (-15 -4302 ($ $))) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-3568 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3570 (($ $ $) 79)) (-3569 (((-112) $ $) 83)) (-1264 (((-112) $ (-747)) NIL)) (-3573 (($ (-618 |#1|)) 24) (($) 16)) (-1626 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2446 (($ $) 71)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) 61 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4336))) (($ |#1| $ (-535)) 62) (($ (-1 (-112) |#1|) $ (-535)) 65)) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $ (-535)) 67) (($ (-1 (-112) |#1|) $ (-535)) 68)) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 32 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 82)) (-2503 (($) 14) (($ |#1|) 26) (($ (-618 |#1|)) 21)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) 38)) (-3579 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 75)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3572 (($ $ $) 77)) (-1326 ((|#1| $) 55)) (-3953 (($ |#1| $) 56) (($ |#1| $ (-747)) 72)) (-3577 (((-1086) $) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1327 ((|#1| $) 54)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 50)) (-3911 (($) 13)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 48)) (-3571 (($ $ |#1|) NIL) (($ $ $) 78)) (-1518 (($) 15) (($ (-618 |#1|)) 23)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) 60 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 66)) (-4313 (((-524) $) 36 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 20)) (-4300 (((-835) $) 44)) (-3574 (($ (-618 |#1|)) 25) (($) 17)) (-1328 (($ (-618 |#1|)) 22)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 81)) (-4299 (((-747) $) 59 (|has| $ (-6 -4336))))) -(((-713 |#1|) (-13 (-714 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -2503 ($)) (-15 -2503 ($ |#1|)) (-15 -2503 ($ (-618 |#1|))) (-15 -2502 ((-618 |#1|) $)) (-15 -3748 ($ |#1| $ (-535))) (-15 -3748 ($ (-1 (-112) |#1|) $ (-535))) (-15 -3747 ($ |#1| $ (-535))) (-15 -3747 ($ (-1 (-112) |#1|) $ (-535))))) (-1067)) (T -713)) -((-2503 (*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-1067)))) (-2503 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-1067)))) (-2503 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-713 *3)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-713 *3)) (-4 *3 (-1067)))) (-3748 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-713 *2)) (-4 *2 (-1067)))) (-3748 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-535)) (-4 *4 (-1067)) (-5 *1 (-713 *4)))) (-3747 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-713 *2)) (-4 *2 (-1067)))) (-3747 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-535)) (-4 *4 (-1067)) (-5 *1 (-713 *4))))) -(-13 (-714 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -2503 ($)) (-15 -2503 ($ |#1|)) (-15 -2503 ($ (-618 |#1|))) (-15 -2502 ((-618 |#1|) $)) (-15 -3748 ($ |#1| $ (-535))) (-15 -3748 ($ (-1 (-112) |#1|) $ (-535))) (-15 -3747 ($ |#1| $ (-535))) (-15 -3747 ($ (-1 (-112) |#1|) $ (-535))))) -((-2887 (((-112) $ $) 19)) (-3568 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3570 (($ $ $) 72)) (-3569 (((-112) $ $) 73)) (-1264 (((-112) $ (-747)) 8)) (-3573 (($ (-618 |#1|)) 68) (($) 67)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2446 (($ $) 62)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 64)) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22)) (-3572 (($ $ $) 69)) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3577 (((-1086) $) 21)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 61)) (-3571 (($ $ |#1|) 71) (($ $ $) 70)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18)) (-3574 (($ (-618 |#1|)) 66) (($) 65)) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-714 |#1|) (-138) (-1067)) (T -714)) -NIL -(-13 (-671 |t#1|) (-1065 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-671 |#1|) . T) ((-1065 |#1|) . T) ((-1067) . T) ((-1178) . T)) -((-2504 (((-1230) (-1124)) 8))) -(((-715) (-10 -7 (-15 -2504 ((-1230) (-1124))))) (T -715)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-715))))) -(-10 -7 (-15 -2504 ((-1230) (-1124)))) -((-2505 (((-618 |#1|) (-618 |#1|) (-618 |#1|)) 10))) -(((-716 |#1|) (-10 -7 (-15 -2505 ((-618 |#1|) (-618 |#1|) (-618 |#1|)))) (-823)) (T -716)) -((-2505 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-716 *3))))) -(-10 -7 (-15 -2505 ((-618 |#1|) (-618 |#1|) (-618 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 |#2|) $) 134)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 127 (|has| |#1| (-542)))) (-2171 (($ $) 126 (|has| |#1| (-542)))) (-2169 (((-112) $) 124 (|has| |#1| (-542)))) (-3829 (($ $) 83 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 66 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-3358 (($ $) 65 (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) 82 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 67 (|has| |#1| (-38 (-400 (-535)))))) (-3831 (($ $) 81 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 68 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-4302 (($ $) 118)) (-3804 (((-3 $ "failed") $) 32)) (-4157 (((-917 |#1|) $ (-747)) 96) (((-917 |#1|) $ (-747) (-747)) 95)) (-3213 (((-112) $) 135)) (-3973 (($) 93 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $ |#2|) 98) (((-747) $ |#2| (-747)) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 64 (|has| |#1| (-38 (-400 (-535)))))) (-4280 (((-112) $) 116)) (-3214 (($ $ (-618 |#2|) (-618 (-521 |#2|))) 133) (($ $ |#2| (-521 |#2|)) 132) (($ |#1| (-521 |#2|)) 117) (($ $ |#2| (-747)) 100) (($ $ (-618 |#2|) (-618 (-747))) 99)) (-4301 (($ (-1 |#1| |#1|) $) 115)) (-4285 (($ $) 90 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 113)) (-3508 ((|#1| $) 112)) (-3576 (((-1124) $) 9)) (-4155 (($ $ |#2|) 94 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) 10)) (-4111 (($ $ (-747)) 101)) (-3803 (((-3 $ "failed") $ $) 128 (|has| |#1| (-542)))) (-4286 (($ $) 91 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (($ $ |#2| $) 109) (($ $ (-618 |#2|) (-618 $)) 108) (($ $ (-618 (-286 $))) 107) (($ $ (-286 $)) 106) (($ $ $ $) 105) (($ $ (-618 $) (-618 $)) 104)) (-4153 (($ $ |#2|) 40) (($ $ (-618 |#2|)) 39) (($ $ |#2| (-747)) 38) (($ $ (-618 |#2|) (-618 (-747))) 37)) (-4290 (((-521 |#2|) $) 114)) (-3832 (($ $) 80 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 69 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 79 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 70 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 78 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 71 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 136)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-542))) (($ (-400 (-535))) 121 (|has| |#1| (-38 (-400 (-535)))))) (-4023 ((|#1| $ (-521 |#2|)) 119) (($ $ |#2| (-747)) 103) (($ $ (-618 |#2|) (-618 (-747))) 102)) (-3023 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-3835 (($ $) 89 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 77 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 125 (|has| |#1| (-542)))) (-3833 (($ $) 88 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 76 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 87 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 75 (|has| |#1| (-38 (-400 (-535)))))) (-3838 (($ $) 86 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 74 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 85 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 73 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 84 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 72 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ |#2|) 36) (($ $ (-618 |#2|)) 35) (($ $ |#2| (-747)) 34) (($ $ (-618 |#2|) (-618 (-747))) 33)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 120 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ $) 92 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 63 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 123 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 122 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-717 |#1| |#2|) (-138) (-1018) (-823)) (T -717)) -((-4023 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *5)) (-5 *3 (-618 (-747))) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-717 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-823)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *5)) (-5 *3 (-618 (-747))) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-4114 (*1 *2 *1 *3) (-12 (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *2 (-747)))) (-4114 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-747)) (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)))) (-4157 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) (-5 *2 (-917 *4)))) (-4157 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) (-5 *2 (-917 *4)))) (-4155 (*1 *1 *1 *2) (-12 (-4 *1 (-717 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)) (-4 *3 (-38 (-400 (-535))))))) -(-13 (-871 |t#2|) (-944 |t#1| (-521 |t#2|) |t#2|) (-505 |t#2| $) (-302 $) (-10 -8 (-15 -4023 ($ $ |t#2| (-747))) (-15 -4023 ($ $ (-618 |t#2|) (-618 (-747)))) (-15 -4111 ($ $ (-747))) (-15 -3214 ($ $ |t#2| (-747))) (-15 -3214 ($ $ (-618 |t#2|) (-618 (-747)))) (-15 -4114 ((-747) $ |t#2|)) (-15 -4114 ((-747) $ |t#2| (-747))) (-15 -4157 ((-917 |t#1|) $ (-747))) (-15 -4157 ((-917 |t#1|) $ (-747) (-747))) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ |t#2|)) (-6 (-973)) (-6 (-1164))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-521 |#2|)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-283) |has| |#1| (-542)) ((-302 $) . T) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-505 |#2| $) . T) ((-505 $ $) . T) ((-542) |has| |#1| (-542)) ((-624 #2#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-871 |#2|) . T) ((-944 |#1| #1# |#2|) . T) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1024 #2#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535))))) -((-4075 (((-398 (-1136 |#4|)) (-1136 |#4|)) 30) (((-398 |#4|) |#4|) 26))) -(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4|)) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|)))) (-823) (-769) (-13 (-300) (-145)) (-921 |#3| |#2| |#1|)) (T -718)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-921 *6 *5 *4)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4))))) -(-10 -7 (-15 -4075 ((-398 |#4|) |#4|)) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|)))) -((-2508 (((-398 |#4|) |#4| |#2|) 120)) (-2506 (((-398 |#4|) |#4|) NIL)) (-4312 (((-398 (-1136 |#4|)) (-1136 |#4|)) 111) (((-398 |#4|) |#4|) 41)) (-2510 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 |#4|)) (|:| -2484 (-535)))))) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|))) 69)) (-2514 (((-1136 |#3|) (-1136 |#3|) (-535)) 139)) (-2513 (((-618 (-747)) (-1136 |#4|) (-618 |#2|) (-747)) 61)) (-3401 (((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-1136 |#3|) (-1136 |#3|) |#4| (-618 |#2|) (-618 (-747)) (-618 |#3|)) 65)) (-2511 (((-2 (|:| |upol| (-1136 |#3|)) (|:| |Lval| (-618 |#3|)) (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) (|:| |ctpol| |#3|)) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|))) 26)) (-2509 (((-2 (|:| -2115 (-1136 |#4|)) (|:| |polval| (-1136 |#3|))) (-1136 |#4|) (-1136 |#3|) (-535)) 57)) (-2507 (((-535) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) 136)) (-2512 ((|#4| (-535) (-398 |#4|)) 58)) (-3699 (((-112) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) NIL))) -(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4312 ((-398 |#4|) |#4|)) (-15 -4312 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -2506 ((-398 |#4|) |#4|)) (-15 -2507 ((-535) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))))) (-15 -2508 ((-398 |#4|) |#4| |#2|)) (-15 -2509 ((-2 (|:| -2115 (-1136 |#4|)) (|:| |polval| (-1136 |#3|))) (-1136 |#4|) (-1136 |#3|) (-535))) (-15 -2510 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 |#4|)) (|:| -2484 (-535)))))) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|)))) (-15 -2511 ((-2 (|:| |upol| (-1136 |#3|)) (|:| |Lval| (-618 |#3|)) (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) (|:| |ctpol| |#3|)) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|)))) (-15 -2512 (|#4| (-535) (-398 |#4|))) (-15 -3699 ((-112) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))))) (-15 -3401 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-1136 |#3|) (-1136 |#3|) |#4| (-618 |#2|) (-618 (-747)) (-618 |#3|))) (-15 -2513 ((-618 (-747)) (-1136 |#4|) (-618 |#2|) (-747))) (-15 -2514 ((-1136 |#3|) (-1136 |#3|) (-535)))) (-769) (-823) (-300) (-921 |#3| |#1| |#2|)) (T -719)) -((-2514 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 *6)) (-5 *3 (-535)) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-2513 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-4 *7 (-823)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-4 *8 (-300)) (-5 *2 (-618 (-747))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *5 (-747)))) (-3401 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1136 *11)) (-5 *6 (-618 *10)) (-5 *7 (-618 (-747))) (-5 *8 (-618 *11)) (-4 *10 (-823)) (-4 *11 (-300)) (-4 *9 (-769)) (-4 *5 (-921 *11 *9 *10)) (-5 *2 (-618 (-1136 *5))) (-5 *1 (-719 *9 *10 *11 *5)) (-5 *3 (-1136 *5)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-2 (|:| -4075 (-1136 *6)) (|:| -2484 (-535))))) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-535)) (-5 *4 (-398 *2)) (-4 *2 (-921 *7 *5 *6)) (-5 *1 (-719 *5 *6 *7 *2)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-300)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-5 *5 (-618 (-618 *8))) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-2 (|:| |upol| (-1136 *8)) (|:| |Lval| (-618 *8)) (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 *8)) (|:| -2484 (-535))))) (|:| |ctpol| *8))) (-5 *1 (-719 *6 *7 *8 *9)))) (-2510 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-618 *7)) (-5 *5 (-618 (-618 *8))) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *6 (-769)) (-4 *9 (-921 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 *9)) (|:| -2484 (-535))))))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1136 *9)))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-535)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-921 *8 *6 *7)) (-5 *2 (-2 (|:| -2115 (-1136 *9)) (|:| |polval| (-1136 *8)))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1136 *9)) (-5 *4 (-1136 *8)))) (-2508 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-719 *5 *4 *6 *3)) (-4 *3 (-921 *6 *5 *4)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -4075 (-1136 *6)) (|:| -2484 (-535))))) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-535)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-2506 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-921 *6 *4 *5)))) (-4312 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-4312 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-921 *6 *4 *5))))) -(-10 -7 (-15 -4312 ((-398 |#4|) |#4|)) (-15 -4312 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -2506 ((-398 |#4|) |#4|)) (-15 -2507 ((-535) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))))) (-15 -2508 ((-398 |#4|) |#4| |#2|)) (-15 -2509 ((-2 (|:| -2115 (-1136 |#4|)) (|:| |polval| (-1136 |#3|))) (-1136 |#4|) (-1136 |#3|) (-535))) (-15 -2510 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 |#4|)) (|:| -2484 (-535)))))) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|)))) (-15 -2511 ((-2 (|:| |upol| (-1136 |#3|)) (|:| |Lval| (-618 |#3|)) (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) (|:| |ctpol| |#3|)) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|)))) (-15 -2512 (|#4| (-535) (-398 |#4|))) (-15 -3699 ((-112) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))))) (-15 -3401 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-1136 |#3|) (-1136 |#3|) |#4| (-618 |#2|) (-618 (-747)) (-618 |#3|))) (-15 -2513 ((-618 (-747)) (-1136 |#4|) (-618 |#2|) (-747))) (-15 -2514 ((-1136 |#3|) (-1136 |#3|) (-535)))) -((-2515 (($ $ (-890)) 12))) -(((-720 |#1| |#2|) (-10 -8 (-15 -2515 (|#1| |#1| (-890)))) (-721 |#2|) (-170)) (T -720)) -NIL -(-10 -8 (-15 -2515 (|#1| |#1| (-890)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2490 (($ $ (-890)) 28)) (-2515 (($ $ (-890)) 33)) (-2489 (($ $ (-890)) 29)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-2677 (($ $ $) 25)) (-4300 (((-835) $) 11)) (-2678 (($ $ $ $) 26)) (-2676 (($ $ $) 24)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-721 |#1|) (-138) (-170)) (T -721)) -((-2515 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-721 *3)) (-4 *3 (-170))))) -(-13 (-738) (-694 |t#1|) (-10 -8 (-15 -2515 ($ $ (-890))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T)) -((-2517 (((-1006) (-665 (-219)) (-535) (-112) (-535)) 25)) (-2516 (((-1006) (-665 (-219)) (-535) (-112) (-535)) 24))) -(((-722) (-10 -7 (-15 -2516 ((-1006) (-665 (-219)) (-535) (-112) (-535))) (-15 -2517 ((-1006) (-665 (-219)) (-535) (-112) (-535))))) (T -722)) -((-2517 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-722)))) (-2516 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-722))))) -(-10 -7 (-15 -2516 ((-1006) (-665 (-219)) (-535) (-112) (-535))) (-15 -2517 ((-1006) (-665 (-219)) (-535) (-112) (-535)))) -((-2520 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) 43)) (-2519 (((-1006) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) 39)) (-2518 (((-1006) (-219) (-219) (-219) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 32))) -(((-723) (-10 -7 (-15 -2518 ((-1006) (-219) (-219) (-219) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2519 ((-1006) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2520 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))) (T -723)) -((-2520 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1006)) (-5 *1 (-723)))) (-2519 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1006)) (-5 *1 (-723)))) (-2518 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) (-5 *1 (-723))))) -(-10 -7 (-15 -2518 ((-1006) (-219) (-219) (-219) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2519 ((-1006) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2520 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))))) -((-2532 (((-1006) (-535) (-535) (-665 (-219)) (-535)) 34)) (-2531 (((-1006) (-535) (-535) (-665 (-219)) (-535)) 33)) (-2530 (((-1006) (-535) (-665 (-219)) (-535)) 32)) (-2529 (((-1006) (-535) (-665 (-219)) (-535)) 31)) (-2528 (((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 30)) (-2527 (((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 29)) (-2526 (((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535)) 28)) (-2525 (((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535)) 27)) (-2524 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 24)) (-2523 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535)) 23)) (-2522 (((-1006) (-535) (-665 (-219)) (-535)) 22)) (-2521 (((-1006) (-535) (-665 (-219)) (-535)) 21))) -(((-724) (-10 -7 (-15 -2521 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2522 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2523 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2524 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2525 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2526 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2527 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2528 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2529 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2530 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2531 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2532 ((-1006) (-535) (-535) (-665 (-219)) (-535))))) (T -724)) -((-2532 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2531 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2530 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2529 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2528 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2527 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2526 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2525 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2524 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2523 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2522 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2521 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(-10 -7 (-15 -2521 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2522 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2523 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2524 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2525 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2526 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2527 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2528 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2529 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2530 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2531 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2532 ((-1006) (-535) (-535) (-665 (-219)) (-535)))) -((-2544 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) 52)) (-2543 (((-1006) (-665 (-219)) (-665 (-219)) (-535) (-535)) 51)) (-2542 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) 50)) (-2541 (((-1006) (-219) (-219) (-535) (-535) (-535) (-535)) 46)) (-2540 (((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 45)) (-2539 (((-1006) (-219) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 44)) (-2538 (((-1006) (-219) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 43)) (-2537 (((-1006) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 42)) (-2536 (((-1006) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 38)) (-2535 (((-1006) (-219) (-219) (-535) (-665 (-219)) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 37)) (-2534 (((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 33)) (-2533 (((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 32))) -(((-725) (-10 -7 (-15 -2533 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2534 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2535 ((-1006) (-219) (-219) (-535) (-665 (-219)) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2536 ((-1006) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2537 ((-1006) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2538 ((-1006) (-219) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2539 ((-1006) (-219) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2540 ((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2541 ((-1006) (-219) (-219) (-535) (-535) (-535) (-535))) (-15 -2542 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))) (-15 -2543 ((-1006) (-665 (-219)) (-665 (-219)) (-535) (-535))) (-15 -2544 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))))) (T -725)) -((-2544 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2543 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2542 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2541 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2540 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2539 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2538 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2537 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2536 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2535 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2534 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2533 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) (-5 *1 (-725))))) -(-10 -7 (-15 -2533 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2534 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2535 ((-1006) (-219) (-219) (-535) (-665 (-219)) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2536 ((-1006) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2537 ((-1006) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2538 ((-1006) (-219) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2539 ((-1006) (-219) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2540 ((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2541 ((-1006) (-219) (-219) (-535) (-535) (-535) (-535))) (-15 -2542 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))) (-15 -2543 ((-1006) (-665 (-219)) (-665 (-219)) (-535) (-535))) (-15 -2544 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))))) -((-2552 (((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2551 (((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381)) 69) (((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2550 (((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) 57)) (-2549 (((-1006) (-665 (-219)) (-665 (-219)) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) 50)) (-2548 (((-1006) (-219) (-535) (-535) (-1124) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2547 (((-1006) (-219) (-535) (-535) (-219) (-1124) (-219) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2546 (((-1006) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) 42)) (-2545 (((-1006) (-219) (-535) (-535) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 38))) -(((-726) (-10 -7 (-15 -2545 ((-1006) (-219) (-535) (-535) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2546 ((-1006) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2547 ((-1006) (-219) (-535) (-535) (-219) (-1124) (-219) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2548 ((-1006) (-219) (-535) (-535) (-1124) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2549 ((-1006) (-665 (-219)) (-665 (-219)) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2550 ((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG))))) (-15 -2551 ((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))))) (-15 -2551 ((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381))) (-15 -2552 ((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -726)) -((-2552 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2551 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-381)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2551 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2550 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2549 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2548 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2547 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2546 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2545 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726))))) -(-10 -7 (-15 -2545 ((-1006) (-219) (-535) (-535) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2546 ((-1006) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2547 ((-1006) (-219) (-535) (-535) (-219) (-1124) (-219) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2548 ((-1006) (-219) (-535) (-535) (-1124) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2549 ((-1006) (-665 (-219)) (-665 (-219)) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2550 ((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG))))) (-15 -2551 ((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))))) (-15 -2551 ((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381))) (-15 -2552 ((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-2555 (((-1006) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-651 (-219)) (-535)) 45)) (-2554 (((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-1124) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) 41)) (-2553 (((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 23))) -(((-727) (-10 -7 (-15 -2553 ((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2554 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-1124) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY))))) (-15 -2555 ((-1006) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-651 (-219)) (-535))))) (T -727)) -((-2555 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-651 (-219))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))) (-2554 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1006)) (-5 *1 (-727)))) (-2553 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-727))))) -(-10 -7 (-15 -2553 ((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2554 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-1124) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY))))) (-15 -2555 ((-1006) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-651 (-219)) (-535)))) -((-2565 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-535)) 35)) (-2564 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-219) (-219) (-535)) 34)) (-2563 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-665 (-219)) (-219) (-219) (-535)) 33)) (-2562 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 29)) (-2561 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 28)) (-2560 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535)) 27)) (-2559 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535)) 24)) (-2558 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535)) 23)) (-2557 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535)) 22)) (-2556 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535)) 21))) -(((-728) (-10 -7 (-15 -2556 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))) (-15 -2557 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2558 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2559 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2560 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535))) (-15 -2561 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2562 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2563 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-665 (-219)) (-219) (-219) (-535))) (-15 -2564 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-219) (-219) (-535))) (-15 -2565 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-535))))) (T -728)) -((-2565 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2564 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2563 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *6 (-219)) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2562 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2561 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2560 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2559 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2558 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2557 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2556 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728))))) -(-10 -7 (-15 -2556 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))) (-15 -2557 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2558 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2559 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2560 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535))) (-15 -2561 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2562 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2563 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-665 (-219)) (-219) (-219) (-535))) (-15 -2564 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-219) (-219) (-535))) (-15 -2565 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-535)))) -((-2583 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535)) 45)) (-2582 (((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-535)) 44)) (-2581 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535)) 43)) (-2580 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 42)) (-2579 (((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535)) 41)) (-2578 (((-1006) (-1124) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535)) 40)) (-2577 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535) (-535) (-535) (-219) (-665 (-219)) (-535)) 39)) (-2576 (((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535))) 38)) (-2575 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535)) 35)) (-2574 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535)) 34)) (-2573 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535)) 33)) (-2572 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 32)) (-2571 (((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535)) 31)) (-2570 (((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-535)) 30)) (-2569 (((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-535) (-535) (-535)) 29)) (-2568 (((-1006) (-535) (-535) (-535) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-535)) (-535) (-535) (-535)) 28)) (-2567 (((-1006) (-535) (-665 (-219)) (-219) (-535)) 24)) (-2566 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 21))) -(((-729) (-10 -7 (-15 -2566 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2567 ((-1006) (-535) (-665 (-219)) (-219) (-535))) (-15 -2568 ((-1006) (-535) (-535) (-535) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-535)) (-535) (-535) (-535))) (-15 -2569 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-535) (-535) (-535))) (-15 -2570 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-535))) (-15 -2571 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535))) (-15 -2572 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2573 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535))) (-15 -2574 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535))) (-15 -2575 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2576 ((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)))) (-15 -2577 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535) (-535) (-535) (-219) (-665 (-219)) (-535))) (-15 -2578 ((-1006) (-1124) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535))) (-15 -2579 ((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2580 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2581 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))) (-15 -2582 ((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2583 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))))) (T -729)) -((-2583 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2582 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2581 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2580 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2579 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2578 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *7 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2577 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *6 (-219)) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2576 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *7 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2575 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2574 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2573 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2572 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2571 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2570 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2569 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2568 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) (-5 *3 (-535)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2567 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2566 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729))))) -(-10 -7 (-15 -2566 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2567 ((-1006) (-535) (-665 (-219)) (-219) (-535))) (-15 -2568 ((-1006) (-535) (-535) (-535) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-535)) (-535) (-535) (-535))) (-15 -2569 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-535) (-535) (-535))) (-15 -2570 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-535))) (-15 -2571 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535))) (-15 -2572 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2573 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535))) (-15 -2574 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535))) (-15 -2575 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2576 ((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)))) (-15 -2577 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535) (-535) (-535) (-219) (-665 (-219)) (-535))) (-15 -2578 ((-1006) (-1124) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535))) (-15 -2579 ((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2580 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2581 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))) (-15 -2582 ((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2583 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535)))) -((-2591 (((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-535) (-665 (-219)) (-535)) 63)) (-2590 (((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-112) (-219) (-535) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-535) (-535) (-535) (-535) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2589 (((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-535) (-535) (-665 (-219)) (-665 (-535)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) 58)) (-2588 (((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-535) (-535) (-665 (-219)) (-535)) 51)) (-2587 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2586 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2585 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2584 (((-1006) (-535) (-219) (-219) (-535) (-219) (-112) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-730) (-10 -7 (-15 -2584 ((-1006) (-535) (-219) (-219) (-535) (-219) (-112) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2585 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2586 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2))))) (-15 -2587 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2588 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-535) (-535) (-665 (-219)) (-535))) (-15 -2589 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-535) (-535) (-665 (-219)) (-665 (-535)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2590 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-112) (-219) (-535) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-535) (-535) (-535) (-535) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2591 ((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-535) (-665 (-219)) (-535))))) (T -730)) -((-2591 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2590 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-665 (-535))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2589 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-665 (-219))) (-5 *6 (-112)) (-5 *7 (-665 (-535))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-535)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2588 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2587 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2586 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2585 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2584 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-535)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730))))) -(-10 -7 (-15 -2584 ((-1006) (-535) (-219) (-219) (-535) (-219) (-112) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2585 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2586 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2))))) (-15 -2587 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2588 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-535) (-535) (-665 (-219)) (-535))) (-15 -2589 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-535) (-535) (-665 (-219)) (-665 (-535)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2590 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-112) (-219) (-535) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-535) (-535) (-535) (-535) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2591 ((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-535) (-665 (-219)) (-535)))) -((-2601 (((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535)) 47)) (-2600 (((-1006) (-1124) (-1124) (-535) (-535) (-665 (-166 (-219))) (-535) (-665 (-166 (-219))) (-535) (-535) (-665 (-166 (-219))) (-535)) 46)) (-2599 (((-1006) (-535) (-535) (-535) (-665 (-166 (-219))) (-535)) 45)) (-2598 (((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 40)) (-2597 (((-1006) (-1124) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)) (-535)) 39)) (-2596 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-535)) 36)) (-2595 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535)) 35)) (-2594 (((-1006) (-535) (-535) (-535) (-535) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-219) (-219) (-535)) 34)) (-2593 (((-1006) (-535) (-535) (-535) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-112) (-219) (-112) (-665 (-535)) (-665 (-219)) (-535)) 33)) (-2592 (((-1006) (-535) (-535) (-535) (-535) (-219) (-112) (-112) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-535)) 32))) -(((-731) (-10 -7 (-15 -2592 ((-1006) (-535) (-535) (-535) (-535) (-219) (-112) (-112) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-535))) (-15 -2593 ((-1006) (-535) (-535) (-535) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-112) (-219) (-112) (-665 (-535)) (-665 (-219)) (-535))) (-15 -2594 ((-1006) (-535) (-535) (-535) (-535) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-219) (-219) (-535))) (-15 -2595 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535))) (-15 -2596 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-535))) (-15 -2597 ((-1006) (-1124) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)) (-535))) (-15 -2598 ((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2599 ((-1006) (-535) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2600 ((-1006) (-1124) (-1124) (-535) (-535) (-665 (-166 (-219))) (-535) (-665 (-166 (-219))) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2601 ((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535))))) (T -731)) -((-2601 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2600 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2599 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2598 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2597 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2596 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2595 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2594 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-618 (-112))) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) (-5 *7 (-219)) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2593 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-665 (-535))) (-5 *5 (-112)) (-5 *7 (-665 (-219))) (-5 *3 (-535)) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2592 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-618 (-112))) (-5 *7 (-665 (-219))) (-5 *8 (-665 (-535))) (-5 *3 (-535)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-731))))) -(-10 -7 (-15 -2592 ((-1006) (-535) (-535) (-535) (-535) (-219) (-112) (-112) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-535))) (-15 -2593 ((-1006) (-535) (-535) (-535) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-112) (-219) (-112) (-665 (-535)) (-665 (-219)) (-535))) (-15 -2594 ((-1006) (-535) (-535) (-535) (-535) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-219) (-219) (-535))) (-15 -2595 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535))) (-15 -2596 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-535))) (-15 -2597 ((-1006) (-1124) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)) (-535))) (-15 -2598 ((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2599 ((-1006) (-535) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2600 ((-1006) (-1124) (-1124) (-535) (-535) (-665 (-166 (-219))) (-535) (-665 (-166 (-219))) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2601 ((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535)))) -((-2616 (((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535)) 65)) (-2615 (((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535)) 60)) (-2614 (((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381)) 56) (((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) 55)) (-2613 (((-1006) (-535) (-535) (-535) (-219) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535)) 37)) (-2612 (((-1006) (-535) (-535) (-219) (-219) (-535) (-535) (-665 (-219)) (-535)) 33)) (-2611 (((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535) (-535)) 30)) (-2610 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 29)) (-2609 (((-1006) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 28)) (-2608 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 27)) (-2607 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535)) 26)) (-2606 (((-1006) (-535) (-535) (-665 (-219)) (-535)) 25)) (-2605 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 24)) (-2604 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 23)) (-2603 (((-1006) (-665 (-219)) (-535) (-535) (-535) (-535)) 22)) (-2602 (((-1006) (-535) (-535) (-665 (-219)) (-535)) 21))) -(((-732) (-10 -7 (-15 -2602 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2603 ((-1006) (-665 (-219)) (-535) (-535) (-535) (-535))) (-15 -2604 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2605 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2606 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2607 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535))) (-15 -2608 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2609 ((-1006) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2610 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2611 ((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535) (-535))) (-15 -2612 ((-1006) (-535) (-535) (-219) (-219) (-535) (-535) (-665 (-219)) (-535))) (-15 -2613 ((-1006) (-535) (-535) (-535) (-219) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2614 ((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2614 ((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2615 ((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2616 ((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535))))) (T -732)) -((-2616 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-112)) (-5 *5 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2615 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-112)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2614 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2614 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2613 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-535)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2612 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2611 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2610 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2609 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2608 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2607 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2606 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2605 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2604 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2603 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2602 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(-10 -7 (-15 -2602 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2603 ((-1006) (-665 (-219)) (-535) (-535) (-535) (-535))) (-15 -2604 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2605 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2606 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2607 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535))) (-15 -2608 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2609 ((-1006) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2610 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2611 ((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535) (-535))) (-15 -2612 ((-1006) (-535) (-535) (-219) (-219) (-535) (-535) (-665 (-219)) (-535))) (-15 -2613 ((-1006) (-535) (-535) (-535) (-219) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2614 ((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2614 ((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2615 ((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2616 ((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535)))) -((-2627 (((-1006) (-535) (-535) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) 61)) (-2626 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535)) 57)) (-2625 (((-1006) (-535) (-665 (-219)) (-112) (-219) (-535) (-535) (-535) (-535) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2624 (((-1006) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535)) 37)) (-2623 (((-1006) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-535)) 36)) (-2622 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 33)) (-2621 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219))) 32)) (-2620 (((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535)) 28)) (-2619 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535)) 27)) (-2618 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535)) 26)) (-2617 (((-1006) (-535) (-665 (-166 (-219))) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-535)) 22))) -(((-733) (-10 -7 (-15 -2617 ((-1006) (-535) (-665 (-166 (-219))) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2618 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2619 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2620 ((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535))) (-15 -2621 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)))) (-15 -2622 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2623 ((-1006) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2624 ((-1006) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535))) (-15 -2625 ((-1006) (-535) (-665 (-219)) (-112) (-219) (-535) (-535) (-535) (-535) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2626 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535))) (-15 -2627 ((-1006) (-535) (-535) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))) (T -733)) -((-2627 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2626 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2625 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2624 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2623 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2622 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2621 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2620 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2619 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2618 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2617 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-733))))) -(-10 -7 (-15 -2617 ((-1006) (-535) (-665 (-166 (-219))) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2618 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2619 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2620 ((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535))) (-15 -2621 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)))) (-15 -2622 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2623 ((-1006) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2624 ((-1006) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535))) (-15 -2625 ((-1006) (-535) (-665 (-219)) (-112) (-219) (-535) (-535) (-535) (-535) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2626 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535))) (-15 -2627 ((-1006) (-535) (-535) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))))) -((-2631 (((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-535) (-665 (-219))) 29)) (-2630 (((-1006) (-1124) (-535) (-535) (-665 (-219))) 28)) (-2629 (((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-219))) 27)) (-2628 (((-1006) (-535) (-535) (-535) (-665 (-219))) 21))) -(((-734) (-10 -7 (-15 -2628 ((-1006) (-535) (-535) (-535) (-665 (-219)))) (-15 -2629 ((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-219)))) (-15 -2630 ((-1006) (-1124) (-535) (-535) (-665 (-219)))) (-15 -2631 ((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)))))) (T -734)) -((-2631 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))) (-2630 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))) (-2629 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-734)))) (-2628 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734))))) -(-10 -7 (-15 -2628 ((-1006) (-535) (-535) (-535) (-665 (-219)))) (-15 -2629 ((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-219)))) (-15 -2630 ((-1006) (-1124) (-535) (-535) (-665 (-219)))) (-15 -2631 ((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-535) (-665 (-219))))) -((-2669 (((-1006) (-219) (-219) (-219) (-219) (-535)) 62)) (-2668 (((-1006) (-219) (-219) (-219) (-535)) 61)) (-2667 (((-1006) (-219) (-219) (-219) (-535)) 60)) (-2666 (((-1006) (-219) (-219) (-535)) 59)) (-2665 (((-1006) (-219) (-535)) 58)) (-2664 (((-1006) (-219) (-535)) 57)) (-2663 (((-1006) (-219) (-535)) 56)) (-2662 (((-1006) (-219) (-535)) 55)) (-2661 (((-1006) (-219) (-535)) 54)) (-2660 (((-1006) (-219) (-535)) 53)) (-2659 (((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535)) 52)) (-2658 (((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535)) 51)) (-2657 (((-1006) (-219) (-535)) 50)) (-2656 (((-1006) (-219) (-535)) 49)) (-2655 (((-1006) (-219) (-535)) 48)) (-2654 (((-1006) (-219) (-535)) 47)) (-2653 (((-1006) (-535) (-219) (-166 (-219)) (-535) (-1124) (-535)) 46)) (-2652 (((-1006) (-1124) (-166 (-219)) (-1124) (-535)) 45)) (-2651 (((-1006) (-1124) (-166 (-219)) (-1124) (-535)) 44)) (-2650 (((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535)) 43)) (-2649 (((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535)) 42)) (-2648 (((-1006) (-219) (-535)) 39)) (-2647 (((-1006) (-219) (-535)) 38)) (-2646 (((-1006) (-219) (-535)) 37)) (-2645 (((-1006) (-219) (-535)) 36)) (-2644 (((-1006) (-219) (-535)) 35)) (-2643 (((-1006) (-219) (-535)) 34)) (-2642 (((-1006) (-219) (-535)) 33)) (-2641 (((-1006) (-219) (-535)) 32)) (-2640 (((-1006) (-219) (-535)) 31)) (-2639 (((-1006) (-219) (-535)) 30)) (-2638 (((-1006) (-219) (-219) (-219) (-535)) 29)) (-2637 (((-1006) (-219) (-535)) 28)) (-2636 (((-1006) (-219) (-535)) 27)) (-2635 (((-1006) (-219) (-535)) 26)) (-2634 (((-1006) (-219) (-535)) 25)) (-2633 (((-1006) (-219) (-535)) 24)) (-2632 (((-1006) (-166 (-219)) (-535)) 21))) -(((-735) (-10 -7 (-15 -2632 ((-1006) (-166 (-219)) (-535))) (-15 -2633 ((-1006) (-219) (-535))) (-15 -2634 ((-1006) (-219) (-535))) (-15 -2635 ((-1006) (-219) (-535))) (-15 -2636 ((-1006) (-219) (-535))) (-15 -2637 ((-1006) (-219) (-535))) (-15 -2638 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2639 ((-1006) (-219) (-535))) (-15 -2640 ((-1006) (-219) (-535))) (-15 -2641 ((-1006) (-219) (-535))) (-15 -2642 ((-1006) (-219) (-535))) (-15 -2643 ((-1006) (-219) (-535))) (-15 -2644 ((-1006) (-219) (-535))) (-15 -2645 ((-1006) (-219) (-535))) (-15 -2646 ((-1006) (-219) (-535))) (-15 -2647 ((-1006) (-219) (-535))) (-15 -2648 ((-1006) (-219) (-535))) (-15 -2649 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2650 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2651 ((-1006) (-1124) (-166 (-219)) (-1124) (-535))) (-15 -2652 ((-1006) (-1124) (-166 (-219)) (-1124) (-535))) (-15 -2653 ((-1006) (-535) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2654 ((-1006) (-219) (-535))) (-15 -2655 ((-1006) (-219) (-535))) (-15 -2656 ((-1006) (-219) (-535))) (-15 -2657 ((-1006) (-219) (-535))) (-15 -2658 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2659 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2660 ((-1006) (-219) (-535))) (-15 -2661 ((-1006) (-219) (-535))) (-15 -2662 ((-1006) (-219) (-535))) (-15 -2663 ((-1006) (-219) (-535))) (-15 -2664 ((-1006) (-219) (-535))) (-15 -2665 ((-1006) (-219) (-535))) (-15 -2666 ((-1006) (-219) (-219) (-535))) (-15 -2667 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2668 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2669 ((-1006) (-219) (-219) (-219) (-219) (-535))))) (T -735)) -((-2669 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2668 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2667 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2666 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2659 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2658 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2654 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2653 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-535)) (-5 *5 (-166 (-219))) (-5 *6 (-1124)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2652 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2651 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2650 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2649 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2638 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2637 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(-10 -7 (-15 -2632 ((-1006) (-166 (-219)) (-535))) (-15 -2633 ((-1006) (-219) (-535))) (-15 -2634 ((-1006) (-219) (-535))) (-15 -2635 ((-1006) (-219) (-535))) (-15 -2636 ((-1006) (-219) (-535))) (-15 -2637 ((-1006) (-219) (-535))) (-15 -2638 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2639 ((-1006) (-219) (-535))) (-15 -2640 ((-1006) (-219) (-535))) (-15 -2641 ((-1006) (-219) (-535))) (-15 -2642 ((-1006) (-219) (-535))) (-15 -2643 ((-1006) (-219) (-535))) (-15 -2644 ((-1006) (-219) (-535))) (-15 -2645 ((-1006) (-219) (-535))) (-15 -2646 ((-1006) (-219) (-535))) (-15 -2647 ((-1006) (-219) (-535))) (-15 -2648 ((-1006) (-219) (-535))) (-15 -2649 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2650 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2651 ((-1006) (-1124) (-166 (-219)) (-1124) (-535))) (-15 -2652 ((-1006) (-1124) (-166 (-219)) (-1124) (-535))) (-15 -2653 ((-1006) (-535) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2654 ((-1006) (-219) (-535))) (-15 -2655 ((-1006) (-219) (-535))) (-15 -2656 ((-1006) (-219) (-535))) (-15 -2657 ((-1006) (-219) (-535))) (-15 -2658 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2659 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2660 ((-1006) (-219) (-535))) (-15 -2661 ((-1006) (-219) (-535))) (-15 -2662 ((-1006) (-219) (-535))) (-15 -2663 ((-1006) (-219) (-535))) (-15 -2664 ((-1006) (-219) (-535))) (-15 -2665 ((-1006) (-219) (-535))) (-15 -2666 ((-1006) (-219) (-219) (-535))) (-15 -2667 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2668 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2669 ((-1006) (-219) (-219) (-219) (-219) (-535)))) -((-2675 (((-1230)) 18)) (-2671 (((-1124)) 22)) (-2670 (((-1124)) 21)) (-2673 (((-1069) (-1142) (-665 (-535))) 37) (((-1069) (-1142) (-665 (-219))) 32)) (-2674 (((-112)) 16)) (-2672 (((-1124) (-1124)) 25))) -(((-736) (-10 -7 (-15 -2670 ((-1124))) (-15 -2671 ((-1124))) (-15 -2672 ((-1124) (-1124))) (-15 -2673 ((-1069) (-1142) (-665 (-219)))) (-15 -2673 ((-1069) (-1142) (-665 (-535)))) (-15 -2674 ((-112))) (-15 -2675 ((-1230))))) (T -736)) -((-2675 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-736)))) (-2674 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-736)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-535))) (-5 *2 (-1069)) (-5 *1 (-736)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-219))) (-5 *2 (-1069)) (-5 *1 (-736)))) (-2672 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))) (-2671 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))) (-2670 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736))))) -(-10 -7 (-15 -2670 ((-1124))) (-15 -2671 ((-1124))) (-15 -2672 ((-1124) (-1124))) (-15 -2673 ((-1069) (-1142) (-665 (-219)))) (-15 -2673 ((-1069) (-1142) (-665 (-535)))) (-15 -2674 ((-112))) (-15 -2675 ((-1230)))) -((-2677 (($ $ $) 10)) (-2678 (($ $ $ $) 9)) (-2676 (($ $ $) 12))) -(((-737 |#1|) (-10 -8 (-15 -2676 (|#1| |#1| |#1|)) (-15 -2677 (|#1| |#1| |#1|)) (-15 -2678 (|#1| |#1| |#1| |#1|))) (-738)) (T -737)) -NIL -(-10 -8 (-15 -2676 (|#1| |#1| |#1|)) (-15 -2677 (|#1| |#1| |#1|)) (-15 -2678 (|#1| |#1| |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2490 (($ $ (-890)) 28)) (-2489 (($ $ (-890)) 29)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-2677 (($ $ $) 25)) (-4300 (((-835) $) 11)) (-2678 (($ $ $ $) 26)) (-2676 (($ $ $) 24)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27))) -(((-738) (-138)) (T -738)) -((-2678 (*1 *1 *1 *1 *1) (-4 *1 (-738))) (-2677 (*1 *1 *1 *1) (-4 *1 (-738))) (-2676 (*1 *1 *1 *1) (-4 *1 (-738)))) -(-13 (-21) (-697) (-10 -8 (-15 -2678 ($ $ $ $)) (-15 -2677 ($ $ $)) (-15 -2676 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-697) . T) ((-1067) . T)) -((-4300 (((-835) $) NIL) (($ (-535)) 10))) -(((-739 |#1|) (-10 -8 (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-740)) (T -739)) -NIL -(-10 -8 (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2487 (((-3 $ #1="failed") $) 40)) (-2490 (($ $ (-890)) 28) (($ $ (-747)) 35)) (-3804 (((-3 $ #1#) $) 38)) (-2493 (((-112) $) 34)) (-2488 (((-3 $ #1#) $) 39)) (-2489 (($ $ (-890)) 29) (($ $ (-747)) 36)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-2677 (($ $ $) 25)) (-4300 (((-835) $) 11) (($ (-535)) 31)) (-3444 (((-747)) 32)) (-2678 (($ $ $ $) 26)) (-2676 (($ $ $) 24)) (-2979 (($) 18 T CONST)) (-2985 (($) 33 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30) (($ $ (-747)) 37)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27))) +((* (*1 *1 *1 *1) (-4 *1 (-699))) (-2923 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-894)))) (-2834 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-894)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-894))))) +(-13 (-1068) (-10 -8 (-15 * ($ $ $)) (-15 -2923 ($ $ (-894))) (-15 -2834 ($ $ (-894))) (-15 ** ($ $ (-894))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-2923 (($ $ (-894)) NIL) (($ $ (-749)) 17)) (-3102 (((-112) $) 10)) (-2834 (($ $ (-894)) NIL) (($ $ (-749)) 18)) (** (($ $ (-894)) NIL) (($ $ (-749)) 15))) +(((-700 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-749))) (-15 -2834 (|#1| |#1| (-749))) (-15 -2923 (|#1| |#1| (-749))) (-15 -3102 ((-112) |#1|)) (-15 ** (|#1| |#1| (-894))) (-15 -2834 (|#1| |#1| (-894))) (-15 -2923 (|#1| |#1| (-894)))) (-701)) (T -700)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-749))) (-15 -2834 (|#1| |#1| (-749))) (-15 -2923 (|#1| |#1| (-749))) (-15 -3102 ((-112) |#1|)) (-15 ** (|#1| |#1| (-894))) (-15 -2834 (|#1| |#1| (-894))) (-15 -2923 (|#1| |#1| (-894)))) +((-1504 (((-112) $ $) 7)) (-3818 (((-3 $ "failed") $) 17)) (-2923 (($ $ (-894)) 15) (($ $ (-749)) 22)) (-1386 (((-3 $ "failed") $) 19)) (-3102 (((-112) $) 23)) (-2732 (((-3 $ "failed") $) 18)) (-2834 (($ $ (-894)) 14) (($ $ (-749)) 21)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2636 (($) 24 T CONST)) (-2316 (((-112) $ $) 6)) (** (($ $ (-894)) 13) (($ $ (-749)) 20)) (* (($ $ $) 16))) +(((-701) (-138)) (T -701)) +((-2636 (*1 *1) (-4 *1 (-701))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) (-2923 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (-2834 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (-1386 (*1 *1 *1) (|partial| -4 *1 (-701))) (-2732 (*1 *1 *1) (|partial| -4 *1 (-701))) (-3818 (*1 *1 *1) (|partial| -4 *1 (-701)))) +(-13 (-699) (-10 -8 (-15 (-2636) ($) -2258) (-15 -3102 ((-112) $)) (-15 -2923 ($ $ (-749))) (-15 -2834 ($ $ (-749))) (-15 ** ($ $ (-749))) (-15 -1386 ((-3 $ "failed") $)) (-15 -2732 ((-3 $ "failed") $)) (-15 -3818 ((-3 $ "failed") $)))) +(((-101) . T) ((-595 (-836)) . T) ((-699) . T) ((-1068) . T)) +((-4319 (((-749)) 34)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2726 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#2| $) 22)) (-2419 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) 44)) (-1386 (((-3 $ "failed") $) 64)) (-1741 (($) 38)) (-1389 ((|#2| $) 20)) (-3935 (($) 17)) (-2393 (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-3013 (((-667 |#2|) (-1227 $) (-1 |#2| |#2|)) 59)) (-4028 (((-1227 |#2|) $) NIL) (($ (-1227 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2608 ((|#3| $) 32)) (-2437 (((-1227 $)) 29))) +(((-702 |#1| |#2| |#3|) (-10 -8 (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -1741 (|#1|)) (-15 -4319 ((-749))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -3013 ((-667 |#2|) (-1227 |#1|) (-1 |#2| |#2|))) (-15 -2419 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4028 (|#1| |#3|)) (-15 -2419 (|#1| |#3|)) (-15 -3935 (|#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -4028 (|#3| |#1|)) (-15 -4028 (|#1| (-1227 |#2|))) (-15 -4028 ((-1227 |#2|) |#1|)) (-15 -2437 ((-1227 |#1|))) (-15 -2608 (|#3| |#1|)) (-15 -1389 (|#2| |#1|)) (-15 -1386 ((-3 |#1| "failed") |#1|))) (-703 |#2| |#3|) (-170) (-1203 |#2|)) (T -702)) +((-4319 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-749)) (-5 *1 (-702 *3 *4 *5)) (-4 *3 (-703 *4 *5))))) +(-10 -8 (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -1741 (|#1|)) (-15 -4319 ((-749))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -3013 ((-667 |#2|) (-1227 |#1|) (-1 |#2| |#2|))) (-15 -2419 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4028 (|#1| |#3|)) (-15 -2419 (|#1| |#3|)) (-15 -3935 (|#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -4028 (|#3| |#1|)) (-15 -4028 (|#1| (-1227 |#2|))) (-15 -4028 ((-1227 |#2|) |#1|)) (-15 -2437 ((-1227 |#1|))) (-15 -2608 (|#3| |#1|)) (-15 -1389 (|#2| |#1|)) (-15 -1386 ((-3 |#1| "failed") |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 91 (|has| |#1| (-356)))) (-1447 (($ $) 92 (|has| |#1| (-356)))) (-4291 (((-112) $) 94 (|has| |#1| (-356)))) (-1615 (((-667 |#1|) (-1227 $)) 44) (((-667 |#1|)) 59)) (-2252 ((|#1| $) 50)) (-1337 (((-1154 (-894) (-749)) (-550)) 144 (|has| |#1| (-342)))) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 111 (|has| |#1| (-356)))) (-3564 (((-411 $) $) 112 (|has| |#1| (-356)))) (-3631 (((-112) $ $) 102 (|has| |#1| (-356)))) (-4319 (((-749)) 85 (|has| |#1| (-361)))) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 166 (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 164 (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 163)) (-2726 (((-550) $) 167 (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) 165 (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 162)) (-4110 (($ (-1227 |#1|) (-1227 $)) 46) (($ (-1227 |#1|)) 62)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-342)))) (-3349 (($ $ $) 106 (|has| |#1| (-356)))) (-2677 (((-667 |#1|) $ (-1227 $)) 51) (((-667 |#1|) $) 57)) (-3780 (((-667 (-550)) (-667 $)) 161 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 160 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 159) (((-667 |#1|) (-667 $)) 158)) (-2419 (($ |#2|) 155) (((-3 $ "failed") (-400 |#2|)) 152 (|has| |#1| (-356)))) (-1386 (((-3 $ "failed") $) 32)) (-2122 (((-894)) 52)) (-1741 (($) 88 (|has| |#1| (-361)))) (-1519 (($ $ $) 105 (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 100 (|has| |#1| (-356)))) (-3485 (($) 146 (|has| |#1| (-342)))) (-3697 (((-112) $) 147 (|has| |#1| (-342)))) (-3714 (($ $ (-749)) 138 (|has| |#1| (-342))) (($ $) 137 (|has| |#1| (-342)))) (-3933 (((-112) $) 113 (|has| |#1| (-356)))) (-2475 (((-894) $) 149 (|has| |#1| (-342))) (((-811 (-894)) $) 135 (|has| |#1| (-342)))) (-3102 (((-112) $) 30)) (-1389 ((|#1| $) 49)) (-2826 (((-3 $ "failed") $) 139 (|has| |#1| (-342)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 109 (|has| |#1| (-356)))) (-1428 ((|#2| $) 42 (|has| |#1| (-356)))) (-2253 (((-894) $) 87 (|has| |#1| (-361)))) (-2407 ((|#2| $) 153)) (-3106 (($ (-623 $)) 98 (|has| |#1| (-356))) (($ $ $) 97 (|has| |#1| (-356)))) (-1825 (((-1126) $) 9)) (-3235 (($ $) 114 (|has| |#1| (-356)))) (-3862 (($) 140 (|has| |#1| (-342)) CONST)) (-2922 (($ (-894)) 86 (|has| |#1| (-361)))) (-3337 (((-1088) $) 10)) (-3935 (($) 157)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 99 (|has| |#1| (-356)))) (-3139 (($ (-623 $)) 96 (|has| |#1| (-356))) (($ $ $) 95 (|has| |#1| (-356)))) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) 143 (|has| |#1| (-342)))) (-3338 (((-411 $) $) 110 (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 107 (|has| |#1| (-356)))) (-1495 (((-3 $ "failed") $ $) 90 (|has| |#1| (-356)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 101 (|has| |#1| (-356)))) (-3542 (((-749) $) 103 (|has| |#1| (-356)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 104 (|has| |#1| (-356)))) (-3453 ((|#1| (-1227 $)) 45) ((|#1|) 58)) (-3811 (((-749) $) 148 (|has| |#1| (-342))) (((-3 (-749) "failed") $ $) 136 (|has| |#1| (-342)))) (-2393 (($ $) 134 (-1561 (-1262 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-749)) 132 (-1561 (-1262 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1144)) 130 (-1262 (|has| |#1| (-873 (-1144))) (|has| |#1| (-356)))) (($ $ (-623 (-1144))) 129 (-1262 (|has| |#1| (-873 (-1144))) (|has| |#1| (-356)))) (($ $ (-1144) (-749)) 128 (-1262 (|has| |#1| (-873 (-1144))) (|has| |#1| (-356)))) (($ $ (-623 (-1144)) (-623 (-749))) 127 (-1262 (|has| |#1| (-873 (-1144))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-749)) 120 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-356)))) (-3013 (((-667 |#1|) (-1227 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-1310 ((|#2|) 156)) (-4288 (($) 145 (|has| |#1| (-342)))) (-1373 (((-1227 |#1|) $ (-1227 $)) 48) (((-667 |#1|) (-1227 $) (-1227 $)) 47) (((-1227 |#1|) $) 64) (((-667 |#1|) (-1227 $)) 63)) (-4028 (((-1227 |#1|) $) 61) (($ (-1227 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 142 (|has| |#1| (-342)))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-356))) (($ (-400 (-550))) 84 (-1561 (|has| |#1| (-356)) (|has| |#1| (-1011 (-400 (-550))))))) (-4242 (($ $) 141 (|has| |#1| (-342))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2608 ((|#2| $) 43)) (-2390 (((-749)) 28)) (-2437 (((-1227 $)) 65)) (-1345 (((-112) $ $) 93 (|has| |#1| (-356)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $) 133 (-1561 (-1262 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-749)) 131 (-1561 (-1262 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1144)) 126 (-1262 (|has| |#1| (-873 (-1144))) (|has| |#1| (-356)))) (($ $ (-623 (-1144))) 125 (-1262 (|has| |#1| (-873 (-1144))) (|has| |#1| (-356)))) (($ $ (-1144) (-749)) 124 (-1262 (|has| |#1| (-873 (-1144))) (|has| |#1| (-356)))) (($ $ (-623 (-1144)) (-623 (-749))) 123 (-1262 (|has| |#1| (-873 (-1144))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-749)) 122 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-356)))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 118 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 115 (|has| |#1| (-356)))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-550)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-550))) 116 (|has| |#1| (-356))))) +(((-703 |#1| |#2|) (-138) (-170) (-1203 |t#1|)) (T -703)) +((-3935 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-703 *2 *3)) (-4 *3 (-1203 *2)))) (-1310 (*1 *2) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1203 *3)))) (-2419 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1203 *3)))) (-4028 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1203 *3)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1203 *3)))) (-2419 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-356)) (-4 *3 (-170)) (-4 *1 (-703 *3 *4)))) (-3013 (*1 *2 *3 *4) (-12 (-5 *3 (-1227 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-4 *1 (-703 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1203 *5)) (-5 *2 (-667 *5))))) +(-13 (-402 |t#1| |t#2|) (-170) (-596 |t#2|) (-404 |t#1|) (-370 |t#1|) (-10 -8 (-15 -3935 ($)) (-15 -1310 (|t#2|)) (-15 -2419 ($ |t#2|)) (-15 -4028 ($ |t#2|)) (-15 -2407 (|t#2| $)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-356)) (-6 (-225 |t#1|)) (-15 -2419 ((-3 $ "failed") (-400 |t#2|))) (-15 -3013 ((-667 |t#1|) (-1227 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-342)) (-6 (-342)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-101) . T) ((-111 #0# #0#) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1561 (|has| |#1| (-342)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) . T) ((-596 |#2|) . T) ((-225 |#1|) |has| |#1| (-356)) ((-227) -1561 (|has| |#1| (-342)) (-12 (|has| |#1| (-227)) (|has| |#1| (-356)))) ((-237) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-283) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-300) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-356) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-395) |has| |#1| (-342)) ((-361) -1561 (|has| |#1| (-361)) (|has| |#1| (-342))) ((-342) |has| |#1| (-342)) ((-363 |#1| |#2|) . T) ((-402 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-542) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-626 #0#) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-696 |#1|) . T) ((-696 $) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-705) . T) ((-873 (-1144)) -12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144)))) ((-893) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1026 #0#) -1561 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1026 |#1|) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) |has| |#1| (-342)) ((-1185) -1561 (|has| |#1| (-342)) (|has| |#1| (-356)))) +((-3513 (($) 11)) (-1386 (((-3 $ "failed") $) 13)) (-3102 (((-112) $) 10)) (** (($ $ (-894)) NIL) (($ $ (-749)) 18))) +(((-704 |#1|) (-10 -8 (-15 -1386 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 -3102 ((-112) |#1|)) (-15 -3513 (|#1|)) (-15 ** (|#1| |#1| (-894)))) (-705)) (T -704)) +NIL +(-10 -8 (-15 -1386 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 -3102 ((-112) |#1|)) (-15 -3513 (|#1|)) (-15 ** (|#1| |#1| (-894)))) +((-1504 (((-112) $ $) 7)) (-3513 (($) 18 T CONST)) (-1386 (((-3 $ "failed") $) 15)) (-3102 (((-112) $) 17)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2636 (($) 19 T CONST)) (-2316 (((-112) $ $) 6)) (** (($ $ (-894)) 13) (($ $ (-749)) 16)) (* (($ $ $) 14))) +(((-705) (-138)) (T -705)) +((-2636 (*1 *1) (-4 *1 (-705))) (-3513 (*1 *1) (-4 *1 (-705))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-749)))) (-1386 (*1 *1 *1) (|partial| -4 *1 (-705)))) +(-13 (-1080) (-10 -8 (-15 (-2636) ($) -2258) (-15 -3513 ($) -2258) (-15 -3102 ((-112) $)) (-15 ** ($ $ (-749))) (-15 -1386 ((-3 $ "failed") $)))) +(((-101) . T) ((-595 (-836)) . T) ((-1080) . T) ((-1068) . T)) +((-3197 (((-2 (|:| -2005 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1716 (((-2 (|:| -2005 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2189 ((|#2| (-400 |#2|) (-1 |#2| |#2|)) 13)) (-3417 (((-2 (|:| |poly| |#2|) (|:| -2005 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)) 47))) +(((-706 |#1| |#2|) (-10 -7 (-15 -1716 ((-2 (|:| -2005 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3197 ((-2 (|:| -2005 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2189 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3417 ((-2 (|:| |poly| |#2|) (|:| -2005 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1203 |#1|)) (T -706)) +((-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2005 (-400 *6)) (|:| |special| (-400 *6)))) (-5 *1 (-706 *5 *6)) (-5 *3 (-400 *6)))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1203 *5)) (-5 *1 (-706 *5 *2)) (-4 *5 (-356)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2005 (-411 *3)) (|:| |special| (-411 *3)))) (-5 *1 (-706 *5 *3)))) (-1716 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2005 *3) (|:| |special| *3))) (-5 *1 (-706 *5 *3))))) +(-10 -7 (-15 -1716 ((-2 (|:| -2005 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3197 ((-2 (|:| -2005 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2189 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3417 ((-2 (|:| |poly| |#2|) (|:| -2005 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) +((-2202 ((|#7| (-623 |#5|) |#6|) NIL)) (-3972 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-707 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3972 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2202 (|#7| (-623 |#5|) |#6|))) (-825) (-771) (-771) (-1020) (-1020) (-922 |#4| |#2| |#1|) (-922 |#5| |#3| |#1|)) (T -707)) +((-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *9)) (-4 *9 (-1020)) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-1020)) (-4 *2 (-922 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) (-4 *4 (-922 *8 *6 *5)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1020)) (-4 *9 (-1020)) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *2 (-922 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) (-4 *4 (-922 *8 *6 *5))))) +(-10 -7 (-15 -3972 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2202 (|#7| (-623 |#5|) |#6|))) +((-3972 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-708 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3972 (|#7| (-1 |#2| |#1|) |#6|))) (-825) (-825) (-771) (-771) (-1020) (-922 |#5| |#3| |#1|) (-922 |#5| |#4| |#2|)) (T -708)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-4 *7 (-771)) (-4 *9 (-1020)) (-4 *2 (-922 *9 *8 *6)) (-5 *1 (-708 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-771)) (-4 *4 (-922 *9 *7 *5))))) +(-10 -7 (-15 -3972 (|#7| (-1 |#2| |#1|) |#6|))) +((-3338 (((-411 |#4|) |#4|) 41))) +(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3338 ((-411 |#4|) |#4|))) (-771) (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144))))) (-300) (-922 (-925 |#3|) |#1| |#2|)) (T -709)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144)))))) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-922 (-925 *6) *4 *5))))) +(-10 -7 (-15 -3338 ((-411 |#4|) |#4|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-838 |#1|)) $) NIL)) (-3306 (((-1140 $) $ (-838 |#1|)) NIL) (((-1140 |#2|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-1447 (($ $) NIL (|has| |#2| (-542)))) (-4291 (((-112) $) NIL (|has| |#2| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-838 |#1|))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-1505 (($ $) NIL (|has| |#2| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#2| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-838 |#1|) "failed") $) NIL)) (-2726 ((|#2| $) NIL) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1011 (-550)))) (((-838 |#1|) $) NIL)) (-3340 (($ $ $ (-838 |#1|)) NIL (|has| |#2| (-170)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#2| (-444))) (($ $ (-838 |#1|)) NIL (|has| |#2| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#2| (-882)))) (-2613 (($ $ |#2| (-522 (-838 |#1|)) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-838 |#1|) (-859 (-372))) (|has| |#2| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-838 |#1|) (-859 (-550))) (|has| |#2| (-859 (-550)))))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3129 (($ (-1140 |#2|) (-838 |#1|)) NIL) (($ (-1140 $) (-838 |#1|)) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#2| (-522 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-838 |#1|)) NIL)) (-1667 (((-522 (-838 |#1|)) $) NIL) (((-749) $ (-838 |#1|)) NIL) (((-623 (-749)) $ (-623 (-838 |#1|))) NIL)) (-2707 (($ $ $) NIL (|has| |#2| (-825)))) (-4164 (($ $ $) NIL (|has| |#2| (-825)))) (-2688 (($ (-1 (-522 (-838 |#1|)) (-522 (-838 |#1|))) $) NIL)) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-2558 (((-3 (-838 |#1|) "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#2| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1825 (((-1126) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-838 |#1|)) (|:| -3521 (-749))) "failed") $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#2| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#2| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#2| (-882)))) (-1495 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-838 |#1|) |#2|) NIL) (($ $ (-623 (-838 |#1|)) (-623 |#2|)) NIL) (($ $ (-838 |#1|) $) NIL) (($ $ (-623 (-838 |#1|)) (-623 $)) NIL)) (-3453 (($ $ (-838 |#1|)) NIL (|has| |#2| (-170)))) (-2393 (($ $ (-838 |#1|)) NIL) (($ $ (-623 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2970 (((-522 (-838 |#1|)) $) NIL) (((-749) $ (-838 |#1|)) NIL) (((-623 (-749)) $ (-623 (-838 |#1|))) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-838 |#1|) (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-838 |#1|) (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-838 |#1|) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-2503 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-838 |#1|)) NIL (|has| |#2| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-838 |#1|)) NIL) (($ $) NIL (|has| |#2| (-542))) (($ (-400 (-550))) NIL (-1561 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1011 (-400 (-550))))))) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ (-522 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#2| (-882))) (|has| |#2| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-838 |#1|)) NIL) (($ $ (-623 (-838 |#1|))) NIL) (($ $ (-838 |#1|) (-749)) NIL) (($ $ (-623 (-838 |#1|)) (-623 (-749))) NIL)) (-2363 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-710 |#1| |#2|) (-922 |#2| (-522 (-838 |#1|)) (-838 |#1|)) (-623 (-1144)) (-1020)) (T -710)) +NIL +(-922 |#2| (-522 (-838 |#1|)) (-838 |#1|)) +((-2273 (((-2 (|:| -2270 (-925 |#3|)) (|:| -3983 (-925 |#3|))) |#4|) 14)) (-3117 ((|#4| |#4| |#2|) 33)) (-2524 ((|#4| (-400 (-925 |#3|)) |#2|) 64)) (-2441 ((|#4| (-1140 (-925 |#3|)) |#2|) 77)) (-2352 ((|#4| (-1140 |#4|) |#2|) 51)) (-3028 ((|#4| |#4| |#2|) 54)) (-3338 (((-411 |#4|) |#4|) 40))) +(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2273 ((-2 (|:| -2270 (-925 |#3|)) (|:| -3983 (-925 |#3|))) |#4|)) (-15 -3028 (|#4| |#4| |#2|)) (-15 -2352 (|#4| (-1140 |#4|) |#2|)) (-15 -3117 (|#4| |#4| |#2|)) (-15 -2441 (|#4| (-1140 (-925 |#3|)) |#2|)) (-15 -2524 (|#4| (-400 (-925 |#3|)) |#2|)) (-15 -3338 ((-411 |#4|) |#4|))) (-771) (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)))) (-542) (-922 (-400 (-925 |#3|)) |#1| |#2|)) (T -711)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *6 (-542)) (-5 *2 (-411 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-922 (-400 (-925 *6)) *4 *5)))) (-2524 (*1 *2 *3 *4) (-12 (-4 *6 (-542)) (-4 *2 (-922 *3 *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-5 *3 (-400 (-925 *6))) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-1140 (-925 *6))) (-4 *6 (-542)) (-4 *2 (-922 (-400 (-925 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))))) (-3117 (*1 *2 *2 *3) (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *5 (-542)) (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-922 (-400 (-925 *5)) *4 *3)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *3 (-1140 *2)) (-4 *2 (-922 (-400 (-925 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *6 (-542)))) (-3028 (*1 *2 *2 *3) (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *5 (-542)) (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-922 (-400 (-925 *5)) *4 *3)))) (-2273 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *6 (-542)) (-5 *2 (-2 (|:| -2270 (-925 *6)) (|:| -3983 (-925 *6)))) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-922 (-400 (-925 *6)) *4 *5))))) +(-10 -7 (-15 -2273 ((-2 (|:| -2270 (-925 |#3|)) (|:| -3983 (-925 |#3|))) |#4|)) (-15 -3028 (|#4| |#4| |#2|)) (-15 -2352 (|#4| (-1140 |#4|) |#2|)) (-15 -3117 (|#4| |#4| |#2|)) (-15 -2441 (|#4| (-1140 (-925 |#3|)) |#2|)) (-15 -2524 (|#4| (-400 (-925 |#3|)) |#2|)) (-15 -3338 ((-411 |#4|) |#4|))) +((-3338 (((-411 |#4|) |#4|) 52))) +(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3338 ((-411 |#4|) |#4|))) (-771) (-825) (-13 (-300) (-145)) (-922 (-400 |#3|) |#1| |#2|)) (T -712)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-712 *4 *5 *6 *3)) (-4 *3 (-922 (-400 *6) *4 *5))))) +(-10 -7 (-15 -3338 ((-411 |#4|) |#4|))) +((-3972 (((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)) 18))) +(((-713 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)))) (-1020) (-1020) (-705)) (T -713)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5 *7)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-705)) (-5 *2 (-714 *6 *7)) (-5 *1 (-713 *5 *6 *7))))) +(-10 -7 (-15 -3972 ((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 28)) (-2575 (((-623 (-2 (|:| -2855 |#1|) (|:| -1792 |#2|))) $) 29)) (-3219 (((-3 $ "failed") $ $) NIL)) (-4319 (((-749)) 20 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2726 ((|#2| $) NIL) ((|#1| $) NIL)) (-3295 (($ $) 79 (|has| |#2| (-825)))) (-1386 (((-3 $ "failed") $) 65)) (-1741 (($) 35 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) 55)) (-1822 (((-623 $) $) 39)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| |#2|) 16)) (-3972 (($ (-1 |#1| |#1|) $) 54)) (-2253 (((-894) $) 32 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3267 ((|#2| $) 78 (|has| |#2| (-825)))) (-3277 ((|#1| $) 77 (|has| |#2| (-825)))) (-1825 (((-1126) $) NIL)) (-2922 (($ (-894)) 27 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 76) (($ (-550)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-623 (-2 (|:| -2855 |#1|) (|:| -1792 |#2|)))) 11)) (-3511 (((-623 |#1|) $) 41)) (-2510 ((|#1| $ |#2|) 88)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-2626 (($) 12 T CONST)) (-2636 (($) 33 T CONST)) (-2316 (((-112) $ $) 80)) (-2403 (($ $) 47) (($ $ $) NIL)) (-2391 (($ $ $) 26)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-714 |#1| |#2|) (-13 (-1020) (-1011 |#2|) (-1011 |#1|) (-10 -8 (-15 -3118 ($ |#1| |#2|)) (-15 -2510 (|#1| $ |#2|)) (-15 -1518 ($ (-623 (-2 (|:| -2855 |#1|) (|:| -1792 |#2|))))) (-15 -2575 ((-623 (-2 (|:| -2855 |#1|) (|:| -1792 |#2|))) $)) (-15 -3972 ($ (-1 |#1| |#1|) $)) (-15 -3439 ((-112) $)) (-15 -3511 ((-623 |#1|) $)) (-15 -1822 ((-623 $) $)) (-15 -2603 ((-749) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-825)) (PROGN (-15 -3267 (|#2| $)) (-15 -3277 (|#1| $)) (-15 -3295 ($ $))) |%noBranch|))) (-1020) (-705)) (T -714)) +((-3118 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-705)))) (-2510 (*1 *2 *1 *3) (-12 (-4 *2 (-1020)) (-5 *1 (-714 *2 *3)) (-4 *3 (-705)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -2855 *3) (|:| -1792 *4)))) (-4 *3 (-1020)) (-4 *4 (-705)) (-5 *1 (-714 *3 *4)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| -2855 *3) (|:| -1792 *4)))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-705)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-714 *3 *4)) (-4 *4 (-705)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-705)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-705)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-623 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-705)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-705)))) (-3267 (*1 *2 *1) (-12 (-4 *2 (-705)) (-4 *2 (-825)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1020)))) (-3277 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *3 (-705)))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1020)) (-4 *3 (-705))))) +(-13 (-1020) (-1011 |#2|) (-1011 |#1|) (-10 -8 (-15 -3118 ($ |#1| |#2|)) (-15 -2510 (|#1| $ |#2|)) (-15 -1518 ($ (-623 (-2 (|:| -2855 |#1|) (|:| -1792 |#2|))))) (-15 -2575 ((-623 (-2 (|:| -2855 |#1|) (|:| -1792 |#2|))) $)) (-15 -3972 ($ (-1 |#1| |#1|) $)) (-15 -3439 ((-112) $)) (-15 -3511 ((-623 |#1|) $)) (-15 -1822 ((-623 $) $)) (-15 -2603 ((-749) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-825)) (PROGN (-15 -3267 (|#2| $)) (-15 -3277 (|#1| $)) (-15 -3295 ($ $))) |%noBranch|))) +((-1504 (((-112) $ $) 19)) (-3965 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1445 (($ $ $) 72)) (-1467 (((-112) $ $) 73)) (-4047 (((-112) $ (-749)) 8)) (-2142 (($ (-623 |#1|)) 68) (($) 67)) (-3378 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-3912 (($ $) 62)) (-1328 (($ $) 58 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ |#1| $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4342)))) (-3137 (($ |#1| $) 57 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4342)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1723 (((-112) $ $) 64)) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22)) (-1623 (($ $ $) 69)) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3337 (((-1088) $) 21)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-3821 (((-623 (-2 (|:| -2119 |#1|) (|:| -3350 (-749)))) $) 61)) (-1525 (($ $ |#1|) 71) (($ $ $) 70)) (-2729 (($) 49) (($ (-623 |#1|)) 48)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 50)) (-1518 (((-836) $) 18)) (-3578 (($ (-623 |#1|)) 66) (($) 65)) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20)) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-715 |#1|) (-138) (-1068)) (T -715)) +NIL +(-13 (-673 |t#1|) (-1066 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-836)) . T) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-673 |#1|) . T) ((-1066 |#1|) . T) ((-1068) . T) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-3965 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1445 (($ $ $) 79)) (-1467 (((-112) $ $) 83)) (-4047 (((-112) $ (-749)) NIL)) (-2142 (($ (-623 |#1|)) 24) (($) 16)) (-3378 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-3912 (($ $) 71)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3112 (($ |#1| $) 61 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4342))) (($ |#1| $ (-550)) 62) (($ (-1 (-112) |#1|) $ (-550)) 65)) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (($ |#1| $ (-550)) 67) (($ (-1 (-112) |#1|) $ (-550)) 68)) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3450 (((-623 |#1|) $) 32 (|has| $ (-6 -4342)))) (-1723 (((-112) $ $) 82)) (-1626 (($) 14) (($ |#1|) 26) (($ (-623 |#1|)) 21)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) 38)) (-1921 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 75)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-1623 (($ $ $) 77)) (-3638 ((|#1| $) 55)) (-1886 (($ |#1| $) 56) (($ |#1| $ (-749)) 72)) (-3337 (((-1088) $) NIL)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3760 ((|#1| $) 54)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 50)) (-3498 (($) 13)) (-3821 (((-623 (-2 (|:| -2119 |#1|) (|:| -3350 (-749)))) $) 48)) (-1525 (($ $ |#1|) NIL) (($ $ $) 78)) (-2729 (($) 15) (($ (-623 |#1|)) 23)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) 60 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) 66)) (-4028 (((-526) $) 36 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 20)) (-1518 (((-836) $) 44)) (-3578 (($ (-623 |#1|)) 25) (($) 17)) (-3685 (($ (-623 |#1|)) 22)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 81)) (-3191 (((-749) $) 59 (|has| $ (-6 -4342))))) +(((-716 |#1|) (-13 (-715 |#1|) (-10 -8 (-6 -4342) (-6 -4343) (-15 -1626 ($)) (-15 -1626 ($ |#1|)) (-15 -1626 ($ (-623 |#1|))) (-15 -2689 ((-623 |#1|) $)) (-15 -3137 ($ |#1| $ (-550))) (-15 -3137 ($ (-1 (-112) |#1|) $ (-550))) (-15 -3112 ($ |#1| $ (-550))) (-15 -3112 ($ (-1 (-112) |#1|) $ (-550))))) (-1068)) (T -716)) +((-1626 (*1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-1068)))) (-1626 (*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-1068)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-716 *3)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-716 *3)) (-4 *3 (-1068)))) (-3137 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-716 *2)) (-4 *2 (-1068)))) (-3137 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1068)) (-5 *1 (-716 *4)))) (-3112 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-716 *2)) (-4 *2 (-1068)))) (-3112 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1068)) (-5 *1 (-716 *4))))) +(-13 (-715 |#1|) (-10 -8 (-6 -4342) (-6 -4343) (-15 -1626 ($)) (-15 -1626 ($ |#1|)) (-15 -1626 ($ (-623 |#1|))) (-15 -2689 ((-623 |#1|) $)) (-15 -3137 ($ |#1| $ (-550))) (-15 -3137 ($ (-1 (-112) |#1|) $ (-550))) (-15 -3112 ($ |#1| $ (-550))) (-15 -3112 ($ (-1 (-112) |#1|) $ (-550))))) +((-1966 (((-1232) (-1126)) 8))) +(((-717) (-10 -7 (-15 -1966 ((-1232) (-1126))))) (T -717)) +((-1966 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-717))))) +(-10 -7 (-15 -1966 ((-1232) (-1126)))) +((-1746 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 10))) +(((-718 |#1|) (-10 -7 (-15 -1746 ((-623 |#1|) (-623 |#1|) (-623 |#1|)))) (-825)) (T -718)) +((-1746 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-718 *3))))) +(-10 -7 (-15 -1746 ((-623 |#1|) (-623 |#1|) (-623 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 |#2|) $) 134)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 127 (|has| |#1| (-542)))) (-1447 (($ $) 126 (|has| |#1| (-542)))) (-4291 (((-112) $) 124 (|has| |#1| (-542)))) (-3123 (($ $) 83 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 66 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) 19)) (-3353 (($ $) 65 (|has| |#1| (-38 (-400 (-550)))))) (-3103 (($ $) 82 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 67 (|has| |#1| (-38 (-400 (-550)))))) (-3146 (($ $) 81 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 68 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) 17 T CONST)) (-3295 (($ $) 118)) (-1386 (((-3 $ "failed") $) 32)) (-1402 (((-925 |#1|) $ (-749)) 96) (((-925 |#1|) $ (-749) (-749)) 95)) (-3478 (((-112) $) 135)) (-2734 (($) 93 (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-749) $ |#2|) 98) (((-749) $ |#2| (-749)) 97)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 64 (|has| |#1| (-38 (-400 (-550)))))) (-3439 (((-112) $) 116)) (-3118 (($ $ (-623 |#2|) (-623 (-522 |#2|))) 133) (($ $ |#2| (-522 |#2|)) 132) (($ |#1| (-522 |#2|)) 117) (($ $ |#2| (-749)) 100) (($ $ (-623 |#2|) (-623 (-749))) 99)) (-3972 (($ (-1 |#1| |#1|) $) 115)) (-2958 (($ $) 90 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) 113)) (-3277 ((|#1| $) 112)) (-1825 (((-1126) $) 9)) (-1489 (($ $ |#2|) 94 (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) 10)) (-2272 (($ $ (-749)) 101)) (-1495 (((-3 $ "failed") $ $) 128 (|has| |#1| (-542)))) (-1812 (($ $) 91 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (($ $ |#2| $) 109) (($ $ (-623 |#2|) (-623 $)) 108) (($ $ (-623 (-287 $))) 107) (($ $ (-287 $)) 106) (($ $ $ $) 105) (($ $ (-623 $) (-623 $)) 104)) (-2393 (($ $ |#2|) 40) (($ $ (-623 |#2|)) 39) (($ $ |#2| (-749)) 38) (($ $ (-623 |#2|) (-623 (-749))) 37)) (-2970 (((-522 |#2|) $) 114)) (-3157 (($ $) 80 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 69 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 79 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 70 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 78 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 71 (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 136)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-542))) (($ (-400 (-550))) 121 (|has| |#1| (-38 (-400 (-550)))))) (-2510 ((|#1| $ (-522 |#2|)) 119) (($ $ |#2| (-749)) 103) (($ $ (-623 |#2|) (-623 (-749))) 102)) (-4242 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-3187 (($ $) 89 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 77 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) 125 (|has| |#1| (-542)))) (-3167 (($ $) 88 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 76 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 87 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 75 (|has| |#1| (-38 (-400 (-550)))))) (-3294 (($ $) 86 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 74 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 85 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 73 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 84 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 72 (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ |#2|) 36) (($ $ (-623 |#2|)) 35) (($ $ |#2| (-749)) 34) (($ $ (-623 |#2|) (-623 (-749))) 33)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 120 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ $) 92 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 63 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 123 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 122 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-719 |#1| |#2|) (-138) (-1020) (-825)) (T -719)) +((-2510 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1020)) (-4 *2 (-825)))) (-2510 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *5)) (-5 *3 (-623 (-749))) (-4 *1 (-719 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-825)))) (-2272 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-719 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-825)))) (-3118 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1020)) (-4 *2 (-825)))) (-3118 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *5)) (-5 *3 (-623 (-749))) (-4 *1 (-719 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-825)))) (-2475 (*1 *2 *1 *3) (-12 (-4 *1 (-719 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-825)) (-5 *2 (-749)))) (-2475 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-749)) (-4 *1 (-719 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-825)))) (-1402 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-825)) (-5 *2 (-925 *4)))) (-1402 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-825)) (-5 *2 (-925 *4)))) (-1489 (*1 *1 *1 *2) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-825)) (-4 *3 (-38 (-400 (-550))))))) +(-13 (-873 |t#2|) (-946 |t#1| (-522 |t#2|) |t#2|) (-505 |t#2| $) (-302 $) (-10 -8 (-15 -2510 ($ $ |t#2| (-749))) (-15 -2510 ($ $ (-623 |t#2|) (-623 (-749)))) (-15 -2272 ($ $ (-749))) (-15 -3118 ($ $ |t#2| (-749))) (-15 -3118 ($ $ (-623 |t#2|) (-623 (-749)))) (-15 -2475 ((-749) $ |t#2|)) (-15 -2475 ((-749) $ |t#2| (-749))) (-15 -1402 ((-925 |t#1|) $ (-749))) (-15 -1402 ((-925 |t#1|) $ (-749) (-749))) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $ |t#2|)) (-6 (-975)) (-6 (-1166))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-522 |#2|)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-283) |has| |#1| (-542)) ((-302 $) . T) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-505 |#2| $) . T) ((-505 $ $) . T) ((-542) |has| |#1| (-542)) ((-626 #1#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-873 |#2|) . T) ((-946 |#1| #0# |#2|) . T) ((-975) |has| |#1| (-38 (-400 (-550)))) ((-1026 #1#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1166) |has| |#1| (-38 (-400 (-550)))) ((-1169) |has| |#1| (-38 (-400 (-550))))) +((-3338 (((-411 (-1140 |#4|)) (-1140 |#4|)) 30) (((-411 |#4|) |#4|) 26))) +(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3338 ((-411 |#4|) |#4|)) (-15 -3338 ((-411 (-1140 |#4|)) (-1140 |#4|)))) (-825) (-771) (-13 (-300) (-145)) (-922 |#3| |#2| |#1|)) (T -720)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-922 *6 *5 *4)) (-5 *2 (-411 (-1140 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-922 *6 *5 *4))))) +(-10 -7 (-15 -3338 ((-411 |#4|) |#4|)) (-15 -3338 ((-411 (-1140 |#4|)) (-1140 |#4|)))) +((-2051 (((-411 |#4|) |#4| |#2|) 120)) (-1858 (((-411 |#4|) |#4|) NIL)) (-3564 (((-411 (-1140 |#4|)) (-1140 |#4|)) 111) (((-411 |#4|) |#4|) 41)) (-3967 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-623 (-2 (|:| -3338 (-1140 |#4|)) (|:| -3521 (-550)))))) (-1140 |#4|) (-623 |#2|) (-623 (-623 |#3|))) 69)) (-1360 (((-1140 |#3|) (-1140 |#3|) (-550)) 139)) (-4313 (((-623 (-749)) (-1140 |#4|) (-623 |#2|) (-749)) 61)) (-2407 (((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-1140 |#3|) (-1140 |#3|) |#4| (-623 |#2|) (-623 (-749)) (-623 |#3|)) 65)) (-4078 (((-2 (|:| |upol| (-1140 |#3|)) (|:| |Lval| (-623 |#3|)) (|:| |Lfact| (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550))))) (|:| |ctpol| |#3|)) (-1140 |#4|) (-623 |#2|) (-623 (-623 |#3|))) 26)) (-2137 (((-2 (|:| -2739 (-1140 |#4|)) (|:| |polval| (-1140 |#3|))) (-1140 |#4|) (-1140 |#3|) (-550)) 57)) (-1949 (((-550) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550))))) 136)) (-4188 ((|#4| (-550) (-411 |#4|)) 58)) (-1606 (((-112) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550)))) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550))))) NIL))) +(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3564 ((-411 |#4|) |#4|)) (-15 -3564 ((-411 (-1140 |#4|)) (-1140 |#4|))) (-15 -1858 ((-411 |#4|) |#4|)) (-15 -1949 ((-550) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550)))))) (-15 -2051 ((-411 |#4|) |#4| |#2|)) (-15 -2137 ((-2 (|:| -2739 (-1140 |#4|)) (|:| |polval| (-1140 |#3|))) (-1140 |#4|) (-1140 |#3|) (-550))) (-15 -3967 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-623 (-2 (|:| -3338 (-1140 |#4|)) (|:| -3521 (-550)))))) (-1140 |#4|) (-623 |#2|) (-623 (-623 |#3|)))) (-15 -4078 ((-2 (|:| |upol| (-1140 |#3|)) (|:| |Lval| (-623 |#3|)) (|:| |Lfact| (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550))))) (|:| |ctpol| |#3|)) (-1140 |#4|) (-623 |#2|) (-623 (-623 |#3|)))) (-15 -4188 (|#4| (-550) (-411 |#4|))) (-15 -1606 ((-112) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550)))) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550)))))) (-15 -2407 ((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-1140 |#3|) (-1140 |#3|) |#4| (-623 |#2|) (-623 (-749)) (-623 |#3|))) (-15 -4313 ((-623 (-749)) (-1140 |#4|) (-623 |#2|) (-749))) (-15 -1360 ((-1140 |#3|) (-1140 |#3|) (-550)))) (-771) (-825) (-300) (-922 |#3| |#1| |#2|)) (T -721)) +((-1360 (*1 *2 *2 *3) (-12 (-5 *2 (-1140 *6)) (-5 *3 (-550)) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-922 *6 *4 *5)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1140 *9)) (-5 *4 (-623 *7)) (-4 *7 (-825)) (-4 *9 (-922 *8 *6 *7)) (-4 *6 (-771)) (-4 *8 (-300)) (-5 *2 (-623 (-749))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *5 (-749)))) (-2407 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1140 *11)) (-5 *6 (-623 *10)) (-5 *7 (-623 (-749))) (-5 *8 (-623 *11)) (-4 *10 (-825)) (-4 *11 (-300)) (-4 *9 (-771)) (-4 *5 (-922 *11 *9 *10)) (-5 *2 (-623 (-1140 *5))) (-5 *1 (-721 *9 *10 *11 *5)) (-5 *3 (-1140 *5)))) (-1606 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-2 (|:| -3338 (-1140 *6)) (|:| -3521 (-550))))) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-922 *6 *4 *5)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-411 *2)) (-4 *2 (-922 *7 *5 *6)) (-5 *1 (-721 *5 *6 *7 *2)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-300)))) (-4078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1140 *9)) (-5 *4 (-623 *7)) (-5 *5 (-623 (-623 *8))) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-922 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-2 (|:| |upol| (-1140 *8)) (|:| |Lval| (-623 *8)) (|:| |Lfact| (-623 (-2 (|:| -3338 (-1140 *8)) (|:| -3521 (-550))))) (|:| |ctpol| *8))) (-5 *1 (-721 *6 *7 *8 *9)))) (-3967 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-623 *7)) (-5 *5 (-623 (-623 *8))) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *6 (-771)) (-4 *9 (-922 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-623 (-2 (|:| -3338 (-1140 *9)) (|:| -3521 (-550))))))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1140 *9)))) (-2137 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-550)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-922 *8 *6 *7)) (-5 *2 (-2 (|:| -2739 (-1140 *9)) (|:| |polval| (-1140 *8)))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1140 *9)) (-5 *4 (-1140 *8)))) (-2051 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-721 *5 *4 *6 *3)) (-4 *3 (-922 *6 *5 *4)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -3338 (-1140 *6)) (|:| -3521 (-550))))) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-550)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-922 *6 *4 *5)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-922 *6 *4 *5)))) (-3564 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-411 (-1140 *7))) (-5 *1 (-721 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) (-3564 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-922 *6 *4 *5))))) +(-10 -7 (-15 -3564 ((-411 |#4|) |#4|)) (-15 -3564 ((-411 (-1140 |#4|)) (-1140 |#4|))) (-15 -1858 ((-411 |#4|) |#4|)) (-15 -1949 ((-550) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550)))))) (-15 -2051 ((-411 |#4|) |#4| |#2|)) (-15 -2137 ((-2 (|:| -2739 (-1140 |#4|)) (|:| |polval| (-1140 |#3|))) (-1140 |#4|) (-1140 |#3|) (-550))) (-15 -3967 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-623 (-2 (|:| -3338 (-1140 |#4|)) (|:| -3521 (-550)))))) (-1140 |#4|) (-623 |#2|) (-623 (-623 |#3|)))) (-15 -4078 ((-2 (|:| |upol| (-1140 |#3|)) (|:| |Lval| (-623 |#3|)) (|:| |Lfact| (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550))))) (|:| |ctpol| |#3|)) (-1140 |#4|) (-623 |#2|) (-623 (-623 |#3|)))) (-15 -4188 (|#4| (-550) (-411 |#4|))) (-15 -1606 ((-112) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550)))) (-623 (-2 (|:| -3338 (-1140 |#3|)) (|:| -3521 (-550)))))) (-15 -2407 ((-3 (-623 (-1140 |#4|)) "failed") (-1140 |#4|) (-1140 |#3|) (-1140 |#3|) |#4| (-623 |#2|) (-623 (-749)) (-623 |#3|))) (-15 -4313 ((-623 (-749)) (-1140 |#4|) (-623 |#2|) (-749))) (-15 -1360 ((-1140 |#3|) (-1140 |#3|) (-550)))) +((-1494 (($ $ (-894)) 12))) +(((-722 |#1| |#2|) (-10 -8 (-15 -1494 (|#1| |#1| (-894)))) (-723 |#2|) (-170)) (T -722)) +NIL +(-10 -8 (-15 -1494 (|#1| |#1| (-894)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-2923 (($ $ (-894)) 28)) (-1494 (($ $ (-894)) 33)) (-2834 (($ $ (-894)) 29)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3292 (($ $ $) 25)) (-1518 (((-836) $) 11)) (-3395 (($ $ $ $) 26)) (-1358 (($ $ $) 24)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 30)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-723 |#1|) (-138) (-170)) (T -723)) +((-1494 (*1 *1 *1 *2) (-12 (-5 *2 (-894)) (-4 *1 (-723 *3)) (-4 *3 (-170))))) +(-13 (-740) (-696 |t#1|) (-10 -8 (-15 -1494 ($ $ (-894))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-740) . T) ((-1026 |#1|) . T) ((-1068) . T)) +((-1361 (((-1008) (-667 (-219)) (-550) (-112) (-550)) 25)) (-3418 (((-1008) (-667 (-219)) (-550) (-112) (-550)) 24))) +(((-724) (-10 -7 (-15 -3418 ((-1008) (-667 (-219)) (-550) (-112) (-550))) (-15 -1361 ((-1008) (-667 (-219)) (-550) (-112) (-550))))) (T -724)) +((-1361 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-112)) (-5 *2 (-1008)) (-5 *1 (-724)))) (-3418 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-112)) (-5 *2 (-1008)) (-5 *1 (-724))))) +(-10 -7 (-15 -3418 ((-1008) (-667 (-219)) (-550) (-112) (-550))) (-15 -1361 ((-1008) (-667 (-219)) (-550) (-112) (-550)))) +((-1511 (((-1008) (-550) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) 43)) (-1435 (((-1008) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) 39)) (-1454 (((-1008) (-219) (-219) (-219) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) 32))) +(((-725) (-10 -7 (-15 -1454 ((-1008) (-219) (-219) (-219) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -1435 ((-1008) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -1511 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))) (T -725)) +((-1511 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1008)) (-5 *1 (-725)))) (-1435 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1008)) (-5 *1 (-725)))) (-1454 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) (-5 *2 (-1008)) (-5 *1 (-725))))) +(-10 -7 (-15 -1454 ((-1008) (-219) (-219) (-219) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -1435 ((-1008) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -1511 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))))) +((-3251 (((-1008) (-550) (-550) (-667 (-219)) (-550)) 34)) (-1318 (((-1008) (-550) (-550) (-667 (-219)) (-550)) 33)) (-4268 (((-1008) (-550) (-667 (-219)) (-550)) 32)) (-4143 (((-1008) (-550) (-667 (-219)) (-550)) 31)) (-4039 (((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 30)) (-3937 (((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 29)) (-3850 (((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-550)) 28)) (-2014 (((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-550)) 27)) (-1909 (((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 24)) (-1813 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550)) 23)) (-1710 (((-1008) (-550) (-667 (-219)) (-550)) 22)) (-1611 (((-1008) (-550) (-667 (-219)) (-550)) 21))) +(((-726) (-10 -7 (-15 -1611 ((-1008) (-550) (-667 (-219)) (-550))) (-15 -1710 ((-1008) (-550) (-667 (-219)) (-550))) (-15 -1813 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1909 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2014 ((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3850 ((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3937 ((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -4039 ((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -4143 ((-1008) (-550) (-667 (-219)) (-550))) (-15 -4268 ((-1008) (-550) (-667 (-219)) (-550))) (-15 -1318 ((-1008) (-550) (-550) (-667 (-219)) (-550))) (-15 -3251 ((-1008) (-550) (-550) (-667 (-219)) (-550))))) (T -726)) +((-3251 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-1318 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-4268 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-4143 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-4039 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-3937 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-3850 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-2014 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-1909 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-1813 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-1710 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726)))) (-1611 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-726))))) +(-10 -7 (-15 -1611 ((-1008) (-550) (-667 (-219)) (-550))) (-15 -1710 ((-1008) (-550) (-667 (-219)) (-550))) (-15 -1813 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1909 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2014 ((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3850 ((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3937 ((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -4039 ((-1008) (-550) (-550) (-1126) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -4143 ((-1008) (-550) (-667 (-219)) (-550))) (-15 -4268 ((-1008) (-550) (-667 (-219)) (-550))) (-15 -1318 ((-1008) (-550) (-550) (-667 (-219)) (-550))) (-15 -3251 ((-1008) (-550) (-550) (-667 (-219)) (-550)))) +((-3163 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) 52)) (-3070 (((-1008) (-667 (-219)) (-667 (-219)) (-550) (-550)) 51)) (-2982 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2901 (((-1008) (-219) (-219) (-550) (-550) (-550) (-550)) 46)) (-2820 (((-1008) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 45)) (-2730 (((-1008) (-219) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 44)) (-2649 (((-1008) (-219) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 43)) (-3732 (((-1008) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 42)) (-3639 (((-1008) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) 38)) (-3540 (((-1008) (-219) (-219) (-550) (-667 (-219)) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) 37)) (-3441 (((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) 33)) (-3339 (((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) 32))) +(((-727) (-10 -7 (-15 -3339 ((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -3441 ((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -3540 ((-1008) (-219) (-219) (-550) (-667 (-219)) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -3639 ((-1008) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -3732 ((-1008) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2649 ((-1008) (-219) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2730 ((-1008) (-219) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2820 ((-1008) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2901 ((-1008) (-219) (-219) (-550) (-550) (-550) (-550))) (-15 -2982 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))) (-15 -3070 ((-1008) (-667 (-219)) (-667 (-219)) (-550) (-550))) (-15 -3163 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))))) (T -727)) +((-3163 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1008)) (-5 *1 (-727)))) (-3070 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-727)))) (-2982 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1008)) (-5 *1 (-727)))) (-2901 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-727)))) (-2820 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1008)) (-5 *1 (-727)))) (-2730 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1008)) (-5 *1 (-727)))) (-2649 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1008)) (-5 *1 (-727)))) (-3732 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1008)) (-5 *1 (-727)))) (-3639 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) (-5 *2 (-1008)) (-5 *1 (-727)))) (-3540 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-727)))) (-3441 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) (-5 *2 (-1008)) (-5 *1 (-727)))) (-3339 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) (-5 *2 (-1008)) (-5 *1 (-727))))) +(-10 -7 (-15 -3339 ((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -3441 ((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -3540 ((-1008) (-219) (-219) (-550) (-667 (-219)) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -3639 ((-1008) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260))))) (-15 -3732 ((-1008) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2649 ((-1008) (-219) (-219) (-219) (-219) (-550) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2730 ((-1008) (-219) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2820 ((-1008) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2901 ((-1008) (-219) (-219) (-550) (-550) (-550) (-550))) (-15 -2982 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))) (-15 -3070 ((-1008) (-667 (-219)) (-667 (-219)) (-550) (-550))) (-15 -3163 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-219) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))))) +((-1517 (((-1008) (-550) (-550) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-2610 (((-1008) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381)) 69) (((-1008) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) 68)) (-2539 (((-1008) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) 57)) (-2465 (((-1008) (-667 (-219)) (-667 (-219)) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) 50)) (-2387 (((-1008) (-219) (-550) (-550) (-1126) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2312 (((-1008) (-219) (-550) (-550) (-219) (-1126) (-219) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2237 (((-1008) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) 42)) (-2152 (((-1008) (-219) (-550) (-550) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 38))) +(((-728) (-10 -7 (-15 -2152 ((-1008) (-219) (-550) (-550) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2237 ((-1008) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -2312 ((-1008) (-219) (-550) (-550) (-219) (-1126) (-219) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2387 ((-1008) (-219) (-550) (-550) (-1126) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2465 ((-1008) (-667 (-219)) (-667 (-219)) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -2539 ((-1008) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG))))) (-15 -2610 ((-1008) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))) (-15 -2610 ((-1008) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381))) (-15 -1517 ((-1008) (-550) (-550) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -728)) +((-1517 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-728)))) (-2610 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-381)) (-5 *2 (-1008)) (-5 *1 (-728)))) (-2610 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1008)) (-5 *1 (-728)))) (-2539 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-728)))) (-2465 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1008)) (-5 *1 (-728)))) (-2387 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-550)) (-5 *5 (-1126)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-728)))) (-2312 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-550)) (-5 *5 (-1126)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-728)))) (-2237 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-728)))) (-2152 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-728))))) +(-10 -7 (-15 -2152 ((-1008) (-219) (-550) (-550) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2237 ((-1008) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -2312 ((-1008) (-219) (-550) (-550) (-219) (-1126) (-219) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2387 ((-1008) (-219) (-550) (-550) (-1126) (-550) (-219) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2465 ((-1008) (-667 (-219)) (-667 (-219)) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -2539 ((-1008) (-219) (-219) (-550) (-219) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG))))) (-15 -2610 ((-1008) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))) (-15 -2610 ((-1008) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381))) (-15 -1517 ((-1008) (-550) (-550) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))))) +((-1821 (((-1008) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-653 (-219)) (-550)) 45)) (-1714 (((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-1126) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) 41)) (-1617 (((-1008) (-550) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 23))) +(((-729) (-10 -7 (-15 -1617 ((-1008) (-550) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1714 ((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-1126) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY))))) (-15 -1821 ((-1008) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-653 (-219)) (-550))))) (T -729)) +((-1821 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-653 (-219))) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-729)))) (-1714 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-1126)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1008)) (-5 *1 (-729)))) (-1617 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-729))))) +(-10 -7 (-15 -1617 ((-1008) (-550) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1714 ((-1008) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-1126) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY))))) (-15 -1821 ((-1008) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-653 (-219)) (-550)))) +((-1407 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-550)) 35)) (-1313 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-219) (-219) (-550)) 34)) (-4275 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-667 (-219)) (-219) (-219) (-550)) 33)) (-4186 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 29)) (-4097 (((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 28)) (-4010 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550)) 27)) (-3913 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550)) 24)) (-2088 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550)) 23)) (-2008 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550)) 22)) (-1914 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550)) 21))) +(((-730) (-10 -7 (-15 -1914 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))) (-15 -2008 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2088 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -3913 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -4010 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550))) (-15 -4097 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -4186 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -4275 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-667 (-219)) (-219) (-219) (-550))) (-15 -1313 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-219) (-219) (-550))) (-15 -1407 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-550))))) (T -730)) +((-1407 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1008)) (-5 *1 (-730)))) (-1313 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1008)) (-5 *1 (-730)))) (-4275 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *6 (-219)) (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-730)))) (-4186 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-730)))) (-4097 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-730)))) (-4010 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1008)) (-5 *1 (-730)))) (-3913 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-730)))) (-2088 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-730)))) (-2008 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-730)))) (-1914 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-730))))) +(-10 -7 (-15 -1914 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))) (-15 -2008 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2088 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -3913 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -4010 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-550))) (-15 -4097 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -4186 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -4275 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-667 (-219)) (-219) (-219) (-550))) (-15 -1313 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-219) (-219) (-550))) (-15 -1407 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-550)))) +((-1500 (((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550)) 45)) (-2598 (((-1008) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-550)) 44)) (-2527 (((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550)) 43)) (-2451 (((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 42)) (-2374 (((-1008) (-1126) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550)) 41)) (-2293 (((-1008) (-1126) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550)) 40)) (-2224 (((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550) (-550) (-550) (-219) (-667 (-219)) (-550)) 39)) (-3247 (((-1008) (-1126) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550))) 38)) (-3171 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550)) 35)) (-3074 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550)) 34)) (-2989 (((-1008) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550)) 33)) (-3824 (((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 32)) (-3747 (((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550)) 31)) (-3664 (((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-550)) 30)) (-3605 (((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-550) (-550) (-550)) 29)) (-3502 (((-1008) (-550) (-550) (-550) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-550)) (-550) (-550) (-550)) 28)) (-3416 (((-1008) (-550) (-667 (-219)) (-219) (-550)) 24)) (-3313 (((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 21))) +(((-731) (-10 -7 (-15 -3313 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3416 ((-1008) (-550) (-667 (-219)) (-219) (-550))) (-15 -3502 ((-1008) (-550) (-550) (-550) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-550)) (-550) (-550) (-550))) (-15 -3605 ((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-550) (-550) (-550))) (-15 -3664 ((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-550))) (-15 -3747 ((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550))) (-15 -3824 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2989 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550))) (-15 -3074 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550))) (-15 -3171 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3247 ((-1008) (-1126) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)))) (-15 -2224 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550) (-550) (-550) (-219) (-667 (-219)) (-550))) (-15 -2293 ((-1008) (-1126) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550))) (-15 -2374 ((-1008) (-1126) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2451 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2527 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))) (-15 -2598 ((-1008) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1500 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))))) (T -731)) +((-1500 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-731)))) (-2598 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-2527 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-731)))) (-2451 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-731)))) (-2374 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-2293 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1126)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *7 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-2224 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *6 (-219)) (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3247 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1126)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *7 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3171 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3074 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-2989 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3824 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3747 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3664 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3605 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3502 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) (-5 *3 (-550)) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3416 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1008)) (-5 *1 (-731)))) (-3313 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-731))))) +(-10 -7 (-15 -3313 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3416 ((-1008) (-550) (-667 (-219)) (-219) (-550))) (-15 -3502 ((-1008) (-550) (-550) (-550) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-550)) (-550) (-550) (-550))) (-15 -3605 ((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-550) (-550) (-550))) (-15 -3664 ((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550) (-550) (-550))) (-15 -3747 ((-1008) (-550) (-219) (-219) (-667 (-219)) (-550) (-550) (-219) (-550))) (-15 -3824 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2989 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550))) (-15 -3074 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550))) (-15 -3171 ((-1008) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3247 ((-1008) (-1126) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)))) (-15 -2224 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550) (-550) (-550) (-219) (-667 (-219)) (-550))) (-15 -2293 ((-1008) (-1126) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550))) (-15 -2374 ((-1008) (-1126) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2451 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2527 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550))) (-15 -2598 ((-1008) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-550))) (-15 -1500 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550) (-667 (-219)) (-667 (-219)) (-550) (-550) (-550)))) +((-4006 (((-1008) (-550) (-550) (-550) (-219) (-667 (-219)) (-550) (-667 (-219)) (-550)) 63)) (-3919 (((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-112) (-219) (-550) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-550) (-550) (-550) (-550) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2084 (((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-550) (-550) (-667 (-219)) (-667 (-550)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) 58)) (-1991 (((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-550) (-550) (-667 (-219)) (-550)) 51)) (-1900 (((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) 50)) (-1803 (((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) 46)) (-1698 (((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) 42)) (-1600 (((-1008) (-550) (-219) (-219) (-550) (-219) (-112) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) 38))) +(((-732) (-10 -7 (-15 -1600 ((-1008) (-550) (-219) (-219) (-550) (-219) (-112) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -1698 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -1803 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))) (-15 -1900 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -1991 ((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-550) (-550) (-667 (-219)) (-550))) (-15 -2084 ((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-550) (-550) (-667 (-219)) (-667 (-550)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -3919 ((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-112) (-219) (-550) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-550) (-550) (-550) (-550) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -4006 ((-1008) (-550) (-550) (-550) (-219) (-667 (-219)) (-550) (-667 (-219)) (-550))))) (T -732)) +((-4006 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-732)))) (-3919 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-667 (-550))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-732)))) (-2084 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-667 (-219))) (-5 *6 (-112)) (-5 *7 (-667 (-550))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-550)) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-732)))) (-1991 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *2 (-1008)) (-5 *1 (-732)))) (-1900 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1008)) (-5 *1 (-732)))) (-1803 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1008)) (-5 *1 (-732)))) (-1698 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1008)) (-5 *1 (-732)))) (-1600 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-732))))) +(-10 -7 (-15 -1600 ((-1008) (-550) (-219) (-219) (-550) (-219) (-112) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -1698 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -1803 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))) (-15 -1900 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -1991 ((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-550) (-550) (-667 (-219)) (-550))) (-15 -2084 ((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-550) (-550) (-667 (-219)) (-667 (-550)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -3919 ((-1008) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-550) (-112) (-219) (-550) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-550) (-550) (-550) (-550) (-550) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-550) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -4006 ((-1008) (-550) (-550) (-550) (-219) (-667 (-219)) (-550) (-667 (-219)) (-550)))) +((-3691 (((-1008) (-1126) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550)) 47)) (-3611 (((-1008) (-1126) (-1126) (-550) (-550) (-667 (-167 (-219))) (-550) (-667 (-167 (-219))) (-550) (-550) (-667 (-167 (-219))) (-550)) 46)) (-3522 (((-1008) (-550) (-550) (-550) (-667 (-167 (-219))) (-550)) 45)) (-3424 (((-1008) (-1126) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 40)) (-3320 (((-1008) (-1126) (-1126) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-667 (-219)) (-550)) 39)) (-1415 (((-1008) (-550) (-550) (-550) (-667 (-219)) (-550)) 36)) (-1319 (((-1008) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550)) 35)) (-4283 (((-1008) (-550) (-550) (-550) (-550) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-219) (-219) (-550)) 34)) (-4182 (((-1008) (-550) (-550) (-550) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-112) (-219) (-112) (-667 (-550)) (-667 (-219)) (-550)) 33)) (-4093 (((-1008) (-550) (-550) (-550) (-550) (-219) (-112) (-112) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-550)) 32))) +(((-733) (-10 -7 (-15 -4093 ((-1008) (-550) (-550) (-550) (-550) (-219) (-112) (-112) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-550))) (-15 -4182 ((-1008) (-550) (-550) (-550) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-112) (-219) (-112) (-667 (-550)) (-667 (-219)) (-550))) (-15 -4283 ((-1008) (-550) (-550) (-550) (-550) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-219) (-219) (-550))) (-15 -1319 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550))) (-15 -1415 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-550))) (-15 -3320 ((-1008) (-1126) (-1126) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-667 (-219)) (-550))) (-15 -3424 ((-1008) (-1126) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3522 ((-1008) (-550) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -3611 ((-1008) (-1126) (-1126) (-550) (-550) (-667 (-167 (-219))) (-550) (-667 (-167 (-219))) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -3691 ((-1008) (-1126) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550))))) (T -733)) +((-3691 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-167 (-219)))) (-5 *2 (-1008)) (-5 *1 (-733)))) (-3611 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-167 (-219)))) (-5 *2 (-1008)) (-5 *1 (-733)))) (-3522 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-167 (-219)))) (-5 *2 (-1008)) (-5 *1 (-733)))) (-3424 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-733)))) (-3320 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-733)))) (-1415 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-733)))) (-1319 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-733)))) (-4283 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-623 (-112))) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) (-5 *7 (-219)) (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-733)))) (-4182 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-667 (-550))) (-5 *5 (-112)) (-5 *7 (-667 (-219))) (-5 *3 (-550)) (-5 *6 (-219)) (-5 *2 (-1008)) (-5 *1 (-733)))) (-4093 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-623 (-112))) (-5 *7 (-667 (-219))) (-5 *8 (-667 (-550))) (-5 *3 (-550)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1008)) (-5 *1 (-733))))) +(-10 -7 (-15 -4093 ((-1008) (-550) (-550) (-550) (-550) (-219) (-112) (-112) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-550))) (-15 -4182 ((-1008) (-550) (-550) (-550) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-667 (-550)) (-112) (-219) (-112) (-667 (-550)) (-667 (-219)) (-550))) (-15 -4283 ((-1008) (-550) (-550) (-550) (-550) (-623 (-112)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-219) (-219) (-550))) (-15 -1319 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550))) (-15 -1415 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-550))) (-15 -3320 ((-1008) (-1126) (-1126) (-550) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-667 (-219)) (-550))) (-15 -3424 ((-1008) (-1126) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3522 ((-1008) (-550) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -3611 ((-1008) (-1126) (-1126) (-550) (-550) (-667 (-167 (-219))) (-550) (-667 (-167 (-219))) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -3691 ((-1008) (-1126) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550)))) +((-2595 (((-1008) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550)) 65)) (-2525 (((-1008) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550)) 60)) (-2448 (((-1008) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381)) 56) (((-1008) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) 55)) (-2367 (((-1008) (-550) (-550) (-550) (-219) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550)) 37)) (-2298 (((-1008) (-550) (-550) (-219) (-219) (-550) (-550) (-667 (-219)) (-550)) 33)) (-2229 (((-1008) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550) (-550)) 30)) (-3252 (((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 29)) (-3164 (((-1008) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 28)) (-3079 (((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 27)) (-3004 (((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550)) 26)) (-2924 (((-1008) (-550) (-550) (-667 (-219)) (-550)) 25)) (-2844 (((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 24)) (-2753 (((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550)) 23)) (-3853 (((-1008) (-667 (-219)) (-550) (-550) (-550) (-550)) 22)) (-3773 (((-1008) (-550) (-550) (-667 (-219)) (-550)) 21))) +(((-734) (-10 -7 (-15 -3773 ((-1008) (-550) (-550) (-667 (-219)) (-550))) (-15 -3853 ((-1008) (-667 (-219)) (-550) (-550) (-550) (-550))) (-15 -2753 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2844 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2924 ((-1008) (-550) (-550) (-667 (-219)) (-550))) (-15 -3004 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550))) (-15 -3079 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3164 ((-1008) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3252 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2229 ((-1008) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550) (-550))) (-15 -2298 ((-1008) (-550) (-550) (-219) (-219) (-550) (-550) (-667 (-219)) (-550))) (-15 -2367 ((-1008) (-550) (-550) (-550) (-219) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2448 ((-1008) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2448 ((-1008) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2525 ((-1008) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2595 ((-1008) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550))))) (T -734)) +((-2595 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-667 (-167 (-219)))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2525 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2448 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2448 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2367 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2298 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2229 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-734)))) (-3252 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-3164 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-3079 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-3004 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2924 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2844 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-2753 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734)))) (-3853 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-734)))) (-3773 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-734))))) +(-10 -7 (-15 -3773 ((-1008) (-550) (-550) (-667 (-219)) (-550))) (-15 -3853 ((-1008) (-667 (-219)) (-550) (-550) (-550) (-550))) (-15 -2753 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2844 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2924 ((-1008) (-550) (-550) (-667 (-219)) (-550))) (-15 -3004 ((-1008) (-550) (-550) (-550) (-550) (-667 (-219)) (-550))) (-15 -3079 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3164 ((-1008) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -3252 ((-1008) (-550) (-550) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2229 ((-1008) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550) (-550))) (-15 -2298 ((-1008) (-550) (-550) (-219) (-219) (-550) (-550) (-667 (-219)) (-550))) (-15 -2367 ((-1008) (-550) (-550) (-550) (-219) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2448 ((-1008) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2448 ((-1008) (-550) (-550) (-219) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2525 ((-1008) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2595 ((-1008) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-667 (-167 (-219))) (-667 (-167 (-219))) (-550)))) +((-4120 (((-1008) (-550) (-550) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) 61)) (-4022 (((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550)) 57)) (-3956 (((-1008) (-550) (-667 (-219)) (-112) (-219) (-550) (-550) (-550) (-550) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2128 (((-1008) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550)) 37)) (-2052 (((-1008) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-550)) 36)) (-1961 (((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550)) 33)) (-1882 (((-1008) (-550) (-667 (-219)) (-550) (-667 (-550)) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219))) 32)) (-1785 (((-1008) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550)) 28)) (-1679 (((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550)) 27)) (-1595 (((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550)) 26)) (-2668 (((-1008) (-550) (-667 (-167 (-219))) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-550)) 22))) +(((-735) (-10 -7 (-15 -2668 ((-1008) (-550) (-667 (-167 (-219))) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -1595 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -1679 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -1785 ((-1008) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550))) (-15 -1882 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-550)) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)))) (-15 -1961 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2052 ((-1008) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2128 ((-1008) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550))) (-15 -3956 ((-1008) (-550) (-667 (-219)) (-112) (-219) (-550) (-550) (-550) (-550) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -4022 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550))) (-15 -4120 ((-1008) (-550) (-550) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))) (T -735)) +((-4120 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-735)))) (-4022 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-735)))) (-3956 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1008)) (-5 *1 (-735)))) (-2128 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-735)))) (-2052 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-735)))) (-1961 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-735)))) (-1882 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-735)))) (-1785 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-735)))) (-1679 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-735)))) (-1595 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-735)))) (-2668 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-167 (-219)))) (-5 *2 (-1008)) (-5 *1 (-735))))) +(-10 -7 (-15 -2668 ((-1008) (-550) (-667 (-167 (-219))) (-550) (-550) (-550) (-550) (-667 (-167 (-219))) (-550))) (-15 -1595 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -1679 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-550))) (-15 -1785 ((-1008) (-667 (-219)) (-550) (-667 (-219)) (-550) (-550) (-550))) (-15 -1882 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-550)) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)))) (-15 -1961 ((-1008) (-550) (-550) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2052 ((-1008) (-550) (-550) (-550) (-219) (-550) (-667 (-219)) (-667 (-219)) (-550))) (-15 -2128 ((-1008) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-550)) (-667 (-219)) (-667 (-550)) (-667 (-550)) (-667 (-219)) (-667 (-219)) (-667 (-550)) (-550))) (-15 -3956 ((-1008) (-550) (-667 (-219)) (-112) (-219) (-550) (-550) (-550) (-550) (-219) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -4022 ((-1008) (-550) (-667 (-219)) (-550) (-667 (-219)) (-667 (-550)) (-550) (-667 (-219)) (-550) (-550) (-550) (-550))) (-15 -4120 ((-1008) (-550) (-550) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-667 (-219)) (-550) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))))) +((-2987 (((-1008) (-1126) (-550) (-550) (-667 (-219)) (-550) (-550) (-667 (-219))) 29)) (-2886 (((-1008) (-1126) (-550) (-550) (-667 (-219))) 28)) (-2777 (((-1008) (-1126) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-219))) 27)) (-4226 (((-1008) (-550) (-550) (-550) (-667 (-219))) 21))) +(((-736) (-10 -7 (-15 -4226 ((-1008) (-550) (-550) (-550) (-667 (-219)))) (-15 -2777 ((-1008) (-1126) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-219)))) (-15 -2886 ((-1008) (-1126) (-550) (-550) (-667 (-219)))) (-15 -2987 ((-1008) (-1126) (-550) (-550) (-667 (-219)) (-550) (-550) (-667 (-219)))))) (T -736)) +((-2987 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-736)))) (-2886 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-736)))) (-2777 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1126)) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-736)))) (-4226 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) (-5 *1 (-736))))) +(-10 -7 (-15 -4226 ((-1008) (-550) (-550) (-550) (-667 (-219)))) (-15 -2777 ((-1008) (-1126) (-550) (-550) (-667 (-219)) (-550) (-667 (-550)) (-550) (-667 (-219)))) (-15 -2886 ((-1008) (-1126) (-550) (-550) (-667 (-219)))) (-15 -2987 ((-1008) (-1126) (-550) (-550) (-667 (-219)) (-550) (-550) (-667 (-219))))) +((-1996 (((-1008) (-219) (-219) (-219) (-219) (-550)) 62)) (-1857 (((-1008) (-219) (-219) (-219) (-550)) 61)) (-1704 (((-1008) (-219) (-219) (-219) (-550)) 60)) (-1570 (((-1008) (-219) (-219) (-550)) 59)) (-2621 (((-1008) (-219) (-550)) 58)) (-2522 (((-1008) (-219) (-550)) 57)) (-2422 (((-1008) (-219) (-550)) 56)) (-2313 (((-1008) (-219) (-550)) 55)) (-2208 (((-1008) (-219) (-550)) 54)) (-3196 (((-1008) (-219) (-550)) 53)) (-3091 (((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550)) 52)) (-3003 (((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550)) 51)) (-2892 (((-1008) (-219) (-550)) 50)) (-2772 (((-1008) (-219) (-550)) 49)) (-2676 (((-1008) (-219) (-550)) 48)) (-3741 (((-1008) (-219) (-550)) 47)) (-3618 (((-1008) (-550) (-219) (-167 (-219)) (-550) (-1126) (-550)) 46)) (-3496 (((-1008) (-1126) (-167 (-219)) (-1126) (-550)) 45)) (-3391 (((-1008) (-1126) (-167 (-219)) (-1126) (-550)) 44)) (-3281 (((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550)) 43)) (-1342 (((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550)) 42)) (-4281 (((-1008) (-219) (-550)) 39)) (-4154 (((-1008) (-219) (-550)) 38)) (-4051 (((-1008) (-219) (-550)) 37)) (-3938 (((-1008) (-219) (-550)) 36)) (-3841 (((-1008) (-219) (-550)) 35)) (-1989 (((-1008) (-219) (-550)) 34)) (-1875 (((-1008) (-219) (-550)) 33)) (-1750 (((-1008) (-219) (-550)) 32)) (-1622 (((-1008) (-219) (-550)) 31)) (-1498 (((-1008) (-219) (-550)) 30)) (-2571 (((-1008) (-219) (-219) (-219) (-550)) 29)) (-2488 (((-1008) (-219) (-550)) 28)) (-2381 (((-1008) (-219) (-550)) 27)) (-2283 (((-1008) (-219) (-550)) 26)) (-2193 (((-1008) (-219) (-550)) 25)) (-2101 (((-1008) (-219) (-550)) 24)) (-3073 (((-1008) (-167 (-219)) (-550)) 21))) +(((-737) (-10 -7 (-15 -3073 ((-1008) (-167 (-219)) (-550))) (-15 -2101 ((-1008) (-219) (-550))) (-15 -2193 ((-1008) (-219) (-550))) (-15 -2283 ((-1008) (-219) (-550))) (-15 -2381 ((-1008) (-219) (-550))) (-15 -2488 ((-1008) (-219) (-550))) (-15 -2571 ((-1008) (-219) (-219) (-219) (-550))) (-15 -1498 ((-1008) (-219) (-550))) (-15 -1622 ((-1008) (-219) (-550))) (-15 -1750 ((-1008) (-219) (-550))) (-15 -1875 ((-1008) (-219) (-550))) (-15 -1989 ((-1008) (-219) (-550))) (-15 -3841 ((-1008) (-219) (-550))) (-15 -3938 ((-1008) (-219) (-550))) (-15 -4051 ((-1008) (-219) (-550))) (-15 -4154 ((-1008) (-219) (-550))) (-15 -4281 ((-1008) (-219) (-550))) (-15 -1342 ((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3281 ((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3391 ((-1008) (-1126) (-167 (-219)) (-1126) (-550))) (-15 -3496 ((-1008) (-1126) (-167 (-219)) (-1126) (-550))) (-15 -3618 ((-1008) (-550) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3741 ((-1008) (-219) (-550))) (-15 -2676 ((-1008) (-219) (-550))) (-15 -2772 ((-1008) (-219) (-550))) (-15 -2892 ((-1008) (-219) (-550))) (-15 -3003 ((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3091 ((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3196 ((-1008) (-219) (-550))) (-15 -2208 ((-1008) (-219) (-550))) (-15 -2313 ((-1008) (-219) (-550))) (-15 -2422 ((-1008) (-219) (-550))) (-15 -2522 ((-1008) (-219) (-550))) (-15 -2621 ((-1008) (-219) (-550))) (-15 -1570 ((-1008) (-219) (-219) (-550))) (-15 -1704 ((-1008) (-219) (-219) (-219) (-550))) (-15 -1857 ((-1008) (-219) (-219) (-219) (-550))) (-15 -1996 ((-1008) (-219) (-219) (-219) (-219) (-550))))) (T -737)) +((-1996 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1857 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1704 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1570 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2621 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2522 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3196 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3091 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1126)) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3003 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1126)) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2892 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2676 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3618 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-550)) (-5 *5 (-167 (-219))) (-5 *6 (-1126)) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3496 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1126)) (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3391 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1126)) (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3281 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1126)) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1342 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1126)) (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-4281 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2571 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(-10 -7 (-15 -3073 ((-1008) (-167 (-219)) (-550))) (-15 -2101 ((-1008) (-219) (-550))) (-15 -2193 ((-1008) (-219) (-550))) (-15 -2283 ((-1008) (-219) (-550))) (-15 -2381 ((-1008) (-219) (-550))) (-15 -2488 ((-1008) (-219) (-550))) (-15 -2571 ((-1008) (-219) (-219) (-219) (-550))) (-15 -1498 ((-1008) (-219) (-550))) (-15 -1622 ((-1008) (-219) (-550))) (-15 -1750 ((-1008) (-219) (-550))) (-15 -1875 ((-1008) (-219) (-550))) (-15 -1989 ((-1008) (-219) (-550))) (-15 -3841 ((-1008) (-219) (-550))) (-15 -3938 ((-1008) (-219) (-550))) (-15 -4051 ((-1008) (-219) (-550))) (-15 -4154 ((-1008) (-219) (-550))) (-15 -4281 ((-1008) (-219) (-550))) (-15 -1342 ((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3281 ((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3391 ((-1008) (-1126) (-167 (-219)) (-1126) (-550))) (-15 -3496 ((-1008) (-1126) (-167 (-219)) (-1126) (-550))) (-15 -3618 ((-1008) (-550) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3741 ((-1008) (-219) (-550))) (-15 -2676 ((-1008) (-219) (-550))) (-15 -2772 ((-1008) (-219) (-550))) (-15 -2892 ((-1008) (-219) (-550))) (-15 -3003 ((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3091 ((-1008) (-219) (-167 (-219)) (-550) (-1126) (-550))) (-15 -3196 ((-1008) (-219) (-550))) (-15 -2208 ((-1008) (-219) (-550))) (-15 -2313 ((-1008) (-219) (-550))) (-15 -2422 ((-1008) (-219) (-550))) (-15 -2522 ((-1008) (-219) (-550))) (-15 -2621 ((-1008) (-219) (-550))) (-15 -1570 ((-1008) (-219) (-219) (-550))) (-15 -1704 ((-1008) (-219) (-219) (-219) (-550))) (-15 -1857 ((-1008) (-219) (-219) (-219) (-550))) (-15 -1996 ((-1008) (-219) (-219) (-219) (-219) (-550)))) +((-4286 (((-1232)) 18)) (-3954 (((-1126)) 22)) (-2107 (((-1126)) 21)) (-4159 (((-1072) (-1144) (-667 (-550))) 37) (((-1072) (-1144) (-667 (-219))) 32)) (-1365 (((-112)) 16)) (-4066 (((-1126) (-1126)) 25))) +(((-738) (-10 -7 (-15 -2107 ((-1126))) (-15 -3954 ((-1126))) (-15 -4066 ((-1126) (-1126))) (-15 -4159 ((-1072) (-1144) (-667 (-219)))) (-15 -4159 ((-1072) (-1144) (-667 (-550)))) (-15 -1365 ((-112))) (-15 -4286 ((-1232))))) (T -738)) +((-4286 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-738)))) (-1365 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-738)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-667 (-550))) (-5 *2 (-1072)) (-5 *1 (-738)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-667 (-219))) (-5 *2 (-1072)) (-5 *1 (-738)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-738)))) (-3954 (*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-738)))) (-2107 (*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-738))))) +(-10 -7 (-15 -2107 ((-1126))) (-15 -3954 ((-1126))) (-15 -4066 ((-1126) (-1126))) (-15 -4159 ((-1072) (-1144) (-667 (-219)))) (-15 -4159 ((-1072) (-1144) (-667 (-550)))) (-15 -1365 ((-112))) (-15 -4286 ((-1232)))) +((-3292 (($ $ $) 10)) (-3395 (($ $ $ $) 9)) (-1358 (($ $ $) 12))) +(((-739 |#1|) (-10 -8 (-15 -1358 (|#1| |#1| |#1|)) (-15 -3292 (|#1| |#1| |#1|)) (-15 -3395 (|#1| |#1| |#1| |#1|))) (-740)) (T -739)) +NIL +(-10 -8 (-15 -1358 (|#1| |#1| |#1|)) (-15 -3292 (|#1| |#1| |#1|)) (-15 -3395 (|#1| |#1| |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-2923 (($ $ (-894)) 28)) (-2834 (($ $ (-894)) 29)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3292 (($ $ $) 25)) (-1518 (((-836) $) 11)) (-3395 (($ $ $ $) 26)) (-1358 (($ $ $) 24)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 30)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27))) (((-740) (-138)) (T -740)) -((-3444 (*1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-747)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-740))))) -(-13 (-738) (-699) (-10 -8 (-15 -3444 ((-747))) (-15 -4300 ($ (-535))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-697) . T) ((-699) . T) ((-738) . T) ((-1067) . T)) -((-2680 (((-618 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 (-166 |#1|)))))) (-665 (-166 (-400 (-535)))) |#1|) 33)) (-2679 (((-618 (-166 |#1|)) (-665 (-166 (-400 (-535)))) |#1|) 23)) (-2689 (((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))) (-1142)) 20) (((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535))))) 19))) -(((-741 |#1|) (-10 -7 (-15 -2689 ((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))))) (-15 -2689 ((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))) (-1142))) (-15 -2679 ((-618 (-166 |#1|)) (-665 (-166 (-400 (-535)))) |#1|)) (-15 -2680 ((-618 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 (-166 |#1|)))))) (-665 (-166 (-400 (-535)))) |#1|))) (-13 (-356) (-821))) (T -741)) -((-2680 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-618 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 (-166 *4))))))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-618 (-166 *4))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *4 (-1142)) (-5 *2 (-917 (-166 (-400 (-535))))) (-5 *1 (-741 *5)) (-4 *5 (-13 (-356) (-821))))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-917 (-166 (-400 (-535))))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821)))))) -(-10 -7 (-15 -2689 ((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))))) (-15 -2689 ((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))) (-1142))) (-15 -2679 ((-618 (-166 |#1|)) (-665 (-166 (-400 (-535)))) |#1|)) (-15 -2680 ((-618 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 (-166 |#1|)))))) (-665 (-166 (-400 (-535)))) |#1|))) -((-2933 (((-172 (-535)) |#1|) 25))) -(((-742 |#1|) (-10 -7 (-15 -2933 ((-172 (-535)) |#1|))) (-397)) (T -742)) -((-2933 (*1 *2 *3) (-12 (-5 *2 (-172 (-535))) (-5 *1 (-742 *3)) (-4 *3 (-397))))) -(-10 -7 (-15 -2933 ((-172 (-535)) |#1|))) -((-2868 ((|#1| |#1| |#1|) 24)) (-2869 ((|#1| |#1| |#1|) 23)) (-2858 ((|#1| |#1| |#1|) 32)) (-2866 ((|#1| |#1| |#1|) 28)) (-2867 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2874 (((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|) 22))) -(((-743 |#1| |#2|) (-10 -7 (-15 -2874 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2867 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|))) (-685 |#2|) (-356)) (T -743)) -((-2858 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2866 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2867 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2868 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2869 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-743 *3 *4)) (-4 *3 (-685 *4))))) -(-10 -7 (-15 -2874 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2867 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|))) -((-4262 (((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))) (-535)) 59)) (-4261 (((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535))))) 57)) (-4100 (((-535)) 71))) -(((-744 |#1| |#2|) (-10 -7 (-15 -4100 ((-535))) (-15 -4261 ((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))))) (-15 -4262 ((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))) (-535)))) (-1200 (-535)) (-403 (-535) |#1|)) (T -744)) -((-4262 (*1 *2 *3) (-12 (-5 *3 (-535)) (-4 *4 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-744 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4261 (*1 *2) (-12 (-4 *3 (-1200 (-535))) (-5 *2 (-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535))))) (-5 *1 (-744 *3 *4)) (-4 *4 (-403 (-535) *3)))) (-4100 (*1 *2) (-12 (-4 *3 (-1200 *2)) (-5 *2 (-535)) (-5 *1 (-744 *3 *4)) (-4 *4 (-403 *2 *3))))) -(-10 -7 (-15 -4100 ((-535))) (-15 -4261 ((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))))) (-15 -4262 ((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))) (-535)))) -((-2887 (((-112) $ $) NIL)) (-3490 (((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $) 21)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (($ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13) (($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) 18)) (-3375 (((-112) $ $) NIL))) -(((-745) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))) (T -745)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-745)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-745)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-745)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-745)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-745))))) -(-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $)))) -((-2755 (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|))) 18) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142))) 17)) (-3919 (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|))) 20) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142))) 19))) -(((-746 |#1|) (-10 -7 (-15 -2755 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -2755 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|))))) (-542)) (T -746)) -((-3919 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-746 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-746 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-746 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-746 *5))))) -(-10 -7 (-15 -2755 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -2755 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2724 (($ $ $) 6)) (-1363 (((-3 $ "failed") $ $) 9)) (-2681 (($ $ (-535)) 7)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($ $) NIL)) (-2882 (($ $ $) NIL)) (-2493 (((-112) $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3478 (($ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ $ $) NIL))) -(((-747) (-13 (-769) (-703) (-10 -8 (-15 -2882 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -3478 ($ $ $)) (-15 -3202 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -3803 ((-3 $ "failed") $ $)) (-15 -2681 ($ $ (-535))) (-15 -3315 ($ $)) (-6 (-4338 "*"))))) (T -747)) -((-2882 (*1 *1 *1 *1) (-5 *1 (-747))) (-2883 (*1 *1 *1 *1) (-5 *1 (-747))) (-3478 (*1 *1 *1 *1) (-5 *1 (-747))) (-3202 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2091 (-747)) (|:| -3223 (-747)))) (-5 *1 (-747)))) (-3803 (*1 *1 *1 *1) (|partial| -5 *1 (-747))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-747)))) (-3315 (*1 *1 *1) (-5 *1 (-747)))) -(-13 (-769) (-703) (-10 -8 (-15 -2882 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -3478 ($ $ $)) (-15 -3202 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -3803 ((-3 $ "failed") $ $)) (-15 -2681 ($ $ (-535))) (-15 -3315 ($ $)) (-6 (-4338 "*")))) -((-3919 (((-3 |#2| "failed") |#2| |#2| (-113) (-1142)) 35))) -(((-748 |#1| |#2|) (-10 -7 (-15 -3919 ((-3 |#2| "failed") |#2| |#2| (-113) (-1142)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931))) (T -748)) -((-3919 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-748 *5 *2)) (-4 *2 (-13 (-29 *5) (-1164) (-931)))))) -(-10 -7 (-15 -3919 ((-3 |#2| "failed") |#2| |#2| (-113) (-1142)))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 7)) (-3375 (((-112) $ $) 9))) -(((-749) (-1067)) (T -749)) -NIL -(-1067) -((-4300 (((-749) |#1|) 8))) -(((-750 |#1|) (-10 -7 (-15 -4300 ((-749) |#1|))) (-1178)) (T -750)) -((-4300 (*1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-750 *3)) (-4 *3 (-1178))))) -(-10 -7 (-15 -4300 ((-749) |#1|))) -((-3450 ((|#2| |#4|) 35))) -(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3450 (|#2| |#4|))) (-444) (-1200 |#1|) (-701 |#1| |#2|) (-1200 |#3|)) (T -751)) -((-3450 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-701 *4 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-751 *4 *2 *5 *3)) (-4 *3 (-1200 *5))))) -(-10 -7 (-15 -3450 (|#2| |#4|))) -((-3804 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2684 (((-1230) (-1124) (-1124) |#4| |#5|) 33)) (-2682 ((|#4| |#4| |#5|) 73)) (-2683 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 77)) (-2685 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 16))) -(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3804 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2682 (|#4| |#4| |#5|)) (-15 -2683 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -2684 ((-1230) (-1124) (-1124) |#4| |#5|)) (-15 -2685 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -752)) -((-2685 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2684 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1124)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *4 (-1032 *6 *7 *8)) (-5 *2 (-1230)) (-5 *1 (-752 *6 *7 *8 *4 *5)) (-4 *5 (-1038 *6 *7 *8 *4)))) (-2683 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2682 (*1 *2 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *2 (-1032 *4 *5 *6)) (-5 *1 (-752 *4 *5 *6 *2 *3)) (-4 *3 (-1038 *4 *5 *6 *2)))) (-3804 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(-10 -7 (-15 -3804 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2682 (|#4| |#4| |#5|)) (-15 -2683 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -2684 ((-1230) (-1124) (-1124) |#4| |#5|)) (-15 -2685 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|))) -((-3491 (((-3 (-1136 (-1136 |#1|)) "failed") |#4|) 43)) (-2686 (((-618 |#4|) |#4|) 15)) (-4271 ((|#4| |#4|) 11))) -(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2686 ((-618 |#4|) |#4|)) (-15 -3491 ((-3 (-1136 (-1136 |#1|)) "failed") |#4|)) (-15 -4271 (|#4| |#4|))) (-343) (-322 |#1|) (-1200 |#2|) (-1200 |#3|) (-890)) (T -753)) -((-4271 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-322 *3)) (-4 *5 (-1200 *4)) (-5 *1 (-753 *3 *4 *5 *2 *6)) (-4 *2 (-1200 *5)) (-14 *6 (-890)))) (-3491 (*1 *2 *3) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1200 *5)) (-5 *2 (-1136 (-1136 *4))) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1200 *6)) (-14 *7 (-890)))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1200 *5)) (-5 *2 (-618 *3)) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1200 *6)) (-14 *7 (-890))))) -(-10 -7 (-15 -2686 ((-618 |#4|) |#4|)) (-15 -3491 ((-3 (-1136 (-1136 |#1|)) "failed") |#4|)) (-15 -4271 (|#4| |#4|))) -((-2687 (((-2 (|:| |deter| (-618 (-1136 |#5|))) (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-618 |#1|)) (|:| |nlead| (-618 |#5|))) (-1136 |#5|) (-618 |#1|) (-618 |#5|)) 54)) (-2688 (((-618 (-747)) |#1|) 13))) -(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2687 ((-2 (|:| |deter| (-618 (-1136 |#5|))) (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-618 |#1|)) (|:| |nlead| (-618 |#5|))) (-1136 |#5|) (-618 |#1|) (-618 |#5|))) (-15 -2688 ((-618 (-747)) |#1|))) (-1200 |#4|) (-769) (-823) (-300) (-921 |#4| |#2| |#3|)) (T -754)) -((-2688 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-618 (-747))) (-5 *1 (-754 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *6)) (-4 *7 (-921 *6 *4 *5)))) (-2687 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1200 *9)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-300)) (-4 *10 (-921 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-618 (-1136 *10))) (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| *10))))) (|:| |nfacts| (-618 *6)) (|:| |nlead| (-618 *10)))) (-5 *1 (-754 *6 *7 *8 *9 *10)) (-5 *3 (-1136 *10)) (-5 *4 (-618 *6)) (-5 *5 (-618 *10))))) -(-10 -7 (-15 -2687 ((-2 (|:| |deter| (-618 (-1136 |#5|))) (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-618 |#1|)) (|:| |nlead| (-618 |#5|))) (-1136 |#5|) (-618 |#1|) (-618 |#5|))) (-15 -2688 ((-618 (-747)) |#1|))) -((-2691 (((-618 (-2 (|:| |outval| |#1|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#1|))))) (-665 (-400 (-535))) |#1|) 31)) (-2690 (((-618 |#1|) (-665 (-400 (-535))) |#1|) 21)) (-2689 (((-917 (-400 (-535))) (-665 (-400 (-535))) (-1142)) 18) (((-917 (-400 (-535))) (-665 (-400 (-535)))) 17))) -(((-755 |#1|) (-10 -7 (-15 -2689 ((-917 (-400 (-535))) (-665 (-400 (-535))))) (-15 -2689 ((-917 (-400 (-535))) (-665 (-400 (-535))) (-1142))) (-15 -2690 ((-618 |#1|) (-665 (-400 (-535))) |#1|)) (-15 -2691 ((-618 (-2 (|:| |outval| |#1|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#1|))))) (-665 (-400 (-535))) |#1|))) (-13 (-356) (-821))) (T -755)) -((-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-618 (-2 (|:| |outval| *4) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 *4)))))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-618 *4)) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *4 (-1142)) (-5 *2 (-917 (-400 (-535)))) (-5 *1 (-755 *5)) (-4 *5 (-13 (-356) (-821))))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-917 (-400 (-535)))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821)))))) -(-10 -7 (-15 -2689 ((-917 (-400 (-535))) (-665 (-400 (-535))))) (-15 -2689 ((-917 (-400 (-535))) (-665 (-400 (-535))) (-1142))) (-15 -2690 ((-618 |#1|) (-665 (-400 (-535))) |#1|)) (-15 -2691 ((-618 (-2 (|:| |outval| |#1|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#1|))))) (-665 (-400 (-535))) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 34)) (-3405 (((-618 |#2|) $) NIL)) (-3407 (((-1136 $) $ |#2|) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 |#2|)) NIL)) (-4139 (($ $) 28)) (-3500 (((-112) $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4098 (($ $ $) 93 (|has| |#1| (-542)))) (-3482 (((-618 $) $ $) 106 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-917 (-400 (-535)))) NIL (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))))) (((-3 $ #3#) (-917 (-535))) NIL (-3874 (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535)))))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142)))))) (((-3 $ #3#) (-917 |#1|)) NIL (-3874 (-12 (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-38 (-535))))) (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-534)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-962 (-535))))))) (((-3 (-1091 |#1| |#2|) #2#) $) 18)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) ((|#2| $) NIL) (($ (-917 (-400 (-535)))) NIL (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))))) (($ (-917 (-535))) NIL (-3874 (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535)))))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142)))))) (($ (-917 |#1|)) NIL (-3874 (-12 (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-38 (-535))))) (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-534)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-962 (-535))))))) (((-1091 |#1| |#2|) $) NIL)) (-4099 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-542)))) (-4302 (($ $) NIL) (($ $ |#2|) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-4040 (((-112) $ $) NIL) (((-112) $ (-618 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3506 (((-112) $) NIL)) (-4095 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 70)) (-3477 (($ $) 119 (|has| |#1| (-444)))) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-3488 (($ $) NIL (|has| |#1| (-542)))) (-3489 (($ $) NIL (|has| |#1| (-542)))) (-3499 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3498 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1716 (($ $ |#1| (-521 |#2|) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| |#1| (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| |#1| (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-4041 (((-112) $ $) NIL) (((-112) $ (-618 $)) NIL)) (-3479 (($ $ $ $ $) 90 (|has| |#1| (-542)))) (-3514 ((|#2| $) 19)) (-3408 (($ (-1136 |#1|) |#2|) NIL) (($ (-1136 $) |#2|) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 |#2|)) NIL) (($ $ |#2| (-747)) 36) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-3493 (($ $ $) 60)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#2|) NIL)) (-3507 (((-112) $) NIL)) (-3141 (((-521 |#2|) $) NIL) (((-747) $ |#2|) NIL) (((-618 (-747)) $ (-618 |#2|)) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3513 (((-747) $) 20)) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 |#2|) (-521 |#2|)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3406 (((-3 |#2| #4="failed") $) NIL)) (-3474 (($ $) NIL (|has| |#1| (-444)))) (-3475 (($ $) NIL (|has| |#1| (-444)))) (-3502 (((-618 $) $) NIL)) (-3505 (($ $) 37)) (-3476 (($ $) NIL (|has| |#1| (-444)))) (-3503 (((-618 $) $) 41)) (-3504 (($ $) 39)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3492 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3818 (-747))) $ $) 82)) (-3494 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $) 67) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $ |#2|) NIL)) (-3495 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $) NIL) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $ |#2|) NIL)) (-3497 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3496 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3576 (((-1124) $) NIL)) (-3524 (($ $ $) 108 (|has| |#1| (-542)))) (-3510 (((-618 $) $) 30)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-747))) #4#) $) NIL)) (-4037 (((-112) $ $) NIL) (((-112) $ (-618 $)) NIL)) (-4032 (($ $ $) NIL)) (-3787 (($ $) 21)) (-4045 (((-112) $ $) NIL)) (-4038 (((-112) $ $) NIL) (((-112) $ (-618 $)) NIL)) (-4033 (($ $ $) NIL)) (-3512 (($ $) 23)) (-3577 (((-1086) $) NIL)) (-3483 (((-2 (|:| -3478 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-542)))) (-3484 (((-2 (|:| -3478 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-542)))) (-1911 (((-112) $) 52)) (-1910 ((|#1| $) 55)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 ((|#1| |#1| $) 116 (|has| |#1| (-444))) (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3485 (((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-542)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3486 (($ $ |#1|) 112 (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-3487 (($ $ |#1|) 111 (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-618 |#2|) (-618 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-618 |#2|) (-618 $)) NIL)) (-4100 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4153 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4290 (((-521 |#2|) $) NIL) (((-747) $ |#2|) 43) (((-618 (-747)) $ (-618 |#2|)) NIL)) (-3511 (($ $) NIL)) (-3509 (($ $) 33)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| |#1| (-594 (-524))) (|has| |#2| (-594 (-524))))) (($ (-917 (-400 (-535)))) NIL (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))))) (($ (-917 (-535))) NIL (-3874 (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535)))))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142)))))) (($ (-917 |#1|)) NIL (|has| |#2| (-594 (-1142)))) (((-1124) $) NIL (-12 (|has| |#1| (-1009 (-535))) (|has| |#2| (-594 (-1142))))) (((-917 |#1|) $) NIL (|has| |#2| (-594 (-1142))))) (-3138 ((|#1| $) 115 (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-917 |#1|) $) NIL (|has| |#2| (-594 (-1142)))) (((-1091 |#1| |#2|) $) 15) (($ (-1091 |#1| |#2|)) 16) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 |#2|)) NIL) (($ $ |#2| (-747)) 44) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 13 T CONST)) (-3501 (((-3 (-112) #3#) $ $) NIL)) (-2985 (($) 35 T CONST)) (-3480 (($ $ $ $ (-747)) 88 (|has| |#1| (-542)))) (-3481 (($ $ $ (-747)) 87 (|has| |#1| (-542)))) (-2990 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 54)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) 64)) (-4182 (($ $ $) 74)) (** (($ $ (-890)) NIL) (($ $ (-747)) 61)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 59) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-756 |#1| |#2|) (-13 (-1032 |#1| (-521 |#2|) |#2|) (-593 (-1091 |#1| |#2|)) (-1009 (-1091 |#1| |#2|))) (-1018) (-823)) (T -756)) -NIL -(-13 (-1032 |#1| (-521 |#2|) |#2|) (-593 (-1091 |#1| |#2|)) (-1009 (-1091 |#1| |#2|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 12)) (-4109 (((-1224 |#1|) $ (-747)) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4107 (($ (-1136 |#1|)) NIL)) (-3407 (((-1136 $) $ (-1048)) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2695 (((-618 $) $ $) 39 (|has| |#1| (-542)))) (-4098 (($ $ $) 35 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4103 (($ $ (-747)) NIL)) (-4102 (($ $ (-747)) NIL)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1048) #2#) $) NIL) (((-3 (-1136 |#1|) #2#) $) 10)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1048) $) NIL) (((-1136 |#1|) $) NIL)) (-4099 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4101 (($ $ $) NIL)) (-4096 (($ $ $) 71 (|has| |#1| (-542)))) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 $) (|:| -3223 $)) $ $) 70 (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-747) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1048) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1048) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ $) NIL (|has| |#1| (-542)))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-3408 (($ (-1136 |#1|) (-1048)) NIL) (($ (-1136 $) (-1048)) NIL)) (-4119 (($ $ (-747)) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3493 (($ $ $) 20)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) NIL) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4108 (((-1136 |#1|) $) NIL)) (-3406 (((-3 (-1048) #4="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3492 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3818 (-747))) $ $) 26)) (-2697 (($ $ $) 29)) (-2696 (($ $ $) 32)) (-3494 (((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $) 31)) (-3576 (((-1124) $) NIL)) (-3524 (($ $ $) 41 (|has| |#1| (-542)))) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) NIL)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) NIL)) (-4155 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3483 (((-2 (|:| -3478 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-542)))) (-3484 (((-2 (|:| -3478 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-542)))) (-2692 (((-2 (|:| -4099 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-542)))) (-2693 (((-2 (|:| -4099 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-542)))) (-1911 (((-112) $) 13)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-4081 (($ $ (-747) |#1| $) 19)) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3485 (((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-542)))) (-2694 (((-2 (|:| -4099 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-542)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-618 (-1048)) (-618 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-618 (-1048)) (-618 $)) NIL)) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-4106 (((-3 $ #5="failed") $ (-747)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4100 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4290 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1048) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4097 (((-3 $ #5#) $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-542)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-1048)) NIL) (((-1136 |#1|) $) 7) (($ (-1136 |#1|)) 8) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 21 T CONST)) (-2985 (($) 24 T CONST)) (-2990 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) 28) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-757 |#1|) (-13 (-1200 |#1|) (-593 (-1136 |#1|)) (-1009 (-1136 |#1|)) (-10 -8 (-15 -4081 ($ $ (-747) |#1| $)) (-15 -3493 ($ $ $)) (-15 -3492 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3818 (-747))) $ $)) (-15 -2697 ($ $ $)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2696 ($ $ $)) (IF (|has| |#1| (-542)) (PROGN (-15 -2695 ((-618 $) $ $)) (-15 -3524 ($ $ $)) (-15 -3485 ((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3484 ((-2 (|:| -3478 $) (|:| |coef1| $)) $ $)) (-15 -3483 ((-2 (|:| -3478 $) (|:| |coef2| $)) $ $)) (-15 -2694 ((-2 (|:| -4099 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2693 ((-2 (|:| -4099 |#1|) (|:| |coef1| $)) $ $)) (-15 -2692 ((-2 (|:| -4099 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1018)) (T -757)) -((-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-757 *3)) (-4 *3 (-1018)))) (-3493 (*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))) (-3492 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-757 *3)) (|:| |polden| *3) (|:| -3818 (-747)))) (-5 *1 (-757 *3)) (-4 *3 (-1018)))) (-2697 (*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))) (-3494 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4296 *3) (|:| |gap| (-747)) (|:| -2091 (-757 *3)) (|:| -3223 (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-1018)))) (-2696 (*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))) (-2695 (*1 *2 *1 *1) (-12 (-5 *2 (-618 (-757 *3))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-3524 (*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-542)) (-4 *2 (-1018)))) (-3485 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef1| (-757 *3)) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-3484 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef1| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-3483 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-2694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef1| (-757 *3)) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-2693 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef1| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-2692 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018))))) -(-13 (-1200 |#1|) (-593 (-1136 |#1|)) (-1009 (-1136 |#1|)) (-10 -8 (-15 -4081 ($ $ (-747) |#1| $)) (-15 -3493 ($ $ $)) (-15 -3492 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3818 (-747))) $ $)) (-15 -2697 ($ $ $)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2696 ($ $ $)) (IF (|has| |#1| (-542)) (PROGN (-15 -2695 ((-618 $) $ $)) (-15 -3524 ($ $ $)) (-15 -3485 ((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3484 ((-2 (|:| -3478 $) (|:| |coef1| $)) $ $)) (-15 -3483 ((-2 (|:| -3478 $) (|:| |coef2| $)) $ $)) (-15 -2694 ((-2 (|:| -4099 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2693 ((-2 (|:| -4099 |#1|) (|:| |coef1| $)) $ $)) (-15 -2692 ((-2 (|:| -4099 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4301 (((-757 |#2|) (-1 |#2| |#1|) (-757 |#1|)) 13))) -(((-758 |#1| |#2|) (-10 -7 (-15 -4301 ((-757 |#2|) (-1 |#2| |#1|) (-757 |#1|)))) (-1018) (-1018)) (T -758)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-757 *6)) (-5 *1 (-758 *5 *6))))) -(-10 -7 (-15 -4301 ((-757 |#2|) (-1 |#2| |#1|) (-757 |#1|)))) -((-2699 ((|#1| (-747) |#1|) 32 (|has| |#1| (-38 (-400 (-535)))))) (-3122 ((|#1| (-747) |#1|) 22)) (-2698 ((|#1| (-747) |#1|) 34 (|has| |#1| (-38 (-400 (-535))))))) -(((-759 |#1|) (-10 -7 (-15 -3122 (|#1| (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -2698 (|#1| (-747) |#1|)) (-15 -2699 (|#1| (-747) |#1|))) |%noBranch|)) (-170)) (T -759)) -((-2699 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-170)))) (-2698 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-170)))) (-3122 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -3122 (|#1| (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -2698 (|#1| (-747) |#1|)) (-15 -2699 (|#1| (-747) |#1|))) |%noBranch|)) -((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86) (((-618 $) (-618 |#4|) (-112)) 111)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ #1#) $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-3531 (((-112) |#4| $) 136)) (-3529 (((-112) |#4| $) 133)) (-3532 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) 128)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4140 (((-3 |#4| #1#) $) 83)) (-3526 (((-618 $) |#4| $) 129)) (-3528 (((-3 (-112) (-618 $)) |#4| $) 132)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3572 (((-618 $) |#4| $) 125) (((-618 $) (-618 |#4|) $) 124) (((-618 $) (-618 |#4|) (-618 $)) 123) (((-618 $) |#4| (-618 $)) 122)) (-3782 (($ |#4| $) 117) (($ (-618 |#4|) $) 116)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| #1#) $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ #1#) $ |#4|) 78)) (-4111 (($ $ |#4|) 77) (((-618 $) |#4| $) 115) (((-618 $) |#4| (-618 $)) 114) (((-618 $) (-618 |#4|) $) 113) (((-618 $) (-618 |#4|) (-618 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-3523 (((-618 $) |#4| $) 121) (((-618 $) |#4| (-618 $)) 120) (((-618 $) (-618 |#4|) $) 119) (((-618 $) (-618 |#4|) (-618 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-3530 (((-112) |#4| $) 135)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336))))) -(((-760 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -760)) -NIL -(-13 (-1038 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1178) . T)) -((-2702 (((-3 (-371) "failed") (-307 |#1|) (-890)) 62 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-371) "failed") (-307 |#1|)) 54 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-371) "failed") (-400 (-917 |#1|)) (-890)) 41 (|has| |#1| (-542))) (((-3 (-371) "failed") (-400 (-917 |#1|))) 40 (|has| |#1| (-542))) (((-3 (-371) "failed") (-917 |#1|) (-890)) 31 (|has| |#1| (-1018))) (((-3 (-371) "failed") (-917 |#1|)) 30 (|has| |#1| (-1018)))) (-2700 (((-371) (-307 |#1|) (-890)) 99 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-371) (-307 |#1|)) 94 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-371) (-400 (-917 |#1|)) (-890)) 91 (|has| |#1| (-542))) (((-371) (-400 (-917 |#1|))) 90 (|has| |#1| (-542))) (((-371) (-917 |#1|) (-890)) 86 (|has| |#1| (-1018))) (((-371) (-917 |#1|)) 85 (|has| |#1| (-1018))) (((-371) |#1| (-890)) 76) (((-371) |#1|) 22)) (-2703 (((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-890)) 71 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-166 (-371)) "failed") (-307 (-166 |#1|))) 70 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-166 (-371)) "failed") (-307 |#1|) (-890)) 63 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-166 (-371)) "failed") (-307 |#1|)) 61 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))) (-890)) 46 (|has| |#1| (-542))) (((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|)))) 45 (|has| |#1| (-542))) (((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)) (-890)) 39 (|has| |#1| (-542))) (((-3 (-166 (-371)) "failed") (-400 (-917 |#1|))) 38 (|has| |#1| (-542))) (((-3 (-166 (-371)) "failed") (-917 |#1|) (-890)) 28 (|has| |#1| (-1018))) (((-3 (-166 (-371)) "failed") (-917 |#1|)) 26 (|has| |#1| (-1018))) (((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)) (-890)) 18 (|has| |#1| (-170))) (((-3 (-166 (-371)) "failed") (-917 (-166 |#1|))) 15 (|has| |#1| (-170)))) (-2701 (((-166 (-371)) (-307 (-166 |#1|)) (-890)) 102 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-166 (-371)) (-307 (-166 |#1|))) 101 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-166 (-371)) (-307 |#1|) (-890)) 100 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-166 (-371)) (-307 |#1|)) 98 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-166 (-371)) (-400 (-917 (-166 |#1|))) (-890)) 93 (|has| |#1| (-542))) (((-166 (-371)) (-400 (-917 (-166 |#1|)))) 92 (|has| |#1| (-542))) (((-166 (-371)) (-400 (-917 |#1|)) (-890)) 89 (|has| |#1| (-542))) (((-166 (-371)) (-400 (-917 |#1|))) 88 (|has| |#1| (-542))) (((-166 (-371)) (-917 |#1|) (-890)) 84 (|has| |#1| (-1018))) (((-166 (-371)) (-917 |#1|)) 83 (|has| |#1| (-1018))) (((-166 (-371)) (-917 (-166 |#1|)) (-890)) 78 (|has| |#1| (-170))) (((-166 (-371)) (-917 (-166 |#1|))) 77 (|has| |#1| (-170))) (((-166 (-371)) (-166 |#1|) (-890)) 80 (|has| |#1| (-170))) (((-166 (-371)) (-166 |#1|)) 79 (|has| |#1| (-170))) (((-166 (-371)) |#1| (-890)) 27) (((-166 (-371)) |#1|) 25))) -(((-761 |#1|) (-10 -7 (-15 -2700 ((-371) |#1|)) (-15 -2700 ((-371) |#1| (-890))) (-15 -2701 ((-166 (-371)) |#1|)) (-15 -2701 ((-166 (-371)) |#1| (-890))) (IF (|has| |#1| (-170)) (PROGN (-15 -2701 ((-166 (-371)) (-166 |#1|))) (-15 -2701 ((-166 (-371)) (-166 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-917 (-166 |#1|)))) (-15 -2701 ((-166 (-371)) (-917 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -2700 ((-371) (-917 |#1|))) (-15 -2700 ((-371) (-917 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-917 |#1|))) (-15 -2701 ((-166 (-371)) (-917 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2700 ((-371) (-400 (-917 |#1|)))) (-15 -2700 ((-371) (-400 (-917 |#1|)) (-890))) (-15 -2701 ((-166 (-371)) (-400 (-917 |#1|)))) (-15 -2701 ((-166 (-371)) (-400 (-917 |#1|)) (-890))) (-15 -2701 ((-166 (-371)) (-400 (-917 (-166 |#1|))))) (-15 -2701 ((-166 (-371)) (-400 (-917 (-166 |#1|))) (-890))) (IF (|has| |#1| (-823)) (PROGN (-15 -2700 ((-371) (-307 |#1|))) (-15 -2700 ((-371) (-307 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-307 |#1|))) (-15 -2701 ((-166 (-371)) (-307 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-307 (-166 |#1|)))) (-15 -2701 ((-166 (-371)) (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-917 |#1|))) (-15 -2702 ((-3 (-371) "failed") (-917 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 |#1|))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-400 (-917 |#1|)))) (-15 -2702 ((-3 (-371) "failed") (-400 (-917 |#1|)) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))) (-890))) (IF (|has| |#1| (-823)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-307 |#1|))) (-15 -2702 ((-3 (-371) "failed") (-307 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 |#1|))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) (-594 (-371))) (T -761)) -((-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2702 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-917 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 (-166 *4)))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2702 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2702 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-917 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-170)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-917 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 (-166 *4)))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-917 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-170)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-917 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-170)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-166 (-371))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-371))))) (-2701 (*1 *2 *3) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-371))))) (-2700 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-371)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))) (-2700 (*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2))))) -(-10 -7 (-15 -2700 ((-371) |#1|)) (-15 -2700 ((-371) |#1| (-890))) (-15 -2701 ((-166 (-371)) |#1|)) (-15 -2701 ((-166 (-371)) |#1| (-890))) (IF (|has| |#1| (-170)) (PROGN (-15 -2701 ((-166 (-371)) (-166 |#1|))) (-15 -2701 ((-166 (-371)) (-166 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-917 (-166 |#1|)))) (-15 -2701 ((-166 (-371)) (-917 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -2700 ((-371) (-917 |#1|))) (-15 -2700 ((-371) (-917 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-917 |#1|))) (-15 -2701 ((-166 (-371)) (-917 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2700 ((-371) (-400 (-917 |#1|)))) (-15 -2700 ((-371) (-400 (-917 |#1|)) (-890))) (-15 -2701 ((-166 (-371)) (-400 (-917 |#1|)))) (-15 -2701 ((-166 (-371)) (-400 (-917 |#1|)) (-890))) (-15 -2701 ((-166 (-371)) (-400 (-917 (-166 |#1|))))) (-15 -2701 ((-166 (-371)) (-400 (-917 (-166 |#1|))) (-890))) (IF (|has| |#1| (-823)) (PROGN (-15 -2700 ((-371) (-307 |#1|))) (-15 -2700 ((-371) (-307 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-307 |#1|))) (-15 -2701 ((-166 (-371)) (-307 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-307 (-166 |#1|)))) (-15 -2701 ((-166 (-371)) (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-917 |#1|))) (-15 -2702 ((-3 (-371) "failed") (-917 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 |#1|))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-400 (-917 |#1|)))) (-15 -2702 ((-3 (-371) "failed") (-400 (-917 |#1|)) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))) (-890))) (IF (|has| |#1| (-823)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-307 |#1|))) (-15 -2702 ((-3 (-371) "failed") (-307 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 |#1|))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) -((-2707 (((-890) (-1124)) 66)) (-2709 (((-3 (-371) "failed") (-1124)) 33)) (-2708 (((-371) (-1124)) 31)) (-2705 (((-890) (-1124)) 54)) (-2706 (((-1124) (-890)) 56)) (-2704 (((-1124) (-890)) 53))) -(((-762) (-10 -7 (-15 -2704 ((-1124) (-890))) (-15 -2705 ((-890) (-1124))) (-15 -2706 ((-1124) (-890))) (-15 -2707 ((-890) (-1124))) (-15 -2708 ((-371) (-1124))) (-15 -2709 ((-3 (-371) "failed") (-1124))))) (T -762)) -((-2709 (*1 *2 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-762)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-762)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-890)) (-5 *1 (-762)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1124)) (-5 *1 (-762)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-890)) (-5 *1 (-762)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1124)) (-5 *1 (-762))))) -(-10 -7 (-15 -2704 ((-1124) (-890))) (-15 -2705 ((-890) (-1124))) (-15 -2706 ((-1124) (-890))) (-15 -2707 ((-890) (-1124))) (-15 -2708 ((-371) (-1124))) (-15 -2709 ((-3 (-371) "failed") (-1124)))) -((-2887 (((-112) $ $) 7)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 15) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 13)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6))) -(((-763) (-138)) (T -763)) -((-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-763)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006)))))) (-2710 (*1 *2 *3 *2) (-12 (-4 *1 (-763)) (-5 *2 (-1006)) (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-763)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006)))))) (-2710 (*1 *2 *3 *2) (-12 (-4 *1 (-763)) (-5 *2 (-1006)) (-5 *3 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) -(-13 (-1067) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2710 ((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2710 ((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2713 (((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371))) 44) (((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))) 43)) (-2714 (((-1230) (-1224 (-371)) (-535) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))) 50)) (-2712 (((-1230) (-1224 (-371)) (-535) (-371) (-371) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))) 41)) (-2711 (((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371))) 52) (((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))) 51))) -(((-764) (-10 -7 (-15 -2711 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2711 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)))) (-15 -2712 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2713 ((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2713 ((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)))) (-15 -2714 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))))) (T -764)) -((-2714 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2713 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-535)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) (-5 *7 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2713 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-535)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) (-5 *7 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2712 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2711 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2711 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764))))) -(-10 -7 (-15 -2711 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2711 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)))) (-15 -2712 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2713 ((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2713 ((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)))) (-15 -2714 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))))) -((-2723 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 53)) (-2720 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 31)) (-2722 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 52)) (-2719 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 29)) (-2721 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 51)) (-2718 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 19)) (-2717 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535)) 32)) (-2716 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535)) 30)) (-2715 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535)) 28))) -(((-765) (-10 -7 (-15 -2715 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2716 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2717 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2718 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2719 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2720 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2721 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2722 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2723 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))))) (T -765)) -((-2723 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2722 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2721 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2720 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2719 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2718 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2717 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2716 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2715 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535))))) -(-10 -7 (-15 -2715 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2716 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2717 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2718 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2719 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2720 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2721 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2722 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2723 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)))) -((-4051 (((-1174 |#1|) |#1| (-219) (-535)) 46))) -(((-766 |#1|) (-10 -7 (-15 -4051 ((-1174 |#1|) |#1| (-219) (-535)))) (-945)) (T -766)) -((-4051 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-219)) (-5 *5 (-535)) (-5 *2 (-1174 *3)) (-5 *1 (-766 *3)) (-4 *3 (-945))))) -(-10 -7 (-15 -4051 ((-1174 |#1|) |#1| (-219) (-535)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-1363 (((-3 $ "failed") $ $) 26)) (-3879 (($) 23 T CONST)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4180 (($ $ $) 28) (($ $) 27)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-747) $) 25) (($ (-535) $) 29))) -(((-767) (-138)) (T -767)) +((-3395 (*1 *1 *1 *1 *1) (-4 *1 (-740))) (-3292 (*1 *1 *1 *1) (-4 *1 (-740))) (-1358 (*1 *1 *1 *1) (-4 *1 (-740)))) +(-13 (-21) (-699) (-10 -8 (-15 -3395 ($ $ $ $)) (-15 -3292 ($ $ $)) (-15 -1358 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-699) . T) ((-1068) . T)) +((-1518 (((-836) $) NIL) (($ (-550)) 10))) +(((-741 |#1|) (-10 -8 (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) (-742)) (T -741)) +NIL +(-10 -8 (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3818 (((-3 $ "failed") $) 40)) (-2923 (($ $ (-894)) 28) (($ $ (-749)) 35)) (-1386 (((-3 $ "failed") $) 38)) (-3102 (((-112) $) 34)) (-2732 (((-3 $ "failed") $) 39)) (-2834 (($ $ (-894)) 29) (($ $ (-749)) 36)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3292 (($ $ $) 25)) (-1518 (((-836) $) 11) (($ (-550)) 31)) (-2390 (((-749)) 32)) (-3395 (($ $ $ $) 26)) (-1358 (($ $ $) 24)) (-2626 (($) 18 T CONST)) (-2636 (($) 33 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 30) (($ $ (-749)) 37)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 27))) +(((-742) (-138)) (T -742)) +((-2390 (*1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-749)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-742))))) +(-13 (-740) (-701) (-10 -8 (-15 -2390 ((-749))) (-15 -1518 ($ (-550))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-699) . T) ((-701) . T) ((-740) . T) ((-1068) . T)) +((-3568 (((-623 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 (-167 |#1|)))))) (-667 (-167 (-400 (-550)))) |#1|) 33)) (-3481 (((-623 (-167 |#1|)) (-667 (-167 (-400 (-550)))) |#1|) 23)) (-2608 (((-925 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))) (-1144)) 20) (((-925 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550))))) 19))) +(((-743 |#1|) (-10 -7 (-15 -2608 ((-925 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))))) (-15 -2608 ((-925 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))) (-1144))) (-15 -3481 ((-623 (-167 |#1|)) (-667 (-167 (-400 (-550)))) |#1|)) (-15 -3568 ((-623 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 (-167 |#1|)))))) (-667 (-167 (-400 (-550)))) |#1|))) (-13 (-356) (-823))) (T -743)) +((-3568 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *2 (-623 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 (-167 *4))))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *2 (-623 (-167 *4))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) (-2608 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *4 (-1144)) (-5 *2 (-925 (-167 (-400 (-550))))) (-5 *1 (-743 *5)) (-4 *5 (-13 (-356) (-823))))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *2 (-925 (-167 (-400 (-550))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -2608 ((-925 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))))) (-15 -2608 ((-925 (-167 (-400 (-550)))) (-667 (-167 (-400 (-550)))) (-1144))) (-15 -3481 ((-623 (-167 |#1|)) (-667 (-167 (-400 (-550)))) |#1|)) (-15 -3568 ((-623 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 (-167 |#1|)))))) (-667 (-167 (-400 (-550)))) |#1|))) +((-1325 (((-172 (-550)) |#1|) 25))) +(((-744 |#1|) (-10 -7 (-15 -1325 ((-172 (-550)) |#1|))) (-397)) (T -744)) +((-1325 (*1 *2 *3) (-12 (-5 *2 (-172 (-550))) (-5 *1 (-744 *3)) (-4 *3 (-397))))) +(-10 -7 (-15 -1325 ((-172 (-550)) |#1|))) +((-2500 ((|#1| |#1| |#1|) 24)) (-2572 ((|#1| |#1| |#1|) 23)) (-3717 ((|#1| |#1| |#1|) 32)) (-2338 ((|#1| |#1| |#1|) 28)) (-2427 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1659 (((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|) 22))) +(((-745 |#1| |#2|) (-10 -7 (-15 -1659 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -2572 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2427 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2338 (|#1| |#1| |#1|)) (-15 -3717 (|#1| |#1| |#1|))) (-687 |#2|) (-356)) (T -745)) +((-3717 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2338 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2427 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2500 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2572 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-1659 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-745 *3 *4)) (-4 *3 (-687 *4))))) +(-10 -7 (-15 -1659 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -2572 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2427 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2338 (|#1| |#1| |#1|)) (-15 -3717 (|#1| |#1| |#1|))) +((-2457 (((-2 (|:| -2437 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))) (-550)) 59)) (-2372 (((-2 (|:| -2437 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550))))) 57)) (-3453 (((-550)) 71))) +(((-746 |#1| |#2|) (-10 -7 (-15 -3453 ((-550))) (-15 -2372 ((-2 (|:| -2437 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))))) (-15 -2457 ((-2 (|:| -2437 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))) (-550)))) (-1203 (-550)) (-402 (-550) |#1|)) (T -746)) +((-2457 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-1203 *3)) (-5 *2 (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-746 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2372 (*1 *2) (-12 (-4 *3 (-1203 (-550))) (-5 *2 (-2 (|:| -2437 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550))))) (-5 *1 (-746 *3 *4)) (-4 *4 (-402 (-550) *3)))) (-3453 (*1 *2) (-12 (-4 *3 (-1203 *2)) (-5 *2 (-550)) (-5 *1 (-746 *3 *4)) (-4 *4 (-402 *2 *3))))) +(-10 -7 (-15 -3453 ((-550))) (-15 -2372 ((-2 (|:| -2437 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))))) (-15 -2457 ((-2 (|:| -2437 (-667 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-667 (-550)))) (-550)))) +((-1504 (((-112) $ $) NIL)) (-2726 (((-3 (|:| |nia| (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $) 21)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 20) (($ (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13) (($ (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) 18)) (-2316 (((-112) $ $) NIL))) +(((-747) (-13 (-1068) (-10 -8 (-15 -1518 ($ (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1518 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1518 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -1518 ((-836) $)) (-15 -2726 ((-3 (|:| |nia| (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))) (T -747)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-747)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-747)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-747)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-747)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-747))))) +(-13 (-1068) (-10 -8 (-15 -1518 ($ (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1518 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1518 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -1518 ((-836) $)) (-15 -2726 ((-3 (|:| |nia| (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $)))) +((-1538 (((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|))) 18) (((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|)) (-623 (-1144))) 17)) (-2903 (((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|))) 20) (((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|)) (-623 (-1144))) 19))) +(((-748 |#1|) (-10 -7 (-15 -1538 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|)) (-623 (-1144)))) (-15 -1538 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|)))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|)) (-623 (-1144)))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|))))) (-542)) (T -748)) +((-2903 (*1 *2 *3) (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *4)))))) (-5 *1 (-748 *4)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-623 (-1144))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *5)))))) (-5 *1 (-748 *5)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *4)))))) (-5 *1 (-748 *4)))) (-1538 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-623 (-1144))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *5)))))) (-5 *1 (-748 *5))))) +(-10 -7 (-15 -1538 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|)) (-623 (-1144)))) (-15 -1538 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|)))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|)) (-623 (-1144)))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-925 |#1|))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-2270 (($ $ $) 6)) (-3219 (((-3 $ "failed") $ $) 9)) (-3827 (($ $ (-550)) 7)) (-3513 (($) NIL T CONST)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($ $) NIL)) (-1519 (($ $ $) NIL)) (-3102 (((-112) $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3139 (($ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-1518 (((-836) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-894)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ $ $) NIL))) +(((-749) (-13 (-771) (-705) (-10 -8 (-15 -1519 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -3139 ($ $ $)) (-15 -1866 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -1495 ((-3 $ "failed") $ $)) (-15 -3827 ($ $ (-550))) (-15 -1741 ($ $)) (-6 (-4344 "*"))))) (T -749)) +((-1519 (*1 *1 *1 *1) (-5 *1 (-749))) (-3349 (*1 *1 *1 *1) (-5 *1 (-749))) (-3139 (*1 *1 *1 *1) (-5 *1 (-749))) (-1866 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3526 (-749)) (|:| -2786 (-749)))) (-5 *1 (-749)))) (-1495 (*1 *1 *1 *1) (|partial| -5 *1 (-749))) (-3827 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-749)))) (-1741 (*1 *1 *1) (-5 *1 (-749)))) +(-13 (-771) (-705) (-10 -8 (-15 -1519 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -3139 ($ $ $)) (-15 -1866 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -1495 ((-3 $ "failed") $ $)) (-15 -3827 ($ $ (-550))) (-15 -1741 ($ $)) (-6 (-4344 "*")))) +((-2903 (((-3 |#2| "failed") |#2| |#2| (-114) (-1144)) 35))) +(((-750 |#1| |#2|) (-10 -7 (-15 -2903 ((-3 |#2| "failed") |#2| |#2| (-114) (-1144)))) (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1166) (-932))) (T -750)) +((-2903 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1144)) (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *1 (-750 *5 *2)) (-4 *2 (-13 (-29 *5) (-1166) (-932)))))) +(-10 -7 (-15 -2903 ((-3 |#2| "failed") |#2| |#2| (-114) (-1144)))) +((-1518 (((-752) |#1|) 8))) +(((-751 |#1|) (-10 -7 (-15 -1518 ((-752) |#1|))) (-1181)) (T -751)) +((-1518 (*1 *2 *3) (-12 (-5 *2 (-752)) (-5 *1 (-751 *3)) (-4 *3 (-1181))))) +(-10 -7 (-15 -1518 ((-752) |#1|))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 7)) (-2316 (((-112) $ $) 9))) +(((-752) (-1068)) (T -752)) +NIL +(-1068) +((-1389 ((|#2| |#4|) 35))) +(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#2| |#4|))) (-444) (-1203 |#1|) (-703 |#1| |#2|) (-1203 |#3|)) (T -753)) +((-1389 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-703 *4 *2)) (-4 *2 (-1203 *4)) (-5 *1 (-753 *4 *2 *5 *3)) (-4 *3 (-1203 *5))))) +(-10 -7 (-15 -1389 (|#2| |#4|))) +((-1386 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3805 (((-1232) (-1126) (-1126) |#4| |#5|) 33)) (-3655 ((|#4| |#4| |#5|) 73)) (-3748 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|) 77)) (-2704 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|) 16))) +(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1386 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3655 (|#4| |#4| |#5|)) (-15 -3748 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -3805 ((-1232) (-1126) (-1126) |#4| |#5|)) (-15 -2704 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1040 |#1| |#2| |#3| |#4|)) (T -754)) +((-2704 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-3805 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1126)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *4 (-1034 *6 *7 *8)) (-5 *2 (-1232)) (-5 *1 (-754 *6 *7 *8 *4 *5)) (-4 *5 (-1040 *6 *7 *8 *4)))) (-3748 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-3655 (*1 *2 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *2 (-1034 *4 *5 *6)) (-5 *1 (-754 *4 *5 *6 *2 *3)) (-4 *3 (-1040 *4 *5 *6 *2)))) (-1386 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(-10 -7 (-15 -1386 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3655 (|#4| |#4| |#5|)) (-15 -3748 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -3805 ((-1232) (-1126) (-1126) |#4| |#5|)) (-15 -2704 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|))) +((-3880 (((-3 (-1140 (-1140 |#1|)) "failed") |#4|) 43)) (-2814 (((-623 |#4|) |#4|) 15)) (-2072 ((|#4| |#4|) 11))) +(((-755 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2814 ((-623 |#4|) |#4|)) (-15 -3880 ((-3 (-1140 (-1140 |#1|)) "failed") |#4|)) (-15 -2072 (|#4| |#4|))) (-342) (-322 |#1|) (-1203 |#2|) (-1203 |#3|) (-894)) (T -755)) +((-2072 (*1 *2 *2) (-12 (-4 *3 (-342)) (-4 *4 (-322 *3)) (-4 *5 (-1203 *4)) (-5 *1 (-755 *3 *4 *5 *2 *6)) (-4 *2 (-1203 *5)) (-14 *6 (-894)))) (-3880 (*1 *2 *3) (|partial| -12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1203 *5)) (-5 *2 (-1140 (-1140 *4))) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1203 *6)) (-14 *7 (-894)))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1203 *5)) (-5 *2 (-623 *3)) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1203 *6)) (-14 *7 (-894))))) +(-10 -7 (-15 -2814 ((-623 |#4|) |#4|)) (-15 -3880 ((-3 (-1140 (-1140 |#1|)) "failed") |#4|)) (-15 -2072 (|#4| |#4|))) +((-2780 (((-2 (|:| |deter| (-623 (-1140 |#5|))) (|:| |dterm| (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-623 |#1|)) (|:| |nlead| (-623 |#5|))) (-1140 |#5|) (-623 |#1|) (-623 |#5|)) 54)) (-2898 (((-623 (-749)) |#1|) 13))) +(((-756 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2780 ((-2 (|:| |deter| (-623 (-1140 |#5|))) (|:| |dterm| (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-623 |#1|)) (|:| |nlead| (-623 |#5|))) (-1140 |#5|) (-623 |#1|) (-623 |#5|))) (-15 -2898 ((-623 (-749)) |#1|))) (-1203 |#4|) (-771) (-825) (-300) (-922 |#4| |#2| |#3|)) (T -756)) +((-2898 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-623 (-749))) (-5 *1 (-756 *3 *4 *5 *6 *7)) (-4 *3 (-1203 *6)) (-4 *7 (-922 *6 *4 *5)))) (-2780 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1203 *9)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-300)) (-4 *10 (-922 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-623 (-1140 *10))) (|:| |dterm| (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| *10))))) (|:| |nfacts| (-623 *6)) (|:| |nlead| (-623 *10)))) (-5 *1 (-756 *6 *7 *8 *9 *10)) (-5 *3 (-1140 *10)) (-5 *4 (-623 *6)) (-5 *5 (-623 *10))))) +(-10 -7 (-15 -2780 ((-2 (|:| |deter| (-623 (-1140 |#5|))) (|:| |dterm| (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-623 |#1|)) (|:| |nlead| (-623 |#5|))) (-1140 |#5|) (-623 |#1|) (-623 |#5|))) (-15 -2898 ((-623 (-749)) |#1|))) +((-1366 (((-623 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#1|))))) (-667 (-400 (-550))) |#1|) 31)) (-4295 (((-623 |#1|) (-667 (-400 (-550))) |#1|) 21)) (-2608 (((-925 (-400 (-550))) (-667 (-400 (-550))) (-1144)) 18) (((-925 (-400 (-550))) (-667 (-400 (-550)))) 17))) +(((-757 |#1|) (-10 -7 (-15 -2608 ((-925 (-400 (-550))) (-667 (-400 (-550))))) (-15 -2608 ((-925 (-400 (-550))) (-667 (-400 (-550))) (-1144))) (-15 -4295 ((-623 |#1|) (-667 (-400 (-550))) |#1|)) (-15 -1366 ((-623 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#1|))))) (-667 (-400 (-550))) |#1|))) (-13 (-356) (-823))) (T -757)) +((-1366 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-623 (-2 (|:| |outval| *4) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 *4)))))) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) (-4295 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-623 *4)) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) (-2608 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *4 (-1144)) (-5 *2 (-925 (-400 (-550)))) (-5 *1 (-757 *5)) (-4 *5 (-13 (-356) (-823))))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-925 (-400 (-550)))) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823)))))) +(-10 -7 (-15 -2608 ((-925 (-400 (-550))) (-667 (-400 (-550))))) (-15 -2608 ((-925 (-400 (-550))) (-667 (-400 (-550))) (-1144))) (-15 -4295 ((-623 |#1|) (-667 (-400 (-550))) |#1|)) (-15 -1366 ((-623 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-623 (-667 |#1|))))) (-667 (-400 (-550))) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 34)) (-3141 (((-623 |#2|) $) NIL)) (-3306 (((-1140 $) $ |#2|) NIL) (((-1140 |#1|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 |#2|)) NIL)) (-4180 (($ $) 28)) (-2167 (((-112) $ $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3238 (($ $ $) 93 (|has| |#1| (-542)))) (-1769 (((-623 $) $ $) 106 (|has| |#1| (-542)))) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-925 (-400 (-550)))) NIL (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1144))))) (((-3 $ "failed") (-925 (-550))) NIL (-1561 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-38 (-400 (-550)))))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1144)))))) (((-3 $ "failed") (-925 |#1|)) NIL (-1561 (-12 (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-38 (-400 (-550))))) (-3462 (|has| |#1| (-38 (-550))))) (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-38 (-400 (-550))))) (-3462 (|has| |#1| (-535)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-965 (-550))))))) (((-3 (-1093 |#1| |#2|) "failed") $) 18)) (-2726 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) ((|#2| $) NIL) (($ (-925 (-400 (-550)))) NIL (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1144))))) (($ (-925 (-550))) NIL (-1561 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-38 (-400 (-550)))))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1144)))))) (($ (-925 |#1|)) NIL (-1561 (-12 (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-38 (-400 (-550))))) (-3462 (|has| |#1| (-38 (-550))))) (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-38 (-400 (-550))))) (-3462 (|has| |#1| (-535)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-965 (-550))))))) (((-1093 |#1| |#2|) $) NIL)) (-3340 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-542)))) (-3295 (($ $) NIL) (($ $ |#2|) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3404 (((-112) $ $) NIL) (((-112) $ (-623 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2653 (((-112) $) NIL)) (-4113 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 70)) (-2494 (($ $) 119 (|has| |#1| (-444)))) (-2674 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-4137 (($ $) NIL (|has| |#1| (-542)))) (-4260 (($ $) NIL (|has| |#1| (-542)))) (-3151 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3037 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2613 (($ $ |#1| (-522 |#2|) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| |#1| (-859 (-372))) (|has| |#2| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| |#1| (-859 (-550))) (|has| |#2| (-859 (-550)))))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3499 (((-112) $ $) NIL) (((-112) $ (-623 $)) NIL)) (-1383 (($ $ $ $ $) 90 (|has| |#1| (-542)))) (-3952 ((|#2| $) 19)) (-3129 (($ (-1140 |#1|) |#2|) NIL) (($ (-1140 $) |#2|) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-522 |#2|)) NIL) (($ $ |#2| (-749)) 36) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-3244 (($ $ $) 60)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ |#2|) NIL)) (-1590 (((-112) $) NIL)) (-1667 (((-522 |#2|) $) NIL) (((-749) $ |#2|) NIL) (((-623 (-749)) $ (-623 |#2|)) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-2113 (((-749) $) 20)) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-522 |#2|) (-522 |#2|)) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2558 (((-3 |#2| "failed") $) NIL)) (-2225 (($ $) NIL (|has| |#1| (-444)))) (-2303 (($ $) NIL (|has| |#1| (-444)))) (-2319 (((-623 $) $) NIL)) (-2573 (($ $) 37)) (-2397 (($ $) NIL (|has| |#1| (-444)))) (-2406 (((-623 $) $) 41)) (-2491 (($ $) 39)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1298 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3363 (-749))) $ $) 82)) (-3345 (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $) 67) (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $ |#2|) NIL)) (-2803 (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -2786 $)) $ $) NIL) (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -2786 $)) $ $ |#2|) NIL)) (-2979 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2887 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1825 (((-1126) $) NIL)) (-3632 (($ $ $) 108 (|has| |#1| (-542)))) (-1815 (((-623 $) $) 30)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| |#2|) (|:| -3521 (-749))) "failed") $) NIL)) (-1296 (((-112) $ $) NIL) (((-112) $ (-623 $)) NIL)) (-3900 (($ $ $) NIL)) (-3862 (($ $) 21)) (-3831 (((-112) $ $) NIL)) (-1394 (((-112) $ $) NIL) (((-112) $ (-623 $)) NIL)) (-3984 (($ $ $) NIL)) (-2026 (($ $) 23)) (-3337 (((-1088) $) NIL)) (-1867 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-542)))) (-1982 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-542)))) (-3248 (((-112) $) 52)) (-3256 ((|#1| $) 55)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-444)))) (-3139 ((|#1| |#1| $) 116 (|has| |#1| (-444))) (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-882)))) (-3834 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-542)))) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3921 (($ $ |#1|) 112 (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-4031 (($ $ |#1|) 111 (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-623 |#2|) (-623 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-623 |#2|) (-623 $)) NIL)) (-3453 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-2393 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2970 (((-522 |#2|) $) NIL) (((-749) $ |#2|) 43) (((-623 (-749)) $ (-623 |#2|)) NIL)) (-1923 (($ $) NIL)) (-1699 (($ $) 33)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| |#1| (-596 (-526))) (|has| |#2| (-596 (-526))))) (($ (-925 (-400 (-550)))) NIL (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1144))))) (($ (-925 (-550))) NIL (-1561 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-596 (-1144))) (-3462 (|has| |#1| (-38 (-400 (-550)))))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#2| (-596 (-1144)))))) (($ (-925 |#1|)) NIL (|has| |#2| (-596 (-1144)))) (((-1126) $) NIL (-12 (|has| |#1| (-1011 (-550))) (|has| |#2| (-596 (-1144))))) (((-925 |#1|) $) NIL (|has| |#2| (-596 (-1144))))) (-2503 ((|#1| $) 115 (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-925 |#1|) $) NIL (|has| |#2| (-596 (-1144)))) (((-1093 |#1| |#2|) $) 15) (($ (-1093 |#1| |#2|)) 16) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-522 |#2|)) NIL) (($ $ |#2| (-749)) 44) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) 13 T CONST)) (-2242 (((-3 (-112) "failed") $ $) NIL)) (-2636 (($) 35 T CONST)) (-1516 (($ $ $ $ (-749)) 88 (|has| |#1| (-542)))) (-1628 (($ $ $ (-749)) 87 (|has| |#1| (-542)))) (-4183 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) 54)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) 64)) (-2391 (($ $ $) 74)) (** (($ $ (-894)) NIL) (($ $ (-749)) 61)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 59) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-758 |#1| |#2|) (-13 (-1034 |#1| (-522 |#2|) |#2|) (-595 (-1093 |#1| |#2|)) (-1011 (-1093 |#1| |#2|))) (-1020) (-825)) (T -758)) +NIL +(-13 (-1034 |#1| (-522 |#2|) |#2|) (-595 (-1093 |#1| |#2|)) (-1011 (-1093 |#1| |#2|))) +((-3972 (((-760 |#2|) (-1 |#2| |#1|) (-760 |#1|)) 13))) +(((-759 |#1| |#2|) (-10 -7 (-15 -3972 ((-760 |#2|) (-1 |#2| |#1|) (-760 |#1|)))) (-1020) (-1020)) (T -759)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-760 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-760 *6)) (-5 *1 (-759 *5 *6))))) +(-10 -7 (-15 -3972 ((-760 |#2|) (-1 |#2| |#1|) (-760 |#1|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 12)) (-2170 (((-1227 |#1|) $ (-749)) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-3058 (($ (-1140 |#1|)) NIL)) (-3306 (((-1140 $) $ (-1050)) NIL) (((-1140 |#1|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-1050))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1912 (((-623 $) $ $) 39 (|has| |#1| (-542)))) (-3238 (($ $ $) 35 (|has| |#1| (-542)))) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3810 (($ $ (-749)) NIL)) (-3690 (($ $ (-749)) NIL)) (-4005 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-1050) "failed") $) NIL) (((-3 (-1140 |#1|) "failed") $) 10)) (-2726 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-1050) $) NIL) (((-1140 |#1|) $) NIL)) (-3340 (($ $ $ (-1050)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3563 (($ $ $) NIL)) (-4232 (($ $ $) 71 (|has| |#1| (-542)))) (-4113 (((-2 (|:| -2855 |#1|) (|:| -3526 $) (|:| -2786 $)) $ $) 70 (|has| |#1| (-542)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2674 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1050)) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-2613 (($ $ |#1| (-749) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-1050) (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-1050) (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-2475 (((-749) $ $) NIL (|has| |#1| (-542)))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-1119)))) (-3129 (($ (-1140 |#1|) (-1050)) NIL) (($ (-1140 $) (-1050)) NIL)) (-1784 (($ $ (-749)) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-3244 (($ $ $) 20)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-1050)) NIL) (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-1667 (((-749) $) NIL) (((-749) $ (-1050)) NIL) (((-623 (-749)) $ (-623 (-1050))) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-749) (-749)) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (((-1140 |#1|) $) NIL)) (-2558 (((-3 (-1050) "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1298 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3363 (-749))) $ $) 26)) (-2511 (($ $ $) 29)) (-1382 (($ $ $) 32)) (-3345 (((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $) 31)) (-1825 (((-1126) $) NIL)) (-3632 (($ $ $) 41 (|has| |#1| (-542)))) (-2731 (((-2 (|:| -3526 $) (|:| -2786 $)) $ (-749)) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-1050)) (|:| -3521 (-749))) "failed") $) NIL)) (-1489 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3862 (($) NIL (|has| |#1| (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-1867 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-542)))) (-1982 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-542)))) (-3419 (((-2 (|:| -3340 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-542)))) (-3549 (((-2 (|:| -3340 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-542)))) (-3248 (((-112) $) 13)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3138 (($ $ (-749) |#1| $) 19)) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-882)))) (-3834 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-542)))) (-2759 (((-2 (|:| -3340 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-542)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1050) |#1|) NIL) (($ $ (-623 (-1050)) (-623 |#1|)) NIL) (($ $ (-1050) $) NIL) (($ $ (-623 (-1050)) (-623 $)) NIL)) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-2953 (((-3 $ "failed") $ (-749)) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-3453 (($ $ (-1050)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-2393 (($ $ (-1050)) NIL) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2970 (((-749) $) NIL) (((-749) $ (-1050)) NIL) (((-623 (-749)) $ (-623 (-1050))) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-1050) (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-1050) (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-1050) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1050)) NIL (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1292 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-542)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1050)) NIL) (((-1140 |#1|) $) 7) (($ (-1140 |#1|)) 8) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-749)) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) 21 T CONST)) (-2636 (($) 24 T CONST)) (-4183 (($ $ (-1050)) NIL) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) 28) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-760 |#1|) (-13 (-1203 |#1|) (-595 (-1140 |#1|)) (-1011 (-1140 |#1|)) (-10 -8 (-15 -3138 ($ $ (-749) |#1| $)) (-15 -3244 ($ $ $)) (-15 -1298 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3363 (-749))) $ $)) (-15 -2511 ($ $ $)) (-15 -3345 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -1382 ($ $ $)) (IF (|has| |#1| (-542)) (PROGN (-15 -1912 ((-623 $) $ $)) (-15 -3632 ($ $ $)) (-15 -3834 ((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1982 ((-2 (|:| -3139 $) (|:| |coef1| $)) $ $)) (-15 -1867 ((-2 (|:| -3139 $) (|:| |coef2| $)) $ $)) (-15 -2759 ((-2 (|:| -3340 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3549 ((-2 (|:| -3340 |#1|) (|:| |coef1| $)) $ $)) (-15 -3419 ((-2 (|:| -3340 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1020)) (T -760)) +((-3138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-760 *3)) (-4 *3 (-1020)))) (-3244 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1020)))) (-1298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-760 *3)) (|:| |polden| *3) (|:| -3363 (-749)))) (-5 *1 (-760 *3)) (-4 *3 (-1020)))) (-2511 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1020)))) (-3345 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2855 *3) (|:| |gap| (-749)) (|:| -3526 (-760 *3)) (|:| -2786 (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-1020)))) (-1382 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1020)))) (-1912 (*1 *2 *1 *1) (-12 (-5 *2 (-623 (-760 *3))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) (-3632 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-542)) (-4 *2 (-1020)))) (-3834 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-760 *3)) (|:| |coef1| (-760 *3)) (|:| |coef2| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) (-1982 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-760 *3)) (|:| |coef1| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) (-1867 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-760 *3)) (|:| |coef2| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) (-2759 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3340 *3) (|:| |coef1| (-760 *3)) (|:| |coef2| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) (-3549 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3340 *3) (|:| |coef1| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) (-3419 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3340 *3) (|:| |coef2| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020))))) +(-13 (-1203 |#1|) (-595 (-1140 |#1|)) (-1011 (-1140 |#1|)) (-10 -8 (-15 -3138 ($ $ (-749) |#1| $)) (-15 -3244 ($ $ $)) (-15 -1298 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3363 (-749))) $ $)) (-15 -2511 ($ $ $)) (-15 -3345 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -1382 ($ $ $)) (IF (|has| |#1| (-542)) (PROGN (-15 -1912 ((-623 $) $ $)) (-15 -3632 ($ $ $)) (-15 -3834 ((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1982 ((-2 (|:| -3139 $) (|:| |coef1| $)) $ $)) (-15 -1867 ((-2 (|:| -3139 $) (|:| |coef2| $)) $ $)) (-15 -2759 ((-2 (|:| -3340 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3549 ((-2 (|:| -3340 |#1|) (|:| |coef1| $)) $ $)) (-15 -3419 ((-2 (|:| -3340 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1680 ((|#1| (-749) |#1|) 32 (|has| |#1| (-38 (-400 (-550)))))) (-3362 ((|#1| (-749) |#1|) 22)) (-1533 ((|#1| (-749) |#1|) 34 (|has| |#1| (-38 (-400 (-550))))))) +(((-761 |#1|) (-10 -7 (-15 -3362 (|#1| (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1533 (|#1| (-749) |#1|)) (-15 -1680 (|#1| (-749) |#1|))) |%noBranch|)) (-170)) (T -761)) +((-1680 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-170)))) (-1533 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-170)))) (-3362 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-170))))) +(-10 -7 (-15 -3362 (|#1| (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1533 (|#1| (-749) |#1|)) (-15 -1680 (|#1| (-749) |#1|))) |%noBranch|)) +((-1504 (((-112) $ $) 7)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) 85)) (-1779 (((-623 $) (-623 |#4|)) 86) (((-623 $) (-623 |#4|) (-112)) 111)) (-3141 (((-623 |#3|) $) 33)) (-2238 (((-112) $) 26)) (-3670 (((-112) $) 17 (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-1505 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| $) 126)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) 27)) (-4047 (((-112) $ (-749)) 44)) (-4253 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) 79)) (-3513 (($) 45 T CONST)) (-2976 (((-112) $) 22 (|has| |#1| (-542)))) (-3156 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3059 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3253 (((-112) $) 25 (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3774 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) 36)) (-2726 (($ (-623 |#4|)) 35)) (-1308 (((-3 $ "failed") $) 82)) (-2067 ((|#4| |#4| $) 89)) (-1328 (($ $) 68 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#4| $) 67 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1878 ((|#4| |#4| $) 87)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) 105)) (-3113 (((-112) |#4| $) 136)) (-2933 (((-112) |#4| $) 133)) (-3208 (((-112) |#4| $) 137) (((-112) $) 134)) (-3450 (((-623 |#4|) $) 52 (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) 104) (((-112) $) 103)) (-3952 ((|#3| $) 34)) (-1859 (((-112) $ (-749)) 43)) (-2689 (((-623 |#4|) $) 53 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 47)) (-2650 (((-623 |#3|) $) 32)) (-2568 (((-112) |#3| $) 31)) (-1573 (((-112) $ (-749)) 42)) (-1825 (((-1126) $) 9)) (-3735 (((-3 |#4| (-623 $)) |#4| |#4| $) 128)) (-3632 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| |#4| $) 127)) (-3159 (((-3 |#4| "failed") $) 83)) (-3830 (((-623 $) |#4| $) 129)) (-2845 (((-3 (-112) (-623 $)) |#4| $) 132)) (-2743 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1623 (((-623 $) |#4| $) 125) (((-623 $) (-623 |#4|) $) 124) (((-623 $) (-623 |#4|) (-623 $)) 123) (((-623 $) |#4| (-623 $)) 122)) (-3757 (($ |#4| $) 117) (($ (-623 |#4|) $) 116)) (-3671 (((-623 |#4|) $) 107)) (-1296 (((-112) |#4| $) 99) (((-112) $) 95)) (-3900 ((|#4| |#4| $) 90)) (-3831 (((-112) $ $) 110)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) 100) (((-112) $) 96)) (-3984 ((|#4| |#4| $) 91)) (-3337 (((-1088) $) 10)) (-1293 (((-3 |#4| "failed") $) 84)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2654 (((-3 $ "failed") $ |#4|) 78)) (-2272 (($ $ |#4|) 77) (((-623 $) |#4| $) 115) (((-623 $) |#4| (-623 $)) 114) (((-623 $) (-623 |#4|) $) 113) (((-623 $) (-623 |#4|) (-623 $)) 112)) (-1543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) 38)) (-2902 (((-112) $) 41)) (-3498 (($) 40)) (-2970 (((-749) $) 106)) (-3350 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4342)))) (-1731 (($ $) 39)) (-4028 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 60)) (-2315 (($ $ |#3|) 28)) (-2486 (($ $ |#3|) 30)) (-1969 (($ $) 88)) (-2401 (($ $ |#3|) 29)) (-1518 (((-836) $) 11) (((-623 |#4|) $) 37)) (-2580 (((-749) $) 76 (|has| |#3| (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3532 (((-623 $) |#4| $) 121) (((-623 $) |#4| (-623 $)) 120) (((-623 $) (-623 |#4|) $) 119) (((-623 $) (-623 |#4|) (-623 $)) 118)) (-1675 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) 81)) (-3024 (((-112) |#4| $) 135)) (-1288 (((-112) |#3| $) 80)) (-2316 (((-112) $ $) 6)) (-3191 (((-749) $) 46 (|has| $ (-6 -4342))))) +(((-762 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1034 |t#1| |t#2| |t#3|)) (T -762)) +NIL +(-13 (-1040 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-836)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-949 |#1| |#2| |#3| |#4|) . T) ((-1040 |#1| |#2| |#3| |#4|) . T) ((-1068) . T) ((-1174 |#1| |#2| |#3| |#4|) . T) ((-1181) . T)) +((-1833 (((-3 (-372) "failed") (-309 |#1|) (-894)) 62 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-372) "failed") (-309 |#1|)) 54 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-372) "failed") (-400 (-925 |#1|)) (-894)) 41 (|has| |#1| (-542))) (((-3 (-372) "failed") (-400 (-925 |#1|))) 40 (|has| |#1| (-542))) (((-3 (-372) "failed") (-925 |#1|) (-894)) 31 (|has| |#1| (-1020))) (((-3 (-372) "failed") (-925 |#1|)) 30 (|has| |#1| (-1020)))) (-1601 (((-372) (-309 |#1|) (-894)) 99 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-372) (-309 |#1|)) 94 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-372) (-400 (-925 |#1|)) (-894)) 91 (|has| |#1| (-542))) (((-372) (-400 (-925 |#1|))) 90 (|has| |#1| (-542))) (((-372) (-925 |#1|) (-894)) 86 (|has| |#1| (-1020))) (((-372) (-925 |#1|)) 85 (|has| |#1| (-1020))) (((-372) |#1| (-894)) 76) (((-372) |#1|) 22)) (-1456 (((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-894)) 71 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-167 (-372)) "failed") (-309 (-167 |#1|))) 70 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-167 (-372)) "failed") (-309 |#1|) (-894)) 63 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-167 (-372)) "failed") (-309 |#1|)) 61 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-3 (-167 (-372)) "failed") (-400 (-925 (-167 |#1|))) (-894)) 46 (|has| |#1| (-542))) (((-3 (-167 (-372)) "failed") (-400 (-925 (-167 |#1|)))) 45 (|has| |#1| (-542))) (((-3 (-167 (-372)) "failed") (-400 (-925 |#1|)) (-894)) 39 (|has| |#1| (-542))) (((-3 (-167 (-372)) "failed") (-400 (-925 |#1|))) 38 (|has| |#1| (-542))) (((-3 (-167 (-372)) "failed") (-925 |#1|) (-894)) 28 (|has| |#1| (-1020))) (((-3 (-167 (-372)) "failed") (-925 |#1|)) 26 (|has| |#1| (-1020))) (((-3 (-167 (-372)) "failed") (-925 (-167 |#1|)) (-894)) 18 (|has| |#1| (-170))) (((-3 (-167 (-372)) "failed") (-925 (-167 |#1|))) 15 (|has| |#1| (-170)))) (-3279 (((-167 (-372)) (-309 (-167 |#1|)) (-894)) 102 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-167 (-372)) (-309 (-167 |#1|))) 101 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-167 (-372)) (-309 |#1|) (-894)) 100 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-167 (-372)) (-309 |#1|)) 98 (-12 (|has| |#1| (-542)) (|has| |#1| (-825)))) (((-167 (-372)) (-400 (-925 (-167 |#1|))) (-894)) 93 (|has| |#1| (-542))) (((-167 (-372)) (-400 (-925 (-167 |#1|)))) 92 (|has| |#1| (-542))) (((-167 (-372)) (-400 (-925 |#1|)) (-894)) 89 (|has| |#1| (-542))) (((-167 (-372)) (-400 (-925 |#1|))) 88 (|has| |#1| (-542))) (((-167 (-372)) (-925 |#1|) (-894)) 84 (|has| |#1| (-1020))) (((-167 (-372)) (-925 |#1|)) 83 (|has| |#1| (-1020))) (((-167 (-372)) (-925 (-167 |#1|)) (-894)) 78 (|has| |#1| (-170))) (((-167 (-372)) (-925 (-167 |#1|))) 77 (|has| |#1| (-170))) (((-167 (-372)) (-167 |#1|) (-894)) 80 (|has| |#1| (-170))) (((-167 (-372)) (-167 |#1|)) 79 (|has| |#1| (-170))) (((-167 (-372)) |#1| (-894)) 27) (((-167 (-372)) |#1|) 25))) +(((-763 |#1|) (-10 -7 (-15 -1601 ((-372) |#1|)) (-15 -1601 ((-372) |#1| (-894))) (-15 -3279 ((-167 (-372)) |#1|)) (-15 -3279 ((-167 (-372)) |#1| (-894))) (IF (|has| |#1| (-170)) (PROGN (-15 -3279 ((-167 (-372)) (-167 |#1|))) (-15 -3279 ((-167 (-372)) (-167 |#1|) (-894))) (-15 -3279 ((-167 (-372)) (-925 (-167 |#1|)))) (-15 -3279 ((-167 (-372)) (-925 (-167 |#1|)) (-894)))) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-15 -1601 ((-372) (-925 |#1|))) (-15 -1601 ((-372) (-925 |#1|) (-894))) (-15 -3279 ((-167 (-372)) (-925 |#1|))) (-15 -3279 ((-167 (-372)) (-925 |#1|) (-894)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1601 ((-372) (-400 (-925 |#1|)))) (-15 -1601 ((-372) (-400 (-925 |#1|)) (-894))) (-15 -3279 ((-167 (-372)) (-400 (-925 |#1|)))) (-15 -3279 ((-167 (-372)) (-400 (-925 |#1|)) (-894))) (-15 -3279 ((-167 (-372)) (-400 (-925 (-167 |#1|))))) (-15 -3279 ((-167 (-372)) (-400 (-925 (-167 |#1|))) (-894))) (IF (|has| |#1| (-825)) (PROGN (-15 -1601 ((-372) (-309 |#1|))) (-15 -1601 ((-372) (-309 |#1|) (-894))) (-15 -3279 ((-167 (-372)) (-309 |#1|))) (-15 -3279 ((-167 (-372)) (-309 |#1|) (-894))) (-15 -3279 ((-167 (-372)) (-309 (-167 |#1|)))) (-15 -3279 ((-167 (-372)) (-309 (-167 |#1|)) (-894)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -1456 ((-3 (-167 (-372)) "failed") (-925 (-167 |#1|)))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-925 (-167 |#1|)) (-894)))) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-15 -1833 ((-3 (-372) "failed") (-925 |#1|))) (-15 -1833 ((-3 (-372) "failed") (-925 |#1|) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-925 |#1|))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-925 |#1|) (-894)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1833 ((-3 (-372) "failed") (-400 (-925 |#1|)))) (-15 -1833 ((-3 (-372) "failed") (-400 (-925 |#1|)) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-400 (-925 |#1|)))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-400 (-925 |#1|)) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-400 (-925 (-167 |#1|))))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-400 (-925 (-167 |#1|))) (-894))) (IF (|has| |#1| (-825)) (PROGN (-15 -1833 ((-3 (-372) "failed") (-309 |#1|))) (-15 -1833 ((-3 (-372) "failed") (-309 |#1|) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-309 |#1|))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-309 |#1|) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-894)))) |%noBranch|)) |%noBranch|)) (-596 (-372))) (T -763)) +((-1456 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1456 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1456 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1456 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1833 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-1833 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-1456 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-925 (-167 *5)))) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1456 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-925 (-167 *4)))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1456 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1456 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1833 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-1833 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-1456 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-925 *5)) (-5 *4 (-894)) (-4 *5 (-1020)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1456 (*1 *2 *3) (|partial| -12 (-5 *3 (-925 *4)) (-4 *4 (-1020)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1833 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-925 *5)) (-5 *4 (-894)) (-4 *5 (-1020)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-1833 (*1 *2 *3) (|partial| -12 (-5 *3 (-925 *4)) (-4 *4 (-1020)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-1456 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-925 (-167 *5))) (-5 *4 (-894)) (-4 *5 (-170)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-1456 (*1 *2 *3) (|partial| -12 (-5 *3 (-925 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 (-167 *5)))) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-400 (-925 (-167 *4)))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-925 *5)) (-5 *4 (-894)) (-4 *5 (-1020)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-925 *4)) (-4 *4 (-1020)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-925 *5)) (-5 *4 (-894)) (-4 *5 (-1020)) (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-925 *4)) (-4 *4 (-1020)) (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-925 (-167 *5))) (-5 *4 (-894)) (-4 *5 (-170)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-925 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-894)) (-4 *5 (-170)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-894)) (-5 *2 (-167 (-372))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-372))))) (-3279 (*1 *2 *3) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-372))))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-894)) (-5 *2 (-372)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2))))) +(-10 -7 (-15 -1601 ((-372) |#1|)) (-15 -1601 ((-372) |#1| (-894))) (-15 -3279 ((-167 (-372)) |#1|)) (-15 -3279 ((-167 (-372)) |#1| (-894))) (IF (|has| |#1| (-170)) (PROGN (-15 -3279 ((-167 (-372)) (-167 |#1|))) (-15 -3279 ((-167 (-372)) (-167 |#1|) (-894))) (-15 -3279 ((-167 (-372)) (-925 (-167 |#1|)))) (-15 -3279 ((-167 (-372)) (-925 (-167 |#1|)) (-894)))) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-15 -1601 ((-372) (-925 |#1|))) (-15 -1601 ((-372) (-925 |#1|) (-894))) (-15 -3279 ((-167 (-372)) (-925 |#1|))) (-15 -3279 ((-167 (-372)) (-925 |#1|) (-894)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1601 ((-372) (-400 (-925 |#1|)))) (-15 -1601 ((-372) (-400 (-925 |#1|)) (-894))) (-15 -3279 ((-167 (-372)) (-400 (-925 |#1|)))) (-15 -3279 ((-167 (-372)) (-400 (-925 |#1|)) (-894))) (-15 -3279 ((-167 (-372)) (-400 (-925 (-167 |#1|))))) (-15 -3279 ((-167 (-372)) (-400 (-925 (-167 |#1|))) (-894))) (IF (|has| |#1| (-825)) (PROGN (-15 -1601 ((-372) (-309 |#1|))) (-15 -1601 ((-372) (-309 |#1|) (-894))) (-15 -3279 ((-167 (-372)) (-309 |#1|))) (-15 -3279 ((-167 (-372)) (-309 |#1|) (-894))) (-15 -3279 ((-167 (-372)) (-309 (-167 |#1|)))) (-15 -3279 ((-167 (-372)) (-309 (-167 |#1|)) (-894)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -1456 ((-3 (-167 (-372)) "failed") (-925 (-167 |#1|)))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-925 (-167 |#1|)) (-894)))) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-15 -1833 ((-3 (-372) "failed") (-925 |#1|))) (-15 -1833 ((-3 (-372) "failed") (-925 |#1|) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-925 |#1|))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-925 |#1|) (-894)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1833 ((-3 (-372) "failed") (-400 (-925 |#1|)))) (-15 -1833 ((-3 (-372) "failed") (-400 (-925 |#1|)) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-400 (-925 |#1|)))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-400 (-925 |#1|)) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-400 (-925 (-167 |#1|))))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-400 (-925 (-167 |#1|))) (-894))) (IF (|has| |#1| (-825)) (PROGN (-15 -1833 ((-3 (-372) "failed") (-309 |#1|))) (-15 -1833 ((-3 (-372) "failed") (-309 |#1|) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-309 |#1|))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-309 |#1|) (-894))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)))) (-15 -1456 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-894)))) |%noBranch|)) |%noBranch|)) +((-3779 (((-894) (-1126)) 66)) (-4026 (((-3 (-372) "failed") (-1126)) 33)) (-3896 (((-372) (-1126)) 31)) (-1761 (((-894) (-1126)) 54)) (-1907 (((-1126) (-894)) 56)) (-1610 (((-1126) (-894)) 53))) +(((-764) (-10 -7 (-15 -1610 ((-1126) (-894))) (-15 -1761 ((-894) (-1126))) (-15 -1907 ((-1126) (-894))) (-15 -3779 ((-894) (-1126))) (-15 -3896 ((-372) (-1126))) (-15 -4026 ((-3 (-372) "failed") (-1126))))) (T -764)) +((-4026 (*1 *2 *3) (|partial| -12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-764)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-764)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-894)) (-5 *1 (-764)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1126)) (-5 *1 (-764)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-894)) (-5 *1 (-764)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1126)) (-5 *1 (-764))))) +(-10 -7 (-15 -1610 ((-1126) (-894))) (-15 -1761 ((-894) (-1126))) (-15 -1907 ((-1126) (-894))) (-15 -3779 ((-894) (-1126))) (-15 -3896 ((-372) (-1126))) (-15 -4026 ((-3 (-372) "failed") (-1126)))) +((-1504 (((-112) $ $) 7)) (-4163 (((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 15) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008)) 13)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6))) +(((-765) (-138)) (T -765)) +((-3459 (*1 *2 *3 *4) (-12 (-4 *1 (-765)) (-5 *3 (-1032)) (-5 *4 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008)))))) (-4163 (*1 *2 *3 *2) (-12 (-4 *1 (-765)) (-5 *2 (-1008)) (-5 *3 (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-3459 (*1 *2 *3 *4) (-12 (-4 *1 (-765)) (-5 *3 (-1032)) (-5 *4 (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008)))))) (-4163 (*1 *2 *3 *2) (-12 (-4 *1 (-765)) (-5 *2 (-1008)) (-5 *3 (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) +(-13 (-1068) (-10 -7 (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4163 ((-1008) (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) (|:| |extra| (-1008))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4163 ((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1008))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-3352 (((-1232) (-1227 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372))) (-372) (-1227 (-372)) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372))) 44) (((-1232) (-1227 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372))) (-372) (-1227 (-372)) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372))) 43)) (-3475 (((-1232) (-1227 (-372)) (-550) (-372) (-372) (-550) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372))) 50)) (-3225 (((-1232) (-1227 (-372)) (-550) (-372) (-372) (-372) (-372) (-550) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372))) 41)) (-4304 (((-1232) (-1227 (-372)) (-550) (-372) (-372) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372))) 52) (((-1232) (-1227 (-372)) (-550) (-372) (-372) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372))) 51))) +(((-766) (-10 -7 (-15 -4304 ((-1232) (-1227 (-372)) (-550) (-372) (-372) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)))) (-15 -4304 ((-1232) (-1227 (-372)) (-550) (-372) (-372) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)))) (-15 -3225 ((-1232) (-1227 (-372)) (-550) (-372) (-372) (-372) (-372) (-550) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)))) (-15 -3352 ((-1232) (-1227 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372))) (-372) (-1227 (-372)) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)))) (-15 -3352 ((-1232) (-1227 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372))) (-372) (-1227 (-372)) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)))) (-15 -3475 ((-1232) (-1227 (-372)) (-550) (-372) (-372) (-550) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)))))) (T -766)) +((-3475 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) (-5 *1 (-766)))) (-3352 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-550)) (-5 *6 (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372)))) (-5 *7 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) (-5 *1 (-766)))) (-3352 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-550)) (-5 *6 (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372)))) (-5 *7 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) (-5 *1 (-766)))) (-3225 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) (-5 *1 (-766)))) (-4304 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) (-5 *1 (-766)))) (-4304 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) (-5 *1 (-766))))) +(-10 -7 (-15 -4304 ((-1232) (-1227 (-372)) (-550) (-372) (-372) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)))) (-15 -4304 ((-1232) (-1227 (-372)) (-550) (-372) (-372) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)))) (-15 -3225 ((-1232) (-1227 (-372)) (-550) (-372) (-372) (-372) (-372) (-550) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)))) (-15 -3352 ((-1232) (-1227 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372))) (-372) (-1227 (-372)) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)))) (-15 -3352 ((-1232) (-1227 (-372)) (-550) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372))) (-372) (-1227 (-372)) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)) (-1227 (-372)))) (-15 -3475 ((-1232) (-1227 (-372)) (-550) (-372) (-372) (-550) (-1 (-1232) (-1227 (-372)) (-1227 (-372)) (-372))))) +((-2177 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 53)) (-2972 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 31)) (-2086 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 52)) (-2872 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 29)) (-3067 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 51)) (-2761 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)) 19)) (-2665 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550)) 32)) (-3731 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550)) 30)) (-3607 (((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550)) 28))) +(((-767) (-10 -7 (-15 -3607 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -3731 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -2665 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -2761 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2872 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2972 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -3067 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2086 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2177 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))))) (T -767)) +((-2177 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-2086 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-3067 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-2972 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-2872 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-2761 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-2665 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-3731 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550)))) (-3607 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-550))))) +(-10 -7 (-15 -3607 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -3731 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -2665 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550) (-550))) (-15 -2761 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2872 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2972 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -3067 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2086 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550))) (-15 -2177 ((-2 (|:| -3625 (-372)) (|:| -2478 (-372)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-550) (-550)))) +((-3147 (((-1176 |#1|) |#1| (-219) (-550)) 46))) +(((-768 |#1|) (-10 -7 (-15 -3147 ((-1176 |#1|) |#1| (-219) (-550)))) (-947)) (T -768)) +((-3147 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-219)) (-5 *5 (-550)) (-5 *2 (-1176 *3)) (-5 *1 (-768 *3)) (-4 *3 (-947))))) +(-10 -7 (-15 -3147 ((-1176 |#1|) |#1| (-219) (-550)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 24)) (-3219 (((-3 $ "failed") $ $) 26)) (-3513 (($) 23 T CONST)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 22 T CONST)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (-2403 (($ $ $) 28) (($ $) 27)) (-2391 (($ $ $) 20)) (* (($ (-894) $) 21) (($ (-749) $) 25) (($ (-550) $) 29))) +(((-769) (-138)) (T -769)) NIL (-13 (-773) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-823) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-3879 (($) 23 T CONST)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-747) $) 25))) -(((-768) (-138)) (T -768)) -NIL -(-13 (-770) (-23)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-593 (-835)) . T) ((-770) . T) ((-823) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-2724 (($ $ $) 27)) (-1363 (((-3 $ "failed") $ $) 26)) (-3879 (($) 23 T CONST)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-747) $) 25))) -(((-769) (-138)) (T -769)) -((-2724 (*1 *1 *1 *1) (-4 *1 (-769)))) -(-13 (-773) (-10 -8 (-15 -2724 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-823) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 7)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-825) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 24)) (-3513 (($) 23 T CONST)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 22 T CONST)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (-2391 (($ $ $) 20)) (* (($ (-894) $) 21) (($ (-749) $) 25))) (((-770) (-138)) (T -770)) NIL -(-13 (-823) (-25)) -(((-25) . T) ((-101) . T) ((-593 (-835)) . T) ((-823) . T) ((-1067) . T)) -((-3522 (((-112) $) 41)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#2| $) 42)) (-3345 (((-3 (-400 (-535)) "failed") $) 78)) (-3344 (((-112) $) 72)) (-3343 (((-400 (-535)) $) 76)) (-3450 ((|#2| $) 26)) (-4301 (($ (-1 |#2| |#2|) $) 23)) (-2725 (($ $) 61)) (-4313 (((-524) $) 67)) (-3330 (($ $) 21)) (-4300 (((-835) $) 56) (($ (-535)) 39) (($ |#2|) 37) (($ (-400 (-535))) NIL)) (-3444 (((-747)) 10)) (-3725 ((|#2| $) 71)) (-3375 (((-112) $ $) 29)) (-3006 (((-112) $ $) 69)) (-4180 (($ $) 31) (($ $ $) NIL)) (-4182 (($ $ $) 30)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-771 |#1| |#2|) (-10 -8 (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-772 |#2|) (-170)) (T -771)) -((-3444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-771 *3 *4)) (-4 *3 (-772 *4))))) -(-10 -8 (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3454 (((-747)) 51 (|has| |#1| (-361)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 92 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 90 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 88)) (-3490 (((-535) $) 93 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 91 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 87)) (-3804 (((-3 $ "failed") $) 32)) (-3989 ((|#1| $) 77)) (-3345 (((-3 (-400 (-535)) "failed") $) 64 (|has| |#1| (-534)))) (-3344 (((-112) $) 66 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 65 (|has| |#1| (-534)))) (-3315 (($) 54 (|has| |#1| (-361)))) (-2493 (((-112) $) 30)) (-2730 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3450 ((|#1| $) 69)) (-3660 (($ $ $) 60 (|has| |#1| (-823)))) (-3661 (($ $ $) 59 (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) 79)) (-2121 (((-890) $) 53 (|has| |#1| (-361)))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 63 (|has| |#1| (-356)))) (-2483 (($ (-890)) 52 (|has| |#1| (-361)))) (-2727 ((|#1| $) 74)) (-2728 ((|#1| $) 75)) (-2729 ((|#1| $) 76)) (-3327 ((|#1| $) 70)) (-3328 ((|#1| $) 71)) (-3329 ((|#1| $) 72)) (-2726 ((|#1| $) 73)) (-3577 (((-1086) $) 10)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 85 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 83 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 82 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 81 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 80 (|has| |#1| (-505 (-1142) |#1|)))) (-4142 (($ $ |#1|) 86 (|has| |#1| (-279 |#1| |#1|)))) (-4313 (((-524) $) 61 (|has| |#1| (-594 (-524))))) (-3330 (($ $) 78)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35) (($ (-400 (-535))) 89 (|has| |#1| (-1009 (-400 (-535)))))) (-3023 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-3725 ((|#1| $) 67 (|has| |#1| (-1027)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 57 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 56 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 58 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 55 (|has| |#1| (-823)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-772 |#1|) (-138) (-170)) (T -772)) -((-3330 (*1 *1 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2730 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) (-2725 (*1 *1 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(-13 (-38 |t#1|) (-405 |t#1|) (-331 |t#1|) (-10 -8 (-15 -3330 ($ $)) (-15 -3989 (|t#1| $)) (-15 -2729 (|t#1| $)) (-15 -2728 (|t#1| $)) (-15 -2727 (|t#1| $)) (-15 -2726 (|t#1| $)) (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $)) (-15 -3327 (|t#1| $)) (-15 -3450 (|t#1| $)) (-15 -2730 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3725 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -2725 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-361) |has| |#1| (-361)) ((-331 |#1|) . T) ((-405 |#1|) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-1363 (((-3 $ "failed") $ $) 26)) (-3879 (($) 23 T CONST)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-747) $) 25))) +(-13 (-772) (-23)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-836)) . T) ((-772) . T) ((-825) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 24)) (-2270 (($ $ $) 27)) (-3219 (((-3 $ "failed") $ $) 26)) (-3513 (($) 23 T CONST)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 22 T CONST)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (-2391 (($ $ $) 20)) (* (($ (-894) $) 21) (($ (-749) $) 25))) +(((-771) (-138)) (T -771)) +((-2270 (*1 *1 *1 *1) (-4 *1 (-771)))) +(-13 (-773) (-10 -8 (-15 -2270 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-825) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 7)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (-2391 (($ $ $) 20)) (* (($ (-894) $) 21))) +(((-772) (-138)) (T -772)) +NIL +(-13 (-825) (-25)) +(((-25) . T) ((-101) . T) ((-595 (-836)) . T) ((-825) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 24)) (-3219 (((-3 $ "failed") $ $) 26)) (-3513 (($) 23 T CONST)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 22 T CONST)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (-2391 (($ $ $) 20)) (* (($ (-894) $) 21) (($ (-749) $) 25))) (((-773) (-138)) (T -773)) NIL -(-13 (-768) (-130)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-768) . T) ((-770) . T) ((-823) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #1="failed") $) NIL) (((-3 (-967 |#1|) #1#) $) 35) (((-3 (-535) #1#) $) NIL (-3874 (|has| (-967 |#1|) (-1009 (-535))) (|has| |#1| (-1009 (-535))))) (((-3 (-400 (-535)) #1#) $) NIL (-3874 (|has| (-967 |#1|) (-1009 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-3490 ((|#1| $) NIL) (((-967 |#1|) $) 33) (((-535) $) NIL (-3874 (|has| (-967 |#1|) (-1009 (-535))) (|has| |#1| (-1009 (-535))))) (((-400 (-535)) $) NIL (-3874 (|has| (-967 |#1|) (-1009 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-3804 (((-3 $ "failed") $) NIL)) (-3989 ((|#1| $) 16)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL (|has| |#1| (-534)))) (-3344 (((-112) $) NIL (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) NIL (|has| |#1| (-534)))) (-3315 (($) NIL (|has| |#1| (-361)))) (-2493 (((-112) $) NIL)) (-2730 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-967 |#1|) (-967 |#1|)) 29)) (-3450 ((|#1| $) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-2727 ((|#1| $) 22)) (-2728 ((|#1| $) 20)) (-2729 ((|#1| $) 18)) (-3327 ((|#1| $) 26)) (-3328 ((|#1| $) 25)) (-3329 ((|#1| $) 24)) (-2726 ((|#1| $) 23)) (-3577 (((-1086) $) NIL)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-4142 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3330 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-967 |#1|)) 30) (($ (-400 (-535))) NIL (-3874 (|has| (-967 |#1|) (-1009 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-3725 ((|#1| $) NIL (|has| |#1| (-1027)))) (-2979 (($) 8 T CONST)) (-2985 (($) 12 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-774 |#1|) (-13 (-772 |#1|) (-405 (-967 |#1|)) (-10 -8 (-15 -2730 ($ (-967 |#1|) (-967 |#1|))))) (-170)) (T -774)) -((-2730 (*1 *1 *2 *2) (-12 (-5 *2 (-967 *3)) (-4 *3 (-170)) (-5 *1 (-774 *3))))) -(-13 (-772 |#1|) (-405 (-967 |#1|)) (-10 -8 (-15 -2730 ($ (-967 |#1|) (-967 |#1|))))) -((-4301 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-775 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) (-772 |#2|) (-170) (-772 |#4|) (-170)) (T -775)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-772 *6)) (-5 *1 (-775 *4 *5 *2 *6)) (-4 *4 (-772 *5))))) -(-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) -((-2887 (((-112) $ $) 7)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13)) (-3375 (((-112) $ $) 6))) -(((-776) (-138)) (T -776)) -((-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-776)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) (-2731 (*1 *2 *3) (-12 (-4 *1 (-776)) (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1006))))) -(-13 (-1067) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2731 ((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2732 (((-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#3| |#2| (-1142)) 19))) -(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2732 ((-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#3| |#2| (-1142)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931)) (-634 |#2|)) (T -777)) -((-2732 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-4 *4 (-13 (-29 *6) (-1164) (-931))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-618 *4)))) (-5 *1 (-777 *6 *4 *3)) (-4 *3 (-634 *4))))) -(-10 -7 (-15 -2732 ((-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#3| |#2| (-1142)))) -((-3919 (((-3 |#2| #1="failed") |#2| (-113) (-286 |#2|) (-618 |#2|)) 28) (((-3 |#2| #1#) (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #2="failed") |#2| (-113) (-1142)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #2#) (-286 |#2|) (-113) (-1142)) 18) (((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 |#2|) (-618 (-113)) (-1142)) 24) (((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 (-286 |#2|)) (-618 (-113)) (-1142)) 26) (((-3 (-618 (-1224 |#2|)) "failed") (-665 |#2|) (-1142)) 37) (((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-665 |#2|) (-1224 |#2|) (-1142)) 35))) -(((-778 |#1| |#2|) (-10 -7 (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-665 |#2|) (-1224 |#2|) (-1142))) (-15 -3919 ((-3 (-618 (-1224 |#2|)) "failed") (-665 |#2|) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 (-286 |#2|)) (-618 (-113)) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 |#2|) (-618 (-113)) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #1="failed") (-286 |#2|) (-113) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #1#) |#2| (-113) (-1142))) (-15 -3919 ((-3 |#2| #2="failed") (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|))) (-15 -3919 ((-3 |#2| #2#) |#2| (-113) (-286 |#2|) (-618 |#2|)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931))) (T -778)) -((-3919 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-286 *2)) (-5 *5 (-618 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-778 *6 *2)))) (-3919 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-113)) (-5 *5 (-618 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-931))) (-5 *1 (-778 *6 *2)) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))))) (-3919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2123 (-618 *3))) *3 #1="failed")) (-5 *1 (-778 *6 *3)) (-4 *3 (-13 (-29 *6) (-1164) (-931))))) (-3919 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2123 (-618 *7))) *7 #1#)) (-5 *1 (-778 *6 *7)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-618 *7)) (-5 *4 (-618 (-113))) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) (-5 *1 (-778 *6 *7)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-618 (-286 *7))) (-5 *4 (-618 (-113))) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) (-5 *1 (-778 *6 *7)))) (-3919 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-665 *6)) (-5 *4 (-1142)) (-4 *6 (-13 (-29 *5) (-1164) (-931))) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-1224 *6))) (-5 *1 (-778 *5 *6)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-665 *7)) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) (-5 *1 (-778 *6 *7)) (-5 *4 (-1224 *7))))) -(-10 -7 (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-665 |#2|) (-1224 |#2|) (-1142))) (-15 -3919 ((-3 (-618 (-1224 |#2|)) "failed") (-665 |#2|) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 (-286 |#2|)) (-618 (-113)) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 |#2|) (-618 (-113)) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #1="failed") (-286 |#2|) (-113) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #1#) |#2| (-113) (-1142))) (-15 -3919 ((-3 |#2| #2="failed") (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|))) (-15 -3919 ((-3 |#2| #2#) |#2| (-113) (-286 |#2|) (-618 |#2|)))) -((-2733 (($) 9)) (-2737 (((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 31)) (-2735 (((-618 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 28)) (-3953 (($ (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) 25)) (-2736 (($ (-618 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) 23)) (-2734 (((-1230)) 12))) -(((-779) (-10 -8 (-15 -2733 ($)) (-15 -2734 ((-1230))) (-15 -2735 ((-618 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2736 ($ (-618 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -3953 ($ (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2737 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -779)) -((-2737 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *1 (-779)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) (-5 *1 (-779)))) (-2736 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-5 *1 (-779)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-779)))) (-2734 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-779)))) (-2733 (*1 *1) (-5 *1 (-779)))) -(-10 -8 (-15 -2733 ($)) (-15 -2734 ((-1230))) (-15 -2735 ((-618 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2736 ($ (-618 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -3953 ($ (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2737 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-3807 ((|#2| |#2| (-1142)) 16)) (-2738 ((|#2| |#2| (-1142)) 51)) (-2739 (((-1 |#2| |#2|) (-1142)) 11))) -(((-780 |#1| |#2|) (-10 -7 (-15 -3807 (|#2| |#2| (-1142))) (-15 -2738 (|#2| |#2| (-1142))) (-15 -2739 ((-1 |#2| |#2|) (-1142)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931))) (T -780)) -((-2739 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-780 *4 *5)) (-4 *5 (-13 (-29 *4) (-1164) (-931))))) (-2738 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-931))))) (-3807 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-931)))))) -(-10 -7 (-15 -3807 (|#2| |#2| (-1142))) (-15 -2738 (|#2| |#2| (-1142))) (-15 -2739 ((-1 |#2| |#2|) (-1142)))) -((-3919 (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371) (-371)) 116) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371)) 117) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-618 (-371)) (-371)) 119) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-371)) 120) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-371)) 121) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371))) 122) (((-1006) (-784) (-1030)) 108) (((-1006) (-784)) 109)) (-2989 (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784) (-1030)) 75) (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784)) 77))) -(((-781) (-10 -7 (-15 -3919 ((-1006) (-784))) (-15 -3919 ((-1006) (-784) (-1030))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371) (-371))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784) (-1030))))) (T -781)) -((-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-781)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1006)) (-5 *1 (-781))))) -(-10 -7 (-15 -3919 ((-1006) (-784))) (-15 -3919 ((-1006) (-784) (-1030))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371) (-371))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784) (-1030)))) -((-2740 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-618 |#4|))) (-631 |#4|) |#4|) 35))) -(((-782 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2740 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-618 |#4|))) (-631 |#4|) |#4|))) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -782)) -((-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *4)) (-4 *4 (-335 *5 *6 *7)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-782 *5 *6 *7 *4))))) -(-10 -7 (-15 -2740 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-618 |#4|))) (-631 |#4|) |#4|))) -((-4084 (((-2 (|:| -3600 |#3|) (|:| |rh| (-618 (-400 |#2|)))) |#4| (-618 (-400 |#2|))) 52)) (-2742 (((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4| |#2|) 60) (((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4|) 59) (((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3| |#2|) 20) (((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3|) 21)) (-2743 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2741 ((|#2| |#3| (-618 (-400 |#2|))) 93) (((-3 |#2| "failed") |#3| (-400 |#2|)) 90))) -(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2741 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2741 (|#2| |#3| (-618 (-400 |#2|)))) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3| |#2|)) (-15 -2743 (|#2| |#3| |#1|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4| |#2|)) (-15 -2743 (|#2| |#4| |#1|)) (-15 -4084 ((-2 (|:| -3600 |#3|) (|:| |rh| (-618 (-400 |#2|)))) |#4| (-618 (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-400 (-535)))) (-1200 |#1|) (-634 |#2|) (-634 (-400 |#2|))) (T -783)) -((-4084 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-2 (|:| -3600 *7) (|:| |rh| (-618 (-400 *6))))) (-5 *1 (-783 *5 *6 *7 *3)) (-5 *4 (-618 (-400 *6))) (-4 *7 (-634 *6)) (-4 *3 (-634 (-400 *6))))) (-2743 (*1 *2 *3 *4) (-12 (-4 *2 (-1200 *4)) (-5 *1 (-783 *4 *2 *5 *3)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-634 *2)) (-4 *3 (-634 (-400 *2))))) (-2742 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *4 (-1200 *5)) (-5 *2 (-618 (-2 (|:| -4115 *4) (|:| -3560 *4)))) (-5 *1 (-783 *5 *4 *6 *3)) (-4 *6 (-634 *4)) (-4 *3 (-634 (-400 *4))))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-2 (|:| -4115 *5) (|:| -3560 *5)))) (-5 *1 (-783 *4 *5 *6 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 (-400 *5))))) (-2743 (*1 *2 *3 *4) (-12 (-4 *2 (-1200 *4)) (-5 *1 (-783 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) (-4 *5 (-634 (-400 *2))))) (-2742 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *4 (-1200 *5)) (-5 *2 (-618 (-2 (|:| -4115 *4) (|:| -3560 *4)))) (-5 *1 (-783 *5 *4 *3 *6)) (-4 *3 (-634 *4)) (-4 *6 (-634 (-400 *4))))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-2 (|:| -4115 *5) (|:| -3560 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) (-2741 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-400 *2))) (-4 *2 (-1200 *5)) (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) (-4 *6 (-634 (-400 *2))))) (-2741 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1200 *5)) (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) (-4 *6 (-634 *4))))) -(-10 -7 (-15 -2741 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2741 (|#2| |#3| (-618 (-400 |#2|)))) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3| |#2|)) (-15 -2743 (|#2| |#3| |#1|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4| |#2|)) (-15 -2743 (|#2| |#4| |#1|)) (-15 -4084 ((-2 (|:| -3600 |#3|) (|:| |rh| (-618 (-400 |#2|)))) |#4| (-618 (-400 |#2|))))) -((-2887 (((-112) $ $) NIL)) (-3490 (((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 15) (($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 12)) (-3375 (((-112) $ $) NIL))) -(((-784) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))) (T -784)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-784)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-784)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-784))))) -(-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $)))) -((-2751 (((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 |#3|))) |#3| (-1 (-618 |#2|) |#2| (-1136 |#2|)) (-1 (-398 |#2|) |#2|)) 118)) (-2752 (((-618 (-2 (|:| |poly| |#2|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|)) 46)) (-2745 (((-618 (-2 (|:| |deg| (-747)) (|:| -3600 |#2|))) |#3|) 95)) (-2744 ((|#2| |#3|) 37)) (-2746 (((-618 (-2 (|:| -4294 |#1|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|)) 82)) (-2747 ((|#3| |#3| (-400 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2744 (|#2| |#3|)) (-15 -2745 ((-618 (-2 (|:| |deg| (-747)) (|:| -3600 |#2|))) |#3|)) (-15 -2746 ((-618 (-2 (|:| -4294 |#1|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|))) (-15 -2752 ((-618 (-2 (|:| |poly| |#2|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|))) (-15 -2751 ((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 |#3|))) |#3| (-1 (-618 |#2|) |#2| (-1136 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2747 (|#3| |#3| |#2|)) (-15 -2747 (|#3| |#3| (-400 |#2|)))) (-13 (-356) (-145) (-1009 (-400 (-535)))) (-1200 |#1|) (-634 |#2|) (-634 (-400 |#2|))) (T -785)) -((-2747 (*1 *2 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *2 (-634 *5)) (-4 *6 (-634 *3)))) (-2747 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-1200 *4)) (-5 *1 (-785 *4 *3 *2 *5)) (-4 *2 (-634 *3)) (-4 *5 (-634 (-400 *3))))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-618 *7) *7 (-1136 *7))) (-5 *5 (-1 (-398 *7) *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-5 *2 (-618 (-2 (|:| |frac| (-400 *7)) (|:| -3600 *3)))) (-5 *1 (-785 *6 *7 *3 *8)) (-4 *3 (-634 *7)) (-4 *8 (-634 (-400 *7))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-2 (|:| |poly| *6) (|:| -3600 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) (-2746 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-2 (|:| -4294 *5) (|:| -3600 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-2 (|:| |deg| (-747)) (|:| -3600 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) (-2744 (*1 *2 *3) (-12 (-4 *2 (-1200 *4)) (-5 *1 (-785 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) (-4 *5 (-634 (-400 *2)))))) -(-10 -7 (-15 -2744 (|#2| |#3|)) (-15 -2745 ((-618 (-2 (|:| |deg| (-747)) (|:| -3600 |#2|))) |#3|)) (-15 -2746 ((-618 (-2 (|:| -4294 |#1|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|))) (-15 -2752 ((-618 (-2 (|:| |poly| |#2|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|))) (-15 -2751 ((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 |#3|))) |#3| (-1 (-618 |#2|) |#2| (-1136 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2747 (|#3| |#3| |#2|)) (-15 -2747 (|#3| |#3| (-400 |#2|)))) -((-2748 (((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-632 |#2| (-400 |#2|)) (-618 (-400 |#2|))) 121) (((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-618 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|)) 120) (((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-631 (-400 |#2|)) (-618 (-400 |#2|))) 115) (((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-618 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|)) 113)) (-2749 ((|#2| (-632 |#2| (-400 |#2|))) 80) ((|#2| (-631 (-400 |#2|))) 83))) -(((-786 |#1| |#2|) (-10 -7 (-15 -2748 ((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-618 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|))) (-15 -2748 ((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-631 (-400 |#2|)) (-618 (-400 |#2|)))) (-15 -2748 ((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-618 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2748 ((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-632 |#2| (-400 |#2|)) (-618 (-400 |#2|)))) (-15 -2749 (|#2| (-631 (-400 |#2|)))) (-15 -2749 (|#2| (-632 |#2| (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -786)) -((-2749 (*1 *2 *3) (-12 (-5 *3 (-632 *2 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-786 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-631 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-786 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-2 (|:| -2123 (-618 (-400 *6))) (|:| -1695 (-665 *5)))) (-5 *1 (-786 *5 *6)) (-5 *4 (-618 (-400 *6))))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-786 *5 *6)))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-2 (|:| -2123 (-618 (-400 *6))) (|:| -1695 (-665 *5)))) (-5 *1 (-786 *5 *6)) (-5 *4 (-618 (-400 *6))))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4)))) (-5 *1 (-786 *5 *6))))) -(-10 -7 (-15 -2748 ((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-618 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|))) (-15 -2748 ((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-631 (-400 |#2|)) (-618 (-400 |#2|)))) (-15 -2748 ((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-618 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2748 ((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-632 |#2| (-400 |#2|)) (-618 (-400 |#2|)))) (-15 -2749 (|#2| (-631 (-400 |#2|)))) (-15 -2749 (|#2| (-632 |#2| (-400 |#2|))))) -((-2750 (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) |#5| |#4|) 48))) -(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2750 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) |#5| |#4|))) (-356) (-634 |#1|) (-1200 |#1|) (-701 |#1| |#3|) (-634 |#4|)) (T -787)) -((-2750 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *7 (-1200 *5)) (-4 *4 (-701 *5 *7)) (-5 *2 (-2 (|:| -1695 (-665 *6)) (|:| |vec| (-1224 *5)))) (-5 *1 (-787 *5 *6 *7 *4 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 *4))))) -(-10 -7 (-15 -2750 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) |#5| |#4|))) -((-2751 (((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 47)) (-2753 (((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|))) 138 (|has| |#1| (-27))) (((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-618 (-400 |#2|)) (-631 (-400 |#2|))) 140 (|has| |#1| (-27))) (((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 38) (((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|)) 39) (((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 36) (((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|)) 37)) (-2752 (((-618 (-2 (|:| |poly| |#2|) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|)) 83))) -(((-788 |#1| |#2|) (-10 -7 (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2751 ((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2752 ((-618 (-2 (|:| |poly| |#2|) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)))) (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|)) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -788)) -((-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-632 *5 (-400 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-400 *5))) (-5 *1 (-788 *4 *5)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-631 (-400 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-400 *5))) (-5 *1 (-788 *4 *5)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-2 (|:| |poly| *6) (|:| -3600 (-632 *6 (-400 *6)))))) (-5 *1 (-788 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-2 (|:| |frac| (-400 *6)) (|:| -3600 (-632 *6 (-400 *6)))))) (-5 *1 (-788 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7 (-400 *7))) (-5 *4 (-1 (-618 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *7 (-1200 *6)) (-5 *2 (-618 (-400 *7))) (-5 *1 (-788 *6 *7)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-400 *7))) (-5 *4 (-1 (-618 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *7 (-1200 *6)) (-5 *2 (-618 (-400 *7))) (-5 *1 (-788 *6 *7)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6))))) -(-10 -7 (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2751 ((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2752 ((-618 (-2 (|:| |poly| |#2|) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)))) (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|)) -((-2754 (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) (-665 |#2|) (-1224 |#1|)) 85) (((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)) (|:| -3600 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1224 |#1|)) 15)) (-2755 (((-2 (|:| |particular| (-3 (-1224 |#1|) "failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#2|) (-1224 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-618 |#1|))) |#2| |#1|)) 92)) (-3919 (((-3 (-2 (|:| |particular| (-1224 |#1|)) (|:| -2123 (-665 |#1|))) "failed") (-665 |#1|) (-1224 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) "failed") |#2| |#1|)) 43))) -(((-789 |#1| |#2|) (-10 -7 (-15 -2754 ((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)) (|:| -3600 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1224 |#1|))) (-15 -2754 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) (-665 |#2|) (-1224 |#1|))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#1|)) (|:| -2123 (-665 |#1|))) "failed") (-665 |#1|) (-1224 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) "failed") |#2| |#1|))) (-15 -2755 ((-2 (|:| |particular| (-3 (-1224 |#1|) "failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#2|) (-1224 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-618 |#1|))) |#2| |#1|)))) (-356) (-634 |#1|)) (T -789)) -((-2755 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2123 (-618 *6))) *7 *6)) (-4 *6 (-356)) (-4 *7 (-634 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1224 *6) "failed")) (|:| -2123 (-618 (-1224 *6))))) (-5 *1 (-789 *6 *7)) (-5 *4 (-1224 *6)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2123 (-618 *6))) "failed") *7 *6)) (-4 *6 (-356)) (-4 *7 (-634 *6)) (-5 *2 (-2 (|:| |particular| (-1224 *6)) (|:| -2123 (-665 *6)))) (-5 *1 (-789 *6 *7)) (-5 *3 (-665 *6)) (-5 *4 (-1224 *6)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-634 *5)) (-5 *2 (-2 (|:| -1695 (-665 *6)) (|:| |vec| (-1224 *5)))) (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *6)) (-5 *4 (-1224 *5)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| A (-665 *5)) (|:| |eqs| (-618 (-2 (|:| C (-665 *5)) (|:| |g| (-1224 *5)) (|:| -3600 *6) (|:| |rh| *5)))))) (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *6 (-634 *5))))) -(-10 -7 (-15 -2754 ((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)) (|:| -3600 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1224 |#1|))) (-15 -2754 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) (-665 |#2|) (-1224 |#1|))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#1|)) (|:| -2123 (-665 |#1|))) "failed") (-665 |#1|) (-1224 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) "failed") |#2| |#1|))) (-15 -2755 ((-2 (|:| |particular| (-3 (-1224 |#1|) "failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#2|) (-1224 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-618 |#1|))) |#2| |#1|)))) -((-2756 (((-665 |#1|) (-618 |#1|) (-747)) 13) (((-665 |#1|) (-618 |#1|)) 14)) (-2757 (((-3 (-1224 |#1|) "failed") |#2| |#1| (-618 |#1|)) 34)) (-3682 (((-3 |#1| "failed") |#2| |#1| (-618 |#1|) (-1 |#1| |#1|)) 42))) -(((-790 |#1| |#2|) (-10 -7 (-15 -2756 ((-665 |#1|) (-618 |#1|))) (-15 -2756 ((-665 |#1|) (-618 |#1|) (-747))) (-15 -2757 ((-3 (-1224 |#1|) "failed") |#2| |#1| (-618 |#1|))) (-15 -3682 ((-3 |#1| "failed") |#2| |#1| (-618 |#1|) (-1 |#1| |#1|)))) (-356) (-634 |#1|)) (T -790)) -((-3682 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-618 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) (-5 *1 (-790 *2 *3)) (-4 *3 (-634 *2)))) (-2757 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-618 *4)) (-4 *4 (-356)) (-5 *2 (-1224 *4)) (-5 *1 (-790 *4 *3)) (-4 *3 (-634 *4)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-665 *5)) (-5 *1 (-790 *5 *6)) (-4 *6 (-634 *5)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)) (-5 *1 (-790 *4 *5)) (-4 *5 (-634 *4))))) -(-10 -7 (-15 -2756 ((-665 |#1|) (-618 |#1|))) (-15 -2756 ((-665 |#1|) (-618 |#1|) (-747))) (-15 -2757 ((-3 (-1224 |#1|) "failed") |#2| |#1| (-618 |#1|))) (-15 -3682 ((-3 |#1| "failed") |#2| |#1| (-618 |#1|) (-1 |#1| |#1|)))) -((-2887 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3522 (((-112) $) NIL (|has| |#2| (-130)))) (-4053 (($ (-890)) NIL (|has| |#2| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#2| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#2| (-361)))) (-3969 (((-535) $) NIL (|has| |#2| (-821)))) (-4130 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1067)))) (-3490 (((-535) $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) ((|#2| $) NIL (|has| |#2| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#2| (-703)))) (-3315 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ (-535)) NIL)) (-3520 (((-112) $) NIL (|has| |#2| (-821)))) (-2063 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (|has| |#2| (-703)))) (-3521 (((-112) $) NIL (|has| |#2| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#2| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#2| (-1067)))) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#2| (-361)))) (-3577 (((-1086) $) NIL (|has| |#2| (-1067)))) (-4143 ((|#2| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-535)) NIL)) (-4179 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-1520 (($ (-1224 |#2|)) NIL)) (-4254 (((-133)) NIL (|has| |#2| (-356)))) (-4153 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#2|) $) NIL) (($ (-535)) NIL (-3874 (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (($ |#2|) NIL (|has| |#2| (-1067))) (((-835) $) NIL (|has| |#2| (-593 (-835))))) (-3444 (((-747)) NIL (|has| |#2| (-1018)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#2| (-821)))) (-2979 (($) NIL (|has| |#2| (-130)) CONST)) (-2985 (($) NIL (|has| |#2| (-703)) CONST)) (-2990 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3375 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3005 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3006 (((-112) $ $) 11 (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-4182 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-890)) NIL (|has| |#2| (-703)))) (* (($ (-535) $) NIL (|has| |#2| (-1018))) (($ $ $) NIL (|has| |#2| (-703))) (($ $ |#2|) NIL (|has| |#2| (-703))) (($ |#2| $) NIL (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-791 |#1| |#2| |#3|) (-232 |#1| |#2|) (-747) (-769) (-1 (-112) (-1224 |#2|) (-1224 |#2|))) (T -791)) +(-13 (-770) (-130)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-770) . T) ((-772) . T) ((-825) . T) ((-1068) . T)) +((-3433 (((-112) $) 41)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2726 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#2| $) 42)) (-3207 (((-3 (-400 (-550)) "failed") $) 78)) (-3122 (((-112) $) 72)) (-3042 (((-400 (-550)) $) 76)) (-1389 ((|#2| $) 26)) (-3972 (($ (-1 |#2| |#2|) $) 23)) (-3235 (($ $) 61)) (-4028 (((-526) $) 67)) (-1270 (($ $) 21)) (-1518 (((-836) $) 56) (($ (-550)) 39) (($ |#2|) 37) (($ (-400 (-550))) NIL)) (-2390 (((-749)) 10)) (-1635 ((|#2| $) 71)) (-2316 (((-112) $ $) 29)) (-2335 (((-112) $ $) 69)) (-2403 (($ $) 31) (($ $ $) NIL)) (-2391 (($ $ $) 30)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-774 |#1| |#2|) (-10 -8 (-15 -2335 ((-112) |#1| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -1389 (|#2| |#1|)) (-15 -1270 (|#1| |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -1518 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3433 ((-112) |#1|)) (-15 * (|#1| (-894) |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) (-775 |#2|) (-170)) (T -774)) +((-2390 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-774 *3 *4)) (-4 *3 (-775 *4))))) +(-10 -8 (-15 -2335 ((-112) |#1| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -1389 (|#2| |#1|)) (-15 -1270 (|#1| |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -1518 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3433 ((-112) |#1|)) (-15 * (|#1| (-894) |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-4319 (((-749)) 51 (|has| |#1| (-361)))) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 92 (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 90 (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 88)) (-2726 (((-550) $) 93 (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) 91 (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 87)) (-1386 (((-3 $ "failed") $) 32)) (-3365 ((|#1| $) 77)) (-3207 (((-3 (-400 (-550)) "failed") $) 64 (|has| |#1| (-535)))) (-3122 (((-112) $) 66 (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) 65 (|has| |#1| (-535)))) (-1741 (($) 54 (|has| |#1| (-361)))) (-3102 (((-112) $) 30)) (-1581 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-1389 ((|#1| $) 69)) (-2707 (($ $ $) 60 (|has| |#1| (-825)))) (-4164 (($ $ $) 59 (|has| |#1| (-825)))) (-3972 (($ (-1 |#1| |#1|) $) 79)) (-2253 (((-894) $) 53 (|has| |#1| (-361)))) (-1825 (((-1126) $) 9)) (-3235 (($ $) 63 (|has| |#1| (-356)))) (-2922 (($ (-894)) 52 (|has| |#1| (-361)))) (-2453 ((|#1| $) 74)) (-2546 ((|#1| $) 75)) (-1450 ((|#1| $) 76)) (-4053 ((|#1| $) 70)) (-4136 ((|#1| $) 71)) (-4234 ((|#1| $) 72)) (-2358 ((|#1| $) 73)) (-3337 (((-1088) $) 10)) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) 85 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 83 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 82 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) 81 (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) 80 (|has| |#1| (-505 (-1144) |#1|)))) (-2680 (($ $ |#1|) 86 (|has| |#1| (-279 |#1| |#1|)))) (-4028 (((-526) $) 61 (|has| |#1| (-596 (-526))))) (-1270 (($ $) 78)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 35) (($ (-400 (-550))) 89 (|has| |#1| (-1011 (-400 (-550)))))) (-4242 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-1635 ((|#1| $) 67 (|has| |#1| (-1029)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2363 (((-112) $ $) 57 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 56 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 58 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 55 (|has| |#1| (-825)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-775 |#1|) (-138) (-170)) (T -775)) +((-1270 (*1 *1 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-2358 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-1581 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)) (-4 *2 (-1029)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550))))) (-3207 (*1 *2 *1) (|partial| -12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550))))) (-3235 (*1 *1 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) +(-13 (-38 |t#1|) (-404 |t#1|) (-331 |t#1|) (-10 -8 (-15 -1270 ($ $)) (-15 -3365 (|t#1| $)) (-15 -1450 (|t#1| $)) (-15 -2546 (|t#1| $)) (-15 -2453 (|t#1| $)) (-15 -2358 (|t#1| $)) (-15 -4234 (|t#1| $)) (-15 -4136 (|t#1| $)) (-15 -4053 (|t#1| $)) (-15 -1389 (|t#1| $)) (-15 -1581 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1029)) (-15 -1635 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -3235 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-361) |has| |#1| (-361)) ((-331 |#1|) . T) ((-404 |#1|) . T) ((-505 (-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1026 |#1|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3972 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-776 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#3| (-1 |#4| |#2|) |#1|))) (-775 |#2|) (-170) (-775 |#4|) (-170)) (T -776)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-775 *6)) (-5 *1 (-776 *4 *5 *2 *6)) (-4 *4 (-775 *5))))) +(-10 -7 (-15 -3972 (|#3| (-1 |#4| |#2|) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-4319 (((-749)) NIL (|has| |#1| (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-972 |#1|) "failed") $) 35) (((-3 (-550) "failed") $) NIL (-1561 (|has| (-972 |#1|) (-1011 (-550))) (|has| |#1| (-1011 (-550))))) (((-3 (-400 (-550)) "failed") $) NIL (-1561 (|has| (-972 |#1|) (-1011 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550))))))) (-2726 ((|#1| $) NIL) (((-972 |#1|) $) 33) (((-550) $) NIL (-1561 (|has| (-972 |#1|) (-1011 (-550))) (|has| |#1| (-1011 (-550))))) (((-400 (-550)) $) NIL (-1561 (|has| (-972 |#1|) (-1011 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550))))))) (-1386 (((-3 $ "failed") $) NIL)) (-3365 ((|#1| $) 16)) (-3207 (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-535)))) (-3122 (((-112) $) NIL (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) NIL (|has| |#1| (-535)))) (-1741 (($) NIL (|has| |#1| (-361)))) (-3102 (((-112) $) NIL)) (-1581 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-972 |#1|) (-972 |#1|)) 29)) (-1389 ((|#1| $) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2253 (((-894) $) NIL (|has| |#1| (-361)))) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-2922 (($ (-894)) NIL (|has| |#1| (-361)))) (-2453 ((|#1| $) 22)) (-2546 ((|#1| $) 20)) (-1450 ((|#1| $) 18)) (-4053 ((|#1| $) 26)) (-4136 ((|#1| $) 25)) (-4234 ((|#1| $) 24)) (-2358 ((|#1| $) 23)) (-3337 (((-1088) $) NIL)) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) NIL (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) NIL (|has| |#1| (-505 (-1144) |#1|)))) (-2680 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1270 (($ $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-972 |#1|)) 30) (($ (-400 (-550))) NIL (-1561 (|has| (-972 |#1|) (-1011 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550))))))) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-1635 ((|#1| $) NIL (|has| |#1| (-1029)))) (-2626 (($) 8 T CONST)) (-2636 (($) 12 T CONST)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-777 |#1|) (-13 (-775 |#1|) (-404 (-972 |#1|)) (-10 -8 (-15 -1581 ($ (-972 |#1|) (-972 |#1|))))) (-170)) (T -777)) +((-1581 (*1 *1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-170)) (-5 *1 (-777 *3))))) +(-13 (-775 |#1|) (-404 (-972 |#1|)) (-10 -8 (-15 -1581 ($ (-972 |#1|) (-972 |#1|))))) +((-1504 (((-112) $ $) 7)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-1703 (((-1008) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13)) (-2316 (((-112) $ $) 6))) +(((-778) (-138)) (T -778)) +((-3459 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-1032)) (-5 *4 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)))))) (-1703 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1008))))) +(-13 (-1068) (-10 -7 (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1703 ((-1008) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1819 (((-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#3| |#2| (-1144)) 19))) +(((-779 |#1| |#2| |#3|) (-10 -7 (-15 -1819 ((-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#3| |#2| (-1144)))) (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1166) (-932)) (-634 |#2|)) (T -779)) +((-1819 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1144)) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-4 *4 (-13 (-29 *6) (-1166) (-932))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2437 (-623 *4)))) (-5 *1 (-779 *6 *4 *3)) (-4 *3 (-634 *4))))) +(-10 -7 (-15 -1819 ((-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#3| |#2| (-1144)))) +((-2903 (((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-623 |#2|)) 28) (((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#2| "failed") |#2| (-114) (-1144)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1144)) 18) (((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-623 |#2|) (-623 (-114)) (-1144)) 24) (((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-623 (-287 |#2|)) (-623 (-114)) (-1144)) 26) (((-3 (-623 (-1227 |#2|)) "failed") (-667 |#2|) (-1144)) 37) (((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-667 |#2|) (-1227 |#2|) (-1144)) 35))) +(((-780 |#1| |#2|) (-10 -7 (-15 -2903 ((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-667 |#2|) (-1227 |#2|) (-1144))) (-15 -2903 ((-3 (-623 (-1227 |#2|)) "failed") (-667 |#2|) (-1144))) (-15 -2903 ((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-623 (-287 |#2|)) (-623 (-114)) (-1144))) (-15 -2903 ((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-623 |#2|) (-623 (-114)) (-1144))) (-15 -2903 ((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1144))) (-15 -2903 ((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#2| "failed") |#2| (-114) (-1144))) (-15 -2903 ((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|))) (-15 -2903 ((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-623 |#2|)))) (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1166) (-932))) (T -780)) +((-2903 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-287 *2)) (-5 *5 (-623 *2)) (-4 *2 (-13 (-29 *6) (-1166) (-932))) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *1 (-780 *6 *2)))) (-2903 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-287 *2)) (-5 *4 (-114)) (-5 *5 (-623 *2)) (-4 *2 (-13 (-29 *6) (-1166) (-932))) (-5 *1 (-780 *6 *2)) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1144)) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2437 (-623 *3))) *3 "failed")) (-5 *1 (-780 *6 *3)) (-4 *3 (-13 (-29 *6) (-1166) (-932))))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-1144)) (-4 *7 (-13 (-29 *6) (-1166) (-932))) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2437 (-623 *7))) *7 "failed")) (-5 *1 (-780 *6 *7)))) (-2903 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *4 (-623 (-114))) (-5 *5 (-1144)) (-4 *7 (-13 (-29 *6) (-1166) (-932))) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-2 (|:| |particular| (-1227 *7)) (|:| -2437 (-623 (-1227 *7))))) (-5 *1 (-780 *6 *7)))) (-2903 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 (-287 *7))) (-5 *4 (-623 (-114))) (-5 *5 (-1144)) (-4 *7 (-13 (-29 *6) (-1166) (-932))) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-2 (|:| |particular| (-1227 *7)) (|:| -2437 (-623 (-1227 *7))))) (-5 *1 (-780 *6 *7)))) (-2903 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-667 *6)) (-5 *4 (-1144)) (-4 *6 (-13 (-29 *5) (-1166) (-932))) (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-1227 *6))) (-5 *1 (-780 *5 *6)))) (-2903 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-667 *7)) (-5 *5 (-1144)) (-4 *7 (-13 (-29 *6) (-1166) (-932))) (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-2 (|:| |particular| (-1227 *7)) (|:| -2437 (-623 (-1227 *7))))) (-5 *1 (-780 *6 *7)) (-5 *4 (-1227 *7))))) +(-10 -7 (-15 -2903 ((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-667 |#2|) (-1227 |#2|) (-1144))) (-15 -2903 ((-3 (-623 (-1227 |#2|)) "failed") (-667 |#2|) (-1144))) (-15 -2903 ((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-623 (-287 |#2|)) (-623 (-114)) (-1144))) (-15 -2903 ((-3 (-2 (|:| |particular| (-1227 |#2|)) (|:| -2437 (-623 (-1227 |#2|)))) "failed") (-623 |#2|) (-623 (-114)) (-1144))) (-15 -2903 ((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1144))) (-15 -2903 ((-3 (-2 (|:| |particular| |#2|) (|:| -2437 (-623 |#2|))) |#2| "failed") |#2| (-114) (-1144))) (-15 -2903 ((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-623 |#2|))) (-15 -2903 ((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-623 |#2|)))) +((-1936 (($) 9)) (-3986 (((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 31)) (-3531 (((-623 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 28)) (-1886 (($ (-2 (|:| -2763 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))) 25)) (-3892 (($ (-623 (-2 (|:| -2763 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) 23)) (-3793 (((-1232)) 12))) +(((-781) (-10 -8 (-15 -1936 ($)) (-15 -3793 ((-1232))) (-15 -3531 ((-623 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -3892 ($ (-623 (-2 (|:| -2763 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))))) (-15 -1886 ($ (-2 (|:| -2763 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-15 -3986 ((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -781)) +((-3986 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) (-5 *1 (-781)))) (-1886 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2763 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))) (-5 *1 (-781)))) (-3892 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -2763 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-5 *1 (-781)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-781)))) (-3793 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-781)))) (-1936 (*1 *1) (-5 *1 (-781)))) +(-10 -8 (-15 -1936 ($)) (-15 -3793 ((-1232))) (-15 -3531 ((-623 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -3892 ($ (-623 (-2 (|:| -2763 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))))) (-15 -1886 ($ (-2 (|:| -2763 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2119 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-15 -3986 ((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) +((-1327 ((|#2| |#2| (-1144)) 16)) (-4096 ((|#2| |#2| (-1144)) 51)) (-4208 (((-1 |#2| |#2|) (-1144)) 11))) +(((-782 |#1| |#2|) (-10 -7 (-15 -1327 (|#2| |#2| (-1144))) (-15 -4096 (|#2| |#2| (-1144))) (-15 -4208 ((-1 |#2| |#2|) (-1144)))) (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145)) (-13 (-29 |#1|) (-1166) (-932))) (T -782)) +((-4208 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-782 *4 *5)) (-4 *5 (-13 (-29 *4) (-1166) (-932))))) (-4096 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1166) (-932))))) (-1327 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1166) (-932)))))) +(-10 -7 (-15 -1327 (|#2| |#2| (-1144))) (-15 -4096 (|#2| |#2| (-1144))) (-15 -4208 ((-1 |#2| |#2|) (-1144)))) +((-2903 (((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372) (-372)) 116) (((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372)) 117) (((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-623 (-372)) (-372)) 119) (((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-372)) 120) (((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-372)) 121) (((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372))) 122) (((-1008) (-786) (-1032)) 108) (((-1008) (-786)) 109)) (-3459 (((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-786) (-1032)) 75) (((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-786)) 77))) +(((-783) (-10 -7 (-15 -2903 ((-1008) (-786))) (-15 -2903 ((-1008) (-786) (-1032))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-372))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-372))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-623 (-372)) (-372))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372) (-372))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-786))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-786) (-1032))))) (T -783)) +((-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-1032)) (-5 *2 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))))) (-5 *1 (-783)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))))) (-5 *1 (-783)))) (-2903 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1227 (-309 *4))) (-5 *5 (-623 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1008)) (-5 *1 (-783)))) (-2903 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1227 (-309 *4))) (-5 *5 (-623 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1008)) (-5 *1 (-783)))) (-2903 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1227 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) (-5 *2 (-1008)) (-5 *1 (-783)))) (-2903 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1227 (-309 *4))) (-5 *5 (-623 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1008)) (-5 *1 (-783)))) (-2903 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1227 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) (-5 *2 (-1008)) (-5 *1 (-783)))) (-2903 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1227 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) (-5 *2 (-1008)) (-5 *1 (-783)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-1032)) (-5 *2 (-1008)) (-5 *1 (-783)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1008)) (-5 *1 (-783))))) +(-10 -7 (-15 -2903 ((-1008) (-786))) (-15 -2903 ((-1008) (-786) (-1032))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-372))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-372))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-623 (-372)) (-372))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372))) (-15 -2903 ((-1008) (-1227 (-309 (-372))) (-372) (-372) (-623 (-372)) (-309 (-372)) (-623 (-372)) (-372) (-372))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-786))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-786) (-1032)))) +((-4310 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2437 (-623 |#4|))) (-631 |#4|) |#4|) 35))) +(((-784 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4310 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2437 (-623 |#4|))) (-631 |#4|) |#4|))) (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550)))) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -784)) +((-4310 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *4)) (-4 *4 (-335 *5 *6 *7)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) (-5 *1 (-784 *5 *6 *7 *4))))) +(-10 -7 (-15 -4310 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2437 (-623 |#4|))) (-631 |#4|) |#4|))) +((-2346 (((-2 (|:| -1721 |#3|) (|:| |rh| (-623 (-400 |#2|)))) |#4| (-623 (-400 |#2|))) 52)) (-3302 (((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#4| |#2|) 60) (((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#4|) 59) (((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#3| |#2|) 20) (((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#3|) 21)) (-3415 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3199 ((|#2| |#3| (-623 (-400 |#2|))) 93) (((-3 |#2| "failed") |#3| (-400 |#2|)) 90))) +(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3199 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -3199 (|#2| |#3| (-623 (-400 |#2|)))) (-15 -3302 ((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#3|)) (-15 -3302 ((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#3| |#2|)) (-15 -3415 (|#2| |#3| |#1|)) (-15 -3302 ((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#4|)) (-15 -3302 ((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#4| |#2|)) (-15 -3415 (|#2| |#4| |#1|)) (-15 -2346 ((-2 (|:| -1721 |#3|) (|:| |rh| (-623 (-400 |#2|)))) |#4| (-623 (-400 |#2|))))) (-13 (-356) (-145) (-1011 (-400 (-550)))) (-1203 |#1|) (-634 |#2|) (-634 (-400 |#2|))) (T -785)) +((-2346 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) (-5 *2 (-2 (|:| -1721 *7) (|:| |rh| (-623 (-400 *6))))) (-5 *1 (-785 *5 *6 *7 *3)) (-5 *4 (-623 (-400 *6))) (-4 *7 (-634 *6)) (-4 *3 (-634 (-400 *6))))) (-3415 (*1 *2 *3 *4) (-12 (-4 *2 (-1203 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *5 (-634 *2)) (-4 *3 (-634 (-400 *2))))) (-3302 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *4 (-1203 *5)) (-5 *2 (-623 (-2 (|:| -3335 *4) (|:| -3065 *4)))) (-5 *1 (-785 *5 *4 *6 *3)) (-4 *6 (-634 *4)) (-4 *3 (-634 (-400 *4))))) (-3302 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *5 (-1203 *4)) (-5 *2 (-623 (-2 (|:| -3335 *5) (|:| -3065 *5)))) (-5 *1 (-785 *4 *5 *6 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 (-400 *5))))) (-3415 (*1 *2 *3 *4) (-12 (-4 *2 (-1203 *4)) (-5 *1 (-785 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *3 (-634 *2)) (-4 *5 (-634 (-400 *2))))) (-3302 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *4 (-1203 *5)) (-5 *2 (-623 (-2 (|:| -3335 *4) (|:| -3065 *4)))) (-5 *1 (-785 *5 *4 *3 *6)) (-4 *3 (-634 *4)) (-4 *6 (-634 (-400 *4))))) (-3302 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *5 (-1203 *4)) (-5 *2 (-623 (-2 (|:| -3335 *5) (|:| -3065 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) (-3199 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-400 *2))) (-4 *2 (-1203 *5)) (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *3 (-634 *2)) (-4 *6 (-634 (-400 *2))))) (-3199 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1203 *5)) (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *3 (-634 *2)) (-4 *6 (-634 *4))))) +(-10 -7 (-15 -3199 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -3199 (|#2| |#3| (-623 (-400 |#2|)))) (-15 -3302 ((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#3|)) (-15 -3302 ((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#3| |#2|)) (-15 -3415 (|#2| |#3| |#1|)) (-15 -3302 ((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#4|)) (-15 -3302 ((-623 (-2 (|:| -3335 |#2|) (|:| -3065 |#2|))) |#4| |#2|)) (-15 -3415 (|#2| |#4| |#1|)) (-15 -2346 ((-2 (|:| -1721 |#3|) (|:| |rh| (-623 (-400 |#2|)))) |#4| (-623 (-400 |#2|))))) +((-1504 (((-112) $ $) NIL)) (-2726 (((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $) 13)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 15) (($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 12)) (-2316 (((-112) $ $) NIL))) +(((-786) (-13 (-1068) (-10 -8 (-15 -1518 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1518 ((-836) $)) (-15 -2726 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))) (T -786)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-786)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-786)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-786))))) +(-13 (-1068) (-10 -8 (-15 -1518 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1518 ((-836) $)) (-15 -2726 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $)))) +((-2366 (((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1721 |#3|))) |#3| (-1 (-623 |#2|) |#2| (-1140 |#2|)) (-1 (-411 |#2|) |#2|)) 118)) (-2452 (((-623 (-2 (|:| |poly| |#2|) (|:| -1721 |#3|))) |#3| (-1 (-623 |#1|) |#2|)) 46)) (-3633 (((-623 (-2 (|:| |deg| (-749)) (|:| -1721 |#2|))) |#3|) 95)) (-3500 ((|#2| |#3|) 37)) (-3755 (((-623 (-2 (|:| -2258 |#1|) (|:| -1721 |#3|))) |#3| (-1 (-623 |#1|) |#2|)) 82)) (-3085 ((|#3| |#3| (-400 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3500 (|#2| |#3|)) (-15 -3633 ((-623 (-2 (|:| |deg| (-749)) (|:| -1721 |#2|))) |#3|)) (-15 -3755 ((-623 (-2 (|:| -2258 |#1|) (|:| -1721 |#3|))) |#3| (-1 (-623 |#1|) |#2|))) (-15 -2452 ((-623 (-2 (|:| |poly| |#2|) (|:| -1721 |#3|))) |#3| (-1 (-623 |#1|) |#2|))) (-15 -2366 ((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1721 |#3|))) |#3| (-1 (-623 |#2|) |#2| (-1140 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -3085 (|#3| |#3| |#2|)) (-15 -3085 (|#3| |#3| (-400 |#2|)))) (-13 (-356) (-145) (-1011 (-400 (-550)))) (-1203 |#1|) (-634 |#2|) (-634 (-400 |#2|))) (T -787)) +((-3085 (*1 *2 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *5 (-1203 *4)) (-5 *1 (-787 *4 *5 *2 *6)) (-4 *2 (-634 *5)) (-4 *6 (-634 *3)))) (-3085 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *3 (-1203 *4)) (-5 *1 (-787 *4 *3 *2 *5)) (-4 *2 (-634 *3)) (-4 *5 (-634 (-400 *3))))) (-2366 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-623 *7) *7 (-1140 *7))) (-5 *5 (-1 (-411 *7) *7)) (-4 *7 (-1203 *6)) (-4 *6 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-5 *2 (-623 (-2 (|:| |frac| (-400 *7)) (|:| -1721 *3)))) (-5 *1 (-787 *6 *7 *3 *8)) (-4 *3 (-634 *7)) (-4 *8 (-634 (-400 *7))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) (-5 *2 (-623 (-2 (|:| |poly| *6) (|:| -1721 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) (-5 *2 (-623 (-2 (|:| -2258 *5) (|:| -1721 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) (-3633 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *5 (-1203 *4)) (-5 *2 (-623 (-2 (|:| |deg| (-749)) (|:| -1721 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) (-3500 (*1 *2 *3) (-12 (-4 *2 (-1203 *4)) (-5 *1 (-787 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *3 (-634 *2)) (-4 *5 (-634 (-400 *2)))))) +(-10 -7 (-15 -3500 (|#2| |#3|)) (-15 -3633 ((-623 (-2 (|:| |deg| (-749)) (|:| -1721 |#2|))) |#3|)) (-15 -3755 ((-623 (-2 (|:| -2258 |#1|) (|:| -1721 |#3|))) |#3| (-1 (-623 |#1|) |#2|))) (-15 -2452 ((-623 (-2 (|:| |poly| |#2|) (|:| -1721 |#3|))) |#3| (-1 (-623 |#1|) |#2|))) (-15 -2366 ((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1721 |#3|))) |#3| (-1 (-623 |#2|) |#2| (-1140 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -3085 (|#3| |#3| |#2|)) (-15 -3085 (|#3| |#3| (-400 |#2|)))) +((-3201 (((-2 (|:| -2437 (-623 (-400 |#2|))) (|:| -1340 (-667 |#1|))) (-632 |#2| (-400 |#2|)) (-623 (-400 |#2|))) 121) (((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2437 (-623 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|)) 120) (((-2 (|:| -2437 (-623 (-400 |#2|))) (|:| -1340 (-667 |#1|))) (-631 (-400 |#2|)) (-623 (-400 |#2|))) 115) (((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2437 (-623 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|)) 113)) (-2203 ((|#2| (-632 |#2| (-400 |#2|))) 80) ((|#2| (-631 (-400 |#2|))) 83))) +(((-788 |#1| |#2|) (-10 -7 (-15 -3201 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2437 (-623 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|))) (-15 -3201 ((-2 (|:| -2437 (-623 (-400 |#2|))) (|:| -1340 (-667 |#1|))) (-631 (-400 |#2|)) (-623 (-400 |#2|)))) (-15 -3201 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2437 (-623 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -3201 ((-2 (|:| -2437 (-623 (-400 |#2|))) (|:| -1340 (-667 |#1|))) (-632 |#2| (-400 |#2|)) (-623 (-400 |#2|)))) (-15 -2203 (|#2| (-631 (-400 |#2|)))) (-15 -2203 (|#2| (-632 |#2| (-400 |#2|))))) (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550)))) (-1203 |#1|)) (T -788)) +((-2203 (*1 *2 *3) (-12 (-5 *3 (-632 *2 (-400 *2))) (-4 *2 (-1203 *4)) (-5 *1 (-788 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-631 (-400 *2))) (-4 *2 (-1203 *4)) (-5 *1 (-788 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))))) (-3201 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-2 (|:| -2437 (-623 (-400 *6))) (|:| -1340 (-667 *5)))) (-5 *1 (-788 *5 *6)) (-5 *4 (-623 (-400 *6))))) (-3201 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) (-5 *1 (-788 *5 *6)))) (-3201 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-2 (|:| -2437 (-623 (-400 *6))) (|:| -1340 (-667 *5)))) (-5 *1 (-788 *5 *6)) (-5 *4 (-623 (-400 *6))))) (-3201 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) (-5 *1 (-788 *5 *6))))) +(-10 -7 (-15 -3201 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2437 (-623 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|))) (-15 -3201 ((-2 (|:| -2437 (-623 (-400 |#2|))) (|:| -1340 (-667 |#1|))) (-631 (-400 |#2|)) (-623 (-400 |#2|)))) (-15 -3201 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -2437 (-623 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -3201 ((-2 (|:| -2437 (-623 (-400 |#2|))) (|:| -1340 (-667 |#1|))) (-632 |#2| (-400 |#2|)) (-623 (-400 |#2|)))) (-15 -2203 (|#2| (-631 (-400 |#2|)))) (-15 -2203 (|#2| (-632 |#2| (-400 |#2|))))) +((-2276 (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#1|))) |#5| |#4|) 48))) +(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2276 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#1|))) |#5| |#4|))) (-356) (-634 |#1|) (-1203 |#1|) (-703 |#1| |#3|) (-634 |#4|)) (T -789)) +((-2276 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *7 (-1203 *5)) (-4 *4 (-703 *5 *7)) (-5 *2 (-2 (|:| -1340 (-667 *6)) (|:| |vec| (-1227 *5)))) (-5 *1 (-789 *5 *6 *7 *4 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 *4))))) +(-10 -7 (-15 -2276 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#1|))) |#5| |#4|))) +((-2366 (((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1721 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 47)) (-2535 (((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|))) 138 (|has| |#1| (-27))) (((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-623 (-400 |#2|)) (-631 (-400 |#2|))) 140 (|has| |#1| (-27))) (((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|)) 38) (((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|)) 39) (((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|)) 36) (((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|)) 37)) (-2452 (((-623 (-2 (|:| |poly| |#2|) (|:| -1721 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|)) 83))) +(((-790 |#1| |#2|) (-10 -7 (-15 -2535 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (-15 -2535 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2535 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (-15 -2535 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2366 ((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1721 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2452 ((-623 (-2 (|:| |poly| |#2|) (|:| -1721 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2535 ((-623 (-400 |#2|)) (-631 (-400 |#2|)))) (-15 -2535 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2535 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)))) (-15 -2535 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)))) |%noBranch|)) (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550)))) (-1203 |#1|)) (T -790)) +((-2535 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1203 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-632 *5 (-400 *5))) (-4 *5 (-1203 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-623 (-400 *5))) (-5 *1 (-790 *4 *5)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1203 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-631 (-400 *5))) (-4 *5 (-1203 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-623 (-400 *5))) (-5 *1 (-790 *4 *5)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) (-5 *2 (-623 (-2 (|:| |poly| *6) (|:| -1721 (-632 *6 (-400 *6)))))) (-5 *1 (-790 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 (-623 (-2 (|:| |frac| (-400 *6)) (|:| -1721 (-632 *6 (-400 *6)))))) (-5 *1 (-790 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))) (-2535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7 (-400 *7))) (-5 *4 (-1 (-623 *6) *7)) (-5 *5 (-1 (-411 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *7 (-1203 *6)) (-5 *2 (-623 (-400 *7))) (-5 *1 (-790 *6 *7)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-400 *7))) (-5 *4 (-1 (-623 *6) *7)) (-5 *5 (-1 (-411 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *7 (-1203 *6)) (-5 *2 (-623 (-400 *7))) (-5 *1 (-790 *6 *7)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-623 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6))))) +(-10 -7 (-15 -2535 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (-15 -2535 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2535 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (-15 -2535 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2366 ((-623 (-2 (|:| |frac| (-400 |#2|)) (|:| -1721 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2452 ((-623 (-2 (|:| |poly| |#2|) (|:| -1721 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-623 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2535 ((-623 (-400 |#2|)) (-631 (-400 |#2|)))) (-15 -2535 ((-623 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2535 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)))) (-15 -2535 ((-623 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)))) |%noBranch|)) +((-2618 (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#1|))) (-667 |#2|) (-1227 |#1|)) 85) (((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1227 |#1|)) (|:| -1721 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1227 |#1|)) 15)) (-1538 (((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-667 |#2|) (-1227 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2437 (-623 |#1|))) |#2| |#1|)) 92)) (-2903 (((-3 (-2 (|:| |particular| (-1227 |#1|)) (|:| -2437 (-667 |#1|))) "failed") (-667 |#1|) (-1227 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2437 (-623 |#1|))) "failed") |#2| |#1|)) 43))) +(((-791 |#1| |#2|) (-10 -7 (-15 -2618 ((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1227 |#1|)) (|:| -1721 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1227 |#1|))) (-15 -2618 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#1|))) (-667 |#2|) (-1227 |#1|))) (-15 -2903 ((-3 (-2 (|:| |particular| (-1227 |#1|)) (|:| -2437 (-667 |#1|))) "failed") (-667 |#1|) (-1227 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2437 (-623 |#1|))) "failed") |#2| |#1|))) (-15 -1538 ((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-667 |#2|) (-1227 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2437 (-623 |#1|))) |#2| |#1|)))) (-356) (-634 |#1|)) (T -791)) +((-1538 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2437 (-623 *6))) *7 *6)) (-4 *6 (-356)) (-4 *7 (-634 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1227 *6) "failed")) (|:| -2437 (-623 (-1227 *6))))) (-5 *1 (-791 *6 *7)) (-5 *4 (-1227 *6)))) (-2903 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2437 (-623 *6))) "failed") *7 *6)) (-4 *6 (-356)) (-4 *7 (-634 *6)) (-5 *2 (-2 (|:| |particular| (-1227 *6)) (|:| -2437 (-667 *6)))) (-5 *1 (-791 *6 *7)) (-5 *3 (-667 *6)) (-5 *4 (-1227 *6)))) (-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-634 *5)) (-5 *2 (-2 (|:| -1340 (-667 *6)) (|:| |vec| (-1227 *5)))) (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *6)) (-5 *4 (-1227 *5)))) (-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| A (-667 *5)) (|:| |eqs| (-623 (-2 (|:| C (-667 *5)) (|:| |g| (-1227 *5)) (|:| -1721 *6) (|:| |rh| *5)))))) (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *5)) (-5 *4 (-1227 *5)) (-4 *6 (-634 *5))))) +(-10 -7 (-15 -2618 ((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1227 |#1|)) (|:| -1721 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1227 |#1|))) (-15 -2618 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#1|))) (-667 |#2|) (-1227 |#1|))) (-15 -2903 ((-3 (-2 (|:| |particular| (-1227 |#1|)) (|:| -2437 (-667 |#1|))) "failed") (-667 |#1|) (-1227 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2437 (-623 |#1|))) "failed") |#2| |#1|))) (-15 -1538 ((-2 (|:| |particular| (-3 (-1227 |#1|) "failed")) (|:| -2437 (-623 (-1227 |#1|)))) (-667 |#2|) (-1227 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2437 (-623 |#1|))) |#2| |#1|)))) +((-1648 (((-667 |#1|) (-623 |#1|) (-749)) 13) (((-667 |#1|) (-623 |#1|)) 14)) (-1765 (((-3 (-1227 |#1|) "failed") |#2| |#1| (-623 |#1|)) 34)) (-3784 (((-3 |#1| "failed") |#2| |#1| (-623 |#1|) (-1 |#1| |#1|)) 42))) +(((-792 |#1| |#2|) (-10 -7 (-15 -1648 ((-667 |#1|) (-623 |#1|))) (-15 -1648 ((-667 |#1|) (-623 |#1|) (-749))) (-15 -1765 ((-3 (-1227 |#1|) "failed") |#2| |#1| (-623 |#1|))) (-15 -3784 ((-3 |#1| "failed") |#2| |#1| (-623 |#1|) (-1 |#1| |#1|)))) (-356) (-634 |#1|)) (T -792)) +((-3784 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-623 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) (-5 *1 (-792 *2 *3)) (-4 *3 (-634 *2)))) (-1765 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-623 *4)) (-4 *4 (-356)) (-5 *2 (-1227 *4)) (-5 *1 (-792 *4 *3)) (-4 *3 (-634 *4)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-667 *5)) (-5 *1 (-792 *5 *6)) (-4 *6 (-634 *5)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)) (-5 *1 (-792 *4 *5)) (-4 *5 (-634 *4))))) +(-10 -7 (-15 -1648 ((-667 |#1|) (-623 |#1|))) (-15 -1648 ((-667 |#1|) (-623 |#1|) (-749))) (-15 -1765 ((-3 (-1227 |#1|) "failed") |#2| |#1| (-623 |#1|))) (-15 -3784 ((-3 |#1| "failed") |#2| |#1| (-623 |#1|) (-1 |#1| |#1|)))) +((-1504 (((-112) $ $) NIL (|has| |#2| (-1068)))) (-3433 (((-112) $) NIL (|has| |#2| (-130)))) (-3230 (($ (-894)) NIL (|has| |#2| (-1020)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-2270 (($ $ $) NIL (|has| |#2| (-771)))) (-3219 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-4047 (((-112) $ (-749)) NIL)) (-4319 (((-749)) NIL (|has| |#2| (-361)))) (-3712 (((-550) $) NIL (|has| |#2| (-823)))) (-1705 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1068)))) (-2726 (((-550) $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068)))) (((-400 (-550)) $) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) ((|#2| $) NIL (|has| |#2| (-1068)))) (-3780 (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#2| (-1020)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL (|has| |#2| (-1020))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1020)))) (-1386 (((-3 $ "failed") $) NIL (|has| |#2| (-705)))) (-1741 (($) NIL (|has| |#2| (-361)))) (-3245 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ (-550)) NIL)) (-1416 (((-112) $) NIL (|has| |#2| (-823)))) (-3450 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-3102 (((-112) $) NIL (|has| |#2| (-705)))) (-3329 (((-112) $) NIL (|has| |#2| (-823)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2689 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3234 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-2253 (((-894) $) NIL (|has| |#2| (-361)))) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#2| (-1068)))) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-2922 (($ (-894)) NIL (|has| |#2| (-361)))) (-3337 (((-1088) $) NIL (|has| |#2| (-1068)))) (-1293 ((|#2| $) NIL (|has| (-550) (-825)))) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL)) (-3440 ((|#2| $ $) NIL (|has| |#2| (-1020)))) (-3389 (($ (-1227 |#2|)) NIL)) (-2854 (((-133)) NIL (|has| |#2| (-356)))) (-2393 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1020))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1020)))) (-3350 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-1227 |#2|) $) NIL) (($ (-550)) NIL (-1561 (-12 (|has| |#2| (-1011 (-550))) (|has| |#2| (-1068))) (|has| |#2| (-1020)))) (($ (-400 (-550))) NIL (-12 (|has| |#2| (-1011 (-400 (-550)))) (|has| |#2| (-1068)))) (($ |#2|) NIL (|has| |#2| (-1068))) (((-836) $) NIL (|has| |#2| (-595 (-836))))) (-2390 (((-749)) NIL (|has| |#2| (-1020)))) (-1675 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1635 (($ $) NIL (|has| |#2| (-823)))) (-2626 (($) NIL (|has| |#2| (-130)) CONST)) (-2636 (($) NIL (|has| |#2| (-705)) CONST)) (-4183 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#2| (-873 (-1144))) (|has| |#2| (-1020)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1020))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1020)))) (-2363 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2345 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2316 (((-112) $ $) NIL (|has| |#2| (-1068)))) (-2354 (((-112) $ $) NIL (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2335 (((-112) $ $) 11 (-1561 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $ $) NIL (|has| |#2| (-1020))) (($ $) NIL (|has| |#2| (-1020)))) (-2391 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-894)) NIL (|has| |#2| (-705)))) (* (($ (-550) $) NIL (|has| |#2| (-1020))) (($ $ $) NIL (|has| |#2| (-705))) (($ $ |#2|) NIL (|has| |#2| (-705))) (($ |#2| $) NIL (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-894) $) NIL (|has| |#2| (-25)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-793 |#1| |#2| |#3|) (-232 |#1| |#2|) (-749) (-771) (-1 (-112) (-1227 |#2|) (-1227 |#2|))) (T -793)) NIL (-232 |#1| |#2|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1538 (((-618 (-747)) $) NIL) (((-618 (-747)) $ (-1142)) NIL)) (-1572 (((-747) $) NIL) (((-747) $ (-1142)) NIL)) (-3405 (((-618 (-794 (-1142))) $) NIL)) (-3407 (((-1136 $) $ (-794 (-1142))) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-794 (-1142)))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1534 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-794 (-1142)) #2#) $) NIL) (((-3 (-1142) #2#) $) NIL) (((-3 (-1091 |#1| (-1142)) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-794 (-1142)) $) NIL) (((-1142) $) NIL) (((-1091 |#1| (-1142)) $) NIL)) (-4099 (($ $ $ (-794 (-1142))) NIL (|has| |#1| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-794 (-1142))) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 (-794 (-1142))) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-794 (-1142)) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-794 (-1142)) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ (-1142)) NIL) (((-747) $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#1|) (-794 (-1142))) NIL) (($ (-1136 $) (-794 (-1142))) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-618 (-794 (-1142))) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-794 (-1142))) NIL)) (-3141 (((-521 (-794 (-1142))) $) NIL) (((-747) $ (-794 (-1142))) NIL) (((-618 (-747)) $ (-618 (-794 (-1142)))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 (-794 (-1142))) (-521 (-794 (-1142)))) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-747)) (-1142)) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-3406 (((-3 (-794 (-1142)) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-1536 (((-794 (-1142)) $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-1537 (((-112) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-794 (-1142))) (|:| -2484 (-747))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-794 (-1142)) |#1|) NIL) (($ $ (-618 (-794 (-1142))) (-618 |#1|)) NIL) (($ $ (-794 (-1142)) $) NIL) (($ $ (-618 (-794 (-1142))) (-618 $)) NIL) (($ $ (-1142) $) NIL (|has| |#1| (-227))) (($ $ (-618 (-1142)) (-618 $)) NIL (|has| |#1| (-227))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-227))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-227)))) (-4100 (($ $ (-794 (-1142))) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-794 (-1142))) NIL) (($ $ (-618 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-618 (-794 (-1142))) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-618 (-1142)) $) NIL)) (-4290 (((-521 (-794 (-1142))) $) NIL) (((-747) $ (-794 (-1142))) NIL) (((-618 (-747)) $ (-618 (-794 (-1142)))) NIL) (((-747) $ (-1142)) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-794 (-1142))) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-794 (-1142))) NIL) (($ (-1142)) NIL) (($ (-1091 |#1| (-1142))) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-618 (-794 (-1142))) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-794 (-1142))) NIL) (($ $ (-618 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-618 (-794 (-1142))) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-792 |#1|) (-13 (-246 |#1| (-1142) (-794 (-1142)) (-521 (-794 (-1142)))) (-1009 (-1091 |#1| (-1142)))) (-1018)) (T -792)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1662 (((-623 (-749)) $) NIL) (((-623 (-749)) $ (-1144)) NIL)) (-4073 (((-749) $) NIL) (((-749) $ (-1144)) NIL)) (-3141 (((-623 (-796 (-1144))) $) NIL)) (-3306 (((-1140 $) $ (-796 (-1144))) NIL) (((-1140 |#1|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-796 (-1144)))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1417 (($ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-796 (-1144)) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL) (((-3 (-1093 |#1| (-1144)) "failed") $) NIL)) (-2726 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-796 (-1144)) $) NIL) (((-1144) $) NIL) (((-1093 |#1| (-1144)) $) NIL)) (-3340 (($ $ $ (-796 (-1144))) NIL (|has| |#1| (-170)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444))) (($ $ (-796 (-1144))) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-2613 (($ $ |#1| (-522 (-796 (-1144))) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-796 (-1144)) (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-796 (-1144)) (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-2475 (((-749) $ (-1144)) NIL) (((-749) $) NIL)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3129 (($ (-1140 |#1|) (-796 (-1144))) NIL) (($ (-1140 $) (-796 (-1144))) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-522 (-796 (-1144)))) NIL) (($ $ (-796 (-1144)) (-749)) NIL) (($ $ (-623 (-796 (-1144))) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-796 (-1144))) NIL)) (-1667 (((-522 (-796 (-1144))) $) NIL) (((-749) $ (-796 (-1144))) NIL) (((-623 (-749)) $ (-623 (-796 (-1144)))) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-522 (-796 (-1144))) (-522 (-796 (-1144)))) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-4167 (((-1 $ (-749)) (-1144)) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-2558 (((-3 (-796 (-1144)) "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1970 (((-796 (-1144)) $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1825 (((-1126) $) NIL)) (-1539 (((-112) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-796 (-1144))) (|:| -3521 (-749))) "failed") $) NIL)) (-3083 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-882)))) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-796 (-1144)) |#1|) NIL) (($ $ (-623 (-796 (-1144))) (-623 |#1|)) NIL) (($ $ (-796 (-1144)) $) NIL) (($ $ (-623 (-796 (-1144))) (-623 $)) NIL) (($ $ (-1144) $) NIL (|has| |#1| (-227))) (($ $ (-623 (-1144)) (-623 $)) NIL (|has| |#1| (-227))) (($ $ (-1144) |#1|) NIL (|has| |#1| (-227))) (($ $ (-623 (-1144)) (-623 |#1|)) NIL (|has| |#1| (-227)))) (-3453 (($ $ (-796 (-1144))) NIL (|has| |#1| (-170)))) (-2393 (($ $ (-796 (-1144))) NIL) (($ $ (-623 (-796 (-1144)))) NIL) (($ $ (-796 (-1144)) (-749)) NIL) (($ $ (-623 (-796 (-1144))) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4299 (((-623 (-1144)) $) NIL)) (-2970 (((-522 (-796 (-1144))) $) NIL) (((-749) $ (-796 (-1144))) NIL) (((-623 (-749)) $ (-623 (-796 (-1144)))) NIL) (((-749) $ (-1144)) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-796 (-1144)) (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-796 (-1144)) (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-796 (-1144)) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-796 (-1144))) NIL (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-796 (-1144))) NIL) (($ (-1144)) NIL) (($ (-1093 |#1| (-1144))) NIL) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-522 (-796 (-1144)))) NIL) (($ $ (-796 (-1144)) (-749)) NIL) (($ $ (-623 (-796 (-1144))) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-796 (-1144))) NIL) (($ $ (-623 (-796 (-1144)))) NIL) (($ $ (-796 (-1144)) (-749)) NIL) (($ $ (-623 (-796 (-1144))) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-794 |#1|) (-13 (-246 |#1| (-1144) (-796 (-1144)) (-522 (-796 (-1144)))) (-1011 (-1093 |#1| (-1144)))) (-1020)) (T -794)) NIL -(-13 (-246 |#1| (-1142) (-794 (-1142)) (-521 (-794 (-1142)))) (-1009 (-1091 |#1| (-1142)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-356)))) (-2171 (($ $) NIL (|has| |#2| (-356)))) (-2169 (((-112) $) NIL (|has| |#2| (-356)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#2| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-356)))) (-1700 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL (|has| |#2| (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#2| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#2| (-356)))) (-4069 (((-112) $) NIL (|has| |#2| (-356)))) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL (|has| |#2| (-356)))) (-2008 (($ (-618 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 20 (|has| |#2| (-356)))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#2| (-356)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#2| (-356)))) (-1699 (((-747) $) NIL (|has| |#2| (-356)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-356)))) (-4153 (($ $ (-747)) NIL) (($ $) 13)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-400 (-535))) NIL (|has| |#2| (-356))) (($ $) NIL (|has| |#2| (-356)))) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL (|has| |#2| (-356)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) 15 (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL) (($ $ (-535)) 18 (|has| |#2| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-400 (-535)) $) NIL (|has| |#2| (-356))) (($ $ (-400 (-535))) NIL (|has| |#2| (-356))))) -(((-793 |#1| |#2| |#3|) (-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -4300 ($ |#2|)) (-15 -4300 (|#2| $)))) (-1067) (-871 |#1|) |#1|) (T -793)) -((-4300 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-14 *4 *3) (-5 *1 (-793 *3 *2 *4)) (-4 *2 (-871 *3)))) (-4300 (*1 *2 *1) (-12 (-4 *2 (-871 *3)) (-5 *1 (-793 *3 *2 *4)) (-4 *3 (-1067)) (-14 *4 *3)))) -(-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -4300 ($ |#2|)) (-15 -4300 (|#2| $)))) -((-2887 (((-112) $ $) NIL)) (-1572 (((-747) $) NIL)) (-4174 ((|#1| $) 10)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-4114 (((-747) $) 11)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-1573 (($ |#1| (-747)) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4153 (($ $) NIL) (($ $ (-747)) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL))) -(((-794 |#1|) (-259 |#1|) (-823)) (T -794)) +(-13 (-246 |#1| (-1144) (-796 (-1144)) (-522 (-796 (-1144)))) (-1011 (-1093 |#1| (-1144)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#2| (-356)))) (-1447 (($ $) NIL (|has| |#2| (-356)))) (-4291 (((-112) $) NIL (|has| |#2| (-356)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| |#2| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#2| (-356)))) (-3631 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3513 (($) NIL T CONST)) (-3349 (($ $ $) NIL (|has| |#2| (-356)))) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL (|has| |#2| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#2| (-356)))) (-3933 (((-112) $) NIL (|has| |#2| (-356)))) (-3102 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#2| (-356)))) (-3106 (($ (-623 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 20 (|has| |#2| (-356)))) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#2| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-3338 (((-411 $) $) NIL (|has| |#2| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#2| (-356)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#2| (-356)))) (-3542 (((-749) $) NIL (|has| |#2| (-356)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#2| (-356)))) (-2393 (($ $ (-749)) NIL) (($ $) 13)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-400 (-550))) NIL (|has| |#2| (-356))) (($ $) NIL (|has| |#2| (-356)))) (-2390 (((-749)) NIL)) (-1345 (((-112) $ $) NIL (|has| |#2| (-356)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) 15 (|has| |#2| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-894)) NIL) (($ $ (-550)) 18 (|has| |#2| (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-400 (-550)) $) NIL (|has| |#2| (-356))) (($ $ (-400 (-550))) NIL (|has| |#2| (-356))))) +(((-795 |#1| |#2| |#3|) (-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -1518 ($ |#2|)) (-15 -1518 (|#2| $)))) (-1068) (-873 |#1|) |#1|) (T -795)) +((-1518 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-14 *4 *3) (-5 *1 (-795 *3 *2 *4)) (-4 *2 (-873 *3)))) (-1518 (*1 *2 *1) (-12 (-4 *2 (-873 *3)) (-5 *1 (-795 *3 *2 *4)) (-4 *3 (-1068)) (-14 *4 *3)))) +(-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -1518 ($ |#2|)) (-15 -1518 (|#2| $)))) +((-1504 (((-112) $ $) NIL)) (-4073 (((-749) $) NIL)) (-1861 ((|#1| $) 10)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-2475 (((-749) $) 11)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-4167 (($ |#1| (-749)) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2393 (($ $) NIL) (($ $ (-749)) NIL)) (-1518 (((-836) $) NIL) (($ |#1|) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL))) +(((-796 |#1|) (-259 |#1|) (-825)) (T -796)) NIL (-259 |#1|) -((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) 29)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-4282 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-4141 (($ $) 31)) (-3804 (((-3 $ "failed") $) NIL)) (-2761 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2493 (((-112) $) NIL)) (-2759 ((|#1| $ (-535)) NIL)) (-2760 (((-747) $ (-535)) NIL)) (-4279 (($ $) 36)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4283 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2764 (((-112) $ $) 34)) (-4176 (((-747) $) 25)) (-3576 (((-1124) $) NIL)) (-2762 (($ $ $) NIL)) (-2763 (($ $ $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 ((|#1| $) 30)) (-2758 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $) NIL)) (-2884 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-2985 (($) 15 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 35)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ |#1| (-747)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-795 |#1|) (-13 (-819) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -4143 (|#1| $)) (-15 -4141 ($ $)) (-15 -4279 ($ $)) (-15 -2764 ((-112) $ $)) (-15 -2763 ($ $ $)) (-15 -2762 ($ $ $)) (-15 -4283 ((-3 $ "failed") $ $)) (-15 -4282 ((-3 $ "failed") $ $)) (-15 -4283 ((-3 $ "failed") $ |#1|)) (-15 -4282 ((-3 $ "failed") $ |#1|)) (-15 -2884 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2761 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3454 ((-747) $)) (-15 -2760 ((-747) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $)) (-15 -4176 ((-747) $)) (-15 -4277 ((-618 |#1|) $)))) (-823)) (T -795)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4143 (*1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4279 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2764 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-2763 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2762 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4283 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4282 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4283 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4282 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2884 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |rm| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-2761 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |mm| (-795 *3)) (|:| |rm| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-747)) (-5 *1 (-795 *4)) (-4 *4 (-823)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-747))))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-795 *3)) (-4 *3 (-823))))) -(-13 (-819) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -4143 (|#1| $)) (-15 -4141 ($ $)) (-15 -4279 ($ $)) (-15 -2764 ((-112) $ $)) (-15 -2763 ($ $ $)) (-15 -2762 ($ $ $)) (-15 -4283 ((-3 $ "failed") $ $)) (-15 -4282 ((-3 $ "failed") $ $)) (-15 -4283 ((-3 $ "failed") $ |#1|)) (-15 -4282 ((-3 $ "failed") $ |#1|)) (-15 -2884 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2761 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3454 ((-747) $)) (-15 -2760 ((-747) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $)) (-15 -4176 ((-747) $)) (-15 -4277 ((-618 |#1|) $)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3969 (((-535) $) 51)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-3520 (((-112) $) 49)) (-2493 (((-112) $) 30)) (-3521 (((-112) $) 50)) (-3660 (($ $ $) 48)) (-3661 (($ $ $) 47)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-3725 (($ $) 52)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 45)) (-2886 (((-112) $ $) 44)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 46)) (-3006 (((-112) $ $) 43)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-796) (-138)) (T -796)) -NIL -(-13 (-542) (-821)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-821) . T) ((-823) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2825 (((-1230) (-799) $ (-112)) 9) (((-1230) (-799) $) 8) (((-1124) $ (-112)) 7) (((-1124) $) 6))) -(((-797) (-138)) (T -797)) -((-2825 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-797)) (-5 *3 (-799)) (-5 *4 (-112)) (-5 *2 (-1230)))) (-2825 (*1 *2 *3 *1) (-12 (-4 *1 (-797)) (-5 *3 (-799)) (-5 *2 (-1230)))) (-2825 (*1 *2 *1 *3) (-12 (-4 *1 (-797)) (-5 *3 (-112)) (-5 *2 (-1124)))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-797)) (-5 *2 (-1124))))) -(-13 (-10 -8 (-15 -2825 ((-1124) $)) (-15 -2825 ((-1124) $ (-112))) (-15 -2825 ((-1230) (-799) $)) (-15 -2825 ((-1230) (-799) $ (-112))))) -((-2765 (($ (-1086)) 7)) (-2769 (((-112) $ (-1124) (-1086)) 15)) (-2768 (((-799) $) 12)) (-2767 (((-799) $) 11)) (-2766 (((-1230) $) 9)) (-2770 (((-112) $ (-1086)) 16))) -(((-798) (-10 -8 (-15 -2765 ($ (-1086))) (-15 -2766 ((-1230) $)) (-15 -2767 ((-799) $)) (-15 -2768 ((-799) $)) (-15 -2769 ((-112) $ (-1124) (-1086))) (-15 -2770 ((-112) $ (-1086))))) (T -798)) -((-2770 (*1 *2 *1 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-112)) (-5 *1 (-798)))) (-2769 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-1086)) (-5 *2 (-112)) (-5 *1 (-798)))) (-2768 (*1 *2 *1) (-12 (-5 *2 (-799)) (-5 *1 (-798)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-799)) (-5 *1 (-798)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2765 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-798))))) -(-10 -8 (-15 -2765 ($ (-1086))) (-15 -2766 ((-1230) $)) (-15 -2767 ((-799) $)) (-15 -2768 ((-799) $)) (-15 -2769 ((-112) $ (-1124) (-1086))) (-15 -2770 ((-112) $ (-1086)))) -((-2774 (((-1230) $ (-800)) 12)) (-2791 (((-1230) $ (-1142)) 32)) (-2793 (((-1230) $ (-1124) (-1124)) 34)) (-2792 (((-1230) $ (-1124)) 33)) (-2781 (((-1230) $) 19)) (-2789 (((-1230) $ (-535)) 28)) (-2790 (((-1230) $ (-219)) 30)) (-2780 (((-1230) $) 18)) (-2788 (((-1230) $) 26)) (-2787 (((-1230) $) 25)) (-2785 (((-1230) $) 23)) (-2786 (((-1230) $) 24)) (-2784 (((-1230) $) 22)) (-2783 (((-1230) $) 21)) (-2782 (((-1230) $) 20)) (-2778 (((-1230) $) 16)) (-2779 (((-1230) $) 17)) (-2777 (((-1230) $) 15)) (-2776 (((-1230) $) 14)) (-2775 (((-1230) $) 13)) (-2772 (($ (-1124) (-800)) 9)) (-2771 (($ (-1124) (-1124) (-800)) 8)) (-2810 (((-1142) $) 51)) (-2813 (((-1142) $) 55)) (-2812 (((-2 (|:| |cd| (-1124)) (|:| -3888 (-1124))) $) 54)) (-2811 (((-1124) $) 52)) (-2800 (((-1230) $) 41)) (-2808 (((-535) $) 49)) (-2809 (((-219) $) 50)) (-2799 (((-1230) $) 40)) (-2807 (((-1230) $) 48)) (-2806 (((-1230) $) 47)) (-2804 (((-1230) $) 45)) (-2805 (((-1230) $) 46)) (-2803 (((-1230) $) 44)) (-2802 (((-1230) $) 43)) (-2801 (((-1230) $) 42)) (-2797 (((-1230) $) 38)) (-2798 (((-1230) $) 39)) (-2796 (((-1230) $) 37)) (-2795 (((-1230) $) 36)) (-2794 (((-1230) $) 35)) (-2773 (((-1230) $) 11))) -(((-799) (-10 -8 (-15 -2771 ($ (-1124) (-1124) (-800))) (-15 -2772 ($ (-1124) (-800))) (-15 -2773 ((-1230) $)) (-15 -2774 ((-1230) $ (-800))) (-15 -2775 ((-1230) $)) (-15 -2776 ((-1230) $)) (-15 -2777 ((-1230) $)) (-15 -2778 ((-1230) $)) (-15 -2779 ((-1230) $)) (-15 -2780 ((-1230) $)) (-15 -2781 ((-1230) $)) (-15 -2782 ((-1230) $)) (-15 -2783 ((-1230) $)) (-15 -2784 ((-1230) $)) (-15 -2785 ((-1230) $)) (-15 -2786 ((-1230) $)) (-15 -2787 ((-1230) $)) (-15 -2788 ((-1230) $)) (-15 -2789 ((-1230) $ (-535))) (-15 -2790 ((-1230) $ (-219))) (-15 -2791 ((-1230) $ (-1142))) (-15 -2792 ((-1230) $ (-1124))) (-15 -2793 ((-1230) $ (-1124) (-1124))) (-15 -2794 ((-1230) $)) (-15 -2795 ((-1230) $)) (-15 -2796 ((-1230) $)) (-15 -2797 ((-1230) $)) (-15 -2798 ((-1230) $)) (-15 -2799 ((-1230) $)) (-15 -2800 ((-1230) $)) (-15 -2801 ((-1230) $)) (-15 -2802 ((-1230) $)) (-15 -2803 ((-1230) $)) (-15 -2804 ((-1230) $)) (-15 -2805 ((-1230) $)) (-15 -2806 ((-1230) $)) (-15 -2807 ((-1230) $)) (-15 -2808 ((-535) $)) (-15 -2809 ((-219) $)) (-15 -2810 ((-1142) $)) (-15 -2811 ((-1124) $)) (-15 -2812 ((-2 (|:| |cd| (-1124)) (|:| -3888 (-1124))) $)) (-15 -2813 ((-1142) $)))) (T -799)) -((-2813 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-799)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1124)) (|:| -3888 (-1124)))) (-5 *1 (-799)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-799)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-799)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-799)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-799)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2793 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2791 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2790 (*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2789 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-800)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2772 (*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-800)) (-5 *1 (-799)))) (-2771 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-800)) (-5 *1 (-799))))) -(-10 -8 (-15 -2771 ($ (-1124) (-1124) (-800))) (-15 -2772 ($ (-1124) (-800))) (-15 -2773 ((-1230) $)) (-15 -2774 ((-1230) $ (-800))) (-15 -2775 ((-1230) $)) (-15 -2776 ((-1230) $)) (-15 -2777 ((-1230) $)) (-15 -2778 ((-1230) $)) (-15 -2779 ((-1230) $)) (-15 -2780 ((-1230) $)) (-15 -2781 ((-1230) $)) (-15 -2782 ((-1230) $)) (-15 -2783 ((-1230) $)) (-15 -2784 ((-1230) $)) (-15 -2785 ((-1230) $)) (-15 -2786 ((-1230) $)) (-15 -2787 ((-1230) $)) (-15 -2788 ((-1230) $)) (-15 -2789 ((-1230) $ (-535))) (-15 -2790 ((-1230) $ (-219))) (-15 -2791 ((-1230) $ (-1142))) (-15 -2792 ((-1230) $ (-1124))) (-15 -2793 ((-1230) $ (-1124) (-1124))) (-15 -2794 ((-1230) $)) (-15 -2795 ((-1230) $)) (-15 -2796 ((-1230) $)) (-15 -2797 ((-1230) $)) (-15 -2798 ((-1230) $)) (-15 -2799 ((-1230) $)) (-15 -2800 ((-1230) $)) (-15 -2801 ((-1230) $)) (-15 -2802 ((-1230) $)) (-15 -2803 ((-1230) $)) (-15 -2804 ((-1230) $)) (-15 -2805 ((-1230) $)) (-15 -2806 ((-1230) $)) (-15 -2807 ((-1230) $)) (-15 -2808 ((-535) $)) (-15 -2809 ((-219) $)) (-15 -2810 ((-1142) $)) (-15 -2811 ((-1124) $)) (-15 -2812 ((-2 (|:| |cd| (-1124)) (|:| -3888 (-1124))) $)) (-15 -2813 ((-1142) $))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 12)) (-2816 (($) 15)) (-2817 (($) 13)) (-2815 (($) 16)) (-2814 (($) 14)) (-3375 (((-112) $ $) 8))) -(((-800) (-13 (-1067) (-10 -8 (-15 -2817 ($)) (-15 -2816 ($)) (-15 -2815 ($)) (-15 -2814 ($))))) (T -800)) -((-2817 (*1 *1) (-5 *1 (-800))) (-2816 (*1 *1) (-5 *1 (-800))) (-2815 (*1 *1) (-5 *1 (-800))) (-2814 (*1 *1) (-5 *1 (-800)))) -(-13 (-1067) (-10 -8 (-15 -2817 ($)) (-15 -2816 ($)) (-15 -2815 ($)) (-15 -2814 ($)))) -((-2887 (((-112) $ $) NIL)) (-2818 (($ (-802) (-618 (-1142))) 24)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2820 (((-802) $) 25)) (-2819 (((-618 (-1142)) $) 26)) (-4300 (((-835) $) 23)) (-3375 (((-112) $ $) NIL))) -(((-801) (-13 (-1067) (-10 -8 (-15 -2820 ((-802) $)) (-15 -2819 ((-618 (-1142)) $)) (-15 -2818 ($ (-802) (-618 (-1142))))))) (T -801)) -((-2820 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-801)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-618 (-1142))) (-5 *1 (-801))))) -(-13 (-1067) (-10 -8 (-15 -2820 ((-802) $)) (-15 -2819 ((-618 (-1142)) $)) (-15 -2818 ($ (-802) (-618 (-1142)))))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (($ (-1142)) 17)) (-2822 (((-112) $) 10)) (-2823 (((-112) $) 9)) (-2821 (((-112) $) 11)) (-2824 (((-112) $) 8)) (-3375 (((-112) $ $) 19))) -(((-802) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-1142))) (-15 -2824 ((-112) $)) (-15 -2823 ((-112) $)) (-15 -2822 ((-112) $)) (-15 -2821 ((-112) $))))) (T -802)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-802)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(-13 (-1067) (-10 -8 (-15 -4300 ($ (-1142))) (-15 -2824 ((-112) $)) (-15 -2823 ((-112) $)) (-15 -2822 ((-112) $)) (-15 -2821 ((-112) $)))) -((-2825 (((-1230) (-799) (-307 |#1|) (-112)) 23) (((-1230) (-799) (-307 |#1|)) 79) (((-1124) (-307 |#1|) (-112)) 78) (((-1124) (-307 |#1|)) 77))) -(((-803 |#1|) (-10 -7 (-15 -2825 ((-1124) (-307 |#1|))) (-15 -2825 ((-1124) (-307 |#1|) (-112))) (-15 -2825 ((-1230) (-799) (-307 |#1|))) (-15 -2825 ((-1230) (-799) (-307 |#1|) (-112)))) (-13 (-797) (-823) (-1018))) (T -803)) -((-2825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-799)) (-5 *4 (-307 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-797) (-823) (-1018))) (-5 *2 (-1230)) (-5 *1 (-803 *6)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-799)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-797) (-823) (-1018))) (-5 *2 (-1230)) (-5 *1 (-803 *5)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-797) (-823) (-1018))) (-5 *2 (-1124)) (-5 *1 (-803 *5)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-797) (-823) (-1018))) (-5 *2 (-1124)) (-5 *1 (-803 *4))))) -(-10 -7 (-15 -2825 ((-1124) (-307 |#1|))) (-15 -2825 ((-1124) (-307 |#1|) (-112))) (-15 -2825 ((-1230) (-799) (-307 |#1|))) (-15 -2825 ((-1230) (-799) (-307 |#1|) (-112)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2826 ((|#1| $) 10)) (-2827 (($ |#1|) 9)) (-2493 (((-112) $) NIL)) (-3214 (($ |#2| (-747)) NIL)) (-3141 (((-747) $) NIL)) (-3508 ((|#2| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4153 (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-4290 (((-747) $) NIL)) (-4300 (((-835) $) 17) (($ (-535)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-4023 ((|#2| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-804 |#1| |#2|) (-13 (-685 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2827 ($ |#1|)) (-15 -2826 (|#1| $)))) (-685 |#2|) (-1018)) (T -804)) -((-2827 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-804 *2 *3)) (-4 *2 (-685 *3)))) (-2826 (*1 *2 *1) (-12 (-4 *2 (-685 *3)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1018))))) -(-13 (-685 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2827 ($ |#1|)) (-15 -2826 (|#1| $)))) -((-2835 (((-304) (-1124) (-1124)) 12)) (-2834 (((-112) (-1124) (-1124)) 34)) (-2833 (((-112) (-1124)) 33)) (-2830 (((-51) (-1124)) 25)) (-2829 (((-51) (-1124)) 23)) (-2828 (((-51) (-799)) 17)) (-2832 (((-618 (-1124)) (-1124)) 28)) (-2831 (((-618 (-1124))) 27))) -(((-805) (-10 -7 (-15 -2828 ((-51) (-799))) (-15 -2829 ((-51) (-1124))) (-15 -2830 ((-51) (-1124))) (-15 -2831 ((-618 (-1124)))) (-15 -2832 ((-618 (-1124)) (-1124))) (-15 -2833 ((-112) (-1124))) (-15 -2834 ((-112) (-1124) (-1124))) (-15 -2835 ((-304) (-1124) (-1124))))) (T -805)) -((-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-805)))) (-2834 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))) (-2832 (*1 *2 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-805)) (-5 *3 (-1124)))) (-2831 (*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-805)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-805)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-805)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-51)) (-5 *1 (-805))))) -(-10 -7 (-15 -2828 ((-51) (-799))) (-15 -2829 ((-51) (-1124))) (-15 -2830 ((-51) (-1124))) (-15 -2831 ((-618 (-1124)))) (-15 -2832 ((-618 (-1124)) (-1124))) (-15 -2833 ((-112) (-1124))) (-15 -2834 ((-112) (-1124) (-1124))) (-15 -2835 ((-304) (-1124) (-1124)))) -((-2887 (((-112) $ $) 19)) (-3568 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3570 (($ $ $) 72)) (-3569 (((-112) $ $) 73)) (-1264 (((-112) $ (-747)) 8)) (-3573 (($ (-618 |#1|)) 68) (($) 67)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2446 (($ $) 62)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 64)) (-4065 (((-112) $ (-747)) 9)) (-3660 ((|#1| $) 78)) (-3180 (($ $ $) 81)) (-3855 (($ $ $) 80)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3661 ((|#1| $) 79)) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22)) (-3572 (($ $ $) 69)) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3577 (((-1086) $) 21)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 61)) (-3571 (($ $ |#1|) 71) (($ $ $) 70)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18)) (-3574 (($ (-618 |#1|)) 66) (($) 65)) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-806 |#1|) (-138) (-823)) (T -806)) -((-3660 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-823))))) -(-13 (-714 |t#1|) (-939 |t#1|) (-10 -8 (-15 -3660 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-671 |#1|) . T) ((-714 |#1|) . T) ((-939 |#1|) . T) ((-1065 |#1|) . T) ((-1067) . T) ((-1178) . T)) -((-2838 (((-1230) (-1086) (-1086)) 47)) (-2837 (((-1230) (-798) (-51)) 44)) (-2836 (((-51) (-798)) 16))) -(((-807) (-10 -7 (-15 -2836 ((-51) (-798))) (-15 -2837 ((-1230) (-798) (-51))) (-15 -2838 ((-1230) (-1086) (-1086))))) (T -807)) -((-2838 (*1 *2 *3 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-1230)) (-5 *1 (-807)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-798)) (-5 *4 (-51)) (-5 *2 (-1230)) (-5 *1 (-807)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-51)) (-5 *1 (-807))))) -(-10 -7 (-15 -2836 ((-51) (-798))) (-15 -2837 ((-1230) (-798) (-51))) (-15 -2838 ((-1230) (-1086) (-1086)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL (|has| |#1| (-21)))) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3969 (((-535) $) NIL (|has| |#1| (-821)))) (-3879 (($) NIL (|has| |#1| (-21)) CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 15)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 9)) (-3804 (((-3 $ "failed") $) 40 (|has| |#1| (-821)))) (-3345 (((-3 (-400 (-535)) "failed") $) 49 (|has| |#1| (-534)))) (-3344 (((-112) $) 43 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 46 (|has| |#1| (-534)))) (-3520 (((-112) $) NIL (|has| |#1| (-821)))) (-2493 (((-112) $) NIL (|has| |#1| (-821)))) (-3521 (((-112) $) NIL (|has| |#1| (-821)))) (-3660 (($ $ $) NIL (|has| |#1| (-821)))) (-3661 (($ $ $) NIL (|has| |#1| (-821)))) (-3576 (((-1124) $) NIL)) (-2839 (($) 13)) (-2851 (((-112) $) 12)) (-3577 (((-1086) $) NIL)) (-2852 (((-112) $) 11)) (-4300 (((-835) $) 18) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 8) (($ (-535)) NIL (-3874 (|has| |#1| (-821)) (|has| |#1| (-1009 (-535)))))) (-3444 (((-747)) 34 (|has| |#1| (-821)))) (-3725 (($ $) NIL (|has| |#1| (-821)))) (-2979 (($) 22 (|has| |#1| (-21)) CONST)) (-2985 (($) 31 (|has| |#1| (-821)) CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3375 (((-112) $ $) 20)) (-3005 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3006 (((-112) $ $) 42 (|has| |#1| (-821)))) (-4180 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4182 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-821))) (($ $ (-747)) NIL (|has| |#1| (-821)))) (* (($ $ $) 37 (|has| |#1| (-821))) (($ (-535) $) 25 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21))))) -(((-808 |#1|) (-13 (-1067) (-405 |#1|) (-10 -8 (-15 -2839 ($)) (-15 -2852 ((-112) $)) (-15 -2851 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|))) (-1067)) (T -808)) -((-2839 (*1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1067)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-1067)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-1067)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3345 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067))))) -(-13 (-1067) (-405 |#1|) (-10 -8 (-15 -2839 ($)) (-15 -2852 ((-112) $)) (-15 -2851 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|))) -((-4301 (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|) (-808 |#2|)) 12) (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)) 13))) -(((-809 |#1| |#2|) (-10 -7 (-15 -4301 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|))) (-15 -4301 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|) (-808 |#2|)))) (-1067) (-1067)) (T -809)) -((-4301 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *1 (-809 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-808 *6)) (-5 *1 (-809 *5 *6))))) -(-10 -7 (-15 -4301 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|))) (-15 -4301 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|) (-808 |#2|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3490 ((|#1| $) NIL) (((-113) $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2841 ((|#1| (-113) |#1|) NIL)) (-2493 (((-112) $) NIL)) (-2840 (($ |#1| (-354 (-113))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2842 (($ $ (-1 |#1| |#1|)) NIL)) (-2843 (($ $ (-1 |#1| |#1|)) NIL)) (-4142 ((|#1| $ |#1|) NIL)) (-2844 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-2845 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ (-113) (-535)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-810 |#1|) (-13 (-1018) (-1009 |#1|) (-1009 (-113)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2845 ($ $)) (-15 -2845 ($ $ $)) (-15 -2844 (|#1| |#1|))) |%noBranch|) (-15 -2843 ($ $ (-1 |#1| |#1|))) (-15 -2842 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-535))) (-15 ** ($ $ (-535))) (-15 -2841 (|#1| (-113) |#1|)) (-15 -2840 ($ |#1| (-354 (-113)))))) (-1018)) (T -810)) -((-2845 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-2844 (*1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))) (-2842 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-535)) (-5 *1 (-810 *4)) (-4 *4 (-1018)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-810 *3)) (-4 *3 (-1018)))) (-2841 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-810 *2)) (-4 *2 (-1018)))) (-2840 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-5 *1 (-810 *2)) (-4 *2 (-1018))))) -(-13 (-1018) (-1009 |#1|) (-1009 (-113)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2845 ($ $)) (-15 -2845 ($ $ $)) (-15 -2844 (|#1| |#1|))) |%noBranch|) (-15 -2843 ($ $ (-1 |#1| |#1|))) (-15 -2842 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-535))) (-15 ** ($ $ (-535))) (-15 -2841 (|#1| (-113) |#1|)) (-15 -2840 ($ |#1| (-354 (-113)))))) -((-2846 (((-208 (-493)) (-1124)) 9))) -(((-811) (-10 -7 (-15 -2846 ((-208 (-493)) (-1124))))) (T -811)) -((-2846 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-208 (-493))) (-5 *1 (-811))))) -(-10 -7 (-15 -2846 ((-208 (-493)) (-1124)))) -((-2887 (((-112) $ $) 7)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 14) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 13)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 16) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 15)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6))) -(((-812) (-138)) (T -812)) -((-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) (-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) (-2847 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *2 (-1006)))) (-2847 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (-5 *2 (-1006))))) -(-13 (-1067) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -2847 ((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -2847 ((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2848 (((-1006) (-618 (-307 (-371))) (-618 (-371))) 147) (((-1006) (-307 (-371)) (-618 (-371))) 145) (((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-815 (-371)))) 144) (((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-307 (-371))) (-618 (-815 (-371)))) 143) (((-1006) (-814)) 117) (((-1006) (-814) (-1030)) 116)) (-2989 (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814) (-1030)) 82) (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814)) 84)) (-2849 (((-1006) (-618 (-307 (-371))) (-618 (-371))) 148) (((-1006) (-814)) 133))) -(((-813) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814) (-1030))) (-15 -2848 ((-1006) (-814) (-1030))) (-15 -2848 ((-1006) (-814))) (-15 -2849 ((-1006) (-814))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-307 (-371))) (-618 (-815 (-371))))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-815 (-371))))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)))) (-15 -2848 ((-1006) (-618 (-307 (-371))) (-618 (-371)))) (-15 -2849 ((-1006) (-618 (-307 (-371))) (-618 (-371)))))) (T -813)) -((-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-307 (-371)))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-307 (-371)))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-371))) (-5 *5 (-618 (-815 (-371)))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-618 (-371))) (-5 *5 (-618 (-815 (-371)))) (-5 *6 (-618 (-307 (-371)))) (-5 *3 (-307 (-371))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-813)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-813))))) -(-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814) (-1030))) (-15 -2848 ((-1006) (-814) (-1030))) (-15 -2848 ((-1006) (-814))) (-15 -2849 ((-1006) (-814))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-307 (-371))) (-618 (-815 (-371))))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-815 (-371))))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)))) (-15 -2848 ((-1006) (-618 (-307 (-371))) (-618 (-371)))) (-15 -2849 ((-1006) (-618 (-307 (-371))) (-618 (-371))))) -((-2887 (((-112) $ $) NIL)) (-3490 (((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) $) 21)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (($ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 14) (($ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) 18)) (-3375 (((-112) $ $) NIL))) -(((-814) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -4300 ($ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -4300 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) $))))) (T -814)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-814)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (-5 *1 (-814)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *1 (-814)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) (-5 *1 (-814)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) (-5 *1 (-814))))) -(-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -4300 ($ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -4300 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL (|has| |#1| (-21)))) (-2850 (((-1086) $) 24)) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3969 (((-535) $) NIL (|has| |#1| (-821)))) (-3879 (($) NIL (|has| |#1| (-21)) CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 16)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 9)) (-3804 (((-3 $ "failed") $) 47 (|has| |#1| (-821)))) (-3345 (((-3 (-400 (-535)) "failed") $) 54 (|has| |#1| (-534)))) (-3344 (((-112) $) 49 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 52 (|has| |#1| (-534)))) (-3520 (((-112) $) NIL (|has| |#1| (-821)))) (-2854 (($) 13)) (-2493 (((-112) $) NIL (|has| |#1| (-821)))) (-3521 (((-112) $) NIL (|has| |#1| (-821)))) (-2853 (($) 14)) (-3660 (($ $ $) NIL (|has| |#1| (-821)))) (-3661 (($ $ $) NIL (|has| |#1| (-821)))) (-3576 (((-1124) $) NIL)) (-2851 (((-112) $) 12)) (-3577 (((-1086) $) NIL)) (-2852 (((-112) $) 11)) (-4300 (((-835) $) 22) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 8) (($ (-535)) NIL (-3874 (|has| |#1| (-821)) (|has| |#1| (-1009 (-535)))))) (-3444 (((-747)) 41 (|has| |#1| (-821)))) (-3725 (($ $) NIL (|has| |#1| (-821)))) (-2979 (($) 29 (|has| |#1| (-21)) CONST)) (-2985 (($) 38 (|has| |#1| (-821)) CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3375 (((-112) $ $) 27)) (-3005 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3006 (((-112) $ $) 48 (|has| |#1| (-821)))) (-4180 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4182 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-821))) (($ $ (-747)) NIL (|has| |#1| (-821)))) (* (($ $ $) 44 (|has| |#1| (-821))) (($ (-535) $) 32 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21))))) -(((-815 |#1|) (-13 (-1067) (-405 |#1|) (-10 -8 (-15 -2854 ($)) (-15 -2853 ($)) (-15 -2852 ((-112) $)) (-15 -2851 ((-112) $)) (-15 -2850 ((-1086) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|))) (-1067)) (T -815)) -((-2854 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1067)))) (-2853 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1067)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3345 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067))))) -(-13 (-1067) (-405 |#1|) (-10 -8 (-15 -2854 ($)) (-15 -2853 ($)) (-15 -2852 ((-112) $)) (-15 -2851 ((-112) $)) (-15 -2850 ((-1086) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|))) -((-4301 (((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|) (-815 |#2|) (-815 |#2|)) 13) (((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)) 14))) -(((-816 |#1| |#2|) (-10 -7 (-15 -4301 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|))) (-15 -4301 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|) (-815 |#2|) (-815 |#2|)))) (-1067) (-1067)) (T -816)) -((-4301 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-815 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *1 (-816 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-815 *6)) (-5 *1 (-816 *5 *6))))) -(-10 -7 (-15 -4301 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|))) (-15 -4301 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|) (-815 |#2|) (-815 |#2|)))) -((-2887 (((-112) $ $) 7)) (-3454 (((-747)) 20)) (-3315 (($) 23)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-2121 (((-890) $) 22)) (-3576 (((-1124) $) 9)) (-2483 (($ (-890)) 21)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18))) -(((-817) (-138)) (T -817)) -NIL -(-13 (-823) (-361)) -(((-101) . T) ((-593 (-835)) . T) ((-361) . T) ((-823) . T) ((-1067) . T)) -((-2856 (((-112) (-1224 |#2|) (-1224 |#2|)) 17)) (-2857 (((-112) (-1224 |#2|) (-1224 |#2|)) 18)) (-2855 (((-112) (-1224 |#2|) (-1224 |#2|)) 14))) -(((-818 |#1| |#2|) (-10 -7 (-15 -2855 ((-112) (-1224 |#2|) (-1224 |#2|))) (-15 -2856 ((-112) (-1224 |#2|) (-1224 |#2|))) (-15 -2857 ((-112) (-1224 |#2|) (-1224 |#2|)))) (-747) (-768)) (T -818)) -((-2857 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))) (-2856 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))) (-2855 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747))))) -(-10 -7 (-15 -2855 ((-112) (-1224 |#2|) (-1224 |#2|))) (-15 -2856 ((-112) (-1224 |#2|) (-1224 |#2|))) (-15 -2857 ((-112) (-1224 |#2|) (-1224 |#2|)))) -((-2887 (((-112) $ $) 7)) (-3879 (($) 23 T CONST)) (-3804 (((-3 $ "failed") $) 26)) (-2493 (((-112) $) 24)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2985 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (** (($ $ (-890)) 21) (($ $ (-747)) 25)) (* (($ $ $) 20))) +((-1504 (((-112) $ $) NIL)) (-1540 (((-623 |#1|) $) 29)) (-4319 (((-749) $) NIL)) (-3513 (($) NIL T CONST)) (-3527 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-1308 (($ $) 31)) (-1386 (((-3 $ "failed") $) NIL)) (-3911 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3102 (((-112) $) NIL)) (-1980 ((|#1| $ (-550)) NIL)) (-2076 (((-749) $ (-550)) NIL)) (-1522 (($ $) 36)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3636 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-4206 (((-112) $ $) 34)) (-3772 (((-749) $) 25)) (-1825 (((-1126) $) NIL)) (-4007 (($ $ $) NIL)) (-4104 (($ $ $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 ((|#1| $) 30)) (-1877 (((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-749)))) $) NIL)) (-1507 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1518 (((-836) $) NIL) (($ |#1|) NIL)) (-2636 (($) 15 T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 35)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ |#1| (-749)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-797 |#1|) (-13 (-821) (-1011 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -1293 (|#1| $)) (-15 -1308 ($ $)) (-15 -1522 ($ $)) (-15 -4206 ((-112) $ $)) (-15 -4104 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -3636 ((-3 $ "failed") $ $)) (-15 -3527 ((-3 $ "failed") $ $)) (-15 -3636 ((-3 $ "failed") $ |#1|)) (-15 -3527 ((-3 $ "failed") $ |#1|)) (-15 -1507 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3911 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4319 ((-749) $)) (-15 -2076 ((-749) $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -1877 ((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-749)))) $)) (-15 -3772 ((-749) $)) (-15 -1540 ((-623 |#1|) $)))) (-825)) (T -797)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-1293 (*1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-1308 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-1522 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4206 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-4104 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4007 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3636 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3527 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3636 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-3527 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-1507 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |rm| (-797 *3)))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-3911 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |mm| (-797 *3)) (|:| |rm| (-797 *3)))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-749)) (-5 *1 (-797 *4)) (-4 *4 (-825)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 (-749))))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-797 *3)) (-4 *3 (-825))))) +(-13 (-821) (-1011 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -1293 (|#1| $)) (-15 -1308 ($ $)) (-15 -1522 ($ $)) (-15 -4206 ((-112) $ $)) (-15 -4104 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -3636 ((-3 $ "failed") $ $)) (-15 -3527 ((-3 $ "failed") $ $)) (-15 -3636 ((-3 $ "failed") $ |#1|)) (-15 -3527 ((-3 $ "failed") $ |#1|)) (-15 -1507 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3911 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4319 ((-749) $)) (-15 -2076 ((-749) $ (-550))) (-15 -1980 (|#1| $ (-550))) (-15 -1877 ((-623 (-2 (|:| |gen| |#1|) (|:| -1812 (-749)))) $)) (-15 -3772 ((-749) $)) (-15 -1540 ((-623 |#1|) $)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3712 (((-550) $) 51)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-1416 (((-112) $) 49)) (-3102 (((-112) $) 30)) (-3329 (((-112) $) 50)) (-2707 (($ $ $) 48)) (-4164 (($ $ $) 47)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ $) 40)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-1635 (($ $) 52)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2363 (((-112) $ $) 45)) (-2345 (((-112) $ $) 44)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 46)) (-2335 (((-112) $ $) 43)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-798) (-138)) (T -798)) +NIL +(-13 (-542) (-823)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-823) . T) ((-825) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-4321 (($ (-1088)) 7)) (-3488 (((-112) $ (-1126) (-1088)) 15)) (-3392 (((-800) $) 12)) (-1472 (((-800) $) 11)) (-1367 (((-1232) $) 9)) (-3588 (((-112) $ (-1088)) 16))) +(((-799) (-10 -8 (-15 -4321 ($ (-1088))) (-15 -1367 ((-1232) $)) (-15 -1472 ((-800) $)) (-15 -3392 ((-800) $)) (-15 -3488 ((-112) $ (-1126) (-1088))) (-15 -3588 ((-112) $ (-1088))))) (T -799)) +((-3588 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-112)) (-5 *1 (-799)))) (-3488 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1126)) (-5 *4 (-1088)) (-5 *2 (-112)) (-5 *1 (-799)))) (-3392 (*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-799)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-799)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-799)))) (-4321 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-799))))) +(-10 -8 (-15 -4321 ($ (-1088))) (-15 -1367 ((-1232) $)) (-15 -1472 ((-800) $)) (-15 -3392 ((-800) $)) (-15 -3488 ((-112) $ (-1126) (-1088))) (-15 -3588 ((-112) $ (-1088)))) +((-2798 (((-1232) $ (-801)) 12)) (-2108 (((-1232) $ (-1144)) 32)) (-4034 (((-1232) $ (-1126) (-1126)) 34)) (-3946 (((-1232) $ (-1126)) 33)) (-2326 (((-1232) $) 19)) (-1918 (((-1232) $ (-550)) 28)) (-2020 (((-1232) $ (-219)) 30)) (-2247 (((-1232) $) 18)) (-1823 (((-1232) $) 26)) (-1707 (((-1232) $) 25)) (-2660 (((-1232) $) 23)) (-1596 (((-1232) $) 24)) (-2576 (((-1232) $) 22)) (-2497 (((-1232) $) 21)) (-2412 (((-1232) $) 20)) (-3166 (((-1232) $) 16)) (-3261 (((-1232) $) 17)) (-3071 (((-1232) $) 15)) (-2983 (((-1232) $) 14)) (-2893 (((-1232) $) 13)) (-3783 (($ (-1126) (-801)) 9)) (-3683 (($ (-1126) (-1126) (-801)) 8)) (-4004 (((-1144) $) 51)) (-1268 (((-1144) $) 55)) (-4203 (((-2 (|:| |cd| (-1126)) (|:| -1916 (-1126))) $) 54)) (-4091 (((-1126) $) 52)) (-3571 (((-1232) $) 41)) (-2074 (((-550) $) 49)) (-3909 (((-219) $) 50)) (-3484 (((-1232) $) 40)) (-1977 (((-1232) $) 48)) (-1863 (((-1232) $) 47)) (-1658 (((-1232) $) 45)) (-1762 (((-1232) $) 46)) (-1576 (((-1232) $) 44)) (-3778 (((-1232) $) 43)) (-3677 (((-1232) $) 42)) (-1443 (((-1232) $) 38)) (-3375 (((-1232) $) 39)) (-1314 (((-1232) $) 37)) (-4264 (((-1232) $) 36)) (-4141 (((-1232) $) 35)) (-3883 (((-1232) $) 11))) +(((-800) (-10 -8 (-15 -3683 ($ (-1126) (-1126) (-801))) (-15 -3783 ($ (-1126) (-801))) (-15 -3883 ((-1232) $)) (-15 -2798 ((-1232) $ (-801))) (-15 -2893 ((-1232) $)) (-15 -2983 ((-1232) $)) (-15 -3071 ((-1232) $)) (-15 -3166 ((-1232) $)) (-15 -3261 ((-1232) $)) (-15 -2247 ((-1232) $)) (-15 -2326 ((-1232) $)) (-15 -2412 ((-1232) $)) (-15 -2497 ((-1232) $)) (-15 -2576 ((-1232) $)) (-15 -2660 ((-1232) $)) (-15 -1596 ((-1232) $)) (-15 -1707 ((-1232) $)) (-15 -1823 ((-1232) $)) (-15 -1918 ((-1232) $ (-550))) (-15 -2020 ((-1232) $ (-219))) (-15 -2108 ((-1232) $ (-1144))) (-15 -3946 ((-1232) $ (-1126))) (-15 -4034 ((-1232) $ (-1126) (-1126))) (-15 -4141 ((-1232) $)) (-15 -4264 ((-1232) $)) (-15 -1314 ((-1232) $)) (-15 -1443 ((-1232) $)) (-15 -3375 ((-1232) $)) (-15 -3484 ((-1232) $)) (-15 -3571 ((-1232) $)) (-15 -3677 ((-1232) $)) (-15 -3778 ((-1232) $)) (-15 -1576 ((-1232) $)) (-15 -1658 ((-1232) $)) (-15 -1762 ((-1232) $)) (-15 -1863 ((-1232) $)) (-15 -1977 ((-1232) $)) (-15 -2074 ((-550) $)) (-15 -3909 ((-219) $)) (-15 -4004 ((-1144) $)) (-15 -4091 ((-1126) $)) (-15 -4203 ((-2 (|:| |cd| (-1126)) (|:| -1916 (-1126))) $)) (-15 -1268 ((-1144) $)))) (T -800)) +((-1268 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-800)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1126)) (|:| -1916 (-1126)))) (-5 *1 (-800)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-800)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-800)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-800)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-800)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-4034 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-800)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-800)))) (-2108 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-800)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1232)) (-5 *1 (-800)))) (-1918 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-800)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-2798 (*1 *2 *1 *3) (-12 (-5 *3 (-801)) (-5 *2 (-1232)) (-5 *1 (-800)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800)))) (-3783 (*1 *1 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-801)) (-5 *1 (-800)))) (-3683 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-801)) (-5 *1 (-800))))) +(-10 -8 (-15 -3683 ($ (-1126) (-1126) (-801))) (-15 -3783 ($ (-1126) (-801))) (-15 -3883 ((-1232) $)) (-15 -2798 ((-1232) $ (-801))) (-15 -2893 ((-1232) $)) (-15 -2983 ((-1232) $)) (-15 -3071 ((-1232) $)) (-15 -3166 ((-1232) $)) (-15 -3261 ((-1232) $)) (-15 -2247 ((-1232) $)) (-15 -2326 ((-1232) $)) (-15 -2412 ((-1232) $)) (-15 -2497 ((-1232) $)) (-15 -2576 ((-1232) $)) (-15 -2660 ((-1232) $)) (-15 -1596 ((-1232) $)) (-15 -1707 ((-1232) $)) (-15 -1823 ((-1232) $)) (-15 -1918 ((-1232) $ (-550))) (-15 -2020 ((-1232) $ (-219))) (-15 -2108 ((-1232) $ (-1144))) (-15 -3946 ((-1232) $ (-1126))) (-15 -4034 ((-1232) $ (-1126) (-1126))) (-15 -4141 ((-1232) $)) (-15 -4264 ((-1232) $)) (-15 -1314 ((-1232) $)) (-15 -1443 ((-1232) $)) (-15 -3375 ((-1232) $)) (-15 -3484 ((-1232) $)) (-15 -3571 ((-1232) $)) (-15 -3677 ((-1232) $)) (-15 -3778 ((-1232) $)) (-15 -1576 ((-1232) $)) (-15 -1658 ((-1232) $)) (-15 -1762 ((-1232) $)) (-15 -1863 ((-1232) $)) (-15 -1977 ((-1232) $)) (-15 -2074 ((-550) $)) (-15 -3909 ((-219) $)) (-15 -4004 ((-1144) $)) (-15 -4091 ((-1126) $)) (-15 -4203 ((-2 (|:| |cd| (-1126)) (|:| -1916 (-1126))) $)) (-15 -1268 ((-1144) $))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 12)) (-3412 (($) 15)) (-3507 (($) 13)) (-3308 (($) 16)) (-1391 (($) 14)) (-2316 (((-112) $ $) 8))) +(((-801) (-13 (-1068) (-10 -8 (-15 -3507 ($)) (-15 -3412 ($)) (-15 -3308 ($)) (-15 -1391 ($))))) (T -801)) +((-3507 (*1 *1) (-5 *1 (-801))) (-3412 (*1 *1) (-5 *1 (-801))) (-3308 (*1 *1) (-5 *1 (-801))) (-1391 (*1 *1) (-5 *1 (-801)))) +(-13 (-1068) (-10 -8 (-15 -3507 ($)) (-15 -3412 ($)) (-15 -3308 ($)) (-15 -1391 ($)))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 21) (($ (-1144)) 17)) (-2783 (((-112) $) 10)) (-2873 (((-112) $) 9)) (-2695 (((-112) $) 11)) (-2951 (((-112) $) 8)) (-2316 (((-112) $ $) 19))) +(((-802) (-13 (-1068) (-10 -8 (-15 -1518 ($ (-1144))) (-15 -2951 ((-112) $)) (-15 -2873 ((-112) $)) (-15 -2783 ((-112) $)) (-15 -2695 ((-112) $))))) (T -802)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-802)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) +(-13 (-1068) (-10 -8 (-15 -1518 ($ (-1144))) (-15 -2951 ((-112) $)) (-15 -2873 ((-112) $)) (-15 -2783 ((-112) $)) (-15 -2695 ((-112) $)))) +((-1504 (((-112) $ $) NIL)) (-3600 (($ (-802) (-623 (-1144))) 24)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3781 (((-802) $) 25)) (-3689 (((-623 (-1144)) $) 26)) (-1518 (((-836) $) 23)) (-2316 (((-112) $ $) NIL))) +(((-803) (-13 (-1068) (-10 -8 (-15 -3781 ((-802) $)) (-15 -3689 ((-623 (-1144)) $)) (-15 -3600 ($ (-802) (-623 (-1144))))))) (T -803)) +((-3781 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-803)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-803)))) (-3600 (*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-623 (-1144))) (-5 *1 (-803))))) +(-13 (-1068) (-10 -8 (-15 -3781 ((-802) $)) (-15 -3689 ((-623 (-1144)) $)) (-15 -3600 ($ (-802) (-623 (-1144)))))) +((-3040 (((-1232) (-800) (-309 |#1|) (-112)) 23) (((-1232) (-800) (-309 |#1|)) 79) (((-1126) (-309 |#1|) (-112)) 78) (((-1126) (-309 |#1|)) 77))) +(((-804 |#1|) (-10 -7 (-15 -3040 ((-1126) (-309 |#1|))) (-15 -3040 ((-1126) (-309 |#1|) (-112))) (-15 -3040 ((-1232) (-800) (-309 |#1|))) (-15 -3040 ((-1232) (-800) (-309 |#1|) (-112)))) (-13 (-806) (-825) (-1020))) (T -804)) +((-3040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800)) (-5 *4 (-309 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-806) (-825) (-1020))) (-5 *2 (-1232)) (-5 *1 (-804 *6)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-800)) (-5 *4 (-309 *5)) (-4 *5 (-13 (-806) (-825) (-1020))) (-5 *2 (-1232)) (-5 *1 (-804 *5)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-806) (-825) (-1020))) (-5 *2 (-1126)) (-5 *1 (-804 *5)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-806) (-825) (-1020))) (-5 *2 (-1126)) (-5 *1 (-804 *4))))) +(-10 -7 (-15 -3040 ((-1126) (-309 |#1|))) (-15 -3040 ((-1126) (-309 |#1|) (-112))) (-15 -3040 ((-1232) (-800) (-309 |#1|))) (-15 -3040 ((-1232) (-800) (-309 |#1|) (-112)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3133 ((|#1| $) 10)) (-3903 (($ |#1|) 9)) (-3102 (((-112) $) NIL)) (-3118 (($ |#2| (-749)) NIL)) (-1667 (((-749) $) NIL)) (-3277 ((|#2| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2393 (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2970 (((-749) $) NIL)) (-1518 (((-836) $) 17) (($ (-550)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-2510 ((|#2| $ (-749)) NIL)) (-2390 (((-749)) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-805 |#1| |#2|) (-13 (-687 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -3903 ($ |#1|)) (-15 -3133 (|#1| $)))) (-687 |#2|) (-1020)) (T -805)) +((-3903 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-5 *1 (-805 *2 *3)) (-4 *2 (-687 *3)))) (-3133 (*1 *2 *1) (-12 (-4 *2 (-687 *3)) (-5 *1 (-805 *2 *3)) (-4 *3 (-1020))))) +(-13 (-687 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -3903 ($ |#1|)) (-15 -3133 (|#1| $)))) +((-3040 (((-1232) (-800) $ (-112)) 9) (((-1232) (-800) $) 8) (((-1126) $ (-112)) 7) (((-1126) $) 6))) +(((-806) (-138)) (T -806)) +((-3040 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-806)) (-5 *3 (-800)) (-5 *4 (-112)) (-5 *2 (-1232)))) (-3040 (*1 *2 *3 *1) (-12 (-4 *1 (-806)) (-5 *3 (-800)) (-5 *2 (-1232)))) (-3040 (*1 *2 *1 *3) (-12 (-4 *1 (-806)) (-5 *3 (-112)) (-5 *2 (-1126)))) (-3040 (*1 *2 *1) (-12 (-4 *1 (-806)) (-5 *2 (-1126))))) +(-13 (-10 -8 (-15 -3040 ((-1126) $)) (-15 -3040 ((-1126) $ (-112))) (-15 -3040 ((-1232) (-800) $)) (-15 -3040 ((-1232) (-800) $ (-112))))) +((-1477 (((-305) (-1126) (-1126)) 12)) (-2585 (((-112) (-1126) (-1126)) 34)) (-2514 (((-112) (-1126)) 33)) (-2288 (((-52) (-1126)) 25)) (-2209 (((-52) (-1126)) 23)) (-2125 (((-52) (-800)) 17)) (-2439 (((-623 (-1126)) (-1126)) 28)) (-2359 (((-623 (-1126))) 27))) +(((-807) (-10 -7 (-15 -2125 ((-52) (-800))) (-15 -2209 ((-52) (-1126))) (-15 -2288 ((-52) (-1126))) (-15 -2359 ((-623 (-1126)))) (-15 -2439 ((-623 (-1126)) (-1126))) (-15 -2514 ((-112) (-1126))) (-15 -2585 ((-112) (-1126) (-1126))) (-15 -1477 ((-305) (-1126) (-1126))))) (T -807)) +((-1477 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-305)) (-5 *1 (-807)))) (-2585 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-807)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-807)))) (-2439 (*1 *2 *3) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-807)) (-5 *3 (-1126)))) (-2359 (*1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-807)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-52)) (-5 *1 (-807)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-52)) (-5 *1 (-807)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-800)) (-5 *2 (-52)) (-5 *1 (-807))))) +(-10 -7 (-15 -2125 ((-52) (-800))) (-15 -2209 ((-52) (-1126))) (-15 -2288 ((-52) (-1126))) (-15 -2359 ((-623 (-1126)))) (-15 -2439 ((-623 (-1126)) (-1126))) (-15 -2514 ((-112) (-1126))) (-15 -2585 ((-112) (-1126) (-1126))) (-15 -1477 ((-305) (-1126) (-1126)))) +((-1504 (((-112) $ $) 19)) (-3965 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1445 (($ $ $) 72)) (-1467 (((-112) $ $) 73)) (-4047 (((-112) $ (-749)) 8)) (-2142 (($ (-623 |#1|)) 68) (($) 67)) (-3378 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-3912 (($ $) 62)) (-1328 (($ $) 58 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ |#1| $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4342)))) (-3137 (($ |#1| $) 57 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4342)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1723 (((-112) $ $) 64)) (-1859 (((-112) $ (-749)) 9)) (-2707 ((|#1| $) 78)) (-3884 (($ $ $) 81)) (-1832 (($ $ $) 80)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-4164 ((|#1| $) 79)) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22)) (-1623 (($ $ $) 69)) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3337 (((-1088) $) 21)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-3821 (((-623 (-2 (|:| -2119 |#1|) (|:| -3350 (-749)))) $) 61)) (-1525 (($ $ |#1|) 71) (($ $ $) 70)) (-2729 (($) 49) (($ (-623 |#1|)) 48)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 50)) (-1518 (((-836) $) 18)) (-3578 (($ (-623 |#1|)) 66) (($) 65)) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20)) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-808 |#1|) (-138) (-825)) (T -808)) +((-2707 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-825))))) +(-13 (-715 |t#1|) (-941 |t#1|) (-10 -8 (-15 -2707 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-836)) . T) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-673 |#1|) . T) ((-715 |#1|) . T) ((-941 |#1|) . T) ((-1066 |#1|) . T) ((-1068) . T) ((-1181) . T)) +((-1783 (((-1232) (-1088) (-1088)) 47)) (-1678 (((-1232) (-799) (-52)) 44)) (-1582 (((-52) (-799)) 16))) +(((-809) (-10 -7 (-15 -1582 ((-52) (-799))) (-15 -1678 ((-1232) (-799) (-52))) (-15 -1783 ((-1232) (-1088) (-1088))))) (T -809)) +((-1783 (*1 *2 *3 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1232)) (-5 *1 (-809)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-799)) (-5 *4 (-52)) (-5 *2 (-1232)) (-5 *1 (-809)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-52)) (-5 *1 (-809))))) +(-10 -7 (-15 -1582 ((-52) (-799))) (-15 -1678 ((-1232) (-799) (-52))) (-15 -1783 ((-1232) (-1088) (-1088)))) +((-3972 (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|) (-811 |#2|)) 12) (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)) 13))) +(((-810 |#1| |#2|) (-10 -7 (-15 -3972 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|))) (-15 -3972 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|) (-811 |#2|)))) (-1068) (-1068)) (T -810)) +((-3972 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *1 (-810 *5 *6)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6))))) +(-10 -7 (-15 -3972 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|))) (-15 -3972 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|) (-811 |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL (|has| |#1| (-21)))) (-3219 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3712 (((-550) $) NIL (|has| |#1| (-823)))) (-3513 (($) NIL (|has| |#1| (-21)) CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 15)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 9)) (-1386 (((-3 $ "failed") $) 40 (|has| |#1| (-823)))) (-3207 (((-3 (-400 (-550)) "failed") $) 49 (|has| |#1| (-535)))) (-3122 (((-112) $) 43 (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) 46 (|has| |#1| (-535)))) (-1416 (((-112) $) NIL (|has| |#1| (-823)))) (-3102 (((-112) $) NIL (|has| |#1| (-823)))) (-3329 (((-112) $) NIL (|has| |#1| (-823)))) (-2707 (($ $ $) NIL (|has| |#1| (-823)))) (-4164 (($ $ $) NIL (|has| |#1| (-823)))) (-1825 (((-1126) $) NIL)) (-2744 (($) 13)) (-3293 (((-112) $) 12)) (-3337 (((-1088) $) NIL)) (-3385 (((-112) $) 11)) (-1518 (((-836) $) 18) (($ (-400 (-550))) NIL (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) 8) (($ (-550)) NIL (-1561 (|has| |#1| (-823)) (|has| |#1| (-1011 (-550)))))) (-2390 (((-749)) 34 (|has| |#1| (-823)))) (-1635 (($ $) NIL (|has| |#1| (-823)))) (-2626 (($) 22 (|has| |#1| (-21)) CONST)) (-2636 (($) 31 (|has| |#1| (-823)) CONST)) (-2363 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2316 (((-112) $ $) 20)) (-2354 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2335 (((-112) $ $) 42 (|has| |#1| (-823)))) (-2403 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2391 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-894)) NIL (|has| |#1| (-823))) (($ $ (-749)) NIL (|has| |#1| (-823)))) (* (($ $ $) 37 (|has| |#1| (-823))) (($ (-550) $) 25 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-894) $) NIL (|has| |#1| (-21))))) +(((-811 |#1|) (-13 (-1068) (-404 |#1|) (-10 -8 (-15 -2744 ($)) (-15 -3385 ((-112) $)) (-15 -3293 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) (-1068)) (T -811)) +((-2744 (*1 *1) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1068)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-1068)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-1068)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-535)) (-4 *3 (-1068)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-811 *3)) (-4 *3 (-535)) (-4 *3 (-1068)))) (-3207 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-811 *3)) (-4 *3 (-535)) (-4 *3 (-1068))))) +(-13 (-1068) (-404 |#1|) (-10 -8 (-15 -2744 ($)) (-15 -3385 ((-112) $)) (-15 -3293 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2726 ((|#1| $) NIL) (((-114) $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1973 ((|#1| (-114) |#1|) NIL)) (-3102 (((-112) $) NIL)) (-1881 (($ |#1| (-354 (-114))) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2060 (($ $ (-1 |#1| |#1|)) NIL)) (-3886 (($ $ (-1 |#1| |#1|)) NIL)) (-2680 ((|#1| $ |#1|) NIL)) (-3964 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-4067 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ (-114) (-550)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-812 |#1|) (-13 (-1020) (-1011 |#1|) (-1011 (-114)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -4067 ($ $)) (-15 -4067 ($ $ $)) (-15 -3964 (|#1| |#1|))) |%noBranch|) (-15 -3886 ($ $ (-1 |#1| |#1|))) (-15 -2060 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-550))) (-15 ** ($ $ (-550))) (-15 -1973 (|#1| (-114) |#1|)) (-15 -1881 ($ |#1| (-354 (-114)))))) (-1020)) (T -812)) +((-4067 (*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1020)))) (-4067 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1020)))) (-3964 (*1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1020)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-812 *3)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-812 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-550)) (-5 *1 (-812 *4)) (-4 *4 (-1020)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-812 *3)) (-4 *3 (-1020)))) (-1973 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-812 *2)) (-4 *2 (-1020)))) (-1881 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-114))) (-5 *1 (-812 *2)) (-4 *2 (-1020))))) +(-13 (-1020) (-1011 |#1|) (-1011 (-114)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -4067 ($ $)) (-15 -4067 ($ $ $)) (-15 -3964 (|#1| |#1|))) |%noBranch|) (-15 -3886 ($ $ (-1 |#1| |#1|))) (-15 -2060 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-550))) (-15 ** ($ $ (-550))) (-15 -1973 (|#1| (-114) |#1|)) (-15 -1881 ($ |#1| (-354 (-114)))))) +((-4149 (((-208 (-493)) (-1126)) 9))) +(((-813) (-10 -7 (-15 -4149 ((-208 (-493)) (-1126))))) (T -813)) +((-4149 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-208 (-493))) (-5 *1 (-813))))) +(-10 -7 (-15 -4149 ((-208 (-493)) (-1126)))) +((-1504 (((-112) $ $) 7)) (-4236 (((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 14) (((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 13)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 16) (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 15)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6))) +(((-814) (-138)) (T -814)) +((-3459 (*1 *2 *3 *4) (-12 (-4 *1 (-814)) (-5 *3 (-1032)) (-5 *4 (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)))))) (-3459 (*1 *2 *3 *4) (-12 (-4 *1 (-814)) (-5 *3 (-1032)) (-5 *4 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)))))) (-4236 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *3 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) (-5 *2 (-1008)))) (-4236 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *3 (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (-5 *2 (-1008))))) +(-13 (-1068) (-10 -7 (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) (-15 -4236 ((-1008) (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) (-15 -4236 ((-1008) (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1756 (((-1008) (-623 (-309 (-372))) (-623 (-372))) 147) (((-1008) (-309 (-372)) (-623 (-372))) 145) (((-1008) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-818 (-372)))) 144) (((-1008) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-309 (-372))) (-623 (-818 (-372)))) 143) (((-1008) (-816)) 117) (((-1008) (-816) (-1032)) 116)) (-3459 (((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-816) (-1032)) 82) (((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-816)) 84)) (-1274 (((-1008) (-623 (-309 (-372))) (-623 (-372))) 148) (((-1008) (-816)) 133))) +(((-815) (-10 -7 (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-816))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-816) (-1032))) (-15 -1756 ((-1008) (-816) (-1032))) (-15 -1756 ((-1008) (-816))) (-15 -1274 ((-1008) (-816))) (-15 -1756 ((-1008) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-309 (-372))) (-623 (-818 (-372))))) (-15 -1756 ((-1008) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-818 (-372))))) (-15 -1756 ((-1008) (-309 (-372)) (-623 (-372)))) (-15 -1756 ((-1008) (-623 (-309 (-372))) (-623 (-372)))) (-15 -1274 ((-1008) (-623 (-309 (-372))) (-623 (-372)))))) (T -815)) +((-1274 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-309 (-372)))) (-5 *4 (-623 (-372))) (-5 *2 (-1008)) (-5 *1 (-815)))) (-1756 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-309 (-372)))) (-5 *4 (-623 (-372))) (-5 *2 (-1008)) (-5 *1 (-815)))) (-1756 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-372))) (-5 *2 (-1008)) (-5 *1 (-815)))) (-1756 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-372))) (-5 *5 (-623 (-818 (-372)))) (-5 *2 (-1008)) (-5 *1 (-815)))) (-1756 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-623 (-372))) (-5 *5 (-623 (-818 (-372)))) (-5 *6 (-623 (-309 (-372)))) (-5 *3 (-309 (-372))) (-5 *2 (-1008)) (-5 *1 (-815)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1008)) (-5 *1 (-815)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1008)) (-5 *1 (-815)))) (-1756 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1032)) (-5 *2 (-1008)) (-5 *1 (-815)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1032)) (-5 *2 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))))) (-5 *1 (-815)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))))) (-5 *1 (-815))))) +(-10 -7 (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-816))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-816) (-1032))) (-15 -1756 ((-1008) (-816) (-1032))) (-15 -1756 ((-1008) (-816))) (-15 -1274 ((-1008) (-816))) (-15 -1756 ((-1008) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-309 (-372))) (-623 (-818 (-372))))) (-15 -1756 ((-1008) (-309 (-372)) (-623 (-372)) (-623 (-818 (-372))) (-623 (-818 (-372))))) (-15 -1756 ((-1008) (-309 (-372)) (-623 (-372)))) (-15 -1756 ((-1008) (-623 (-309 (-372))) (-623 (-372)))) (-15 -1274 ((-1008) (-623 (-309 (-372))) (-623 (-372))))) +((-1504 (((-112) $ $) NIL)) (-2726 (((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) $) 21)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 20) (($ (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) 14) (($ (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))))) 18)) (-2316 (((-112) $ $) NIL))) +(((-816) (-13 (-1068) (-10 -8 (-15 -1518 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -1518 ($ (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) (-15 -1518 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))))) (-15 -1518 ((-836) $)) (-15 -2726 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) $))))) (T -816)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-816)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (-5 *1 (-816)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) (-5 *1 (-816)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))))) (-5 *1 (-816)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))))) (-5 *1 (-816))))) +(-13 (-1068) (-10 -8 (-15 -1518 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219))))))) (-15 -1518 ($ (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) (-15 -1518 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))))) (-15 -1518 ((-836) $)) (-15 -2726 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219)))))) $)))) +((-3972 (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|) (-818 |#2|)) 13) (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)) 14))) +(((-817 |#1| |#2|) (-10 -7 (-15 -3972 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))) (-15 -3972 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|) (-818 |#2|)))) (-1068) (-1068)) (T -817)) +((-3972 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-818 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *1 (-817 *5 *6)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6))))) +(-10 -7 (-15 -3972 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))) (-15 -3972 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|) (-818 |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL (|has| |#1| (-21)))) (-1371 (((-1088) $) 24)) (-3219 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3712 (((-550) $) NIL (|has| |#1| (-823)))) (-3513 (($) NIL (|has| |#1| (-21)) CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 16)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 9)) (-1386 (((-3 $ "failed") $) 47 (|has| |#1| (-823)))) (-3207 (((-3 (-400 (-550)) "failed") $) 54 (|has| |#1| (-535)))) (-3122 (((-112) $) 49 (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) 52 (|has| |#1| (-535)))) (-1416 (((-112) $) NIL (|has| |#1| (-823)))) (-2398 (($) 13)) (-3102 (((-112) $) NIL (|has| |#1| (-823)))) (-3329 (((-112) $) NIL (|has| |#1| (-823)))) (-2410 (($) 14)) (-2707 (($ $ $) NIL (|has| |#1| (-823)))) (-4164 (($ $ $) NIL (|has| |#1| (-823)))) (-1825 (((-1126) $) NIL)) (-3293 (((-112) $) 12)) (-3337 (((-1088) $) NIL)) (-3385 (((-112) $) 11)) (-1518 (((-836) $) 22) (($ (-400 (-550))) NIL (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) 8) (($ (-550)) NIL (-1561 (|has| |#1| (-823)) (|has| |#1| (-1011 (-550)))))) (-2390 (((-749)) 41 (|has| |#1| (-823)))) (-1635 (($ $) NIL (|has| |#1| (-823)))) (-2626 (($) 29 (|has| |#1| (-21)) CONST)) (-2636 (($) 38 (|has| |#1| (-823)) CONST)) (-2363 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2316 (((-112) $ $) 27)) (-2354 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2335 (((-112) $ $) 48 (|has| |#1| (-823)))) (-2403 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2391 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-894)) NIL (|has| |#1| (-823))) (($ $ (-749)) NIL (|has| |#1| (-823)))) (* (($ $ $) 44 (|has| |#1| (-823))) (($ (-550) $) 32 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-894) $) NIL (|has| |#1| (-21))))) +(((-818 |#1|) (-13 (-1068) (-404 |#1|) (-10 -8 (-15 -2398 ($)) (-15 -2410 ($)) (-15 -3385 ((-112) $)) (-15 -3293 ((-112) $)) (-15 -1371 ((-1088) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) (-1068)) (T -818)) +((-2398 (*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1068)))) (-2410 (*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1068)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-1068)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-1068)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-818 *3)) (-4 *3 (-1068)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-535)) (-4 *3 (-1068)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-818 *3)) (-4 *3 (-535)) (-4 *3 (-1068)))) (-3207 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-818 *3)) (-4 *3 (-535)) (-4 *3 (-1068))))) +(-13 (-1068) (-404 |#1|) (-10 -8 (-15 -2398 ($)) (-15 -2410 ($)) (-15 -3385 ((-112) $)) (-15 -3293 ((-112) $)) (-15 -1371 ((-1088) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) +((-1504 (((-112) $ $) 7)) (-4319 (((-749)) 20)) (-1741 (($) 23)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-2253 (((-894) $) 22)) (-1825 (((-1126) $) 9)) (-2922 (($ (-894)) 21)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18))) (((-819) (-138)) (T -819)) NIL -(-13 (-830) (-703)) -(((-101) . T) ((-593 (-835)) . T) ((-703) . T) ((-830) . T) ((-823) . T) ((-1078) . T) ((-1067) . T)) -((-3969 (((-535) $) 17)) (-3520 (((-112) $) 10)) (-3521 (((-112) $) 11)) (-3725 (($ $) 19))) -(((-820 |#1|) (-10 -8 (-15 -3725 (|#1| |#1|)) (-15 -3969 ((-535) |#1|)) (-15 -3521 ((-112) |#1|)) (-15 -3520 ((-112) |#1|))) (-821)) (T -820)) -NIL -(-10 -8 (-15 -3725 (|#1| |#1|)) (-15 -3969 ((-535) |#1|)) (-15 -3521 ((-112) |#1|)) (-15 -3520 ((-112) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-1363 (((-3 $ "failed") $ $) 26)) (-3969 (((-535) $) 33)) (-3879 (($) 23 T CONST)) (-3804 (((-3 $ "failed") $) 38)) (-3520 (((-112) $) 35)) (-2493 (((-112) $) 40)) (-3521 (((-112) $) 34)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 43)) (-3444 (((-747)) 42)) (-3725 (($ $) 32)) (-2979 (($) 22 T CONST)) (-2985 (($) 41 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4180 (($ $ $) 28) (($ $) 27)) (-4182 (($ $ $) 20)) (** (($ $ (-747)) 39) (($ $ (-890)) 36)) (* (($ (-890) $) 21) (($ (-747) $) 25) (($ (-535) $) 29) (($ $ $) 37))) +(-13 (-825) (-361)) +(((-101) . T) ((-595 (-836)) . T) ((-361) . T) ((-825) . T) ((-1068) . T)) +((-3569 (((-112) (-1227 |#2|) (-1227 |#2|)) 17)) (-3634 (((-112) (-1227 |#2|) (-1227 |#2|)) 18)) (-3471 (((-112) (-1227 |#2|) (-1227 |#2|)) 14))) +(((-820 |#1| |#2|) (-10 -7 (-15 -3471 ((-112) (-1227 |#2|) (-1227 |#2|))) (-15 -3569 ((-112) (-1227 |#2|) (-1227 |#2|))) (-15 -3634 ((-112) (-1227 |#2|) (-1227 |#2|)))) (-749) (-770)) (T -820)) +((-3634 (*1 *2 *3 *3) (-12 (-5 *3 (-1227 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749)))) (-3569 (*1 *2 *3 *3) (-12 (-5 *3 (-1227 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749)))) (-3471 (*1 *2 *3 *3) (-12 (-5 *3 (-1227 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) +(-10 -7 (-15 -3471 ((-112) (-1227 |#2|) (-1227 |#2|))) (-15 -3569 ((-112) (-1227 |#2|) (-1227 |#2|))) (-15 -3634 ((-112) (-1227 |#2|) (-1227 |#2|)))) +((-1504 (((-112) $ $) 7)) (-3513 (($) 23 T CONST)) (-1386 (((-3 $ "failed") $) 26)) (-3102 (((-112) $) 24)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2636 (($) 22 T CONST)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (** (($ $ (-894)) 21) (($ $ (-749)) 25)) (* (($ $ $) 20))) (((-821) (-138)) (T -821)) -((-3520 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-535)))) (-3725 (*1 *1 *1) (-4 *1 (-821)))) -(-13 (-767) (-1018) (-703) (-10 -8 (-15 -3520 ((-112) $)) (-15 -3521 ((-112) $)) (-15 -3969 ((-535) $)) (-15 -3725 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-823) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-3660 (($ $ $) 10)) (-3661 (($ $ $) 9)) (-2885 (((-112) $ $) 13)) (-2886 (((-112) $ $) 11)) (-3005 (((-112) $ $) 14))) -(((-822 |#1|) (-10 -8 (-15 -3660 (|#1| |#1| |#1|)) (-15 -3661 (|#1| |#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2885 ((-112) |#1| |#1|)) (-15 -2886 ((-112) |#1| |#1|))) (-823)) (T -822)) -NIL -(-10 -8 (-15 -3660 (|#1| |#1| |#1|)) (-15 -3661 (|#1| |#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2885 ((-112) |#1| |#1|)) (-15 -2886 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18))) +NIL +(-13 (-832) (-705)) +(((-101) . T) ((-595 (-836)) . T) ((-705) . T) ((-832) . T) ((-825) . T) ((-1080) . T) ((-1068) . T)) +((-3712 (((-550) $) 17)) (-1416 (((-112) $) 10)) (-3329 (((-112) $) 11)) (-1635 (($ $) 19))) +(((-822 |#1|) (-10 -8 (-15 -1635 (|#1| |#1|)) (-15 -3712 ((-550) |#1|)) (-15 -3329 ((-112) |#1|)) (-15 -1416 ((-112) |#1|))) (-823)) (T -822)) +NIL +(-10 -8 (-15 -1635 (|#1| |#1|)) (-15 -3712 ((-550) |#1|)) (-15 -3329 ((-112) |#1|)) (-15 -1416 ((-112) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 24)) (-3219 (((-3 $ "failed") $ $) 26)) (-3712 (((-550) $) 33)) (-3513 (($) 23 T CONST)) (-1386 (((-3 $ "failed") $) 38)) (-1416 (((-112) $) 35)) (-3102 (((-112) $) 40)) (-3329 (((-112) $) 34)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 43)) (-2390 (((-749)) 42)) (-1635 (($ $) 32)) (-2626 (($) 22 T CONST)) (-2636 (($) 41 T CONST)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (-2403 (($ $ $) 28) (($ $) 27)) (-2391 (($ $ $) 20)) (** (($ $ (-749)) 39) (($ $ (-894)) 36)) (* (($ (-894) $) 21) (($ (-749) $) 25) (($ (-550) $) 29) (($ $ $) 37))) (((-823) (-138)) (T -823)) -((-3006 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2886 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2885 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3661 (*1 *1 *1 *1) (-4 *1 (-823))) (-3660 (*1 *1 *1 *1) (-4 *1 (-823)))) -(-13 (-1067) (-10 -8 (-15 -3006 ((-112) $ $)) (-15 -2886 ((-112) $ $)) (-15 -2885 ((-112) $ $)) (-15 -3005 ((-112) $ $)) (-15 -3661 ($ $ $)) (-15 -3660 ($ $ $)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2862 (($ $ $) 45)) (-2863 (($ $ $) 44)) (-2864 (($ $ $) 42)) (-2860 (($ $ $) 51)) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 46)) (-2861 (((-3 $ "failed") $ $) 49)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3840 (($ $) 35)) (-2868 (($ $ $) 39)) (-2869 (($ $ $) 38)) (-2858 (($ $ $) 47)) (-2866 (($ $ $) 53)) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 41)) (-2867 (((-3 $ "failed") $ $) 48)) (-3803 (((-3 $ "failed") $ |#2|) 28)) (-3138 ((|#2| $) 32)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ |#2|) 12)) (-4160 (((-618 |#2|) $) 18)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-824 |#1| |#2|) (-10 -8 (-15 -2858 (|#1| |#1| |#1|)) (-15 -2859 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2863 (|#1| |#1| |#1|)) (-15 -2864 (|#1| |#1| |#1|)) (-15 -2865 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2867 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4160 ((-618 |#2|) |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4300 ((-835) |#1|))) (-825 |#2|) (-1018)) (T -824)) -NIL -(-10 -8 (-15 -2858 (|#1| |#1| |#1|)) (-15 -2859 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2863 (|#1| |#1| |#1|)) (-15 -2864 (|#1| |#1| |#1|)) (-15 -2865 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2867 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4160 ((-618 |#2|) |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2862 (($ $ $) 43 (|has| |#1| (-356)))) (-2863 (($ $ $) 44 (|has| |#1| (-356)))) (-2864 (($ $ $) 46 (|has| |#1| (-356)))) (-2860 (($ $ $) 41 (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 40 (|has| |#1| (-356)))) (-2861 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 45 (|has| |#1| (-356)))) (-3491 (((-3 (-535) #1="failed") $) 72 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 70 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 67)) (-3490 (((-535) $) 73 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 71 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 66)) (-4302 (($ $) 62)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 53 (|has| |#1| (-444)))) (-2493 (((-112) $) 30)) (-3214 (($ |#1| (-747)) 60)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55 (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 56 (|has| |#1| (-542)))) (-3141 (((-747) $) 64)) (-2868 (($ $ $) 50 (|has| |#1| (-356)))) (-2869 (($ $ $) 51 (|has| |#1| (-356)))) (-2858 (($ $ $) 39 (|has| |#1| (-356)))) (-2866 (($ $ $) 48 (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 47 (|has| |#1| (-356)))) (-2867 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 52 (|has| |#1| (-356)))) (-3508 ((|#1| $) 63)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-542)))) (-4290 (((-747) $) 65)) (-3138 ((|#1| $) 54 (|has| |#1| (-444)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 69 (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 68)) (-4160 (((-618 |#1|) $) 59)) (-4023 ((|#1| $ (-747)) 61)) (-3444 (((-747)) 28)) (-2871 ((|#1| $ |#1| |#1|) 58)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-825 |#1|) (-138) (-1018)) (T -825)) -((-4290 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-618 *3)))) (-2871 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) (-2872 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) (-2873 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-2874 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) (-2869 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2868 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2867 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2866 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2865 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) (-4 *1 (-825 *3)))) (-2864 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2875 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) (-2863 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2861 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2859 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) (-4 *1 (-825 *3)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(-13 (-1018) (-111 |t#1| |t#1|) (-405 |t#1|) (-10 -8 (-15 -4290 ((-747) $)) (-15 -3141 ((-747) $)) (-15 -3508 (|t#1| $)) (-15 -4302 ($ $)) (-15 -4023 (|t#1| $ (-747))) (-15 -3214 ($ |t#1| (-747))) (-15 -4160 ((-618 |t#1|) $)) (-15 -2871 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -3803 ((-3 $ "failed") $ |t#1|)) (-15 -2872 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2873 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3138 (|t#1| $)) (-15 -3840 ($ $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -2874 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2869 ($ $ $)) (-15 -2868 ($ $ $)) (-15 -2867 ((-3 $ "failed") $ $)) (-15 -2866 ($ $ $)) (-15 -2865 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $)) (-15 -2864 ($ $ $)) (-15 -2875 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2863 ($ $ $)) (-15 -2862 ($ $ $)) (-15 -2861 ((-3 $ "failed") $ $)) (-15 -2860 ($ $ $)) (-15 -2859 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $)) (-15 -2858 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-405 |#1|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2870 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2875 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-356)))) (-2873 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-542)))) (-2874 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-356)))) (-2871 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) -(((-826 |#1| |#2|) (-10 -7 (-15 -2870 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2871 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-542)) (PROGN (-15 -2872 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2873 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2874 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2875 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1018) (-825 |#1|)) (T -826)) -((-2875 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2874 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2873 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2872 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2871 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-826 *2 *3)) (-4 *3 (-825 *2)))) (-2870 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1018)) (-5 *1 (-826 *5 *2)) (-4 *2 (-825 *5))))) -(-10 -7 (-15 -2870 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2871 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-542)) (PROGN (-15 -2872 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2873 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2874 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2875 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2860 (($ $ $) NIL (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 32 (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-3870 (((-835) $ (-835)) NIL)) (-2493 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 28 (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 26 (|has| |#1| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (($ $ $) NIL (|has| |#1| (-356)))) (-2858 (($ $ $) NIL (|has| |#1| (-356)))) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 30 (|has| |#1| (-356)))) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-542)))) (-4290 (((-747) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#1| $ |#1| |#1|) 15)) (-2979 (($) NIL T CONST)) (-2985 (($) 20 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) 19) (($ $ (-747)) 22)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-827 |#1| |#2| |#3|) (-13 (-825 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-835))))) (-1018) (-98 |#1|) (-1 |#1| |#1|)) (T -827)) -((-3870 (*1 *2 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-827 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-825 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-835))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#2| (-356)))) (-2863 (($ $ $) NIL (|has| |#2| (-356)))) (-2864 (($ $ $) NIL (|has| |#2| (-356)))) (-2860 (($ $ $) NIL (|has| |#2| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#2| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 |#2| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) ((|#2| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444)))) (-2493 (((-112) $) NIL)) (-3214 (($ |#2| (-747)) 16)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#2| (-356)))) (-2869 (($ $ $) NIL (|has| |#2| (-356)))) (-2858 (($ $ $) NIL (|has| |#2| (-356)))) (-2866 (($ $ $) NIL (|has| |#2| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#2| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#2| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-356)))) (-3508 ((|#2| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-542)))) (-4290 (((-747) $) NIL)) (-3138 ((|#2| $) NIL (|has| |#2| (-444)))) (-4300 (((-835) $) 23) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#2| (-1009 (-400 (-535))))) (($ |#2|) NIL) (($ (-1221 |#1|)) 18)) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#2| $ |#2| |#2|) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) 13 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-828 |#1| |#2| |#3| |#4|) (-13 (-825 |#2|) (-10 -8 (-15 -4300 ($ (-1221 |#1|))))) (-1142) (-1018) (-98 |#2|) (-1 |#2| |#2|)) (T -828)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-828 *3 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-825 |#2|) (-10 -8 (-15 -4300 ($ (-1221 |#1|))))) -((-2878 ((|#1| (-747) |#1|) 35 (|has| |#1| (-38 (-400 (-535)))))) (-2877 ((|#1| (-747) (-747) |#1|) 27) ((|#1| (-747) |#1|) 20)) (-2876 ((|#1| (-747) |#1|) 31)) (-3121 ((|#1| (-747) |#1|) 29)) (-3120 ((|#1| (-747) |#1|) 28))) -(((-829 |#1|) (-10 -7 (-15 -3120 (|#1| (-747) |#1|)) (-15 -3121 (|#1| (-747) |#1|)) (-15 -2876 (|#1| (-747) |#1|)) (-15 -2877 (|#1| (-747) |#1|)) (-15 -2877 (|#1| (-747) (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -2878 (|#1| (-747) |#1|)) |%noBranch|)) (-170)) (T -829)) -((-2878 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-170)))) (-2877 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-2877 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-2876 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-3121 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-3120 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -3120 (|#1| (-747) |#1|)) (-15 -3121 (|#1| (-747) |#1|)) (-15 -2876 (|#1| (-747) |#1|)) (-15 -2877 (|#1| (-747) |#1|)) (-15 -2877 (|#1| (-747) (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -2878 (|#1| (-747) |#1|)) |%noBranch|)) -((-2887 (((-112) $ $) 7)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (** (($ $ (-890)) 21)) (* (($ $ $) 20))) -(((-830) (-138)) (T -830)) -NIL -(-13 (-823) (-1078)) -(((-101) . T) ((-593 (-835)) . T) ((-823) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3744 (((-535) $) 12)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 18) (($ (-535)) 11)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 8)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 9))) -(((-831) (-13 (-823) (-10 -8 (-15 -4300 ($ (-535))) (-15 -3744 ((-535) $))))) (T -831)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-831)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-831))))) -(-13 (-823) (-10 -8 (-15 -4300 ($ (-535))) (-15 -3744 ((-535) $)))) -((-2879 (((-1230) (-618 (-51))) 24)) (-3797 (((-1230) (-1124) (-835)) 14) (((-1230) (-835)) 9) (((-1230) (-1124)) 11))) -(((-832) (-10 -7 (-15 -3797 ((-1230) (-1124))) (-15 -3797 ((-1230) (-835))) (-15 -3797 ((-1230) (-1124) (-835))) (-15 -2879 ((-1230) (-618 (-51)))))) (T -832)) -((-2879 (*1 *2 *3) (-12 (-5 *3 (-618 (-51))) (-5 *2 (-1230)) (-5 *1 (-832)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-835)) (-5 *2 (-1230)) (-5 *1 (-832)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-832)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-832))))) -(-10 -7 (-15 -3797 ((-1230) (-1124))) (-15 -3797 ((-1230) (-835))) (-15 -3797 ((-1230) (-1124) (-835))) (-15 -2879 ((-1230) (-618 (-51))))) -((-2880 (((-1086) $ (-129)) 17))) -(((-833 |#1|) (-10 -8 (-15 -2880 ((-1086) |#1| (-129)))) (-834)) (T -833)) -NIL -(-10 -8 (-15 -2880 ((-1086) |#1| (-129)))) -((-2880 (((-1086) $ (-129)) 7)) (-2881 (((-1086) $ (-128)) 8)) (-1811 (($ $) 6))) -(((-834) (-138)) (T -834)) -((-2881 (*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-128)) (-5 *2 (-1086)))) (-2880 (*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-129)) (-5 *2 (-1086))))) -(-13 (-171) (-10 -8 (-15 -2881 ((-1086) $ (-128))) (-15 -2880 ((-1086) $ (-129))))) +((-1416 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-550)))) (-1635 (*1 *1 *1) (-4 *1 (-823)))) +(-13 (-769) (-1020) (-705) (-10 -8 (-15 -1416 ((-112) $)) (-15 -3329 ((-112) $)) (-15 -3712 ((-550) $)) (-15 -1635 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-825) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-2707 (($ $ $) 10)) (-4164 (($ $ $) 9)) (-2363 (((-112) $ $) 13)) (-2345 (((-112) $ $) 11)) (-2354 (((-112) $ $) 14))) +(((-824 |#1|) (-10 -8 (-15 -2707 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 -2354 ((-112) |#1| |#1|)) (-15 -2363 ((-112) |#1| |#1|)) (-15 -2345 ((-112) |#1| |#1|))) (-825)) (T -824)) +NIL +(-10 -8 (-15 -2707 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 -2354 ((-112) |#1| |#1|)) (-15 -2363 ((-112) |#1| |#1|)) (-15 -2345 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18))) +(((-825) (-138)) (T -825)) +((-2335 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2345 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2363 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2354 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-4164 (*1 *1 *1 *1) (-4 *1 (-825))) (-2707 (*1 *1 *1 *1) (-4 *1 (-825)))) +(-13 (-1068) (-10 -8 (-15 -2335 ((-112) $ $)) (-15 -2345 ((-112) $ $)) (-15 -2363 ((-112) $ $)) (-15 -2354 ((-112) $ $)) (-15 -4164 ($ $ $)) (-15 -2707 ($ $ $)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-2848 (($ $ $) 45)) (-2936 (($ $ $) 44)) (-2194 (($ $ $) 42)) (-2700 (($ $ $) 51)) (-3796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 46)) (-2756 (((-3 $ "failed") $ $) 49)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2674 (($ $) 35)) (-2500 (($ $ $) 39)) (-2572 (($ $ $) 38)) (-3717 (($ $ $) 47)) (-2338 (($ $ $) 53)) (-2268 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 41)) (-2427 (((-3 $ "failed") $ $) 48)) (-1495 (((-3 $ "failed") $ |#2|) 28)) (-2503 ((|#2| $) 32)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ |#2|) 12)) (-3511 (((-623 |#2|) $) 18)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-826 |#1| |#2|) (-10 -8 (-15 -3717 (|#1| |#1| |#1|)) (-15 -3796 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3935 |#1|)) |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -2756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2848 (|#1| |#1| |#1|)) (-15 -2936 (|#1| |#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -2268 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3935 |#1|)) |#1| |#1|)) (-15 -2338 (|#1| |#1| |#1|)) (-15 -2427 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2572 (|#1| |#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -2503 (|#2| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3511 ((-623 |#2|) |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|)) (-15 -1518 ((-836) |#1|))) (-827 |#2|) (-1020)) (T -826)) +NIL +(-10 -8 (-15 -3717 (|#1| |#1| |#1|)) (-15 -3796 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3935 |#1|)) |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -2756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2848 (|#1| |#1| |#1|)) (-15 -2936 (|#1| |#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -2268 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3935 |#1|)) |#1| |#1|)) (-15 -2338 (|#1| |#1| |#1|)) (-15 -2427 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2572 (|#1| |#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -2503 (|#2| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3511 ((-623 |#2|) |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|)) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-2848 (($ $ $) 43 (|has| |#1| (-356)))) (-2936 (($ $ $) 44 (|has| |#1| (-356)))) (-2194 (($ $ $) 46 (|has| |#1| (-356)))) (-2700 (($ $ $) 41 (|has| |#1| (-356)))) (-3796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 40 (|has| |#1| (-356)))) (-2756 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-1766 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 45 (|has| |#1| (-356)))) (-3880 (((-3 (-550) "failed") $) 72 (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 70 (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 67)) (-2726 (((-550) $) 73 (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) 71 (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 66)) (-3295 (($ $) 62)) (-1386 (((-3 $ "failed") $) 32)) (-2674 (($ $) 53 (|has| |#1| (-444)))) (-3102 (((-112) $) 30)) (-3118 (($ |#1| (-749)) 60)) (-1566 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55 (|has| |#1| (-542)))) (-2646 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 56 (|has| |#1| (-542)))) (-1667 (((-749) $) 64)) (-2500 (($ $ $) 50 (|has| |#1| (-356)))) (-2572 (($ $ $) 51 (|has| |#1| (-356)))) (-3717 (($ $ $) 39 (|has| |#1| (-356)))) (-2338 (($ $ $) 48 (|has| |#1| (-356)))) (-2268 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 47 (|has| |#1| (-356)))) (-2427 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-1659 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 52 (|has| |#1| (-356)))) (-3277 ((|#1| $) 63)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-542)))) (-2970 (((-749) $) 65)) (-2503 ((|#1| $) 54 (|has| |#1| (-444)))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 69 (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) 68)) (-3511 (((-623 |#1|) $) 59)) (-2510 ((|#1| $ (-749)) 61)) (-2390 (((-749)) 28)) (-4292 ((|#1| $ |#1| |#1|) 58)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-827 |#1|) (-138) (-1020)) (T -827)) +((-2970 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1020)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1020)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1020)) (-5 *2 (-623 *3)))) (-4292 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)))) (-1495 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-542)))) (-2646 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-827 *3)))) (-1566 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-827 *3)))) (-2503 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-444)))) (-2674 (*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-444)))) (-1659 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-827 *3)))) (-2572 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-2427 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-2338 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-2268 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3935 *1))) (-4 *1 (-827 *3)))) (-2194 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-1766 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-827 *3)))) (-2936 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-2848 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-2756 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-2700 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-3796 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3935 *1))) (-4 *1 (-827 *3)))) (-3717 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(-13 (-1020) (-111 |t#1| |t#1|) (-404 |t#1|) (-10 -8 (-15 -2970 ((-749) $)) (-15 -1667 ((-749) $)) (-15 -3277 (|t#1| $)) (-15 -3295 ($ $)) (-15 -2510 (|t#1| $ (-749))) (-15 -3118 ($ |t#1| (-749))) (-15 -3511 ((-623 |t#1|) $)) (-15 -4292 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -1495 ((-3 $ "failed") $ |t#1|)) (-15 -2646 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -1566 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -2503 (|t#1| $)) (-15 -2674 ($ $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -1659 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -2572 ($ $ $)) (-15 -2500 ($ $ $)) (-15 -2427 ((-3 $ "failed") $ $)) (-15 -2338 ($ $ $)) (-15 -2268 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $)) (-15 -2194 ($ $ $)) (-15 -1766 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -2936 ($ $ $)) (-15 -2848 ($ $ $)) (-15 -2756 ((-3 $ "failed") $ $)) (-15 -2700 ($ $ $)) (-15 -3796 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $)) (-15 -3717 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-404 |#1|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1026 |#1|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1740 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-1766 (((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-356)))) (-1566 (((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-542)))) (-2646 (((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-542)))) (-1659 (((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-356)))) (-4292 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) +(((-828 |#1| |#2|) (-10 -7 (-15 -1740 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -4292 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-542)) (PROGN (-15 -2646 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -1566 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1659 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -1766 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1020) (-827 |#1|)) (T -828)) +((-1766 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1020)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-1659 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1020)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-1566 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1020)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2646 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1020)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-4292 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-828 *2 *3)) (-4 *3 (-827 *2)))) (-1740 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1020)) (-5 *1 (-828 *5 *2)) (-4 *2 (-827 *5))))) +(-10 -7 (-15 -1740 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -4292 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-542)) (PROGN (-15 -2646 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -1566 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1659 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -1766 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2848 (($ $ $) NIL (|has| |#1| (-356)))) (-2936 (($ $ $) NIL (|has| |#1| (-356)))) (-2194 (($ $ $) NIL (|has| |#1| (-356)))) (-2700 (($ $ $) NIL (|has| |#1| (-356)))) (-3796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-1766 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 32 (|has| |#1| (-356)))) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444)))) (-3425 (((-836) $ (-836)) NIL)) (-3102 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) NIL)) (-1566 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 28 (|has| |#1| (-542)))) (-2646 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 26 (|has| |#1| (-542)))) (-1667 (((-749) $) NIL)) (-2500 (($ $ $) NIL (|has| |#1| (-356)))) (-2572 (($ $ $) NIL (|has| |#1| (-356)))) (-3717 (($ $ $) NIL (|has| |#1| (-356)))) (-2338 (($ $ $) NIL (|has| |#1| (-356)))) (-2268 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2427 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-1659 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 30 (|has| |#1| (-356)))) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-2970 (((-749) $) NIL)) (-2503 ((|#1| $) NIL (|has| |#1| (-444)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-1011 (-400 (-550))))) (($ |#1|) NIL)) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-749)) NIL)) (-2390 (((-749)) NIL)) (-4292 ((|#1| $ |#1| |#1|) 15)) (-2626 (($) NIL T CONST)) (-2636 (($) 20 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) 19) (($ $ (-749)) 22)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-829 |#1| |#2| |#3|) (-13 (-827 |#1|) (-10 -8 (-15 -3425 ((-836) $ (-836))))) (-1020) (-98 |#1|) (-1 |#1| |#1|)) (T -829)) +((-3425 (*1 *2 *1 *2) (-12 (-5 *2 (-836)) (-5 *1 (-829 *3 *4 *5)) (-4 *3 (-1020)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-827 |#1|) (-10 -8 (-15 -3425 ((-836) $ (-836))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2848 (($ $ $) NIL (|has| |#2| (-356)))) (-2936 (($ $ $) NIL (|has| |#2| (-356)))) (-2194 (($ $ $) NIL (|has| |#2| (-356)))) (-2700 (($ $ $) NIL (|has| |#2| (-356)))) (-3796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#2| (-356)))) (-2756 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-1766 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#2| (-356)))) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-3 |#2| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#2| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-400 (-550))))) ((|#2| $) NIL)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#2| (-444)))) (-3102 (((-112) $) NIL)) (-3118 (($ |#2| (-749)) 16)) (-1566 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#2| (-542)))) (-2646 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#2| (-542)))) (-1667 (((-749) $) NIL)) (-2500 (($ $ $) NIL (|has| |#2| (-356)))) (-2572 (($ $ $) NIL (|has| |#2| (-356)))) (-3717 (($ $ $) NIL (|has| |#2| (-356)))) (-2338 (($ $ $) NIL (|has| |#2| (-356)))) (-2268 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#2| (-356)))) (-2427 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-1659 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#2| (-356)))) (-3277 ((|#2| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1495 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-2970 (((-749) $) NIL)) (-2503 ((|#2| $) NIL (|has| |#2| (-444)))) (-1518 (((-836) $) 23) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#2| (-1011 (-400 (-550))))) (($ |#2|) NIL) (($ (-1223 |#1|)) 18)) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ (-749)) NIL)) (-2390 (((-749)) NIL)) (-4292 ((|#2| $ |#2| |#2|) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) 13 T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-830 |#1| |#2| |#3| |#4|) (-13 (-827 |#2|) (-10 -8 (-15 -1518 ($ (-1223 |#1|))))) (-1144) (-1020) (-98 |#2|) (-1 |#2| |#2|)) (T -830)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *3)) (-14 *3 (-1144)) (-5 *1 (-830 *3 *4 *5 *6)) (-4 *4 (-1020)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-827 |#2|) (-10 -8 (-15 -1518 ($ (-1223 |#1|))))) +((-2058 ((|#1| (-749) |#1|) 35 (|has| |#1| (-38 (-400 (-550)))))) (-1956 ((|#1| (-749) (-749) |#1|) 27) ((|#1| (-749) |#1|) 20)) (-1865 ((|#1| (-749) |#1|) 31)) (-1432 ((|#1| (-749) |#1|) 29)) (-3407 ((|#1| (-749) |#1|) 28))) +(((-831 |#1|) (-10 -7 (-15 -3407 (|#1| (-749) |#1|)) (-15 -1432 (|#1| (-749) |#1|)) (-15 -1865 (|#1| (-749) |#1|)) (-15 -1956 (|#1| (-749) |#1|)) (-15 -1956 (|#1| (-749) (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2058 (|#1| (-749) |#1|)) |%noBranch|)) (-170)) (T -831)) +((-2058 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-170)))) (-1956 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-1956 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-1865 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-1432 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-3407 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) +(-10 -7 (-15 -3407 (|#1| (-749) |#1|)) (-15 -1432 (|#1| (-749) |#1|)) (-15 -1865 (|#1| (-749) |#1|)) (-15 -1956 (|#1| (-749) |#1|)) (-15 -1956 (|#1| (-749) (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -2058 (|#1| (-749) |#1|)) |%noBranch|)) +((-1504 (((-112) $ $) 7)) (-2707 (($ $ $) 13)) (-4164 (($ $ $) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2363 (((-112) $ $) 16)) (-2345 (((-112) $ $) 17)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 15)) (-2335 (((-112) $ $) 18)) (** (($ $ (-894)) 21)) (* (($ $ $) 20))) +(((-832) (-138)) (T -832)) +NIL +(-13 (-825) (-1080)) +(((-101) . T) ((-595 (-836)) . T) ((-825) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3625 (((-550) $) 12)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 18) (($ (-550)) 11)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 8)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 9))) +(((-833) (-13 (-825) (-10 -8 (-15 -1518 ($ (-550))) (-15 -3625 ((-550) $))))) (T -833)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-833)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-833))))) +(-13 (-825) (-10 -8 (-15 -1518 ($ (-550))) (-15 -3625 ((-550) $)))) +((-2141 (((-1088) $ (-128)) 17))) +(((-834 |#1|) (-10 -8 (-15 -2141 ((-1088) |#1| (-128)))) (-835)) (T -834)) +NIL +(-10 -8 (-15 -2141 ((-1088) |#1| (-128)))) +((-2141 (((-1088) $ (-128)) 7)) (-3974 (((-1088) $ (-129)) 8)) (-1951 (($ $) 6))) +(((-835) (-138)) (T -835)) +((-3974 (*1 *2 *1 *3) (-12 (-4 *1 (-835)) (-5 *3 (-129)) (-5 *2 (-1088)))) (-2141 (*1 *2 *1 *3) (-12 (-4 *1 (-835)) (-5 *3 (-128)) (-5 *2 (-1088))))) +(-13 (-171) (-10 -8 (-15 -3974 ((-1088) $ (-129))) (-15 -2141 ((-1088) $ (-128))))) (((-171) . T)) -((-2887 (((-112) $ $) NIL) (($ $ $) 77)) (-2908 (($ $ $) 115)) (-2923 (((-535) $) 30) (((-535)) 35)) (-2918 (($ (-535)) 44)) (-2915 (($ $ $) 45) (($ (-618 $)) 76)) (-2899 (($ $ (-618 $)) 74)) (-2920 (((-535) $) 33)) (-2902 (($ $ $) 63)) (-3869 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2921 (((-535) $) 32)) (-2903 (($ $ $) 62)) (-3881 (($ $) 105)) (-2906 (($ $ $) 119)) (-2889 (($ (-618 $)) 52)) (-3886 (($ $ (-618 $)) 69)) (-2917 (($ (-535) (-535)) 46)) (-2928 (($ $) 116) (($ $ $) 117)) (-3455 (($ $ (-535)) 40) (($ $) 43)) (-2883 (($ $ $) 89)) (-2904 (($ $ $) 122)) (-2898 (($ $) 106)) (-2882 (($ $ $) 90)) (-2894 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3158 (((-1230) $) 8)) (-2897 (($ $) 109) (($ $ (-747)) 112)) (-2900 (($ $ $) 65)) (-2901 (($ $ $) 64)) (-2914 (($ $ (-618 $)) 100)) (-2912 (($ $ $) 104)) (-2891 (($ (-618 $)) 50)) (-2892 (($ $) 60) (($ (-618 $)) 61)) (-2895 (($ $ $) 113)) (-2896 (($ $) 107)) (-2907 (($ $ $) 118)) (-3870 (($ (-535)) 20) (($ (-1142)) 22) (($ (-1124)) 29) (($ (-219)) 24)) (-3178 (($ $ $) 93)) (-3659 (($ $) 94)) (-2924 (((-1230) (-1124)) 14)) (-2925 (($ (-1124)) 13)) (-3442 (($ (-618 (-618 $))) 49)) (-3456 (($ $ (-535)) 39) (($ $) 42)) (-3576 (((-1124) $) NIL)) (-2910 (($ $ $) 121)) (-3807 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2911 (((-112) $) 98)) (-2913 (($ $ (-618 $)) 102) (($ $ $ $) 103)) (-2919 (($ (-535)) 36)) (-2922 (((-535) $) 31) (((-535)) 34)) (-2916 (($ $ $) 37) (($ (-618 $)) 75)) (-3577 (((-1086) $) NIL)) (-3803 (($ $ $) 91)) (-3911 (($) 12)) (-4142 (($ $ (-618 $)) 99)) (-4179 (($ $) 108) (($ $ (-747)) 111)) (-2884 (($ $ $) 88)) (-4153 (($ $ (-747)) 127)) (-2890 (($ (-618 $)) 51)) (-4300 (((-835) $) 18)) (-4115 (($ $ (-535)) 38) (($ $) 41)) (-2893 (($ $) 58) (($ (-618 $)) 59)) (-3574 (($ $) 56) (($ (-618 $)) 57)) (-2909 (($ $) 114)) (-2888 (($ (-618 $)) 55)) (-3420 (($ $ $) 97)) (-2905 (($ $ $) 120)) (-3179 (($ $ $) 92)) (-4080 (($ $ $) 95) (($ $) 96)) (-2885 (($ $ $) 81)) (-2886 (($ $ $) 79)) (-3375 (((-112) $ $) 15) (($ $ $) 16)) (-3005 (($ $ $) 80)) (-3006 (($ $ $) 78)) (-4291 (($ $ $) 86)) (-4180 (($ $ $) 83) (($ $) 84)) (-4182 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-835) (-13 (-1067) (-10 -8 (-15 -3158 ((-1230) $)) (-15 -2925 ($ (-1124))) (-15 -2924 ((-1230) (-1124))) (-15 -3870 ($ (-535))) (-15 -3870 ($ (-1142))) (-15 -3870 ($ (-1124))) (-15 -3870 ($ (-219))) (-15 -3911 ($)) (-15 -2923 ((-535) $)) (-15 -2922 ((-535) $)) (-15 -2923 ((-535))) (-15 -2922 ((-535))) (-15 -2921 ((-535) $)) (-15 -2920 ((-535) $)) (-15 -2919 ($ (-535))) (-15 -2918 ($ (-535))) (-15 -2917 ($ (-535) (-535))) (-15 -3456 ($ $ (-535))) (-15 -3455 ($ $ (-535))) (-15 -4115 ($ $ (-535))) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -4115 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -2916 ($ (-618 $))) (-15 -2915 ($ (-618 $))) (-15 -2914 ($ $ (-618 $))) (-15 -2913 ($ $ (-618 $))) (-15 -2913 ($ $ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ((-112) $)) (-15 -4142 ($ $ (-618 $))) (-15 -3881 ($ $)) (-15 -2910 ($ $ $)) (-15 -2909 ($ $)) (-15 -3442 ($ (-618 (-618 $)))) (-15 -2908 ($ $ $)) (-15 -2928 ($ $)) (-15 -2928 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2904 ($ $ $)) (-15 -4153 ($ $ (-747))) (-15 -3420 ($ $ $)) (-15 -2903 ($ $ $)) (-15 -2902 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -2900 ($ $ $)) (-15 -3886 ($ $ (-618 $))) (-15 -2899 ($ $ (-618 $))) (-15 -2898 ($ $)) (-15 -4179 ($ $)) (-15 -4179 ($ $ (-747))) (-15 -2897 ($ $)) (-15 -2897 ($ $ (-747))) (-15 -2896 ($ $)) (-15 -2895 ($ $ $)) (-15 -3869 ($ $)) (-15 -3869 ($ $ $)) (-15 -3869 ($ $ $ $)) (-15 -2894 ($ $)) (-15 -2894 ($ $ $)) (-15 -2894 ($ $ $ $)) (-15 -3807 ($ $)) (-15 -3807 ($ $ $)) (-15 -3807 ($ $ $ $)) (-15 -3574 ($ $)) (-15 -3574 ($ (-618 $))) (-15 -2893 ($ $)) (-15 -2893 ($ (-618 $))) (-15 -2892 ($ $)) (-15 -2892 ($ (-618 $))) (-15 -2891 ($ (-618 $))) (-15 -2890 ($ (-618 $))) (-15 -2889 ($ (-618 $))) (-15 -2888 ($ (-618 $))) (-15 -3375 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -2886 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -2885 ($ $ $)) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4180 ($ $)) (-15 * ($ $ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ $)) (-15 -2884 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -3803 ($ $ $)) (-15 -3179 ($ $ $)) (-15 -3178 ($ $ $)) (-15 -3659 ($ $)) (-15 -4080 ($ $ $)) (-15 -4080 ($ $))))) (T -835)) -((-3158 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-835)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-835)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-835)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-835)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-835)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-835)))) (-3911 (*1 *1) (-5 *1 (-835))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2923 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2922 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2918 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2917 (*1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-3456 (*1 *1 *1) (-5 *1 (-835))) (-3455 (*1 *1 *1) (-5 *1 (-835))) (-4115 (*1 *1 *1) (-5 *1 (-835))) (-2916 (*1 *1 *1 *1) (-5 *1 (-835))) (-2915 (*1 *1 *1 *1) (-5 *1 (-835))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2915 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2913 (*1 *1 *1 *1 *1) (-5 *1 (-835))) (-2912 (*1 *1 *1 *1) (-5 *1 (-835))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-3881 (*1 *1 *1) (-5 *1 (-835))) (-2910 (*1 *1 *1 *1) (-5 *1 (-835))) (-2909 (*1 *1 *1) (-5 *1 (-835))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-835)))) (-5 *1 (-835)))) (-2908 (*1 *1 *1 *1) (-5 *1 (-835))) (-2928 (*1 *1 *1) (-5 *1 (-835))) (-2928 (*1 *1 *1 *1) (-5 *1 (-835))) (-2907 (*1 *1 *1 *1) (-5 *1 (-835))) (-2906 (*1 *1 *1 *1) (-5 *1 (-835))) (-2905 (*1 *1 *1 *1) (-5 *1 (-835))) (-2904 (*1 *1 *1 *1) (-5 *1 (-835))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) (-3420 (*1 *1 *1 *1) (-5 *1 (-835))) (-2903 (*1 *1 *1 *1) (-5 *1 (-835))) (-2902 (*1 *1 *1 *1) (-5 *1 (-835))) (-2901 (*1 *1 *1 *1) (-5 *1 (-835))) (-2900 (*1 *1 *1 *1) (-5 *1 (-835))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2898 (*1 *1 *1) (-5 *1 (-835))) (-4179 (*1 *1 *1) (-5 *1 (-835))) (-4179 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) (-2897 (*1 *1 *1) (-5 *1 (-835))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) (-2896 (*1 *1 *1) (-5 *1 (-835))) (-2895 (*1 *1 *1 *1) (-5 *1 (-835))) (-3869 (*1 *1 *1) (-5 *1 (-835))) (-3869 (*1 *1 *1 *1) (-5 *1 (-835))) (-3869 (*1 *1 *1 *1 *1) (-5 *1 (-835))) (-2894 (*1 *1 *1) (-5 *1 (-835))) (-2894 (*1 *1 *1 *1) (-5 *1 (-835))) (-2894 (*1 *1 *1 *1 *1) (-5 *1 (-835))) (-3807 (*1 *1 *1) (-5 *1 (-835))) (-3807 (*1 *1 *1 *1) (-5 *1 (-835))) (-3807 (*1 *1 *1 *1 *1) (-5 *1 (-835))) (-3574 (*1 *1 *1) (-5 *1 (-835))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2893 (*1 *1 *1) (-5 *1 (-835))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2892 (*1 *1 *1) (-5 *1 (-835))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2891 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2890 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2889 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2888 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-3375 (*1 *1 *1 *1) (-5 *1 (-835))) (-2887 (*1 *1 *1 *1) (-5 *1 (-835))) (-3006 (*1 *1 *1 *1) (-5 *1 (-835))) (-2886 (*1 *1 *1 *1) (-5 *1 (-835))) (-3005 (*1 *1 *1 *1) (-5 *1 (-835))) (-2885 (*1 *1 *1 *1) (-5 *1 (-835))) (-4182 (*1 *1 *1 *1) (-5 *1 (-835))) (-4180 (*1 *1 *1 *1) (-5 *1 (-835))) (-4180 (*1 *1 *1) (-5 *1 (-835))) (* (*1 *1 *1 *1) (-5 *1 (-835))) (-4291 (*1 *1 *1 *1) (-5 *1 (-835))) (** (*1 *1 *1 *1) (-5 *1 (-835))) (-2884 (*1 *1 *1 *1) (-5 *1 (-835))) (-2883 (*1 *1 *1 *1) (-5 *1 (-835))) (-2882 (*1 *1 *1 *1) (-5 *1 (-835))) (-3803 (*1 *1 *1 *1) (-5 *1 (-835))) (-3179 (*1 *1 *1 *1) (-5 *1 (-835))) (-3178 (*1 *1 *1 *1) (-5 *1 (-835))) (-3659 (*1 *1 *1) (-5 *1 (-835))) (-4080 (*1 *1 *1 *1) (-5 *1 (-835))) (-4080 (*1 *1 *1) (-5 *1 (-835)))) -(-13 (-1067) (-10 -8 (-15 -3158 ((-1230) $)) (-15 -2925 ($ (-1124))) (-15 -2924 ((-1230) (-1124))) (-15 -3870 ($ (-535))) (-15 -3870 ($ (-1142))) (-15 -3870 ($ (-1124))) (-15 -3870 ($ (-219))) (-15 -3911 ($)) (-15 -2923 ((-535) $)) (-15 -2922 ((-535) $)) (-15 -2923 ((-535))) (-15 -2922 ((-535))) (-15 -2921 ((-535) $)) (-15 -2920 ((-535) $)) (-15 -2919 ($ (-535))) (-15 -2918 ($ (-535))) (-15 -2917 ($ (-535) (-535))) (-15 -3456 ($ $ (-535))) (-15 -3455 ($ $ (-535))) (-15 -4115 ($ $ (-535))) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -4115 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -2916 ($ (-618 $))) (-15 -2915 ($ (-618 $))) (-15 -2914 ($ $ (-618 $))) (-15 -2913 ($ $ (-618 $))) (-15 -2913 ($ $ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ((-112) $)) (-15 -4142 ($ $ (-618 $))) (-15 -3881 ($ $)) (-15 -2910 ($ $ $)) (-15 -2909 ($ $)) (-15 -3442 ($ (-618 (-618 $)))) (-15 -2908 ($ $ $)) (-15 -2928 ($ $)) (-15 -2928 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2904 ($ $ $)) (-15 -4153 ($ $ (-747))) (-15 -3420 ($ $ $)) (-15 -2903 ($ $ $)) (-15 -2902 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -2900 ($ $ $)) (-15 -3886 ($ $ (-618 $))) (-15 -2899 ($ $ (-618 $))) (-15 -2898 ($ $)) (-15 -4179 ($ $)) (-15 -4179 ($ $ (-747))) (-15 -2897 ($ $)) (-15 -2897 ($ $ (-747))) (-15 -2896 ($ $)) (-15 -2895 ($ $ $)) (-15 -3869 ($ $)) (-15 -3869 ($ $ $)) (-15 -3869 ($ $ $ $)) (-15 -2894 ($ $)) (-15 -2894 ($ $ $)) (-15 -2894 ($ $ $ $)) (-15 -3807 ($ $)) (-15 -3807 ($ $ $)) (-15 -3807 ($ $ $ $)) (-15 -3574 ($ $)) (-15 -3574 ($ (-618 $))) (-15 -2893 ($ $)) (-15 -2893 ($ (-618 $))) (-15 -2892 ($ $)) (-15 -2892 ($ (-618 $))) (-15 -2891 ($ (-618 $))) (-15 -2890 ($ (-618 $))) (-15 -2889 ($ (-618 $))) (-15 -2888 ($ (-618 $))) (-15 -3375 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -2886 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -2885 ($ $ $)) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4180 ($ $)) (-15 * ($ $ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ $)) (-15 -2884 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -3803 ($ $ $)) (-15 -3179 ($ $ $)) (-15 -3178 ($ $ $)) (-15 -3659 ($ $)) (-15 -4080 ($ $ $)) (-15 -4080 ($ $)))) -((-2887 (((-112) $ $) NIL)) (-4174 (((-3 $ "failed") (-1142)) 33)) (-3454 (((-747)) 31)) (-3315 (($) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2121 (((-890) $) 29)) (-3576 (((-1124) $) 39)) (-2483 (($ (-890)) 28)) (-3577 (((-1086) $) NIL)) (-4313 (((-1142) $) 13) (((-524) $) 19) (((-861 (-371)) $) 26) (((-861 (-535)) $) 22)) (-4300 (((-835) $) 16)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 36)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 35))) -(((-836 |#1|) (-13 (-817) (-594 (-1142)) (-594 (-524)) (-594 (-861 (-371))) (-594 (-861 (-535))) (-10 -8 (-15 -4174 ((-3 $ "failed") (-1142))))) (-618 (-1142))) (T -836)) -((-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-836 *3)) (-14 *3 (-618 *2))))) -(-13 (-817) (-594 (-1142)) (-594 (-524)) (-594 (-861 (-371))) (-594 (-861 (-535))) (-10 -8 (-15 -4174 ((-3 $ "failed") (-1142))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (((-917 |#1|) $) NIL) (($ (-917 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-3444 (((-747)) NIL)) (-4266 (((-1230) (-747)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-837 |#1| |#2| |#3| |#4|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4300 ((-917 |#1|) $)) (-15 -4300 ($ (-917 |#1|))) (IF (|has| |#1| (-356)) (-15 -4291 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4266 ((-1230) (-747))))) (-1018) (-618 (-1142)) (-618 (-747)) (-747)) (T -837)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-917 *3)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))) (-14 *5 (-618 (-747))) (-14 *6 (-747)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-5 *1 (-837 *3 *4 *5 *6)) (-14 *4 (-618 (-1142))) (-14 *5 (-618 (-747))) (-14 *6 (-747)))) (-4291 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-837 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-747))) (-14 *5 (-747)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *4 (-1018)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 *3)) (-14 *7 *3)))) -(-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4300 ((-917 |#1|) $)) (-15 -4300 ($ (-917 |#1|))) (IF (|has| |#1| (-356)) (-15 -4291 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4266 ((-1230) (-747))))) -((-2926 (((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|) 31)) (-2927 (((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|) 24))) -(((-838 |#1| |#2| |#3|) (-10 -7 (-15 -2927 ((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|)) (-15 -2926 ((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|))) (-356) (-1217 |#1|) (-1200 |#1|)) (T -838)) -((-2926 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-172 *6)) (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1200 *5)))) (-2927 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-400 *6)) (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1200 *5))))) -(-10 -7 (-15 -2927 ((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|)) (-15 -2926 ((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|))) -((-2927 (((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|)) 28) (((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) 26))) -(((-839 |#1| |#2| |#3|) (-10 -7 (-15 -2927 ((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) (-15 -2927 ((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|)))) (-356) (-1142) |#1|) (T -839)) -((-2927 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1214 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1193 *6 *5))) (-5 *1 (-839 *5 *6 *7)))) (-2927 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1214 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1193 *6 *5))) (-5 *1 (-839 *5 *6 *7))))) -(-10 -7 (-15 -2927 ((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) (-15 -2927 ((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $ (-535)) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2928 (($ (-1136 (-535)) (-535)) NIL)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2929 (($ $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4114 (((-747) $) NIL)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 (((-535)) NIL)) (-2930 (((-535) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4111 (($ $ (-535)) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2932 (((-1119 (-535)) $) NIL)) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-4112 (((-535) $ (-535)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL))) -(((-840 |#1|) (-841 |#1|) (-535)) (T -840)) -NIL -(-841 |#1|) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3358 (($ $ (-535)) 60)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-2928 (($ (-1136 (-535)) (-535)) 59)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2929 (($ $) 62)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4114 (((-747) $) 67)) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2931 (((-535)) 64)) (-2930 (((-535) $) 63)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-4111 (($ $ (-535)) 66)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-2932 (((-1119 (-535)) $) 68)) (-3212 (($ $) 65)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-4112 (((-535) $ (-535)) 61)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-841 |#1|) (-138) (-535)) (T -841)) -((-2932 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-1119 (-535))))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-747)))) (-4111 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-3212 (*1 *1 *1) (-4 *1 (-841 *2))) (-2931 (*1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-2929 (*1 *1 *1) (-4 *1 (-841 *2))) (-4112 (*1 *2 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-3358 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-2928 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *3 (-535)) (-4 *1 (-841 *4))))) -(-13 (-300) (-145) (-10 -8 (-15 -2932 ((-1119 (-535)) $)) (-15 -4114 ((-747) $)) (-15 -4111 ($ $ (-535))) (-15 -3212 ($ $)) (-15 -2931 ((-535))) (-15 -2930 ((-535) $)) (-15 -2929 ($ $)) (-15 -4112 ((-535) $ (-535))) (-15 -3358 ($ $ (-535))) (-15 -2928 ($ (-1136 (-535)) (-535))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-840 |#1|) $) NIL (|has| (-840 |#1|) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-840 |#1|) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-840 |#1|) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-840 |#1|) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-840 |#1|) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-840 |#1|) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-840 |#1|) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-840 |#1|) (-1009 (-535))))) (-3490 (((-840 |#1|) $) NIL) (((-1142) $) NIL (|has| (-840 |#1|) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-840 |#1|) (-1009 (-535)))) (((-535) $) NIL (|has| (-840 |#1|) (-1009 (-535))))) (-4073 (($ $) NIL) (($ (-535) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-840 |#1|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-840 |#1|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-840 |#1|))) (|:| |vec| (-1224 (-840 |#1|)))) (-665 $) (-1224 $)) NIL) (((-665 (-840 |#1|)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-840 |#1|) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-840 |#1|) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-840 |#1|) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-840 |#1|) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-840 |#1|) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-840 |#1|) (-1117)))) (-3521 (((-112) $) NIL (|has| (-840 |#1|) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-840 |#1|) (-823)))) (-3661 (($ $ $) NIL (|has| (-840 |#1|) (-823)))) (-4301 (($ (-1 (-840 |#1|) (-840 |#1|)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-840 |#1|) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-840 |#1|) (-300)))) (-3448 (((-840 |#1|) $) NIL (|has| (-840 |#1|) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-840 |#1|) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-840 |#1|) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-840 |#1|)) (-618 (-840 |#1|))) NIL (|has| (-840 |#1|) (-302 (-840 |#1|)))) (($ $ (-840 |#1|) (-840 |#1|)) NIL (|has| (-840 |#1|) (-302 (-840 |#1|)))) (($ $ (-286 (-840 |#1|))) NIL (|has| (-840 |#1|) (-302 (-840 |#1|)))) (($ $ (-618 (-286 (-840 |#1|)))) NIL (|has| (-840 |#1|) (-302 (-840 |#1|)))) (($ $ (-618 (-1142)) (-618 (-840 |#1|))) NIL (|has| (-840 |#1|) (-505 (-1142) (-840 |#1|)))) (($ $ (-1142) (-840 |#1|)) NIL (|has| (-840 |#1|) (-505 (-1142) (-840 |#1|))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-840 |#1|)) NIL (|has| (-840 |#1|) (-279 (-840 |#1|) (-840 |#1|))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-840 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-840 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-1 (-840 |#1|) (-840 |#1|)) (-747)) NIL) (($ $ (-1 (-840 |#1|) (-840 |#1|))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-840 |#1|) $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| (-840 |#1|) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-840 |#1|) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-840 |#1|) (-594 (-524)))) (((-371) $) NIL (|has| (-840 |#1|) (-991))) (((-219) $) NIL (|has| (-840 |#1|) (-991)))) (-2933 (((-172 (-400 (-535))) $) NIL)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-840 |#1|) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-840 |#1|)) NIL) (($ (-1142)) NIL (|has| (-840 |#1|) (-1009 (-1142))))) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-840 |#1|) (-881))) (|has| (-840 |#1|) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-840 |#1|) $) NIL (|has| (-840 |#1|) (-534)))) (-2170 (((-112) $ $) NIL)) (-4112 (((-400 (-535)) $ (-535)) NIL)) (-3725 (($ $) NIL (|has| (-840 |#1|) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-840 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-840 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-1 (-840 |#1|) (-840 |#1|)) (-747)) NIL) (($ $ (-1 (-840 |#1|) (-840 |#1|))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-840 |#1|) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-840 |#1|) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-840 |#1|) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-840 |#1|) (-823)))) (-4291 (($ $ $) NIL) (($ (-840 |#1|) (-840 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-840 |#1|) $) NIL) (($ $ (-840 |#1|)) NIL))) -(((-842 |#1|) (-13 (-962 (-840 |#1|)) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) (-535)) (T -842)) -((-4112 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-842 *4)) (-14 *4 *3) (-5 *3 (-535)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-842 *3)) (-14 *3 (-535)))) (-4073 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-14 *2 (-535)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-842 *3)) (-14 *3 *2)))) -(-13 (-962 (-840 |#1|)) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 ((|#2| $) NIL (|has| |#2| (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| |#2| (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| |#2| (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535))))) (-3490 ((|#2| $) NIL) (((-1142) $) NIL (|has| |#2| (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-535)))) (((-535) $) NIL (|has| |#2| (-1009 (-535))))) (-4073 (($ $) 31) (($ (-535) $) 32)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) 53)) (-3315 (($) NIL (|has| |#2| (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| |#2| (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| |#2| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| |#2| (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 ((|#2| $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#2| (-1117)))) (-3521 (((-112) $) NIL (|has| |#2| (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 49)) (-3787 (($) NIL (|has| |#2| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| |#2| (-300)))) (-3448 ((|#2| $) NIL (|has| |#2| (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 |#2|) (-618 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-302 |#2|))) (($ $ (-286 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ (-618 (-286 |#2|))) NIL (|has| |#2| (-302 |#2|))) (($ $ (-618 (-1142)) (-618 |#2|)) NIL (|has| |#2| (-505 (-1142) |#2|))) (($ $ (-1142) |#2|) NIL (|has| |#2| (-505 (-1142) |#2|)))) (-1699 (((-747) $) NIL)) (-4142 (($ $ |#2|) NIL (|has| |#2| (-279 |#2| |#2|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| |#2| (-227))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3316 (($ $) NIL)) (-3318 ((|#2| $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| |#2| (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| |#2| (-594 (-861 (-371))))) (((-524) $) NIL (|has| |#2| (-594 (-524)))) (((-371) $) NIL (|has| |#2| (-991))) (((-219) $) NIL (|has| |#2| (-991)))) (-2933 (((-172 (-400 (-535))) $) 68)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) 87) (($ (-535)) 19) (($ $) NIL) (($ (-400 (-535))) 24) (($ |#2|) 18) (($ (-1142)) NIL (|has| |#2| (-1009 (-1142))))) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-3449 ((|#2| $) NIL (|has| |#2| (-534)))) (-2170 (((-112) $ $) NIL)) (-4112 (((-400 (-535)) $ (-535)) 60)) (-3725 (($ $) NIL (|has| |#2| (-796)))) (-2979 (($) 14 T CONST)) (-2985 (($) 16 T CONST)) (-2990 (($ $) NIL (|has| |#2| (-227))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) 35)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4180 (($ $) 39) (($ $ $) 41)) (-4182 (($ $ $) 37)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 50)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 42) (($ $ $) 44) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-843 |#1| |#2|) (-13 (-962 |#2|) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) (-535) (-841 |#1|)) (T -843)) -((-4112 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-400 (-535))) (-5 *1 (-843 *4 *5)) (-5 *3 (-535)) (-4 *5 (-841 *4)))) (-2933 (*1 *2 *1) (-12 (-14 *3 (-535)) (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-843 *3 *4)) (-4 *4 (-841 *3)))) (-4073 (*1 *1 *1) (-12 (-14 *2 (-535)) (-5 *1 (-843 *2 *3)) (-4 *3 (-841 *2)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-14 *3 *2) (-5 *1 (-843 *3 *4)) (-4 *4 (-841 *3))))) -(-13 (-962 |#2|) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) -((-2887 (((-112) $ $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-4138 ((|#2| $) 12)) (-2934 (($ |#1| |#2|) 9)) (-3576 (((-1124) $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-3577 (((-1086) $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#1| $) 11)) (-3867 (($ |#1| |#2|) 10)) (-4300 (((-835) $) 18 (-3874 (-12 (|has| |#1| (-593 (-835))) (|has| |#2| (-593 (-835)))) (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))))) (-3375 (((-112) $ $) 22 (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))))) -(((-844 |#1| |#2|) (-13 (-1178) (-10 -8 (IF (|has| |#1| (-593 (-835))) (IF (|has| |#2| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1067)) (IF (|has| |#2| (-1067)) (-6 (-1067)) |%noBranch|) |%noBranch|) (-15 -2934 ($ |#1| |#2|)) (-15 -3867 ($ |#1| |#2|)) (-15 -4143 (|#1| $)) (-15 -4138 (|#2| $)))) (-1178) (-1178)) (T -844)) -((-2934 (*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1178)) (-4 *3 (-1178)))) (-3867 (*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1178)) (-4 *3 (-1178)))) (-4143 (*1 *2 *1) (-12 (-4 *2 (-1178)) (-5 *1 (-844 *2 *3)) (-4 *3 (-1178)))) (-4138 (*1 *2 *1) (-12 (-4 *2 (-1178)) (-5 *1 (-844 *3 *2)) (-4 *3 (-1178))))) -(-13 (-1178) (-10 -8 (IF (|has| |#1| (-593 (-835))) (IF (|has| |#2| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1067)) (IF (|has| |#2| (-1067)) (-6 (-1067)) |%noBranch|) |%noBranch|) (-15 -2934 ($ |#1| |#2|)) (-15 -3867 ($ |#1| |#2|)) (-15 -4143 (|#1| $)) (-15 -4138 (|#2| $)))) -((-2887 (((-112) $ $) NIL)) (-3278 (((-535) $) 15)) (-2936 (($ (-155)) 11)) (-2935 (($ (-155)) 12)) (-3576 (((-1124) $) NIL)) (-3277 (((-155) $) 13)) (-3577 (((-1086) $) NIL)) (-2938 (($ (-155)) 9)) (-2939 (($ (-155)) 8)) (-4300 (((-835) $) 23) (($ (-155)) 16)) (-2937 (($ (-155)) 10)) (-3375 (((-112) $ $) NIL))) -(((-845) (-13 (-1067) (-10 -8 (-15 -2939 ($ (-155))) (-15 -2938 ($ (-155))) (-15 -2937 ($ (-155))) (-15 -2936 ($ (-155))) (-15 -2935 ($ (-155))) (-15 -3277 ((-155) $)) (-15 -3278 ((-535) $)) (-15 -4300 ($ (-155)))))) (T -845)) -((-2939 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2938 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2937 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2936 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2935 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-845)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845))))) -(-13 (-1067) (-10 -8 (-15 -2939 ($ (-155))) (-15 -2938 ($ (-155))) (-15 -2937 ($ (-155))) (-15 -2936 ($ (-155))) (-15 -2935 ($ (-155))) (-15 -3277 ((-155) $)) (-15 -3278 ((-535) $)) (-15 -4300 ($ (-155))))) -((-4300 (((-307 (-535)) (-400 (-917 (-48)))) 23) (((-307 (-535)) (-917 (-48))) 18))) -(((-846) (-10 -7 (-15 -4300 ((-307 (-535)) (-917 (-48)))) (-15 -4300 ((-307 (-535)) (-400 (-917 (-48))))))) (T -846)) -((-4300 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 (-48)))) (-5 *2 (-307 (-535))) (-5 *1 (-846)))) (-4300 (*1 *2 *3) (-12 (-5 *3 (-917 (-48))) (-5 *2 (-307 (-535))) (-5 *1 (-846))))) -(-10 -7 (-15 -4300 ((-307 (-535)) (-917 (-48)))) (-15 -4300 ((-307 (-535)) (-400 (-917 (-48)))))) -((-4301 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14))) -(((-847 |#1| |#2|) (-10 -7 (-15 -4301 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-1178) (-1178)) (T -847)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))) -(-10 -7 (-15 -4301 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) -((-3713 (($ |#1| |#1|) 8)) (-2942 ((|#1| $ (-747)) 10))) -(((-848 |#1|) (-10 -8 (-15 -3713 ($ |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) (-1178)) (T -848)) -((-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-848 *2)) (-4 *2 (-1178)))) (-3713 (*1 *1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1178))))) -(-10 -8 (-15 -3713 ($ |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) -((-4301 (((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)) 14))) -(((-849 |#1| |#2|) (-10 -7 (-15 -4301 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) (-1178) (-1178)) (T -849)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6))))) -(-10 -7 (-15 -4301 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) -((-3713 (($ |#1| |#1| |#1|) 8)) (-2942 ((|#1| $ (-747)) 10))) -(((-850 |#1|) (-10 -8 (-15 -3713 ($ |#1| |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) (-1178)) (T -850)) -((-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-850 *2)) (-4 *2 (-1178)))) (-3713 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1178))))) -(-10 -8 (-15 -3713 ($ |#1| |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) -((-2940 (((-618 (-1147)) (-1124)) 9))) -(((-851) (-10 -7 (-15 -2940 ((-618 (-1147)) (-1124))))) (T -851)) -((-2940 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-618 (-1147))) (-5 *1 (-851))))) -(-10 -7 (-15 -2940 ((-618 (-1147)) (-1124)))) -((-4301 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) -(((-852 |#1| |#2|) (-10 -7 (-15 -4301 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1178) (-1178)) (T -852)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) -(-10 -7 (-15 -4301 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) -((-2941 (($ |#1| |#1| |#1|) 8)) (-2942 ((|#1| $ (-747)) 10))) -(((-853 |#1|) (-10 -8 (-15 -2941 ($ |#1| |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) (-1178)) (T -853)) -((-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-853 *2)) (-4 *2 (-1178)))) (-2941 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1178))))) -(-10 -8 (-15 -2941 ($ |#1| |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) -((-2946 (((-1119 (-618 (-535))) (-618 (-535)) (-1119 (-618 (-535)))) 32)) (-2945 (((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535))) 28)) (-2947 (((-1119 (-618 (-535))) (-618 (-535))) 41) (((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535))) 40)) (-2948 (((-1119 (-618 (-535))) (-535)) 42)) (-2943 (((-1119 (-618 (-535))) (-535) (-535)) 22) (((-1119 (-618 (-535))) (-535)) 16) (((-1119 (-618 (-535))) (-535) (-535) (-535)) 12)) (-2944 (((-1119 (-618 (-535))) (-1119 (-618 (-535)))) 26)) (-3330 (((-618 (-535)) (-618 (-535))) 25))) -(((-854) (-10 -7 (-15 -2943 ((-1119 (-618 (-535))) (-535) (-535) (-535))) (-15 -2943 ((-1119 (-618 (-535))) (-535))) (-15 -2943 ((-1119 (-618 (-535))) (-535) (-535))) (-15 -3330 ((-618 (-535)) (-618 (-535)))) (-15 -2944 ((-1119 (-618 (-535))) (-1119 (-618 (-535))))) (-15 -2945 ((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535)))) (-15 -2946 ((-1119 (-618 (-535))) (-618 (-535)) (-1119 (-618 (-535))))) (-15 -2947 ((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535)))) (-15 -2947 ((-1119 (-618 (-535))) (-618 (-535)))) (-15 -2948 ((-1119 (-618 (-535))) (-535))))) (T -854)) -((-2948 (*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))) (-2947 (*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))) (-2947 (*1 *2 *3 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))) (-2946 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *3 (-618 (-535))) (-5 *1 (-854)))) (-2945 (*1 *2 *3 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)))) (-3330 (*1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-854)))) (-2943 (*1 *2 *3 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))) (-2943 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535))))) -(-10 -7 (-15 -2943 ((-1119 (-618 (-535))) (-535) (-535) (-535))) (-15 -2943 ((-1119 (-618 (-535))) (-535))) (-15 -2943 ((-1119 (-618 (-535))) (-535) (-535))) (-15 -3330 ((-618 (-535)) (-618 (-535)))) (-15 -2944 ((-1119 (-618 (-535))) (-1119 (-618 (-535))))) (-15 -2945 ((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535)))) (-15 -2946 ((-1119 (-618 (-535))) (-618 (-535)) (-1119 (-618 (-535))))) (-15 -2947 ((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535)))) (-15 -2947 ((-1119 (-618 (-535))) (-618 (-535)))) (-15 -2948 ((-1119 (-618 (-535))) (-535)))) -((-4313 (((-861 (-371)) $) 9 (|has| |#1| (-594 (-861 (-371))))) (((-861 (-535)) $) 8 (|has| |#1| (-594 (-861 (-535))))))) -(((-855 |#1|) (-138) (-1178)) (T -855)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-594 (-861 (-535)))) (-6 (-594 (-861 (-535)))) |%noBranch|) (IF (|has| |t#1| (-594 (-861 (-371)))) (-6 (-594 (-861 (-371)))) |%noBranch|))) -(((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535))))) -((-2887 (((-112) $ $) NIL)) (-3960 (($) 14)) (-2951 (($ (-859 |#1| |#2|) (-859 |#1| |#3|)) 27)) (-2949 (((-859 |#1| |#3|) $) 16)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2959 (((-112) $) 22)) (-2958 (($) 19)) (-4300 (((-835) $) 30)) (-2950 (((-859 |#1| |#2|) $) 15)) (-3375 (((-112) $ $) 25))) -(((-856 |#1| |#2| |#3|) (-13 (-1067) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2958 ($)) (-15 -3960 ($)) (-15 -2951 ($ (-859 |#1| |#2|) (-859 |#1| |#3|))) (-15 -2950 ((-859 |#1| |#2|) $)) (-15 -2949 ((-859 |#1| |#3|) $)))) (-1067) (-1067) (-642 |#2|)) (T -856)) -((-2959 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4)))) (-2958 (*1 *1) (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067)) (-4 *4 (-642 *3)))) (-3960 (*1 *1) (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067)) (-4 *4 (-642 *3)))) (-2951 (*1 *1 *2 *3) (-12 (-5 *2 (-859 *4 *5)) (-5 *3 (-859 *4 *6)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-642 *5)) (-5 *1 (-856 *4 *5 *6)))) (-2950 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-859 *3 *4)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4)))) (-2949 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-859 *3 *5)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4))))) -(-13 (-1067) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2958 ($)) (-15 -3960 ($)) (-15 -2951 ($ (-859 |#1| |#2|) (-859 |#1| |#3|))) (-15 -2950 ((-859 |#1| |#2|) $)) (-15 -2949 ((-859 |#1| |#3|) $)))) -((-2887 (((-112) $ $) 7)) (-3117 (((-859 |#1| $) $ (-861 |#1|) (-859 |#1| $)) 13)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6))) -(((-857 |#1|) (-138) (-1067)) (T -857)) -((-3117 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-859 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-857 *4)) (-4 *4 (-1067))))) -(-13 (-1067) (-10 -8 (-15 -3117 ((-859 |t#1| $) $ (-861 |t#1|) (-859 |t#1| $))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2952 (((-112) (-618 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2953 (((-859 |#1| |#2|) |#2| |#3|) 43 (-12 (-3659 (|has| |#2| (-1009 (-1142)))) (-3659 (|has| |#2| (-1018))))) (((-618 (-286 (-917 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1018)) (-3659 (|has| |#2| (-1009 (-1142)))))) (((-618 (-286 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1009 (-1142)))) (((-856 |#1| |#2| (-618 |#2|)) (-618 |#2|) |#3|) 21))) -(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -2952 ((-112) |#2| |#3|)) (-15 -2952 ((-112) (-618 |#2|) |#3|)) (-15 -2953 ((-856 |#1| |#2| (-618 |#2|)) (-618 |#2|) |#3|)) (IF (|has| |#2| (-1009 (-1142))) (-15 -2953 ((-618 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1018)) (-15 -2953 ((-618 (-286 (-917 |#2|))) |#2| |#3|)) (-15 -2953 ((-859 |#1| |#2|) |#2| |#3|))))) (-1067) (-857 |#1|) (-594 (-861 |#1|))) (T -858)) -((-2953 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-859 *5 *3)) (-5 *1 (-858 *5 *3 *4)) (-3659 (-4 *3 (-1009 (-1142)))) (-3659 (-4 *3 (-1018))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5))))) (-2953 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-618 (-286 (-917 *3)))) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1018)) (-3659 (-4 *3 (-1009 (-1142)))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5))))) (-2953 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-618 (-286 *3))) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1009 (-1142))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5))))) (-2953 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-5 *2 (-856 *5 *6 (-618 *6))) (-5 *1 (-858 *5 *6 *4)) (-5 *3 (-618 *6)) (-4 *4 (-594 (-861 *5))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-4 *6 (-857 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *6 *4)) (-4 *4 (-594 (-861 *5))))) (-2952 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5)))))) -(-10 -7 (-15 -2952 ((-112) |#2| |#3|)) (-15 -2952 ((-112) (-618 |#2|) |#3|)) (-15 -2953 ((-856 |#1| |#2| (-618 |#2|)) (-618 |#2|) |#3|)) (IF (|has| |#2| (-1009 (-1142))) (-15 -2953 ((-618 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1018)) (-15 -2953 ((-618 (-286 (-917 |#2|))) |#2| |#3|)) (-15 -2953 ((-859 |#1| |#2|) |#2| |#3|))))) -((-2887 (((-112) $ $) NIL)) (-3568 (($ $ $) 39)) (-2980 (((-3 (-112) "failed") $ (-861 |#1|)) 36)) (-3960 (($) 12)) (-3576 (((-1124) $) NIL)) (-2955 (($ (-861 |#1|) |#2| $) 20)) (-3577 (((-1086) $) NIL)) (-2957 (((-3 |#2| "failed") (-861 |#1|) $) 50)) (-2959 (((-112) $) 15)) (-2958 (($) 13)) (-3591 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))) $) 25)) (-3867 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|)))) 23)) (-4300 (((-835) $) 44)) (-2954 (($ (-861 |#1|) |#2| $ |#2|) 48)) (-2956 (($ (-861 |#1|) |#2| $) 47)) (-3375 (((-112) $ $) 41))) -(((-859 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2958 ($)) (-15 -3960 ($)) (-15 -3568 ($ $ $)) (-15 -2957 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -2956 ($ (-861 |#1|) |#2| $)) (-15 -2955 ($ (-861 |#1|) |#2| $)) (-15 -2954 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -3591 ((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))) $)) (-15 -3867 ($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))))) (-15 -2980 ((-3 (-112) "failed") $ (-861 |#1|))))) (-1067) (-1067)) (T -859)) -((-2959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-2958 (*1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3960 (*1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3568 (*1 *1 *1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-2957 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-4 *2 (-1067)) (-5 *1 (-859 *4 *2)))) (-2956 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))) (-2955 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))) (-2954 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 *4)))) (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 *4)))) (-4 *4 (-1067)) (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)))) (-2980 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1067))))) -(-13 (-1067) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2958 ($)) (-15 -3960 ($)) (-15 -3568 ($ $ $)) (-15 -2957 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -2956 ($ (-861 |#1|) |#2| $)) (-15 -2955 ($ (-861 |#1|) |#2| $)) (-15 -2954 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -3591 ((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))) $)) (-15 -3867 ($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))))) (-15 -2980 ((-3 (-112) "failed") $ (-861 |#1|))))) -((-4301 (((-859 |#1| |#3|) (-1 |#3| |#2|) (-859 |#1| |#2|)) 22))) -(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-859 |#1| |#3|) (-1 |#3| |#2|) (-859 |#1| |#2|)))) (-1067) (-1067) (-1067)) (T -860)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-859 *5 *6)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-859 *5 *7)) (-5 *1 (-860 *5 *6 *7))))) -(-10 -7 (-15 -4301 ((-859 |#1| |#3|) (-1 |#3| |#2|) (-859 |#1| |#2|)))) -((-2887 (((-112) $ $) NIL)) (-2967 (($ $ (-618 (-51))) 64)) (-3405 (((-618 $) $) 118)) (-2964 (((-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51))) $) 24)) (-3594 (((-112) $) 30)) (-2965 (($ $ (-618 (-1142)) (-51)) 25)) (-2968 (($ $ (-618 (-51))) 63)) (-3491 (((-3 |#1| #1="failed") $) 61) (((-3 (-1142) #1#) $) 140)) (-3490 ((|#1| $) 58) (((-1142) $) NIL)) (-2962 (($ $) 108)) (-2974 (((-112) $) 47)) (-2969 (((-618 (-51)) $) 45)) (-2966 (($ (-1142) (-112) (-112) (-112)) 65)) (-2960 (((-3 (-618 $) "failed") (-618 $)) 72)) (-2971 (((-112) $) 50)) (-2972 (((-112) $) 49)) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) "failed") $) 36)) (-2977 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 $)) "failed") $) 83)) (-3143 (((-3 (-618 $) "failed") $) 33)) (-2978 (((-3 (-618 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 $))) "failed") $) 95)) (-2976 (((-3 (-618 $) "failed") $) 37)) (-3145 (((-3 (-2 (|:| |val| $) (|:| -2484 (-747))) "failed") $) 40)) (-2975 (((-112) $) 29)) (-3577 (((-1086) $) NIL)) (-2963 (((-112) $) 21)) (-2970 (((-112) $) 46)) (-2961 (((-618 (-51)) $) 111)) (-2973 (((-112) $) 48)) (-4142 (($ (-113) (-618 $)) 92)) (-3665 (((-747) $) 28)) (-3742 (($ $) 62)) (-4313 (($ (-618 $)) 59)) (-4295 (((-112) $) 26)) (-4300 (((-835) $) 53) (($ |#1|) 18) (($ (-1142)) 66)) (-2981 (($ $ (-51)) 110)) (-2979 (($) 91 T CONST)) (-2985 (($) 73 T CONST)) (-3375 (((-112) $ $) 79)) (-4291 (($ $ $) 100)) (-4182 (($ $ $) 104)) (** (($ $ (-747)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-861 |#1|) (-13 (-1067) (-1009 |#1|) (-1009 (-1142)) (-10 -8 (-15 0 ($) -4294) (-15 1 ($) -4294) (-15 -3143 ((-3 (-618 $) "failed") $)) (-15 -3144 ((-3 (-618 $) "failed") $)) (-15 -2978 ((-3 (-618 $) "failed") $ (-113))) (-15 -2978 ((-3 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 $))) "failed") $)) (-15 -3145 ((-3 (-2 (|:| |val| $) (|:| -2484 (-747))) "failed") $)) (-15 -2977 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2976 ((-3 (-618 $) "failed") $)) (-15 -3146 ((-3 (-2 (|:| |val| $) (|:| -2484 $)) "failed") $)) (-15 -4142 ($ (-113) (-618 $))) (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ $)) (-15 -4291 ($ $ $)) (-15 -3665 ((-747) $)) (-15 -4313 ($ (-618 $))) (-15 -3742 ($ $)) (-15 -2975 ((-112) $)) (-15 -2974 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -4295 ((-112) $)) (-15 -2973 ((-112) $)) (-15 -2972 ((-112) $)) (-15 -2971 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2969 ((-618 (-51)) $)) (-15 -2968 ($ $ (-618 (-51)))) (-15 -2967 ($ $ (-618 (-51)))) (-15 -2966 ($ (-1142) (-112) (-112) (-112))) (-15 -2965 ($ $ (-618 (-1142)) (-51))) (-15 -2964 ((-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51))) $)) (-15 -2963 ((-112) $)) (-15 -2962 ($ $)) (-15 -2981 ($ $ (-51))) (-15 -2961 ((-618 (-51)) $)) (-15 -3405 ((-618 $) $)) (-15 -2960 ((-3 (-618 $) "failed") (-618 $))))) (-1067)) (T -861)) -((-2979 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-2985 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-3143 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3144 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2978 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-618 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1067)))) (-2978 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 (-861 *3))))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -2484 (-747)))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2977 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2976 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3146 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -2484 (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-4142 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1067)))) (-4182 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-4291 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3742 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2967 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2966 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-112)) (-5 *1 (-861 *4)) (-4 *4 (-1067)))) (-2965 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-51)) (-5 *1 (-861 *4)) (-4 *4 (-1067)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51)))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2962 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-2981 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2960 (*1 *2 *2) (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(-13 (-1067) (-1009 |#1|) (-1009 (-1142)) (-10 -8 (-15 (-2979) ($) -4294) (-15 (-2985) ($) -4294) (-15 -3143 ((-3 (-618 $) "failed") $)) (-15 -3144 ((-3 (-618 $) "failed") $)) (-15 -2978 ((-3 (-618 $) "failed") $ (-113))) (-15 -2978 ((-3 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 $))) "failed") $)) (-15 -3145 ((-3 (-2 (|:| |val| $) (|:| -2484 (-747))) "failed") $)) (-15 -2977 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2976 ((-3 (-618 $) "failed") $)) (-15 -3146 ((-3 (-2 (|:| |val| $) (|:| -2484 $)) "failed") $)) (-15 -4142 ($ (-113) (-618 $))) (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ $)) (-15 -4291 ($ $ $)) (-15 -3665 ((-747) $)) (-15 -4313 ($ (-618 $))) (-15 -3742 ($ $)) (-15 -2975 ((-112) $)) (-15 -2974 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -4295 ((-112) $)) (-15 -2973 ((-112) $)) (-15 -2972 ((-112) $)) (-15 -2971 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2969 ((-618 (-51)) $)) (-15 -2968 ($ $ (-618 (-51)))) (-15 -2967 ($ $ (-618 (-51)))) (-15 -2966 ($ (-1142) (-112) (-112) (-112))) (-15 -2965 ($ $ (-618 (-1142)) (-51))) (-15 -2964 ((-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51))) $)) (-15 -2963 ((-112) $)) (-15 -2962 ($ $)) (-15 -2981 ($ $ (-51))) (-15 -2961 ((-618 (-51)) $)) (-15 -3405 ((-618 $) $)) (-15 -2960 ((-3 (-618 $) "failed") (-618 $))))) -((-3543 (((-861 |#1|) (-861 |#1|) (-618 (-1142)) (-1 (-112) (-618 |#2|))) 32) (((-861 |#1|) (-861 |#1|) (-618 (-1 (-112) |#2|))) 43) (((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|)) 35)) (-2980 (((-112) (-618 |#2|) (-861 |#1|)) 40) (((-112) |#2| (-861 |#1|)) 36)) (-3868 (((-1 (-112) |#2|) (-861 |#1|)) 16)) (-2982 (((-618 |#2|) (-861 |#1|)) 24)) (-2981 (((-861 |#1|) (-861 |#1|) |#2|) 20))) -(((-862 |#1| |#2|) (-10 -7 (-15 -3543 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -3543 ((-861 |#1|) (-861 |#1|) (-618 (-1 (-112) |#2|)))) (-15 -3543 ((-861 |#1|) (-861 |#1|) (-618 (-1142)) (-1 (-112) (-618 |#2|)))) (-15 -3868 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -2980 ((-112) |#2| (-861 |#1|))) (-15 -2980 ((-112) (-618 |#2|) (-861 |#1|))) (-15 -2981 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -2982 ((-618 |#2|) (-861 |#1|)))) (-1067) (-1178)) (T -862)) -((-2982 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-618 *5)) (-5 *1 (-862 *4 *5)) (-4 *5 (-1178)))) (-2981 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1178)))) (-2980 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *2 (-112)) (-5 *1 (-862 *5 *6)))) (-2980 (*1 *2 *3 *4) (-12 (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-862 *5 *3)) (-4 *3 (-1178)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-862 *4 *5)) (-4 *5 (-1178)))) (-3543 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-861 *5)) (-5 *3 (-618 (-1142))) (-5 *4 (-1 (-112) (-618 *6))) (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *1 (-862 *5 *6)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-618 (-1 (-112) *5))) (-4 *4 (-1067)) (-4 *5 (-1178)) (-5 *1 (-862 *4 *5)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1067)) (-4 *5 (-1178)) (-5 *1 (-862 *4 *5))))) -(-10 -7 (-15 -3543 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -3543 ((-861 |#1|) (-861 |#1|) (-618 (-1 (-112) |#2|)))) (-15 -3543 ((-861 |#1|) (-861 |#1|) (-618 (-1142)) (-1 (-112) (-618 |#2|)))) (-15 -3868 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -2980 ((-112) |#2| (-861 |#1|))) (-15 -2980 ((-112) (-618 |#2|) (-861 |#1|))) (-15 -2981 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -2982 ((-618 |#2|) (-861 |#1|)))) -((-4301 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 19))) -(((-863 |#1| |#2|) (-10 -7 (-15 -4301 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1067) (-1067)) (T -863)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-861 *6)) (-5 *1 (-863 *5 *6))))) -(-10 -7 (-15 -4301 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) -((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) 16)) (-2983 (((-112) $) 38)) (-3491 (((-3 (-648 |#1|) "failed") $) 43)) (-3490 (((-648 |#1|) $) 41)) (-4141 (($ $) 18)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4176 (((-747) $) 46)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-648 |#1|) $) 17)) (-4300 (((-835) $) 37) (($ (-648 |#1|)) 21) (((-795 |#1|) $) 27) (($ |#1|) 20)) (-2985 (($) 8 T CONST)) (-2984 (((-618 (-648 |#1|)) $) 23)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 11)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 49))) -(((-864 |#1|) (-13 (-823) (-1009 (-648 |#1|)) (-10 -8 (-15 1 ($) -4294) (-15 -4300 ((-795 |#1|) $)) (-15 -4300 ($ |#1|)) (-15 -4143 ((-648 |#1|) $)) (-15 -4176 ((-747) $)) (-15 -2984 ((-618 (-648 |#1|)) $)) (-15 -4141 ($ $)) (-15 -2983 ((-112) $)) (-15 -4277 ((-618 |#1|) $)))) (-823)) (T -864)) -((-2985 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4300 (*1 *1 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-648 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-618 (-648 *3))) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))) -(-13 (-823) (-1009 (-648 |#1|)) (-10 -8 (-15 (-2985) ($) -4294) (-15 -4300 ((-795 |#1|) $)) (-15 -4300 ($ |#1|)) (-15 -4143 ((-648 |#1|) $)) (-15 -4176 ((-747) $)) (-15 -2984 ((-618 (-648 |#1|)) $)) (-15 -4141 ($ $)) (-15 -2983 ((-112) $)) (-15 -4277 ((-618 |#1|) $)))) -((-3811 ((|#1| |#1| |#1|) 19))) -(((-865 |#1| |#2|) (-10 -7 (-15 -3811 (|#1| |#1| |#1|))) (-1200 |#2|) (-1018)) (T -865)) -((-3811 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1200 *3))))) -(-10 -7 (-15 -3811 (|#1| |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2986 (((-1006) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 13)) (-3375 (((-112) $ $) 6))) -(((-866) (-138)) (T -866)) -((-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-866)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) (-2986 (*1 *2 *3) (-12 (-4 *1 (-866)) (-5 *3 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-1006))))) -(-13 (-1067) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -2986 ((-1006) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2988 ((|#1| |#1| (-747)) 24)) (-2987 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3777 (((-3 (-2 (|:| -3456 |#1|) (|:| -3455 |#1|)) "failed") |#1| (-747) (-747)) 27) (((-618 |#1|) |#1|) 29))) -(((-867 |#1| |#2|) (-10 -7 (-15 -3777 ((-618 |#1|) |#1|)) (-15 -3777 ((-3 (-2 (|:| -3456 |#1|) (|:| -3455 |#1|)) "failed") |#1| (-747) (-747))) (-15 -2987 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2988 (|#1| |#1| (-747)))) (-1200 |#2|) (-356)) (T -867)) -((-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-5 *1 (-867 *2 *4)) (-4 *2 (-1200 *4)))) (-2987 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-867 *2 *3)) (-4 *2 (-1200 *3)))) (-3777 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3456 *3) (|:| -3455 *3))) (-5 *1 (-867 *3 *5)) (-4 *3 (-1200 *5)))) (-3777 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-867 *3 *4)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -3777 ((-618 |#1|) |#1|)) (-15 -3777 ((-3 (-2 (|:| -3456 |#1|) (|:| -3455 |#1|)) "failed") |#1| (-747) (-747))) (-15 -2987 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2988 (|#1| |#1| (-747)))) -((-3919 (((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124)) 96) (((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124) (-219)) 91) (((-1006) (-869) (-1030)) 83) (((-1006) (-869)) 84)) (-2989 (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869) (-1030)) 59) (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869)) 61))) -(((-868) (-10 -7 (-15 -3919 ((-1006) (-869))) (-15 -3919 ((-1006) (-869) (-1030))) (-15 -3919 ((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124) (-219))) (-15 -3919 ((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869) (-1030))))) (T -868)) -((-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-868)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-868)))) (-3919 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-747)) (-5 *6 (-618 (-618 (-307 *3)))) (-5 *7 (-1124)) (-5 *5 (-618 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-3919 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-747)) (-5 *6 (-618 (-618 (-307 *3)))) (-5 *7 (-1124)) (-5 *8 (-219)) (-5 *5 (-618 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-1006)) (-5 *1 (-868))))) -(-10 -7 (-15 -3919 ((-1006) (-869))) (-15 -3919 ((-1006) (-869) (-1030))) (-15 -3919 ((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124) (-219))) (-15 -3919 ((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869) (-1030)))) -((-2887 (((-112) $ $) NIL)) (-3490 (((-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $) 19)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (($ (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 18)) (-3375 (((-112) $ $) NIL))) -(((-869) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $))))) (T -869)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-869)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *1 (-869)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *1 (-869))))) -(-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $)))) -((-4153 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) 10) (($ $ |#2| (-747)) 12) (($ $ (-618 |#2|) (-618 (-747))) 15)) (-2990 (($ $ |#2|) 16) (($ $ (-618 |#2|)) 18) (($ $ |#2| (-747)) 19) (($ $ (-618 |#2|) (-618 (-747))) 21))) -(((-870 |#1| |#2|) (-10 -8 (-15 -2990 (|#1| |#1| (-618 |#2|) (-618 (-747)))) (-15 -2990 (|#1| |#1| |#2| (-747))) (-15 -2990 (|#1| |#1| (-618 |#2|))) (-15 -2990 (|#1| |#1| |#2|)) (-15 -4153 (|#1| |#1| (-618 |#2|) (-618 (-747)))) (-15 -4153 (|#1| |#1| |#2| (-747))) (-15 -4153 (|#1| |#1| (-618 |#2|))) (-15 -4153 (|#1| |#1| |#2|))) (-871 |#2|) (-1067)) (T -870)) -NIL -(-10 -8 (-15 -2990 (|#1| |#1| (-618 |#2|) (-618 (-747)))) (-15 -2990 (|#1| |#1| |#2| (-747))) (-15 -2990 (|#1| |#1| (-618 |#2|))) (-15 -2990 (|#1| |#1| |#2|)) (-15 -4153 (|#1| |#1| (-618 |#2|) (-618 (-747)))) (-15 -4153 (|#1| |#1| |#2| (-747))) (-15 -4153 (|#1| |#1| (-618 |#2|))) (-15 -4153 (|#1| |#1| |#2|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4153 (($ $ |#1|) 40) (($ $ (-618 |#1|)) 39) (($ $ |#1| (-747)) 38) (($ $ (-618 |#1|) (-618 (-747))) 37)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ |#1|) 36) (($ $ (-618 |#1|)) 35) (($ $ |#1| (-747)) 34) (($ $ (-618 |#1|) (-618 (-747))) 33)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-871 |#1|) (-138) (-1067)) (T -871)) -((-4153 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067)))) (-4153 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-4153 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 (-747))) (-4 *1 (-871 *4)) (-4 *4 (-1067)))) (-2990 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067)))) (-2990 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-2990 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 (-747))) (-4 *1 (-871 *4)) (-4 *4 (-1067))))) -(-13 (-1018) (-10 -8 (-15 -4153 ($ $ |t#1|)) (-15 -4153 ($ $ (-618 |t#1|))) (-15 -4153 ($ $ |t#1| (-747))) (-15 -4153 ($ $ (-618 |t#1|) (-618 (-747)))) (-15 -2990 ($ $ |t#1|)) (-15 -2990 ($ $ (-618 |t#1|))) (-15 -2990 ($ $ |t#1| (-747))) (-15 -2990 ($ $ (-618 |t#1|) (-618 (-747)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 26)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1348 (($ $ $) NIL (|has| $ (-6 -4337)))) (-1349 (($ $ $) NIL (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 25)) (-2991 (($ |#1|) 12) (($ $ $) 17)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) 23)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) 20)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1165 |#1|) $) 9) (((-835) $) 29 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 21 (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-872 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2991 ($ |#1|)) (-15 -2991 ($ $ $)) (-15 -4300 ((-1165 |#1|) $)))) (-1067)) (T -872)) -((-2991 (*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))) (-2991 (*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1067))))) -(-13 (-119 |#1|) (-10 -8 (-15 -2991 ($ |#1|)) (-15 -2991 ($ $ $)) (-15 -4300 ((-1165 |#1|) $)))) -((-2887 (((-112) $ $) NIL)) (-3230 (((-618 $) (-618 $)) 77)) (-3969 (((-535) $) 60)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-4114 (((-747) $) 58)) (-3011 (((-1063 |#1|) $ |#1|) 49)) (-2493 (((-112) $) NIL)) (-2994 (((-112) $) 63)) (-2996 (((-747) $) 61)) (-3007 (((-1063 |#1|) $) 42)) (-3660 (($ $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3661 (($ $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3000 (((-2 (|:| |preimage| (-618 |#1|)) (|:| |image| (-618 |#1|))) $) 37)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 93)) (-3577 (((-1086) $) NIL)) (-2993 (((-1063 |#1|) $) 100 (|has| |#1| (-361)))) (-2995 (((-112) $) 59)) (-4110 ((|#1| $ |#1|) 47)) (-4142 ((|#1| $ |#1|) 94)) (-4290 (((-747) $) 44)) (-3002 (($ (-618 (-618 |#1|))) 85)) (-2997 (((-942) $) 53)) (-3003 (($ (-618 |#1|)) 21)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-2999 (($ (-618 (-618 |#1|))) 39)) (-2998 (($ (-618 (-618 |#1|))) 88)) (-2992 (($ (-618 |#1|)) 96)) (-4300 (((-835) $) 84) (($ (-618 (-618 |#1|))) 66) (($ (-618 |#1|)) 67)) (-2985 (($) 16 T CONST)) (-2885 (((-112) $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3375 (((-112) $ $) 45)) (-3005 (((-112) $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3006 (((-112) $ $) 65)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ $ $) 22))) -(((-873 |#1|) (-13 (-875 |#1|) (-10 -8 (-15 -3000 ((-2 (|:| |preimage| (-618 |#1|)) (|:| |image| (-618 |#1|))) $)) (-15 -2999 ($ (-618 (-618 |#1|)))) (-15 -4300 ($ (-618 (-618 |#1|)))) (-15 -4300 ($ (-618 |#1|))) (-15 -2998 ($ (-618 (-618 |#1|)))) (-15 -4290 ((-747) $)) (-15 -3007 ((-1063 |#1|) $)) (-15 -2997 ((-942) $)) (-15 -4114 ((-747) $)) (-15 -2996 ((-747) $)) (-15 -3969 ((-535) $)) (-15 -2995 ((-112) $)) (-15 -2994 ((-112) $)) (-15 -3230 ((-618 $) (-618 $))) (IF (|has| |#1| (-361)) (-15 -2993 ((-1063 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-534)) (-15 -2992 ($ (-618 |#1|))) (IF (|has| |#1| (-361)) (-15 -2992 ($ (-618 |#1|))) |%noBranch|)))) (-1067)) (T -873)) -((-3000 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-618 *3)) (|:| |image| (-618 *3)))) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-942)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-3230 (*1 *2 *2) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-873 *3)) (-4 *3 (-361)) (-4 *3 (-1067)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-873 *3))))) -(-13 (-875 |#1|) (-10 -8 (-15 -3000 ((-2 (|:| |preimage| (-618 |#1|)) (|:| |image| (-618 |#1|))) $)) (-15 -2999 ($ (-618 (-618 |#1|)))) (-15 -4300 ($ (-618 (-618 |#1|)))) (-15 -4300 ($ (-618 |#1|))) (-15 -2998 ($ (-618 (-618 |#1|)))) (-15 -4290 ((-747) $)) (-15 -3007 ((-1063 |#1|) $)) (-15 -2997 ((-942) $)) (-15 -4114 ((-747) $)) (-15 -2996 ((-747) $)) (-15 -3969 ((-535) $)) (-15 -2995 ((-112) $)) (-15 -2994 ((-112) $)) (-15 -3230 ((-618 $) (-618 $))) (IF (|has| |#1| (-361)) (-15 -2993 ((-1063 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-534)) (-15 -2992 ($ (-618 |#1|))) (IF (|has| |#1| (-361)) (-15 -2992 ($ (-618 |#1|))) |%noBranch|)))) -((-3001 ((|#2| (-1108 |#1| |#2|)) 40))) -(((-874 |#1| |#2|) (-10 -7 (-15 -3001 (|#2| (-1108 |#1| |#2|)))) (-890) (-13 (-1018) (-10 -7 (-6 (-4338 "*"))))) (T -874)) -((-3001 (*1 *2 *3) (-12 (-5 *3 (-1108 *4 *2)) (-14 *4 (-890)) (-4 *2 (-13 (-1018) (-10 -7 (-6 (-4338 "*"))))) (-5 *1 (-874 *4 *2))))) -(-10 -7 (-15 -3001 (|#2| (-1108 |#1| |#2|)))) -((-2887 (((-112) $ $) 7)) (-3879 (($) 18 T CONST)) (-3804 (((-3 $ "failed") $) 15)) (-3011 (((-1063 |#1|) $ |#1|) 32)) (-2493 (((-112) $) 17)) (-3660 (($ $ $) 30 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3661 (($ $ $) 29 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 24)) (-3577 (((-1086) $) 10)) (-4110 ((|#1| $ |#1|) 34)) (-4142 ((|#1| $ |#1|) 33)) (-3002 (($ (-618 (-618 |#1|))) 35)) (-3003 (($ (-618 |#1|)) 36)) (-3330 (($ $ $) 21)) (-2677 (($ $ $) 20)) (-4300 (((-835) $) 11)) (-2985 (($) 19 T CONST)) (-2885 (((-112) $ $) 27 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2886 (((-112) $ $) 26 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 28 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3006 (((-112) $ $) 31)) (-4291 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-747)) 16) (($ $ (-535)) 22)) (* (($ $ $) 14))) -(((-875 |#1|) (-138) (-1067)) (T -875)) -((-3003 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-875 *3)))) (-3002 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-4 *1 (-875 *3)))) (-4110 (*1 *2 *1 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1067)))) (-4142 (*1 *2 *1 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1067)))) (-3011 (*1 *2 *1 *3) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1067)) (-5 *2 (-1063 *3)))) (-3006 (*1 *2 *1 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(-13 (-465) (-10 -8 (-15 -3003 ($ (-618 |t#1|))) (-15 -3002 ($ (-618 (-618 |t#1|)))) (-15 -4110 (|t#1| $ |t#1|)) (-15 -4142 (|t#1| $ |t#1|)) (-15 -3011 ((-1063 |t#1|) $ |t#1|)) (-15 -3006 ((-112) $ $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-823)) |%noBranch|))) -(((-101) . T) ((-593 (-835)) . T) ((-465) . T) ((-703) . T) ((-823) -3874 (|has| |#1| (-823)) (|has| |#1| (-361))) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3013 (((-618 (-618 (-747))) $) 108)) (-3009 (((-618 (-747)) (-873 |#1|) $) 130)) (-3008 (((-618 (-747)) (-873 |#1|) $) 131)) (-3014 (((-618 (-873 |#1|)) $) 98)) (-3315 (((-873 |#1|) $ (-535)) 103) (((-873 |#1|) $) 104)) (-3012 (($ (-618 (-873 |#1|))) 110)) (-4114 (((-747) $) 105)) (-3010 (((-1063 (-1063 |#1|)) $) 128)) (-3011 (((-1063 |#1|) $ |#1|) 121) (((-1063 (-1063 |#1|)) $ (-1063 |#1|)) 139) (((-1063 (-618 |#1|)) $ (-618 |#1|)) 142)) (-3007 (((-1063 |#1|) $) 101)) (-3579 (((-112) (-873 |#1|) $) 92)) (-3576 (((-1124) $) NIL)) (-3004 (((-1230) $) 95) (((-1230) $ (-535) (-535)) 143)) (-3577 (((-1086) $) NIL)) (-3016 (((-618 (-873 |#1|)) $) 96)) (-4142 (((-873 |#1|) $ (-747)) 99)) (-4290 (((-747) $) 106)) (-4300 (((-835) $) 119) (((-618 (-873 |#1|)) $) 23) (($ (-618 (-873 |#1|))) 109)) (-3015 (((-618 |#1|) $) 107)) (-3375 (((-112) $ $) 136)) (-3005 (((-112) $ $) 134)) (-3006 (((-112) $ $) 133))) -(((-876 |#1|) (-13 (-1067) (-10 -8 (-15 -4300 ((-618 (-873 |#1|)) $)) (-15 -3016 ((-618 (-873 |#1|)) $)) (-15 -4142 ((-873 |#1|) $ (-747))) (-15 -3315 ((-873 |#1|) $ (-535))) (-15 -3315 ((-873 |#1|) $)) (-15 -4114 ((-747) $)) (-15 -4290 ((-747) $)) (-15 -3015 ((-618 |#1|) $)) (-15 -3014 ((-618 (-873 |#1|)) $)) (-15 -3013 ((-618 (-618 (-747))) $)) (-15 -4300 ($ (-618 (-873 |#1|)))) (-15 -3012 ($ (-618 (-873 |#1|)))) (-15 -3011 ((-1063 |#1|) $ |#1|)) (-15 -3010 ((-1063 (-1063 |#1|)) $)) (-15 -3011 ((-1063 (-1063 |#1|)) $ (-1063 |#1|))) (-15 -3011 ((-1063 (-618 |#1|)) $ (-618 |#1|))) (-15 -3579 ((-112) (-873 |#1|) $)) (-15 -3009 ((-618 (-747)) (-873 |#1|) $)) (-15 -3008 ((-618 (-747)) (-873 |#1|) $)) (-15 -3007 ((-1063 |#1|) $)) (-15 -3006 ((-112) $ $)) (-15 -3005 ((-112) $ $)) (-15 -3004 ((-1230) $)) (-15 -3004 ((-1230) $ (-535) (-535))))) (-1067)) (T -876)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-873 *4)) (-5 *1 (-876 *4)) (-4 *4 (-1067)))) (-3315 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-873 *4)) (-5 *1 (-876 *4)) (-4 *4 (-1067)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-873 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-747)))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-873 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-618 (-873 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) (-3011 (*1 *2 *1 *3) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-1063 (-1063 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3011 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-1063 (-1063 *4))) (-5 *1 (-876 *4)) (-5 *3 (-1063 *4)))) (-3011 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-1063 (-618 *4))) (-5 *1 (-876 *4)) (-5 *3 (-618 *4)))) (-3579 (*1 *2 *3 *1) (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-876 *4)))) (-3009 (*1 *2 *3 *1) (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-618 (-747))) (-5 *1 (-876 *4)))) (-3008 (*1 *2 *3 *1) (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-618 (-747))) (-5 *1 (-876 *4)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3006 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3005 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3004 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-876 *4)) (-4 *4 (-1067))))) -(-13 (-1067) (-10 -8 (-15 -4300 ((-618 (-873 |#1|)) $)) (-15 -3016 ((-618 (-873 |#1|)) $)) (-15 -4142 ((-873 |#1|) $ (-747))) (-15 -3315 ((-873 |#1|) $ (-535))) (-15 -3315 ((-873 |#1|) $)) (-15 -4114 ((-747) $)) (-15 -4290 ((-747) $)) (-15 -3015 ((-618 |#1|) $)) (-15 -3014 ((-618 (-873 |#1|)) $)) (-15 -3013 ((-618 (-618 (-747))) $)) (-15 -4300 ($ (-618 (-873 |#1|)))) (-15 -3012 ($ (-618 (-873 |#1|)))) (-15 -3011 ((-1063 |#1|) $ |#1|)) (-15 -3010 ((-1063 (-1063 |#1|)) $)) (-15 -3011 ((-1063 (-1063 |#1|)) $ (-1063 |#1|))) (-15 -3011 ((-1063 (-618 |#1|)) $ (-618 |#1|))) (-15 -3579 ((-112) (-873 |#1|) $)) (-15 -3009 ((-618 (-747)) (-873 |#1|) $)) (-15 -3008 ((-618 (-747)) (-873 |#1|) $)) (-15 -3007 ((-1063 |#1|) $)) (-15 -3006 ((-112) $ $)) (-15 -3005 ((-112) $ $)) (-15 -3004 ((-1230) $)) (-15 -3004 ((-1230) $ (-535) (-535))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (($ $ (-890)) NIL (|has| $ (-361))) (($ $) NIL)) (-1786 (((-1151 (-890) (-747)) (-535)) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 $ "failed") $) NIL)) (-3490 (($ $) NIL)) (-1906 (($ (-1224 $)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL)) (-1791 (((-112) $) NIL)) (-1881 (($ $) NIL) (($ $ (-747)) NIL)) (-4069 (((-112) $) NIL)) (-4114 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| $ (-361)))) (-2122 (((-112) $) NIL (|has| $ (-361)))) (-3450 (($ $ (-890)) NIL (|has| $ (-361))) (($ $) NIL)) (-3786 (((-3 $ "failed") $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 $) $ (-890)) NIL (|has| $ (-361))) (((-1136 $) $) NIL)) (-2121 (((-890) $) NIL)) (-1719 (((-1136 $) $) NIL (|has| $ (-361)))) (-1718 (((-3 (-1136 $) "failed") $ $) NIL (|has| $ (-361))) (((-1136 $) $) NIL (|has| $ (-361)))) (-1720 (($ $ (-1136 $)) NIL (|has| $ (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL T CONST)) (-2483 (($ (-890)) NIL)) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL (|has| $ (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL)) (-4075 (((-398 $) $) NIL)) (-4273 (((-890)) NIL) (((-808 (-890))) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-3 (-747) "failed") $ $) NIL) (((-747) $) NIL)) (-4254 (((-133)) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-4290 (((-890) $) NIL) (((-808 (-890)) $) NIL)) (-3519 (((-1136 $)) NIL)) (-1785 (($) NIL)) (-1721 (($) NIL (|has| $ (-361)))) (-3558 (((-665 $) (-1224 $)) NIL) (((-1224 $) $) NIL)) (-4313 (((-535) $) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3444 (((-747)) NIL)) (-2123 (((-1224 $) (-890)) NIL) (((-1224 $)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $ (-747)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL))) -(((-877 |#1|) (-13 (-343) (-322 $) (-594 (-535))) (-890)) (T -877)) -NIL -(-13 (-343) (-322 $) (-594 (-535))) -((-3018 (((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|)) 128)) (-3021 ((|#1|) 77)) (-3020 (((-398 (-1136 |#4|)) (-1136 |#4|)) 137)) (-3022 (((-398 (-1136 |#4|)) (-618 |#3|) (-1136 |#4|)) 69)) (-3019 (((-398 (-1136 |#4|)) (-1136 |#4|)) 147)) (-3017 (((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|) |#3|) 92))) -(((-878 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3018 ((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|))) (-15 -3019 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -3020 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -3021 (|#1|)) (-15 -3017 ((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|) |#3|)) (-15 -3022 ((-398 (-1136 |#4|)) (-618 |#3|) (-1136 |#4|)))) (-881) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -878)) -((-3022 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *7)) (-4 *7 (-823)) (-4 *5 (-881)) (-4 *6 (-769)) (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-398 (-1136 *8))) (-5 *1 (-878 *5 *6 *7 *8)) (-5 *4 (-1136 *8)))) (-3017 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-618 (-1136 *7))) (-5 *3 (-1136 *7)) (-4 *7 (-921 *5 *6 *4)) (-4 *5 (-881)) (-4 *6 (-769)) (-4 *4 (-823)) (-5 *1 (-878 *5 *6 *4 *7)))) (-3021 (*1 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-881)) (-5 *1 (-878 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-3020 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-878 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-878 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-3018 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *7))) (-5 *3 (-1136 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-878 *4 *5 *6 *7))))) -(-10 -7 (-15 -3018 ((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|))) (-15 -3019 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -3020 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -3021 (|#1|)) (-15 -3017 ((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|) |#3|)) (-15 -3022 ((-398 (-1136 |#4|)) (-618 |#3|) (-1136 |#4|)))) -((-3018 (((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|)) 36)) (-3021 ((|#1|) 54)) (-3020 (((-398 (-1136 |#2|)) (-1136 |#2|)) 102)) (-3022 (((-398 (-1136 |#2|)) (-1136 |#2|)) 90)) (-3019 (((-398 (-1136 |#2|)) (-1136 |#2|)) 113))) -(((-879 |#1| |#2|) (-10 -7 (-15 -3018 ((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|))) (-15 -3019 ((-398 (-1136 |#2|)) (-1136 |#2|))) (-15 -3020 ((-398 (-1136 |#2|)) (-1136 |#2|))) (-15 -3021 (|#1|)) (-15 -3022 ((-398 (-1136 |#2|)) (-1136 |#2|)))) (-881) (-1200 |#1|)) (T -879)) -((-3022 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))) (-3021 (*1 *2) (-12 (-4 *2 (-881)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1200 *2)))) (-3020 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))) (-3018 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *5))) (-5 *3 (-1136 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-881)) (-5 *1 (-879 *4 *5))))) -(-10 -7 (-15 -3018 ((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|))) (-15 -3019 ((-398 (-1136 |#2|)) (-1136 |#2|))) (-15 -3020 ((-398 (-1136 |#2|)) (-1136 |#2|))) (-15 -3021 (|#1|)) (-15 -3022 ((-398 (-1136 |#2|)) (-1136 |#2|)))) -((-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 41)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 18)) (-3023 (((-3 $ "failed") $) 35))) -(((-880 |#1|) (-10 -8 (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|)))) (-881)) (T -880)) -NIL -(-10 -8 (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 58)) (-4117 (($ $) 49)) (-4312 (((-398 $) $) 50)) (-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 55)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-4069 (((-112) $) 51)) (-2493 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3026 (((-398 (-1136 $)) (-1136 $)) 56)) (-3027 (((-398 (-1136 $)) (-1136 $)) 57)) (-4075 (((-398 $) $) 48)) (-3803 (((-3 $ "failed") $ $) 40)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 54 (|has| $ (-143)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3023 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-881) (-138)) (T -881)) -((-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-881)))) (-3028 (*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))) (-3027 (*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))) (-3026 (*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))) (-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *1))) (-5 *3 (-1136 *1)) (-4 *1 (-881)))) (-3024 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-143)) (-4 *1 (-881)) (-5 *2 (-1224 *1)))) (-3023 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-881))))) -(-13 (-1183) (-10 -8 (-15 -3028 ((-398 (-1136 $)) (-1136 $))) (-15 -3027 ((-398 (-1136 $)) (-1136 $))) (-15 -3026 ((-398 (-1136 $)) (-1136 $))) (-15 -3029 ((-1136 $) (-1136 $) (-1136 $))) (-15 -3025 ((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $))) (IF (|has| $ (-143)) (PROGN (-15 -3024 ((-3 (-1224 $) "failed") (-665 $))) (-15 -3023 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T)) -((-3031 (((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)) 79)) (-3030 (((-112) (-326 |#2| |#3| |#4| |#5|)) 17)) (-4114 (((-3 (-747) "failed") (-326 |#2| |#3| |#4| |#5|)) 15))) -(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4114 ((-3 (-747) "failed") (-326 |#2| |#3| |#4| |#5|))) (-15 -3030 ((-112) (-326 |#2| |#3| |#4| |#5|))) (-15 -3031 ((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)))) (-13 (-823) (-542) (-1009 (-535))) (-414 |#1|) (-1200 |#2|) (-1200 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -882)) -((-3031 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-2 (|:| -4114 (-747)) (|:| -2466 *8))) (-5 *1 (-882 *4 *5 *6 *7 *8)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-112)) (-5 *1 (-882 *4 *5 *6 *7 *8)))) (-4114 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-747)) (-5 *1 (-882 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -4114 ((-3 (-747) "failed") (-326 |#2| |#3| |#4| |#5|))) (-15 -3030 ((-112) (-326 |#2| |#3| |#4| |#5|))) (-15 -3031 ((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)))) -((-3031 (((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#3|)) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|)) 56)) (-3030 (((-112) (-326 (-400 (-535)) |#1| |#2| |#3|)) 16)) (-4114 (((-3 (-747) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|)) 14))) -(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -4114 ((-3 (-747) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|))) (-15 -3030 ((-112) (-326 (-400 (-535)) |#1| |#2| |#3|))) (-15 -3031 ((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#3|)) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|)))) (-1200 (-400 (-535))) (-1200 (-400 |#1|)) (-335 (-400 (-535)) |#1| |#2|)) (T -883)) -((-3031 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-2 (|:| -4114 (-747)) (|:| -2466 *6))) (-5 *1 (-883 *4 *5 *6)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-883 *4 *5 *6)))) (-4114 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-747)) (-5 *1 (-883 *4 *5 *6))))) -(-10 -7 (-15 -4114 ((-3 (-747) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|))) (-15 -3030 ((-112) (-326 (-400 (-535)) |#1| |#2| |#3|))) (-15 -3031 ((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#3|)) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|)))) -((-3036 ((|#2| |#2|) 26)) (-3034 (((-535) (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))))) 15)) (-3032 (((-890) (-535)) 35)) (-3035 (((-535) |#2|) 42)) (-3033 (((-535) |#2|) 21) (((-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))) |#1|) 20))) -(((-884 |#1| |#2|) (-10 -7 (-15 -3032 ((-890) (-535))) (-15 -3033 ((-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))) |#1|)) (-15 -3033 ((-535) |#2|)) (-15 -3034 ((-535) (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))))) (-15 -3035 ((-535) |#2|)) (-15 -3036 (|#2| |#2|))) (-1200 (-400 (-535))) (-1200 (-400 |#1|))) (T -884)) -((-3036 (*1 *2 *2) (-12 (-4 *3 (-1200 (-400 (-535)))) (-5 *1 (-884 *3 *2)) (-4 *2 (-1200 (-400 *3))))) (-3035 (*1 *2 *3) (-12 (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1200 (-400 *4))))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))))) (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1200 (-400 *4))))) (-3033 (*1 *2 *3) (-12 (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1200 (-400 *4))))) (-3033 (*1 *2 *3) (-12 (-4 *3 (-1200 (-400 (-535)))) (-5 *2 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-1200 (-400 *3))))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-535)) (-4 *4 (-1200 (-400 *3))) (-5 *2 (-890)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1200 (-400 *4)))))) -(-10 -7 (-15 -3032 ((-890) (-535))) (-15 -3033 ((-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))) |#1|)) (-15 -3033 ((-535) |#2|)) (-15 -3034 ((-535) (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))))) (-15 -3035 ((-535) |#2|)) (-15 -3036 (|#2| |#2|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 ((|#1| $) 81)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) 75)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3044 (($ |#1| (-398 |#1|)) 73)) (-3038 (((-1136 |#1|) |#1| |#1|) 41)) (-3037 (($ $) 49)) (-2493 (((-112) $) NIL)) (-3039 (((-535) $) 78)) (-3040 (($ $ (-535)) 80)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3041 ((|#1| $) 77)) (-3042 (((-398 |#1|) $) 76)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) 74)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-3043 (($ $) 39)) (-4300 (((-835) $) 99) (($ (-535)) 54) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 31) (((-400 |#1|) $) 59) (($ (-400 (-398 |#1|))) 67)) (-3444 (((-747)) 52)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 23 T CONST)) (-2985 (($) 12 T CONST)) (-3375 (((-112) $ $) 68)) (-4291 (($ $ $) NIL)) (-4180 (($ $) 88) (($ $ $) NIL)) (-4182 (($ $ $) 38)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 90) (($ $ $) 37) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-885 |#1|) (-13 (-356) (-38 |#1|) (-10 -8 (-15 -4300 ((-400 |#1|) $)) (-15 -4300 ($ (-400 (-398 |#1|)))) (-15 -3043 ($ $)) (-15 -3042 ((-398 |#1|) $)) (-15 -3041 (|#1| $)) (-15 -3040 ($ $ (-535))) (-15 -3039 ((-535) $)) (-15 -3038 ((-1136 |#1|) |#1| |#1|)) (-15 -3037 ($ $)) (-15 -3044 ($ |#1| (-398 |#1|))) (-15 -3447 (|#1| $)))) (-300)) (T -885)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-400 (-398 *3))) (-4 *3 (-300)) (-5 *1 (-885 *3)))) (-3043 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3041 (*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-3040 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3038 (*1 *2 *3 *3) (-12 (-5 *2 (-1136 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3037 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-3044 (*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-300)) (-5 *1 (-885 *2)))) (-3447 (*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300))))) -(-13 (-356) (-38 |#1|) (-10 -8 (-15 -4300 ((-400 |#1|) $)) (-15 -4300 ($ (-400 (-398 |#1|)))) (-15 -3043 ($ $)) (-15 -3042 ((-398 |#1|) $)) (-15 -3041 (|#1| $)) (-15 -3040 ($ $ (-535))) (-15 -3039 ((-535) $)) (-15 -3038 ((-1136 |#1|) |#1| |#1|)) (-15 -3037 ($ $)) (-15 -3044 ($ |#1| (-398 |#1|))) (-15 -3447 (|#1| $)))) -((-3044 (((-51) (-917 |#1|) (-398 (-917 |#1|)) (-1142)) 17) (((-51) (-400 (-917 |#1|)) (-1142)) 18))) -(((-886 |#1|) (-10 -7 (-15 -3044 ((-51) (-400 (-917 |#1|)) (-1142))) (-15 -3044 ((-51) (-917 |#1|) (-398 (-917 |#1|)) (-1142)))) (-13 (-300) (-145))) (T -886)) -((-3044 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-398 (-917 *6))) (-5 *5 (-1142)) (-5 *3 (-917 *6)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-886 *6)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-886 *5))))) -(-10 -7 (-15 -3044 ((-51) (-400 (-917 |#1|)) (-1142))) (-15 -3044 ((-51) (-917 |#1|) (-398 (-917 |#1|)) (-1142)))) -((-3045 ((|#4| (-618 |#4|)) 121) (((-1136 |#4|) (-1136 |#4|) (-1136 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3478 (((-1136 |#4|) (-618 (-1136 |#4|))) 114) (((-1136 |#4|) (-1136 |#4|) (-1136 |#4|)) 50) ((|#4| (-618 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3478 (|#4| |#4| |#4|)) (-15 -3478 (|#4| (-618 |#4|))) (-15 -3478 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3478 ((-1136 |#4|) (-618 (-1136 |#4|)))) (-15 -3045 (|#4| |#4| |#4|)) (-15 -3045 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3045 (|#4| (-618 |#4|)))) (-769) (-823) (-300) (-921 |#3| |#1| |#2|)) (T -887)) -((-3045 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) (-3045 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) (-3045 (*1 *2 *2 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-921 *5 *3 *4)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-618 (-1136 *7))) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-1136 *7)) (-5 *1 (-887 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-3478 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) (-3478 (*1 *2 *2 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-921 *5 *3 *4))))) -(-10 -7 (-15 -3478 (|#4| |#4| |#4|)) (-15 -3478 (|#4| (-618 |#4|))) (-15 -3478 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3478 ((-1136 |#4|) (-618 (-1136 |#4|)))) (-15 -3045 (|#4| |#4| |#4|)) (-15 -3045 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3045 (|#4| (-618 |#4|)))) -((-3058 (((-876 (-535)) (-942)) 23) (((-876 (-535)) (-618 (-535))) 20)) (-3046 (((-876 (-535)) (-618 (-535))) 48) (((-876 (-535)) (-890)) 49)) (-3057 (((-876 (-535))) 24)) (-3055 (((-876 (-535))) 38) (((-876 (-535)) (-618 (-535))) 37)) (-3054 (((-876 (-535))) 36) (((-876 (-535)) (-618 (-535))) 35)) (-3053 (((-876 (-535))) 34) (((-876 (-535)) (-618 (-535))) 33)) (-3052 (((-876 (-535))) 32) (((-876 (-535)) (-618 (-535))) 31)) (-3051 (((-876 (-535))) 30) (((-876 (-535)) (-618 (-535))) 29)) (-3056 (((-876 (-535))) 40) (((-876 (-535)) (-618 (-535))) 39)) (-3050 (((-876 (-535)) (-618 (-535))) 52) (((-876 (-535)) (-890)) 53)) (-3049 (((-876 (-535)) (-618 (-535))) 50) (((-876 (-535)) (-890)) 51)) (-3047 (((-876 (-535)) (-618 (-535))) 46) (((-876 (-535)) (-890)) 47)) (-3048 (((-876 (-535)) (-618 (-890))) 43))) -(((-888) (-10 -7 (-15 -3046 ((-876 (-535)) (-890))) (-15 -3046 ((-876 (-535)) (-618 (-535)))) (-15 -3047 ((-876 (-535)) (-890))) (-15 -3047 ((-876 (-535)) (-618 (-535)))) (-15 -3048 ((-876 (-535)) (-618 (-890)))) (-15 -3049 ((-876 (-535)) (-890))) (-15 -3049 ((-876 (-535)) (-618 (-535)))) (-15 -3050 ((-876 (-535)) (-890))) (-15 -3050 ((-876 (-535)) (-618 (-535)))) (-15 -3051 ((-876 (-535)) (-618 (-535)))) (-15 -3051 ((-876 (-535)))) (-15 -3052 ((-876 (-535)) (-618 (-535)))) (-15 -3052 ((-876 (-535)))) (-15 -3053 ((-876 (-535)) (-618 (-535)))) (-15 -3053 ((-876 (-535)))) (-15 -3054 ((-876 (-535)) (-618 (-535)))) (-15 -3054 ((-876 (-535)))) (-15 -3055 ((-876 (-535)) (-618 (-535)))) (-15 -3055 ((-876 (-535)))) (-15 -3056 ((-876 (-535)) (-618 (-535)))) (-15 -3056 ((-876 (-535)))) (-15 -3057 ((-876 (-535)))) (-15 -3058 ((-876 (-535)) (-618 (-535)))) (-15 -3058 ((-876 (-535)) (-942))))) (T -888)) -((-3058 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3057 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3056 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3055 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3054 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3053 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3052 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3051 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-618 (-890))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(-10 -7 (-15 -3046 ((-876 (-535)) (-890))) (-15 -3046 ((-876 (-535)) (-618 (-535)))) (-15 -3047 ((-876 (-535)) (-890))) (-15 -3047 ((-876 (-535)) (-618 (-535)))) (-15 -3048 ((-876 (-535)) (-618 (-890)))) (-15 -3049 ((-876 (-535)) (-890))) (-15 -3049 ((-876 (-535)) (-618 (-535)))) (-15 -3050 ((-876 (-535)) (-890))) (-15 -3050 ((-876 (-535)) (-618 (-535)))) (-15 -3051 ((-876 (-535)) (-618 (-535)))) (-15 -3051 ((-876 (-535)))) (-15 -3052 ((-876 (-535)) (-618 (-535)))) (-15 -3052 ((-876 (-535)))) (-15 -3053 ((-876 (-535)) (-618 (-535)))) (-15 -3053 ((-876 (-535)))) (-15 -3054 ((-876 (-535)) (-618 (-535)))) (-15 -3054 ((-876 (-535)))) (-15 -3055 ((-876 (-535)) (-618 (-535)))) (-15 -3055 ((-876 (-535)))) (-15 -3056 ((-876 (-535)) (-618 (-535)))) (-15 -3056 ((-876 (-535)))) (-15 -3057 ((-876 (-535)))) (-15 -3058 ((-876 (-535)) (-618 (-535)))) (-15 -3058 ((-876 (-535)) (-942)))) -((-3060 (((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142))) 12)) (-3059 (((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142))) 11))) -(((-889 |#1|) (-10 -7 (-15 -3059 ((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3060 ((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142))))) (-444)) (T -889)) -((-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-917 *4))) (-5 *3 (-618 (-1142))) (-4 *4 (-444)) (-5 *1 (-889 *4)))) (-3059 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-917 *4))) (-5 *3 (-618 (-1142))) (-4 *4 (-444)) (-5 *1 (-889 *4))))) -(-10 -7 (-15 -3059 ((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3060 ((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142))))) -((-2887 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3478 (($ $ $) NIL)) (-4300 (((-835) $) NIL)) (-2985 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ $ $) NIL))) -(((-890) (-13 (-770) (-703) (-10 -8 (-15 -3478 ($ $ $)) (-6 (-4338 "*"))))) (T -890)) -((-3478 (*1 *1 *1 *1) (-5 *1 (-890)))) -(-13 (-770) (-703) (-10 -8 (-15 -3478 ($ $ $)) (-6 (-4338 "*")))) -((-4300 (((-307 |#1|) (-469)) 16))) -(((-891 |#1|) (-10 -7 (-15 -4300 ((-307 |#1|) (-469)))) (-13 (-823) (-542))) (T -891)) -((-4300 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *2 (-307 *4)) (-5 *1 (-891 *4)) (-4 *4 (-13 (-823) (-542)))))) -(-10 -7 (-15 -4300 ((-307 |#1|) (-469)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-2493 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-892) (-138)) (T -892)) -((-3062 (*1 *2 *3) (-12 (-4 *1 (-892)) (-5 *2 (-2 (|:| -4296 (-618 *1)) (|:| -2492 *1))) (-5 *3 (-618 *1)))) (-3061 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-892))))) -(-13 (-444) (-10 -8 (-15 -3062 ((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $))) (-15 -3061 ((-3 (-618 $) "failed") (-618 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-3424 (((-1136 |#2|) (-618 |#2|) (-618 |#2|)) 17) (((-1193 |#1| |#2|) (-1193 |#1| |#2|) (-618 |#2|) (-618 |#2|)) 13))) -(((-893 |#1| |#2|) (-10 -7 (-15 -3424 ((-1193 |#1| |#2|) (-1193 |#1| |#2|) (-618 |#2|) (-618 |#2|))) (-15 -3424 ((-1136 |#2|) (-618 |#2|) (-618 |#2|)))) (-1142) (-356)) (T -893)) -((-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *5)) (-4 *5 (-356)) (-5 *2 (-1136 *5)) (-5 *1 (-893 *4 *5)) (-14 *4 (-1142)))) (-3424 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1193 *4 *5)) (-5 *3 (-618 *5)) (-14 *4 (-1142)) (-4 *5 (-356)) (-5 *1 (-893 *4 *5))))) -(-10 -7 (-15 -3424 ((-1193 |#1| |#2|) (-1193 |#1| |#2|) (-618 |#2|) (-618 |#2|))) (-15 -3424 ((-1136 |#2|) (-618 |#2|) (-618 |#2|)))) -((-3063 ((|#2| (-618 |#1|) (-618 |#1|)) 24))) -(((-894 |#1| |#2|) (-10 -7 (-15 -3063 (|#2| (-618 |#1|) (-618 |#1|)))) (-356) (-1200 |#1|)) (T -894)) -((-3063 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-356)) (-4 *2 (-1200 *4)) (-5 *1 (-894 *4 *2))))) -(-10 -7 (-15 -3063 (|#2| (-618 |#1|) (-618 |#1|)))) -((-3065 (((-535) (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124)) 139)) (-3084 ((|#4| |#4|) 155)) (-3069 (((-618 (-400 (-917 |#1|))) (-618 (-1142))) 118)) (-3083 (((-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-618 (-618 |#4|)) (-747) (-747) (-535)) 75)) (-3073 (((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-618 |#4|)) 59)) (-3082 (((-665 |#4|) (-665 |#4|) (-618 |#4|)) 55)) (-3066 (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124)) 151)) (-3064 (((-535) (-665 |#4|) (-890) (-1124)) 132) (((-535) (-665 |#4|) (-618 (-1142)) (-890) (-1124)) 131) (((-535) (-665 |#4|) (-618 |#4|) (-890) (-1124)) 130) (((-535) (-665 |#4|) (-1124)) 127) (((-535) (-665 |#4|) (-618 (-1142)) (-1124)) 126) (((-535) (-665 |#4|) (-618 |#4|) (-1124)) 125) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-890)) 124) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)) (-890)) 123) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|) (-890)) 122) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|)) 120) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142))) 119) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|)) 115)) (-3070 ((|#4| (-917 |#1|)) 68)) (-3080 (((-112) (-618 |#4|) (-618 (-618 |#4|))) 152)) (-3079 (((-618 (-618 (-535))) (-535) (-535)) 129)) (-3078 (((-618 (-618 |#4|)) (-618 (-618 |#4|))) 88)) (-3077 (((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|))))) 86)) (-3076 (((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|))))) 85)) (-3085 (((-112) (-618 (-917 |#1|))) 17) (((-112) (-618 |#4|)) 13)) (-3071 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-618 |#4|)) (|:| |n0| (-618 |#4|))) (-618 |#4|) (-618 |#4|)) 71)) (-3075 (((-618 |#4|) |#4|) 49)) (-3068 (((-618 (-400 (-917 |#1|))) (-618 |#4|)) 114) (((-665 (-400 (-917 |#1|))) (-665 |#4|)) 56) (((-400 (-917 |#1|)) |#4|) 111)) (-3067 (((-2 (|:| |rgl| (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))))) (|:| |rgsz| (-535))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-747) (-1124) (-535)) 93)) (-3072 (((-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))) (-665 |#4|) (-747)) 84)) (-3081 (((-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-665 |#4|) (-747)) 101)) (-3074 (((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| -1695 (-665 (-400 (-917 |#1|)))) (|:| |vec| (-618 (-400 (-917 |#1|)))) (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) 48))) -(((-895 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|) (-890))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)) (-890))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-890))) (-15 -3064 ((-535) (-665 |#4|) (-618 |#4|) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 (-1142)) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 |#4|) (-890) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 (-1142)) (-890) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-890) (-1124))) (-15 -3065 ((-535) (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124))) (-15 -3066 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124))) (-15 -3067 ((-2 (|:| |rgl| (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))))) (|:| |rgsz| (-535))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-747) (-1124) (-535))) (-15 -3068 ((-400 (-917 |#1|)) |#4|)) (-15 -3068 ((-665 (-400 (-917 |#1|))) (-665 |#4|))) (-15 -3068 ((-618 (-400 (-917 |#1|))) (-618 |#4|))) (-15 -3069 ((-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3070 (|#4| (-917 |#1|))) (-15 -3071 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-618 |#4|)) (|:| |n0| (-618 |#4|))) (-618 |#4|) (-618 |#4|))) (-15 -3072 ((-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))) (-665 |#4|) (-747))) (-15 -3073 ((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-618 |#4|))) (-15 -3074 ((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| -1695 (-665 (-400 (-917 |#1|)))) (|:| |vec| (-618 (-400 (-917 |#1|)))) (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (-15 -3075 ((-618 |#4|) |#4|)) (-15 -3076 ((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))))) (-15 -3077 ((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))))) (-15 -3078 ((-618 (-618 |#4|)) (-618 (-618 |#4|)))) (-15 -3079 ((-618 (-618 (-535))) (-535) (-535))) (-15 -3080 ((-112) (-618 |#4|) (-618 (-618 |#4|)))) (-15 -3081 ((-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-665 |#4|) (-747))) (-15 -3082 ((-665 |#4|) (-665 |#4|) (-618 |#4|))) (-15 -3083 ((-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-618 (-618 |#4|)) (-747) (-747) (-535))) (-15 -3084 (|#4| |#4|)) (-15 -3085 ((-112) (-618 |#4|))) (-15 -3085 ((-112) (-618 (-917 |#1|))))) (-13 (-300) (-145)) (-13 (-823) (-594 (-1142))) (-769) (-921 |#1| |#3| |#2|)) (T -895)) -((-3085 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142)))) (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-921 *3 *5 *4)))) (-3083 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-5 *4 (-665 *12)) (-5 *5 (-618 (-400 (-917 *9)))) (-5 *6 (-618 (-618 *12))) (-5 *7 (-747)) (-5 *8 (-535)) (-4 *9 (-13 (-300) (-145))) (-4 *12 (-921 *9 *11 *10)) (-4 *10 (-13 (-823) (-594 (-1142)))) (-4 *11 (-769)) (-5 *2 (-2 (|:| |eqzro| (-618 *12)) (|:| |neqzro| (-618 *12)) (|:| |wcond| (-618 (-917 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *9)))) (|:| -2123 (-618 (-1224 (-400 (-917 *9))))))))) (-5 *1 (-895 *9 *10 *11 *12)))) (-3082 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-747)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| |det| *8) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-618 *8))) (-5 *3 (-618 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *5 *6 *7 *8)))) (-3079 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-618 (-535)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-535)) (-4 *7 (-921 *4 *6 *5)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-618 (-618 *6))) (-4 *6 (-921 *3 *5 *4)) (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142)))) (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *6)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| *7) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 *7))))) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| *7) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 *7))))) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 *3)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-921 *4 *6 *5)))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1695 (-665 (-400 (-917 *4)))) (|:| |vec| (-618 (-400 (-917 *4)))) (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) (|:| -2123 (-618 (-1224 (-400 (-917 *4))))))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))) (-3073 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) (|:| -2123 (-618 (-1224 (-400 (-917 *4))))))) (-5 *3 (-618 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-921 *4 *6 *5)) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| *8) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 *8))))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-747)))) (-3071 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-4 *7 (-921 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-618 *7)) (|:| |n0| (-618 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-921 *4 *6 *5)) (-5 *1 (-895 *4 *5 *6 *2)) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-665 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) (-3068 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-400 (-917 *4))) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-921 *4 *6 *5)))) (-3067 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-665 *11)) (-5 *4 (-618 (-400 (-917 *8)))) (-5 *5 (-747)) (-5 *6 (-1124)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-921 *8 *10 *9)) (-4 *9 (-13 (-823) (-594 (-1142)))) (-4 *10 (-769)) (-5 *2 (-2 (|:| |rgl| (-618 (-2 (|:| |eqzro| (-618 *11)) (|:| |neqzro| (-618 *11)) (|:| |wcond| (-618 (-917 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *8)))) (|:| -2123 (-618 (-1224 (-400 (-917 *8)))))))))) (|:| |rgsz| (-535)))) (-5 *1 (-895 *8 *9 *10 *11)) (-5 *7 (-535)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *7)) (|:| |neqzro| (-618 *7)) (|:| |wcond| (-618 (-917 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) (|:| -2123 (-618 (-1224 (-400 (-917 *4)))))))))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) (|:| |wcond| (-618 (-917 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) (-5 *4 (-1124)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-921 *5 *7 *6)) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *5 *6 *7 *8)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-890)) (-5 *5 (-1124)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *6 *7 *8 *9)))) (-3064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *10)) (-5 *4 (-618 (-1142))) (-5 *5 (-890)) (-5 *6 (-1124)) (-4 *10 (-921 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *7 *8 *9 *10)))) (-3064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *10)) (-5 *4 (-618 *10)) (-5 *5 (-890)) (-5 *6 (-1124)) (-4 *10 (-921 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *7 *8 *9 *10)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-1124)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *5 *6 *7 *8)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 (-1142))) (-5 *5 (-1124)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *6 *7 *8 *9)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 *9)) (-5 *5 (-1124)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *6 *7 *8 *9)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-890)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) (|:| |wcond| (-618 (-917 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 (-1142))) (-5 *5 (-890)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *9)) (|:| |neqzro| (-618 *9)) (|:| |wcond| (-618 (-917 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *6)))) (|:| -2123 (-618 (-1224 (-400 (-917 *6)))))))))) (-5 *1 (-895 *6 *7 *8 *9)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *5 (-890)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *9)) (|:| |neqzro| (-618 *9)) (|:| |wcond| (-618 (-917 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *6)))) (|:| -2123 (-618 (-1224 (-400 (-917 *6)))))))))) (-5 *1 (-895 *6 *7 *8 *9)) (-5 *4 (-618 *9)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *7)) (|:| |neqzro| (-618 *7)) (|:| |wcond| (-618 (-917 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) (|:| -2123 (-618 (-1224 (-400 (-917 *4)))))))))) (-5 *1 (-895 *4 *5 *6 *7)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-618 (-1142))) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) (|:| |wcond| (-618 (-917 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) (|:| |wcond| (-618 (-917 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-618 *8))))) -(-10 -7 (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|) (-890))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)) (-890))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-890))) (-15 -3064 ((-535) (-665 |#4|) (-618 |#4|) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 (-1142)) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 |#4|) (-890) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 (-1142)) (-890) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-890) (-1124))) (-15 -3065 ((-535) (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124))) (-15 -3066 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124))) (-15 -3067 ((-2 (|:| |rgl| (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))))) (|:| |rgsz| (-535))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-747) (-1124) (-535))) (-15 -3068 ((-400 (-917 |#1|)) |#4|)) (-15 -3068 ((-665 (-400 (-917 |#1|))) (-665 |#4|))) (-15 -3068 ((-618 (-400 (-917 |#1|))) (-618 |#4|))) (-15 -3069 ((-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3070 (|#4| (-917 |#1|))) (-15 -3071 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-618 |#4|)) (|:| |n0| (-618 |#4|))) (-618 |#4|) (-618 |#4|))) (-15 -3072 ((-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))) (-665 |#4|) (-747))) (-15 -3073 ((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-618 |#4|))) (-15 -3074 ((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| -1695 (-665 (-400 (-917 |#1|)))) (|:| |vec| (-618 (-400 (-917 |#1|)))) (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (-15 -3075 ((-618 |#4|) |#4|)) (-15 -3076 ((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))))) (-15 -3077 ((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))))) (-15 -3078 ((-618 (-618 |#4|)) (-618 (-618 |#4|)))) (-15 -3079 ((-618 (-618 (-535))) (-535) (-535))) (-15 -3080 ((-112) (-618 |#4|) (-618 (-618 |#4|)))) (-15 -3081 ((-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-665 |#4|) (-747))) (-15 -3082 ((-665 |#4|) (-665 |#4|) (-618 |#4|))) (-15 -3083 ((-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-618 (-618 |#4|)) (-747) (-747) (-535))) (-15 -3084 (|#4| |#4|)) (-15 -3085 ((-112) (-618 |#4|))) (-15 -3085 ((-112) (-618 (-917 |#1|))))) -((-4217 (($ $ (-1055 (-219))) 70) (($ $ (-1055 (-219)) (-1055 (-219))) 71)) (-3217 (((-1055 (-219)) $) 44)) (-3218 (((-1055 (-219)) $) 43)) (-3109 (((-1055 (-219)) $) 45)) (-3090 (((-535) (-535)) 37)) (-3094 (((-535) (-535)) 33)) (-3092 (((-535) (-535)) 35)) (-3088 (((-112) (-112)) 39)) (-3091 (((-535)) 36)) (-3452 (($ $ (-1055 (-219))) 74) (($ $) 75)) (-3111 (($ (-1 (-914 (-219)) (-219)) (-1055 (-219))) 84) (($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 85)) (-3097 (($ (-1 (-219) (-219)) (-1055 (-219))) 92) (($ (-1 (-219) (-219))) 95)) (-3110 (($ (-1 (-219) (-219)) (-1055 (-219))) 79) (($ (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219))) 80) (($ (-618 (-1 (-219) (-219))) (-1055 (-219))) 87) (($ (-618 (-1 (-219) (-219))) (-1055 (-219)) (-1055 (-219))) 88) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 82) (($ $ (-1055 (-219))) 76)) (-3096 (((-112) $) 40)) (-3087 (((-535)) 41)) (-3095 (((-535)) 32)) (-3093 (((-535)) 34)) (-3219 (((-618 (-618 (-914 (-219)))) $) 23)) (-3086 (((-112) (-112)) 42)) (-4300 (((-835) $) 106)) (-3089 (((-112)) 38))) -(((-896) (-13 (-926) (-10 -8 (-15 -3110 ($ (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-618 (-1 (-219) (-219))) (-1055 (-219)))) (-15 -3110 ($ (-618 (-1 (-219) (-219))) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3097 ($ (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3097 ($ (-1 (-219) (-219)))) (-15 -3110 ($ $ (-1055 (-219)))) (-15 -3096 ((-112) $)) (-15 -4217 ($ $ (-1055 (-219)))) (-15 -4217 ($ $ (-1055 (-219)) (-1055 (-219)))) (-15 -3452 ($ $ (-1055 (-219)))) (-15 -3452 ($ $)) (-15 -3109 ((-1055 (-219)) $)) (-15 -3095 ((-535))) (-15 -3094 ((-535) (-535))) (-15 -3093 ((-535))) (-15 -3092 ((-535) (-535))) (-15 -3091 ((-535))) (-15 -3090 ((-535) (-535))) (-15 -3089 ((-112))) (-15 -3088 ((-112) (-112))) (-15 -3087 ((-535))) (-15 -3086 ((-112) (-112)))))) (T -896)) -((-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1 (-219) (-219)))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-618 (-1 (-219) (-219)))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3111 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3097 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3097 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-4217 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-3452 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-3452 (*1 *1 *1) (-5 *1 (-896))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-3095 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3093 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3092 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3091 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3089 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3087 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(-13 (-926) (-10 -8 (-15 -3110 ($ (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-618 (-1 (-219) (-219))) (-1055 (-219)))) (-15 -3110 ($ (-618 (-1 (-219) (-219))) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3097 ($ (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3097 ($ (-1 (-219) (-219)))) (-15 -3110 ($ $ (-1055 (-219)))) (-15 -3096 ((-112) $)) (-15 -4217 ($ $ (-1055 (-219)))) (-15 -4217 ($ $ (-1055 (-219)) (-1055 (-219)))) (-15 -3452 ($ $ (-1055 (-219)))) (-15 -3452 ($ $)) (-15 -3109 ((-1055 (-219)) $)) (-15 -3095 ((-535))) (-15 -3094 ((-535) (-535))) (-15 -3093 ((-535))) (-15 -3092 ((-535) (-535))) (-15 -3091 ((-535))) (-15 -3090 ((-535) (-535))) (-15 -3089 ((-112))) (-15 -3088 ((-112) (-112))) (-15 -3087 ((-535))) (-15 -3086 ((-112) (-112))))) -((-3097 (((-896) |#1| (-1142)) 17) (((-896) |#1| (-1142) (-1055 (-219))) 21)) (-3110 (((-896) |#1| |#1| (-1142) (-1055 (-219))) 19) (((-896) |#1| (-1142) (-1055 (-219))) 15))) -(((-897 |#1|) (-10 -7 (-15 -3110 ((-896) |#1| (-1142) (-1055 (-219)))) (-15 -3110 ((-896) |#1| |#1| (-1142) (-1055 (-219)))) (-15 -3097 ((-896) |#1| (-1142) (-1055 (-219)))) (-15 -3097 ((-896) |#1| (-1142)))) (-594 (-524))) (T -897)) -((-3097 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524))))) (-3097 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524))))) (-3110 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524))))) (-3110 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524)))))) -(-10 -7 (-15 -3110 ((-896) |#1| (-1142) (-1055 (-219)))) (-15 -3110 ((-896) |#1| |#1| (-1142) (-1055 (-219)))) (-15 -3097 ((-896) |#1| (-1142) (-1055 (-219)))) (-15 -3097 ((-896) |#1| (-1142)))) -((-4217 (($ $ (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 70)) (-3216 (((-1055 (-219)) $) 40)) (-3217 (((-1055 (-219)) $) 39)) (-3218 (((-1055 (-219)) $) 38)) (-3108 (((-618 (-618 (-219))) $) 43)) (-3109 (((-1055 (-219)) $) 41)) (-3102 (((-535) (-535)) 32)) (-3106 (((-535) (-535)) 28)) (-3104 (((-535) (-535)) 30)) (-3100 (((-112) (-112)) 35)) (-3103 (((-535)) 31)) (-3452 (($ $ (-1055 (-219))) 73) (($ $) 74)) (-3111 (($ (-1 (-914 (-219)) (-219)) (-1055 (-219))) 78) (($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 79)) (-3110 (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 82) (($ $ (-1055 (-219))) 76)) (-3099 (((-535)) 36)) (-3107 (((-535)) 27)) (-3105 (((-535)) 29)) (-3219 (((-618 (-618 (-914 (-219)))) $) 95)) (-3098 (((-112) (-112)) 37)) (-4300 (((-835) $) 94)) (-3101 (((-112)) 34))) -(((-898) (-13 (-945) (-10 -8 (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ $ (-1055 (-219)))) (-15 -4217 ($ $ (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3452 ($ $ (-1055 (-219)))) (-15 -3452 ($ $)) (-15 -3109 ((-1055 (-219)) $)) (-15 -3108 ((-618 (-618 (-219))) $)) (-15 -3107 ((-535))) (-15 -3106 ((-535) (-535))) (-15 -3105 ((-535))) (-15 -3104 ((-535) (-535))) (-15 -3103 ((-535))) (-15 -3102 ((-535) (-535))) (-15 -3101 ((-112))) (-15 -3100 ((-112) (-112))) (-15 -3099 ((-535))) (-15 -3098 ((-112) (-112)))))) (T -898)) -((-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) (-3111 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) (-3110 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) (-3110 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) (-3110 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) (-4217 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) (-3452 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) (-3452 (*1 *1 *1) (-5 *1 (-898))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-219)))) (-5 *1 (-898)))) (-3107 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3105 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3104 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3103 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3101 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-3099 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898))))) -(-13 (-945) (-10 -8 (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ $ (-1055 (-219)))) (-15 -4217 ($ $ (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3452 ($ $ (-1055 (-219)))) (-15 -3452 ($ $)) (-15 -3109 ((-1055 (-219)) $)) (-15 -3108 ((-618 (-618 (-219))) $)) (-15 -3107 ((-535))) (-15 -3106 ((-535) (-535))) (-15 -3105 ((-535))) (-15 -3104 ((-535) (-535))) (-15 -3103 ((-535))) (-15 -3102 ((-535) (-535))) (-15 -3101 ((-112))) (-15 -3100 ((-112) (-112))) (-15 -3099 ((-535))) (-15 -3098 ((-112) (-112))))) -((-3112 (((-618 (-1055 (-219))) (-618 (-618 (-914 (-219))))) 24))) -(((-899) (-10 -7 (-15 -3112 ((-618 (-1055 (-219))) (-618 (-618 (-914 (-219)))))))) (T -899)) -((-3112 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-618 (-1055 (-219)))) (-5 *1 (-899))))) -(-10 -7 (-15 -3112 ((-618 (-1055 (-219))) (-618 (-618 (-914 (-219))))))) -((-3114 (((-307 (-535)) (-1142)) 16)) (-3115 (((-307 (-535)) (-1142)) 14)) (-4294 (((-307 (-535)) (-1142)) 12)) (-3113 (((-307 (-535)) (-1142) (-1124)) 19))) -(((-900) (-10 -7 (-15 -3113 ((-307 (-535)) (-1142) (-1124))) (-15 -4294 ((-307 (-535)) (-1142))) (-15 -3114 ((-307 (-535)) (-1142))) (-15 -3115 ((-307 (-535)) (-1142))))) (T -900)) -((-3115 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) (-3113 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1124)) (-5 *2 (-307 (-535))) (-5 *1 (-900))))) -(-10 -7 (-15 -3113 ((-307 (-535)) (-1142) (-1124))) (-15 -4294 ((-307 (-535)) (-1142))) (-15 -3114 ((-307 (-535)) (-1142))) (-15 -3115 ((-307 (-535)) (-1142)))) -((-3114 ((|#2| |#2|) 26)) (-3115 ((|#2| |#2|) 27)) (-4294 ((|#2| |#2|) 25)) (-3113 ((|#2| |#2| (-1124)) 24))) -(((-901 |#1| |#2|) (-10 -7 (-15 -3113 (|#2| |#2| (-1124))) (-15 -4294 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -3115 (|#2| |#2|))) (-823) (-414 |#1|)) (T -901)) -((-3115 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))) (-4294 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-823)) (-5 *1 (-901 *4 *2)) (-4 *2 (-414 *4))))) -(-10 -7 (-15 -3113 (|#2| |#2| (-1124))) (-15 -4294 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -3115 (|#2| |#2|))) -((-3117 (((-859 |#1| |#3|) |#2| (-861 |#1|) (-859 |#1| |#3|)) 25)) (-3116 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -3116 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3117 ((-859 |#1| |#3|) |#2| (-861 |#1|) (-859 |#1| |#3|)))) (-1067) (-857 |#1|) (-13 (-1067) (-1009 |#2|))) (T -902)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-13 (-1067) (-1009 *3))) (-4 *3 (-857 *5)) (-5 *1 (-902 *5 *3 *6)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1067) (-1009 *5))) (-4 *5 (-857 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-902 *4 *5 *6))))) -(-10 -7 (-15 -3116 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3117 ((-859 |#1| |#3|) |#2| (-861 |#1|) (-859 |#1| |#3|)))) -((-3117 (((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)) 30))) -(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) (-1067) (-13 (-542) (-823) (-857 |#1|)) (-13 (-414 |#2|) (-594 (-861 |#1|)) (-857 |#1|) (-1009 (-591 $)))) (T -903)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-13 (-414 *6) (-594 *4) (-857 *5) (-1009 (-591 $)))) (-5 *4 (-861 *5)) (-4 *6 (-13 (-542) (-823) (-857 *5))) (-5 *1 (-903 *5 *6 *3))))) -(-10 -7 (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) -((-3117 (((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|)) 13))) -(((-904 |#1|) (-10 -7 (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|)))) (-534)) (T -904)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 (-535) *3)) (-5 *4 (-861 (-535))) (-4 *3 (-534)) (-5 *1 (-904 *3))))) -(-10 -7 (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|)))) -((-3117 (((-859 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-859 |#1| |#2|)) 54))) -(((-905 |#1| |#2|) (-10 -7 (-15 -3117 ((-859 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-859 |#1| |#2|)))) (-1067) (-13 (-823) (-1009 (-591 $)) (-594 (-861 |#1|)) (-857 |#1|))) (T -905)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *6)) (-5 *3 (-591 *6)) (-4 *5 (-1067)) (-4 *6 (-13 (-823) (-1009 (-591 $)) (-594 *4) (-857 *5))) (-5 *4 (-861 *5)) (-5 *1 (-905 *5 *6))))) -(-10 -7 (-15 -3117 ((-859 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-859 |#1| |#2|)))) -((-3117 (((-856 |#1| |#2| |#3|) |#3| (-861 |#1|) (-856 |#1| |#2| |#3|)) 15))) -(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -3117 ((-856 |#1| |#2| |#3|) |#3| (-861 |#1|) (-856 |#1| |#2| |#3|)))) (-1067) (-857 |#1|) (-642 |#2|)) (T -906)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-856 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-4 *3 (-642 *6)) (-5 *1 (-906 *5 *6 *3))))) -(-10 -7 (-15 -3117 ((-856 |#1| |#2| |#3|) |#3| (-861 |#1|) (-856 |#1| |#2| |#3|)))) -((-3117 (((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|)) 17 (|has| |#3| (-857 |#1|))) (((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|) (-1 (-859 |#1| |#5|) |#3| (-861 |#1|) (-859 |#1| |#5|))) 16))) -(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3117 ((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|) (-1 (-859 |#1| |#5|) |#3| (-861 |#1|) (-859 |#1| |#5|)))) (IF (|has| |#3| (-857 |#1|)) (-15 -3117 ((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|))) |%noBranch|)) (-1067) (-769) (-823) (-13 (-1018) (-823) (-857 |#1|)) (-13 (-921 |#4| |#2| |#3|) (-594 (-861 |#1|)))) (T -907)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-13 (-921 *8 *6 *7) (-594 *4))) (-5 *4 (-861 *5)) (-4 *7 (-857 *5)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-13 (-1018) (-823) (-857 *5))) (-5 *1 (-907 *5 *6 *7 *8 *3)))) (-3117 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-859 *6 *3) *8 (-861 *6) (-859 *6 *3))) (-4 *8 (-823)) (-5 *2 (-859 *6 *3)) (-5 *4 (-861 *6)) (-4 *6 (-1067)) (-4 *3 (-13 (-921 *9 *7 *8) (-594 *4))) (-4 *7 (-769)) (-4 *9 (-13 (-1018) (-823) (-857 *6))) (-5 *1 (-907 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3117 ((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|) (-1 (-859 |#1| |#5|) |#3| (-861 |#1|) (-859 |#1| |#5|)))) (IF (|has| |#3| (-857 |#1|)) (-15 -3117 ((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|))) |%noBranch|)) -((-3543 (((-307 (-535)) (-1142) (-618 (-1 (-112) |#1|))) 18) (((-307 (-535)) (-1142) (-1 (-112) |#1|)) 15))) -(((-908 |#1|) (-10 -7 (-15 -3543 ((-307 (-535)) (-1142) (-1 (-112) |#1|))) (-15 -3543 ((-307 (-535)) (-1142) (-618 (-1 (-112) |#1|))))) (-1178)) (T -908)) -((-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-618 (-1 (-112) *5))) (-4 *5 (-1178)) (-5 *2 (-307 (-535))) (-5 *1 (-908 *5)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1178)) (-5 *2 (-307 (-535))) (-5 *1 (-908 *5))))) -(-10 -7 (-15 -3543 ((-307 (-535)) (-1142) (-1 (-112) |#1|))) (-15 -3543 ((-307 (-535)) (-1142) (-618 (-1 (-112) |#1|))))) -((-3543 ((|#2| |#2| (-618 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -3543 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3543 (|#2| |#2| (-618 (-1 (-112) |#3|))))) (-823) (-414 |#1|) (-1178)) (T -909)) -((-3543 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-1 (-112) *5))) (-4 *5 (-1178)) (-4 *4 (-823)) (-5 *1 (-909 *4 *2 *5)) (-4 *2 (-414 *4)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1178)) (-4 *4 (-823)) (-5 *1 (-909 *4 *2 *5)) (-4 *2 (-414 *4))))) -(-10 -7 (-15 -3543 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3543 (|#2| |#2| (-618 (-1 (-112) |#3|))))) -((-3117 (((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)) 25))) -(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) (-1067) (-13 (-542) (-857 |#1|) (-594 (-861 |#1|))) (-962 |#2|)) (T -910)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-962 *6)) (-4 *6 (-13 (-542) (-857 *5) (-594 *4))) (-5 *4 (-861 *5)) (-5 *1 (-910 *5 *6 *3))))) -(-10 -7 (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) -((-3117 (((-859 |#1| (-1142)) (-1142) (-861 |#1|) (-859 |#1| (-1142))) 17))) -(((-911 |#1|) (-10 -7 (-15 -3117 ((-859 |#1| (-1142)) (-1142) (-861 |#1|) (-859 |#1| (-1142))))) (-1067)) (T -911)) -((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 (-1142))) (-5 *3 (-1142)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-5 *1 (-911 *5))))) -(-10 -7 (-15 -3117 ((-859 |#1| (-1142)) (-1142) (-861 |#1|) (-859 |#1| (-1142))))) -((-3118 (((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))) 33)) (-3117 (((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-1 |#3| (-618 |#3|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))) 32))) -(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -3117 ((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-1 |#3| (-618 |#3|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) (-15 -3118 ((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))))) (-1067) (-13 (-1018) (-823)) (-13 (-1018) (-594 (-861 |#1|)) (-1009 |#2|))) (T -912)) -((-3118 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-861 *6))) (-5 *5 (-1 (-859 *6 *8) *8 (-861 *6) (-859 *6 *8))) (-4 *6 (-1067)) (-4 *8 (-13 (-1018) (-594 (-861 *6)) (-1009 *7))) (-5 *2 (-859 *6 *8)) (-4 *7 (-13 (-1018) (-823))) (-5 *1 (-912 *6 *7 *8)))) (-3117 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-618 (-861 *7))) (-5 *5 (-1 *9 (-618 *9))) (-5 *6 (-1 (-859 *7 *9) *9 (-861 *7) (-859 *7 *9))) (-4 *7 (-1067)) (-4 *9 (-13 (-1018) (-594 (-861 *7)) (-1009 *8))) (-5 *2 (-859 *7 *9)) (-5 *3 (-618 *9)) (-4 *8 (-13 (-1018) (-823))) (-5 *1 (-912 *7 *8 *9))))) -(-10 -7 (-15 -3117 ((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-1 |#3| (-618 |#3|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) (-15 -3118 ((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))))) -((-3126 (((-1136 (-400 (-535))) (-535)) 63)) (-3125 (((-1136 (-535)) (-535)) 66)) (-3676 (((-1136 (-535)) (-535)) 60)) (-3124 (((-535) (-1136 (-535))) 55)) (-3123 (((-1136 (-400 (-535))) (-535)) 49)) (-3122 (((-1136 (-535)) (-535)) 38)) (-3121 (((-1136 (-535)) (-535)) 68)) (-3120 (((-1136 (-535)) (-535)) 67)) (-3119 (((-1136 (-400 (-535))) (-535)) 51))) -(((-913) (-10 -7 (-15 -3119 ((-1136 (-400 (-535))) (-535))) (-15 -3120 ((-1136 (-535)) (-535))) (-15 -3121 ((-1136 (-535)) (-535))) (-15 -3122 ((-1136 (-535)) (-535))) (-15 -3123 ((-1136 (-400 (-535))) (-535))) (-15 -3124 ((-535) (-1136 (-535)))) (-15 -3676 ((-1136 (-535)) (-535))) (-15 -3125 ((-1136 (-535)) (-535))) (-15 -3126 ((-1136 (-400 (-535))) (-535))))) (T -913)) -((-3126 (*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3125 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-1136 (-535))) (-5 *2 (-535)) (-5 *1 (-913)))) (-3123 (*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3122 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3121 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3120 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535))))) -(-10 -7 (-15 -3119 ((-1136 (-400 (-535))) (-535))) (-15 -3120 ((-1136 (-535)) (-535))) (-15 -3121 ((-1136 (-535)) (-535))) (-15 -3122 ((-1136 (-535)) (-535))) (-15 -3123 ((-1136 (-400 (-535))) (-535))) (-15 -3124 ((-535) (-1136 (-535)))) (-15 -3676 ((-1136 (-535)) (-535))) (-15 -3125 ((-1136 (-535)) (-535))) (-15 -3126 ((-1136 (-400 (-535))) (-535)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747)) NIL (|has| |#1| (-23)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) 11 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-4052 (($ (-618 |#1|)) 13)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) 8)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 10 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4175 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4062 (((-112) $ (-747)) NIL)) (-4176 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-4111 (($ $ (-618 |#1|)) 26)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) 20) (($ $ (-1191 (-535))) NIL)) (-4179 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-4254 (((-890) $) 16)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4177 (($ $ $) 24)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524)))) (($ (-618 |#1|)) 17)) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4182 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-535) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-4299 (((-747) $) 14 (|has| $ (-6 -4336))))) -(((-914 |#1|) (-951 |#1|) (-1018)) (T -914)) -NIL -(-951 |#1|) -((-3129 (((-473 |#1| |#2|) (-917 |#2|)) 20)) (-3132 (((-241 |#1| |#2|) (-917 |#2|)) 33)) (-3130 (((-917 |#2|) (-473 |#1| |#2|)) 25)) (-3128 (((-241 |#1| |#2|) (-473 |#1| |#2|)) 55)) (-3131 (((-917 |#2|) (-241 |#1| |#2|)) 30)) (-3127 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 46))) -(((-915 |#1| |#2|) (-10 -7 (-15 -3127 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -3128 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3129 ((-473 |#1| |#2|) (-917 |#2|))) (-15 -3130 ((-917 |#2|) (-473 |#1| |#2|))) (-15 -3131 ((-917 |#2|) (-241 |#1| |#2|))) (-15 -3132 ((-241 |#1| |#2|) (-917 |#2|)))) (-618 (-1142)) (-1018)) (T -915)) -((-3132 (*1 *2 *3) (-12 (-5 *3 (-917 *5)) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-618 (-1142))))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) (-5 *2 (-917 *5)) (-5 *1 (-915 *4 *5)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) (-5 *2 (-917 *5)) (-5 *1 (-915 *4 *5)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-917 *5)) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-618 (-1142))))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5))))) -(-10 -7 (-15 -3127 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -3128 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3129 ((-473 |#1| |#2|) (-917 |#2|))) (-15 -3130 ((-917 |#2|) (-473 |#1| |#2|))) (-15 -3131 ((-917 |#2|) (-241 |#1| |#2|))) (-15 -3132 ((-241 |#1| |#2|) (-917 |#2|)))) -((-3133 (((-618 |#2|) |#2| |#2|) 10)) (-3136 (((-747) (-618 |#1|)) 37 (|has| |#1| (-821)))) (-3134 (((-618 |#2|) |#2|) 11)) (-3137 (((-747) (-618 |#1|) (-535) (-535)) 39 (|has| |#1| (-821)))) (-3135 ((|#1| |#2|) 32 (|has| |#1| (-821))))) -(((-916 |#1| |#2|) (-10 -7 (-15 -3133 ((-618 |#2|) |#2| |#2|)) (-15 -3134 ((-618 |#2|) |#2|)) (IF (|has| |#1| (-821)) (PROGN (-15 -3135 (|#1| |#2|)) (-15 -3136 ((-747) (-618 |#1|))) (-15 -3137 ((-747) (-618 |#1|) (-535) (-535)))) |%noBranch|)) (-356) (-1200 |#1|)) (T -916)) -((-3137 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-535)) (-4 *5 (-821)) (-4 *5 (-356)) (-5 *2 (-747)) (-5 *1 (-916 *5 *6)) (-4 *6 (-1200 *5)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-821)) (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1200 *4)))) (-3135 (*1 *2 *3) (-12 (-4 *2 (-356)) (-4 *2 (-821)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1200 *2)))) (-3134 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1200 *4)))) (-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -3133 ((-618 |#2|) |#2| |#2|)) (-15 -3134 ((-618 |#2|) |#2|)) (IF (|has| |#1| (-821)) (PROGN (-15 -3135 (|#1| |#2|)) (-15 -3136 ((-747) (-618 |#1|))) (-15 -3137 ((-747) (-618 |#1|) (-535) (-535)))) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1142)) $) 16)) (-3407 (((-1136 $) $ (-1142)) 21) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1142))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) 8) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1142) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1142) $) NIL)) (-4099 (($ $ $ (-1142)) NIL (|has| |#1| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1142)) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 (-1142)) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1142) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1142) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#1|) (-1142)) NIL) (($ (-1136 $) (-1142)) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1142)) NIL)) (-3141 (((-521 (-1142)) $) NIL) (((-747) $ (-1142)) NIL) (((-618 (-747)) $ (-618 (-1142))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 (-1142)) (-521 (-1142))) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3406 (((-3 (-1142) #3="failed") $) 19)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1142)) (|:| -2484 (-747))) #3#) $) NIL)) (-4155 (($ $ (-1142)) 29 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1142) |#1|) NIL) (($ $ (-618 (-1142)) (-618 |#1|)) NIL) (($ $ (-1142) $) NIL) (($ $ (-618 (-1142)) (-618 $)) NIL)) (-4100 (($ $ (-1142)) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-4290 (((-521 (-1142)) $) NIL) (((-747) $ (-1142)) NIL) (((-618 (-747)) $ (-618 (-1142))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1142) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1142) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1142) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1142)) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 25) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-1142)) 27) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-917 |#1|) (-13 (-921 |#1| (-521 (-1142)) (-1142)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1142))) |%noBranch|))) (-1018)) (T -917)) -((-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-917 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018))))) -(-13 (-921 |#1| (-521 (-1142)) (-1142)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1142))) |%noBranch|))) -((-4301 (((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)) 19))) -(((-918 |#1| |#2|) (-10 -7 (-15 -4301 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) (-1018) (-1018)) (T -918)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-917 *6)) (-5 *1 (-918 *5 *6))))) -(-10 -7 (-15 -4301 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) -((-3407 (((-1193 |#1| (-917 |#2|)) (-917 |#2|) (-1221 |#1|)) 18))) -(((-919 |#1| |#2|) (-10 -7 (-15 -3407 ((-1193 |#1| (-917 |#2|)) (-917 |#2|) (-1221 |#1|)))) (-1142) (-1018)) (T -919)) -((-3407 (*1 *2 *3 *4) (-12 (-5 *4 (-1221 *5)) (-14 *5 (-1142)) (-4 *6 (-1018)) (-5 *2 (-1193 *5 (-917 *6))) (-5 *1 (-919 *5 *6)) (-5 *3 (-917 *6))))) -(-10 -7 (-15 -3407 ((-1193 |#1| (-917 |#2|)) (-917 |#2|) (-1221 |#1|)))) -((-3140 (((-747) $) 71) (((-747) $ (-618 |#4|)) 74)) (-4117 (($ $) 173)) (-4312 (((-398 $) $) 165)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 116)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL) (((-3 (-535) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL) (((-535) $) NIL) ((|#4| $) 59)) (-4099 (($ $ $ |#4|) 76)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 106) (((-665 |#2|) (-665 $)) 99)) (-3840 (($ $) 180) (($ $ |#4|) 183)) (-3139 (((-618 $) $) 63)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 199) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 192)) (-3142 (((-618 $) $) 28)) (-3214 (($ |#2| |#3|) NIL) (($ $ |#4| (-747)) NIL) (($ $ (-618 |#4|) (-618 (-747))) 57)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#4|) 162)) (-3144 (((-3 (-618 $) "failed") $) 42)) (-3143 (((-3 (-618 $) "failed") $) 31)) (-3145 (((-3 (-2 (|:| |var| |#4|) (|:| -2484 (-747))) "failed") $) 47)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 109)) (-3026 (((-398 (-1136 $)) (-1136 $)) 122)) (-3027 (((-398 (-1136 $)) (-1136 $)) 120)) (-4075 (((-398 $) $) 140)) (-4110 (($ $ (-618 (-286 $))) 21) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-618 |#4|) (-618 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-618 |#4|) (-618 $)) NIL)) (-4100 (($ $ |#4|) 78)) (-4313 (((-861 (-371)) $) 213) (((-861 (-535)) $) 206) (((-524) $) 221)) (-3138 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 154)) (-4023 ((|#2| $ |#3|) NIL) (($ $ |#4| (-747)) 52) (($ $ (-618 |#4|) (-618 (-747))) 55)) (-3023 (((-3 $ #1#) $) 156)) (-3006 (((-112) $ $) 186))) -(((-920 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -3023 ((-3 |#1| #1="failed") |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) #1#) (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3024 ((-3 (-1224 |#1|) #1#) (-665 |#1|))) (-15 -3840 (|#1| |#1| |#4|)) (-15 -3138 (|#1| |#1| |#4|)) (-15 -4100 (|#1| |#1| |#4|)) (-15 -4099 (|#1| |#1| |#1| |#4|)) (-15 -3139 ((-618 |#1|) |#1|)) (-15 -3140 ((-747) |#1| (-618 |#4|))) (-15 -3140 ((-747) |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| |#4|) (|:| -2484 (-747))) "failed") |#1|)) (-15 -3144 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3143 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3214 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -3214 (|#1| |#1| |#4| (-747))) (-15 -4105 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3142 ((-618 |#1|) |#1|)) (-15 -4023 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -4023 (|#1| |#1| |#4| (-747))) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#4| |#1|)) (-15 -3491 ((-3 |#4| #2="failed") |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#4| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#4| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -3214 (|#1| |#2| |#3|)) (-15 -4023 (|#2| |#1| |#3|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #2#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #2#) |#1|)) (-15 -3491 ((-3 |#2| #2#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3840 (|#1| |#1|))) (-921 |#2| |#3| |#4|) (-1018) (-769) (-823)) (T -920)) -NIL -(-10 -8 (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -3023 ((-3 |#1| #1="failed") |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) #1#) (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3024 ((-3 (-1224 |#1|) #1#) (-665 |#1|))) (-15 -3840 (|#1| |#1| |#4|)) (-15 -3138 (|#1| |#1| |#4|)) (-15 -4100 (|#1| |#1| |#4|)) (-15 -4099 (|#1| |#1| |#1| |#4|)) (-15 -3139 ((-618 |#1|) |#1|)) (-15 -3140 ((-747) |#1| (-618 |#4|))) (-15 -3140 ((-747) |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| |#4|) (|:| -2484 (-747))) "failed") |#1|)) (-15 -3144 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3143 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3214 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -3214 (|#1| |#1| |#4| (-747))) (-15 -4105 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3142 ((-618 |#1|) |#1|)) (-15 -4023 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -4023 (|#1| |#1| |#4| (-747))) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#4| |#1|)) (-15 -3491 ((-3 |#4| #2="failed") |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#4| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#4| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -3214 (|#1| |#2| |#3|)) (-15 -4023 (|#2| |#1| |#3|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #2#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #2#) |#1|)) (-15 -3491 ((-3 |#2| #2#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3840 (|#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 |#3|) $) 108)) (-3407 (((-1136 $) $ |#3|) 123) (((-1136 |#1|) $) 122)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-2171 (($ $) 86 (|has| |#1| (-542)))) (-2169 (((-112) $) 88 (|has| |#1| (-542)))) (-3140 (((-747) $) 110) (((-747) $ (-618 |#3|)) 109)) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 98 (|has| |#1| (-881)))) (-4117 (($ $) 96 (|has| |#1| (-444)))) (-4312 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 101 (|has| |#1| (-881)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-535)) #2#) $) 160 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) 158 (|has| |#1| (-1009 (-535)))) (((-3 |#3| #2#) $) 134)) (-3490 ((|#1| $) 163) (((-400 (-535)) $) 159 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 157 (|has| |#1| (-1009 (-535)))) ((|#3| $) 133)) (-4099 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4302 (($ $) 152)) (-2353 (((-665 (-535)) (-665 $)) 132 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 131 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3139 (((-618 $) $) 107)) (-4069 (((-112) $) 94 (|has| |#1| (-881)))) (-1716 (($ $ |#1| |#2| $) 170)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 82 (-12 (|has| |#3| (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 81 (-12 (|has| |#3| (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 167)) (-3408 (($ (-1136 |#1|) |#3|) 115) (($ (-1136 $) |#3|) 114)) (-3142 (((-618 $) $) 124)) (-4280 (((-112) $) 150)) (-3214 (($ |#1| |#2|) 151) (($ $ |#3| (-747)) 117) (($ $ (-618 |#3|) (-618 (-747))) 116)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) 118)) (-3141 ((|#2| $) 168) (((-747) $ |#3|) 120) (((-618 (-747)) $ (-618 |#3|)) 119)) (-3660 (($ $ $) 77 (|has| |#1| (-823)))) (-3661 (($ $ $) 76 (|has| |#1| (-823)))) (-1717 (($ (-1 |#2| |#2|) $) 169)) (-4301 (($ (-1 |#1| |#1|) $) 149)) (-3406 (((-3 |#3| "failed") $) 121)) (-3215 (($ $) 147)) (-3508 ((|#1| $) 146)) (-2008 (($ (-618 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3576 (((-1124) $) 9)) (-3144 (((-3 (-618 $) "failed") $) 112)) (-3143 (((-3 (-618 $) "failed") $) 113)) (-3145 (((-3 (-2 (|:| |var| |#3|) (|:| -2484 (-747))) "failed") $) 111)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 100 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 99 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 97 (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-618 $) (-618 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-618 |#3|) (-618 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-618 |#3|) (-618 $)) 136)) (-4100 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4153 (($ $ |#3|) 40) (($ $ (-618 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-618 |#3|) (-618 (-747))) 37)) (-4290 ((|#2| $) 148) (((-747) $ |#3|) 128) (((-618 (-747)) $ (-618 |#3|)) 127)) (-4313 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) 79 (-12 (|has| |#3| (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) 78 (-12 (|has| |#3| (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 102 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-542))) (($ (-400 (-535))) 70 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535))))))) (-4160 (((-618 |#1|) $) 166)) (-4023 ((|#1| $ |#2|) 153) (($ $ |#3| (-747)) 126) (($ $ (-618 |#3|) (-618 (-747))) 125)) (-3023 (((-3 $ "failed") $) 71 (-3874 (-3179 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ |#3|) 36) (($ $ (-618 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-618 |#3|) (-618 (-747))) 33)) (-2885 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 73 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 75 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 72 (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 156 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 155 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-921 |#1| |#2| |#3|) (-138) (-1018) (-769) (-823)) (T -921)) -((-3840 (*1 *1 *1) (-12 (-4 *1 (-921 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-4290 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-747)))) (-4290 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 (-747))))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-921 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *2 (-823)))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 (-747))) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) (-3142 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) (-3407 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-1136 *1)) (-4 *1 (-921 *4 *5 *3)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-1136 *3)))) (-3406 (*1 *2 *1) (|partial| -12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3141 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 (-747))))) (-4105 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-921 *4 *5 *3)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-921 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *2 (-823)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 (-747))) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 *4)) (-4 *4 (-1018)) (-4 *1 (-921 *4 *5 *3)) (-4 *5 (-769)) (-4 *3 (-823)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)))) (-3143 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) (-3144 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| |var| *5) (|:| -2484 (-747)))))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-747)))) (-3140 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *5)))) (-3139 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) (-4099 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-170)))) (-4100 (*1 *1 *1 *2) (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-170)))) (-3138 (*1 *1 *1 *2) (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-444)))) (-3840 (*1 *1 *1 *2) (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-444)))) (-4117 (*1 *1 *1) (-12 (-4 *1 (-921 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-4312 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-398 *1)) (-4 *1 (-921 *3 *4 *5))))) -(-13 (-871 |t#3|) (-319 |t#1| |t#2|) (-302 $) (-505 |t#3| |t#1|) (-505 |t#3| $) (-1009 |t#3|) (-370 |t#1|) (-10 -8 (-15 -4290 ((-747) $ |t#3|)) (-15 -4290 ((-618 (-747)) $ (-618 |t#3|))) (-15 -4023 ($ $ |t#3| (-747))) (-15 -4023 ($ $ (-618 |t#3|) (-618 (-747)))) (-15 -3142 ((-618 $) $)) (-15 -3407 ((-1136 $) $ |t#3|)) (-15 -3407 ((-1136 |t#1|) $)) (-15 -3406 ((-3 |t#3| "failed") $)) (-15 -3141 ((-747) $ |t#3|)) (-15 -3141 ((-618 (-747)) $ (-618 |t#3|))) (-15 -4105 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |t#3|)) (-15 -3214 ($ $ |t#3| (-747))) (-15 -3214 ($ $ (-618 |t#3|) (-618 (-747)))) (-15 -3408 ($ (-1136 |t#1|) |t#3|)) (-15 -3408 ($ (-1136 $) |t#3|)) (-15 -3143 ((-3 (-618 $) "failed") $)) (-15 -3144 ((-3 (-618 $) "failed") $)) (-15 -3145 ((-3 (-2 (|:| |var| |t#3|) (|:| -2484 (-747))) "failed") $)) (-15 -3140 ((-747) $)) (-15 -3140 ((-747) $ (-618 |t#3|))) (-15 -3405 ((-618 |t#3|) $)) (-15 -3139 ((-618 $) $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (IF (|has| |t#3| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-594 (-861 (-535)))) (IF (|has| |t#3| (-594 (-861 (-535)))) (-6 (-594 (-861 (-535)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-594 (-861 (-371)))) (IF (|has| |t#3| (-594 (-861 (-371)))) (-6 (-594 (-861 (-371)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-857 (-535))) (IF (|has| |t#3| (-857 (-535))) (-6 (-857 (-535))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-857 (-371))) (IF (|has| |t#3| (-857 (-371))) (-6 (-857 (-371))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4099 ($ $ $ |t#3|)) (-15 -4100 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-6 (-444)) (-15 -3138 ($ $ |t#3|)) (-15 -3840 ($ $)) (-15 -3840 ($ $ |t#3|)) (-15 -4312 ((-398 $) $)) (-15 -4117 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4334)) (-6 -4334) |%noBranch|) (IF (|has| |t#1| (-881)) (-6 (-881)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535))))) ((-283) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-881)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 |#3|) . T) ((-857 (-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))) ((-881) |has| |#1| (-881)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1009 |#3|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) |has| |#1| (-881))) -((-3405 (((-618 |#2|) |#5|) 36)) (-3407 (((-1136 |#5|) |#5| |#2| (-1136 |#5|)) 23) (((-400 (-1136 |#5|)) |#5| |#2|) 16)) (-3408 ((|#5| (-400 (-1136 |#5|)) |#2|) 30)) (-3406 (((-3 |#2| "failed") |#5|) 65)) (-3144 (((-3 (-618 |#5|) "failed") |#5|) 59)) (-3146 (((-3 (-2 (|:| |val| |#5|) (|:| -2484 (-535))) "failed") |#5|) 47)) (-3143 (((-3 (-618 |#5|) "failed") |#5|) 61)) (-3145 (((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-535))) "failed") |#5|) 51))) -(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3405 ((-618 |#2|) |#5|)) (-15 -3406 ((-3 |#2| "failed") |#5|)) (-15 -3407 ((-400 (-1136 |#5|)) |#5| |#2|)) (-15 -3408 (|#5| (-400 (-1136 |#5|)) |#2|)) (-15 -3407 ((-1136 |#5|) |#5| |#2| (-1136 |#5|))) (-15 -3143 ((-3 (-618 |#5|) "failed") |#5|)) (-15 -3144 ((-3 (-618 |#5|) "failed") |#5|)) (-15 -3145 ((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-535))) "failed") |#5|)) (-15 -3146 ((-3 (-2 (|:| |val| |#5|) (|:| -2484 (-535))) "failed") |#5|))) (-769) (-823) (-1018) (-921 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -4300 ($ |#4|)) (-15 -3319 (|#4| $)) (-15 -3318 (|#4| $))))) (T -922)) -((-3146 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2484 (-535)))) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3145 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2484 (-535)))) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3144 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *3)) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3143 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *3)) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3407 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))) (-4 *7 (-921 *6 *5 *4)) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-5 *1 (-922 *5 *4 *6 *7 *3)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1136 *2))) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *2 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))) (-5 *1 (-922 *5 *4 *6 *7 *2)) (-4 *7 (-921 *6 *5 *4)))) (-3407 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *5 *4)) (-5 *2 (-400 (-1136 *3))) (-5 *1 (-922 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3406 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-1018)) (-4 *6 (-921 *5 *4 *2)) (-4 *2 (-823)) (-5 *1 (-922 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *6)) (-15 -3319 (*6 $)) (-15 -3318 (*6 $))))))) (-3405 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *5)) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))) -(-10 -7 (-15 -3405 ((-618 |#2|) |#5|)) (-15 -3406 ((-3 |#2| "failed") |#5|)) (-15 -3407 ((-400 (-1136 |#5|)) |#5| |#2|)) (-15 -3408 (|#5| (-400 (-1136 |#5|)) |#2|)) (-15 -3407 ((-1136 |#5|) |#5| |#2| (-1136 |#5|))) (-15 -3143 ((-3 (-618 |#5|) "failed") |#5|)) (-15 -3144 ((-3 (-618 |#5|) "failed") |#5|)) (-15 -3145 ((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-535))) "failed") |#5|)) (-15 -3146 ((-3 (-2 (|:| |val| |#5|) (|:| -2484 (-535))) "failed") |#5|))) -((-4301 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-923 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4301 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-769) (-823) (-1018) (-921 |#3| |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) (T -923)) -((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *6 (-769)) (-4 *2 (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) (-5 *1 (-923 *6 *7 *8 *5 *2)) (-4 *5 (-921 *8 *6 *7))))) -(-10 -7 (-15 -4301 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3147 (((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#3| (-747)) 38)) (-3148 (((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) (-400 (-535)) (-747)) 34)) (-3150 (((-2 (|:| -2484 (-747)) (|:| -4296 |#4|) (|:| |radicand| (-618 |#4|))) |#4| (-747)) 54)) (-3149 (((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#5| (-747)) 64 (|has| |#3| (-444))))) -(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3147 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#3| (-747))) (-15 -3148 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) (-400 (-535)) (-747))) (IF (|has| |#3| (-444)) (-15 -3149 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#5| (-747))) |%noBranch|) (-15 -3150 ((-2 (|:| -2484 (-747)) (|:| -4296 |#4|) (|:| |radicand| (-618 |#4|))) |#4| (-747)))) (-769) (-823) (-542) (-921 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -3319 (|#4| $)) (-15 -3318 (|#4| $)) (-15 -4300 ($ |#4|))))) (T -924)) -((-3150 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) (-4 *3 (-921 *7 *5 *6)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| (-618 *3)))) (-5 *1 (-924 *5 *6 *7 *3 *8)) (-5 *4 (-747)) (-4 *8 (-13 (-356) (-10 -8 (-15 -3319 (*3 $)) (-15 -3318 (*3 $)) (-15 -4300 ($ *3))))))) (-3149 (*1 *2 *3 *4) (-12 (-4 *7 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) (-4 *8 (-921 *7 *5 *6)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| *3))) (-5 *1 (-924 *5 *6 *7 *8 *3)) (-5 *4 (-747)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3319 (*8 $)) (-15 -3318 (*8 $)) (-15 -4300 ($ *8))))))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-535))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) (-4 *8 (-921 *7 *5 *6)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *9) (|:| |radicand| *9))) (-5 *1 (-924 *5 *6 *7 *8 *9)) (-5 *4 (-747)) (-4 *9 (-13 (-356) (-10 -8 (-15 -3319 (*8 $)) (-15 -3318 (*8 $)) (-15 -4300 ($ *8))))))) (-3147 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-542)) (-4 *7 (-921 *3 *5 *6)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *8) (|:| |radicand| *8))) (-5 *1 (-924 *5 *6 *3 *7 *8)) (-5 *4 (-747)) (-4 *8 (-13 (-356) (-10 -8 (-15 -3319 (*7 $)) (-15 -3318 (*7 $)) (-15 -4300 ($ *7)))))))) -(-10 -7 (-15 -3147 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#3| (-747))) (-15 -3148 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) (-400 (-535)) (-747))) (IF (|has| |#3| (-444)) (-15 -3149 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#5| (-747))) |%noBranch|) (-15 -3150 ((-2 (|:| -2484 (-747)) (|:| -4296 |#4|) (|:| |radicand| (-618 |#4|))) |#4| (-747)))) -((-2887 (((-112) $ $) NIL)) (-3151 (($ (-1086)) 8)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 14) (((-1086) $) 11)) (-3375 (((-112) $ $) 10))) -(((-925) (-13 (-1067) (-593 (-1086)) (-10 -8 (-15 -3151 ($ (-1086)))))) (T -925)) -((-3151 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-925))))) -(-13 (-1067) (-593 (-1086)) (-10 -8 (-15 -3151 ($ (-1086))))) -((-3217 (((-1055 (-219)) $) 8)) (-3218 (((-1055 (-219)) $) 9)) (-3219 (((-618 (-618 (-914 (-219)))) $) 10)) (-4300 (((-835) $) 6))) -(((-926) (-138)) (T -926)) -((-3219 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-618 (-618 (-914 (-219))))))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1055 (-219))))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1055 (-219)))))) -(-13 (-593 (-835)) (-10 -8 (-15 -3219 ((-618 (-618 (-914 (-219)))) $)) (-15 -3218 ((-1055 (-219)) $)) (-15 -3217 ((-1055 (-219)) $)))) -(((-593 (-835)) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 61 (|has| |#1| (-542)))) (-2171 (($ $) 62 (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 28)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) 24)) (-3804 (((-3 $ "failed") $) 35)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-1716 (($ $ |#1| |#2| $) 48)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) 16)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-3141 ((|#2| $) 19)) (-1717 (($ (-1 |#2| |#2|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3215 (($ $) 23)) (-3508 ((|#1| $) 21)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 40)) (-1910 ((|#1| $) NIL)) (-4081 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-542))))) (-3803 (((-3 $ "failed") $ $) 74 (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-542)))) (-4290 ((|#2| $) 17)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) 39) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 34) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ |#2|) 31)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 15)) (-1715 (($ $ $ (-747)) 57 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 67 (|has| |#1| (-542)))) (-2979 (($) 22 T CONST)) (-2985 (($) 12 T CONST)) (-3375 (((-112) $ $) 66)) (-4291 (($ $ |#1|) 75 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) 54) (($ $ (-747)) 52)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-927 |#1| |#2|) (-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| |#2| (-130)) (-15 -4081 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018) (-768)) (T -927)) -((-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-927 *3 *2)) (-4 *2 (-130)) (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *2 (-768))))) -(-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| |#2| (-130)) (-15 -4081 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) -((-3152 (((-3 (-665 |#1|) "failed") |#2| (-890)) 15))) -(((-928 |#1| |#2|) (-10 -7 (-15 -3152 ((-3 (-665 |#1|) "failed") |#2| (-890)))) (-542) (-634 |#1|)) (T -928)) -((-3152 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-890)) (-4 *5 (-542)) (-5 *2 (-665 *5)) (-5 *1 (-928 *5 *3)) (-4 *3 (-634 *5))))) -(-10 -7 (-15 -3152 ((-3 (-665 |#1|) "failed") |#2| (-890)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) 16 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 15 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 13)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 12)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 10 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) 17 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 11)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) 14) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 8 (|has| $ (-6 -4336))))) -(((-929 |#1|) (-19 |#1|) (-1178)) (T -929)) +((-1504 (((-112) $ $) NIL) (($ $ $) 75)) (-2274 (($ $ $) 112)) (-1776 (((-550) $) 29) (((-550)) 34)) (-1559 (($ (-550)) 43)) (-2498 (($ $ $) 44) (($ (-623 $)) 74)) (-3819 (($ $ (-623 $)) 72)) (-1747 (((-550) $) 32)) (-2894 (($ $ $) 63)) (-3601 (($ $) 125) (($ $ $) 126) (($ $ $ $) 127)) (-1846 (((-550) $) 31)) (-2975 (($ $ $) 62)) (-4038 (($ $) 102)) (-3216 (($ $ $) 116)) (-4145 (($ (-623 $)) 51)) (-3782 (($ $ (-623 $)) 69)) (-2642 (($ (-550) (-550)) 45)) (-2172 (($ $) 113) (($ $ $) 114)) (-2682 (($ $ (-550)) 39) (($ $) 42)) (-3349 (($ $ $) 87)) (-3051 (($ $ $) 119)) (-3743 (($ $) 103)) (-1519 (($ $ $) 88)) (-3393 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-4297 (((-1232) $) 7)) (-3662 (($ $) 106) (($ $ (-749)) 109)) (-2724 (($ $ $) 65)) (-2810 (($ $ $) 64)) (-1630 (($ $ (-623 $)) 98)) (-2344 (($ $ $) 101)) (-1283 (($ (-623 $)) 49)) (-1380 (($ $) 60) (($ (-623 $)) 61)) (-3489 (($ $ $) 110)) (-3575 (($ $) 104)) (-2200 (($ $ $) 115)) (-3425 (($ (-550)) 19) (($ (-1144)) 21) (($ (-1126)) 28) (($ (-219)) 23)) (-3675 (($ $ $) 91)) (-3462 (($ $) 92)) (-1940 (((-1232) (-1126)) 13)) (-3109 (($ (-1126)) 12)) (-2458 (($ (-623 (-623 $))) 48)) (-2671 (($ $ (-550)) 38) (($ $) 41)) (-1825 (((-1126) $) NIL)) (-2829 (($ $ $) 118)) (-1327 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3822 (((-112) $) 96)) (-2423 (($ $ (-623 $)) 99) (($ $ $ $) 100)) (-1642 (($ (-550)) 35)) (-3142 (((-550) $) 30) (((-550)) 33)) (-2567 (($ $ $) 36) (($ (-623 $)) 73)) (-3337 (((-1088) $) NIL)) (-1495 (($ $ $) 89)) (-3498 (($) 11)) (-2680 (($ $ (-623 $)) 97)) (-3440 (($ $) 105) (($ $ (-749)) 108)) (-1507 (($ $ $) 86)) (-2393 (($ $ (-749)) 124)) (-4246 (($ (-623 $)) 50)) (-1518 (((-836) $) 17)) (-3335 (($ $ (-550)) 37) (($ $) 40)) (-1473 (($ $) 58) (($ (-623 $)) 59)) (-3578 (($ $) 56) (($ (-623 $)) 57)) (-3716 (($ $) 111)) (-4063 (($ (-623 $)) 55)) (-4224 (($ $ $) 95)) (-3134 (($ $ $) 117)) (-1262 (($ $ $) 90)) (-1299 (($ $ $) 93) (($ $) 94)) (-2363 (($ $ $) 79)) (-2345 (($ $ $) 77)) (-2316 (((-112) $ $) 14) (($ $ $) 15)) (-2354 (($ $ $) 78)) (-2335 (($ $ $) 76)) (-2414 (($ $ $) 84)) (-2403 (($ $ $) 81) (($ $) 82)) (-2391 (($ $ $) 80)) (** (($ $ $) 85)) (* (($ $ $) 83))) +(((-836) (-13 (-1068) (-10 -8 (-15 -4297 ((-1232) $)) (-15 -3109 ($ (-1126))) (-15 -1940 ((-1232) (-1126))) (-15 -3425 ($ (-550))) (-15 -3425 ($ (-1144))) (-15 -3425 ($ (-1126))) (-15 -3425 ($ (-219))) (-15 -3498 ($)) (-15 -1776 ((-550) $)) (-15 -3142 ((-550) $)) (-15 -1776 ((-550))) (-15 -3142 ((-550))) (-15 -1846 ((-550) $)) (-15 -1747 ((-550) $)) (-15 -1642 ($ (-550))) (-15 -1559 ($ (-550))) (-15 -2642 ($ (-550) (-550))) (-15 -2671 ($ $ (-550))) (-15 -2682 ($ $ (-550))) (-15 -3335 ($ $ (-550))) (-15 -2671 ($ $)) (-15 -2682 ($ $)) (-15 -3335 ($ $)) (-15 -2567 ($ $ $)) (-15 -2498 ($ $ $)) (-15 -2567 ($ (-623 $))) (-15 -2498 ($ (-623 $))) (-15 -1630 ($ $ (-623 $))) (-15 -2423 ($ $ (-623 $))) (-15 -2423 ($ $ $ $)) (-15 -2344 ($ $ $)) (-15 -3822 ((-112) $)) (-15 -2680 ($ $ (-623 $))) (-15 -4038 ($ $)) (-15 -2829 ($ $ $)) (-15 -3716 ($ $)) (-15 -2458 ($ (-623 (-623 $)))) (-15 -2274 ($ $ $)) (-15 -2172 ($ $)) (-15 -2172 ($ $ $)) (-15 -2200 ($ $ $)) (-15 -3216 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -3051 ($ $ $)) (-15 -2393 ($ $ (-749))) (-15 -4224 ($ $ $)) (-15 -2975 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -2810 ($ $ $)) (-15 -2724 ($ $ $)) (-15 -3782 ($ $ (-623 $))) (-15 -3819 ($ $ (-623 $))) (-15 -3743 ($ $)) (-15 -3440 ($ $)) (-15 -3440 ($ $ (-749))) (-15 -3662 ($ $)) (-15 -3662 ($ $ (-749))) (-15 -3575 ($ $)) (-15 -3489 ($ $ $)) (-15 -3601 ($ $)) (-15 -3601 ($ $ $)) (-15 -3601 ($ $ $ $)) (-15 -3393 ($ $)) (-15 -3393 ($ $ $)) (-15 -3393 ($ $ $ $)) (-15 -1327 ($ $)) (-15 -1327 ($ $ $)) (-15 -1327 ($ $ $ $)) (-15 -3578 ($ $)) (-15 -3578 ($ (-623 $))) (-15 -1473 ($ $)) (-15 -1473 ($ (-623 $))) (-15 -1380 ($ $)) (-15 -1380 ($ (-623 $))) (-15 -1283 ($ (-623 $))) (-15 -4246 ($ (-623 $))) (-15 -4145 ($ (-623 $))) (-15 -4063 ($ (-623 $))) (-15 -2316 ($ $ $)) (-15 -1504 ($ $ $)) (-15 -2335 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -2363 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2403 ($ $)) (-15 * ($ $ $)) (-15 -2414 ($ $ $)) (-15 ** ($ $ $)) (-15 -1507 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -1519 ($ $ $)) (-15 -1495 ($ $ $)) (-15 -1262 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -3462 ($ $)) (-15 -1299 ($ $ $)) (-15 -1299 ($ $))))) (T -836)) +((-4297 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-836)))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-836)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-836)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-836)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-836)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-836)))) (-3498 (*1 *1) (-5 *1 (-836))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-1776 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-3142 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-1846 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-2642 (*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-2682 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-3335 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) (-2671 (*1 *1 *1) (-5 *1 (-836))) (-2682 (*1 *1 *1) (-5 *1 (-836))) (-3335 (*1 *1 *1) (-5 *1 (-836))) (-2567 (*1 *1 *1 *1) (-5 *1 (-836))) (-2498 (*1 *1 *1 *1) (-5 *1 (-836))) (-2567 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-2498 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-1630 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-2423 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-2423 (*1 *1 *1 *1 *1) (-5 *1 (-836))) (-2344 (*1 *1 *1 *1) (-5 *1 (-836))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-4038 (*1 *1 *1) (-5 *1 (-836))) (-2829 (*1 *1 *1 *1) (-5 *1 (-836))) (-3716 (*1 *1 *1) (-5 *1 (-836))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-836)))) (-5 *1 (-836)))) (-2274 (*1 *1 *1 *1) (-5 *1 (-836))) (-2172 (*1 *1 *1) (-5 *1 (-836))) (-2172 (*1 *1 *1 *1) (-5 *1 (-836))) (-2200 (*1 *1 *1 *1) (-5 *1 (-836))) (-3216 (*1 *1 *1 *1) (-5 *1 (-836))) (-3134 (*1 *1 *1 *1) (-5 *1 (-836))) (-3051 (*1 *1 *1 *1) (-5 *1 (-836))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-836)))) (-4224 (*1 *1 *1 *1) (-5 *1 (-836))) (-2975 (*1 *1 *1 *1) (-5 *1 (-836))) (-2894 (*1 *1 *1 *1) (-5 *1 (-836))) (-2810 (*1 *1 *1 *1) (-5 *1 (-836))) (-2724 (*1 *1 *1 *1) (-5 *1 (-836))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-3819 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-3743 (*1 *1 *1) (-5 *1 (-836))) (-3440 (*1 *1 *1) (-5 *1 (-836))) (-3440 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-836)))) (-3662 (*1 *1 *1) (-5 *1 (-836))) (-3662 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-836)))) (-3575 (*1 *1 *1) (-5 *1 (-836))) (-3489 (*1 *1 *1 *1) (-5 *1 (-836))) (-3601 (*1 *1 *1) (-5 *1 (-836))) (-3601 (*1 *1 *1 *1) (-5 *1 (-836))) (-3601 (*1 *1 *1 *1 *1) (-5 *1 (-836))) (-3393 (*1 *1 *1) (-5 *1 (-836))) (-3393 (*1 *1 *1 *1) (-5 *1 (-836))) (-3393 (*1 *1 *1 *1 *1) (-5 *1 (-836))) (-1327 (*1 *1 *1) (-5 *1 (-836))) (-1327 (*1 *1 *1 *1) (-5 *1 (-836))) (-1327 (*1 *1 *1 *1 *1) (-5 *1 (-836))) (-3578 (*1 *1 *1) (-5 *1 (-836))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-1473 (*1 *1 *1) (-5 *1 (-836))) (-1473 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-1380 (*1 *1 *1) (-5 *1 (-836))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-1283 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-4063 (*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) (-2316 (*1 *1 *1 *1) (-5 *1 (-836))) (-1504 (*1 *1 *1 *1) (-5 *1 (-836))) (-2335 (*1 *1 *1 *1) (-5 *1 (-836))) (-2345 (*1 *1 *1 *1) (-5 *1 (-836))) (-2354 (*1 *1 *1 *1) (-5 *1 (-836))) (-2363 (*1 *1 *1 *1) (-5 *1 (-836))) (-2391 (*1 *1 *1 *1) (-5 *1 (-836))) (-2403 (*1 *1 *1 *1) (-5 *1 (-836))) (-2403 (*1 *1 *1) (-5 *1 (-836))) (* (*1 *1 *1 *1) (-5 *1 (-836))) (-2414 (*1 *1 *1 *1) (-5 *1 (-836))) (** (*1 *1 *1 *1) (-5 *1 (-836))) (-1507 (*1 *1 *1 *1) (-5 *1 (-836))) (-3349 (*1 *1 *1 *1) (-5 *1 (-836))) (-1519 (*1 *1 *1 *1) (-5 *1 (-836))) (-1495 (*1 *1 *1 *1) (-5 *1 (-836))) (-1262 (*1 *1 *1 *1) (-5 *1 (-836))) (-3675 (*1 *1 *1 *1) (-5 *1 (-836))) (-3462 (*1 *1 *1) (-5 *1 (-836))) (-1299 (*1 *1 *1 *1) (-5 *1 (-836))) (-1299 (*1 *1 *1) (-5 *1 (-836)))) +(-13 (-1068) (-10 -8 (-15 -4297 ((-1232) $)) (-15 -3109 ($ (-1126))) (-15 -1940 ((-1232) (-1126))) (-15 -3425 ($ (-550))) (-15 -3425 ($ (-1144))) (-15 -3425 ($ (-1126))) (-15 -3425 ($ (-219))) (-15 -3498 ($)) (-15 -1776 ((-550) $)) (-15 -3142 ((-550) $)) (-15 -1776 ((-550))) (-15 -3142 ((-550))) (-15 -1846 ((-550) $)) (-15 -1747 ((-550) $)) (-15 -1642 ($ (-550))) (-15 -1559 ($ (-550))) (-15 -2642 ($ (-550) (-550))) (-15 -2671 ($ $ (-550))) (-15 -2682 ($ $ (-550))) (-15 -3335 ($ $ (-550))) (-15 -2671 ($ $)) (-15 -2682 ($ $)) (-15 -3335 ($ $)) (-15 -2567 ($ $ $)) (-15 -2498 ($ $ $)) (-15 -2567 ($ (-623 $))) (-15 -2498 ($ (-623 $))) (-15 -1630 ($ $ (-623 $))) (-15 -2423 ($ $ (-623 $))) (-15 -2423 ($ $ $ $)) (-15 -2344 ($ $ $)) (-15 -3822 ((-112) $)) (-15 -2680 ($ $ (-623 $))) (-15 -4038 ($ $)) (-15 -2829 ($ $ $)) (-15 -3716 ($ $)) (-15 -2458 ($ (-623 (-623 $)))) (-15 -2274 ($ $ $)) (-15 -2172 ($ $)) (-15 -2172 ($ $ $)) (-15 -2200 ($ $ $)) (-15 -3216 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -3051 ($ $ $)) (-15 -2393 ($ $ (-749))) (-15 -4224 ($ $ $)) (-15 -2975 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -2810 ($ $ $)) (-15 -2724 ($ $ $)) (-15 -3782 ($ $ (-623 $))) (-15 -3819 ($ $ (-623 $))) (-15 -3743 ($ $)) (-15 -3440 ($ $)) (-15 -3440 ($ $ (-749))) (-15 -3662 ($ $)) (-15 -3662 ($ $ (-749))) (-15 -3575 ($ $)) (-15 -3489 ($ $ $)) (-15 -3601 ($ $)) (-15 -3601 ($ $ $)) (-15 -3601 ($ $ $ $)) (-15 -3393 ($ $)) (-15 -3393 ($ $ $)) (-15 -3393 ($ $ $ $)) (-15 -1327 ($ $)) (-15 -1327 ($ $ $)) (-15 -1327 ($ $ $ $)) (-15 -3578 ($ $)) (-15 -3578 ($ (-623 $))) (-15 -1473 ($ $)) (-15 -1473 ($ (-623 $))) (-15 -1380 ($ $)) (-15 -1380 ($ (-623 $))) (-15 -1283 ($ (-623 $))) (-15 -4246 ($ (-623 $))) (-15 -4145 ($ (-623 $))) (-15 -4063 ($ (-623 $))) (-15 -2316 ($ $ $)) (-15 -1504 ($ $ $)) (-15 -2335 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -2363 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2403 ($ $)) (-15 * ($ $ $)) (-15 -2414 ($ $ $)) (-15 ** ($ $ $)) (-15 -1507 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -1519 ($ $ $)) (-15 -1495 ($ $ $)) (-15 -1262 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -3462 ($ $)) (-15 -1299 ($ $ $)) (-15 -1299 ($ $)))) +((-3681 (((-1232) (-623 (-52))) 24)) (-4190 (((-1232) (-1126) (-836)) 14) (((-1232) (-836)) 9) (((-1232) (-1126)) 11))) +(((-837) (-10 -7 (-15 -4190 ((-1232) (-1126))) (-15 -4190 ((-1232) (-836))) (-15 -4190 ((-1232) (-1126) (-836))) (-15 -3681 ((-1232) (-623 (-52)))))) (T -837)) +((-3681 (*1 *2 *3) (-12 (-5 *3 (-623 (-52))) (-5 *2 (-1232)) (-5 *1 (-837)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-1126)) (-5 *4 (-836)) (-5 *2 (-1232)) (-5 *1 (-837)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-837)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-837))))) +(-10 -7 (-15 -4190 ((-1232) (-1126))) (-15 -4190 ((-1232) (-836))) (-15 -4190 ((-1232) (-1126) (-836))) (-15 -3681 ((-1232) (-623 (-52))))) +((-1504 (((-112) $ $) NIL)) (-1861 (((-3 $ "failed") (-1144)) 33)) (-4319 (((-749)) 31)) (-1741 (($) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-2253 (((-894) $) 29)) (-1825 (((-1126) $) 39)) (-2922 (($ (-894)) 28)) (-3337 (((-1088) $) NIL)) (-4028 (((-1144) $) 13) (((-526) $) 19) (((-865 (-372)) $) 26) (((-865 (-550)) $) 22)) (-1518 (((-836) $) 16)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 36)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 35))) +(((-838 |#1|) (-13 (-819) (-596 (-1144)) (-596 (-526)) (-596 (-865 (-372))) (-596 (-865 (-550))) (-10 -8 (-15 -1861 ((-3 $ "failed") (-1144))))) (-623 (-1144))) (T -838)) +((-1861 (*1 *1 *2) (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-838 *3)) (-14 *3 (-623 *2))))) +(-13 (-819) (-596 (-1144)) (-596 (-526)) (-596 (-865 (-372))) (-596 (-865 (-550))) (-10 -8 (-15 -1861 ((-3 $ "failed") (-1144))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (((-925 |#1|) $) NIL) (($ (-925 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-2390 (((-749)) NIL)) (-1545 (((-1232) (-749)) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2414 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-839 |#1| |#2| |#3| |#4|) (-13 (-1020) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1518 ((-925 |#1|) $)) (-15 -1518 ($ (-925 |#1|))) (IF (|has| |#1| (-356)) (-15 -2414 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1545 ((-1232) (-749))))) (-1020) (-623 (-1144)) (-623 (-749)) (-749)) (T -839)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-925 *3)) (-5 *1 (-839 *3 *4 *5 *6)) (-4 *3 (-1020)) (-14 *4 (-623 (-1144))) (-14 *5 (-623 (-749))) (-14 *6 (-749)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-1020)) (-5 *1 (-839 *3 *4 *5 *6)) (-14 *4 (-623 (-1144))) (-14 *5 (-623 (-749))) (-14 *6 (-749)))) (-2414 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-839 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1020)) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-749))) (-14 *5 (-749)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-839 *4 *5 *6 *7)) (-4 *4 (-1020)) (-14 *5 (-623 (-1144))) (-14 *6 (-623 *3)) (-14 *7 *3)))) +(-13 (-1020) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1518 ((-925 |#1|) $)) (-15 -1518 ($ (-925 |#1|))) (IF (|has| |#1| (-356)) (-15 -2414 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1545 ((-1232) (-749))))) +((-2021 (((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|) 31)) (-2099 (((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|) 24))) +(((-840 |#1| |#2| |#3|) (-10 -7 (-15 -2099 ((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|)) (-15 -2021 ((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|))) (-356) (-1218 |#1|) (-1203 |#1|)) (T -840)) +((-2021 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-172 *6)) (-5 *1 (-840 *5 *4 *6)) (-4 *4 (-1218 *5)) (-4 *6 (-1203 *5)))) (-2099 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-400 *6)) (-5 *1 (-840 *5 *4 *6)) (-4 *4 (-1218 *5)) (-4 *6 (-1203 *5))))) +(-10 -7 (-15 -2099 ((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|)) (-15 -2021 ((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|))) +((-2099 (((-3 (-400 (-1200 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)) 28) (((-3 (-400 (-1200 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) 26))) +(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -2099 ((-3 (-400 (-1200 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (-15 -2099 ((-3 (-400 (-1200 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)))) (-356) (-1144) |#1|) (T -841)) +((-2099 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1144)) (-14 *7 *5) (-5 *2 (-400 (-1200 *6 *5))) (-5 *1 (-841 *5 *6 *7)))) (-2099 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1144)) (-14 *7 *5) (-5 *2 (-400 (-1200 *6 *5))) (-5 *1 (-841 *5 *6 *7))))) +(-10 -7 (-15 -2099 ((-3 (-400 (-1200 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (-15 -2099 ((-3 (-400 (-1200 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3353 (($ $ (-550)) 60)) (-3631 (((-112) $ $) 57)) (-3513 (($) 17 T CONST)) (-2172 (($ (-1140 (-550)) (-550)) 59)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-3989 (($ $) 62)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-2475 (((-749) $) 67)) (-3102 (((-112) $) 30)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-4189 (((-550)) 64)) (-4088 (((-550) $) 63)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2272 (($ $ (-550)) 66)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-4302 (((-1124 (-550)) $) 68)) (-3380 (($ $) 65)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2001 (((-550) $ (-550)) 61)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-842 |#1|) (-138) (-550)) (T -842)) +((-4302 (*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-5 *2 (-1124 (-550))))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-5 *2 (-749)))) (-2272 (*1 *1 *1 *2) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550)))) (-3380 (*1 *1 *1) (-4 *1 (-842 *2))) (-4189 (*1 *2) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550)))) (-3989 (*1 *1 *1) (-4 *1 (-842 *2))) (-2001 (*1 *2 *1 *2) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550)))) (-3353 (*1 *1 *1 *2) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550)))) (-2172 (*1 *1 *2 *3) (-12 (-5 *2 (-1140 (-550))) (-5 *3 (-550)) (-4 *1 (-842 *4))))) +(-13 (-300) (-145) (-10 -8 (-15 -4302 ((-1124 (-550)) $)) (-15 -2475 ((-749) $)) (-15 -2272 ($ $ (-550))) (-15 -3380 ($ $)) (-15 -4189 ((-550))) (-15 -4088 ((-550) $)) (-15 -3989 ($ $)) (-15 -2001 ((-550) $ (-550))) (-15 -3353 ($ $ (-550))) (-15 -2172 ($ (-1140 (-550)) (-550))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-893) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3353 (($ $ (-550)) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-2172 (($ (-1140 (-550)) (-550)) NIL)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3989 (($ $) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-2475 (((-749) $) NIL)) (-3102 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-4189 (((-550)) NIL)) (-4088 (((-550) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2272 (($ $ (-550)) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-4302 (((-1124 (-550)) $) NIL)) (-3380 (($ $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL)) (-2390 (((-749)) NIL)) (-1345 (((-112) $ $) NIL)) (-2001 (((-550) $ (-550)) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) +(((-843 |#1|) (-842 |#1|) (-550)) (T -843)) +NIL +(-842 |#1|) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-843 |#1|) (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| (-843 |#1|) (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| (-843 |#1|) (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-843 |#1|) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL (|has| (-843 |#1|) (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-843 |#1|) (-1011 (-550)))) (((-3 (-550) "failed") $) NIL (|has| (-843 |#1|) (-1011 (-550))))) (-2726 (((-843 |#1|) $) NIL) (((-1144) $) NIL (|has| (-843 |#1|) (-1011 (-1144)))) (((-400 (-550)) $) NIL (|has| (-843 |#1|) (-1011 (-550)))) (((-550) $) NIL (|has| (-843 |#1|) (-1011 (-550))))) (-4200 (($ $) NIL) (($ (-550) $) NIL)) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-843 |#1|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-843 |#1|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-843 |#1|))) (|:| |vec| (-1227 (-843 |#1|)))) (-667 $) (-1227 $)) NIL) (((-667 (-843 |#1|)) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-843 |#1|) (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) NIL (|has| (-843 |#1|) (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| (-843 |#1|) (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| (-843 |#1|) (-859 (-372))))) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL)) (-2705 (((-843 |#1|) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| (-843 |#1|) (-1119)))) (-3329 (((-112) $) NIL (|has| (-843 |#1|) (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| (-843 |#1|) (-825)))) (-4164 (($ $ $) NIL (|has| (-843 |#1|) (-825)))) (-3972 (($ (-1 (-843 |#1|) (-843 |#1|)) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-843 |#1|) (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| (-843 |#1|) (-300)))) (-1608 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-843 |#1|) (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-843 |#1|) (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 (-843 |#1|)) (-623 (-843 |#1|))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-843 |#1|) (-843 |#1|)) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-287 (-843 |#1|))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-623 (-287 (-843 |#1|)))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-623 (-1144)) (-623 (-843 |#1|))) NIL (|has| (-843 |#1|) (-505 (-1144) (-843 |#1|)))) (($ $ (-1144) (-843 |#1|)) NIL (|has| (-843 |#1|) (-505 (-1144) (-843 |#1|))))) (-3542 (((-749) $) NIL)) (-2680 (($ $ (-843 |#1|)) NIL (|has| (-843 |#1|) (-279 (-843 |#1|) (-843 |#1|))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL (|has| (-843 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-843 |#1|) (-227))) (($ $ (-1144)) NIL (|has| (-843 |#1|) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-843 |#1|) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-843 |#1|) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-843 |#1|) (-873 (-1144)))) (($ $ (-1 (-843 |#1|) (-843 |#1|)) (-749)) NIL) (($ $ (-1 (-843 |#1|) (-843 |#1|))) NIL)) (-2639 (($ $) NIL)) (-2715 (((-843 |#1|) $) NIL)) (-4028 (((-865 (-550)) $) NIL (|has| (-843 |#1|) (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| (-843 |#1|) (-596 (-865 (-372))))) (((-526) $) NIL (|has| (-843 |#1|) (-596 (-526)))) (((-372) $) NIL (|has| (-843 |#1|) (-995))) (((-219) $) NIL (|has| (-843 |#1|) (-995)))) (-1325 (((-172 (-400 (-550))) $) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-843 |#1|) (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL) (($ (-843 |#1|)) NIL) (($ (-1144)) NIL (|has| (-843 |#1|) (-1011 (-1144))))) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-843 |#1|) (-882))) (|has| (-843 |#1|) (-143))))) (-2390 (((-749)) NIL)) (-1754 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-535)))) (-1345 (((-112) $ $) NIL)) (-2001 (((-400 (-550)) $ (-550)) NIL)) (-1635 (($ $) NIL (|has| (-843 |#1|) (-798)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $) NIL (|has| (-843 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-843 |#1|) (-227))) (($ $ (-1144)) NIL (|has| (-843 |#1|) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-843 |#1|) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-843 |#1|) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-843 |#1|) (-873 (-1144)))) (($ $ (-1 (-843 |#1|) (-843 |#1|)) (-749)) NIL) (($ $ (-1 (-843 |#1|) (-843 |#1|))) NIL)) (-2363 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-2414 (($ $ $) NIL) (($ (-843 |#1|) (-843 |#1|)) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-843 |#1|) $) NIL) (($ $ (-843 |#1|)) NIL))) +(((-844 |#1|) (-13 (-965 (-843 |#1|)) (-10 -8 (-15 -2001 ((-400 (-550)) $ (-550))) (-15 -1325 ((-172 (-400 (-550))) $)) (-15 -4200 ($ $)) (-15 -4200 ($ (-550) $)))) (-550)) (T -844)) +((-2001 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-844 *4)) (-14 *4 *3) (-5 *3 (-550)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-844 *3)) (-14 *3 (-550)))) (-4200 (*1 *1 *1) (-12 (-5 *1 (-844 *2)) (-14 *2 (-550)))) (-4200 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-844 *3)) (-14 *3 *2)))) +(-13 (-965 (-843 |#1|)) (-10 -8 (-15 -2001 ((-400 (-550)) $ (-550))) (-15 -1325 ((-172 (-400 (-550))) $)) (-15 -4200 ($ $)) (-15 -4200 ($ (-550) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 ((|#2| $) NIL (|has| |#2| (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| |#2| (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-1144) "failed") $) NIL (|has| |#2| (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550))))) (-2726 ((|#2| $) NIL) (((-1144) $) NIL (|has| |#2| (-1011 (-1144)))) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-550)))) (((-550) $) NIL (|has| |#2| (-1011 (-550))))) (-4200 (($ $) 31) (($ (-550) $) 32)) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) 53)) (-1741 (($) NIL (|has| |#2| (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) NIL (|has| |#2| (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| |#2| (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| |#2| (-859 (-372))))) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL)) (-2705 ((|#2| $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| |#2| (-1119)))) (-3329 (((-112) $) NIL (|has| |#2| (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| |#2| (-825)))) (-4164 (($ $ $) NIL (|has| |#2| (-825)))) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 49)) (-3862 (($) NIL (|has| |#2| (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| |#2| (-300)))) (-1608 ((|#2| $) NIL (|has| |#2| (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 |#2|) (-623 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-302 |#2|))) (($ $ (-287 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ (-623 (-287 |#2|))) NIL (|has| |#2| (-302 |#2|))) (($ $ (-623 (-1144)) (-623 |#2|)) NIL (|has| |#2| (-505 (-1144) |#2|))) (($ $ (-1144) |#2|) NIL (|has| |#2| (-505 (-1144) |#2|)))) (-3542 (((-749) $) NIL)) (-2680 (($ $ |#2|) NIL (|has| |#2| (-279 |#2| |#2|)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) NIL (|has| |#2| (-227))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2639 (($ $) NIL)) (-2715 ((|#2| $) NIL)) (-4028 (((-865 (-550)) $) NIL (|has| |#2| (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| |#2| (-596 (-865 (-372))))) (((-526) $) NIL (|has| |#2| (-596 (-526)))) (((-372) $) NIL (|has| |#2| (-995))) (((-219) $) NIL (|has| |#2| (-995)))) (-1325 (((-172 (-400 (-550))) $) 68)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-882))))) (-1518 (((-836) $) 87) (($ (-550)) 19) (($ $) NIL) (($ (-400 (-550))) 24) (($ |#2|) 18) (($ (-1144)) NIL (|has| |#2| (-1011 (-1144))))) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#2| (-882))) (|has| |#2| (-143))))) (-2390 (((-749)) NIL)) (-1754 ((|#2| $) NIL (|has| |#2| (-535)))) (-1345 (((-112) $ $) NIL)) (-2001 (((-400 (-550)) $ (-550)) 60)) (-1635 (($ $) NIL (|has| |#2| (-798)))) (-2626 (($) 14 T CONST)) (-2636 (($) 16 T CONST)) (-4183 (($ $) NIL (|has| |#2| (-227))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2316 (((-112) $ $) 35)) (-2354 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2414 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2403 (($ $) 39) (($ $ $) 41)) (-2391 (($ $ $) 37)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) 50)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 42) (($ $ $) 44) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-845 |#1| |#2|) (-13 (-965 |#2|) (-10 -8 (-15 -2001 ((-400 (-550)) $ (-550))) (-15 -1325 ((-172 (-400 (-550))) $)) (-15 -4200 ($ $)) (-15 -4200 ($ (-550) $)))) (-550) (-842 |#1|)) (T -845)) +((-2001 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-400 (-550))) (-5 *1 (-845 *4 *5)) (-5 *3 (-550)) (-4 *5 (-842 *4)))) (-1325 (*1 *2 *1) (-12 (-14 *3 (-550)) (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-845 *3 *4)) (-4 *4 (-842 *3)))) (-4200 (*1 *1 *1) (-12 (-14 *2 (-550)) (-5 *1 (-845 *2 *3)) (-4 *3 (-842 *2)))) (-4200 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-14 *3 *2) (-5 *1 (-845 *3 *4)) (-4 *4 (-842 *3))))) +(-13 (-965 |#2|) (-10 -8 (-15 -2001 ((-400 (-550)) $ (-550))) (-15 -1325 ((-172 (-400 (-550))) $)) (-15 -4200 ($ $)) (-15 -4200 ($ (-550) $)))) +((-1504 (((-112) $ $) NIL (-12 (|has| |#1| (-1068)) (|has| |#2| (-1068))))) (-3985 ((|#2| $) 12)) (-2952 (($ |#1| |#2|) 9)) (-1825 (((-1126) $) NIL (-12 (|has| |#1| (-1068)) (|has| |#2| (-1068))))) (-3337 (((-1088) $) NIL (-12 (|has| |#1| (-1068)) (|has| |#2| (-1068))))) (-1293 ((|#1| $) 11)) (-1532 (($ |#1| |#2|) 10)) (-1518 (((-836) $) 18 (-1561 (-12 (|has| |#1| (-595 (-836))) (|has| |#2| (-595 (-836)))) (-12 (|has| |#1| (-1068)) (|has| |#2| (-1068)))))) (-2316 (((-112) $ $) 22 (-12 (|has| |#1| (-1068)) (|has| |#2| (-1068)))))) +(((-846 |#1| |#2|) (-13 (-1181) (-10 -8 (IF (|has| |#1| (-595 (-836))) (IF (|has| |#2| (-595 (-836))) (-6 (-595 (-836))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1068)) (IF (|has| |#2| (-1068)) (-6 (-1068)) |%noBranch|) |%noBranch|) (-15 -2952 ($ |#1| |#2|)) (-15 -1532 ($ |#1| |#2|)) (-15 -1293 (|#1| $)) (-15 -3985 (|#2| $)))) (-1181) (-1181)) (T -846)) +((-2952 (*1 *1 *2 *3) (-12 (-5 *1 (-846 *2 *3)) (-4 *2 (-1181)) (-4 *3 (-1181)))) (-1532 (*1 *1 *2 *3) (-12 (-5 *1 (-846 *2 *3)) (-4 *2 (-1181)) (-4 *3 (-1181)))) (-1293 (*1 *2 *1) (-12 (-4 *2 (-1181)) (-5 *1 (-846 *2 *3)) (-4 *3 (-1181)))) (-3985 (*1 *2 *1) (-12 (-4 *2 (-1181)) (-5 *1 (-846 *3 *2)) (-4 *3 (-1181))))) +(-13 (-1181) (-10 -8 (IF (|has| |#1| (-595 (-836))) (IF (|has| |#2| (-595 (-836))) (-6 (-595 (-836))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1068)) (IF (|has| |#2| (-1068)) (-6 (-1068)) |%noBranch|) |%noBranch|) (-15 -2952 ($ |#1| |#2|)) (-15 -1532 ($ |#1| |#2|)) (-15 -1293 (|#1| $)) (-15 -3985 (|#2| $)))) +((-1504 (((-112) $ $) NIL)) (-2199 (((-550) $) 15)) (-1521 (($ (-155)) 11)) (-1422 (($ (-155)) 12)) (-1825 (((-1126) $) NIL)) (-3206 (((-155) $) 13)) (-3337 (((-1088) $) NIL)) (-3873 (($ (-155)) 9)) (-3126 (($ (-155)) 8)) (-1518 (((-836) $) 23) (($ (-155)) 16)) (-1452 (($ (-155)) 10)) (-2316 (((-112) $ $) NIL))) +(((-847) (-13 (-1068) (-10 -8 (-15 -3126 ($ (-155))) (-15 -3873 ($ (-155))) (-15 -1452 ($ (-155))) (-15 -1521 ($ (-155))) (-15 -1422 ($ (-155))) (-15 -3206 ((-155) $)) (-15 -2199 ((-550) $)) (-15 -1518 ($ (-155)))))) (T -847)) +((-3126 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847)))) (-1422 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-847)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-847)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847))))) +(-13 (-1068) (-10 -8 (-15 -3126 ($ (-155))) (-15 -3873 ($ (-155))) (-15 -1452 ($ (-155))) (-15 -1521 ($ (-155))) (-15 -1422 ($ (-155))) (-15 -3206 ((-155) $)) (-15 -2199 ((-550) $)) (-15 -1518 ($ (-155))))) +((-1518 (((-309 (-550)) (-400 (-925 (-48)))) 23) (((-309 (-550)) (-925 (-48))) 18))) +(((-848) (-10 -7 (-15 -1518 ((-309 (-550)) (-925 (-48)))) (-15 -1518 ((-309 (-550)) (-400 (-925 (-48))))))) (T -848)) +((-1518 (*1 *2 *3) (-12 (-5 *3 (-400 (-925 (-48)))) (-5 *2 (-309 (-550))) (-5 *1 (-848)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-925 (-48))) (-5 *2 (-309 (-550))) (-5 *1 (-848))))) +(-10 -7 (-15 -1518 ((-309 (-550)) (-925 (-48)))) (-15 -1518 ((-309 (-550)) (-400 (-925 (-48)))))) +((-3972 (((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)) 14))) +(((-849 |#1| |#2|) (-10 -7 (-15 -3972 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) (-1181) (-1181)) (T -849)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6))))) +(-10 -7 (-15 -3972 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) +((-2895 (($ |#1| |#1|) 8)) (-2336 ((|#1| $ (-749)) 10))) +(((-850 |#1|) (-10 -8 (-15 -2895 ($ |#1| |#1|)) (-15 -2336 (|#1| $ (-749)))) (-1181)) (T -850)) +((-2336 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-850 *2)) (-4 *2 (-1181)))) (-2895 (*1 *1 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1181))))) +(-10 -8 (-15 -2895 ($ |#1| |#1|)) (-15 -2336 (|#1| $ (-749)))) +((-3972 (((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|)) 14))) +(((-851 |#1| |#2|) (-10 -7 (-15 -3972 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|)))) (-1181) (-1181)) (T -851)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-852 *6)) (-5 *1 (-851 *5 *6))))) +(-10 -7 (-15 -3972 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|)))) +((-2895 (($ |#1| |#1| |#1|) 8)) (-2336 ((|#1| $ (-749)) 10))) +(((-852 |#1|) (-10 -8 (-15 -2895 ($ |#1| |#1| |#1|)) (-15 -2336 (|#1| $ (-749)))) (-1181)) (T -852)) +((-2336 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-852 *2)) (-4 *2 (-1181)))) (-2895 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1181))))) +(-10 -8 (-15 -2895 ($ |#1| |#1| |#1|)) (-15 -2336 (|#1| $ (-749)))) +((-2149 (((-623 (-1149)) (-1126)) 9))) +(((-853) (-10 -7 (-15 -2149 ((-623 (-1149)) (-1126))))) (T -853)) +((-2149 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-623 (-1149))) (-5 *1 (-853))))) +(-10 -7 (-15 -2149 ((-623 (-1149)) (-1126)))) +((-3972 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) +(((-854 |#1| |#2|) (-10 -7 (-15 -3972 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-1181) (-1181)) (T -854)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) +(-10 -7 (-15 -3972 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) +((-2240 (($ |#1| |#1| |#1|) 8)) (-2336 ((|#1| $ (-749)) 10))) +(((-855 |#1|) (-10 -8 (-15 -2240 ($ |#1| |#1| |#1|)) (-15 -2336 (|#1| $ (-749)))) (-1181)) (T -855)) +((-2336 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-855 *2)) (-4 *2 (-1181)))) (-2240 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1181))))) +(-10 -8 (-15 -2240 ($ |#1| |#1| |#1|)) (-15 -2336 (|#1| $ (-749)))) +((-1563 (((-1124 (-623 (-550))) (-623 (-550)) (-1124 (-623 (-550)))) 32)) (-1436 (((-1124 (-623 (-550))) (-623 (-550)) (-623 (-550))) 28)) (-1683 (((-1124 (-623 (-550))) (-623 (-550))) 41) (((-1124 (-623 (-550))) (-623 (-550)) (-623 (-550))) 40)) (-1814 (((-1124 (-623 (-550))) (-550)) 42)) (-2433 (((-1124 (-623 (-550))) (-550) (-550)) 22) (((-1124 (-623 (-550))) (-550)) 16) (((-1124 (-623 (-550))) (-550) (-550) (-550)) 12)) (-2534 (((-1124 (-623 (-550))) (-1124 (-623 (-550)))) 26)) (-1270 (((-623 (-550)) (-623 (-550))) 25))) +(((-856) (-10 -7 (-15 -2433 ((-1124 (-623 (-550))) (-550) (-550) (-550))) (-15 -2433 ((-1124 (-623 (-550))) (-550))) (-15 -2433 ((-1124 (-623 (-550))) (-550) (-550))) (-15 -1270 ((-623 (-550)) (-623 (-550)))) (-15 -2534 ((-1124 (-623 (-550))) (-1124 (-623 (-550))))) (-15 -1436 ((-1124 (-623 (-550))) (-623 (-550)) (-623 (-550)))) (-15 -1563 ((-1124 (-623 (-550))) (-623 (-550)) (-1124 (-623 (-550))))) (-15 -1683 ((-1124 (-623 (-550))) (-623 (-550)) (-623 (-550)))) (-15 -1683 ((-1124 (-623 (-550))) (-623 (-550)))) (-15 -1814 ((-1124 (-623 (-550))) (-550))))) (T -856)) +((-1814 (*1 *2 *3) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-550)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-623 (-550))))) (-1683 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-623 (-550))))) (-1563 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *3 (-623 (-550))) (-5 *1 (-856)))) (-1436 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-623 (-550))))) (-2534 (*1 *2 *2) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)))) (-1270 (*1 *2 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-856)))) (-2433 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-550)))) (-2433 (*1 *2 *3) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-550)))) (-2433 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-550))))) +(-10 -7 (-15 -2433 ((-1124 (-623 (-550))) (-550) (-550) (-550))) (-15 -2433 ((-1124 (-623 (-550))) (-550))) (-15 -2433 ((-1124 (-623 (-550))) (-550) (-550))) (-15 -1270 ((-623 (-550)) (-623 (-550)))) (-15 -2534 ((-1124 (-623 (-550))) (-1124 (-623 (-550))))) (-15 -1436 ((-1124 (-623 (-550))) (-623 (-550)) (-623 (-550)))) (-15 -1563 ((-1124 (-623 (-550))) (-623 (-550)) (-1124 (-623 (-550))))) (-15 -1683 ((-1124 (-623 (-550))) (-623 (-550)) (-623 (-550)))) (-15 -1683 ((-1124 (-623 (-550))) (-623 (-550)))) (-15 -1814 ((-1124 (-623 (-550))) (-550)))) +((-4028 (((-865 (-372)) $) 9 (|has| |#1| (-596 (-865 (-372))))) (((-865 (-550)) $) 8 (|has| |#1| (-596 (-865 (-550))))))) +(((-857 |#1|) (-138) (-1181)) (T -857)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-596 (-865 (-550)))) (-6 (-596 (-865 (-550)))) |%noBranch|) (IF (|has| |t#1| (-596 (-865 (-372)))) (-6 (-596 (-865 (-372)))) |%noBranch|))) +(((-596 (-865 (-372))) |has| |#1| (-596 (-865 (-372)))) ((-596 (-865 (-550))) |has| |#1| (-596 (-865 (-550))))) +((-1504 (((-112) $ $) NIL)) (-2578 (($) 14)) (-2045 (($ (-862 |#1| |#2|) (-862 |#1| |#3|)) 27)) (-2176 (((-862 |#1| |#3|) $) 16)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3328 (((-112) $) 22)) (-3517 (($) 19)) (-1518 (((-836) $) 30)) (-1932 (((-862 |#1| |#2|) $) 15)) (-2316 (((-112) $ $) 25))) +(((-858 |#1| |#2| |#3|) (-13 (-1068) (-10 -8 (-15 -3328 ((-112) $)) (-15 -3517 ($)) (-15 -2578 ($)) (-15 -2045 ($ (-862 |#1| |#2|) (-862 |#1| |#3|))) (-15 -1932 ((-862 |#1| |#2|) $)) (-15 -2176 ((-862 |#1| |#3|) $)))) (-1068) (-1068) (-644 |#2|)) (T -858)) +((-3328 (*1 *2 *1) (-12 (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-858 *3 *4 *5)) (-4 *3 (-1068)) (-4 *5 (-644 *4)))) (-3517 (*1 *1) (-12 (-4 *3 (-1068)) (-5 *1 (-858 *2 *3 *4)) (-4 *2 (-1068)) (-4 *4 (-644 *3)))) (-2578 (*1 *1) (-12 (-4 *3 (-1068)) (-5 *1 (-858 *2 *3 *4)) (-4 *2 (-1068)) (-4 *4 (-644 *3)))) (-2045 (*1 *1 *2 *3) (-12 (-5 *2 (-862 *4 *5)) (-5 *3 (-862 *4 *6)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-644 *5)) (-5 *1 (-858 *4 *5 *6)))) (-1932 (*1 *2 *1) (-12 (-4 *4 (-1068)) (-5 *2 (-862 *3 *4)) (-5 *1 (-858 *3 *4 *5)) (-4 *3 (-1068)) (-4 *5 (-644 *4)))) (-2176 (*1 *2 *1) (-12 (-4 *4 (-1068)) (-5 *2 (-862 *3 *5)) (-5 *1 (-858 *3 *4 *5)) (-4 *3 (-1068)) (-4 *5 (-644 *4))))) +(-13 (-1068) (-10 -8 (-15 -3328 ((-112) $)) (-15 -3517 ($)) (-15 -2578 ($)) (-15 -2045 ($ (-862 |#1| |#2|) (-862 |#1| |#3|))) (-15 -1932 ((-862 |#1| |#2|) $)) (-15 -2176 ((-862 |#1| |#3|) $)))) +((-1504 (((-112) $ $) 7)) (-4312 (((-862 |#1| $) $ (-865 |#1|) (-862 |#1| $)) 13)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6))) +(((-859 |#1|) (-138) (-1068)) (T -859)) +((-4312 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-862 *4 *1)) (-5 *3 (-865 *4)) (-4 *1 (-859 *4)) (-4 *4 (-1068))))) +(-13 (-1068) (-10 -8 (-15 -4312 ((-862 |t#1| $) $ (-865 |t#1|) (-862 |t#1| $))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-3890 (((-112) (-623 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3992 (((-862 |#1| |#2|) |#2| |#3|) 43 (-12 (-3462 (|has| |#2| (-1011 (-1144)))) (-3462 (|has| |#2| (-1020))))) (((-623 (-287 (-925 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1020)) (-3462 (|has| |#2| (-1011 (-1144)))))) (((-623 (-287 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1011 (-1144)))) (((-858 |#1| |#2| (-623 |#2|)) (-623 |#2|) |#3|) 21))) +(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -3890 ((-112) |#2| |#3|)) (-15 -3890 ((-112) (-623 |#2|) |#3|)) (-15 -3992 ((-858 |#1| |#2| (-623 |#2|)) (-623 |#2|) |#3|)) (IF (|has| |#2| (-1011 (-1144))) (-15 -3992 ((-623 (-287 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1020)) (-15 -3992 ((-623 (-287 (-925 |#2|))) |#2| |#3|)) (-15 -3992 ((-862 |#1| |#2|) |#2| |#3|))))) (-1068) (-859 |#1|) (-596 (-865 |#1|))) (T -860)) +((-3992 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-5 *2 (-862 *5 *3)) (-5 *1 (-860 *5 *3 *4)) (-3462 (-4 *3 (-1011 (-1144)))) (-3462 (-4 *3 (-1020))) (-4 *3 (-859 *5)) (-4 *4 (-596 (-865 *5))))) (-3992 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-5 *2 (-623 (-287 (-925 *3)))) (-5 *1 (-860 *5 *3 *4)) (-4 *3 (-1020)) (-3462 (-4 *3 (-1011 (-1144)))) (-4 *3 (-859 *5)) (-4 *4 (-596 (-865 *5))))) (-3992 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-5 *2 (-623 (-287 *3))) (-5 *1 (-860 *5 *3 *4)) (-4 *3 (-1011 (-1144))) (-4 *3 (-859 *5)) (-4 *4 (-596 (-865 *5))))) (-3992 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-4 *6 (-859 *5)) (-5 *2 (-858 *5 *6 (-623 *6))) (-5 *1 (-860 *5 *6 *4)) (-5 *3 (-623 *6)) (-4 *4 (-596 (-865 *5))))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-4 *6 (-859 *5)) (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-860 *5 *6 *4)) (-4 *4 (-596 (-865 *5))))) (-3890 (*1 *2 *3 *4) (-12 (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-860 *5 *3 *4)) (-4 *3 (-859 *5)) (-4 *4 (-596 (-865 *5)))))) +(-10 -7 (-15 -3890 ((-112) |#2| |#3|)) (-15 -3890 ((-112) (-623 |#2|) |#3|)) (-15 -3992 ((-858 |#1| |#2| (-623 |#2|)) (-623 |#2|) |#3|)) (IF (|has| |#2| (-1011 (-1144))) (-15 -3992 ((-623 (-287 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1020)) (-15 -3992 ((-623 (-287 (-925 |#2|))) |#2| |#3|)) (-15 -3992 ((-862 |#1| |#2|) |#2| |#3|))))) +((-3972 (((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)) 22))) +(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)))) (-1068) (-1068) (-1068)) (T -861)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-862 *5 *6)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-862 *5 *7)) (-5 *1 (-861 *5 *6 *7))))) +(-10 -7 (-15 -3972 ((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)))) +((-1504 (((-112) $ $) NIL)) (-3965 (($ $ $) 39)) (-2049 (((-3 (-112) "failed") $ (-865 |#1|)) 36)) (-2578 (($) 12)) (-1825 (((-1126) $) NIL)) (-4216 (($ (-865 |#1|) |#2| $) 20)) (-3337 (((-1088) $) NIL)) (-3224 (((-3 |#2| "failed") (-865 |#1|) $) 50)) (-3328 (((-112) $) 15)) (-3517 (($) 13)) (-3076 (((-623 (-2 (|:| -2763 (-1144)) (|:| -2119 |#2|))) $) 25)) (-1532 (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 |#2|)))) 23)) (-1518 (((-836) $) 44)) (-4102 (($ (-865 |#1|) |#2| $ |#2|) 48)) (-1280 (($ (-865 |#1|) |#2| $) 47)) (-2316 (((-112) $ $) 41))) +(((-862 |#1| |#2|) (-13 (-1068) (-10 -8 (-15 -3328 ((-112) $)) (-15 -3517 ($)) (-15 -2578 ($)) (-15 -3965 ($ $ $)) (-15 -3224 ((-3 |#2| "failed") (-865 |#1|) $)) (-15 -1280 ($ (-865 |#1|) |#2| $)) (-15 -4216 ($ (-865 |#1|) |#2| $)) (-15 -4102 ($ (-865 |#1|) |#2| $ |#2|)) (-15 -3076 ((-623 (-2 (|:| -2763 (-1144)) (|:| -2119 |#2|))) $)) (-15 -1532 ($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 |#2|))))) (-15 -2049 ((-3 (-112) "failed") $ (-865 |#1|))))) (-1068) (-1068)) (T -862)) +((-3328 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-3517 (*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) (-2578 (*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) (-3965 (*1 *1 *1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) (-3224 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-865 *4)) (-4 *4 (-1068)) (-4 *2 (-1068)) (-5 *1 (-862 *4 *2)))) (-1280 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-865 *4)) (-4 *4 (-1068)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1068)))) (-4216 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-865 *4)) (-4 *4 (-1068)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1068)))) (-4102 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-865 *4)) (-4 *4 (-1068)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1068)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 *4)))) (-5 *1 (-862 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 *4)))) (-4 *4 (-1068)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1068)))) (-2049 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-865 *4)) (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-862 *4 *5)) (-4 *5 (-1068))))) +(-13 (-1068) (-10 -8 (-15 -3328 ((-112) $)) (-15 -3517 ($)) (-15 -2578 ($)) (-15 -3965 ($ $ $)) (-15 -3224 ((-3 |#2| "failed") (-865 |#1|) $)) (-15 -1280 ($ (-865 |#1|) |#2| $)) (-15 -4216 ($ (-865 |#1|) |#2| $)) (-15 -4102 ($ (-865 |#1|) |#2| $ |#2|)) (-15 -3076 ((-623 (-2 (|:| -2763 (-1144)) (|:| -2119 |#2|))) $)) (-15 -1532 ($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 |#2|))))) (-15 -2049 ((-3 (-112) "failed") $ (-865 |#1|))))) +((-1560 (((-865 |#1|) (-865 |#1|) (-623 (-1144)) (-1 (-112) (-623 |#2|))) 32) (((-865 |#1|) (-865 |#1|) (-623 (-1 (-112) |#2|))) 43) (((-865 |#1|) (-865 |#1|) (-1 (-112) |#2|)) 35)) (-2049 (((-112) (-623 |#2|) (-865 |#1|)) 40) (((-112) |#2| (-865 |#1|)) 36)) (-3561 (((-1 (-112) |#2|) (-865 |#1|)) 16)) (-4011 (((-623 |#2|) (-865 |#1|)) 24)) (-3904 (((-865 |#1|) (-865 |#1|) |#2|) 20))) +(((-863 |#1| |#2|) (-10 -7 (-15 -1560 ((-865 |#1|) (-865 |#1|) (-1 (-112) |#2|))) (-15 -1560 ((-865 |#1|) (-865 |#1|) (-623 (-1 (-112) |#2|)))) (-15 -1560 ((-865 |#1|) (-865 |#1|) (-623 (-1144)) (-1 (-112) (-623 |#2|)))) (-15 -3561 ((-1 (-112) |#2|) (-865 |#1|))) (-15 -2049 ((-112) |#2| (-865 |#1|))) (-15 -2049 ((-112) (-623 |#2|) (-865 |#1|))) (-15 -3904 ((-865 |#1|) (-865 |#1|) |#2|)) (-15 -4011 ((-623 |#2|) (-865 |#1|)))) (-1068) (-1181)) (T -863)) +((-4011 (*1 *2 *3) (-12 (-5 *3 (-865 *4)) (-4 *4 (-1068)) (-5 *2 (-623 *5)) (-5 *1 (-863 *4 *5)) (-4 *5 (-1181)))) (-3904 (*1 *2 *2 *3) (-12 (-5 *2 (-865 *4)) (-4 *4 (-1068)) (-5 *1 (-863 *4 *3)) (-4 *3 (-1181)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) (-4 *6 (-1181)) (-5 *2 (-112)) (-5 *1 (-863 *5 *6)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-865 *5)) (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3)) (-4 *3 (-1181)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-865 *4)) (-4 *4 (-1068)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-863 *4 *5)) (-4 *5 (-1181)))) (-1560 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-865 *5)) (-5 *3 (-623 (-1144))) (-5 *4 (-1 (-112) (-623 *6))) (-4 *5 (-1068)) (-4 *6 (-1181)) (-5 *1 (-863 *5 *6)))) (-1560 (*1 *2 *2 *3) (-12 (-5 *2 (-865 *4)) (-5 *3 (-623 (-1 (-112) *5))) (-4 *4 (-1068)) (-4 *5 (-1181)) (-5 *1 (-863 *4 *5)))) (-1560 (*1 *2 *2 *3) (-12 (-5 *2 (-865 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1068)) (-4 *5 (-1181)) (-5 *1 (-863 *4 *5))))) +(-10 -7 (-15 -1560 ((-865 |#1|) (-865 |#1|) (-1 (-112) |#2|))) (-15 -1560 ((-865 |#1|) (-865 |#1|) (-623 (-1 (-112) |#2|)))) (-15 -1560 ((-865 |#1|) (-865 |#1|) (-623 (-1144)) (-1 (-112) (-623 |#2|)))) (-15 -3561 ((-1 (-112) |#2|) (-865 |#1|))) (-15 -2049 ((-112) |#2| (-865 |#1|))) (-15 -2049 ((-112) (-623 |#2|) (-865 |#1|))) (-15 -3904 ((-865 |#1|) (-865 |#1|) |#2|)) (-15 -4011 ((-623 |#2|) (-865 |#1|)))) +((-3972 (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)) 19))) +(((-864 |#1| |#2|) (-10 -7 (-15 -3972 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) (-1068) (-1068)) (T -864)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-865 *6)) (-5 *1 (-864 *5 *6))))) +(-10 -7 (-15 -3972 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) +((-1504 (((-112) $ $) NIL)) (-3049 (($ $ (-623 (-52))) 64)) (-3141 (((-623 $) $) 118)) (-2722 (((-2 (|:| |var| (-623 (-1144))) (|:| |pred| (-52))) $) 24)) (-3259 (((-112) $) 30)) (-2831 (($ $ (-623 (-1144)) (-52)) 25)) (-3155 (($ $ (-623 (-52))) 63)) (-3880 (((-3 |#1| "failed") $) 61) (((-3 (-1144) "failed") $) 140)) (-2726 ((|#1| $) 58) (((-1144) $) NIL)) (-3680 (($ $) 108)) (-1490 (((-112) $) 47)) (-2161 (((-623 (-52)) $) 45)) (-2942 (($ (-1144) (-112) (-112) (-112)) 65)) (-3442 (((-3 (-623 $) "failed") (-623 $)) 72)) (-2360 (((-112) $) 50)) (-2466 (((-112) $) 49)) (-1825 (((-1126) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) 36)) (-3088 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1896 (((-3 (-2 (|:| |val| $) (|:| -3521 $)) "failed") $) 83)) (-1444 (((-3 (-623 $) "failed") $) 33)) (-1915 (((-3 (-623 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -3903 (-114)) (|:| |arg| (-623 $))) "failed") $) 95)) (-1768 (((-3 (-623 $) "failed") $) 37)) (-1748 (((-3 (-2 (|:| |val| $) (|:| -3521 (-749))) "failed") $) 40)) (-1627 (((-112) $) 29)) (-3337 (((-1088) $) NIL)) (-3799 (((-112) $) 21)) (-2264 (((-112) $) 46)) (-3551 (((-623 (-52)) $) 111)) (-2566 (((-112) $) 48)) (-2680 (($ (-114) (-623 $)) 92)) (-2775 (((-749) $) 28)) (-1731 (($ $) 62)) (-4028 (($ (-623 $)) 59)) (-3870 (((-112) $) 26)) (-1518 (((-836) $) 53) (($ |#1|) 18) (($ (-1144)) 66)) (-3904 (($ $ (-52)) 110)) (-2626 (($) 91 T CONST)) (-2636 (($) 73 T CONST)) (-2316 (((-112) $ $) 79)) (-2414 (($ $ $) 100)) (-2391 (($ $ $) 104)) (** (($ $ (-749)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-865 |#1|) (-13 (-1068) (-1011 |#1|) (-1011 (-1144)) (-10 -8 (-15 0 ($) -2258) (-15 1 ($) -2258) (-15 -1444 ((-3 (-623 $) "failed") $)) (-15 -1598 ((-3 (-623 $) "failed") $)) (-15 -1915 ((-3 (-623 $) "failed") $ (-114))) (-15 -1915 ((-3 (-2 (|:| -3903 (-114)) (|:| |arg| (-623 $))) "failed") $)) (-15 -1748 ((-3 (-2 (|:| |val| $) (|:| -3521 (-749))) "failed") $)) (-15 -3088 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1768 ((-3 (-623 $) "failed") $)) (-15 -1896 ((-3 (-2 (|:| |val| $) (|:| -3521 $)) "failed") $)) (-15 -2680 ($ (-114) (-623 $))) (-15 -2391 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ $)) (-15 -2414 ($ $ $)) (-15 -2775 ((-749) $)) (-15 -4028 ($ (-623 $))) (-15 -1731 ($ $)) (-15 -1627 ((-112) $)) (-15 -1490 ((-112) $)) (-15 -3259 ((-112) $)) (-15 -3870 ((-112) $)) (-15 -2566 ((-112) $)) (-15 -2466 ((-112) $)) (-15 -2360 ((-112) $)) (-15 -2264 ((-112) $)) (-15 -2161 ((-623 (-52)) $)) (-15 -3155 ($ $ (-623 (-52)))) (-15 -3049 ($ $ (-623 (-52)))) (-15 -2942 ($ (-1144) (-112) (-112) (-112))) (-15 -2831 ($ $ (-623 (-1144)) (-52))) (-15 -2722 ((-2 (|:| |var| (-623 (-1144))) (|:| |pred| (-52))) $)) (-15 -3799 ((-112) $)) (-15 -3680 ($ $)) (-15 -3904 ($ $ (-52))) (-15 -3551 ((-623 (-52)) $)) (-15 -3141 ((-623 $) $)) (-15 -3442 ((-3 (-623 $) "failed") (-623 $))))) (-1068)) (T -865)) +((-2626 (*1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) (-2636 (*1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) (-1444 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-1598 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-1915 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-623 (-865 *4))) (-5 *1 (-865 *4)) (-4 *4 (-1068)))) (-1915 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3903 (-114)) (|:| |arg| (-623 (-865 *3))))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-1748 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-865 *3)) (|:| -3521 (-749)))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3088 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-865 *3)) (|:| |den| (-865 *3)))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-1768 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-1896 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-865 *3)) (|:| -3521 (-865 *3)))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-2680 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 (-865 *4))) (-5 *1 (-865 *4)) (-4 *4 (-1068)))) (-2391 (*1 *1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) (-2414 (*1 *1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-1731 (*1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-2161 (*1 *2 *1) (-12 (-5 *2 (-623 (-52))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3155 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-52))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-52))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-2942 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-112)) (-5 *1 (-865 *4)) (-4 *4 (-1068)))) (-2831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-52)) (-5 *1 (-865 *4)) (-4 *4 (-1068)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-623 (-1144))) (|:| |pred| (-52)))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3680 (*1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-623 (-52))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) (-3442 (*1 *2 *2) (|partial| -12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(-13 (-1068) (-1011 |#1|) (-1011 (-1144)) (-10 -8 (-15 (-2626) ($) -2258) (-15 (-2636) ($) -2258) (-15 -1444 ((-3 (-623 $) "failed") $)) (-15 -1598 ((-3 (-623 $) "failed") $)) (-15 -1915 ((-3 (-623 $) "failed") $ (-114))) (-15 -1915 ((-3 (-2 (|:| -3903 (-114)) (|:| |arg| (-623 $))) "failed") $)) (-15 -1748 ((-3 (-2 (|:| |val| $) (|:| -3521 (-749))) "failed") $)) (-15 -3088 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1768 ((-3 (-623 $) "failed") $)) (-15 -1896 ((-3 (-2 (|:| |val| $) (|:| -3521 $)) "failed") $)) (-15 -2680 ($ (-114) (-623 $))) (-15 -2391 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ $)) (-15 -2414 ($ $ $)) (-15 -2775 ((-749) $)) (-15 -4028 ($ (-623 $))) (-15 -1731 ($ $)) (-15 -1627 ((-112) $)) (-15 -1490 ((-112) $)) (-15 -3259 ((-112) $)) (-15 -3870 ((-112) $)) (-15 -2566 ((-112) $)) (-15 -2466 ((-112) $)) (-15 -2360 ((-112) $)) (-15 -2264 ((-112) $)) (-15 -2161 ((-623 (-52)) $)) (-15 -3155 ($ $ (-623 (-52)))) (-15 -3049 ($ $ (-623 (-52)))) (-15 -2942 ($ (-1144) (-112) (-112) (-112))) (-15 -2831 ($ $ (-623 (-1144)) (-52))) (-15 -2722 ((-2 (|:| |var| (-623 (-1144))) (|:| |pred| (-52))) $)) (-15 -3799 ((-112) $)) (-15 -3680 ($ $)) (-15 -3904 ($ $ (-52))) (-15 -3551 ((-623 (-52)) $)) (-15 -3141 ((-623 $) $)) (-15 -3442 ((-3 (-623 $) "failed") (-623 $))))) +((-1504 (((-112) $ $) NIL)) (-1540 (((-623 |#1|) $) 16)) (-4118 (((-112) $) 38)) (-3880 (((-3 (-650 |#1|) "failed") $) 43)) (-2726 (((-650 |#1|) $) 41)) (-1308 (($ $) 18)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3772 (((-749) $) 46)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-650 |#1|) $) 17)) (-1518 (((-836) $) 37) (($ (-650 |#1|)) 21) (((-797 |#1|) $) 27) (($ |#1|) 20)) (-2636 (($) 8 T CONST)) (-4237 (((-623 (-650 |#1|)) $) 23)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 11)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 49))) +(((-866 |#1|) (-13 (-825) (-1011 (-650 |#1|)) (-10 -8 (-15 1 ($) -2258) (-15 -1518 ((-797 |#1|) $)) (-15 -1518 ($ |#1|)) (-15 -1293 ((-650 |#1|) $)) (-15 -3772 ((-749) $)) (-15 -4237 ((-623 (-650 |#1|)) $)) (-15 -1308 ($ $)) (-15 -4118 ((-112) $)) (-15 -1540 ((-623 |#1|) $)))) (-825)) (T -866)) +((-2636 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-825)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-866 *3)) (-4 *3 (-825)))) (-1518 (*1 *1 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-825)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-866 *3)) (-4 *3 (-825)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-866 *3)) (-4 *3 (-825)))) (-4237 (*1 *2 *1) (-12 (-5 *2 (-623 (-650 *3))) (-5 *1 (-866 *3)) (-4 *3 (-825)))) (-1308 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-825)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-825)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-866 *3)) (-4 *3 (-825))))) +(-13 (-825) (-1011 (-650 |#1|)) (-10 -8 (-15 (-2636) ($) -2258) (-15 -1518 ((-797 |#1|) $)) (-15 -1518 ($ |#1|)) (-15 -1293 ((-650 |#1|) $)) (-15 -3772 ((-749) $)) (-15 -4237 ((-623 (-650 |#1|)) $)) (-15 -1308 ($ $)) (-15 -4118 ((-112) $)) (-15 -1540 ((-623 |#1|) $)))) +((-1919 ((|#1| |#1| |#1|) 19))) +(((-867 |#1| |#2|) (-10 -7 (-15 -1919 (|#1| |#1| |#1|))) (-1203 |#2|) (-1020)) (T -867)) +((-1919 (*1 *2 *2 *2) (-12 (-4 *3 (-1020)) (-5 *1 (-867 *2 *3)) (-4 *2 (-1203 *3))))) +(-10 -7 (-15 -1919 (|#1| |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3459 (((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) 14)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-1285 (((-1008) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) 13)) (-2316 (((-112) $ $) 6))) +(((-868) (-138)) (T -868)) +((-3459 (*1 *2 *3 *4) (-12 (-4 *1 (-868)) (-5 *3 (-1032)) (-5 *4 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)))))) (-1285 (*1 *2 *3) (-12 (-4 *1 (-868)) (-5 *3 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) (-5 *2 (-1008))))) +(-13 (-1068) (-10 -7 (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| |explanations| (-1126))) (-1032) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219))))) (-15 -1285 ((-1008) (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219))))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-3360 ((|#1| |#1| (-749)) 24)) (-1419 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3417 (((-3 (-2 (|:| -2671 |#1|) (|:| -2682 |#1|)) "failed") |#1| (-749) (-749)) 27) (((-623 |#1|) |#1|) 29))) +(((-869 |#1| |#2|) (-10 -7 (-15 -3417 ((-623 |#1|) |#1|)) (-15 -3417 ((-3 (-2 (|:| -2671 |#1|) (|:| -2682 |#1|)) "failed") |#1| (-749) (-749))) (-15 -1419 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3360 (|#1| |#1| (-749)))) (-1203 |#2|) (-356)) (T -869)) +((-3360 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-5 *1 (-869 *2 *4)) (-4 *2 (-1203 *4)))) (-1419 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-869 *2 *3)) (-4 *2 (-1203 *3)))) (-3417 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2671 *3) (|:| -2682 *3))) (-5 *1 (-869 *3 *5)) (-4 *3 (-1203 *5)))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-869 *3 *4)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -3417 ((-623 |#1|) |#1|)) (-15 -3417 ((-3 (-2 (|:| -2671 |#1|) (|:| -2682 |#1|)) "failed") |#1| (-749) (-749))) (-15 -1419 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3360 (|#1| |#1| (-749)))) +((-2903 (((-1008) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1126)) 96) (((-1008) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1126) (-219)) 91) (((-1008) (-871) (-1032)) 83) (((-1008) (-871)) 84)) (-3459 (((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-871) (-1032)) 59) (((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-871)) 61))) +(((-870) (-10 -7 (-15 -2903 ((-1008) (-871))) (-15 -2903 ((-1008) (-871) (-1032))) (-15 -2903 ((-1008) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1126) (-219))) (-15 -2903 ((-1008) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1126))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-871))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-871) (-1032))))) (T -870)) +((-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-871)) (-5 *4 (-1032)) (-5 *2 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))))) (-5 *1 (-870)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126))))) (-5 *1 (-870)))) (-2903 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-749)) (-5 *6 (-623 (-623 (-309 *3)))) (-5 *7 (-1126)) (-5 *5 (-623 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1008)) (-5 *1 (-870)))) (-2903 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-749)) (-5 *6 (-623 (-623 (-309 *3)))) (-5 *7 (-1126)) (-5 *8 (-219)) (-5 *5 (-623 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1008)) (-5 *1 (-870)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-871)) (-5 *4 (-1032)) (-5 *2 (-1008)) (-5 *1 (-870)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1008)) (-5 *1 (-870))))) +(-10 -7 (-15 -2903 ((-1008) (-871))) (-15 -2903 ((-1008) (-871) (-1032))) (-15 -2903 ((-1008) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1126) (-219))) (-15 -2903 ((-1008) (-372) (-372) (-372) (-372) (-749) (-749) (-623 (-309 (-372))) (-623 (-623 (-309 (-372)))) (-1126))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-871))) (-15 -3459 ((-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) (|:| |explanations| (-623 (-1126)))) (-871) (-1032)))) +((-1504 (((-112) $ $) NIL)) (-2726 (((-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219))) $) 19)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 21) (($ (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) 18)) (-2316 (((-112) $ $) NIL))) +(((-871) (-13 (-1068) (-10 -8 (-15 -1518 ($ (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219))))) (-15 -1518 ((-836) $)) (-15 -2726 ((-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219))) $))))) (T -871)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-871)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) (-5 *1 (-871)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) (-5 *1 (-871))))) +(-13 (-1068) (-10 -8 (-15 -1518 ($ (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219))))) (-15 -1518 ((-836) $)) (-15 -2726 ((-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| (-623 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-550)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219))) $)))) +((-2393 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) 10) (($ $ |#2| (-749)) 12) (($ $ (-623 |#2|) (-623 (-749))) 15)) (-4183 (($ $ |#2|) 16) (($ $ (-623 |#2|)) 18) (($ $ |#2| (-749)) 19) (($ $ (-623 |#2|) (-623 (-749))) 21))) +(((-872 |#1| |#2|) (-10 -8 (-15 -4183 (|#1| |#1| (-623 |#2|) (-623 (-749)))) (-15 -4183 (|#1| |#1| |#2| (-749))) (-15 -4183 (|#1| |#1| (-623 |#2|))) (-15 -4183 (|#1| |#1| |#2|)) (-15 -2393 (|#1| |#1| (-623 |#2|) (-623 (-749)))) (-15 -2393 (|#1| |#1| |#2| (-749))) (-15 -2393 (|#1| |#1| (-623 |#2|))) (-15 -2393 (|#1| |#1| |#2|))) (-873 |#2|) (-1068)) (T -872)) +NIL +(-10 -8 (-15 -4183 (|#1| |#1| (-623 |#2|) (-623 (-749)))) (-15 -4183 (|#1| |#1| |#2| (-749))) (-15 -4183 (|#1| |#1| (-623 |#2|))) (-15 -4183 (|#1| |#1| |#2|)) (-15 -2393 (|#1| |#1| (-623 |#2|) (-623 (-749)))) (-15 -2393 (|#1| |#1| |#2| (-749))) (-15 -2393 (|#1| |#1| (-623 |#2|))) (-15 -2393 (|#1| |#1| |#2|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2393 (($ $ |#1|) 40) (($ $ (-623 |#1|)) 39) (($ $ |#1| (-749)) 38) (($ $ (-623 |#1|) (-623 (-749))) 37)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ |#1|) 36) (($ $ (-623 |#1|)) 35) (($ $ |#1| (-749)) 34) (($ $ (-623 |#1|) (-623 (-749))) 33)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-873 |#1|) (-138) (-1068)) (T -873)) +((-2393 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *2)) (-4 *2 (-1068)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *1 (-873 *3)) (-4 *3 (-1068)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-873 *2)) (-4 *2 (-1068)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 (-749))) (-4 *1 (-873 *4)) (-4 *4 (-1068)))) (-4183 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *2)) (-4 *2 (-1068)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *1 (-873 *3)) (-4 *3 (-1068)))) (-4183 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-873 *2)) (-4 *2 (-1068)))) (-4183 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 (-749))) (-4 *1 (-873 *4)) (-4 *4 (-1068))))) +(-13 (-1020) (-10 -8 (-15 -2393 ($ $ |t#1|)) (-15 -2393 ($ $ (-623 |t#1|))) (-15 -2393 ($ $ |t#1| (-749))) (-15 -2393 ($ $ (-623 |t#1|) (-623 (-749)))) (-15 -4183 ($ $ |t#1|)) (-15 -4183 ($ $ (-623 |t#1|))) (-15 -4183 ($ $ |t#1| (-749))) (-15 -4183 ($ $ (-623 |t#1|) (-623 (-749)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) 26)) (-4047 (((-112) $ (-749)) NIL)) (-2190 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-2169 (($ $ $) NIL (|has| $ (-6 -4343)))) (-2254 (($ $ $) NIL (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) (($ $ "left" $) NIL (|has| $ (-6 -4343))) (($ $ "right" $) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-2682 (($ $) 25)) (-3590 (($ |#1|) 12) (($ $ $) 17)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-2671 (($ $) 23)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) 20)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2487 (((-550) $ $) NIL)) (-2136 (((-112) $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-1167 |#1|) $) 9) (((-836) $) 29 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 21 (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-874 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -3590 ($ |#1|)) (-15 -3590 ($ $ $)) (-15 -1518 ((-1167 |#1|) $)))) (-1068)) (T -874)) +((-3590 (*1 *1 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1068)))) (-3590 (*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1068)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1167 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1068))))) +(-13 (-119 |#1|) (-10 -8 (-15 -3590 ($ |#1|)) (-15 -3590 ($ $ $)) (-15 -1518 ((-1167 |#1|) $)))) +((-3128 ((|#2| (-1110 |#1| |#2|)) 40))) +(((-875 |#1| |#2|) (-10 -7 (-15 -3128 (|#2| (-1110 |#1| |#2|)))) (-894) (-13 (-1020) (-10 -7 (-6 (-4344 "*"))))) (T -875)) +((-3128 (*1 *2 *3) (-12 (-5 *3 (-1110 *4 *2)) (-14 *4 (-894)) (-4 *2 (-13 (-1020) (-10 -7 (-6 (-4344 "*"))))) (-5 *1 (-875 *4 *2))))) +(-10 -7 (-15 -3128 (|#2| (-1110 |#1| |#2|)))) +((-1504 (((-112) $ $) 7)) (-3513 (($) 18 T CONST)) (-1386 (((-3 $ "failed") $) 15)) (-1465 (((-1070 |#1|) $ |#1|) 32)) (-3102 (((-112) $) 17)) (-2707 (($ $ $) 30 (-1561 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-4164 (($ $ $) 29 (-1561 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-1825 (((-1126) $) 9)) (-3235 (($ $) 24)) (-3337 (((-1088) $) 10)) (-3866 ((|#1| $ |#1|) 34)) (-2680 ((|#1| $ |#1|) 33)) (-1309 (($ (-623 (-623 |#1|))) 35)) (-3361 (($ (-623 |#1|)) 36)) (-1270 (($ $ $) 21)) (-3292 (($ $ $) 20)) (-1518 (((-836) $) 11)) (-2636 (($) 19 T CONST)) (-2363 (((-112) $ $) 27 (-1561 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2345 (((-112) $ $) 26 (-1561 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 28 (-1561 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2335 (((-112) $ $) 31)) (-2414 (($ $ $) 23)) (** (($ $ (-894)) 13) (($ $ (-749)) 16) (($ $ (-550)) 22)) (* (($ $ $) 14))) +(((-876 |#1|) (-138) (-1068)) (T -876)) +((-3361 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-4 *1 (-876 *3)))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-4 *1 (-876 *3)))) (-3866 (*1 *2 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1068)))) (-2680 (*1 *2 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1068)))) (-1465 (*1 *2 *1 *3) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1068)) (-5 *2 (-1070 *3)))) (-2335 (*1 *2 *1 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(-13 (-465) (-10 -8 (-15 -3361 ($ (-623 |t#1|))) (-15 -1309 ($ (-623 (-623 |t#1|)))) (-15 -3866 (|t#1| $ |t#1|)) (-15 -2680 (|t#1| $ |t#1|)) (-15 -1465 ((-1070 |t#1|) $ |t#1|)) (-15 -2335 ((-112) $ $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-825)) |%noBranch|))) +(((-101) . T) ((-595 (-836)) . T) ((-465) . T) ((-705) . T) ((-825) -1561 (|has| |#1| (-825)) (|has| |#1| (-361))) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-1772 (((-623 (-623 (-749))) $) 108)) (-2022 (((-623 (-749)) (-878 |#1|) $) 130)) (-2402 (((-623 (-749)) (-878 |#1|) $) 131)) (-1401 (((-623 (-878 |#1|)) $) 98)) (-1741 (((-878 |#1|) $ (-550)) 103) (((-878 |#1|) $) 104)) (-1620 (($ (-623 (-878 |#1|))) 110)) (-2475 (((-749) $) 105)) (-2547 (((-1070 (-1070 |#1|)) $) 128)) (-1465 (((-1070 |#1|) $ |#1|) 121) (((-1070 (-1070 |#1|)) $ (-1070 |#1|)) 139) (((-1070 (-623 |#1|)) $ (-623 |#1|)) 142)) (-1475 (((-1070 |#1|) $) 101)) (-1921 (((-112) (-878 |#1|) $) 92)) (-1825 (((-1126) $) NIL)) (-3493 (((-1232) $) 95) (((-1232) $ (-550) (-550)) 143)) (-3337 (((-1088) $) NIL)) (-1549 (((-623 (-878 |#1|)) $) 96)) (-2680 (((-878 |#1|) $ (-749)) 99)) (-2970 (((-749) $) 106)) (-1518 (((-836) $) 119) (((-623 (-878 |#1|)) $) 23) (($ (-623 (-878 |#1|))) 109)) (-1860 (((-623 |#1|) $) 107)) (-2316 (((-112) $ $) 136)) (-2354 (((-112) $ $) 134)) (-2335 (((-112) $ $) 133))) +(((-877 |#1|) (-13 (-1068) (-10 -8 (-15 -1518 ((-623 (-878 |#1|)) $)) (-15 -1549 ((-623 (-878 |#1|)) $)) (-15 -2680 ((-878 |#1|) $ (-749))) (-15 -1741 ((-878 |#1|) $ (-550))) (-15 -1741 ((-878 |#1|) $)) (-15 -2475 ((-749) $)) (-15 -2970 ((-749) $)) (-15 -1860 ((-623 |#1|) $)) (-15 -1401 ((-623 (-878 |#1|)) $)) (-15 -1772 ((-623 (-623 (-749))) $)) (-15 -1518 ($ (-623 (-878 |#1|)))) (-15 -1620 ($ (-623 (-878 |#1|)))) (-15 -1465 ((-1070 |#1|) $ |#1|)) (-15 -2547 ((-1070 (-1070 |#1|)) $)) (-15 -1465 ((-1070 (-1070 |#1|)) $ (-1070 |#1|))) (-15 -1465 ((-1070 (-623 |#1|)) $ (-623 |#1|))) (-15 -1921 ((-112) (-878 |#1|) $)) (-15 -2022 ((-623 (-749)) (-878 |#1|) $)) (-15 -2402 ((-623 (-749)) (-878 |#1|) $)) (-15 -1475 ((-1070 |#1|) $)) (-15 -2335 ((-112) $ $)) (-15 -2354 ((-112) $ $)) (-15 -3493 ((-1232) $)) (-15 -3493 ((-1232) $ (-550) (-550))))) (-1068)) (T -877)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-623 (-878 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-623 (-878 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-878 *4)) (-5 *1 (-877 *4)) (-4 *4 (-1068)))) (-1741 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-878 *4)) (-5 *1 (-877 *4)) (-4 *4 (-1068)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-878 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-1860 (*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-623 (-878 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-749)))) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-878 *3))) (-4 *3 (-1068)) (-5 *1 (-877 *3)))) (-1620 (*1 *1 *2) (-12 (-5 *2 (-623 (-878 *3))) (-4 *3 (-1068)) (-5 *1 (-877 *3)))) (-1465 (*1 *2 *1 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-1070 (-1070 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-1465 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-877 *4)) (-5 *3 (-1070 *4)))) (-1465 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-1070 (-623 *4))) (-5 *1 (-877 *4)) (-5 *3 (-623 *4)))) (-1921 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-877 *4)))) (-2022 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1068)) (-5 *2 (-623 (-749))) (-5 *1 (-877 *4)))) (-2402 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1068)) (-5 *2 (-623 (-749))) (-5 *1 (-877 *4)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-2335 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-2354 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) (-3493 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-877 *4)) (-4 *4 (-1068))))) +(-13 (-1068) (-10 -8 (-15 -1518 ((-623 (-878 |#1|)) $)) (-15 -1549 ((-623 (-878 |#1|)) $)) (-15 -2680 ((-878 |#1|) $ (-749))) (-15 -1741 ((-878 |#1|) $ (-550))) (-15 -1741 ((-878 |#1|) $)) (-15 -2475 ((-749) $)) (-15 -2970 ((-749) $)) (-15 -1860 ((-623 |#1|) $)) (-15 -1401 ((-623 (-878 |#1|)) $)) (-15 -1772 ((-623 (-623 (-749))) $)) (-15 -1518 ($ (-623 (-878 |#1|)))) (-15 -1620 ($ (-623 (-878 |#1|)))) (-15 -1465 ((-1070 |#1|) $ |#1|)) (-15 -2547 ((-1070 (-1070 |#1|)) $)) (-15 -1465 ((-1070 (-1070 |#1|)) $ (-1070 |#1|))) (-15 -1465 ((-1070 (-623 |#1|)) $ (-623 |#1|))) (-15 -1921 ((-112) (-878 |#1|) $)) (-15 -2022 ((-623 (-749)) (-878 |#1|) $)) (-15 -2402 ((-623 (-749)) (-878 |#1|) $)) (-15 -1475 ((-1070 |#1|) $)) (-15 -2335 ((-112) $ $)) (-15 -2354 ((-112) $ $)) (-15 -3493 ((-1232) $)) (-15 -3493 ((-1232) $ (-550) (-550))))) +((-1504 (((-112) $ $) NIL)) (-1674 (((-623 $) (-623 $)) 77)) (-3712 (((-550) $) 60)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-2475 (((-749) $) 58)) (-1465 (((-1070 |#1|) $ |#1|) 49)) (-3102 (((-112) $) NIL)) (-3718 (((-112) $) 63)) (-2684 (((-749) $) 61)) (-1475 (((-1070 |#1|) $) 42)) (-2707 (($ $ $) NIL (-1561 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-4164 (($ $ $) NIL (-1561 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3036 (((-2 (|:| |preimage| (-623 |#1|)) (|:| |image| (-623 |#1|))) $) 37)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 93)) (-3337 (((-1088) $) NIL)) (-3624 (((-1070 |#1|) $) 100 (|has| |#1| (-361)))) (-3777 (((-112) $) 59)) (-3866 ((|#1| $ |#1|) 47)) (-2680 ((|#1| $ |#1|) 94)) (-2970 (((-749) $) 44)) (-1309 (($ (-623 (-623 |#1|))) 85)) (-2767 (((-944) $) 53)) (-3361 (($ (-623 |#1|)) 21)) (-1270 (($ $ $) NIL)) (-3292 (($ $ $) NIL)) (-2947 (($ (-623 (-623 |#1|))) 39)) (-2879 (($ (-623 (-623 |#1|))) 88)) (-3536 (($ (-623 |#1|)) 96)) (-1518 (((-836) $) 84) (($ (-623 (-623 |#1|))) 66) (($ (-623 |#1|)) 67)) (-2636 (($) 16 T CONST)) (-2363 (((-112) $ $) NIL (-1561 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2345 (((-112) $ $) NIL (-1561 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2316 (((-112) $ $) 45)) (-2354 (((-112) $ $) NIL (-1561 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2335 (((-112) $ $) 65)) (-2414 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 22))) +(((-878 |#1|) (-13 (-876 |#1|) (-10 -8 (-15 -3036 ((-2 (|:| |preimage| (-623 |#1|)) (|:| |image| (-623 |#1|))) $)) (-15 -2947 ($ (-623 (-623 |#1|)))) (-15 -1518 ($ (-623 (-623 |#1|)))) (-15 -1518 ($ (-623 |#1|))) (-15 -2879 ($ (-623 (-623 |#1|)))) (-15 -2970 ((-749) $)) (-15 -1475 ((-1070 |#1|) $)) (-15 -2767 ((-944) $)) (-15 -2475 ((-749) $)) (-15 -2684 ((-749) $)) (-15 -3712 ((-550) $)) (-15 -3777 ((-112) $)) (-15 -3718 ((-112) $)) (-15 -1674 ((-623 $) (-623 $))) (IF (|has| |#1| (-361)) (-15 -3624 ((-1070 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-535)) (-15 -3536 ($ (-623 |#1|))) (IF (|has| |#1| (-361)) (-15 -3536 ($ (-623 |#1|))) |%noBranch|)))) (-1068)) (T -878)) +((-3036 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-623 *3)) (|:| |image| (-623 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-2947 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-5 *1 (-878 *3)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-5 *1 (-878 *3)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-878 *3)))) (-2879 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-5 *1 (-878 *3)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-1674 (*1 *2 *2) (-12 (-5 *2 (-623 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-361)) (-4 *3 (-1068)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-878 *3))))) +(-13 (-876 |#1|) (-10 -8 (-15 -3036 ((-2 (|:| |preimage| (-623 |#1|)) (|:| |image| (-623 |#1|))) $)) (-15 -2947 ($ (-623 (-623 |#1|)))) (-15 -1518 ($ (-623 (-623 |#1|)))) (-15 -1518 ($ (-623 |#1|))) (-15 -2879 ($ (-623 (-623 |#1|)))) (-15 -2970 ((-749) $)) (-15 -1475 ((-1070 |#1|) $)) (-15 -2767 ((-944) $)) (-15 -2475 ((-749) $)) (-15 -2684 ((-749) $)) (-15 -3712 ((-550) $)) (-15 -3777 ((-112) $)) (-15 -3718 ((-112) $)) (-15 -1674 ((-623 $) (-623 $))) (IF (|has| |#1| (-361)) (-15 -3624 ((-1070 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-535)) (-15 -3536 ($ (-623 |#1|))) (IF (|has| |#1| (-361)) (-15 -3536 ($ (-623 |#1|))) |%noBranch|)))) +((-1850 (((-3 (-623 (-1140 |#4|)) "failed") (-623 (-1140 |#4|)) (-1140 |#4|)) 128)) (-3980 ((|#1|) 77)) (-3857 (((-411 (-1140 |#4|)) (-1140 |#4|)) 137)) (-4111 (((-411 (-1140 |#4|)) (-623 |#3|) (-1140 |#4|)) 69)) (-1988 (((-411 (-1140 |#4|)) (-1140 |#4|)) 147)) (-1695 (((-3 (-623 (-1140 |#4|)) "failed") (-623 (-1140 |#4|)) (-1140 |#4|) |#3|) 92))) +(((-879 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1850 ((-3 (-623 (-1140 |#4|)) "failed") (-623 (-1140 |#4|)) (-1140 |#4|))) (-15 -1988 ((-411 (-1140 |#4|)) (-1140 |#4|))) (-15 -3857 ((-411 (-1140 |#4|)) (-1140 |#4|))) (-15 -3980 (|#1|)) (-15 -1695 ((-3 (-623 (-1140 |#4|)) "failed") (-623 (-1140 |#4|)) (-1140 |#4|) |#3|)) (-15 -4111 ((-411 (-1140 |#4|)) (-623 |#3|) (-1140 |#4|)))) (-882) (-771) (-825) (-922 |#1| |#2| |#3|)) (T -879)) +((-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *7)) (-4 *7 (-825)) (-4 *5 (-882)) (-4 *6 (-771)) (-4 *8 (-922 *5 *6 *7)) (-5 *2 (-411 (-1140 *8))) (-5 *1 (-879 *5 *6 *7 *8)) (-5 *4 (-1140 *8)))) (-1695 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-623 (-1140 *7))) (-5 *3 (-1140 *7)) (-4 *7 (-922 *5 *6 *4)) (-4 *5 (-882)) (-4 *6 (-771)) (-4 *4 (-825)) (-5 *1 (-879 *5 *6 *4 *7)))) (-3980 (*1 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-882)) (-5 *1 (-879 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) (-3857 (*1 *2 *3) (-12 (-4 *4 (-882)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-411 (-1140 *7))) (-5 *1 (-879 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) (-1988 (*1 *2 *3) (-12 (-4 *4 (-882)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-411 (-1140 *7))) (-5 *1 (-879 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) (-1850 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1140 *7))) (-5 *3 (-1140 *7)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-882)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-879 *4 *5 *6 *7))))) +(-10 -7 (-15 -1850 ((-3 (-623 (-1140 |#4|)) "failed") (-623 (-1140 |#4|)) (-1140 |#4|))) (-15 -1988 ((-411 (-1140 |#4|)) (-1140 |#4|))) (-15 -3857 ((-411 (-1140 |#4|)) (-1140 |#4|))) (-15 -3980 (|#1|)) (-15 -1695 ((-3 (-623 (-1140 |#4|)) "failed") (-623 (-1140 |#4|)) (-1140 |#4|) |#3|)) (-15 -4111 ((-411 (-1140 |#4|)) (-623 |#3|) (-1140 |#4|)))) +((-1850 (((-3 (-623 (-1140 |#2|)) "failed") (-623 (-1140 |#2|)) (-1140 |#2|)) 36)) (-3980 ((|#1|) 54)) (-3857 (((-411 (-1140 |#2|)) (-1140 |#2|)) 102)) (-4111 (((-411 (-1140 |#2|)) (-1140 |#2|)) 90)) (-1988 (((-411 (-1140 |#2|)) (-1140 |#2|)) 113))) +(((-880 |#1| |#2|) (-10 -7 (-15 -1850 ((-3 (-623 (-1140 |#2|)) "failed") (-623 (-1140 |#2|)) (-1140 |#2|))) (-15 -1988 ((-411 (-1140 |#2|)) (-1140 |#2|))) (-15 -3857 ((-411 (-1140 |#2|)) (-1140 |#2|))) (-15 -3980 (|#1|)) (-15 -4111 ((-411 (-1140 |#2|)) (-1140 |#2|)))) (-882) (-1203 |#1|)) (T -880)) +((-4111 (*1 *2 *3) (-12 (-4 *4 (-882)) (-4 *5 (-1203 *4)) (-5 *2 (-411 (-1140 *5))) (-5 *1 (-880 *4 *5)) (-5 *3 (-1140 *5)))) (-3980 (*1 *2) (-12 (-4 *2 (-882)) (-5 *1 (-880 *2 *3)) (-4 *3 (-1203 *2)))) (-3857 (*1 *2 *3) (-12 (-4 *4 (-882)) (-4 *5 (-1203 *4)) (-5 *2 (-411 (-1140 *5))) (-5 *1 (-880 *4 *5)) (-5 *3 (-1140 *5)))) (-1988 (*1 *2 *3) (-12 (-4 *4 (-882)) (-4 *5 (-1203 *4)) (-5 *2 (-411 (-1140 *5))) (-5 *1 (-880 *4 *5)) (-5 *3 (-1140 *5)))) (-1850 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1140 *5))) (-5 *3 (-1140 *5)) (-4 *5 (-1203 *4)) (-4 *4 (-882)) (-5 *1 (-880 *4 *5))))) +(-10 -7 (-15 -1850 ((-3 (-623 (-1140 |#2|)) "failed") (-623 (-1140 |#2|)) (-1140 |#2|))) (-15 -1988 ((-411 (-1140 |#2|)) (-1140 |#2|))) (-15 -3857 ((-411 (-1140 |#2|)) (-1140 |#2|))) (-15 -3980 (|#1|)) (-15 -4111 ((-411 (-1140 |#2|)) (-1140 |#2|)))) +((-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 41)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 18)) (-4242 (((-3 $ "failed") $) 35))) +(((-881 |#1|) (-10 -8 (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -3297 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|))) (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|)))) (-882)) (T -881)) +NIL +(-10 -8 (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -3297 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|))) (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3688 (((-411 (-1140 $)) (-1140 $)) 58)) (-1505 (($ $) 49)) (-3564 (((-411 $) $) 50)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 55)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3933 (((-112) $) 51)) (-3102 (((-112) $) 30)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3430 (((-411 (-1140 $)) (-1140 $)) 56)) (-3562 (((-411 (-1140 $)) (-1140 $)) 57)) (-3338 (((-411 $) $) 48)) (-1495 (((-3 $ "failed") $ $) 40)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 54 (|has| $ (-143)))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41)) (-4242 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-882) (-138)) (T -882)) +((-2619 (*1 *2 *2 *2) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-882)))) (-3688 (*1 *2 *3) (-12 (-4 *1 (-882)) (-5 *2 (-411 (-1140 *1))) (-5 *3 (-1140 *1)))) (-3562 (*1 *2 *3) (-12 (-4 *1 (-882)) (-5 *2 (-411 (-1140 *1))) (-5 *3 (-1140 *1)))) (-3430 (*1 *2 *3) (-12 (-4 *1 (-882)) (-5 *2 (-411 (-1140 *1))) (-5 *3 (-1140 *1)))) (-3297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 (-1140 *1))) (-5 *3 (-1140 *1)) (-4 *1 (-882)))) (-3172 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-143)) (-4 *1 (-882)) (-5 *2 (-1227 *1)))) (-4242 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-882))))) +(-13 (-1185) (-10 -8 (-15 -3688 ((-411 (-1140 $)) (-1140 $))) (-15 -3562 ((-411 (-1140 $)) (-1140 $))) (-15 -3430 ((-411 (-1140 $)) (-1140 $))) (-15 -2619 ((-1140 $) (-1140 $) (-1140 $))) (-15 -3297 ((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $))) (IF (|has| $ (-143)) (PROGN (-15 -3172 ((-3 (-1227 $) "failed") (-667 $))) (-15 -4242 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-4212 (((-112) $) NIL)) (-2155 (((-749)) NIL)) (-2252 (($ $ (-894)) NIL (|has| $ (-361))) (($ $) NIL)) (-1337 (((-1154 (-894) (-749)) (-550)) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-4319 (((-749)) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 $ "failed") $) NIL)) (-2726 (($ $) NIL)) (-4110 (($ (-1227 $)) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3485 (($) NIL)) (-3697 (((-112) $) NIL)) (-3714 (($ $) NIL) (($ $ (-749)) NIL)) (-3933 (((-112) $) NIL)) (-2475 (((-811 (-894)) $) NIL) (((-894) $) NIL)) (-3102 (((-112) $) NIL)) (-2529 (($) NIL (|has| $ (-361)))) (-2340 (((-112) $) NIL (|has| $ (-361)))) (-1389 (($ $ (-894)) NIL (|has| $ (-361))) (($ $) NIL)) (-2826 (((-3 $ "failed") $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-1428 (((-1140 $) $ (-894)) NIL (|has| $ (-361))) (((-1140 $) $) NIL)) (-2253 (((-894) $) NIL)) (-4116 (((-1140 $) $) NIL (|has| $ (-361)))) (-4008 (((-3 (-1140 $) "failed") $ $) NIL (|has| $ (-361))) (((-1140 $) $) NIL (|has| $ (-361)))) (-4235 (($ $ (-1140 $)) NIL (|has| $ (-361)))) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL T CONST)) (-2922 (($ (-894)) NIL)) (-4100 (((-112) $) NIL)) (-3337 (((-1088) $) NIL)) (-3935 (($) NIL (|has| $ (-361)))) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL)) (-3338 (((-411 $) $) NIL)) (-3990 (((-894)) NIL) (((-811 (-894))) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-3811 (((-3 (-749) "failed") $ $) NIL) (((-749) $) NIL)) (-2854 (((-133)) NIL)) (-2393 (($ $ (-749)) NIL) (($ $) NIL)) (-2970 (((-894) $) NIL) (((-811 (-894)) $) NIL)) (-1310 (((-1140 $)) NIL)) (-4288 (($) NIL)) (-1273 (($) NIL (|has| $ (-361)))) (-1373 (((-667 $) (-1227 $)) NIL) (((-1227 $) $) NIL)) (-4028 (((-550) $) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL)) (-4242 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2390 (((-749)) NIL)) (-2437 (((-1227 $) (-894)) NIL) (((-1227 $)) NIL)) (-1345 (((-112) $ $) NIL)) (-1288 (((-112) $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-2072 (($ $ (-749)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) +(((-883 |#1|) (-13 (-342) (-322 $) (-596 (-550))) (-894)) (T -883)) +NIL +(-13 (-342) (-322 $) (-596 (-550))) +((-2819 (((-3 (-2 (|:| -2475 (-749)) (|:| -2988 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)) 79)) (-2710 (((-112) (-329 |#2| |#3| |#4| |#5|)) 17)) (-2475 (((-3 (-749) "failed") (-329 |#2| |#3| |#4| |#5|)) 15))) +(((-884 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2475 ((-3 (-749) "failed") (-329 |#2| |#3| |#4| |#5|))) (-15 -2710 ((-112) (-329 |#2| |#3| |#4| |#5|))) (-15 -2819 ((-3 (-2 (|:| -2475 (-749)) (|:| -2988 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)))) (-13 (-825) (-542) (-1011 (-550))) (-423 |#1|) (-1203 |#2|) (-1203 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -884)) +((-2819 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-2 (|:| -2475 (-749)) (|:| -2988 *8))) (-5 *1 (-884 *4 *5 *6 *7 *8)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-112)) (-5 *1 (-884 *4 *5 *6 *7 *8)))) (-2475 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-749)) (-5 *1 (-884 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -2475 ((-3 (-749) "failed") (-329 |#2| |#3| |#4| |#5|))) (-15 -2710 ((-112) (-329 |#2| |#3| |#4| |#5|))) (-15 -2819 ((-3 (-2 (|:| -2475 (-749)) (|:| -2988 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)))) +((-2819 (((-3 (-2 (|:| -2475 (-749)) (|:| -2988 |#3|)) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|)) 56)) (-2710 (((-112) (-329 (-400 (-550)) |#1| |#2| |#3|)) 16)) (-2475 (((-3 (-749) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|)) 14))) +(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -2475 ((-3 (-749) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|))) (-15 -2710 ((-112) (-329 (-400 (-550)) |#1| |#2| |#3|))) (-15 -2819 ((-3 (-2 (|:| -2475 (-749)) (|:| -2988 |#3|)) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|)))) (-1203 (-400 (-550))) (-1203 (-400 |#1|)) (-335 (-400 (-550)) |#1| |#2|)) (T -885)) +((-2819 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) (-4 *4 (-1203 (-400 (-550)))) (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-2 (|:| -2475 (-749)) (|:| -2988 *6))) (-5 *1 (-885 *4 *5 *6)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) (-4 *4 (-1203 (-400 (-550)))) (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-885 *4 *5 *6)))) (-2475 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) (-4 *4 (-1203 (-400 (-550)))) (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-749)) (-5 *1 (-885 *4 *5 *6))))) +(-10 -7 (-15 -2475 ((-3 (-749) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|))) (-15 -2710 ((-112) (-329 (-400 (-550)) |#1| |#2| |#3|))) (-15 -2819 ((-3 (-2 (|:| -2475 (-749)) (|:| -2988 |#3|)) "failed") (-329 (-400 (-550)) |#1| |#2| |#3|)))) +((-2217 ((|#2| |#2|) 26)) (-3120 (((-550) (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) 15)) (-2920 (((-894) (-550)) 35)) (-2134 (((-550) |#2|) 42)) (-3021 (((-550) |#2|) 21) (((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|) 20))) +(((-886 |#1| |#2|) (-10 -7 (-15 -2920 ((-894) (-550))) (-15 -3021 ((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|)) (-15 -3021 ((-550) |#2|)) (-15 -3120 ((-550) (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))))) (-15 -2134 ((-550) |#2|)) (-15 -2217 (|#2| |#2|))) (-1203 (-400 (-550))) (-1203 (-400 |#1|))) (T -886)) +((-2217 (*1 *2 *2) (-12 (-4 *3 (-1203 (-400 (-550)))) (-5 *1 (-886 *3 *2)) (-4 *2 (-1203 (-400 *3))))) (-2134 (*1 *2 *3) (-12 (-4 *4 (-1203 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1203 (-400 *4))))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) (-4 *4 (-1203 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1203 (-400 *4))))) (-3021 (*1 *2 *3) (-12 (-4 *4 (-1203 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1203 (-400 *4))))) (-3021 (*1 *2 *3) (-12 (-4 *3 (-1203 (-400 (-550)))) (-5 *2 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))) (-5 *1 (-886 *3 *4)) (-4 *4 (-1203 (-400 *3))))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-1203 (-400 *3))) (-5 *2 (-894)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1203 (-400 *4)))))) +(-10 -7 (-15 -2920 ((-894) (-550))) (-15 -3021 ((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|)) (-15 -3021 ((-550) |#2|)) (-15 -3120 ((-550) (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))))) (-15 -2134 ((-550) |#2|)) (-15 -2217 (|#2| |#2|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 ((|#1| $) 81)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-3349 (($ $ $) NIL)) (-1386 (((-3 $ "failed") $) 75)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1879 (($ |#1| (-411 |#1|)) 73)) (-2409 (((-1140 |#1|) |#1| |#1|) 41)) (-2311 (($ $) 49)) (-3102 (((-112) $) NIL)) (-2502 (((-550) $) 78)) (-1395 (($ $ (-550)) 80)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1503 ((|#1| $) 77)) (-1639 (((-411 |#1|) $) 76)) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) 74)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-1755 (($ $) 39)) (-1518 (((-836) $) 99) (($ (-550)) 54) (($ $) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 31) (((-400 |#1|) $) 59) (($ (-400 (-411 |#1|))) 67)) (-2390 (((-749)) 52)) (-1345 (((-112) $ $) NIL)) (-2626 (($) 23 T CONST)) (-2636 (($) 12 T CONST)) (-2316 (((-112) $ $) 68)) (-2414 (($ $ $) NIL)) (-2403 (($ $) 88) (($ $ $) NIL)) (-2391 (($ $ $) 38)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 90) (($ $ $) 37) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-887 |#1|) (-13 (-356) (-38 |#1|) (-10 -8 (-15 -1518 ((-400 |#1|) $)) (-15 -1518 ($ (-400 (-411 |#1|)))) (-15 -1755 ($ $)) (-15 -1639 ((-411 |#1|) $)) (-15 -1503 (|#1| $)) (-15 -1395 ($ $ (-550))) (-15 -2502 ((-550) $)) (-15 -2409 ((-1140 |#1|) |#1| |#1|)) (-15 -2311 ($ $)) (-15 -1879 ($ |#1| (-411 |#1|))) (-15 -1453 (|#1| $)))) (-300)) (T -887)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-887 *3)) (-4 *3 (-300)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-400 (-411 *3))) (-4 *3 (-300)) (-5 *1 (-887 *3)))) (-1755 (*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-300)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-887 *3)) (-4 *3 (-300)))) (-1503 (*1 *2 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-300)))) (-1395 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-887 *3)) (-4 *3 (-300)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-887 *3)) (-4 *3 (-300)))) (-2409 (*1 *2 *3 *3) (-12 (-5 *2 (-1140 *3)) (-5 *1 (-887 *3)) (-4 *3 (-300)))) (-2311 (*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-300)))) (-1879 (*1 *1 *2 *3) (-12 (-5 *3 (-411 *2)) (-4 *2 (-300)) (-5 *1 (-887 *2)))) (-1453 (*1 *2 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-300))))) +(-13 (-356) (-38 |#1|) (-10 -8 (-15 -1518 ((-400 |#1|) $)) (-15 -1518 ($ (-400 (-411 |#1|)))) (-15 -1755 ($ $)) (-15 -1639 ((-411 |#1|) $)) (-15 -1503 (|#1| $)) (-15 -1395 ($ $ (-550))) (-15 -2502 ((-550) $)) (-15 -2409 ((-1140 |#1|) |#1| |#1|)) (-15 -2311 ($ $)) (-15 -1879 ($ |#1| (-411 |#1|))) (-15 -1453 (|#1| $)))) +((-1879 (((-52) (-925 |#1|) (-411 (-925 |#1|)) (-1144)) 17) (((-52) (-400 (-925 |#1|)) (-1144)) 18))) +(((-888 |#1|) (-10 -7 (-15 -1879 ((-52) (-400 (-925 |#1|)) (-1144))) (-15 -1879 ((-52) (-925 |#1|) (-411 (-925 |#1|)) (-1144)))) (-13 (-300) (-145))) (T -888)) +((-1879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-411 (-925 *6))) (-5 *5 (-1144)) (-5 *3 (-925 *6)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-888 *6)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-888 *5))))) +(-10 -7 (-15 -1879 ((-52) (-400 (-925 |#1|)) (-1144))) (-15 -1879 ((-52) (-925 |#1|) (-411 (-925 |#1|)) (-1144)))) +((-1994 ((|#4| (-623 |#4|)) 121) (((-1140 |#4|) (-1140 |#4|) (-1140 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3139 (((-1140 |#4|) (-623 (-1140 |#4|))) 114) (((-1140 |#4|) (-1140 |#4|) (-1140 |#4|)) 50) ((|#4| (-623 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-889 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3139 (|#4| |#4| |#4|)) (-15 -3139 (|#4| (-623 |#4|))) (-15 -3139 ((-1140 |#4|) (-1140 |#4|) (-1140 |#4|))) (-15 -3139 ((-1140 |#4|) (-623 (-1140 |#4|)))) (-15 -1994 (|#4| |#4| |#4|)) (-15 -1994 ((-1140 |#4|) (-1140 |#4|) (-1140 |#4|))) (-15 -1994 (|#4| (-623 |#4|)))) (-771) (-825) (-300) (-922 |#3| |#1| |#2|)) (T -889)) +((-1994 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *6 *4 *5)) (-5 *1 (-889 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) (-1994 (*1 *2 *2 *2) (-12 (-5 *2 (-1140 *6)) (-4 *6 (-922 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-889 *3 *4 *5 *6)))) (-1994 (*1 *2 *2 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-889 *3 *4 *5 *2)) (-4 *2 (-922 *5 *3 *4)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-623 (-1140 *7))) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-1140 *7)) (-5 *1 (-889 *4 *5 *6 *7)) (-4 *7 (-922 *6 *4 *5)))) (-3139 (*1 *2 *2 *2) (-12 (-5 *2 (-1140 *6)) (-4 *6 (-922 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-889 *3 *4 *5 *6)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *6 *4 *5)) (-5 *1 (-889 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) (-3139 (*1 *2 *2 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-889 *3 *4 *5 *2)) (-4 *2 (-922 *5 *3 *4))))) +(-10 -7 (-15 -3139 (|#4| |#4| |#4|)) (-15 -3139 (|#4| (-623 |#4|))) (-15 -3139 ((-1140 |#4|) (-1140 |#4|) (-1140 |#4|))) (-15 -3139 ((-1140 |#4|) (-623 (-1140 |#4|)))) (-15 -1994 (|#4| |#4| |#4|)) (-15 -1994 ((-1140 |#4|) (-1140 |#4|) (-1140 |#4|))) (-15 -1994 (|#4| (-623 |#4|)))) +((-2716 (((-877 (-550)) (-944)) 23) (((-877 (-550)) (-623 (-550))) 20)) (-3845 (((-877 (-550)) (-623 (-550))) 48) (((-877 (-550)) (-894)) 49)) (-2637 (((-877 (-550))) 24)) (-3567 (((-877 (-550))) 38) (((-877 (-550)) (-623 (-550))) 37)) (-3446 (((-877 (-550))) 36) (((-877 (-550)) (-623 (-550))) 35)) (-3358 (((-877 (-550))) 34) (((-877 (-550)) (-623 (-550))) 33)) (-3254 (((-877 (-550))) 32) (((-877 (-550)) (-623 (-550))) 31)) (-1311 (((-877 (-550))) 30) (((-877 (-550)) (-623 (-550))) 29)) (-3694 (((-877 (-550))) 40) (((-877 (-550)) (-623 (-550))) 39)) (-4273 (((-877 (-550)) (-623 (-550))) 52) (((-877 (-550)) (-894)) 53)) (-4148 (((-877 (-550)) (-623 (-550))) 50) (((-877 (-550)) (-894)) 51)) (-3929 (((-877 (-550)) (-623 (-550))) 46) (((-877 (-550)) (-894)) 47)) (-4044 (((-877 (-550)) (-623 (-894))) 43))) +(((-890) (-10 -7 (-15 -3845 ((-877 (-550)) (-894))) (-15 -3845 ((-877 (-550)) (-623 (-550)))) (-15 -3929 ((-877 (-550)) (-894))) (-15 -3929 ((-877 (-550)) (-623 (-550)))) (-15 -4044 ((-877 (-550)) (-623 (-894)))) (-15 -4148 ((-877 (-550)) (-894))) (-15 -4148 ((-877 (-550)) (-623 (-550)))) (-15 -4273 ((-877 (-550)) (-894))) (-15 -4273 ((-877 (-550)) (-623 (-550)))) (-15 -1311 ((-877 (-550)) (-623 (-550)))) (-15 -1311 ((-877 (-550)))) (-15 -3254 ((-877 (-550)) (-623 (-550)))) (-15 -3254 ((-877 (-550)))) (-15 -3358 ((-877 (-550)) (-623 (-550)))) (-15 -3358 ((-877 (-550)))) (-15 -3446 ((-877 (-550)) (-623 (-550)))) (-15 -3446 ((-877 (-550)))) (-15 -3567 ((-877 (-550)) (-623 (-550)))) (-15 -3567 ((-877 (-550)))) (-15 -3694 ((-877 (-550)) (-623 (-550)))) (-15 -3694 ((-877 (-550)))) (-15 -2637 ((-877 (-550)))) (-15 -2716 ((-877 (-550)) (-623 (-550)))) (-15 -2716 ((-877 (-550)) (-944))))) (T -890)) +((-2716 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-2637 (*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3694 (*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3567 (*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3446 (*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3358 (*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3254 (*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-1311 (*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-623 (-894))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(-10 -7 (-15 -3845 ((-877 (-550)) (-894))) (-15 -3845 ((-877 (-550)) (-623 (-550)))) (-15 -3929 ((-877 (-550)) (-894))) (-15 -3929 ((-877 (-550)) (-623 (-550)))) (-15 -4044 ((-877 (-550)) (-623 (-894)))) (-15 -4148 ((-877 (-550)) (-894))) (-15 -4148 ((-877 (-550)) (-623 (-550)))) (-15 -4273 ((-877 (-550)) (-894))) (-15 -4273 ((-877 (-550)) (-623 (-550)))) (-15 -1311 ((-877 (-550)) (-623 (-550)))) (-15 -1311 ((-877 (-550)))) (-15 -3254 ((-877 (-550)) (-623 (-550)))) (-15 -3254 ((-877 (-550)))) (-15 -3358 ((-877 (-550)) (-623 (-550)))) (-15 -3358 ((-877 (-550)))) (-15 -3446 ((-877 (-550)) (-623 (-550)))) (-15 -3446 ((-877 (-550)))) (-15 -3567 ((-877 (-550)) (-623 (-550)))) (-15 -3567 ((-877 (-550)))) (-15 -3694 ((-877 (-550)) (-623 (-550)))) (-15 -3694 ((-877 (-550)))) (-15 -2637 ((-877 (-550)))) (-15 -2716 ((-877 (-550)) (-623 (-550)))) (-15 -2716 ((-877 (-550)) (-944)))) +((-2935 (((-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144))) 12)) (-2837 (((-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144))) 11))) +(((-891 |#1|) (-10 -7 (-15 -2837 ((-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144)))) (-15 -2935 ((-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144))))) (-444)) (T -891)) +((-2935 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-925 *4))) (-5 *3 (-623 (-1144))) (-4 *4 (-444)) (-5 *1 (-891 *4)))) (-2837 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-925 *4))) (-5 *3 (-623 (-1144))) (-4 *4 (-444)) (-5 *1 (-891 *4))))) +(-10 -7 (-15 -2837 ((-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144)))) (-15 -2935 ((-623 (-925 |#1|)) (-623 (-925 |#1|)) (-623 (-1144))))) +((-1518 (((-309 |#1|) (-469)) 16))) +(((-892 |#1|) (-10 -7 (-15 -1518 ((-309 |#1|) (-469)))) (-13 (-825) (-542))) (T -892)) +((-1518 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *2 (-309 *4)) (-5 *1 (-892 *4)) (-4 *4 (-13 (-825) (-542)))))) +(-10 -7 (-15 -1518 ((-309 |#1|) (-469)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3102 (((-112) $) 30)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-893) (-138)) (T -893)) +((-3291 (*1 *2 *3) (-12 (-4 *1 (-893)) (-5 *2 (-2 (|:| -2855 (-623 *1)) (|:| -3935 *1))) (-5 *3 (-623 *1)))) (-3188 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-893))))) +(-13 (-444) (-10 -8 (-15 -3291 ((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $))) (-15 -3188 ((-3 (-623 $) "failed") (-623 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3139 (($ $ $) NIL)) (-1518 (((-836) $) NIL)) (-2636 (($) NIL T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-894)) NIL)) (* (($ (-894) $) NIL) (($ $ $) NIL))) +(((-894) (-13 (-772) (-705) (-10 -8 (-15 -3139 ($ $ $)) (-6 (-4344 "*"))))) (T -894)) +((-3139 (*1 *1 *1 *1) (-5 *1 (-894)))) +(-13 (-772) (-705) (-10 -8 (-15 -3139 ($ $ $)) (-6 (-4344 "*")))) +((-3405 ((|#2| (-623 |#1|) (-623 |#1|)) 24))) +(((-895 |#1| |#2|) (-10 -7 (-15 -3405 (|#2| (-623 |#1|) (-623 |#1|)))) (-356) (-1203 |#1|)) (T -895)) +((-3405 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-356)) (-4 *2 (-1203 *4)) (-5 *1 (-895 *4 *2))))) +(-10 -7 (-15 -3405 (|#2| (-623 |#1|) (-623 |#1|)))) +((-3448 (((-1140 |#2|) (-623 |#2|) (-623 |#2|)) 17) (((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-623 |#2|) (-623 |#2|)) 13))) +(((-896 |#1| |#2|) (-10 -7 (-15 -3448 ((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-623 |#2|) (-623 |#2|))) (-15 -3448 ((-1140 |#2|) (-623 |#2|) (-623 |#2|)))) (-1144) (-356)) (T -896)) +((-3448 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-356)) (-5 *2 (-1140 *5)) (-5 *1 (-896 *4 *5)) (-14 *4 (-1144)))) (-3448 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1200 *4 *5)) (-5 *3 (-623 *5)) (-14 *4 (-1144)) (-4 *5 (-356)) (-5 *1 (-896 *4 *5))))) +(-10 -7 (-15 -3448 ((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-623 |#2|) (-623 |#2|))) (-15 -3448 ((-1140 |#2|) (-623 |#2|) (-623 |#2|)))) +((-3612 (((-550) (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-1126)) 139)) (-3926 ((|#4| |#4|) 155)) (-2877 (((-623 (-400 (-925 |#1|))) (-623 (-1144))) 118)) (-3828 (((-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))) (-667 |#4|) (-623 (-400 (-925 |#1|))) (-623 (-623 |#4|)) (-749) (-749) (-550)) 75)) (-2182 (((-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-623 |#4|)) 59)) (-1978 (((-667 |#4|) (-667 |#4|) (-623 |#4|)) 55)) (-3736 (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-1126)) 151)) (-3490 (((-550) (-667 |#4|) (-894) (-1126)) 132) (((-550) (-667 |#4|) (-623 (-1144)) (-894) (-1126)) 131) (((-550) (-667 |#4|) (-623 |#4|) (-894) (-1126)) 130) (((-550) (-667 |#4|) (-1126)) 127) (((-550) (-667 |#4|) (-623 (-1144)) (-1126)) 126) (((-550) (-667 |#4|) (-623 |#4|) (-1126)) 125) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-894)) 124) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 (-1144)) (-894)) 123) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 |#4|) (-894)) 122) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|)) 120) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 (-1144))) 119) (((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 |#4|)) 115)) (-2977 ((|#4| (-925 |#1|)) 68)) (-1737 (((-112) (-623 |#4|) (-623 (-623 |#4|))) 152)) (-1612 (((-623 (-623 (-550))) (-550) (-550)) 129)) (-1484 (((-623 (-623 |#4|)) (-623 (-623 |#4|))) 88)) (-2579 (((-749) (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|))))) 86)) (-2479 (((-749) (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|))))) 85)) (-4040 (((-112) (-623 (-925 |#1|))) 17) (((-112) (-623 |#4|)) 13)) (-3063 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-623 |#4|)) (|:| |n0| (-623 |#4|))) (-623 |#4|) (-623 |#4|)) 71)) (-2373 (((-623 |#4|) |#4|) 49)) (-2766 (((-623 (-400 (-925 |#1|))) (-623 |#4|)) 114) (((-667 (-400 (-925 |#1|))) (-667 |#4|)) 56) (((-400 (-925 |#1|)) |#4|) 111)) (-2670 (((-2 (|:| |rgl| (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))))))) (|:| |rgsz| (-550))) (-667 |#4|) (-623 (-400 (-925 |#1|))) (-749) (-1126) (-550)) 93)) (-2091 (((-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))) (-667 |#4|) (-749)) 84)) (-1864 (((-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-667 |#4|) (-749)) 101)) (-2275 (((-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-2 (|:| -1340 (-667 (-400 (-925 |#1|)))) (|:| |vec| (-623 (-400 (-925 |#1|)))) (|:| -2122 (-749)) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) 48))) +(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 |#4|))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 (-1144)))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 |#4|) (-894))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 (-1144)) (-894))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-894))) (-15 -3490 ((-550) (-667 |#4|) (-623 |#4|) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-623 (-1144)) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-623 |#4|) (-894) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-623 (-1144)) (-894) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-894) (-1126))) (-15 -3612 ((-550) (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-1126))) (-15 -3736 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-1126))) (-15 -2670 ((-2 (|:| |rgl| (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))))))) (|:| |rgsz| (-550))) (-667 |#4|) (-623 (-400 (-925 |#1|))) (-749) (-1126) (-550))) (-15 -2766 ((-400 (-925 |#1|)) |#4|)) (-15 -2766 ((-667 (-400 (-925 |#1|))) (-667 |#4|))) (-15 -2766 ((-623 (-400 (-925 |#1|))) (-623 |#4|))) (-15 -2877 ((-623 (-400 (-925 |#1|))) (-623 (-1144)))) (-15 -2977 (|#4| (-925 |#1|))) (-15 -3063 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-623 |#4|)) (|:| |n0| (-623 |#4|))) (-623 |#4|) (-623 |#4|))) (-15 -2091 ((-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))) (-667 |#4|) (-749))) (-15 -2182 ((-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-623 |#4|))) (-15 -2275 ((-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-2 (|:| -1340 (-667 (-400 (-925 |#1|)))) (|:| |vec| (-623 (-400 (-925 |#1|)))) (|:| -2122 (-749)) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (-15 -2373 ((-623 |#4|) |#4|)) (-15 -2479 ((-749) (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))))) (-15 -2579 ((-749) (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))))) (-15 -1484 ((-623 (-623 |#4|)) (-623 (-623 |#4|)))) (-15 -1612 ((-623 (-623 (-550))) (-550) (-550))) (-15 -1737 ((-112) (-623 |#4|) (-623 (-623 |#4|)))) (-15 -1864 ((-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-667 |#4|) (-749))) (-15 -1978 ((-667 |#4|) (-667 |#4|) (-623 |#4|))) (-15 -3828 ((-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))) (-667 |#4|) (-623 (-400 (-925 |#1|))) (-623 (-623 |#4|)) (-749) (-749) (-550))) (-15 -3926 (|#4| |#4|)) (-15 -4040 ((-112) (-623 |#4|))) (-15 -4040 ((-112) (-623 (-925 |#1|))))) (-13 (-300) (-145)) (-13 (-825) (-596 (-1144))) (-771) (-922 |#1| |#3| |#2|)) (T -897)) +((-4040 (*1 *2 *3) (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-897 *4 *5 *6 *7)) (-4 *7 (-922 *4 *6 *5)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-897 *4 *5 *6 *7)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1144)))) (-4 *5 (-771)) (-5 *1 (-897 *3 *4 *5 *2)) (-4 *2 (-922 *3 *5 *4)))) (-3828 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-5 *4 (-667 *12)) (-5 *5 (-623 (-400 (-925 *9)))) (-5 *6 (-623 (-623 *12))) (-5 *7 (-749)) (-5 *8 (-550)) (-4 *9 (-13 (-300) (-145))) (-4 *12 (-922 *9 *11 *10)) (-4 *10 (-13 (-825) (-596 (-1144)))) (-4 *11 (-771)) (-5 *2 (-2 (|:| |eqzro| (-623 *12)) (|:| |neqzro| (-623 *12)) (|:| |wcond| (-623 (-925 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *9)))) (|:| -2437 (-623 (-1227 (-400 (-925 *9))))))))) (-5 *1 (-897 *9 *10 *11 *12)))) (-1978 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *7)) (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *1 (-897 *4 *5 *6 *7)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-749)) (-4 *8 (-922 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| |det| *8) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (-5 *1 (-897 *5 *6 *7 *8)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-623 *8))) (-5 *3 (-623 *8)) (-4 *8 (-922 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-897 *5 *6 *7 *8)))) (-1612 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-623 (-623 (-550)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-550)) (-4 *7 (-922 *4 *6 *5)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-623 (-623 *6))) (-4 *6 (-922 *3 *5 *4)) (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1144)))) (-4 *5 (-771)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2579 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| *7) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 *7))))) (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-749)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| *7) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 *7))))) (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-749)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2373 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-623 *3)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-922 *4 *6 *5)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1340 (-667 (-400 (-925 *4)))) (|:| |vec| (-623 (-400 (-925 *4)))) (|:| -2122 (-749)) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-2 (|:| |partsol| (-1227 (-400 (-925 *4)))) (|:| -2437 (-623 (-1227 (-400 (-925 *4))))))) (-5 *1 (-897 *4 *5 *6 *7)) (-4 *7 (-922 *4 *6 *5)))) (-2182 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1227 (-400 (-925 *4)))) (|:| -2437 (-623 (-1227 (-400 (-925 *4))))))) (-5 *3 (-623 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-922 *4 *6 *5)) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-4 *8 (-922 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| *8) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 *8))))) (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-749)))) (-3063 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-4 *7 (-922 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-623 *7)) (|:| |n0| (-623 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-925 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-922 *4 *6 *5)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-623 (-1144))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-623 (-400 (-925 *4)))) (-5 *1 (-897 *4 *5 *6 *7)) (-4 *7 (-922 *4 *6 *5)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-623 (-400 (-925 *4)))) (-5 *1 (-897 *4 *5 *6 *7)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-667 *7)) (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-667 (-400 (-925 *4)))) (-5 *1 (-897 *4 *5 *6 *7)))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-400 (-925 *4))) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-922 *4 *6 *5)))) (-2670 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-667 *11)) (-5 *4 (-623 (-400 (-925 *8)))) (-5 *5 (-749)) (-5 *6 (-1126)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-922 *8 *10 *9)) (-4 *9 (-13 (-825) (-596 (-1144)))) (-4 *10 (-771)) (-5 *2 (-2 (|:| |rgl| (-623 (-2 (|:| |eqzro| (-623 *11)) (|:| |neqzro| (-623 *11)) (|:| |wcond| (-623 (-925 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *8)))) (|:| -2437 (-623 (-1227 (-400 (-925 *8)))))))))) (|:| |rgsz| (-550)))) (-5 *1 (-897 *8 *9 *10 *11)) (-5 *7 (-550)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *7)) (|:| |neqzro| (-623 *7)) (|:| |wcond| (-623 (-925 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *4)))) (|:| -2437 (-623 (-1227 (-400 (-925 *4)))))))))) (-5 *1 (-897 *4 *5 *6 *7)) (-4 *7 (-922 *4 *6 *5)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) (|:| |wcond| (-623 (-925 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *5)))) (|:| -2437 (-623 (-1227 (-400 (-925 *5)))))))))) (-5 *4 (-1126)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-922 *5 *7 *6)) (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-550)) (-5 *1 (-897 *5 *6 *7 *8)))) (-3490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-894)) (-5 *5 (-1126)) (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) (-5 *2 (-550)) (-5 *1 (-897 *6 *7 *8 *9)))) (-3490 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-667 *10)) (-5 *4 (-623 (-1144))) (-5 *5 (-894)) (-5 *6 (-1126)) (-4 *10 (-922 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-825) (-596 (-1144)))) (-4 *9 (-771)) (-5 *2 (-550)) (-5 *1 (-897 *7 *8 *9 *10)))) (-3490 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-667 *10)) (-5 *4 (-623 *10)) (-5 *5 (-894)) (-5 *6 (-1126)) (-4 *10 (-922 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-825) (-596 (-1144)))) (-4 *9 (-771)) (-5 *2 (-550)) (-5 *1 (-897 *7 *8 *9 *10)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-1126)) (-4 *8 (-922 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-550)) (-5 *1 (-897 *5 *6 *7 *8)))) (-3490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 (-1144))) (-5 *5 (-1126)) (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) (-5 *2 (-550)) (-5 *1 (-897 *6 *7 *8 *9)))) (-3490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 *9)) (-5 *5 (-1126)) (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) (-5 *2 (-550)) (-5 *1 (-897 *6 *7 *8 *9)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-894)) (-4 *8 (-922 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) (|:| |wcond| (-623 (-925 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *5)))) (|:| -2437 (-623 (-1227 (-400 (-925 *5)))))))))) (-5 *1 (-897 *5 *6 *7 *8)))) (-3490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 (-1144))) (-5 *5 (-894)) (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *9)) (|:| |neqzro| (-623 *9)) (|:| |wcond| (-623 (-925 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *6)))) (|:| -2437 (-623 (-1227 (-400 (-925 *6)))))))))) (-5 *1 (-897 *6 *7 *8 *9)))) (-3490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *5 (-894)) (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *9)) (|:| |neqzro| (-623 *9)) (|:| |wcond| (-623 (-925 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *6)))) (|:| -2437 (-623 (-1227 (-400 (-925 *6)))))))))) (-5 *1 (-897 *6 *7 *8 *9)) (-5 *4 (-623 *9)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-667 *7)) (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *7)) (|:| |neqzro| (-623 *7)) (|:| |wcond| (-623 (-925 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *4)))) (|:| -2437 (-623 (-1227 (-400 (-925 *4)))))))))) (-5 *1 (-897 *4 *5 *6 *7)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-623 (-1144))) (-4 *8 (-922 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) (|:| |wcond| (-623 (-925 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *5)))) (|:| -2437 (-623 (-1227 (-400 (-925 *5)))))))))) (-5 *1 (-897 *5 *6 *7 *8)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-4 *8 (-922 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-623 (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) (|:| |wcond| (-623 (-925 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 *5)))) (|:| -2437 (-623 (-1227 (-400 (-925 *5)))))))))) (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-623 *8))))) +(-10 -7 (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 |#4|))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 (-1144)))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 |#4|) (-894))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-623 (-1144)) (-894))) (-15 -3490 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-667 |#4|) (-894))) (-15 -3490 ((-550) (-667 |#4|) (-623 |#4|) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-623 (-1144)) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-623 |#4|) (-894) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-623 (-1144)) (-894) (-1126))) (-15 -3490 ((-550) (-667 |#4|) (-894) (-1126))) (-15 -3612 ((-550) (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-1126))) (-15 -3736 ((-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|))))))))) (-1126))) (-15 -2670 ((-2 (|:| |rgl| (-623 (-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))))))) (|:| |rgsz| (-550))) (-667 |#4|) (-623 (-400 (-925 |#1|))) (-749) (-1126) (-550))) (-15 -2766 ((-400 (-925 |#1|)) |#4|)) (-15 -2766 ((-667 (-400 (-925 |#1|))) (-667 |#4|))) (-15 -2766 ((-623 (-400 (-925 |#1|))) (-623 |#4|))) (-15 -2877 ((-623 (-400 (-925 |#1|))) (-623 (-1144)))) (-15 -2977 (|#4| (-925 |#1|))) (-15 -3063 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-623 |#4|)) (|:| |n0| (-623 |#4|))) (-623 |#4|) (-623 |#4|))) (-15 -2091 ((-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))) (-667 |#4|) (-749))) (-15 -2182 ((-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-623 |#4|))) (-15 -2275 ((-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))) (-2 (|:| -1340 (-667 (-400 (-925 |#1|)))) (|:| |vec| (-623 (-400 (-925 |#1|)))) (|:| -2122 (-749)) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (-15 -2373 ((-623 |#4|) |#4|)) (-15 -2479 ((-749) (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))))) (-15 -2579 ((-749) (-623 (-2 (|:| -2122 (-749)) (|:| |eqns| (-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))))) (|:| |fgb| (-623 |#4|)))))) (-15 -1484 ((-623 (-623 |#4|)) (-623 (-623 |#4|)))) (-15 -1612 ((-623 (-623 (-550))) (-550) (-550))) (-15 -1737 ((-112) (-623 |#4|) (-623 (-623 |#4|)))) (-15 -1864 ((-623 (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) (-667 |#4|) (-749))) (-15 -1978 ((-667 |#4|) (-667 |#4|) (-623 |#4|))) (-15 -3828 ((-2 (|:| |eqzro| (-623 |#4|)) (|:| |neqzro| (-623 |#4|)) (|:| |wcond| (-623 (-925 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1227 (-400 (-925 |#1|)))) (|:| -2437 (-623 (-1227 (-400 (-925 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550)))) (-667 |#4|) (-623 (-400 (-925 |#1|))) (-623 (-623 |#4|)) (-749) (-749) (-550))) (-15 -3926 (|#4| |#4|)) (-15 -4040 ((-112) (-623 |#4|))) (-15 -4040 ((-112) (-623 (-925 |#1|))))) +((-2882 (((-900) |#1| (-1144)) 17) (((-900) |#1| (-1144) (-1062 (-219))) 21)) (-2097 (((-900) |#1| |#1| (-1144) (-1062 (-219))) 19) (((-900) |#1| (-1144) (-1062 (-219))) 15))) +(((-898 |#1|) (-10 -7 (-15 -2097 ((-900) |#1| (-1144) (-1062 (-219)))) (-15 -2097 ((-900) |#1| |#1| (-1144) (-1062 (-219)))) (-15 -2882 ((-900) |#1| (-1144) (-1062 (-219)))) (-15 -2882 ((-900) |#1| (-1144)))) (-596 (-526))) (T -898)) +((-2882 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-5 *2 (-900)) (-5 *1 (-898 *3)) (-4 *3 (-596 (-526))))) (-2882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1144)) (-5 *5 (-1062 (-219))) (-5 *2 (-900)) (-5 *1 (-898 *3)) (-4 *3 (-596 (-526))))) (-2097 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1144)) (-5 *5 (-1062 (-219))) (-5 *2 (-900)) (-5 *1 (-898 *3)) (-4 *3 (-596 (-526))))) (-2097 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1144)) (-5 *5 (-1062 (-219))) (-5 *2 (-900)) (-5 *1 (-898 *3)) (-4 *3 (-596 (-526)))))) +(-10 -7 (-15 -2097 ((-900) |#1| (-1144) (-1062 (-219)))) (-15 -2097 ((-900) |#1| |#1| (-1144) (-1062 (-219)))) (-15 -2882 ((-900) |#1| (-1144) (-1062 (-219)))) (-15 -2882 ((-900) |#1| (-1144)))) +((-1322 (($ $ (-1062 (-219)) (-1062 (-219)) (-1062 (-219))) 70)) (-3221 (((-1062 (-219)) $) 40)) (-3213 (((-1062 (-219)) $) 39)) (-3202 (((-1062 (-219)) $) 38)) (-1844 (((-623 (-623 (-219))) $) 43)) (-1983 (((-1062 (-219)) $) 41)) (-2305 (((-550) (-550)) 32)) (-1558 (((-550) (-550)) 28)) (-2515 (((-550) (-550)) 30)) (-3205 (((-112) (-112)) 35)) (-2411 (((-550)) 31)) (-1682 (($ $ (-1062 (-219))) 73) (($ $) 74)) (-3944 (($ (-1 (-916 (-219)) (-219)) (-1062 (-219))) 78) (($ (-1 (-916 (-219)) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219))) 79)) (-2097 (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219))) 82) (($ $ (-1062 (-219))) 76)) (-3101 (((-550)) 36)) (-1691 (((-550)) 27)) (-2612 (((-550)) 29)) (-3576 (((-623 (-623 (-916 (-219)))) $) 95)) (-2992 (((-112) (-112)) 37)) (-1518 (((-836) $) 94)) (-2218 (((-112)) 34))) +(((-899) (-13 (-947) (-10 -8 (-15 -3944 ($ (-1 (-916 (-219)) (-219)) (-1062 (-219)))) (-15 -3944 ($ (-1 (-916 (-219)) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -2097 ($ $ (-1062 (-219)))) (-15 -1322 ($ $ (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -1682 ($ $ (-1062 (-219)))) (-15 -1682 ($ $)) (-15 -1983 ((-1062 (-219)) $)) (-15 -1844 ((-623 (-623 (-219))) $)) (-15 -1691 ((-550))) (-15 -1558 ((-550) (-550))) (-15 -2612 ((-550))) (-15 -2515 ((-550) (-550))) (-15 -2411 ((-550))) (-15 -2305 ((-550) (-550))) (-15 -2218 ((-112))) (-15 -3205 ((-112) (-112))) (-15 -3101 ((-550))) (-15 -2992 ((-112) (-112)))))) (T -899)) +((-3944 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-916 (-219)) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-899)))) (-3944 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-916 (-219)) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-899)))) (-2097 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-899)))) (-2097 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-899)))) (-2097 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-899)))) (-1322 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-899)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-899)))) (-1682 (*1 *1 *1) (-5 *1 (-899))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-899)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-219)))) (-5 *1 (-899)))) (-1691 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899)))) (-1558 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899)))) (-2612 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899)))) (-2515 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899)))) (-2411 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899)))) (-2218 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899)))) (-3101 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899)))) (-2992 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(-13 (-947) (-10 -8 (-15 -3944 ($ (-1 (-916 (-219)) (-219)) (-1062 (-219)))) (-15 -3944 ($ (-1 (-916 (-219)) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -2097 ($ $ (-1062 (-219)))) (-15 -1322 ($ $ (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -1682 ($ $ (-1062 (-219)))) (-15 -1682 ($ $)) (-15 -1983 ((-1062 (-219)) $)) (-15 -1844 ((-623 (-623 (-219))) $)) (-15 -1691 ((-550))) (-15 -1558 ((-550) (-550))) (-15 -2612 ((-550))) (-15 -2515 ((-550) (-550))) (-15 -2411 ((-550))) (-15 -2305 ((-550) (-550))) (-15 -2218 ((-112))) (-15 -3205 ((-112) (-112))) (-15 -3101 ((-550))) (-15 -2992 ((-112) (-112))))) +((-1322 (($ $ (-1062 (-219))) 70) (($ $ (-1062 (-219)) (-1062 (-219))) 71)) (-3213 (((-1062 (-219)) $) 44)) (-3202 (((-1062 (-219)) $) 43)) (-1983 (((-1062 (-219)) $) 45)) (-3269 (((-550) (-550)) 37)) (-3733 (((-550) (-550)) 33)) (-3487 (((-550) (-550)) 35)) (-4269 (((-112) (-112)) 39)) (-3379 (((-550)) 36)) (-1682 (($ $ (-1062 (-219))) 74) (($ $) 75)) (-3944 (($ (-1 (-916 (-219)) (-219)) (-1062 (-219))) 84) (($ (-1 (-916 (-219)) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219))) 85)) (-2882 (($ (-1 (-219) (-219)) (-1062 (-219))) 92) (($ (-1 (-219) (-219))) 95)) (-2097 (($ (-1 (-219) (-219)) (-1062 (-219))) 79) (($ (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219))) 80) (($ (-623 (-1 (-219) (-219))) (-1062 (-219))) 87) (($ (-623 (-1 (-219) (-219))) (-1062 (-219)) (-1062 (-219))) 88) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219))) 82) (($ $ (-1062 (-219))) 76)) (-2762 (((-112) $) 40)) (-4144 (((-550)) 41)) (-2666 (((-550)) 32)) (-3608 (((-550)) 34)) (-3576 (((-623 (-623 (-916 (-219)))) $) 23)) (-4169 (((-112) (-112)) 42)) (-1518 (((-836) $) 106)) (-1330 (((-112)) 38))) +(((-900) (-13 (-928) (-10 -8 (-15 -2097 ($ (-1 (-219) (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -2097 ($ (-623 (-1 (-219) (-219))) (-1062 (-219)))) (-15 -2097 ($ (-623 (-1 (-219) (-219))) (-1062 (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -3944 ($ (-1 (-916 (-219)) (-219)) (-1062 (-219)))) (-15 -3944 ($ (-1 (-916 (-219)) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -2882 ($ (-1 (-219) (-219)) (-1062 (-219)))) (-15 -2882 ($ (-1 (-219) (-219)))) (-15 -2097 ($ $ (-1062 (-219)))) (-15 -2762 ((-112) $)) (-15 -1322 ($ $ (-1062 (-219)))) (-15 -1322 ($ $ (-1062 (-219)) (-1062 (-219)))) (-15 -1682 ($ $ (-1062 (-219)))) (-15 -1682 ($ $)) (-15 -1983 ((-1062 (-219)) $)) (-15 -2666 ((-550))) (-15 -3733 ((-550) (-550))) (-15 -3608 ((-550))) (-15 -3487 ((-550) (-550))) (-15 -3379 ((-550))) (-15 -3269 ((-550) (-550))) (-15 -1330 ((-112))) (-15 -4269 ((-112) (-112))) (-15 -4144 ((-550))) (-15 -4169 ((-112) (-112)))))) (T -900)) +((-2097 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-2097 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-2097 (*1 *1 *2 *3) (-12 (-5 *2 (-623 (-1 (-219) (-219)))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-2097 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-623 (-1 (-219) (-219)))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-2097 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-2097 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-3944 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-916 (-219)) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-3944 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-916 (-219)) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-2882 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) (-5 *1 (-900)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-900)))) (-2097 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900)))) (-1322 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) (-1322 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) (-1682 (*1 *1 *1) (-5 *1 (-900))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) (-2666 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3733 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3608 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3379 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-3269 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-1330 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900)))) (-4144 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900)))) (-4169 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) +(-13 (-928) (-10 -8 (-15 -2097 ($ (-1 (-219) (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -2097 ($ (-623 (-1 (-219) (-219))) (-1062 (-219)))) (-15 -2097 ($ (-623 (-1 (-219) (-219))) (-1062 (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)))) (-15 -2097 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -3944 ($ (-1 (-916 (-219)) (-219)) (-1062 (-219)))) (-15 -3944 ($ (-1 (-916 (-219)) (-219)) (-1062 (-219)) (-1062 (-219)) (-1062 (-219)))) (-15 -2882 ($ (-1 (-219) (-219)) (-1062 (-219)))) (-15 -2882 ($ (-1 (-219) (-219)))) (-15 -2097 ($ $ (-1062 (-219)))) (-15 -2762 ((-112) $)) (-15 -1322 ($ $ (-1062 (-219)))) (-15 -1322 ($ $ (-1062 (-219)) (-1062 (-219)))) (-15 -1682 ($ $ (-1062 (-219)))) (-15 -1682 ($ $)) (-15 -1983 ((-1062 (-219)) $)) (-15 -2666 ((-550))) (-15 -3733 ((-550) (-550))) (-15 -3608 ((-550))) (-15 -3487 ((-550) (-550))) (-15 -3379 ((-550))) (-15 -3269 ((-550) (-550))) (-15 -1330 ((-112))) (-15 -4269 ((-112) (-112))) (-15 -4144 ((-550))) (-15 -4169 ((-112) (-112))))) +((-4056 (((-623 (-1062 (-219))) (-623 (-623 (-916 (-219))))) 24))) +(((-901) (-10 -7 (-15 -4056 ((-623 (-1062 (-219))) (-623 (-623 (-916 (-219)))))))) (T -901)) +((-4056 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *2 (-623 (-1062 (-219)))) (-5 *1 (-901))))) +(-10 -7 (-15 -4056 ((-623 (-1062 (-219))) (-623 (-623 (-916 (-219))))))) +((-1853 ((|#2| |#2|) 26)) (-3229 ((|#2| |#2|) 27)) (-2258 ((|#2| |#2|) 25)) (-2489 ((|#2| |#2| (-1126)) 24))) +(((-902 |#1| |#2|) (-10 -7 (-15 -2489 (|#2| |#2| (-1126))) (-15 -2258 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -3229 (|#2| |#2|))) (-825) (-423 |#1|)) (T -902)) +((-3229 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-902 *3 *2)) (-4 *2 (-423 *3)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-902 *3 *2)) (-4 *2 (-423 *3)))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-902 *3 *2)) (-4 *2 (-423 *3)))) (-2489 (*1 *2 *2 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-825)) (-5 *1 (-902 *4 *2)) (-4 *2 (-423 *4))))) +(-10 -7 (-15 -2489 (|#2| |#2| (-1126))) (-15 -2258 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -3229 (|#2| |#2|))) +((-1853 (((-309 (-550)) (-1144)) 16)) (-3229 (((-309 (-550)) (-1144)) 14)) (-2258 (((-309 (-550)) (-1144)) 12)) (-2489 (((-309 (-550)) (-1144) (-1126)) 19))) +(((-903) (-10 -7 (-15 -2489 ((-309 (-550)) (-1144) (-1126))) (-15 -2258 ((-309 (-550)) (-1144))) (-15 -1853 ((-309 (-550)) (-1144))) (-15 -3229 ((-309 (-550)) (-1144))))) (T -903)) +((-3229 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-309 (-550))) (-5 *1 (-903)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-309 (-550))) (-5 *1 (-903)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-309 (-550))) (-5 *1 (-903)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-1126)) (-5 *2 (-309 (-550))) (-5 *1 (-903))))) +(-10 -7 (-15 -2489 ((-309 (-550)) (-1144) (-1126))) (-15 -2258 ((-309 (-550)) (-1144))) (-15 -1853 ((-309 (-550)) (-1144))) (-15 -3229 ((-309 (-550)) (-1144)))) +((-4312 (((-862 |#1| |#3|) |#2| (-865 |#1|) (-862 |#1| |#3|)) 25)) (-4172 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-904 |#1| |#2| |#3|) (-10 -7 (-15 -4172 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4312 ((-862 |#1| |#3|) |#2| (-865 |#1|) (-862 |#1| |#3|)))) (-1068) (-859 |#1|) (-13 (-1068) (-1011 |#2|))) (T -904)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *6)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) (-4 *6 (-13 (-1068) (-1011 *3))) (-4 *3 (-859 *5)) (-5 *1 (-904 *5 *3 *6)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1068) (-1011 *5))) (-4 *5 (-859 *4)) (-4 *4 (-1068)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-904 *4 *5 *6))))) +(-10 -7 (-15 -4172 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4312 ((-862 |#1| |#3|) |#2| (-865 |#1|) (-862 |#1| |#3|)))) +((-4312 (((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)) 30))) +(((-905 |#1| |#2| |#3|) (-10 -7 (-15 -4312 ((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)))) (-1068) (-13 (-542) (-825) (-859 |#1|)) (-13 (-423 |#2|) (-596 (-865 |#1|)) (-859 |#1|) (-1011 (-594 $)))) (T -905)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1068)) (-4 *3 (-13 (-423 *6) (-596 *4) (-859 *5) (-1011 (-594 $)))) (-5 *4 (-865 *5)) (-4 *6 (-13 (-542) (-825) (-859 *5))) (-5 *1 (-905 *5 *6 *3))))) +(-10 -7 (-15 -4312 ((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)))) +((-4312 (((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|)) 13))) +(((-906 |#1|) (-10 -7 (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|)))) (-535)) (T -906)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 (-550) *3)) (-5 *4 (-865 (-550))) (-4 *3 (-535)) (-5 *1 (-906 *3))))) +(-10 -7 (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|)))) +((-4312 (((-862 |#1| |#2|) (-594 |#2|) (-865 |#1|) (-862 |#1| |#2|)) 54))) +(((-907 |#1| |#2|) (-10 -7 (-15 -4312 ((-862 |#1| |#2|) (-594 |#2|) (-865 |#1|) (-862 |#1| |#2|)))) (-1068) (-13 (-825) (-1011 (-594 $)) (-596 (-865 |#1|)) (-859 |#1|))) (T -907)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *6)) (-5 *3 (-594 *6)) (-4 *5 (-1068)) (-4 *6 (-13 (-825) (-1011 (-594 $)) (-596 *4) (-859 *5))) (-5 *4 (-865 *5)) (-5 *1 (-907 *5 *6))))) +(-10 -7 (-15 -4312 ((-862 |#1| |#2|) (-594 |#2|) (-865 |#1|) (-862 |#1| |#2|)))) +((-4312 (((-858 |#1| |#2| |#3|) |#3| (-865 |#1|) (-858 |#1| |#2| |#3|)) 15))) +(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -4312 ((-858 |#1| |#2| |#3|) |#3| (-865 |#1|) (-858 |#1| |#2| |#3|)))) (-1068) (-859 |#1|) (-644 |#2|)) (T -908)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6 *3)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) (-4 *6 (-859 *5)) (-4 *3 (-644 *6)) (-5 *1 (-908 *5 *6 *3))))) +(-10 -7 (-15 -4312 ((-858 |#1| |#2| |#3|) |#3| (-865 |#1|) (-858 |#1| |#2| |#3|)))) +((-4312 (((-862 |#1| |#5|) |#5| (-865 |#1|) (-862 |#1| |#5|)) 17 (|has| |#3| (-859 |#1|))) (((-862 |#1| |#5|) |#5| (-865 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-865 |#1|) (-862 |#1| |#5|))) 16))) +(((-909 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4312 ((-862 |#1| |#5|) |#5| (-865 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-865 |#1|) (-862 |#1| |#5|)))) (IF (|has| |#3| (-859 |#1|)) (-15 -4312 ((-862 |#1| |#5|) |#5| (-865 |#1|) (-862 |#1| |#5|))) |%noBranch|)) (-1068) (-771) (-825) (-13 (-1020) (-825) (-859 |#1|)) (-13 (-922 |#4| |#2| |#3|) (-596 (-865 |#1|)))) (T -909)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1068)) (-4 *3 (-13 (-922 *8 *6 *7) (-596 *4))) (-5 *4 (-865 *5)) (-4 *7 (-859 *5)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-13 (-1020) (-825) (-859 *5))) (-5 *1 (-909 *5 *6 *7 *8 *3)))) (-4312 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-862 *6 *3) *8 (-865 *6) (-862 *6 *3))) (-4 *8 (-825)) (-5 *2 (-862 *6 *3)) (-5 *4 (-865 *6)) (-4 *6 (-1068)) (-4 *3 (-13 (-922 *9 *7 *8) (-596 *4))) (-4 *7 (-771)) (-4 *9 (-13 (-1020) (-825) (-859 *6))) (-5 *1 (-909 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -4312 ((-862 |#1| |#5|) |#5| (-865 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-865 |#1|) (-862 |#1| |#5|)))) (IF (|has| |#3| (-859 |#1|)) (-15 -4312 ((-862 |#1| |#5|) |#5| (-865 |#1|) (-862 |#1| |#5|))) |%noBranch|)) +((-1560 ((|#2| |#2| (-623 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -1560 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1560 (|#2| |#2| (-623 (-1 (-112) |#3|))))) (-825) (-423 |#1|) (-1181)) (T -910)) +((-1560 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-1 (-112) *5))) (-4 *5 (-1181)) (-4 *4 (-825)) (-5 *1 (-910 *4 *2 *5)) (-4 *2 (-423 *4)))) (-1560 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1181)) (-4 *4 (-825)) (-5 *1 (-910 *4 *2 *5)) (-4 *2 (-423 *4))))) +(-10 -7 (-15 -1560 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1560 (|#2| |#2| (-623 (-1 (-112) |#3|))))) +((-1560 (((-309 (-550)) (-1144) (-623 (-1 (-112) |#1|))) 18) (((-309 (-550)) (-1144) (-1 (-112) |#1|)) 15))) +(((-911 |#1|) (-10 -7 (-15 -1560 ((-309 (-550)) (-1144) (-1 (-112) |#1|))) (-15 -1560 ((-309 (-550)) (-1144) (-623 (-1 (-112) |#1|))))) (-1181)) (T -911)) +((-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-623 (-1 (-112) *5))) (-4 *5 (-1181)) (-5 *2 (-309 (-550))) (-5 *1 (-911 *5)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1181)) (-5 *2 (-309 (-550))) (-5 *1 (-911 *5))))) +(-10 -7 (-15 -1560 ((-309 (-550)) (-1144) (-1 (-112) |#1|))) (-15 -1560 ((-309 (-550)) (-1144) (-623 (-1 (-112) |#1|))))) +((-4312 (((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)) 25))) +(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -4312 ((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)))) (-1068) (-13 (-542) (-859 |#1|) (-596 (-865 |#1|))) (-965 |#2|)) (T -912)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1068)) (-4 *3 (-965 *6)) (-4 *6 (-13 (-542) (-859 *5) (-596 *4))) (-5 *4 (-865 *5)) (-5 *1 (-912 *5 *6 *3))))) +(-10 -7 (-15 -4312 ((-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)))) +((-4312 (((-862 |#1| (-1144)) (-1144) (-865 |#1|) (-862 |#1| (-1144))) 17))) +(((-913 |#1|) (-10 -7 (-15 -4312 ((-862 |#1| (-1144)) (-1144) (-865 |#1|) (-862 |#1| (-1144))))) (-1068)) (T -913)) +((-4312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 (-1144))) (-5 *3 (-1144)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) (-5 *1 (-913 *5))))) +(-10 -7 (-15 -4312 ((-862 |#1| (-1144)) (-1144) (-865 |#1|) (-862 |#1| (-1144))))) +((-1348 (((-862 |#1| |#3|) (-623 |#3|) (-623 (-865 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|))) 33)) (-4312 (((-862 |#1| |#3|) (-623 |#3|) (-623 (-865 |#1|)) (-1 |#3| (-623 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|))) 32))) +(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -4312 ((-862 |#1| |#3|) (-623 |#3|) (-623 (-865 |#1|)) (-1 |#3| (-623 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)))) (-15 -1348 ((-862 |#1| |#3|) (-623 |#3|) (-623 (-865 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|))))) (-1068) (-13 (-1020) (-825)) (-13 (-1020) (-596 (-865 |#1|)) (-1011 |#2|))) (T -914)) +((-1348 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-865 *6))) (-5 *5 (-1 (-862 *6 *8) *8 (-865 *6) (-862 *6 *8))) (-4 *6 (-1068)) (-4 *8 (-13 (-1020) (-596 (-865 *6)) (-1011 *7))) (-5 *2 (-862 *6 *8)) (-4 *7 (-13 (-1020) (-825))) (-5 *1 (-914 *6 *7 *8)))) (-4312 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-623 (-865 *7))) (-5 *5 (-1 *9 (-623 *9))) (-5 *6 (-1 (-862 *7 *9) *9 (-865 *7) (-862 *7 *9))) (-4 *7 (-1068)) (-4 *9 (-13 (-1020) (-596 (-865 *7)) (-1011 *8))) (-5 *2 (-862 *7 *9)) (-5 *3 (-623 *9)) (-4 *8 (-13 (-1020) (-825))) (-5 *1 (-914 *7 *8 *9))))) +(-10 -7 (-15 -4312 ((-862 |#1| |#3|) (-623 |#3|) (-623 (-865 |#1|)) (-1 |#3| (-623 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|)))) (-15 -1348 ((-862 |#1| |#3|) (-623 |#3|) (-623 (-865 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-865 |#1|) (-862 |#1| |#3|))))) +((-3768 (((-1140 (-400 (-550))) (-550)) 63)) (-3666 (((-1140 (-550)) (-550)) 66)) (-1426 (((-1140 (-550)) (-550)) 60)) (-3559 (((-550) (-1140 (-550))) 55)) (-3474 (((-1140 (-400 (-550))) (-550)) 49)) (-3362 (((-1140 (-550)) (-550)) 38)) (-1432 (((-1140 (-550)) (-550)) 68)) (-3407 (((-1140 (-550)) (-550)) 67)) (-3303 (((-1140 (-400 (-550))) (-550)) 51))) +(((-915) (-10 -7 (-15 -3303 ((-1140 (-400 (-550))) (-550))) (-15 -3407 ((-1140 (-550)) (-550))) (-15 -1432 ((-1140 (-550)) (-550))) (-15 -3362 ((-1140 (-550)) (-550))) (-15 -3474 ((-1140 (-400 (-550))) (-550))) (-15 -3559 ((-550) (-1140 (-550)))) (-15 -1426 ((-1140 (-550)) (-550))) (-15 -3666 ((-1140 (-550)) (-550))) (-15 -3768 ((-1140 (-400 (-550))) (-550))))) (T -915)) +((-3768 (*1 *2 *3) (-12 (-5 *2 (-1140 (-400 (-550)))) (-5 *1 (-915)) (-5 *3 (-550)))) (-3666 (*1 *2 *3) (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550)))) (-1426 (*1 *2 *3) (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1140 (-550))) (-5 *2 (-550)) (-5 *1 (-915)))) (-3474 (*1 *2 *3) (-12 (-5 *2 (-1140 (-400 (-550)))) (-5 *1 (-915)) (-5 *3 (-550)))) (-3362 (*1 *2 *3) (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550)))) (-1432 (*1 *2 *3) (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550)))) (-3407 (*1 *2 *3) (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550)))) (-3303 (*1 *2 *3) (-12 (-5 *2 (-1140 (-400 (-550)))) (-5 *1 (-915)) (-5 *3 (-550))))) +(-10 -7 (-15 -3303 ((-1140 (-400 (-550))) (-550))) (-15 -3407 ((-1140 (-550)) (-550))) (-15 -1432 ((-1140 (-550)) (-550))) (-15 -3362 ((-1140 (-550)) (-550))) (-15 -3474 ((-1140 (-400 (-550))) (-550))) (-15 -3559 ((-550) (-1140 (-550)))) (-15 -1426 ((-1140 (-550)) (-550))) (-15 -3666 ((-1140 (-550)) (-550))) (-15 -3768 ((-1140 (-400 (-550))) (-550)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2584 (($ (-749)) NIL (|has| |#1| (-23)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) |#1|) 11 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-2302 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068)))) (-2644 (($ (-623 |#1|)) 13)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2012 (((-667 |#1|) $ $) NIL (|has| |#1| (-1020)))) (-2578 (($ (-749) |#1|) 8)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) 10 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3182 ((|#1| $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1020))))) (-1573 (((-112) $ (-749)) NIL)) (-3772 ((|#1| $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1020))))) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) NIL (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-2272 (($ $ (-623 |#1|)) 26)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 20) (($ $ (-1194 (-550))) NIL)) (-3440 ((|#1| $ $) NIL (|has| |#1| (-1020)))) (-2854 (((-894) $) 16)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3305 (($ $ $) 24)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526)))) (($ (-623 |#1|)) 17)) (-1532 (($ (-623 |#1|)) NIL)) (-3227 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2403 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2391 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-3191 (((-749) $) 14 (|has| $ (-6 -4342))))) +(((-916 |#1|) (-953 |#1|) (-1020)) (T -916)) +NIL +(-953 |#1|) +((-2889 (((-473 |#1| |#2|) (-925 |#2|)) 20)) (-1356 (((-241 |#1| |#2|) (-925 |#2|)) 33)) (-2146 (((-925 |#2|) (-473 |#1| |#2|)) 25)) (-2769 (((-241 |#1| |#2|) (-473 |#1| |#2|)) 55)) (-4284 (((-925 |#2|) (-241 |#1| |#2|)) 30)) (-3867 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 46))) +(((-917 |#1| |#2|) (-10 -7 (-15 -3867 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -2769 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -2889 ((-473 |#1| |#2|) (-925 |#2|))) (-15 -2146 ((-925 |#2|) (-473 |#1| |#2|))) (-15 -4284 ((-925 |#2|) (-241 |#1| |#2|))) (-15 -1356 ((-241 |#1| |#2|) (-925 |#2|)))) (-623 (-1144)) (-1020)) (T -917)) +((-1356 (*1 *2 *3) (-12 (-5 *3 (-925 *5)) (-4 *5 (-1020)) (-5 *2 (-241 *4 *5)) (-5 *1 (-917 *4 *5)) (-14 *4 (-623 (-1144))))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-1020)) (-5 *2 (-925 *5)) (-5 *1 (-917 *4 *5)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-1020)) (-5 *2 (-925 *5)) (-5 *1 (-917 *4 *5)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-925 *5)) (-4 *5 (-1020)) (-5 *2 (-473 *4 *5)) (-5 *1 (-917 *4 *5)) (-14 *4 (-623 (-1144))))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-1020)) (-5 *2 (-241 *4 *5)) (-5 *1 (-917 *4 *5)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-1020)) (-5 *2 (-473 *4 *5)) (-5 *1 (-917 *4 *5))))) +(-10 -7 (-15 -3867 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -2769 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -2889 ((-473 |#1| |#2|) (-925 |#2|))) (-15 -2146 ((-925 |#2|) (-473 |#1| |#2|))) (-15 -4284 ((-925 |#2|) (-241 |#1| |#2|))) (-15 -1356 ((-241 |#1| |#2|) (-925 |#2|)))) +((-3409 (((-623 |#2|) |#2| |#2|) 10)) (-1354 (((-749) (-623 |#1|)) 37 (|has| |#1| (-823)))) (-3538 (((-623 |#2|) |#2|) 11)) (-1369 (((-749) (-623 |#1|) (-550) (-550)) 39 (|has| |#1| (-823)))) (-2749 ((|#1| |#2|) 32 (|has| |#1| (-823))))) +(((-918 |#1| |#2|) (-10 -7 (-15 -3409 ((-623 |#2|) |#2| |#2|)) (-15 -3538 ((-623 |#2|) |#2|)) (IF (|has| |#1| (-823)) (PROGN (-15 -2749 (|#1| |#2|)) (-15 -1354 ((-749) (-623 |#1|))) (-15 -1369 ((-749) (-623 |#1|) (-550) (-550)))) |%noBranch|)) (-356) (-1203 |#1|)) (T -918)) +((-1369 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-550)) (-4 *5 (-823)) (-4 *5 (-356)) (-5 *2 (-749)) (-5 *1 (-918 *5 *6)) (-4 *6 (-1203 *5)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-823)) (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-918 *4 *5)) (-4 *5 (-1203 *4)))) (-2749 (*1 *2 *3) (-12 (-4 *2 (-356)) (-4 *2 (-823)) (-5 *1 (-918 *2 *3)) (-4 *3 (-1203 *2)))) (-3538 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-918 *4 *3)) (-4 *3 (-1203 *4)))) (-3409 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-918 *4 *3)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -3409 ((-623 |#2|) |#2| |#2|)) (-15 -3538 ((-623 |#2|) |#2|)) (IF (|has| |#1| (-823)) (PROGN (-15 -2749 (|#1| |#2|)) (-15 -1354 ((-749) (-623 |#1|))) (-15 -1369 ((-749) (-623 |#1|) (-550) (-550)))) |%noBranch|)) +((-3972 (((-925 |#2|) (-1 |#2| |#1|) (-925 |#1|)) 19))) +(((-919 |#1| |#2|) (-10 -7 (-15 -3972 ((-925 |#2|) (-1 |#2| |#1|) (-925 |#1|)))) (-1020) (-1020)) (T -919)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-925 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-925 *6)) (-5 *1 (-919 *5 *6))))) +(-10 -7 (-15 -3972 ((-925 |#2|) (-1 |#2| |#1|) (-925 |#1|)))) +((-3306 (((-1200 |#1| (-925 |#2|)) (-925 |#2|) (-1223 |#1|)) 18))) +(((-920 |#1| |#2|) (-10 -7 (-15 -3306 ((-1200 |#1| (-925 |#2|)) (-925 |#2|) (-1223 |#1|)))) (-1144) (-1020)) (T -920)) +((-3306 (*1 *2 *3 *4) (-12 (-5 *4 (-1223 *5)) (-14 *5 (-1144)) (-4 *6 (-1020)) (-5 *2 (-1200 *5 (-925 *6))) (-5 *1 (-920 *5 *6)) (-5 *3 (-925 *6))))) +(-10 -7 (-15 -3306 ((-1200 |#1| (-925 |#2|)) (-925 |#2|) (-1223 |#1|)))) +((-1520 (((-749) $) 71) (((-749) $ (-623 |#4|)) 74)) (-1505 (($ $) 173)) (-3564 (((-411 $) $) 165)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 116)) (-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2726 ((|#2| $) NIL) (((-400 (-550)) $) NIL) (((-550) $) NIL) ((|#4| $) 59)) (-3340 (($ $ $ |#4|) 76)) (-3780 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) 106) (((-667 |#2|) (-667 $)) 99)) (-2674 (($ $) 180) (($ $ |#4|) 183)) (-3287 (((-623 $) $) 63)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 199) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 192)) (-1822 (((-623 $) $) 28)) (-3118 (($ |#2| |#3|) NIL) (($ $ |#4| (-749)) NIL) (($ $ (-623 |#4|) (-623 (-749))) 57)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ |#4|) 162)) (-1598 (((-3 (-623 $) "failed") $) 42)) (-1444 (((-3 (-623 $) "failed") $) 31)) (-1748 (((-3 (-2 (|:| |var| |#4|) (|:| -3521 (-749))) "failed") $) 47)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 109)) (-3430 (((-411 (-1140 $)) (-1140 $)) 122)) (-3562 (((-411 (-1140 $)) (-1140 $)) 120)) (-3338 (((-411 $) $) 140)) (-3866 (($ $ (-623 (-287 $))) 21) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-623 |#4|) (-623 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-623 |#4|) (-623 $)) NIL)) (-3453 (($ $ |#4|) 78)) (-4028 (((-865 (-372)) $) 213) (((-865 (-550)) $) 206) (((-526) $) 221)) (-2503 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 154)) (-2510 ((|#2| $ |#3|) NIL) (($ $ |#4| (-749)) 52) (($ $ (-623 |#4|) (-623 (-749))) 55)) (-4242 (((-3 $ "failed") $) 156)) (-2335 (((-112) $ $) 186))) +(((-921 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|))) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2335 ((-112) |#1| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|))) (-15 -4312 ((-862 (-372) |#1|) |#1| (-865 (-372)) (-862 (-372) |#1|))) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3562 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3430 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3297 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|))) (-15 -3172 ((-3 (-1227 |#1|) "failed") (-667 |#1|))) (-15 -2674 (|#1| |#1| |#4|)) (-15 -2503 (|#1| |#1| |#4|)) (-15 -3453 (|#1| |#1| |#4|)) (-15 -3340 (|#1| |#1| |#1| |#4|)) (-15 -3287 ((-623 |#1|) |#1|)) (-15 -1520 ((-749) |#1| (-623 |#4|))) (-15 -1520 ((-749) |#1|)) (-15 -1748 ((-3 (-2 (|:| |var| |#4|) (|:| -3521 (-749))) "failed") |#1|)) (-15 -1598 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1444 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3118 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -3118 (|#1| |#1| |#4| (-749))) (-15 -2843 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1| |#4|)) (-15 -1822 ((-623 |#1|) |#1|)) (-15 -2510 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -2510 (|#1| |#1| |#4| (-749))) (-15 -3780 ((-667 |#2|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -2726 (|#4| |#1|)) (-15 -3880 ((-3 |#4| "failed") |#1|)) (-15 -3866 (|#1| |#1| (-623 |#4|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#4| |#1|)) (-15 -3866 (|#1| |#1| (-623 |#4|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#4| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3118 (|#1| |#2| |#3|)) (-15 -2510 (|#2| |#1| |#3|)) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -2503 (|#2| |#1|)) (-15 -2674 (|#1| |#1|))) (-922 |#2| |#3| |#4|) (-1020) (-771) (-825)) (T -921)) +NIL +(-10 -8 (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|))) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2335 ((-112) |#1| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|))) (-15 -4312 ((-862 (-372) |#1|) |#1| (-865 (-372)) (-862 (-372) |#1|))) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3562 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3430 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3297 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|))) (-15 -3172 ((-3 (-1227 |#1|) "failed") (-667 |#1|))) (-15 -2674 (|#1| |#1| |#4|)) (-15 -2503 (|#1| |#1| |#4|)) (-15 -3453 (|#1| |#1| |#4|)) (-15 -3340 (|#1| |#1| |#1| |#4|)) (-15 -3287 ((-623 |#1|) |#1|)) (-15 -1520 ((-749) |#1| (-623 |#4|))) (-15 -1520 ((-749) |#1|)) (-15 -1748 ((-3 (-2 (|:| |var| |#4|) (|:| -3521 (-749))) "failed") |#1|)) (-15 -1598 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1444 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3118 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -3118 (|#1| |#1| |#4| (-749))) (-15 -2843 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1| |#4|)) (-15 -1822 ((-623 |#1|) |#1|)) (-15 -2510 (|#1| |#1| (-623 |#4|) (-623 (-749)))) (-15 -2510 (|#1| |#1| |#4| (-749))) (-15 -3780 ((-667 |#2|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -2726 (|#4| |#1|)) (-15 -3880 ((-3 |#4| "failed") |#1|)) (-15 -3866 (|#1| |#1| (-623 |#4|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#4| |#1|)) (-15 -3866 (|#1| |#1| (-623 |#4|) (-623 |#2|))) (-15 -3866 (|#1| |#1| |#4| |#2|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -3118 (|#1| |#2| |#3|)) (-15 -2510 (|#2| |#1| |#3|)) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -2503 (|#2| |#1|)) (-15 -2674 (|#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 |#3|) $) 108)) (-3306 (((-1140 $) $ |#3|) 123) (((-1140 |#1|) $) 122)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-1447 (($ $) 86 (|has| |#1| (-542)))) (-4291 (((-112) $) 88 (|has| |#1| (-542)))) (-1520 (((-749) $) 110) (((-749) $ (-623 |#3|)) 109)) (-3219 (((-3 $ "failed") $ $) 19)) (-3688 (((-411 (-1140 $)) (-1140 $)) 98 (|has| |#1| (-882)))) (-1505 (($ $) 96 (|has| |#1| (-444)))) (-3564 (((-411 $) $) 95 (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 101 (|has| |#1| (-882)))) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-550)) "failed") $) 160 (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) 158 (|has| |#1| (-1011 (-550)))) (((-3 |#3| "failed") $) 134)) (-2726 ((|#1| $) 163) (((-400 (-550)) $) 159 (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) 157 (|has| |#1| (-1011 (-550)))) ((|#3| $) 133)) (-3340 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-3295 (($ $) 152)) (-3780 (((-667 (-550)) (-667 $)) 132 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 131 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-1386 (((-3 $ "failed") $) 32)) (-2674 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3287 (((-623 $) $) 107)) (-3933 (((-112) $) 94 (|has| |#1| (-882)))) (-2613 (($ $ |#1| |#2| $) 170)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 82 (-12 (|has| |#3| (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 81 (-12 (|has| |#3| (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-3102 (((-112) $) 30)) (-2603 (((-749) $) 167)) (-3129 (($ (-1140 |#1|) |#3|) 115) (($ (-1140 $) |#3|) 114)) (-1822 (((-623 $) $) 124)) (-3439 (((-112) $) 150)) (-3118 (($ |#1| |#2|) 151) (($ $ |#3| (-749)) 117) (($ $ (-623 |#3|) (-623 (-749))) 116)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ |#3|) 118)) (-1667 ((|#2| $) 168) (((-749) $ |#3|) 120) (((-623 (-749)) $ (-623 |#3|)) 119)) (-2707 (($ $ $) 77 (|has| |#1| (-825)))) (-4164 (($ $ $) 76 (|has| |#1| (-825)))) (-2688 (($ (-1 |#2| |#2|) $) 169)) (-3972 (($ (-1 |#1| |#1|) $) 149)) (-2558 (((-3 |#3| "failed") $) 121)) (-3267 (($ $) 147)) (-3277 ((|#1| $) 146)) (-3106 (($ (-623 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-1825 (((-1126) $) 9)) (-1598 (((-3 (-623 $) "failed") $) 112)) (-1444 (((-3 (-623 $) "failed") $) 113)) (-1748 (((-3 (-2 (|:| |var| |#3|) (|:| -3521 (-749))) "failed") $) 111)) (-3337 (((-1088) $) 10)) (-3248 (((-112) $) 164)) (-3256 ((|#1| $) 165)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 93 (|has| |#1| (-444)))) (-3139 (($ (-623 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) 100 (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) 99 (|has| |#1| (-882)))) (-3338 (((-411 $) $) 97 (|has| |#1| (-882)))) (-1495 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-623 $) (-623 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-623 |#3|) (-623 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-623 |#3|) (-623 $)) 136)) (-3453 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2393 (($ $ |#3|) 40) (($ $ (-623 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-623 |#3|) (-623 (-749))) 37)) (-2970 ((|#2| $) 148) (((-749) $ |#3|) 128) (((-623 (-749)) $ (-623 |#3|)) 127)) (-4028 (((-865 (-372)) $) 80 (-12 (|has| |#3| (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) 79 (-12 (|has| |#3| (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) 78 (-12 (|has| |#3| (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 102 (-1262 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-542))) (($ (-400 (-550))) 70 (-1561 (|has| |#1| (-1011 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550))))))) (-3511 (((-623 |#1|) $) 166)) (-2510 ((|#1| $ |#2|) 153) (($ $ |#3| (-749)) 126) (($ $ (-623 |#3|) (-623 (-749))) 125)) (-4242 (((-3 $ "failed") $) 71 (-1561 (-1262 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) 28)) (-2540 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-1345 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ |#3|) 36) (($ $ (-623 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-623 |#3|) (-623 (-749))) 33)) (-2363 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 73 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 75 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 72 (|has| |#1| (-825)))) (-2414 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 156 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 155 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-922 |#1| |#2| |#3|) (-138) (-1020) (-771) (-825)) (T -922)) +((-2674 (*1 *1 *1) (-12 (-4 *1 (-922 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-2970 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *4 *5 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-749)))) (-2970 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *1 (-922 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-749))))) (-2510 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-922 *4 *5 *2)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *2 (-825)))) (-2510 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 (-749))) (-4 *1 (-922 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)))) (-1822 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-922 *3 *4 *5)))) (-3306 (*1 *2 *1 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-1140 *1)) (-4 *1 (-922 *4 *5 *3)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-922 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-1140 *3)))) (-2558 (*1 *2 *1) (|partial| -12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *4 *5 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-749)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *1 (-922 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-749))))) (-2843 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-922 *4 *5 *3)))) (-3118 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-922 *4 *5 *2)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *2 (-825)))) (-3118 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 (-749))) (-4 *1 (-922 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)))) (-3129 (*1 *1 *2 *3) (-12 (-5 *2 (-1140 *4)) (-4 *4 (-1020)) (-4 *1 (-922 *4 *5 *3)) (-4 *5 (-771)) (-4 *3 (-825)))) (-3129 (*1 *1 *2 *3) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-922 *4 *5 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)))) (-1444 (*1 *2 *1) (|partial| -12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-922 *3 *4 *5)))) (-1598 (*1 *2 *1) (|partial| -12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-922 *3 *4 *5)))) (-1748 (*1 *2 *1) (|partial| -12 (-4 *1 (-922 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| |var| *5) (|:| -3521 (-749)))))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-922 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-749)))) (-1520 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *6)) (-4 *1 (-922 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-922 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *5)))) (-3287 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-922 *3 *4 *5)))) (-3340 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-170)))) (-3453 (*1 *1 *1 *2) (-12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-170)))) (-2503 (*1 *1 *1 *2) (-12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-444)))) (-2674 (*1 *1 *1 *2) (-12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-444)))) (-1505 (*1 *1 *1) (-12 (-4 *1 (-922 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3564 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-411 *1)) (-4 *1 (-922 *3 *4 *5))))) +(-13 (-873 |t#3|) (-319 |t#1| |t#2|) (-302 $) (-505 |t#3| |t#1|) (-505 |t#3| $) (-1011 |t#3|) (-370 |t#1|) (-10 -8 (-15 -2970 ((-749) $ |t#3|)) (-15 -2970 ((-623 (-749)) $ (-623 |t#3|))) (-15 -2510 ($ $ |t#3| (-749))) (-15 -2510 ($ $ (-623 |t#3|) (-623 (-749)))) (-15 -1822 ((-623 $) $)) (-15 -3306 ((-1140 $) $ |t#3|)) (-15 -3306 ((-1140 |t#1|) $)) (-15 -2558 ((-3 |t#3| "failed") $)) (-15 -1667 ((-749) $ |t#3|)) (-15 -1667 ((-623 (-749)) $ (-623 |t#3|))) (-15 -2843 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $ |t#3|)) (-15 -3118 ($ $ |t#3| (-749))) (-15 -3118 ($ $ (-623 |t#3|) (-623 (-749)))) (-15 -3129 ($ (-1140 |t#1|) |t#3|)) (-15 -3129 ($ (-1140 $) |t#3|)) (-15 -1444 ((-3 (-623 $) "failed") $)) (-15 -1598 ((-3 (-623 $) "failed") $)) (-15 -1748 ((-3 (-2 (|:| |var| |t#3|) (|:| -3521 (-749))) "failed") $)) (-15 -1520 ((-749) $)) (-15 -1520 ((-749) $ (-623 |t#3|))) (-15 -3141 ((-623 |t#3|) $)) (-15 -3287 ((-623 $) $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (IF (|has| |t#3| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-596 (-865 (-550)))) (IF (|has| |t#3| (-596 (-865 (-550)))) (-6 (-596 (-865 (-550)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-596 (-865 (-372)))) (IF (|has| |t#3| (-596 (-865 (-372)))) (-6 (-596 (-865 (-372)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-859 (-550))) (IF (|has| |t#3| (-859 (-550))) (-6 (-859 (-550))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-859 (-372))) (IF (|has| |t#3| (-859 (-372))) (-6 (-859 (-372))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3340 ($ $ $ |t#3|)) (-15 -3453 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-6 (-444)) (-15 -2503 ($ $ |t#3|)) (-15 -2674 ($ $)) (-15 -2674 ($ $ |t#3|)) (-15 -3564 ((-411 $) $)) (-15 -1505 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4340)) (-6 -4340) |%noBranch|) (IF (|has| |t#1| (-882)) (-6 (-882)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526)))) ((-596 (-865 (-372))) -12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#3| (-596 (-865 (-372))))) ((-596 (-865 (-550))) -12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#3| (-596 (-865 (-550))))) ((-283) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1561 (|has| |#1| (-882)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-873 |#3|) . T) ((-859 (-372)) -12 (|has| |#1| (-859 (-372))) (|has| |#3| (-859 (-372)))) ((-859 (-550)) -12 (|has| |#1| (-859 (-550))) (|has| |#3| (-859 (-550)))) ((-882) |has| |#1| (-882)) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1011 |#3|) . T) ((-1026 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) |has| |#1| (-882))) +((-3141 (((-623 |#2|) |#5|) 36)) (-3306 (((-1140 |#5|) |#5| |#2| (-1140 |#5|)) 23) (((-400 (-1140 |#5|)) |#5| |#2|) 16)) (-3129 ((|#5| (-400 (-1140 |#5|)) |#2|) 30)) (-2558 (((-3 |#2| "failed") |#5|) 65)) (-1598 (((-3 (-623 |#5|) "failed") |#5|) 59)) (-1896 (((-3 (-2 (|:| |val| |#5|) (|:| -3521 (-550))) "failed") |#5|) 47)) (-1444 (((-3 (-623 |#5|) "failed") |#5|) 61)) (-1748 (((-3 (-2 (|:| |var| |#2|) (|:| -3521 (-550))) "failed") |#5|) 51))) +(((-923 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3141 ((-623 |#2|) |#5|)) (-15 -2558 ((-3 |#2| "failed") |#5|)) (-15 -3306 ((-400 (-1140 |#5|)) |#5| |#2|)) (-15 -3129 (|#5| (-400 (-1140 |#5|)) |#2|)) (-15 -3306 ((-1140 |#5|) |#5| |#2| (-1140 |#5|))) (-15 -1444 ((-3 (-623 |#5|) "failed") |#5|)) (-15 -1598 ((-3 (-623 |#5|) "failed") |#5|)) (-15 -1748 ((-3 (-2 (|:| |var| |#2|) (|:| -3521 (-550))) "failed") |#5|)) (-15 -1896 ((-3 (-2 (|:| |val| |#5|) (|:| -3521 (-550))) "failed") |#5|))) (-771) (-825) (-1020) (-922 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -1518 ($ |#4|)) (-15 -2705 (|#4| $)) (-15 -2715 (|#4| $))))) (T -923)) +((-1896 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3521 (-550)))) (-5 *1 (-923 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))))) (-1748 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3521 (-550)))) (-5 *1 (-923 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))))) (-1598 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-623 *3)) (-5 *1 (-923 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))))) (-1444 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-623 *3)) (-5 *1 (-923 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))))) (-3306 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1140 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))) (-4 *7 (-922 *6 *5 *4)) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1020)) (-5 *1 (-923 *5 *4 *6 *7 *3)))) (-3129 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1140 *2))) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1020)) (-4 *2 (-13 (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))) (-5 *1 (-923 *5 *4 *6 *7 *2)) (-4 *7 (-922 *6 *5 *4)))) (-3306 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1020)) (-4 *7 (-922 *6 *5 *4)) (-5 *2 (-400 (-1140 *3))) (-5 *1 (-923 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))))) (-2558 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-1020)) (-4 *6 (-922 *5 *4 *2)) (-4 *2 (-825)) (-5 *1 (-923 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1518 ($ *6)) (-15 -2705 (*6 $)) (-15 -2715 (*6 $))))))) (-3141 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-623 *5)) (-5 *1 (-923 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $)))))))) +(-10 -7 (-15 -3141 ((-623 |#2|) |#5|)) (-15 -2558 ((-3 |#2| "failed") |#5|)) (-15 -3306 ((-400 (-1140 |#5|)) |#5| |#2|)) (-15 -3129 (|#5| (-400 (-1140 |#5|)) |#2|)) (-15 -3306 ((-1140 |#5|) |#5| |#2| (-1140 |#5|))) (-15 -1444 ((-3 (-623 |#5|) "failed") |#5|)) (-15 -1598 ((-3 (-623 |#5|) "failed") |#5|)) (-15 -1748 ((-3 (-2 (|:| |var| |#2|) (|:| -3521 (-550))) "failed") |#5|)) (-15 -1896 ((-3 (-2 (|:| |val| |#5|) (|:| -3521 (-550))) "failed") |#5|))) +((-3972 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3972 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-771) (-825) (-1020) (-922 |#3| |#1| |#2|) (-13 (-1068) (-10 -8 (-15 -2391 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) (T -924)) +((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-825)) (-4 *8 (-1020)) (-4 *6 (-771)) (-4 *2 (-13 (-1068) (-10 -8 (-15 -2391 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) (-5 *1 (-924 *6 *7 *8 *5 *2)) (-4 *5 (-922 *8 *6 *7))))) +(-10 -7 (-15 -3972 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-1144)) $) 16)) (-3306 (((-1140 $) $ (-1144)) 21) (((-1140 |#1|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-1144))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) 8) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-1144) "failed") $) NIL)) (-2726 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-1144) $) NIL)) (-3340 (($ $ $ (-1144)) NIL (|has| |#1| (-170)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1144)) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-2613 (($ $ |#1| (-522 (-1144)) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-1144) (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-1144) (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3129 (($ (-1140 |#1|) (-1144)) NIL) (($ (-1140 $) (-1144)) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-522 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-1144)) NIL)) (-1667 (((-522 (-1144)) $) NIL) (((-749) $ (-1144)) NIL) (((-623 (-749)) $ (-623 (-1144))) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-522 (-1144)) (-522 (-1144))) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2558 (((-3 (-1144) "failed") $) 19)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1825 (((-1126) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-1144)) (|:| -3521 (-749))) "failed") $) NIL)) (-1489 (($ $ (-1144)) 29 (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-882)))) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1144) |#1|) NIL) (($ $ (-623 (-1144)) (-623 |#1|)) NIL) (($ $ (-1144) $) NIL) (($ $ (-623 (-1144)) (-623 $)) NIL)) (-3453 (($ $ (-1144)) NIL (|has| |#1| (-170)))) (-2393 (($ $ (-1144)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL)) (-2970 (((-522 (-1144)) $) NIL) (((-749) $ (-1144)) NIL) (((-623 (-749)) $ (-623 (-1144))) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-1144) (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-1144) (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-1144) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1144)) NIL (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) 25) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1144)) 27) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-522 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-1144)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-925 |#1|) (-13 (-922 |#1| (-522 (-1144)) (-1144)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1144))) |%noBranch|))) (-1020)) (T -925)) +((-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-925 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020))))) +(-13 (-922 |#1| (-522 (-1144)) (-1144)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1144))) |%noBranch|))) +((-3788 (((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) |#3| (-749)) 38)) (-3907 (((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) (-400 (-550)) (-749)) 34)) (-4153 (((-2 (|:| -3521 (-749)) (|:| -2855 |#4|) (|:| |radicand| (-623 |#4|))) |#4| (-749)) 54)) (-4037 (((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) |#5| (-749)) 64 (|has| |#3| (-444))))) +(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3788 ((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) |#3| (-749))) (-15 -3907 ((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) (-400 (-550)) (-749))) (IF (|has| |#3| (-444)) (-15 -4037 ((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) |#5| (-749))) |%noBranch|) (-15 -4153 ((-2 (|:| -3521 (-749)) (|:| -2855 |#4|) (|:| |radicand| (-623 |#4|))) |#4| (-749)))) (-771) (-825) (-542) (-922 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -2705 (|#4| $)) (-15 -2715 (|#4| $)) (-15 -1518 ($ |#4|))))) (T -926)) +((-4153 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) (-4 *3 (-922 *7 *5 *6)) (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *3) (|:| |radicand| (-623 *3)))) (-5 *1 (-926 *5 *6 *7 *3 *8)) (-5 *4 (-749)) (-4 *8 (-13 (-356) (-10 -8 (-15 -2705 (*3 $)) (-15 -2715 (*3 $)) (-15 -1518 ($ *3))))))) (-4037 (*1 *2 *3 *4) (-12 (-4 *7 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) (-4 *8 (-922 *7 *5 *6)) (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *3) (|:| |radicand| *3))) (-5 *1 (-926 *5 *6 *7 *8 *3)) (-5 *4 (-749)) (-4 *3 (-13 (-356) (-10 -8 (-15 -2705 (*8 $)) (-15 -2715 (*8 $)) (-15 -1518 ($ *8))))))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-550))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) (-4 *8 (-922 *7 *5 *6)) (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *9) (|:| |radicand| *9))) (-5 *1 (-926 *5 *6 *7 *8 *9)) (-5 *4 (-749)) (-4 *9 (-13 (-356) (-10 -8 (-15 -2705 (*8 $)) (-15 -2715 (*8 $)) (-15 -1518 ($ *8))))))) (-3788 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-542)) (-4 *7 (-922 *3 *5 *6)) (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *8) (|:| |radicand| *8))) (-5 *1 (-926 *5 *6 *3 *7 *8)) (-5 *4 (-749)) (-4 *8 (-13 (-356) (-10 -8 (-15 -2705 (*7 $)) (-15 -2715 (*7 $)) (-15 -1518 ($ *7)))))))) +(-10 -7 (-15 -3788 ((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) |#3| (-749))) (-15 -3907 ((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) (-400 (-550)) (-749))) (IF (|has| |#3| (-444)) (-15 -4037 ((-2 (|:| -3521 (-749)) (|:| -2855 |#5|) (|:| |radicand| |#5|)) |#5| (-749))) |%noBranch|) (-15 -4153 ((-2 (|:| -3521 (-749)) (|:| -2855 |#4|) (|:| |radicand| (-623 |#4|))) |#4| (-749)))) +((-1504 (((-112) $ $) NIL)) (-4317 (($ (-1088)) 8)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 14) (((-1088) $) 11)) (-2316 (((-112) $ $) 10))) +(((-927) (-13 (-1068) (-595 (-1088)) (-10 -8 (-15 -4317 ($ (-1088)))))) (T -927)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-927))))) +(-13 (-1068) (-595 (-1088)) (-10 -8 (-15 -4317 ($ (-1088))))) +((-3213 (((-1062 (-219)) $) 8)) (-3202 (((-1062 (-219)) $) 9)) (-3576 (((-623 (-623 (-916 (-219)))) $) 10)) (-1518 (((-836) $) 6))) +(((-928) (-138)) (T -928)) +((-3576 (*1 *2 *1) (-12 (-4 *1 (-928)) (-5 *2 (-623 (-623 (-916 (-219))))))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-928)) (-5 *2 (-1062 (-219))))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-928)) (-5 *2 (-1062 (-219)))))) +(-13 (-595 (-836)) (-10 -8 (-15 -3576 ((-623 (-623 (-916 (-219)))) $)) (-15 -3202 ((-1062 (-219)) $)) (-15 -3213 ((-1062 (-219)) $)))) +(((-595 (-836)) . T)) +((-3215 (((-3 (-667 |#1|) "failed") |#2| (-894)) 15))) +(((-929 |#1| |#2|) (-10 -7 (-15 -3215 ((-3 (-667 |#1|) "failed") |#2| (-894)))) (-542) (-634 |#1|)) (T -929)) +((-3215 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-894)) (-4 *5 (-542)) (-5 *2 (-667 *5)) (-5 *1 (-929 *5 *3)) (-4 *3 (-634 *5))))) +(-10 -7 (-15 -3215 ((-3 (-667 |#1|) "failed") |#2| (-894)))) +((-3572 (((-931 |#2|) (-1 |#2| |#1| |#2|) (-931 |#1|) |#2|) 16)) (-2419 ((|#2| (-1 |#2| |#1| |#2|) (-931 |#1|) |#2|) 18)) (-3972 (((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)) 13))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3572 ((-931 |#2|) (-1 |#2| |#1| |#2|) (-931 |#1|) |#2|)) (-15 -2419 (|#2| (-1 |#2| |#1| |#2|) (-931 |#1|) |#2|)) (-15 -3972 ((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)))) (-1181) (-1181)) (T -930)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-931 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-931 *6)) (-5 *1 (-930 *5 *6)))) (-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-931 *5)) (-4 *5 (-1181)) (-4 *2 (-1181)) (-5 *1 (-930 *5 *2)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-931 *6)) (-4 *6 (-1181)) (-4 *5 (-1181)) (-5 *2 (-931 *5)) (-5 *1 (-930 *6 *5))))) +(-10 -7 (-15 -3572 ((-931 |#2|) (-1 |#2| |#1| |#2|) (-931 |#1|) |#2|)) (-15 -2419 (|#2| (-1 |#2| |#1| |#2|) (-931 |#1|) |#2|)) (-15 -3972 ((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) |#1|) 16 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) 15 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 13)) (-2302 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068)))) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-2578 (($ (-749) |#1|) 12)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) 10 (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) NIL (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) 17 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) 11)) (-2680 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 14) (($ $ (-1194 (-550))) NIL)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) NIL)) (-3227 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3191 (((-749) $) 8 (|has| $ (-6 -4342))))) +(((-931 |#1|) (-19 |#1|) (-1181)) (T -931)) NIL (-19 |#1|) -((-4184 (((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|) 16)) (-4185 ((|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|) 18)) (-4301 (((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)) 13))) -(((-930 |#1| |#2|) (-10 -7 (-15 -4184 ((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -4301 ((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)))) (-1178) (-1178)) (T -930)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-929 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-929 *6)) (-5 *1 (-930 *5 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-929 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-930 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-929 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-5 *2 (-929 *5)) (-5 *1 (-930 *6 *5))))) -(-10 -7 (-15 -4184 ((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -4301 ((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)))) -((-3153 (($ $ (-1058 $)) 7) (($ $ (-1142)) 6))) -(((-931) (-138)) (T -931)) -((-3153 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-931)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-1142))))) -(-13 (-10 -8 (-15 -3153 ($ $ (-1142))) (-15 -3153 ($ $ (-1058 $))))) -((-3154 (((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)) (-1142)) 25) (((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142))) 26) (((-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 |#1|))) (-917 |#1|) (-1142) (-917 |#1|) (-1142)) 43))) -(((-932 |#1|) (-10 -7 (-15 -3154 ((-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 |#1|))) (-917 |#1|) (-1142) (-917 |#1|) (-1142))) (-15 -3154 ((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3154 ((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)) (-1142)))) (-13 (-356) (-145))) (T -932)) -((-3154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-5 *5 (-1142)) (-4 *6 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 *6))) (|:| |prim| (-1136 *6)))) (-5 *1 (-932 *6)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 *5))) (|:| |prim| (-1136 *5)))) (-5 *1 (-932 *5)))) (-3154 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-917 *5)) (-5 *4 (-1142)) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 *5)))) (-5 *1 (-932 *5))))) -(-10 -7 (-15 -3154 ((-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 |#1|))) (-917 |#1|) (-1142) (-917 |#1|) (-1142))) (-15 -3154 ((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3154 ((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)) (-1142)))) -((-3157 (((-618 |#1|) |#1| |#1|) 42)) (-4069 (((-112) |#1|) 39)) (-3156 ((|#1| |#1|) 65)) (-3155 ((|#1| |#1|) 64))) -(((-933 |#1|) (-10 -7 (-15 -4069 ((-112) |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 ((-618 |#1|) |#1| |#1|))) (-534)) (T -933)) -((-3157 (*1 *2 *3 *3) (-12 (-5 *2 (-618 *3)) (-5 *1 (-933 *3)) (-4 *3 (-534)))) (-3156 (*1 *2 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-534)))) (-3155 (*1 *2 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-534)))) (-4069 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-534))))) -(-10 -7 (-15 -4069 ((-112) |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 ((-618 |#1|) |#1| |#1|))) -((-3158 (((-1230) (-835)) 9))) -(((-934) (-10 -7 (-15 -3158 ((-1230) (-835))))) (T -934)) -((-3158 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-934))))) -(-10 -7 (-15 -3158 ((-1230) (-835)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (-2724 (($ $ $) 63 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (-1363 (((-3 $ "failed") $ $) 50 (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (-3454 (((-747)) 34 (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3159 ((|#2| $) 21)) (-3160 ((|#1| $) 20)) (-3879 (($) NIL (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) CONST)) (-3804 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (-3315 (($) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2493 (((-112) $) NIL (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (-3660 (($ $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3661 (($ $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3161 (($ |#1| |#2|) 19)) (-2121 (((-890) $) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 37 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2483 (($ (-890)) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3577 (((-1086) $) NIL)) (-3330 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2677 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-4300 (((-835) $) 14)) (-2979 (($) 40 (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) CONST)) (-2985 (($) 24 (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))) CONST)) (-2885 (((-112) $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2886 (((-112) $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3375 (((-112) $ $) 18)) (-3005 (((-112) $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3006 (((-112) $ $) 66 (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-4291 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-4180 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4182 (($ $ $) 43 (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (** (($ $ (-535)) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465)))) (($ $ (-747)) 31 (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))) (($ $ (-890)) NIL (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (* (($ (-535) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-747) $) 46 (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (($ (-890) $) NIL (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (($ $ $) 27 (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))))) -(((-935 |#1| |#2|) (-13 (-1067) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-703)) (IF (|has| |#2| (-703)) (-6 (-703)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-769)) (IF (|has| |#2| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-823)) (IF (|has| |#2| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (-15 -3161 ($ |#1| |#2|)) (-15 -3160 (|#1| $)) (-15 -3159 (|#2| $)))) (-1067) (-1067)) (T -935)) -((-3161 (*1 *1 *2 *3) (-12 (-5 *1 (-935 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3160 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1067)))) (-3159 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *3 *2)) (-4 *3 (-1067))))) -(-13 (-1067) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-703)) (IF (|has| |#2| (-703)) (-6 (-703)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-769)) (IF (|has| |#2| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-823)) (IF (|has| |#2| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (-15 -3161 ($ |#1| |#2|)) (-15 -3160 (|#1| $)) (-15 -3159 (|#2| $)))) -((-3744 (((-1069) $) 12)) (-3162 (($ (-1142) (-1069)) 13)) (-3888 (((-1142) $) 10)) (-4300 (((-835) $) 22))) -(((-936) (-13 (-593 (-835)) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -3744 ((-1069) $)) (-15 -3162 ($ (-1142) (-1069)))))) (T -936)) -((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-936)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-936)))) (-3162 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1069)) (-5 *1 (-936))))) -(-13 (-593 (-835)) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -3744 ((-1069) $)) (-15 -3162 ($ (-1142) (-1069))))) -((-2887 (((-112) $ $) NIL)) (-3405 (((-1063 (-1142)) $) 19)) (-3173 (((-112) $) 26)) (-4174 (((-1142) $) 27)) (-3175 (((-112) $) 24)) (-3174 ((|#1| $) 25)) (-3167 (((-844 $ $) $) 34)) (-3168 (((-112) $) 33)) (-3178 (($ $ $) 12)) (-3171 (($ $) 29)) (-3172 (((-112) $) 28)) (-3659 (($ $) 10)) (-3576 (((-1124) $) NIL)) (-3165 (((-844 $ $) $) 36)) (-3166 (((-112) $) 35)) (-3177 (($ $ $) 13)) (-3577 (((-1086) $) NIL)) (-3163 (((-844 $ $) $) 38)) (-3164 (((-112) $) 37)) (-3176 (($ $ $) 14)) (-4300 (((-835) $) 40) (($ |#1|) 7) (($ (-1142)) 9)) (-3169 (((-844 $ $) $) 32)) (-3170 (((-112) $) 30)) (-3179 (($ $ $) 11)) (-3375 (((-112) $ $) NIL))) -(((-937 |#1|) (-13 (-938) (-10 -8 (-15 -4300 ($ |#1|)) (-15 -4300 ($ (-1142))) (-15 -3405 ((-1063 (-1142)) $)) (-15 -3175 ((-112) $)) (-15 -3174 (|#1| $)) (-15 -3173 ((-112) $)) (-15 -4174 ((-1142) $)) (-15 -3172 ((-112) $)) (-15 -3171 ($ $)) (-15 -3170 ((-112) $)) (-15 -3169 ((-844 $ $) $)) (-15 -3168 ((-112) $)) (-15 -3167 ((-844 $ $) $)) (-15 -3166 ((-112) $)) (-15 -3165 ((-844 $ $) $)) (-15 -3164 ((-112) $)) (-15 -3163 ((-844 $ $) $)))) (-938)) (T -937)) -((-4300 (*1 *1 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-1063 (-1142))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3174 (*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3171 (*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(-13 (-938) (-10 -8 (-15 -4300 ($ |#1|)) (-15 -4300 ($ (-1142))) (-15 -3405 ((-1063 (-1142)) $)) (-15 -3175 ((-112) $)) (-15 -3174 (|#1| $)) (-15 -3173 ((-112) $)) (-15 -4174 ((-1142) $)) (-15 -3172 ((-112) $)) (-15 -3171 ($ $)) (-15 -3170 ((-112) $)) (-15 -3169 ((-844 $ $) $)) (-15 -3168 ((-112) $)) (-15 -3167 ((-844 $ $) $)) (-15 -3166 ((-112) $)) (-15 -3165 ((-844 $ $) $)) (-15 -3164 ((-112) $)) (-15 -3163 ((-844 $ $) $)))) -((-2887 (((-112) $ $) 7)) (-3178 (($ $ $) 15)) (-3659 (($ $) 17)) (-3576 (((-1124) $) 9)) (-3177 (($ $ $) 14)) (-3577 (((-1086) $) 10)) (-3176 (($ $ $) 13)) (-4300 (((-835) $) 11)) (-3179 (($ $ $) 16)) (-3375 (((-112) $ $) 6))) -(((-938) (-138)) (T -938)) -((-3659 (*1 *1 *1) (-4 *1 (-938))) (-3179 (*1 *1 *1 *1) (-4 *1 (-938))) (-3178 (*1 *1 *1 *1) (-4 *1 (-938))) (-3177 (*1 *1 *1 *1) (-4 *1 (-938))) (-3176 (*1 *1 *1 *1) (-4 *1 (-938)))) -(-13 (-1067) (-10 -8 (-15 -3659 ($ $)) (-15 -3179 ($ $ $)) (-15 -3178 ($ $ $)) (-15 -3177 ($ $ $)) (-15 -3176 ($ $ $)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-3180 (($ $ $) 43)) (-3855 (($ $ $) 44)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3661 ((|#1| $) 45)) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-939 |#1|) (-138) (-823)) (T -939)) -((-3661 (*1 *2 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) (-3180 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -3661 (|t#1| $)) (-15 -3855 ($ $ $)) (-15 -3180 ($ $ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-3192 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|) 85)) (-4098 ((|#2| |#2| |#2|) 83)) (-3193 (((-2 (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|) 87)) (-3194 (((-2 (|:| |coef1| |#2|) (|:| -3478 |#2|)) |#2| |#2|) 89)) (-3201 (((-2 (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|) 107 (|has| |#1| (-444)))) (-3208 (((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 46)) (-3182 (((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 64)) (-3183 (((-2 (|:| |coef1| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 66)) (-3191 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3186 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 71)) (-3196 (((-2 (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|) 97)) (-3189 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 74)) (-3198 (((-618 (-747)) |#2| |#2|) 82)) (-3206 ((|#1| |#2| |#2|) 42)) (-3200 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|) 105 (|has| |#1| (-444)))) (-3199 ((|#1| |#2| |#2|) 103 (|has| |#1| (-444)))) (-3207 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 44)) (-3181 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 63)) (-4099 ((|#1| |#2| |#2|) 61)) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|) 35)) (-3205 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3190 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3524 ((|#2| |#2| |#2|) 75)) (-3185 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 69)) (-3184 ((|#2| |#2| |#2| (-747)) 67)) (-3478 ((|#2| |#2| |#2|) 111 (|has| |#1| (-444)))) (-3803 (((-1224 |#2|) (-1224 |#2|) |#1|) 21)) (-3202 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|) 39)) (-3195 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|) 95)) (-4100 ((|#1| |#2|) 92)) (-3188 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 73)) (-3187 ((|#2| |#2| |#2| (-747)) 72)) (-3197 (((-618 |#2|) |#2| |#2|) 80)) (-3204 ((|#2| |#2| |#1| |#1| (-747)) 50)) (-3203 ((|#1| |#1| |#1| (-747)) 49)) (* (((-1224 |#2|) |#1| (-1224 |#2|)) 16))) -(((-940 |#1| |#2|) (-10 -7 (-15 -4099 (|#1| |#2| |#2|)) (-15 -3181 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3183 ((-2 (|:| |coef1| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3184 (|#2| |#2| |#2| (-747))) (-15 -3185 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3186 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3187 (|#2| |#2| |#2| (-747))) (-15 -3188 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3189 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3524 (|#2| |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4098 (|#2| |#2| |#2|)) (-15 -3192 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -3193 ((-2 (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef1| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -4100 (|#1| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|)) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|)) (-15 -3197 ((-618 |#2|) |#2| |#2|)) (-15 -3198 ((-618 (-747)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3199 (|#1| |#2| |#2|)) (-15 -3200 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|)) (-15 -3201 ((-2 (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|)) (-15 -3478 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1224 |#2|) |#1| (-1224 |#2|))) (-15 -3803 ((-1224 |#2|) (-1224 |#2|) |#1|)) (-15 -4095 ((-2 (|:| -4296 |#1|) (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|)) (-15 -3202 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|)) (-15 -3203 (|#1| |#1| |#1| (-747))) (-15 -3204 (|#2| |#2| |#1| |#1| (-747))) (-15 -3205 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3206 (|#1| |#2| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|))) (-542) (-1200 |#1|)) (T -940)) -((-3208 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))) (-3205 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3204 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3203 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *2 (-542)) (-5 *1 (-940 *2 *4)) (-4 *4 (-1200 *2)))) (-3202 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-4095 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -4296 *4) (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3803 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-542)) (-5 *1 (-940 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-542)) (-5 *1 (-940 *3 *4)))) (-3478 (*1 *2 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3201 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3199 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3200 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3199 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3199 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-4 *2 (-444)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))) (-3198 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 (-747))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3196 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4100 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4100 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-4100 (*1 *2 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3478 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3193 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3478 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3192 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3478 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-4098 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3191 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3190 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3524 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3189 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))) (-3188 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))) (-3187 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-542)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1200 *4)))) (-3186 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))) (-3185 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))) (-3184 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-542)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1200 *4)))) (-3183 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3182 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3181 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-4099 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2))))) -(-10 -7 (-15 -4099 (|#1| |#2| |#2|)) (-15 -3181 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3183 ((-2 (|:| |coef1| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3184 (|#2| |#2| |#2| (-747))) (-15 -3185 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3186 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3187 (|#2| |#2| |#2| (-747))) (-15 -3188 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3189 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3524 (|#2| |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4098 (|#2| |#2| |#2|)) (-15 -3192 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -3193 ((-2 (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef1| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -4100 (|#1| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|)) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|)) (-15 -3197 ((-618 |#2|) |#2| |#2|)) (-15 -3198 ((-618 (-747)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3199 (|#1| |#2| |#2|)) (-15 -3200 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|)) (-15 -3201 ((-2 (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|)) (-15 -3478 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1224 |#2|) |#1| (-1224 |#2|))) (-15 -3803 ((-1224 |#2|) (-1224 |#2|) |#1|)) (-15 -4095 ((-2 (|:| -4296 |#1|) (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|)) (-15 -3202 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|)) (-15 -3203 (|#1| |#1| |#1| (-747))) (-15 -3204 (|#2| |#2| |#1| |#1| (-747))) (-15 -3205 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3206 (|#1| |#2| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|))) -((-2887 (((-112) $ $) NIL)) (-3652 (((-1179) $) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 10)) (-4300 (((-835) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-941) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))) (T -941)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-941)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-941))))) -(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) 27)) (-3879 (($) NIL T CONST)) (-3210 (((-618 (-618 (-535))) (-618 (-535))) 29)) (-3209 (((-535) $) 45)) (-3211 (($ (-618 (-535))) 17)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4313 (((-618 (-535)) $) 12)) (-3330 (($ $) 32)) (-4300 (((-835) $) 43) (((-618 (-535)) $) 10)) (-2979 (($) 7 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 20)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 19)) (-4182 (($ $ $) 21)) (* (($ (-890) $) NIL) (($ (-747) $) 25))) -(((-942) (-13 (-773) (-594 (-618 (-535))) (-10 -8 (-15 -3211 ($ (-618 (-535)))) (-15 -3210 ((-618 (-618 (-535))) (-618 (-535)))) (-15 -3209 ((-535) $)) (-15 -3330 ($ $)) (-15 -4300 ((-618 (-535)) $))))) (T -942)) -((-3211 (*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-942)))) (-3210 (*1 *2 *3) (-12 (-5 *2 (-618 (-618 (-535)))) (-5 *1 (-942)) (-5 *3 (-618 (-535))))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-942)))) (-3330 (*1 *1 *1) (-5 *1 (-942))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-942))))) -(-13 (-773) (-594 (-618 (-535))) (-10 -8 (-15 -3211 ($ (-618 (-535)))) (-15 -3210 ((-618 (-618 (-535))) (-618 (-535)))) (-15 -3209 ((-535) $)) (-15 -3330 ($ $)) (-15 -4300 ((-618 (-535)) $)))) -((-4291 (($ $ |#2|) 30)) (-4180 (($ $) 22) (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-400 (-535)) $) 26) (($ $ (-400 (-535))) 28))) -(((-943 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4291 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-944 |#2| |#3| |#4|) (-1018) (-768) (-823)) (T -943)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4291 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 |#3|) $) 72)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-3213 (((-112) $) 71)) (-2493 (((-112) $) 30)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-618 |#3|) (-618 |#2|)) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-4290 ((|#2| $) 62)) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4023 ((|#1| $ |#2|) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-944 |#1| |#2| |#3|) (-138) (-1018) (-768) (-823)) (T -944)) -((-3508 (*1 *2 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *3 (-768)) (-4 *4 (-823)) (-4 *2 (-1018)))) (-3215 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *2 *4)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *2 (-768)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-944 *4 *3 *2)) (-4 *4 (-1018)) (-4 *3 (-768)) (-4 *2 (-823)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 *5)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-768)) (-4 *6 (-823)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) (-5 *2 (-618 *5)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3212 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3214 ($ $ |t#3| |t#2|)) (-15 -3214 ($ $ (-618 |t#3|) (-618 |t#2|))) (-15 -3215 ($ $)) (-15 -3508 (|t#1| $)) (-15 -4290 (|t#2| $)) (-15 -3405 ((-618 |t#3|) $)) (-15 -3213 ((-112) $)) (-15 -3212 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-3216 (((-1055 (-219)) $) 8)) (-3217 (((-1055 (-219)) $) 9)) (-3218 (((-1055 (-219)) $) 10)) (-3219 (((-618 (-618 (-914 (-219)))) $) 11)) (-4300 (((-835) $) 6))) -(((-945) (-138)) (T -945)) -((-3219 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-618 (-618 (-914 (-219))))))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219))))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219))))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219)))))) -(-13 (-593 (-835)) (-10 -8 (-15 -3219 ((-618 (-618 (-914 (-219)))) $)) (-15 -3218 ((-1055 (-219)) $)) (-15 -3217 ((-1055 (-219)) $)) (-15 -3216 ((-1055 (-219)) $)))) -(((-593 (-835)) . T)) -((-3405 (((-618 |#4|) $) 23)) (-3229 (((-112) $) 48)) (-3220 (((-112) $) 47)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#4|) 36)) (-3225 (((-112) $) 49)) (-3227 (((-112) $ $) 55)) (-3226 (((-112) $ $) 58)) (-3228 (((-112) $) 53)) (-3221 (((-618 |#5|) (-618 |#5|) $) 90)) (-3222 (((-618 |#5|) (-618 |#5|) $) 87)) (-3223 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3235 (((-618 |#4|) $) 27)) (-3234 (((-112) |#4| $) 30)) (-3224 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3231 (($ $ |#4|) 33)) (-3233 (($ $ |#4|) 32)) (-3232 (($ $ |#4|) 34)) (-3375 (((-112) $ $) 40))) -(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3220 ((-112) |#1|)) (-15 -3221 ((-618 |#5|) (-618 |#5|) |#1|)) (-15 -3222 ((-618 |#5|) (-618 |#5|) |#1|)) (-15 -3223 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3224 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3225 ((-112) |#1|)) (-15 -3226 ((-112) |#1| |#1|)) (-15 -3227 ((-112) |#1| |#1|)) (-15 -3228 ((-112) |#1|)) (-15 -3229 ((-112) |#1|)) (-15 -3230 ((-2 (|:| |under| |#1|) (|:| -3448 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3232 (|#1| |#1| |#4|)) (-15 -3233 (|#1| |#1| |#4|)) (-15 -3234 ((-112) |#4| |#1|)) (-15 -3235 ((-618 |#4|) |#1|)) (-15 -3405 ((-618 |#4|) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-947 |#2| |#3| |#4| |#5|) (-1018) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -946)) -NIL -(-10 -8 (-15 -3220 ((-112) |#1|)) (-15 -3221 ((-618 |#5|) (-618 |#5|) |#1|)) (-15 -3222 ((-618 |#5|) (-618 |#5|) |#1|)) (-15 -3223 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3224 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3225 ((-112) |#1|)) (-15 -3226 ((-112) |#1| |#1|)) (-15 -3227 ((-112) |#1| |#1|)) (-15 -3228 ((-112) |#1|)) (-15 -3229 ((-112) |#1|)) (-15 -3230 ((-2 (|:| |under| |#1|) (|:| -3448 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3232 (|#1| |#1| |#4|)) (-15 -3233 (|#1| |#1| |#4|)) (-15 -3234 ((-112) |#4| |#1|)) (-15 -3235 ((-618 |#4|) |#1|)) (-15 -3405 ((-618 |#4|) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336)))) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336)))) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-3577 (((-1086) $) 10)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336))))) -(((-947 |#1| |#2| |#3| |#4|) (-138) (-1018) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -947)) -((-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-1032 *3 *4 *2)) (-4 *2 (-823)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))) (-3234 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *3 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) (-3233 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-3231 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-3230 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3448 *1) (|:| |upper| *1))) (-4 *1 (-947 *4 *5 *3 *6)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3227 (*1 *2 *1 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3226 (*1 *2 *1 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3224 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3223 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3222 (*1 *2 *2 *1) (-12 (-5 *2 (-618 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)))) (-3221 (*1 *2 *2 *1) (-12 (-5 *2 (-618 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112))))) -(-13 (-1067) (-149 |t#4|) (-593 (-618 |t#4|)) (-10 -8 (-6 -4336) (-15 -3491 ((-3 $ "failed") (-618 |t#4|))) (-15 -3490 ($ (-618 |t#4|))) (-15 -3514 (|t#3| $)) (-15 -3405 ((-618 |t#3|) $)) (-15 -3235 ((-618 |t#3|) $)) (-15 -3234 ((-112) |t#3| $)) (-15 -3233 ($ $ |t#3|)) (-15 -3232 ($ $ |t#3|)) (-15 -3231 ($ $ |t#3|)) (-15 -3230 ((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |t#3|)) (-15 -3229 ((-112) $)) (IF (|has| |t#1| (-542)) (PROGN (-15 -3228 ((-112) $)) (-15 -3227 ((-112) $ $)) (-15 -3226 ((-112) $ $)) (-15 -3225 ((-112) $)) (-15 -3224 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3223 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3222 ((-618 |t#4|) (-618 |t#4|) $)) (-15 -3221 ((-618 |t#4|) (-618 |t#4|) $)) (-15 -3220 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-1067) . T) ((-1178) . T)) -((-3237 (((-618 |#4|) |#4| |#4|) 118)) (-3260 (((-618 |#4|) (-618 |#4|) (-112)) 107 (|has| |#1| (-444))) (((-618 |#4|) (-618 |#4|)) 108 (|has| |#1| (-444)))) (-3247 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|)) 35)) (-3246 (((-112) |#4|) 34)) (-3259 (((-618 |#4|) |#4|) 103 (|has| |#1| (-444)))) (-3242 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-1 (-112) |#4|) (-618 |#4|)) 20)) (-3243 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|)) 22)) (-3244 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|)) 23)) (-3255 (((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|)) 73)) (-3257 (((-618 |#4|) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3258 (((-618 |#4|) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3236 (((-618 |#4|) (-618 |#4|)) 110)) (-3252 (((-618 |#4|) (-618 |#4|) (-618 |#4|) (-112)) 48) (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 50)) (-3253 ((|#4| |#4| (-618 |#4|)) 49)) (-3261 (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 114 (|has| |#1| (-444)))) (-3263 (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 117 (|has| |#1| (-444)))) (-3262 (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 116 (|has| |#1| (-444)))) (-3238 (((-618 |#4|) (-618 |#4|) (-618 |#4|) (-1 (-618 |#4|) (-618 |#4|))) 87) (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 89) (((-618 |#4|) (-618 |#4|) |#4|) 121) (((-618 |#4|) |#4| |#4|) 119) (((-618 |#4|) (-618 |#4|)) 88)) (-3266 (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3245 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|)) 41)) (-3241 (((-112) (-618 |#4|)) 62)) (-3240 (((-112) (-618 |#4|) (-618 (-618 |#4|))) 53)) (-3249 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|)) 29)) (-3248 (((-112) |#4|) 28)) (-3265 (((-618 |#4|) (-618 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3264 (((-618 |#4|) (-618 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3254 (((-618 |#4|) (-618 |#4|)) 66)) (-3256 (((-618 |#4|) (-618 |#4|)) 79)) (-3239 (((-112) (-618 |#4|) (-618 |#4|)) 51)) (-3251 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|)) 39)) (-3250 (((-112) |#4|) 36))) -(((-948 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3238 ((-618 |#4|) (-618 |#4|))) (-15 -3238 ((-618 |#4|) |#4| |#4|)) (-15 -3236 ((-618 |#4|) (-618 |#4|))) (-15 -3237 ((-618 |#4|) |#4| |#4|)) (-15 -3238 ((-618 |#4|) (-618 |#4|) |#4|)) (-15 -3238 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3238 ((-618 |#4|) (-618 |#4|) (-618 |#4|) (-1 (-618 |#4|) (-618 |#4|)))) (-15 -3239 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3240 ((-112) (-618 |#4|) (-618 (-618 |#4|)))) (-15 -3241 ((-112) (-618 |#4|))) (-15 -3242 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-1 (-112) |#4|) (-618 |#4|))) (-15 -3243 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|))) (-15 -3244 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|))) (-15 -3245 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3246 ((-112) |#4|)) (-15 -3247 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3248 ((-112) |#4|)) (-15 -3249 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3250 ((-112) |#4|)) (-15 -3251 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3252 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3252 ((-618 |#4|) (-618 |#4|) (-618 |#4|) (-112))) (-15 -3253 (|#4| |#4| (-618 |#4|))) (-15 -3254 ((-618 |#4|) (-618 |#4|))) (-15 -3255 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|))) (-15 -3256 ((-618 |#4|) (-618 |#4|))) (-15 -3257 ((-618 |#4|) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3258 ((-618 |#4|) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3259 ((-618 |#4|) |#4|)) (-15 -3260 ((-618 |#4|) (-618 |#4|))) (-15 -3260 ((-618 |#4|) (-618 |#4|) (-112))) (-15 -3261 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3262 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3263 ((-618 |#4|) (-618 |#4|) (-618 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -3264 ((-618 |#4|) (-618 |#4|))) (-15 -3265 ((-618 |#4|) (-618 |#4|))) (-15 -3266 ((-618 |#4|) (-618 |#4|) (-618 |#4|)))) |%noBranch|) |%noBranch|)) (-542) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -948)) -((-3266 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3263 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3262 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3261 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3260 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3259 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3258 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-948 *5 *6 *7 *8)))) (-3257 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-618 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *1 (-948 *6 *7 *8 *9)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3255 (*1 *2 *3) (|partial| -12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3666 (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3253 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *2)))) (-3252 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3252 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3251 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3250 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3249 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3248 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3247 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3246 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3245 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))) (-3243 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))) (-3242 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-618 *8))) (-5 *3 (-618 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *5 *6 *7 *8)))) (-3239 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3238 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-618 *7) (-618 *7))) (-5 *2 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3238 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3238 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *3)))) (-3237 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3238 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3238 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) -(-10 -7 (-15 -3238 ((-618 |#4|) (-618 |#4|))) (-15 -3238 ((-618 |#4|) |#4| |#4|)) (-15 -3236 ((-618 |#4|) (-618 |#4|))) (-15 -3237 ((-618 |#4|) |#4| |#4|)) (-15 -3238 ((-618 |#4|) (-618 |#4|) |#4|)) (-15 -3238 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3238 ((-618 |#4|) (-618 |#4|) (-618 |#4|) (-1 (-618 |#4|) (-618 |#4|)))) (-15 -3239 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3240 ((-112) (-618 |#4|) (-618 (-618 |#4|)))) (-15 -3241 ((-112) (-618 |#4|))) (-15 -3242 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-1 (-112) |#4|) (-618 |#4|))) (-15 -3243 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|))) (-15 -3244 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|))) (-15 -3245 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3246 ((-112) |#4|)) (-15 -3247 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3248 ((-112) |#4|)) (-15 -3249 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3250 ((-112) |#4|)) (-15 -3251 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3252 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3252 ((-618 |#4|) (-618 |#4|) (-618 |#4|) (-112))) (-15 -3253 (|#4| |#4| (-618 |#4|))) (-15 -3254 ((-618 |#4|) (-618 |#4|))) (-15 -3255 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|))) (-15 -3256 ((-618 |#4|) (-618 |#4|))) (-15 -3257 ((-618 |#4|) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3258 ((-618 |#4|) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3259 ((-618 |#4|) |#4|)) (-15 -3260 ((-618 |#4|) (-618 |#4|))) (-15 -3260 ((-618 |#4|) (-618 |#4|) (-112))) (-15 -3261 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3262 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3263 ((-618 |#4|) (-618 |#4|) (-618 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -3264 ((-618 |#4|) (-618 |#4|))) (-15 -3265 ((-618 |#4|) (-618 |#4|))) (-15 -3266 ((-618 |#4|) (-618 |#4|) (-618 |#4|)))) |%noBranch|) |%noBranch|)) -((-3267 (((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3269 (((-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|)) 36)) (-3268 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) -(((-949 |#1|) (-10 -7 (-15 -3267 ((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3268 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3269 ((-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|)))) (-356)) (T -949)) -((-3269 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-618 (-2 (|:| C (-665 *5)) (|:| |g| (-1224 *5))))) (-5 *1 (-949 *5)) (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)))) (-3268 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-665 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-949 *5)))) (-3267 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| R (-665 *6)) (|:| A (-665 *6)) (|:| |Ainv| (-665 *6)))) (-5 *1 (-949 *6)) (-5 *3 (-665 *6))))) -(-10 -7 (-15 -3267 ((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3268 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3269 ((-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|)))) -((-4312 (((-398 |#4|) |#4|) 48))) -(((-950 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4312 ((-398 |#4|) |#4|))) (-823) (-769) (-444) (-921 |#3| |#2| |#1|)) (T -950)) -((-4312 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-444)) (-5 *2 (-398 *3)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4))))) -(-10 -7 (-15 -4312 ((-398 |#4|) |#4|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4181 (($ (-747)) 112 (|has| |#1| (-23)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-3761 (((-535) (-1 (-112) |#1|) $) 97) (((-535) |#1| $) 96 (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) 95 (|has| |#1| (-1067)))) (-4052 (($ (-618 |#1|)) 118)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) 105 (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4175 ((|#1| $) 102 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-4062 (((-112) $ (-747)) 10)) (-4176 ((|#1| $) 103 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-4111 (($ $ (-618 |#1|)) 115)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-4179 ((|#1| $ $) 106 (|has| |#1| (-1018)))) (-4254 (((-890) $) 117)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-4177 (($ $ $) 104)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524)))) (($ (-618 |#1|)) 116)) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 83 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 82 (|has| |#1| (-823)))) (-4180 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4182 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-535) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-703))) (($ $ |#1|) 107 (|has| |#1| (-703)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-951 |#1|) (-138) (-1018)) (T -951)) -((-4052 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1018)) (-5 *2 (-890)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) (-4177 (*1 *1 *1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1018)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-951 *3)) (-4 *3 (-1018))))) -(-13 (-1223 |t#1|) (-10 -8 (-15 -4052 ($ (-618 |t#1|))) (-15 -4254 ((-890) $)) (-15 -4313 ($ (-618 |t#1|))) (-15 -4177 ($ $ $)) (-15 -4111 ($ $ (-618 |t#1|))))) -(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-19 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1178) . T) ((-1223 |#1|) . T)) -((-4301 (((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)) 17))) -(((-952 |#1| |#2|) (-10 -7 (-15 -4301 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)))) (-1018) (-1018)) (T -952)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-914 *6)) (-5 *1 (-952 *5 *6))))) -(-10 -7 (-15 -4301 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)))) -((-3272 ((|#1| (-914 |#1|)) 13)) (-3271 ((|#1| (-914 |#1|)) 12)) (-3270 ((|#1| (-914 |#1|)) 11)) (-3274 ((|#1| (-914 |#1|)) 15)) (-3278 ((|#1| (-914 |#1|)) 21)) (-3273 ((|#1| (-914 |#1|)) 14)) (-3275 ((|#1| (-914 |#1|)) 16)) (-3277 ((|#1| (-914 |#1|)) 20)) (-3276 ((|#1| (-914 |#1|)) 19))) -(((-953 |#1|) (-10 -7 (-15 -3270 (|#1| (-914 |#1|))) (-15 -3271 (|#1| (-914 |#1|))) (-15 -3272 (|#1| (-914 |#1|))) (-15 -3273 (|#1| (-914 |#1|))) (-15 -3274 (|#1| (-914 |#1|))) (-15 -3275 (|#1| (-914 |#1|))) (-15 -3276 (|#1| (-914 |#1|))) (-15 -3277 (|#1| (-914 |#1|))) (-15 -3278 (|#1| (-914 |#1|)))) (-1018)) (T -953)) -((-3278 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(-10 -7 (-15 -3270 (|#1| (-914 |#1|))) (-15 -3271 (|#1| (-914 |#1|))) (-15 -3272 (|#1| (-914 |#1|))) (-15 -3273 (|#1| (-914 |#1|))) (-15 -3274 (|#1| (-914 |#1|))) (-15 -3275 (|#1| (-914 |#1|))) (-15 -3276 (|#1| (-914 |#1|))) (-15 -3277 (|#1| (-914 |#1|))) (-15 -3278 (|#1| (-914 |#1|)))) -((-3296 (((-3 |#1| "failed") |#1|) 18)) (-3284 (((-3 |#1| "failed") |#1|) 6)) (-3294 (((-3 |#1| "failed") |#1|) 16)) (-3282 (((-3 |#1| "failed") |#1|) 4)) (-3298 (((-3 |#1| "failed") |#1|) 20)) (-3286 (((-3 |#1| "failed") |#1|) 8)) (-3279 (((-3 |#1| "failed") |#1| (-747)) 1)) (-3281 (((-3 |#1| "failed") |#1|) 3)) (-3280 (((-3 |#1| "failed") |#1|) 2)) (-3299 (((-3 |#1| "failed") |#1|) 21)) (-3287 (((-3 |#1| "failed") |#1|) 9)) (-3297 (((-3 |#1| "failed") |#1|) 19)) (-3285 (((-3 |#1| "failed") |#1|) 7)) (-3295 (((-3 |#1| "failed") |#1|) 17)) (-3283 (((-3 |#1| "failed") |#1|) 5)) (-3302 (((-3 |#1| "failed") |#1|) 24)) (-3290 (((-3 |#1| "failed") |#1|) 12)) (-3300 (((-3 |#1| "failed") |#1|) 22)) (-3288 (((-3 |#1| "failed") |#1|) 10)) (-3304 (((-3 |#1| "failed") |#1|) 26)) (-3292 (((-3 |#1| "failed") |#1|) 14)) (-3305 (((-3 |#1| "failed") |#1|) 27)) (-3293 (((-3 |#1| "failed") |#1|) 15)) (-3303 (((-3 |#1| "failed") |#1|) 25)) (-3291 (((-3 |#1| "failed") |#1|) 13)) (-3301 (((-3 |#1| "failed") |#1|) 23)) (-3289 (((-3 |#1| "failed") |#1|) 11))) -(((-954 |#1|) (-138) (-1164)) (T -954)) -((-3305 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3304 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3302 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3301 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3300 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3299 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3298 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3297 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3296 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3295 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3294 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3293 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3292 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3291 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3290 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3289 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3288 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3287 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3286 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3285 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3284 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3283 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3282 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3281 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3280 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3279 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(-13 (-10 -7 (-15 -3279 ((-3 |t#1| "failed") |t#1| (-747))) (-15 -3280 ((-3 |t#1| "failed") |t#1|)) (-15 -3281 ((-3 |t#1| "failed") |t#1|)) (-15 -3282 ((-3 |t#1| "failed") |t#1|)) (-15 -3283 ((-3 |t#1| "failed") |t#1|)) (-15 -3284 ((-3 |t#1| "failed") |t#1|)) (-15 -3285 ((-3 |t#1| "failed") |t#1|)) (-15 -3286 ((-3 |t#1| "failed") |t#1|)) (-15 -3287 ((-3 |t#1| "failed") |t#1|)) (-15 -3288 ((-3 |t#1| "failed") |t#1|)) (-15 -3289 ((-3 |t#1| "failed") |t#1|)) (-15 -3290 ((-3 |t#1| "failed") |t#1|)) (-15 -3291 ((-3 |t#1| "failed") |t#1|)) (-15 -3292 ((-3 |t#1| "failed") |t#1|)) (-15 -3293 ((-3 |t#1| "failed") |t#1|)) (-15 -3294 ((-3 |t#1| "failed") |t#1|)) (-15 -3295 ((-3 |t#1| "failed") |t#1|)) (-15 -3296 ((-3 |t#1| "failed") |t#1|)) (-15 -3297 ((-3 |t#1| "failed") |t#1|)) (-15 -3298 ((-3 |t#1| "failed") |t#1|)) (-15 -3299 ((-3 |t#1| "failed") |t#1|)) (-15 -3300 ((-3 |t#1| "failed") |t#1|)) (-15 -3301 ((-3 |t#1| "failed") |t#1|)) (-15 -3302 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -3304 ((-3 |t#1| "failed") |t#1|)) (-15 -3305 ((-3 |t#1| "failed") |t#1|)))) -((-3307 ((|#4| |#4| (-618 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3306 ((|#4| |#4| (-618 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4301 ((|#4| (-1 |#4| (-917 |#1|)) |#4|) 30))) -(((-955 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3306 (|#4| |#4| |#3|)) (-15 -3306 (|#4| |#4| (-618 |#3|))) (-15 -3307 (|#4| |#4| |#3|)) (-15 -3307 (|#4| |#4| (-618 |#3|))) (-15 -4301 (|#4| (-1 |#4| (-917 |#1|)) |#4|))) (-1018) (-769) (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))) (-921 (-917 |#1|) |#2| |#3|)) (T -955)) -((-4301 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-917 *4))) (-4 *4 (-1018)) (-4 *2 (-921 (-917 *4) *5 *6)) (-4 *5 (-769)) (-4 *6 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1="failed") (-1142)))))) (-5 *1 (-955 *4 *5 *6 *2)))) (-3307 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) (-4 *2 (-921 (-917 *4) *5 *6)))) (-3307 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-921 (-917 *4) *5 *3)))) (-3306 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) (-4 *2 (-921 (-917 *4) *5 *6)))) (-3306 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-921 (-917 *4) *5 *3))))) -(-10 -7 (-15 -3306 (|#4| |#4| |#3|)) (-15 -3306 (|#4| |#4| (-618 |#3|))) (-15 -3307 (|#4| |#4| |#3|)) (-15 -3307 (|#4| |#4| (-618 |#3|))) (-15 -4301 (|#4| (-1 |#4| (-917 |#1|)) |#4|))) -((-3308 ((|#2| |#3|) 35)) (-4262 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|) 73)) (-4261 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) 89))) -(((-956 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)) (-15 -3308 (|#2| |#3|))) (-343) (-1200 |#1|) (-1200 |#2|) (-701 |#2| |#3|)) (T -956)) -((-3308 (*1 *2 *3) (-12 (-4 *3 (-1200 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-956 *4 *2 *3 *5)) (-4 *4 (-343)) (-4 *5 (-701 *2 *3)))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-956 *4 *3 *5 *6)) (-4 *6 (-701 *3 *5)))) (-4261 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -2123 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-701 *4 *5))))) -(-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)) (-15 -3308 (|#2| |#3|))) -((-2887 (((-112) $ $) NIL)) (-3743 (((-3 (-112) #1="failed") $) 69)) (-3995 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3312 (($ $ (-3 (-112) #1#)) 70)) (-3313 (($ (-618 |#4|) |#4|) 25)) (-3576 (((-1124) $) NIL)) (-3309 (($ $) 67)) (-3577 (((-1086) $) NIL)) (-3745 (((-112) $) 68)) (-3911 (($) 30)) (-3310 ((|#4| $) 72)) (-3311 (((-618 |#4|) $) 71)) (-4300 (((-835) $) 66)) (-3375 (((-112) $ $) NIL))) -(((-957 |#1| |#2| |#3| |#4|) (-13 (-1067) (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -3313 ($ (-618 |#4|) |#4|)) (-15 -3743 ((-3 (-112) #1="failed") $)) (-15 -3312 ($ $ (-3 (-112) #1#))) (-15 -3745 ((-112) $)) (-15 -3311 ((-618 |#4|) $)) (-15 -3310 (|#4| $)) (-15 -3309 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -3995 ($ $)) |%noBranch|) |%noBranch|))) (-444) (-823) (-769) (-921 |#1| |#3| |#2|)) (T -957)) -((-3911 (*1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) (-4 *5 (-921 *2 *4 *3)))) (-3313 (*1 *1 *2 *3) (-12 (-5 *2 (-618 *3)) (-4 *3 (-921 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *1 (-957 *4 *5 *6 *3)))) (-3743 (*1 *2 *1) (|partial| -12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) (-3312 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) (-3745 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) (-3311 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-618 *6)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) (-3310 (*1 *2 *1) (-12 (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-957 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)))) (-3309 (*1 *1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) (-4 *5 (-921 *2 *4 *3)))) (-3995 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) (-4 *5 (-921 *2 *4 *3))))) -(-13 (-1067) (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -3313 ($ (-618 |#4|) |#4|)) (-15 -3743 ((-3 (-112) #1="failed") $)) (-15 -3312 ($ $ (-3 (-112) #1#))) (-15 -3745 ((-112) $)) (-15 -3311 ((-618 |#4|) $)) (-15 -3310 (|#4| $)) (-15 -3309 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -3995 ($ $)) |%noBranch|) |%noBranch|))) -((-3314 (((-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535)))) (-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535))))) 69))) -(((-958 |#1| |#2|) (-10 -7 (-15 -3314 ((-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535)))) (-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535))))))) (-618 (-1142)) (-747)) (T -958)) -((-3314 (*1 *2 *2) (-12 (-5 *2 (-957 (-400 (-535)) (-836 *3) (-233 *4 (-747)) (-241 *3 (-400 (-535))))) (-14 *3 (-618 (-1142))) (-14 *4 (-747)) (-5 *1 (-958 *3 *4))))) -(-10 -7 (-15 -3314 ((-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535)))) (-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535))))))) -((-3604 (((-112) |#5| |#5|) 38)) (-3607 (((-112) |#5| |#5|) 52)) (-3612 (((-112) |#5| (-618 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3608 (((-112) (-618 |#4|) (-618 |#4|)) 58)) (-3614 (((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) 63)) (-3603 (((-1230)) 33)) (-3602 (((-1230) (-1124) (-1124) (-1124)) 29)) (-3613 (((-618 |#5|) (-618 |#5|)) 81)) (-3615 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) 79)) (-3616 (((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112)) 101)) (-3606 (((-112) |#5| |#5|) 47)) (-3611 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3609 (((-112) (-618 |#4|) (-618 |#4|)) 57)) (-3610 (((-112) (-618 |#4|) (-618 |#4|)) 59)) (-4045 (((-112) (-618 |#4|) (-618 |#4|)) 60)) (-3617 (((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3605 (((-618 |#5|) (-618 |#5|)) 43))) -(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3602 ((-1230) (-1124) (-1124) (-1124))) (-15 -3603 ((-1230))) (-15 -3604 ((-112) |#5| |#5|)) (-15 -3605 ((-618 |#5|) (-618 |#5|))) (-15 -3606 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3608 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3609 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3610 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -4045 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3611 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3612 ((-112) |#5| |#5|)) (-15 -3612 ((-112) |#5| (-618 |#5|))) (-15 -3613 ((-618 |#5|) (-618 |#5|))) (-15 -3614 ((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3615 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-15 -3616 ((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3617 ((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -959)) -((-3617 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *4) (|:| |ineq| (-618 *9)))) (-5 *1 (-959 *6 *7 *8 *9 *4)) (-5 *3 (-618 *9)) (-4 *4 (-1038 *6 *7 *8 *9)))) (-3616 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-618 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *10) (|:| |ineq| (-618 *9))))) (-5 *1 (-959 *6 *7 *8 *9 *10)) (-5 *3 (-618 *9)))) (-3615 (*1 *2 *2) (-12 (-5 *2 (-618 (-2 (|:| |val| (-618 *6)) (|:| -1655 *7)))) (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-3614 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-959 *5 *6 *7 *8 *3)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3611 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3610 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3609 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3608 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3606 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-3604 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3603 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-959 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3602 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))) -(-10 -7 (-15 -3602 ((-1230) (-1124) (-1124) (-1124))) (-15 -3603 ((-1230))) (-15 -3604 ((-112) |#5| |#5|)) (-15 -3605 ((-618 |#5|) (-618 |#5|))) (-15 -3606 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3608 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3609 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3610 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -4045 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3611 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3612 ((-112) |#5| |#5|)) (-15 -3612 ((-112) |#5| (-618 |#5|))) (-15 -3613 ((-618 |#5|) (-618 |#5|))) (-15 -3614 ((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3615 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-15 -3616 ((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3617 ((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-4174 (((-1142) $) 15)) (-3744 (((-1124) $) 16)) (-3560 (($ (-1142) (-1124)) 14)) (-4300 (((-835) $) 13))) -(((-960) (-13 (-593 (-835)) (-10 -8 (-15 -3560 ($ (-1142) (-1124))) (-15 -4174 ((-1142) $)) (-15 -3744 ((-1124) $))))) (T -960)) -((-3560 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-960)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-960)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-960))))) -(-13 (-593 (-835)) (-10 -8 (-15 -3560 ($ (-1142) (-1124))) (-15 -4174 ((-1142) $)) (-15 -3744 ((-1124) $)))) -((-3491 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1142) #1#) $) 65) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) 95)) (-3490 ((|#2| $) NIL) (((-1142) $) 60) (((-400 (-535)) $) NIL) (((-535) $) 92)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 112) (((-665 |#2|) (-665 $)) 28)) (-3315 (($) 98)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 75) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 84)) (-3317 (($ $) 10)) (-3786 (((-3 $ "failed") $) 20)) (-4301 (($ (-1 |#2| |#2|) $) 22)) (-3787 (($) 16)) (-3446 (($ $) 54)) (-4153 (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3316 (($ $) 12)) (-4313 (((-861 (-535)) $) 70) (((-861 (-371)) $) 79) (((-524) $) 40) (((-371) $) 44) (((-219) $) 47)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 90) (($ |#2|) NIL) (($ (-1142)) 57)) (-3444 (((-747)) 31)) (-3006 (((-112) $ $) 50))) -(((-961 |#1| |#2|) (-10 -8 (-15 -3006 ((-112) |#1| |#1|)) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -4300 (|#1| (-1142))) (-15 -3315 (|#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3316 (|#1| |#1|)) (-15 -3317 (|#1| |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -4300 ((-835) |#1|))) (-962 |#2|) (-542)) (T -961)) -((-3444 (*1 *2) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-961 *3 *4)) (-4 *3 (-962 *4))))) -(-10 -8 (-15 -3006 ((-112) |#1| |#1|)) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -4300 (|#1| (-1142))) (-15 -3315 (|#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3316 (|#1| |#1|)) (-15 -3317 (|#1| |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3447 ((|#1| $) 136 (|has| |#1| (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 127 (|has| |#1| (-881)))) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 130 (|has| |#1| (-881)))) (-1700 (((-112) $ $) 57)) (-3969 (((-535) $) 117 (|has| |#1| (-796)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 175) (((-3 (-1142) #2#) $) 125 (|has| |#1| (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) 109 (|has| |#1| (-1009 (-535)))) (((-3 (-535) #2#) $) 107 (|has| |#1| (-1009 (-535))))) (-3490 ((|#1| $) 174) (((-1142) $) 124 (|has| |#1| (-1009 (-1142)))) (((-400 (-535)) $) 108 (|has| |#1| (-1009 (-535)))) (((-535) $) 106 (|has| |#1| (-1009 (-535))))) (-2883 (($ $ $) 53)) (-2353 (((-665 (-535)) (-665 $)) 149 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 148 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 147) (((-665 |#1|) (-665 $)) 146)) (-3804 (((-3 $ "failed") $) 32)) (-3315 (($) 134 (|has| |#1| (-534)))) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-3520 (((-112) $) 119 (|has| |#1| (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 143 (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 142 (|has| |#1| (-857 (-371))))) (-2493 (((-112) $) 30)) (-3317 (($ $) 138)) (-3319 ((|#1| $) 140)) (-3786 (((-3 $ "failed") $) 105 (|has| |#1| (-1117)))) (-3521 (((-112) $) 118 (|has| |#1| (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) 50)) (-3660 (($ $ $) 115 (|has| |#1| (-823)))) (-3661 (($ $ $) 114 (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) 166)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3787 (($) 104 (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3446 (($ $) 135 (|has| |#1| (-300)))) (-3448 ((|#1| $) 132 (|has| |#1| (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 129 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 128 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 172 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 170 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 169 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 168 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 167 (|has| |#1| (-505 (-1142) |#1|)))) (-1699 (((-747) $) 56)) (-4142 (($ $ |#1|) 173 (|has| |#1| (-279 |#1| |#1|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4153 (($ $) 165 (|has| |#1| (-227))) (($ $ (-747)) 163 (|has| |#1| (-227))) (($ $ (-1142)) 161 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 160 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 159 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 158 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3316 (($ $) 137)) (-3318 ((|#1| $) 139)) (-4313 (((-861 (-535)) $) 145 (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) 144 (|has| |#1| (-594 (-861 (-371))))) (((-524) $) 122 (|has| |#1| (-594 (-524)))) (((-371) $) 121 (|has| |#1| (-991))) (((-219) $) 120 (|has| |#1| (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 131 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ |#1|) 178) (($ (-1142)) 126 (|has| |#1| (-1009 (-1142))))) (-3023 (((-3 $ "failed") $) 123 (-3874 (|has| |#1| (-143)) (-3179 (|has| $ (-143)) (|has| |#1| (-881)))))) (-3444 (((-747)) 28)) (-3449 ((|#1| $) 133 (|has| |#1| (-534)))) (-2170 (((-112) $ $) 37)) (-3725 (($ $) 116 (|has| |#1| (-796)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $) 164 (|has| |#1| (-227))) (($ $ (-747)) 162 (|has| |#1| (-227))) (($ $ (-1142)) 157 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 156 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 155 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 154 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2885 (((-112) $ $) 112 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 111 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 113 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 110 (|has| |#1| (-823)))) (-4291 (($ $ $) 62) (($ |#1| |#1|) 141)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-962 |#1|) (-138) (-542)) (T -962)) -((-4291 (*1 *1 *2 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3319 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3317 (*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3316 (*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) (-3315 (*1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-534)) (-4 *2 (-542)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-534)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-534))))) -(-13 (-356) (-38 |t#1|) (-1009 |t#1|) (-331 |t#1|) (-225 |t#1|) (-370 |t#1|) (-855 |t#1|) (-393 |t#1|) (-10 -8 (-15 -4291 ($ |t#1| |t#1|)) (-15 -3319 (|t#1| $)) (-15 -3318 (|t#1| $)) (-15 -3317 ($ $)) (-15 -3316 ($ $)) (IF (|has| |t#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |t#1| (-1009 (-535))) (PROGN (-6 (-1009 (-535))) (-6 (-1009 (-400 (-535))))) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-796)) (-6 (-796)) |%noBranch|) (IF (|has| |t#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1009 (-1142))) (-6 (-1009 (-1142))) |%noBranch|) (IF (|has| |t#1| (-300)) (PROGN (-15 -3447 (|t#1| $)) (-15 -3446 ($ $))) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3315 ($)) (-15 -3449 (|t#1| $)) (-15 -3448 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-881)) (-6 (-881)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 (-219)) |has| |#1| (-991)) ((-594 (-371)) |has| |#1| (-991)) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) . T) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) . T) ((-300) . T) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-444) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-542) . T) ((-624 #1#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-767) |has| |#1| (-796)) ((-768) |has| |#1| (-796)) ((-770) |has| |#1| (-796)) ((-773) |has| |#1| (-796)) ((-796) |has| |#1| (-796)) ((-821) |has| |#1| (-796)) ((-823) -3874 (|has| |#1| (-823)) (|has| |#1| (-796))) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-855 |#1|) . T) ((-881) |has| |#1| (-881)) ((-892) . T) ((-991) |has| |#1| (-991)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-535))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 (-1142)) |has| |#1| (-1009 (-1142))) ((-1009 |#1|) . T) ((-1024 #1#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-1117)) ((-1178) . T) ((-1183) . T)) -((-4301 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-963 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#2| |#1|) |#3|))) (-542) (-542) (-962 |#1|) (-962 |#2|)) (T -963)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-4 *2 (-962 *6)) (-5 *1 (-963 *5 *6 *4 *2)) (-4 *4 (-962 *5))))) -(-10 -7 (-15 -4301 (|#4| (-1 |#2| |#1|) |#3|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3320 (($ (-1108 |#1| |#2|)) 11)) (-3442 (((-1108 |#1| |#2|) $) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4142 ((|#2| $ (-233 |#1| |#2|)) 16)) (-4300 (((-835) $) NIL)) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL))) -(((-964 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3320 ($ (-1108 |#1| |#2|))) (-15 -3442 ((-1108 |#1| |#2|) $)) (-15 -4142 (|#2| $ (-233 |#1| |#2|))))) (-890) (-356)) (T -964)) -((-3320 (*1 *1 *2) (-12 (-5 *2 (-1108 *3 *4)) (-14 *3 (-890)) (-4 *4 (-356)) (-5 *1 (-964 *3 *4)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-1108 *3 *4)) (-5 *1 (-964 *3 *4)) (-14 *3 (-890)) (-4 *4 (-356)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-890)) (-4 *2 (-356)) (-5 *1 (-964 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3320 ($ (-1108 |#1| |#2|))) (-15 -3442 ((-1108 |#1| |#2|) $)) (-15 -4142 (|#2| $ (-233 |#1| |#2|))))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 9)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-965) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $))))) (T -965)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-965))))) -(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-3323 (($ $) 46)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-4176 (((-747) $) 45)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-3322 ((|#1| $) 44)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3325 ((|#1| |#1| $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3324 ((|#1| $) 47)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-3321 ((|#1| $) 43)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-966 |#1|) (-138) (-1178)) (T -966)) -((-3325 (*1 *2 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -3325 (|t#1| |t#1| $)) (-15 -3324 (|t#1| $)) (-15 -3323 ($ $)) (-15 -4176 ((-747) $)) (-15 -3322 (|t#1| $)) (-15 -3321 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3989 ((|#1| $) 12)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL (|has| |#1| (-534)))) (-3344 (((-112) $) NIL (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) NIL (|has| |#1| (-534)))) (-3326 (($ |#1| |#1| |#1| |#1|) 16)) (-2493 (((-112) $) NIL)) (-3450 ((|#1| $) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-3327 ((|#1| $) 15)) (-3328 ((|#1| $) 14)) (-3329 ((|#1| $) 13)) (-3577 (((-1086) $) NIL)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-4142 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4153 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3330 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-3725 ((|#1| $) NIL (|has| |#1| (-1027)))) (-2979 (($) 8 T CONST)) (-2985 (($) 10 T CONST)) (-2990 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-356))) (($ (-400 (-535)) $) NIL (|has| |#1| (-356))))) -(((-967 |#1|) (-969 |#1|) (-170)) (T -967)) -NIL -(-969 |#1|) -((-3522 (((-112) $) 42)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#2| $) 43)) (-3345 (((-3 (-400 (-535)) "failed") $) 78)) (-3344 (((-112) $) 72)) (-3343 (((-400 (-535)) $) 76)) (-2493 (((-112) $) 41)) (-3450 ((|#2| $) 22)) (-4301 (($ (-1 |#2| |#2|) $) 19)) (-2725 (($ $) 61)) (-4153 (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4313 (((-524) $) 67)) (-3330 (($ $) 17)) (-4300 (((-835) $) 56) (($ (-535)) 38) (($ |#2|) 36) (($ (-400 (-535))) NIL)) (-3444 (((-747)) 10)) (-3725 ((|#2| $) 71)) (-3375 (((-112) $ $) 25)) (-3006 (((-112) $ $) 69)) (-4180 (($ $) 29) (($ $ $) 28)) (-4182 (($ $ $) 26)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL))) -(((-968 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| (-400 (-535)))) (-15 -3006 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 * (|#1| |#1| (-400 (-535)))) (-15 -2725 (|#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -2493 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-969 |#2|) (-170)) (T -968)) -((-3444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-968 *3 *4)) (-4 *3 (-969 *4))))) -(-10 -8 (-15 -4300 (|#1| (-400 (-535)))) (-15 -3006 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 * (|#1| |#1| (-400 (-535)))) (-15 -2725 (|#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -2493 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 116 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 114 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 113)) (-3490 (((-535) $) 117 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 115 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 112)) (-2353 (((-665 (-535)) (-665 $)) 87 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 86 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 85) (((-665 |#1|) (-665 $)) 84)) (-3804 (((-3 $ "failed") $) 32)) (-3989 ((|#1| $) 77)) (-3345 (((-3 (-400 (-535)) "failed") $) 73 (|has| |#1| (-534)))) (-3344 (((-112) $) 75 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 74 (|has| |#1| (-534)))) (-3326 (($ |#1| |#1| |#1| |#1|) 78)) (-2493 (((-112) $) 30)) (-3450 ((|#1| $) 79)) (-3660 (($ $ $) 66 (|has| |#1| (-823)))) (-3661 (($ $ $) 65 (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) 88)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 70 (|has| |#1| (-356)))) (-3327 ((|#1| $) 80)) (-3328 ((|#1| $) 81)) (-3329 ((|#1| $) 82)) (-3577 (((-1086) $) 10)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 94 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 92 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 91 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 90 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 89 (|has| |#1| (-505 (-1142) |#1|)))) (-4142 (($ $ |#1|) 95 (|has| |#1| (-279 |#1| |#1|)))) (-4153 (($ $) 111 (|has| |#1| (-227))) (($ $ (-747)) 109 (|has| |#1| (-227))) (($ $ (-1142)) 107 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 106 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 105 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 104 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4313 (((-524) $) 71 (|has| |#1| (-594 (-524))))) (-3330 (($ $) 83)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35) (($ (-400 (-535))) 60 (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-3725 ((|#1| $) 76 (|has| |#1| (-1027)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $) 110 (|has| |#1| (-227))) (($ $ (-747)) 108 (|has| |#1| (-227))) (($ $ (-1142)) 103 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 102 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 101 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 100 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2885 (((-112) $ $) 63 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 62 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 64 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 61 (|has| |#1| (-823)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 69 (|has| |#1| (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-400 (-535))) 68 (|has| |#1| (-356))) (($ (-400 (-535)) $) 67 (|has| |#1| (-356))))) -(((-969 |#1|) (-138) (-170)) (T -969)) -((-3330 (*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3326 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535)))))) -(-13 (-38 |t#1|) (-405 |t#1|) (-225 |t#1|) (-331 |t#1|) (-370 |t#1|) (-10 -8 (-15 -3330 ($ $)) (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $)) (-15 -3327 (|t#1| $)) (-15 -3450 (|t#1| $)) (-15 -3326 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3989 (|t#1| $)) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3725 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-356)) ((-38 |#1|) . T) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-356)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) |has| |#1| (-356)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -3874 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-624 #1#) |has| |#1| (-356)) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-356)) ((-694 |#1|) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 #1#) |has| |#1| (-356)) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-4301 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) (-969 |#2|) (-170) (-969 |#4|) (-170)) (T -970)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-969 *6)) (-5 *1 (-970 *4 *5 *2 *6)) (-4 *4 (-969 *5))))) -(-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3323 (($ $) 20)) (-3331 (($ (-618 |#1|)) 29)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-4176 (((-747) $) 22)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) 24)) (-3953 (($ |#1| $) 15)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-3322 ((|#1| $) 23)) (-1327 ((|#1| $) 19)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3325 ((|#1| |#1| $) 14)) (-3745 (((-112) $) 17)) (-3911 (($) NIL)) (-3324 ((|#1| $) 18)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) NIL)) (-3321 ((|#1| $) 26)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-971 |#1|) (-13 (-966 |#1|) (-10 -8 (-15 -3331 ($ (-618 |#1|))))) (-1067)) (T -971)) -((-3331 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-971 *3))))) -(-13 (-966 |#1|) (-10 -8 (-15 -3331 ($ (-618 |#1|))))) -((-3358 (($ $) 12)) (-3332 (($ $ (-535)) 13))) -(((-972 |#1|) (-10 -8 (-15 -3358 (|#1| |#1|)) (-15 -3332 (|#1| |#1| (-535)))) (-973)) (T -972)) -NIL -(-10 -8 (-15 -3358 (|#1| |#1|)) (-15 -3332 (|#1| |#1| (-535)))) -((-3358 (($ $) 6)) (-3332 (($ $ (-535)) 7)) (** (($ $ (-400 (-535))) 8))) -(((-973) (-138)) (T -973)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-400 (-535))))) (-3332 (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-535)))) (-3358 (*1 *1 *1) (-4 *1 (-973)))) -(-13 (-10 -8 (-15 -3358 ($ $)) (-15 -3332 ($ $ (-535))) (-15 ** ($ $ (-400 (-535)))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1758 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2171 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2169 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1896 (((-665 (-400 |#2|)) (-1224 $)) NIL) (((-665 (-400 |#2|))) NIL)) (-3672 (((-400 |#2|) $) NIL)) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-400 |#2|) (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4312 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3454 (((-747)) NIL (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) NIL)) (-1771 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| (-400 |#2|) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-3 (-400 |#2|) #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| (-400 |#2|) (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-400 |#2|) $) NIL)) (-1906 (($ (-1224 (-400 |#2|)) (-1224 $)) NIL) (($ (-1224 (-400 |#2|))) 70) (($ (-1224 |#2|) |#2|) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-343)))) (-2883 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1895 (((-665 (-400 |#2|)) $ (-1224 $)) NIL) (((-665 (-400 |#2|)) $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-400 |#2|))) (|:| |vec| (-1224 (-400 |#2|)))) (-665 $) (-1224 $)) NIL) (((-665 (-400 |#2|)) (-665 $)) NIL)) (-1763 (((-1224 $) (-1224 $)) NIL)) (-4185 (($ |#3|) 65) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-1750 (((-618 (-618 |#1|))) NIL (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) NIL)) (-3427 (((-890)) NIL)) (-3315 (($) NIL (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) NIL)) (-1769 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2882 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| (-400 |#2|) (-356)))) (-3840 (($ $) NIL)) (-3154 (($) NIL (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) NIL (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-747)) NIL (|has| (-400 |#2|) (-343))) (($ $) NIL (|has| (-400 |#2|) (-343)))) (-4069 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-4114 (((-890) $) NIL (|has| (-400 |#2|) (-343))) (((-808 (-890)) $) NIL (|has| (-400 |#2|) (-343)))) (-2493 (((-112) $) NIL)) (-3719 (((-747)) NIL)) (-1764 (((-1224 $) (-1224 $)) NIL)) (-3450 (((-400 |#2|) $) NIL)) (-1751 (((-618 (-917 |#1|)) (-1142)) NIL (|has| |#1| (-356)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2121 (((-890) $) NIL (|has| (-400 |#2|) (-361)))) (-3401 ((|#3| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3576 (((-1124) $) NIL)) (-1759 (((-665 (-400 |#2|))) 52)) (-1761 (((-665 (-400 |#2|))) 51)) (-2725 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1224 |#2|) |#2|) 71)) (-1760 (((-665 (-400 |#2|))) 50)) (-1762 (((-665 (-400 |#2|))) 49)) (-1755 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1757 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) 77)) (-1768 (((-1224 $)) 46)) (-4261 (((-1224 $)) 45)) (-1767 (((-112) $) NIL)) (-1766 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3787 (($) NIL (|has| (-400 |#2|) (-343)) CONST)) (-2483 (($ (-890)) NIL (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| #3="failed")) 63)) (-3577 (((-1086) $) NIL)) (-1777 (((-747)) NIL)) (-2492 (($) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| (-400 |#2|) (-356)))) (-3478 (($ (-618 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-400 |#2|) (-343)))) (-4075 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1699 (((-747) $) NIL (|has| (-400 |#2|) (-356)))) (-4142 ((|#1| $ |#1| |#1|) NIL)) (-1754 (((-3 |#2| #3#)) 62)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4100 (((-400 |#2|) (-1224 $)) NIL) (((-400 |#2|)) 42)) (-1882 (((-747) $) NIL (|has| (-400 |#2|) (-343))) (((-3 (-747) "failed") $ $) NIL (|has| (-400 |#2|) (-343)))) (-4153 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2491 (((-665 (-400 |#2|)) (-1224 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3519 ((|#3|) 53)) (-1785 (($) NIL (|has| (-400 |#2|) (-343)))) (-3558 (((-1224 (-400 |#2|)) $ (-1224 $)) NIL) (((-665 (-400 |#2|)) (-1224 $) (-1224 $)) NIL) (((-1224 (-400 |#2|)) $) 72) (((-665 (-400 |#2|)) (-1224 $)) NIL)) (-4313 (((-1224 (-400 |#2|)) $) NIL) (($ (-1224 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-400 |#2|) (-343)))) (-1765 (((-1224 $) (-1224 $)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1009 (-400 (-535)))))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3023 (($ $) NIL (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2689 ((|#3| $) NIL)) (-3444 (((-747)) NIL)) (-1774 (((-112)) 60)) (-1773 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2123 (((-1224 $)) 121)) (-2170 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1776 (((-112)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-535)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-535))) NIL (|has| (-400 |#2|) (-356))))) -(((-974 |#1| |#2| |#3| |#4| |#5|) (-335 |#1| |#2| |#3|) (-1183) (-1200 |#1|) (-1200 (-400 |#2|)) (-400 |#2|) (-747)) (T -974)) +((-3336 (($ $ (-1060 $)) 7) (($ $ (-1144)) 6))) +(((-932) (-138)) (T -932)) +((-3336 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 *1)) (-4 *1 (-932)))) (-3336 (*1 *1 *1 *2) (-12 (-4 *1 (-932)) (-5 *2 (-1144))))) +(-13 (-10 -8 (-15 -3336 ($ $ (-1144))) (-15 -3336 ($ $ (-1060 $))))) +((-3485 (((-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 |#1|))) (|:| |prim| (-1140 |#1|))) (-623 (-925 |#1|)) (-623 (-1144)) (-1144)) 25) (((-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 |#1|))) (|:| |prim| (-1140 |#1|))) (-623 (-925 |#1|)) (-623 (-1144))) 26) (((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1140 |#1|))) (-925 |#1|) (-1144) (-925 |#1|) (-1144)) 43))) +(((-933 |#1|) (-10 -7 (-15 -3485 ((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1140 |#1|))) (-925 |#1|) (-1144) (-925 |#1|) (-1144))) (-15 -3485 ((-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 |#1|))) (|:| |prim| (-1140 |#1|))) (-623 (-925 |#1|)) (-623 (-1144)))) (-15 -3485 ((-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 |#1|))) (|:| |prim| (-1140 |#1|))) (-623 (-925 |#1|)) (-623 (-1144)) (-1144)))) (-13 (-356) (-145))) (T -933)) +((-3485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-925 *6))) (-5 *4 (-623 (-1144))) (-5 *5 (-1144)) (-4 *6 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 *6))) (|:| |prim| (-1140 *6)))) (-5 *1 (-933 *6)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-623 (-1144))) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 *5))) (|:| |prim| (-1140 *5)))) (-5 *1 (-933 *5)))) (-3485 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-925 *5)) (-5 *4 (-1144)) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1140 *5)))) (-5 *1 (-933 *5))))) +(-10 -7 (-15 -3485 ((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1140 |#1|))) (-925 |#1|) (-1144) (-925 |#1|) (-1144))) (-15 -3485 ((-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 |#1|))) (|:| |prim| (-1140 |#1|))) (-623 (-925 |#1|)) (-623 (-1144)))) (-15 -3485 ((-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 |#1|))) (|:| |prim| (-1140 |#1|))) (-623 (-925 |#1|)) (-623 (-1144)) (-1144)))) +((-2655 (((-623 |#1|) |#1| |#1|) 42)) (-3933 (((-112) |#1|) 39)) (-3740 ((|#1| |#1|) 65)) (-3617 ((|#1| |#1|) 64))) +(((-934 |#1|) (-10 -7 (-15 -3933 ((-112) |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -3740 (|#1| |#1|)) (-15 -2655 ((-623 |#1|) |#1| |#1|))) (-535)) (T -934)) +((-2655 (*1 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-5 *1 (-934 *3)) (-4 *3 (-535)))) (-3740 (*1 *2 *2) (-12 (-5 *1 (-934 *2)) (-4 *2 (-535)))) (-3617 (*1 *2 *2) (-12 (-5 *1 (-934 *2)) (-4 *2 (-535)))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-934 *3)) (-4 *3 (-535))))) +(-10 -7 (-15 -3933 ((-112) |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -3740 (|#1| |#1|)) (-15 -2655 ((-623 |#1|) |#1| |#1|))) +((-4297 (((-1232) (-836)) 9))) +(((-935) (-10 -7 (-15 -4297 ((-1232) (-836))))) (T -935)) +((-4297 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-935))))) +(-10 -7 (-15 -4297 ((-1232) (-836)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 61 (|has| |#1| (-542)))) (-1447 (($ $) 62 (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 28)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-3295 (($ $) 24)) (-1386 (((-3 $ "failed") $) 35)) (-2674 (($ $) NIL (|has| |#1| (-444)))) (-2613 (($ $ |#1| |#2| $) 48)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) 16)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| |#2|) NIL)) (-1667 ((|#2| $) 19)) (-2688 (($ (-1 |#2| |#2|) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (($ $) 23)) (-3277 ((|#1| $) 21)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) 40)) (-3256 ((|#1| $) NIL)) (-3138 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-542))))) (-1495 (((-3 $ "failed") $ $) 74 (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-542)))) (-2970 ((|#2| $) 17)) (-2503 ((|#1| $) NIL (|has| |#1| (-444)))) (-1518 (((-836) $) NIL) (($ (-550)) 39) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 34) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550))))))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ |#2|) 31)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) 15)) (-2540 (($ $ $ (-749)) 57 (|has| |#1| (-170)))) (-1345 (((-112) $ $) 67 (|has| |#1| (-542)))) (-2626 (($) 22 T CONST)) (-2636 (($) 12 T CONST)) (-2316 (((-112) $ $) 66)) (-2414 (($ $ |#1|) 75 (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) 54) (($ $ (-749)) 52)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-936 |#1| |#2|) (-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| |#2| (-130)) (-15 -3138 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|))) (-1020) (-770)) (T -936)) +((-3138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-936 *3 *2)) (-4 *2 (-130)) (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *2 (-770))))) +(-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| |#2| (-130)) (-15 -3138 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL (-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (-2270 (($ $ $) 63 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (-3219 (((-3 $ "failed") $ $) 50 (-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (-4319 (((-749)) 34 (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2750 ((|#2| $) 21)) (-2862 ((|#1| $) 20)) (-3513 (($) NIL (-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) CONST)) (-1386 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (-1741 (($) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3102 (((-112) $) NIL (-1561 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (-2707 (($ $ $) NIL (-1561 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-4164 (($ $ $) NIL (-1561 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2962 (($ |#1| |#2|) 19)) (-2253 (((-894) $) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 37 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2922 (($ (-894)) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3337 (((-1088) $) NIL)) (-1270 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-3292 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-1518 (((-836) $) 14)) (-2626 (($) 40 (-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) CONST)) (-2636 (($) 24 (-1561 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) CONST)) (-2363 (((-112) $ $) NIL (-1561 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2345 (((-112) $ $) NIL (-1561 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2316 (((-112) $ $) 18)) (-2354 (((-112) $ $) NIL (-1561 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2335 (((-112) $ $) 66 (-1561 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2414 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2403 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2391 (($ $ $) 43 (-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (** (($ $ (-550)) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465)))) (($ $ (-749)) 31 (-1561 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))))) (($ $ (-894)) NIL (-1561 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (* (($ (-550) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-749) $) 46 (-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (($ (-894) $) NIL (-1561 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (($ $ $) 27 (-1561 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))))))) +(((-937 |#1| |#2|) (-13 (-1068) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-705)) (IF (|has| |#2| (-705)) (-6 (-705)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-771)) (IF (|has| |#2| (-771)) (-6 (-771)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-825)) (IF (|has| |#2| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (-15 -2962 ($ |#1| |#2|)) (-15 -2862 (|#1| $)) (-15 -2750 (|#2| $)))) (-1068) (-1068)) (T -937)) +((-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-937 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) (-2862 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-937 *2 *3)) (-4 *3 (-1068)))) (-2750 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-937 *3 *2)) (-4 *3 (-1068))))) +(-13 (-1068) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-705)) (IF (|has| |#2| (-705)) (-6 (-705)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-771)) (IF (|has| |#2| (-771)) (-6 (-771)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-825)) (IF (|has| |#2| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (-15 -2962 ($ |#1| |#2|)) (-15 -2862 (|#1| $)) (-15 -2750 (|#2| $)))) +((-3625 (((-1072) $) 12)) (-1440 (($ (-1144) (-1072)) 13)) (-1916 (((-1144) $) 10)) (-1518 (((-836) $) 22))) +(((-938) (-13 (-595 (-836)) (-10 -8 (-15 -1916 ((-1144) $)) (-15 -3625 ((-1072) $)) (-15 -1440 ($ (-1144) (-1072)))))) (T -938)) +((-1916 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-938)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-938)))) (-1440 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1072)) (-5 *1 (-938))))) +(-13 (-595 (-836)) (-10 -8 (-15 -1916 ((-1144) $)) (-15 -3625 ((-1072) $)) (-15 -1440 ($ (-1144) (-1072))))) +((-1504 (((-112) $ $) NIL)) (-3141 (((-1070 (-1144)) $) 19)) (-1690 (((-112) $) 26)) (-1861 (((-1144) $) 27)) (-1926 (((-112) $) 24)) (-1805 ((|#1| $) 25)) (-2349 (((-846 $ $) $) 34)) (-2445 (((-112) $) 33)) (-3675 (($ $ $) 12)) (-1569 (($ $) 29)) (-2796 (((-112) $) 28)) (-3462 (($ $) 10)) (-1825 (((-1126) $) NIL)) (-2168 (((-846 $ $) $) 36)) (-2262 (((-112) $) 35)) (-2659 (($ $ $) 13)) (-3337 (((-1088) $) NIL)) (-3057 (((-846 $ $) $) 38)) (-2079 (((-112) $) 37)) (-2039 (($ $ $) 14)) (-1518 (((-836) $) 40) (($ |#1|) 7) (($ (-1144)) 9)) (-2537 (((-846 $ $) $) 32)) (-1439 (((-112) $) 30)) (-1262 (($ $ $) 11)) (-2316 (((-112) $ $) NIL))) +(((-939 |#1|) (-13 (-940) (-10 -8 (-15 -1518 ($ |#1|)) (-15 -1518 ($ (-1144))) (-15 -3141 ((-1070 (-1144)) $)) (-15 -1926 ((-112) $)) (-15 -1805 (|#1| $)) (-15 -1690 ((-112) $)) (-15 -1861 ((-1144) $)) (-15 -2796 ((-112) $)) (-15 -1569 ($ $)) (-15 -1439 ((-112) $)) (-15 -2537 ((-846 $ $) $)) (-15 -2445 ((-112) $)) (-15 -2349 ((-846 $ $) $)) (-15 -2262 ((-112) $)) (-15 -2168 ((-846 $ $) $)) (-15 -2079 ((-112) $)) (-15 -3057 ((-846 $ $) $)))) (-940)) (T -939)) +((-1518 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-940)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-1070 (-1144))) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-1805 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-940)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-1569 (*1 *1 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-940)))) (-1439 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-846 (-939 *3) (-939 *3))) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-846 (-939 *3) (-939 *3))) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-846 (-939 *3) (-939 *3))) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-846 (-939 *3) (-939 *3))) (-5 *1 (-939 *3)) (-4 *3 (-940))))) +(-13 (-940) (-10 -8 (-15 -1518 ($ |#1|)) (-15 -1518 ($ (-1144))) (-15 -3141 ((-1070 (-1144)) $)) (-15 -1926 ((-112) $)) (-15 -1805 (|#1| $)) (-15 -1690 ((-112) $)) (-15 -1861 ((-1144) $)) (-15 -2796 ((-112) $)) (-15 -1569 ($ $)) (-15 -1439 ((-112) $)) (-15 -2537 ((-846 $ $) $)) (-15 -2445 ((-112) $)) (-15 -2349 ((-846 $ $) $)) (-15 -2262 ((-112) $)) (-15 -2168 ((-846 $ $) $)) (-15 -2079 ((-112) $)) (-15 -3057 ((-846 $ $) $)))) +((-1504 (((-112) $ $) 7)) (-3675 (($ $ $) 15)) (-3462 (($ $) 17)) (-1825 (((-1126) $) 9)) (-2659 (($ $ $) 14)) (-3337 (((-1088) $) 10)) (-2039 (($ $ $) 13)) (-1518 (((-836) $) 11)) (-1262 (($ $ $) 16)) (-2316 (((-112) $ $) 6))) +(((-940) (-138)) (T -940)) +((-3462 (*1 *1 *1) (-4 *1 (-940))) (-1262 (*1 *1 *1 *1) (-4 *1 (-940))) (-3675 (*1 *1 *1 *1) (-4 *1 (-940))) (-2659 (*1 *1 *1 *1) (-4 *1 (-940))) (-2039 (*1 *1 *1 *1) (-4 *1 (-940)))) +(-13 (-1068) (-10 -8 (-15 -3462 ($ $)) (-15 -1262 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -2659 ($ $ $)) (-15 -2039 ($ $ $)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-3513 (($) 7 T CONST)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-3884 (($ $ $) 43)) (-1832 (($ $ $) 44)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-4164 ((|#1| $) 45)) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-941 |#1|) (-138) (-825)) (T -941)) +((-4164 (*1 *2 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-825)))) (-1832 (*1 *1 *1 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-825)))) (-3884 (*1 *1 *1 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-825))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4342) (-15 -4164 (|t#1| $)) (-15 -1832 ($ $ $)) (-15 -3884 ($ $ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-3190 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 85)) (-3238 ((|#2| |#2| |#2|) 83)) (-2195 (((-2 (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 87)) (-2269 (((-2 (|:| |coef1| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 89)) (-1751 (((-2 (|:| |coef2| |#2|) (|:| -1527 |#1|)) |#2| |#2|) 107 (|has| |#1| (-444)))) (-4194 (((-2 (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|) 46)) (-4085 (((-2 (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|) 64)) (-4196 (((-2 (|:| |coef1| |#2|) (|:| -3340 |#1|)) |#2| |#2|) 66)) (-3075 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2691 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 71)) (-2444 (((-2 (|:| |coef2| |#2|) (|:| -3453 |#1|)) |#2|) 97)) (-2928 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 74)) (-2606 (((-623 (-749)) |#2| |#2|) 82)) (-3995 ((|#1| |#2| |#2|) 42)) (-1637 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1527 |#1|)) |#2| |#2|) 105 (|has| |#1| (-444)))) (-1527 ((|#1| |#2| |#2|) 103 (|has| |#1| (-444)))) (-4094 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|) 44)) (-3975 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|) 63)) (-3340 ((|#1| |#2| |#2|) 61)) (-4113 (((-2 (|:| -2855 |#1|) (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2|) 35)) (-3899 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3009 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3632 ((|#2| |#2| |#2|) 75)) (-3785 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 69)) (-3706 ((|#2| |#2| |#2| (-749)) 67)) (-3139 ((|#2| |#2| |#2|) 111 (|has| |#1| (-444)))) (-1495 (((-1227 |#2|) (-1227 |#2|) |#1|) 21)) (-1866 (((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2|) 39)) (-2357 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3453 |#1|)) |#2|) 95)) (-3453 ((|#1| |#2|) 92)) (-2839 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 73)) (-2747 ((|#2| |#2| |#2| (-749)) 72)) (-2528 (((-623 |#2|) |#2| |#2|) 80)) (-2066 ((|#2| |#2| |#1| |#1| (-749)) 50)) (-1968 ((|#1| |#1| |#1| (-749)) 49)) (* (((-1227 |#2|) |#1| (-1227 |#2|)) 16))) +(((-942 |#1| |#2|) (-10 -7 (-15 -3340 (|#1| |#2| |#2|)) (-15 -3975 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|)) (-15 -4085 ((-2 (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|)) (-15 -4196 ((-2 (|:| |coef1| |#2|) (|:| -3340 |#1|)) |#2| |#2|)) (-15 -3706 (|#2| |#2| |#2| (-749))) (-15 -3785 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2691 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2747 (|#2| |#2| |#2| (-749))) (-15 -2839 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2928 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3632 (|#2| |#2| |#2|)) (-15 -3009 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3075 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3238 (|#2| |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -2195 ((-2 (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -2269 ((-2 (|:| |coef1| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -3453 (|#1| |#2|)) (-15 -2357 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3453 |#1|)) |#2|)) (-15 -2444 ((-2 (|:| |coef2| |#2|) (|:| -3453 |#1|)) |#2|)) (-15 -2528 ((-623 |#2|) |#2| |#2|)) (-15 -2606 ((-623 (-749)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -1527 (|#1| |#2| |#2|)) (-15 -1637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1527 |#1|)) |#2| |#2|)) (-15 -1751 ((-2 (|:| |coef2| |#2|) (|:| -1527 |#1|)) |#2| |#2|)) (-15 -3139 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1227 |#2|) |#1| (-1227 |#2|))) (-15 -1495 ((-1227 |#2|) (-1227 |#2|) |#1|)) (-15 -4113 ((-2 (|:| -2855 |#1|) (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2|)) (-15 -1866 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2|)) (-15 -1968 (|#1| |#1| |#1| (-749))) (-15 -2066 (|#2| |#2| |#1| |#1| (-749))) (-15 -3899 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3995 (|#1| |#2| |#2|)) (-15 -4094 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|)) (-15 -4194 ((-2 (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|))) (-542) (-1203 |#1|)) (T -942)) +((-4194 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3340 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-4094 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3340 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-3995 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1203 *2)))) (-3899 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) (-4 *2 (-1203 *3)))) (-2066 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) (-4 *2 (-1203 *3)))) (-1968 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *2 (-542)) (-5 *1 (-942 *2 *4)) (-4 *4 (-1203 *2)))) (-1866 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-4113 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2855 *4) (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-1495 (*1 *2 *2 *3) (-12 (-5 *2 (-1227 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-542)) (-5 *1 (-942 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1227 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-542)) (-5 *1 (-942 *3 *4)))) (-3139 (*1 *2 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) (-4 *2 (-1203 *3)))) (-1751 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1527 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-1637 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1527 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-1527 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-4 *2 (-444)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1203 *2)))) (-2606 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 (-749))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-2528 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3453 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-2357 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3453 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-3453 (*1 *2 *3) (-12 (-4 *2 (-542)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1203 *2)))) (-2269 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3139 *3))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-2195 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3139 *3))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-3190 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3139 *3))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-3238 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) (-4 *2 (-1203 *3)))) (-3075 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-3009 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-3632 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) (-4 *2 (-1203 *3)))) (-2928 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-942 *5 *3)) (-4 *3 (-1203 *5)))) (-2839 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-942 *5 *3)) (-4 *3 (-1203 *5)))) (-2747 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-542)) (-5 *1 (-942 *4 *2)) (-4 *2 (-1203 *4)))) (-2691 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-942 *5 *3)) (-4 *3 (-1203 *5)))) (-3785 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-942 *5 *3)) (-4 *3 (-1203 *5)))) (-3706 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-542)) (-5 *1 (-942 *4 *2)) (-4 *2 (-1203 *4)))) (-4196 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3340 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-4085 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3340 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-3975 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3340 *4))) (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) (-3340 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1203 *2))))) +(-10 -7 (-15 -3340 (|#1| |#2| |#2|)) (-15 -3975 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|)) (-15 -4085 ((-2 (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|)) (-15 -4196 ((-2 (|:| |coef1| |#2|) (|:| -3340 |#1|)) |#2| |#2|)) (-15 -3706 (|#2| |#2| |#2| (-749))) (-15 -3785 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2691 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2747 (|#2| |#2| |#2| (-749))) (-15 -2839 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -2928 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3632 (|#2| |#2| |#2|)) (-15 -3009 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3075 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3238 (|#2| |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -2195 ((-2 (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -2269 ((-2 (|:| |coef1| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -3453 (|#1| |#2|)) (-15 -2357 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3453 |#1|)) |#2|)) (-15 -2444 ((-2 (|:| |coef2| |#2|) (|:| -3453 |#1|)) |#2|)) (-15 -2528 ((-623 |#2|) |#2| |#2|)) (-15 -2606 ((-623 (-749)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -1527 (|#1| |#2| |#2|)) (-15 -1637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1527 |#1|)) |#2| |#2|)) (-15 -1751 ((-2 (|:| |coef2| |#2|) (|:| -1527 |#1|)) |#2| |#2|)) (-15 -3139 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1227 |#2|) |#1| (-1227 |#2|))) (-15 -1495 ((-1227 |#2|) (-1227 |#2|) |#1|)) (-15 -4113 ((-2 (|:| -2855 |#1|) (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2|)) (-15 -1866 ((-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) |#2| |#2|)) (-15 -1968 (|#1| |#1| |#1| (-749))) (-15 -2066 (|#2| |#2| |#1| |#1| (-749))) (-15 -3899 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3995 (|#1| |#2| |#2|)) (-15 -4094 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|)) (-15 -4194 ((-2 (|:| |coef2| |#2|) (|:| -3340 |#1|)) |#2| |#2|))) +((-1504 (((-112) $ $) NIL)) (-1551 (((-1180) $) 13)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2802 (((-1103) $) 10)) (-1518 (((-836) $) 22) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-943) (-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)) (-15 -1551 ((-1180) $))))) (T -943)) +((-2802 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-943)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-943))))) +(-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)) (-15 -1551 ((-1180) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) 27)) (-3513 (($) NIL T CONST)) (-1357 (((-623 (-623 (-550))) (-623 (-550))) 29)) (-4308 (((-550) $) 45)) (-1459 (($ (-623 (-550))) 17)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-4028 (((-623 (-550)) $) 12)) (-1270 (($ $) 32)) (-1518 (((-836) $) 43) (((-623 (-550)) $) 10)) (-2626 (($) 7 T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 20)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 19)) (-2391 (($ $ $) 21)) (* (($ (-894) $) NIL) (($ (-749) $) 25))) +(((-944) (-13 (-773) (-596 (-623 (-550))) (-10 -8 (-15 -1459 ($ (-623 (-550)))) (-15 -1357 ((-623 (-623 (-550))) (-623 (-550)))) (-15 -4308 ((-550) $)) (-15 -1270 ($ $)) (-15 -1518 ((-623 (-550)) $))))) (T -944)) +((-1459 (*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-944)))) (-1357 (*1 *2 *3) (-12 (-5 *2 (-623 (-623 (-550)))) (-5 *1 (-944)) (-5 *3 (-623 (-550))))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-944)))) (-1270 (*1 *1 *1) (-5 *1 (-944))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-944))))) +(-13 (-773) (-596 (-623 (-550))) (-10 -8 (-15 -1459 ($ (-623 (-550)))) (-15 -1357 ((-623 (-623 (-550))) (-623 (-550)))) (-15 -4308 ((-550) $)) (-15 -1270 ($ $)) (-15 -1518 ((-623 (-550)) $)))) +((-2414 (($ $ |#2|) 30)) (-2403 (($ $) 22) (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-400 (-550)) $) 26) (($ $ (-400 (-550))) 28))) +(((-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2414 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) (-946 |#2| |#3| |#4|) (-1020) (-770) (-825)) (T -945)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-400 (-550)))) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 -2414 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-894) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 |#3|) $) 72)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3295 (($ $) 58)) (-1386 (((-3 $ "failed") $) 32)) (-3478 (((-112) $) 71)) (-3102 (((-112) $) 30)) (-3439 (((-112) $) 60)) (-3118 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-623 |#3|) (-623 |#2|)) 73)) (-3972 (($ (-1 |#1| |#1|) $) 61)) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-2970 ((|#2| $) 62)) (-3380 (($ $) 70)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2510 ((|#1| $ |#2|) 57)) (-4242 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-946 |#1| |#2| |#3|) (-138) (-1020) (-770) (-825)) (T -946)) +((-3277 (*1 *2 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *3 (-770)) (-4 *4 (-825)) (-4 *2 (-1020)))) (-3267 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-770)) (-4 *4 (-825)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *2 *4)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *2 (-770)))) (-3118 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-946 *4 *3 *2)) (-4 *4 (-1020)) (-4 *3 (-770)) (-4 *2 (-825)))) (-3118 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 *5)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-770)) (-4 *6 (-825)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-770)) (-4 *5 (-825)) (-5 *2 (-623 *5)))) (-3478 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-770)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3380 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-770)) (-4 *4 (-825))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3118 ($ $ |t#3| |t#2|)) (-15 -3118 ($ $ (-623 |t#3|) (-623 |t#2|))) (-15 -3267 ($ $)) (-15 -3277 (|t#1| $)) (-15 -2970 (|t#2| $)) (-15 -3141 ((-623 |t#3|) $)) (-15 -3478 ((-112) $)) (-15 -3380 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-1026 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3221 (((-1062 (-219)) $) 8)) (-3213 (((-1062 (-219)) $) 9)) (-3202 (((-1062 (-219)) $) 10)) (-3576 (((-623 (-623 (-916 (-219)))) $) 11)) (-1518 (((-836) $) 6))) +(((-947) (-138)) (T -947)) +((-3576 (*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-623 (-623 (-916 (-219))))))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1062 (-219))))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1062 (-219))))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1062 (-219)))))) +(-13 (-595 (-836)) (-10 -8 (-15 -3576 ((-623 (-623 (-916 (-219)))) $)) (-15 -3202 ((-1062 (-219)) $)) (-15 -3213 ((-1062 (-219)) $)) (-15 -3221 ((-1062 (-219)) $)))) +(((-595 (-836)) . T)) +((-3141 (((-623 |#4|) $) 23)) (-2238 (((-112) $) 48)) (-3670 (((-112) $) 47)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#4|) 36)) (-2976 (((-112) $) 49)) (-3156 (((-112) $ $) 55)) (-3059 (((-112) $ $) 58)) (-3253 (((-112) $) 53)) (-3774 (((-623 |#5|) (-623 |#5|) $) 90)) (-3872 (((-623 |#5|) (-623 |#5|) $) 87)) (-2786 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2650 (((-623 |#4|) $) 27)) (-2568 (((-112) |#4| $) 30)) (-2884 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2315 (($ $ |#4|) 33)) (-2486 (($ $ |#4|) 32)) (-2401 (($ $ |#4|) 34)) (-2316 (((-112) $ $) 40))) +(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3670 ((-112) |#1|)) (-15 -3774 ((-623 |#5|) (-623 |#5|) |#1|)) (-15 -3872 ((-623 |#5|) (-623 |#5|) |#1|)) (-15 -2786 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2884 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2976 ((-112) |#1|)) (-15 -3059 ((-112) |#1| |#1|)) (-15 -3156 ((-112) |#1| |#1|)) (-15 -3253 ((-112) |#1|)) (-15 -2238 ((-112) |#1|)) (-15 -1674 ((-2 (|:| |under| |#1|) (|:| -1608 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2315 (|#1| |#1| |#4|)) (-15 -2401 (|#1| |#1| |#4|)) (-15 -2486 (|#1| |#1| |#4|)) (-15 -2568 ((-112) |#4| |#1|)) (-15 -2650 ((-623 |#4|) |#1|)) (-15 -3141 ((-623 |#4|) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) (-949 |#2| |#3| |#4| |#5|) (-1020) (-771) (-825) (-1034 |#2| |#3| |#4|)) (T -948)) +NIL +(-10 -8 (-15 -3670 ((-112) |#1|)) (-15 -3774 ((-623 |#5|) (-623 |#5|) |#1|)) (-15 -3872 ((-623 |#5|) (-623 |#5|) |#1|)) (-15 -2786 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2884 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2976 ((-112) |#1|)) (-15 -3059 ((-112) |#1| |#1|)) (-15 -3156 ((-112) |#1| |#1|)) (-15 -3253 ((-112) |#1|)) (-15 -2238 ((-112) |#1|)) (-15 -1674 ((-2 (|:| |under| |#1|) (|:| -1608 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2315 (|#1| |#1| |#4|)) (-15 -2401 (|#1| |#1| |#4|)) (-15 -2486 (|#1| |#1| |#4|)) (-15 -2568 ((-112) |#4| |#1|)) (-15 -2650 ((-623 |#4|) |#1|)) (-15 -3141 ((-623 |#4|) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3141 (((-623 |#3|) $) 33)) (-2238 (((-112) $) 26)) (-3670 (((-112) $) 17 (|has| |#1| (-542)))) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) 27)) (-4047 (((-112) $ (-749)) 44)) (-4253 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4342)))) (-3513 (($) 45 T CONST)) (-2976 (((-112) $) 22 (|has| |#1| (-542)))) (-3156 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3059 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3253 (((-112) $) 25 (|has| |#1| (-542)))) (-3774 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) 36)) (-2726 (($ (-623 |#4|)) 35)) (-1328 (($ $) 68 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#4| $) 67 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4342)))) (-3450 (((-623 |#4|) $) 52 (|has| $ (-6 -4342)))) (-3952 ((|#3| $) 34)) (-1859 (((-112) $ (-749)) 43)) (-2689 (((-623 |#4|) $) 53 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 47)) (-2650 (((-623 |#3|) $) 32)) (-2568 (((-112) |#3| $) 31)) (-1573 (((-112) $ (-749)) 42)) (-1825 (((-1126) $) 9)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-3337 (((-1088) $) 10)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) 38)) (-2902 (((-112) $) 41)) (-3498 (($) 40)) (-3350 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4342)))) (-1731 (($ $) 39)) (-4028 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 60)) (-2315 (($ $ |#3|) 28)) (-2486 (($ $ |#3|) 30)) (-2401 (($ $ |#3|) 29)) (-1518 (((-836) $) 11) (((-623 |#4|) $) 37)) (-1675 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 6)) (-3191 (((-749) $) 46 (|has| $ (-6 -4342))))) +(((-949 |#1| |#2| |#3| |#4|) (-138) (-1020) (-771) (-825) (-1034 |t#1| |t#2| |t#3|)) (T -949)) +((-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-949 *3 *4 *5 *6)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-949 *3 *4 *5 *6)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-1034 *3 *4 *2)) (-4 *2 (-825)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-623 *5)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-623 *5)))) (-2568 (*1 *2 *3 *1) (-12 (-4 *1 (-949 *4 *5 *3 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1034 *4 *5 *3)) (-5 *2 (-112)))) (-2486 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1034 *3 *4 *2)))) (-2401 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1034 *3 *4 *2)))) (-2315 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1034 *3 *4 *2)))) (-1674 (*1 *2 *1 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1034 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1608 *1) (|:| |upper| *1))) (-4 *1 (-949 *4 *5 *3 *6)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3156 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3059 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-2884 (*1 *2 *3 *1) (-12 (-4 *1 (-949 *4 *5 *6 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2786 (*1 *2 *3 *1) (-12 (-4 *1 (-949 *4 *5 *6 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3872 (*1 *2 *2 *1) (-12 (-5 *2 (-623 *6)) (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)))) (-3774 (*1 *2 *2 *1) (-12 (-5 *2 (-623 *6)) (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112))))) +(-13 (-1068) (-149 |t#4|) (-595 (-623 |t#4|)) (-10 -8 (-6 -4342) (-15 -3880 ((-3 $ "failed") (-623 |t#4|))) (-15 -2726 ($ (-623 |t#4|))) (-15 -3952 (|t#3| $)) (-15 -3141 ((-623 |t#3|) $)) (-15 -2650 ((-623 |t#3|) $)) (-15 -2568 ((-112) |t#3| $)) (-15 -2486 ($ $ |t#3|)) (-15 -2401 ($ $ |t#3|)) (-15 -2315 ($ $ |t#3|)) (-15 -1674 ((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |t#3|)) (-15 -2238 ((-112) $)) (IF (|has| |t#1| (-542)) (PROGN (-15 -3253 ((-112) $)) (-15 -3156 ((-112) $ $)) (-15 -3059 ((-112) $ $)) (-15 -2976 ((-112) $)) (-15 -2884 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2786 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3872 ((-623 |t#4|) (-623 |t#4|) $)) (-15 -3774 ((-623 |t#4|) (-623 |t#4|) $)) (-15 -3670 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-836)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-1068) . T) ((-1181) . T)) +((-1693 (((-623 |#4|) |#4| |#4|) 118)) (-3993 (((-623 |#4|) (-623 |#4|) (-112)) 107 (|has| |#1| (-444))) (((-623 |#4|) (-623 |#4|)) 108 (|has| |#1| (-444)))) (-4175 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|)) 35)) (-4079 (((-112) |#4|) 34)) (-3897 (((-623 |#4|) |#4|) 103 (|has| |#1| (-444)))) (-3932 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-1 (-112) |#4|) (-623 |#4|)) 20)) (-4023 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|)) 22)) (-4130 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|)) 23)) (-1777 (((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|)) 73)) (-1967 (((-623 |#4|) (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2065 (((-623 |#4|) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-1585 (((-623 |#4|) (-623 |#4|)) 110)) (-1485 (((-623 |#4|) (-623 |#4|) (-623 |#4|) (-112)) 48) (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 50)) (-1564 ((|#4| |#4| (-623 |#4|)) 49)) (-4103 (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 114 (|has| |#1| (-444)))) (-1281 (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 117 (|has| |#1| (-444)))) (-4217 (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 116 (|has| |#1| (-444)))) (-1809 (((-623 |#4|) (-623 |#4|) (-623 |#4|) (-1 (-623 |#4|) (-623 |#4|))) 87) (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 89) (((-623 |#4|) (-623 |#4|) |#4|) 121) (((-623 |#4|) |#4| |#4|) 119) (((-623 |#4|) (-623 |#4|)) 88)) (-3401 (((-623 |#4|) (-623 |#4|) (-623 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-4251 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|)) 41)) (-2100 (((-112) (-623 |#4|)) 62)) (-2010 (((-112) (-623 |#4|) (-623 (-623 |#4|))) 53)) (-1315 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|)) 29)) (-4289 (((-112) |#4|) 28)) (-3299 (((-623 |#4|) (-623 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-1378 (((-623 |#4|) (-623 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-1669 (((-623 |#4|) (-623 |#4|)) 66)) (-1876 (((-623 |#4|) (-623 |#4|)) 79)) (-1906 (((-112) (-623 |#4|) (-623 |#4|)) 51)) (-1508 (((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|)) 39)) (-1410 (((-112) |#4|) 36))) +(((-950 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1809 ((-623 |#4|) (-623 |#4|))) (-15 -1809 ((-623 |#4|) |#4| |#4|)) (-15 -1585 ((-623 |#4|) (-623 |#4|))) (-15 -1693 ((-623 |#4|) |#4| |#4|)) (-15 -1809 ((-623 |#4|) (-623 |#4|) |#4|)) (-15 -1809 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -1809 ((-623 |#4|) (-623 |#4|) (-623 |#4|) (-1 (-623 |#4|) (-623 |#4|)))) (-15 -1906 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2010 ((-112) (-623 |#4|) (-623 (-623 |#4|)))) (-15 -2100 ((-112) (-623 |#4|))) (-15 -3932 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-1 (-112) |#4|) (-623 |#4|))) (-15 -4023 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|))) (-15 -4130 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|))) (-15 -4251 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -4079 ((-112) |#4|)) (-15 -4175 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -4289 ((-112) |#4|)) (-15 -1315 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -1410 ((-112) |#4|)) (-15 -1508 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -1485 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -1485 ((-623 |#4|) (-623 |#4|) (-623 |#4|) (-112))) (-15 -1564 (|#4| |#4| (-623 |#4|))) (-15 -1669 ((-623 |#4|) (-623 |#4|))) (-15 -1777 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|))) (-15 -1876 ((-623 |#4|) (-623 |#4|))) (-15 -1967 ((-623 |#4|) (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2065 ((-623 |#4|) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3897 ((-623 |#4|) |#4|)) (-15 -3993 ((-623 |#4|) (-623 |#4|))) (-15 -3993 ((-623 |#4|) (-623 |#4|) (-112))) (-15 -4103 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -4217 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -1281 ((-623 |#4|) (-623 |#4|) (-623 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -1378 ((-623 |#4|) (-623 |#4|))) (-15 -3299 ((-623 |#4|) (-623 |#4|))) (-15 -3401 ((-623 |#4|) (-623 |#4|) (-623 |#4|)))) |%noBranch|) |%noBranch|)) (-542) (-771) (-825) (-1034 |#1| |#2| |#3|)) (T -950)) +((-3401 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-1281 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-4217 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-4103 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-3993 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-112)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-950 *4 *5 *6 *7)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-3897 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6)))) (-2065 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-950 *5 *6 *7 *8)))) (-1967 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-623 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1034 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *1 (-950 *6 *7 *8 *9)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-1777 (*1 *2 *3) (|partial| -12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -2038 (-623 *7)))) (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-1564 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-950 *4 *5 *6 *2)))) (-1485 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-112)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-950 *4 *5 *6 *7)))) (-1485 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-1508 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6)))) (-1315 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-4289 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6)))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6)))) (-4251 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1 (-112) *8))) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) (-5 *1 (-950 *5 *6 *7 *8)) (-5 *4 (-623 *8)))) (-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1 (-112) *8))) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) (-5 *1 (-950 *5 *6 *7 *8)) (-5 *4 (-623 *8)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) (-5 *1 (-950 *5 *6 *7 *8)) (-5 *4 (-623 *8)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-950 *4 *5 *6 *7)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-623 *8))) (-5 *3 (-623 *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-112)) (-5 *1 (-950 *5 *6 *7 *8)))) (-1906 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-950 *4 *5 *6 *7)))) (-1809 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-623 *7) (-623 *7))) (-5 *2 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-950 *4 *5 *6 *7)))) (-1809 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-1809 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-950 *4 *5 *6 *3)))) (-1693 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) (-1809 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6)))) (-1809 (*1 *2 *2) (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6))))) +(-10 -7 (-15 -1809 ((-623 |#4|) (-623 |#4|))) (-15 -1809 ((-623 |#4|) |#4| |#4|)) (-15 -1585 ((-623 |#4|) (-623 |#4|))) (-15 -1693 ((-623 |#4|) |#4| |#4|)) (-15 -1809 ((-623 |#4|) (-623 |#4|) |#4|)) (-15 -1809 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -1809 ((-623 |#4|) (-623 |#4|) (-623 |#4|) (-1 (-623 |#4|) (-623 |#4|)))) (-15 -1906 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2010 ((-112) (-623 |#4|) (-623 (-623 |#4|)))) (-15 -2100 ((-112) (-623 |#4|))) (-15 -3932 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-1 (-112) |#4|) (-623 |#4|))) (-15 -4023 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|))) (-15 -4130 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 (-1 (-112) |#4|)) (-623 |#4|))) (-15 -4251 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -4079 ((-112) |#4|)) (-15 -4175 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -4289 ((-112) |#4|)) (-15 -1315 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -1410 ((-112) |#4|)) (-15 -1508 ((-2 (|:| |goodPols| (-623 |#4|)) (|:| |badPols| (-623 |#4|))) (-623 |#4|))) (-15 -1485 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -1485 ((-623 |#4|) (-623 |#4|) (-623 |#4|) (-112))) (-15 -1564 (|#4| |#4| (-623 |#4|))) (-15 -1669 ((-623 |#4|) (-623 |#4|))) (-15 -1777 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|))) (-15 -1876 ((-623 |#4|) (-623 |#4|))) (-15 -1967 ((-623 |#4|) (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2065 ((-623 |#4|) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3897 ((-623 |#4|) |#4|)) (-15 -3993 ((-623 |#4|) (-623 |#4|))) (-15 -3993 ((-623 |#4|) (-623 |#4|) (-112))) (-15 -4103 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -4217 ((-623 |#4|) (-623 |#4|) (-623 |#4|))) (-15 -1281 ((-623 |#4|) (-623 |#4|) (-623 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -1378 ((-623 |#4|) (-623 |#4|))) (-15 -3299 ((-623 |#4|) (-623 |#4|))) (-15 -3401 ((-623 |#4|) (-623 |#4|) (-623 |#4|)))) |%noBranch|) |%noBranch|)) +((-3497 (((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3701 (((-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1227 |#1|)))) (-667 |#1|) (-1227 |#1|)) 36)) (-3609 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) +(((-951 |#1|) (-10 -7 (-15 -3497 ((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3609 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3701 ((-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1227 |#1|)))) (-667 |#1|) (-1227 |#1|)))) (-356)) (T -951)) +((-3701 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-623 (-2 (|:| C (-667 *5)) (|:| |g| (-1227 *5))))) (-5 *1 (-951 *5)) (-5 *3 (-667 *5)) (-5 *4 (-1227 *5)))) (-3609 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-667 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-951 *5)))) (-3497 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| R (-667 *6)) (|:| A (-667 *6)) (|:| |Ainv| (-667 *6)))) (-5 *1 (-951 *6)) (-5 *3 (-667 *6))))) +(-10 -7 (-15 -3497 ((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3609 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3701 ((-623 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1227 |#1|)))) (-667 |#1|) (-1227 |#1|)))) +((-3564 (((-411 |#4|) |#4|) 48))) +(((-952 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3564 ((-411 |#4|) |#4|))) (-825) (-771) (-444) (-922 |#3| |#2| |#1|)) (T -952)) +((-3564 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-444)) (-5 *2 (-411 *3)) (-5 *1 (-952 *4 *5 *6 *3)) (-4 *3 (-922 *6 *5 *4))))) +(-10 -7 (-15 -3564 ((-411 |#4|) |#4|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-2584 (($ (-749)) 112 (|has| |#1| (-23)))) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4343))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4343))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 58 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-2342 (($ $) 90 (|has| $ (-6 -4343)))) (-3243 (($ $) 100)) (-1328 (($ $) 78 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#1| $) 77 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 51)) (-2302 (((-550) (-1 (-112) |#1|) $) 97) (((-550) |#1| $) 96 (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) 95 (|has| |#1| (-1068)))) (-2644 (($ (-623 |#1|)) 118)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2012 (((-667 |#1|) $ $) 105 (|has| |#1| (-1020)))) (-2578 (($ (-749) |#1|) 69)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-2707 (($ $ $) 87 (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-4164 (($ $ $) 86 (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3182 ((|#1| $) 102 (-12 (|has| |#1| (-1020)) (|has| |#1| (-975))))) (-1573 (((-112) $ (-749)) 10)) (-3772 ((|#1| $) 103 (-12 (|has| |#1| (-1020)) (|has| |#1| (-975))))) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 42 (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3111 (($ $ |#1|) 41 (|has| $ (-6 -4343)))) (-2272 (($ $ (-623 |#1|)) 115)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1194 (-550))) 63)) (-3440 ((|#1| $ $) 106 (|has| |#1| (-1020)))) (-2854 (((-894) $) 117)) (-1529 (($ $ (-550)) 62) (($ $ (-1194 (-550))) 61)) (-3305 (($ $ $) 104)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3593 (($ $ $ (-550)) 91 (|has| $ (-6 -4343)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 79 (|has| |#1| (-596 (-526)))) (($ (-623 |#1|)) 116)) (-1532 (($ (-623 |#1|)) 70)) (-3227 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 83 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-2354 (((-112) $ $) 85 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 82 (|has| |#1| (-825)))) (-2403 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2391 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-550) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-705))) (($ $ |#1|) 107 (|has| |#1| (-705)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-953 |#1|) (-138) (-1020)) (T -953)) +((-2644 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1020)) (-4 *1 (-953 *3)))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-953 *3)) (-4 *3 (-1020)) (-5 *2 (-894)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1020)) (-4 *1 (-953 *3)))) (-3305 (*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1020)))) (-2272 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *1 (-953 *3)) (-4 *3 (-1020))))) +(-13 (-1225 |t#1|) (-10 -8 (-15 -2644 ($ (-623 |t#1|))) (-15 -2854 ((-894) $)) (-15 -4028 ($ (-623 |t#1|))) (-15 -3305 ($ $ $)) (-15 -2272 ($ $ (-623 |t#1|))))) +(((-34) . T) ((-101) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-629 |#1|) . T) ((-19 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1068) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-1181) . T) ((-1225 |#1|) . T)) +((-3972 (((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)) 17))) +(((-954 |#1| |#2|) (-10 -7 (-15 -3972 ((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)))) (-1020) (-1020)) (T -954)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-916 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-916 *6)) (-5 *1 (-954 *5 *6))))) +(-10 -7 (-15 -3972 ((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)))) +((-2773 ((|#1| (-916 |#1|)) 13)) (-2703 ((|#1| (-916 |#1|)) 12)) (-3789 ((|#1| (-916 |#1|)) 11)) (-2943 ((|#1| (-916 |#1|)) 15)) (-2199 ((|#1| (-916 |#1|)) 21)) (-2863 ((|#1| (-916 |#1|)) 14)) (-3032 ((|#1| (-916 |#1|)) 16)) (-3206 ((|#1| (-916 |#1|)) 20)) (-3121 ((|#1| (-916 |#1|)) 19))) +(((-955 |#1|) (-10 -7 (-15 -3789 (|#1| (-916 |#1|))) (-15 -2703 (|#1| (-916 |#1|))) (-15 -2773 (|#1| (-916 |#1|))) (-15 -2863 (|#1| (-916 |#1|))) (-15 -2943 (|#1| (-916 |#1|))) (-15 -3032 (|#1| (-916 |#1|))) (-15 -3121 (|#1| (-916 |#1|))) (-15 -3206 (|#1| (-916 |#1|))) (-15 -2199 (|#1| (-916 |#1|)))) (-1020)) (T -955)) +((-2199 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(-10 -7 (-15 -3789 (|#1| (-916 |#1|))) (-15 -2703 (|#1| (-916 |#1|))) (-15 -2773 (|#1| (-916 |#1|))) (-15 -2863 (|#1| (-916 |#1|))) (-15 -2943 (|#1| (-916 |#1|))) (-15 -3032 (|#1| (-916 |#1|))) (-15 -3121 (|#1| (-916 |#1|))) (-15 -3206 (|#1| (-916 |#1|))) (-15 -2199 (|#1| (-916 |#1|)))) +((-1263 (((-3 |#1| "failed") |#1|) 18)) (-1463 (((-3 |#1| "failed") |#1|) 6)) (-4139 (((-3 |#1| "failed") |#1|) 16)) (-2505 (((-3 |#1| "failed") |#1|) 4)) (-3286 (((-3 |#1| "failed") |#1|) 20)) (-1665 (((-3 |#1| "failed") |#1|) 8)) (-2280 (((-3 |#1| "failed") |#1| (-749)) 1)) (-2429 (((-3 |#1| "failed") |#1|) 3)) (-2350 (((-3 |#1| "failed") |#1|) 2)) (-3372 (((-3 |#1| "failed") |#1|) 21)) (-1770 (((-3 |#1| "failed") |#1|) 9)) (-1359 (((-3 |#1| "failed") |#1|) 19)) (-1571 (((-3 |#1| "failed") |#1|) 7)) (-4223 (((-3 |#1| "failed") |#1|) 17)) (-2574 (((-3 |#1| "failed") |#1|) 5)) (-3847 (((-3 |#1| "failed") |#1|) 24)) (-2050 (((-3 |#1| "failed") |#1|) 12)) (-3460 (((-3 |#1| "failed") |#1|) 22)) (-1868 (((-3 |#1| "failed") |#1|) 10)) (-2869 (((-3 |#1| "failed") |#1|) 26)) (-3955 (((-3 |#1| "failed") |#1|) 14)) (-2937 (((-3 |#1| "failed") |#1|) 27)) (-4057 (((-3 |#1| "failed") |#1|) 15)) (-2757 (((-3 |#1| "failed") |#1|) 25)) (-3876 (((-3 |#1| "failed") |#1|) 13)) (-3558 (((-3 |#1| "failed") |#1|) 23)) (-1960 (((-3 |#1| "failed") |#1|) 11))) +(((-956 |#1|) (-138) (-1166)) (T -956)) +((-2937 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-2869 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-2757 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-3847 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-3558 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-3460 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-3372 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-3286 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-1359 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-1263 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-4223 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-4139 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-4057 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-3955 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-3876 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-2050 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-1960 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-1868 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-1770 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-1665 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-1571 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-1463 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-2574 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-2505 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-2429 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-2350 (*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166)))) (-2280 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(-13 (-10 -7 (-15 -2280 ((-3 |t#1| "failed") |t#1| (-749))) (-15 -2350 ((-3 |t#1| "failed") |t#1|)) (-15 -2429 ((-3 |t#1| "failed") |t#1|)) (-15 -2505 ((-3 |t#1| "failed") |t#1|)) (-15 -2574 ((-3 |t#1| "failed") |t#1|)) (-15 -1463 ((-3 |t#1| "failed") |t#1|)) (-15 -1571 ((-3 |t#1| "failed") |t#1|)) (-15 -1665 ((-3 |t#1| "failed") |t#1|)) (-15 -1770 ((-3 |t#1| "failed") |t#1|)) (-15 -1868 ((-3 |t#1| "failed") |t#1|)) (-15 -1960 ((-3 |t#1| "failed") |t#1|)) (-15 -2050 ((-3 |t#1| "failed") |t#1|)) (-15 -3876 ((-3 |t#1| "failed") |t#1|)) (-15 -3955 ((-3 |t#1| "failed") |t#1|)) (-15 -4057 ((-3 |t#1| "failed") |t#1|)) (-15 -4139 ((-3 |t#1| "failed") |t#1|)) (-15 -4223 ((-3 |t#1| "failed") |t#1|)) (-15 -1263 ((-3 |t#1| "failed") |t#1|)) (-15 -1359 ((-3 |t#1| "failed") |t#1|)) (-15 -3286 ((-3 |t#1| "failed") |t#1|)) (-15 -3372 ((-3 |t#1| "failed") |t#1|)) (-15 -3460 ((-3 |t#1| "failed") |t#1|)) (-15 -3558 ((-3 |t#1| "failed") |t#1|)) (-15 -3847 ((-3 |t#1| "failed") |t#1|)) (-15 -2757 ((-3 |t#1| "failed") |t#1|)) (-15 -2869 ((-3 |t#1| "failed") |t#1|)) (-15 -2937 ((-3 |t#1| "failed") |t#1|)))) +((-3117 ((|#4| |#4| (-623 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3028 ((|#4| |#4| (-623 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3972 ((|#4| (-1 |#4| (-925 |#1|)) |#4|) 30))) +(((-957 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3028 (|#4| |#4| |#3|)) (-15 -3028 (|#4| |#4| (-623 |#3|))) (-15 -3117 (|#4| |#4| |#3|)) (-15 -3117 (|#4| |#4| (-623 |#3|))) (-15 -3972 (|#4| (-1 |#4| (-925 |#1|)) |#4|))) (-1020) (-771) (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144))))) (-922 (-925 |#1|) |#2| |#3|)) (T -957)) +((-3972 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-925 *4))) (-4 *4 (-1020)) (-4 *2 (-922 (-925 *4) *5 *6)) (-4 *5 (-771)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144)))))) (-5 *1 (-957 *4 *5 *6 *2)))) (-3117 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144)))))) (-4 *4 (-1020)) (-4 *5 (-771)) (-5 *1 (-957 *4 *5 *6 *2)) (-4 *2 (-922 (-925 *4) *5 *6)))) (-3117 (*1 *2 *2 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144)))))) (-5 *1 (-957 *4 *5 *3 *2)) (-4 *2 (-922 (-925 *4) *5 *3)))) (-3028 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *6)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144)))))) (-4 *4 (-1020)) (-4 *5 (-771)) (-5 *1 (-957 *4 *5 *6 *2)) (-4 *2 (-922 (-925 *4) *5 *6)))) (-3028 (*1 *2 *2 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)) (-15 -1861 ((-3 $ "failed") (-1144)))))) (-5 *1 (-957 *4 *5 *3 *2)) (-4 *2 (-922 (-925 *4) *5 *3))))) +(-10 -7 (-15 -3028 (|#4| |#4| |#3|)) (-15 -3028 (|#4| |#4| (-623 |#3|))) (-15 -3117 (|#4| |#4| |#3|)) (-15 -3117 (|#4| |#4| (-623 |#3|))) (-15 -3972 (|#4| (-1 |#4| (-925 |#1|)) |#4|))) +((-3211 ((|#2| |#3|) 35)) (-2457 (((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|) 73)) (-2372 (((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) 89))) +(((-958 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2372 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -2457 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|)) (-15 -3211 (|#2| |#3|))) (-342) (-1203 |#1|) (-1203 |#2|) (-703 |#2| |#3|)) (T -958)) +((-3211 (*1 *2 *3) (-12 (-4 *3 (-1203 *2)) (-4 *2 (-1203 *4)) (-5 *1 (-958 *4 *2 *3 *5)) (-4 *4 (-342)) (-4 *5 (-703 *2 *3)))) (-2457 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 *3)) (-5 *2 (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-958 *4 *3 *5 *6)) (-4 *6 (-703 *3 *5)))) (-2372 (*1 *2) (-12 (-4 *3 (-342)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 *4)) (-5 *2 (-2 (|:| -2437 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-703 *4 *5))))) +(-10 -7 (-15 -2372 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -2457 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|)) (-15 -3211 (|#2| |#3|))) +((-2563 (((-960 (-400 (-550)) (-838 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550)))) (-960 (-400 (-550)) (-838 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550))))) 69))) +(((-959 |#1| |#2|) (-10 -7 (-15 -2563 ((-960 (-400 (-550)) (-838 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550)))) (-960 (-400 (-550)) (-838 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550))))))) (-623 (-1144)) (-749)) (T -959)) +((-2563 (*1 *2 *2) (-12 (-5 *2 (-960 (-400 (-550)) (-838 *3) (-234 *4 (-749)) (-241 *3 (-400 (-550))))) (-14 *3 (-623 (-1144))) (-14 *4 (-749)) (-5 *1 (-959 *3 *4))))) +(-10 -7 (-15 -2563 ((-960 (-400 (-550)) (-838 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550)))) (-960 (-400 (-550)) (-838 |#1|) (-234 |#2| (-749)) (-241 |#1| (-400 (-550))))))) +((-1504 (((-112) $ $) NIL)) (-2418 (((-3 (-112) "failed") $) 69)) (-1594 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2416 (($ $ (-3 (-112) "failed")) 70)) (-2490 (($ (-623 |#4|) |#4|) 25)) (-1825 (((-1126) $) NIL)) (-2183 (($ $) 67)) (-3337 (((-1088) $) NIL)) (-2902 (((-112) $) 68)) (-3498 (($) 30)) (-2261 ((|#4| $) 72)) (-2328 (((-623 |#4|) $) 71)) (-1518 (((-836) $) 66)) (-2316 (((-112) $ $) NIL))) +(((-960 |#1| |#2| |#3| |#4|) (-13 (-1068) (-595 (-836)) (-10 -8 (-15 -3498 ($)) (-15 -2490 ($ (-623 |#4|) |#4|)) (-15 -2418 ((-3 (-112) "failed") $)) (-15 -2416 ($ $ (-3 (-112) "failed"))) (-15 -2902 ((-112) $)) (-15 -2328 ((-623 |#4|) $)) (-15 -2261 (|#4| $)) (-15 -2183 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -1594 ($ $)) |%noBranch|) |%noBranch|))) (-444) (-825) (-771) (-922 |#1| |#3| |#2|)) (T -960)) +((-3498 (*1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-922 *2 *4 *3)))) (-2490 (*1 *1 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-922 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *1 (-960 *4 *5 *6 *3)))) (-2418 (*1 *2 *1) (|partial| -12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-922 *3 *5 *4)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-922 *3 *5 *4)))) (-2902 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-922 *3 *5 *4)))) (-2328 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-623 *6)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-922 *3 *5 *4)))) (-2261 (*1 *2 *1) (-12 (-4 *2 (-922 *3 *5 *4)) (-5 *1 (-960 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)))) (-2183 (*1 *1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-922 *2 *4 *3)))) (-1594 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-922 *2 *4 *3))))) +(-13 (-1068) (-595 (-836)) (-10 -8 (-15 -3498 ($)) (-15 -2490 ($ (-623 |#4|) |#4|)) (-15 -2418 ((-3 (-112) "failed") $)) (-15 -2416 ($ $ (-3 (-112) "failed"))) (-15 -2902 ((-112) $)) (-15 -2328 ((-623 |#4|) $)) (-15 -2261 (|#4| $)) (-15 -2183 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -1594 ($ $)) |%noBranch|) |%noBranch|))) +((-2832 (((-112) |#5| |#5|) 38)) (-3080 (((-112) |#5| |#5|) 52)) (-2399 (((-112) |#5| (-623 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3174 (((-112) (-623 |#4|) (-623 |#4|)) 58)) (-2548 (((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) 63)) (-2741 (((-1232)) 33)) (-2657 (((-1232) (-1126) (-1126) (-1126)) 29)) (-2474 (((-623 |#5|) (-623 |#5|)) 81)) (-2623 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) 79)) (-1531 (((-623 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112)) 101)) (-2993 (((-112) |#5| |#5|) 47)) (-2323 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2162 (((-112) (-623 |#4|) (-623 |#4|)) 57)) (-2245 (((-112) (-623 |#4|) (-623 |#4|)) 59)) (-3831 (((-112) (-623 |#4|) (-623 |#4|)) 60)) (-1629 (((-3 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-2912 (((-623 |#5|) (-623 |#5|)) 43))) +(((-961 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2657 ((-1232) (-1126) (-1126) (-1126))) (-15 -2741 ((-1232))) (-15 -2832 ((-112) |#5| |#5|)) (-15 -2912 ((-623 |#5|) (-623 |#5|))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -3080 ((-112) |#5| |#5|)) (-15 -3174 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2162 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2245 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3831 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2323 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2399 ((-112) |#5| |#5|)) (-15 -2399 ((-112) |#5| (-623 |#5|))) (-15 -2474 ((-623 |#5|) (-623 |#5|))) (-15 -2548 ((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) (-15 -2623 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-15 -1531 ((-623 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -1629 ((-3 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1040 |#1| |#2| |#3| |#4|)) (T -961)) +((-1629 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1034 *6 *7 *8)) (-5 *2 (-2 (|:| -1721 (-623 *9)) (|:| -3223 *4) (|:| |ineq| (-623 *9)))) (-5 *1 (-961 *6 *7 *8 *9 *4)) (-5 *3 (-623 *9)) (-4 *4 (-1040 *6 *7 *8 *9)))) (-1531 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-623 *10)) (-5 *5 (-112)) (-4 *10 (-1040 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1034 *6 *7 *8)) (-5 *2 (-623 (-2 (|:| -1721 (-623 *9)) (|:| -3223 *10) (|:| |ineq| (-623 *9))))) (-5 *1 (-961 *6 *7 *8 *9 *10)) (-5 *3 (-623 *9)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-623 (-2 (|:| |val| (-623 *6)) (|:| -3223 *7)))) (-4 *6 (-1034 *3 *4 *5)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-961 *3 *4 *5 *6 *7)))) (-2548 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -3223 *8))) (-4 *7 (-1034 *4 *5 *6)) (-4 *8 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *8)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-623 *7)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *1 (-961 *3 *4 *5 *6 *7)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-961 *5 *6 *7 *8 *3)))) (-2399 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-3831 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-2245 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-2162 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-3174 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-3080 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-2993 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-623 *7)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *1 (-961 *3 *4 *5 *6 *7)))) (-2832 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-2741 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) (-5 *1 (-961 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) (-2657 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(-10 -7 (-15 -2657 ((-1232) (-1126) (-1126) (-1126))) (-15 -2741 ((-1232))) (-15 -2832 ((-112) |#5| |#5|)) (-15 -2912 ((-623 |#5|) (-623 |#5|))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -3080 ((-112) |#5| |#5|)) (-15 -3174 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2162 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2245 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3831 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2323 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2399 ((-112) |#5| |#5|)) (-15 -2399 ((-112) |#5| (-623 |#5|))) (-15 -2474 ((-623 |#5|) (-623 |#5|))) (-15 -2548 ((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) (-15 -2623 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-15 -1531 ((-623 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -1629 ((-3 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1861 (((-1144) $) 15)) (-3625 (((-1126) $) 16)) (-3065 (($ (-1144) (-1126)) 14)) (-1518 (((-836) $) 13))) +(((-962) (-13 (-595 (-836)) (-10 -8 (-15 -3065 ($ (-1144) (-1126))) (-15 -1861 ((-1144) $)) (-15 -3625 ((-1126) $))))) (T -962)) +((-3065 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1126)) (-5 *1 (-962)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-962)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-962))))) +(-13 (-595 (-836)) (-10 -8 (-15 -3065 ($ (-1144) (-1126))) (-15 -1861 ((-1144) $)) (-15 -3625 ((-1126) $)))) +((-3972 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-963 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#4| (-1 |#2| |#1|) |#3|))) (-542) (-542) (-965 |#1|) (-965 |#2|)) (T -963)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-4 *2 (-965 *6)) (-5 *1 (-963 *5 *6 *4 *2)) (-4 *4 (-965 *5))))) +(-10 -7 (-15 -3972 (|#4| (-1 |#2| |#1|) |#3|))) +((-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-1144) "failed") $) 65) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) 95)) (-2726 ((|#2| $) NIL) (((-1144) $) 60) (((-400 (-550)) $) NIL) (((-550) $) 92)) (-3780 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) 112) (((-667 |#2|) (-667 $)) 28)) (-1741 (($) 98)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 75) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 84)) (-1552 (($ $) 10)) (-2826 (((-3 $ "failed") $) 20)) (-3972 (($ (-1 |#2| |#2|) $) 22)) (-3862 (($) 16)) (-3948 (($ $) 54)) (-2393 (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1144)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2639 (($ $) 12)) (-4028 (((-865 (-550)) $) 70) (((-865 (-372)) $) 79) (((-526) $) 40) (((-372) $) 44) (((-219) $) 47)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 90) (($ |#2|) NIL) (($ (-1144)) 57)) (-2390 (((-749)) 31)) (-2335 (((-112) $ $) 50))) +(((-964 |#1| |#2|) (-10 -8 (-15 -2335 ((-112) |#1| |#1|)) (-15 -3862 (|#1|)) (-15 -2826 ((-3 |#1| "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -4028 ((-219) |#1|)) (-15 -4028 ((-372) |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -2726 ((-1144) |#1|)) (-15 -3880 ((-3 (-1144) "failed") |#1|)) (-15 -1518 (|#1| (-1144))) (-15 -1741 (|#1|)) (-15 -3948 (|#1| |#1|)) (-15 -2639 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -4312 ((-862 (-372) |#1|) |#1| (-865 (-372)) (-862 (-372) |#1|))) (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|))) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -3780 ((-667 |#2|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| |#1|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 -1518 ((-836) |#1|))) (-965 |#2|) (-542)) (T -964)) +((-2390 (*1 *2) (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-964 *3 *4)) (-4 *3 (-965 *4))))) +(-10 -8 (-15 -2335 ((-112) |#1| |#1|)) (-15 -3862 (|#1|)) (-15 -2826 ((-3 |#1| "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -4028 ((-219) |#1|)) (-15 -4028 ((-372) |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -2726 ((-1144) |#1|)) (-15 -3880 ((-3 (-1144) "failed") |#1|)) (-15 -1518 (|#1| (-1144))) (-15 -1741 (|#1|)) (-15 -3948 (|#1| |#1|)) (-15 -2639 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -4312 ((-862 (-372) |#1|) |#1| (-865 (-372)) (-862 (-372) |#1|))) (-15 -4312 ((-862 (-550) |#1|) |#1| (-865 (-550)) (-862 (-550) |#1|))) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -3780 ((-667 |#2|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| |#1|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1453 ((|#1| $) 136 (|has| |#1| (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-3688 (((-411 (-1140 $)) (-1140 $)) 127 (|has| |#1| (-882)))) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 130 (|has| |#1| (-882)))) (-3631 (((-112) $ $) 57)) (-3712 (((-550) $) 117 (|has| |#1| (-798)))) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#1| "failed") $) 175) (((-3 (-1144) "failed") $) 125 (|has| |#1| (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) 109 (|has| |#1| (-1011 (-550)))) (((-3 (-550) "failed") $) 107 (|has| |#1| (-1011 (-550))))) (-2726 ((|#1| $) 174) (((-1144) $) 124 (|has| |#1| (-1011 (-1144)))) (((-400 (-550)) $) 108 (|has| |#1| (-1011 (-550)))) (((-550) $) 106 (|has| |#1| (-1011 (-550))))) (-3349 (($ $ $) 53)) (-3780 (((-667 (-550)) (-667 $)) 149 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 148 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 147) (((-667 |#1|) (-667 $)) 146)) (-1386 (((-3 $ "failed") $) 32)) (-1741 (($) 134 (|has| |#1| (-535)))) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3933 (((-112) $) 68)) (-1416 (((-112) $) 119 (|has| |#1| (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 143 (|has| |#1| (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 142 (|has| |#1| (-859 (-372))))) (-3102 (((-112) $) 30)) (-1552 (($ $) 138)) (-2705 ((|#1| $) 140)) (-2826 (((-3 $ "failed") $) 105 (|has| |#1| (-1119)))) (-3329 (((-112) $) 118 (|has| |#1| (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2707 (($ $ $) 115 (|has| |#1| (-825)))) (-4164 (($ $ $) 114 (|has| |#1| (-825)))) (-3972 (($ (-1 |#1| |#1|) $) 166)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-3862 (($) 104 (|has| |#1| (-1119)) CONST)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3948 (($ $) 135 (|has| |#1| (-300)))) (-1608 ((|#1| $) 132 (|has| |#1| (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) 129 (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) 128 (|has| |#1| (-882)))) (-3338 (((-411 $) $) 71)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) 172 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 170 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 169 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) 168 (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) 167 (|has| |#1| (-505 (-1144) |#1|)))) (-3542 (((-749) $) 56)) (-2680 (($ $ |#1|) 173 (|has| |#1| (-279 |#1| |#1|)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-2393 (($ $) 165 (|has| |#1| (-227))) (($ $ (-749)) 163 (|has| |#1| (-227))) (($ $ (-1144)) 161 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 160 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 159 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) 158 (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2639 (($ $) 137)) (-2715 ((|#1| $) 139)) (-4028 (((-865 (-550)) $) 145 (|has| |#1| (-596 (-865 (-550))))) (((-865 (-372)) $) 144 (|has| |#1| (-596 (-865 (-372))))) (((-526) $) 122 (|has| |#1| (-596 (-526)))) (((-372) $) 121 (|has| |#1| (-995))) (((-219) $) 120 (|has| |#1| (-995)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 131 (-1262 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ |#1|) 178) (($ (-1144)) 126 (|has| |#1| (-1011 (-1144))))) (-4242 (((-3 $ "failed") $) 123 (-1561 (|has| |#1| (-143)) (-1262 (|has| $ (-143)) (|has| |#1| (-882)))))) (-2390 (((-749)) 28)) (-1754 ((|#1| $) 133 (|has| |#1| (-535)))) (-1345 (((-112) $ $) 37)) (-1635 (($ $) 116 (|has| |#1| (-798)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $) 164 (|has| |#1| (-227))) (($ $ (-749)) 162 (|has| |#1| (-227))) (($ $ (-1144)) 157 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 156 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 155 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) 154 (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2363 (((-112) $ $) 112 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 111 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 113 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 110 (|has| |#1| (-825)))) (-2414 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-965 |#1|) (-138) (-542)) (T -965)) +((-2414 (*1 *1 *2 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)))) (-2715 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)))) (-1552 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)))) (-2639 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) (-3948 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) (-1741 (*1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-535)) (-4 *2 (-542)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)) (-4 *2 (-535)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)) (-4 *2 (-535))))) +(-13 (-356) (-38 |t#1|) (-1011 |t#1|) (-331 |t#1|) (-225 |t#1|) (-370 |t#1|) (-857 |t#1|) (-393 |t#1|) (-10 -8 (-15 -2414 ($ |t#1| |t#1|)) (-15 -2705 (|t#1| $)) (-15 -2715 (|t#1| $)) (-15 -1552 ($ $)) (-15 -2639 ($ $)) (IF (|has| |t#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |t#1| (-1011 (-550))) (PROGN (-6 (-1011 (-550))) (-6 (-1011 (-400 (-550))))) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#1| (-995)) (-6 (-995)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1011 (-1144))) (-6 (-1011 (-1144))) |%noBranch|) (IF (|has| |t#1| (-300)) (PROGN (-15 -1453 (|t#1| $)) (-15 -3948 ($ $))) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -1741 ($)) (-15 -1754 (|t#1| $)) (-15 -1608 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-882)) (-6 (-882)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) . T) ((-596 (-219)) |has| |#1| (-995)) ((-596 (-372)) |has| |#1| (-995)) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-596 (-865 (-372))) |has| |#1| (-596 (-865 (-372)))) ((-596 (-865 (-550))) |has| |#1| (-596 (-865 (-550)))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) . T) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) . T) ((-300) . T) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-444) . T) ((-505 (-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-542) . T) ((-626 #0#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-769) |has| |#1| (-798)) ((-770) |has| |#1| (-798)) ((-772) |has| |#1| (-798)) ((-773) |has| |#1| (-798)) ((-798) |has| |#1| (-798)) ((-823) |has| |#1| (-798)) ((-825) -1561 (|has| |#1| (-825)) (|has| |#1| (-798))) ((-873 (-1144)) |has| |#1| (-873 (-1144))) ((-859 (-372)) |has| |#1| (-859 (-372))) ((-859 (-550)) |has| |#1| (-859 (-550))) ((-857 |#1|) . T) ((-882) |has| |#1| (-882)) ((-893) . T) ((-995) |has| |#1| (-995)) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-550))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 (-1144)) |has| |#1| (-1011 (-1144))) ((-1011 |#1|) . T) ((-1026 #0#) . T) ((-1026 |#1|) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) |has| |#1| (-1119)) ((-1181) . T) ((-1185) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-1649 (($ (-1110 |#1| |#2|)) 11)) (-2458 (((-1110 |#1| |#2|) $) 12)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2680 ((|#2| $ (-234 |#1| |#2|)) 16)) (-1518 (((-836) $) NIL)) (-2626 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL))) +(((-966 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1649 ($ (-1110 |#1| |#2|))) (-15 -2458 ((-1110 |#1| |#2|) $)) (-15 -2680 (|#2| $ (-234 |#1| |#2|))))) (-894) (-356)) (T -966)) +((-1649 (*1 *1 *2) (-12 (-5 *2 (-1110 *3 *4)) (-14 *3 (-894)) (-4 *4 (-356)) (-5 *1 (-966 *3 *4)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-1110 *3 *4)) (-5 *1 (-966 *3 *4)) (-14 *3 (-894)) (-4 *4 (-356)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 (-234 *4 *2)) (-14 *4 (-894)) (-4 *2 (-356)) (-5 *1 (-966 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -1649 ($ (-1110 |#1| |#2|))) (-15 -2458 ((-1110 |#1| |#2|) $)) (-15 -2680 (|#2| $ (-234 |#1| |#2|))))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2802 (((-1103) $) 9)) (-1518 (((-836) $) 17) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-967) (-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $))))) (T -967)) +((-2802 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-967))))) +(-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) 8)) (-3513 (($) 7 T CONST)) (-1945 (($ $) 46)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-3772 (((-749) $) 45)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1854 ((|#1| $) 44)) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2131 ((|#1| |#1| $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2047 ((|#1| $) 47)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 42)) (-1752 ((|#1| $) 43)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-968 |#1|) (-138) (-1181)) (T -968)) +((-2131 (*1 *2 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181)))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181)))) (-1945 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1181)) (-5 *2 (-749)))) (-1854 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4342) (-15 -2131 (|t#1| |t#1| $)) (-15 -2047 (|t#1| $)) (-15 -1945 ($ $)) (-15 -3772 ((-749) $)) (-15 -1854 (|t#1| $)) (-15 -1752 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-3433 (((-112) $) 42)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2726 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#2| $) 43)) (-3207 (((-3 (-400 (-550)) "failed") $) 78)) (-3122 (((-112) $) 72)) (-3042 (((-400 (-550)) $) 76)) (-3102 (((-112) $) 41)) (-1389 ((|#2| $) 22)) (-3972 (($ (-1 |#2| |#2|) $) 19)) (-3235 (($ $) 61)) (-2393 (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1144)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4028 (((-526) $) 67)) (-1270 (($ $) 17)) (-1518 (((-836) $) 56) (($ (-550)) 38) (($ |#2|) 36) (($ (-400 (-550))) NIL)) (-2390 (((-749)) 10)) (-1635 ((|#2| $) 71)) (-2316 (((-112) $ $) 25)) (-2335 (((-112) $ $) 69)) (-2403 (($ $) 29) (($ $ $) 28)) (-2391 (($ $ $) 26)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL))) +(((-969 |#1| |#2|) (-10 -8 (-15 -1518 (|#1| (-400 (-550)))) (-15 -2335 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 * (|#1| |#1| (-400 (-550)))) (-15 -3235 (|#1| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -1389 (|#2| |#1|)) (-15 -1270 (|#1| |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -1518 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 -3102 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3433 ((-112) |#1|)) (-15 * (|#1| (-894) |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) (-970 |#2|) (-170)) (T -969)) +((-2390 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-969 *3 *4)) (-4 *3 (-970 *4))))) +(-10 -8 (-15 -1518 (|#1| (-400 (-550)))) (-15 -2335 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-550)) |#1|)) (-15 * (|#1| |#1| (-400 (-550)))) (-15 -3235 (|#1| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -1389 (|#2| |#1|)) (-15 -1270 (|#1| |#1|)) (-15 -3972 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -1518 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 -3102 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3433 ((-112) |#1|)) (-15 * (|#1| (-894) |#1|)) (-15 -2391 (|#1| |#1| |#1|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3880 (((-3 (-550) "failed") $) 116 (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 114 (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) 113)) (-2726 (((-550) $) 117 (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) 115 (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) 112)) (-3780 (((-667 (-550)) (-667 $)) 87 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 86 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 85) (((-667 |#1|) (-667 $)) 84)) (-1386 (((-3 $ "failed") $) 32)) (-3365 ((|#1| $) 77)) (-3207 (((-3 (-400 (-550)) "failed") $) 73 (|has| |#1| (-535)))) (-3122 (((-112) $) 75 (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) 74 (|has| |#1| (-535)))) (-3961 (($ |#1| |#1| |#1| |#1|) 78)) (-3102 (((-112) $) 30)) (-1389 ((|#1| $) 79)) (-2707 (($ $ $) 66 (|has| |#1| (-825)))) (-4164 (($ $ $) 65 (|has| |#1| (-825)))) (-3972 (($ (-1 |#1| |#1|) $) 88)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 70 (|has| |#1| (-356)))) (-4053 ((|#1| $) 80)) (-4136 ((|#1| $) 81)) (-4234 ((|#1| $) 82)) (-3337 (((-1088) $) 10)) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) 94 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 92 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) 91 (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) 90 (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) 89 (|has| |#1| (-505 (-1144) |#1|)))) (-2680 (($ $ |#1|) 95 (|has| |#1| (-279 |#1| |#1|)))) (-2393 (($ $) 111 (|has| |#1| (-227))) (($ $ (-749)) 109 (|has| |#1| (-227))) (($ $ (-1144)) 107 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 106 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 105 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) 104 (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4028 (((-526) $) 71 (|has| |#1| (-596 (-526))))) (-1270 (($ $) 83)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 35) (($ (-400 (-550))) 60 (-1561 (|has| |#1| (-356)) (|has| |#1| (-1011 (-400 (-550))))))) (-4242 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-1635 ((|#1| $) 76 (|has| |#1| (-1029)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $) 110 (|has| |#1| (-227))) (($ $ (-749)) 108 (|has| |#1| (-227))) (($ $ (-1144)) 103 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 102 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 101 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) 100 (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2363 (((-112) $ $) 63 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 62 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 64 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 61 (|has| |#1| (-825)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 69 (|has| |#1| (-356)))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-400 (-550))) 68 (|has| |#1| (-356))) (($ (-400 (-550)) $) 67 (|has| |#1| (-356))))) +(((-970 |#1|) (-138) (-170)) (T -970)) +((-1270 (*1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) (-3961 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)) (-4 *2 (-1029)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-970 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-970 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550))))) (-3207 (*1 *2 *1) (|partial| -12 (-4 *1 (-970 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-550)))))) +(-13 (-38 |t#1|) (-404 |t#1|) (-225 |t#1|) (-331 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1270 ($ $)) (-15 -4234 (|t#1| $)) (-15 -4136 (|t#1| $)) (-15 -4053 (|t#1| $)) (-15 -1389 (|t#1| $)) (-15 -3961 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3365 (|t#1| $)) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1029)) (-15 -1635 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3122 ((-112) $)) (-15 -3042 ((-400 (-550)) $)) (-15 -3207 ((-3 (-400 (-550)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-356)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-356)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) |has| |#1| (-356)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -1561 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-505 (-1144) |#1|) |has| |#1| (-505 (-1144) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-626 #0#) |has| |#1| (-356)) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) |has| |#1| (-356)) ((-696 |#1|) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-873 (-1144)) |has| |#1| (-873 (-1144))) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1026 #0#) |has| |#1| (-356)) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3972 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-971 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#3| (-1 |#4| |#2|) |#1|))) (-970 |#2|) (-170) (-970 |#4|) (-170)) (T -971)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-970 *6)) (-5 *1 (-971 *4 *5 *2 *6)) (-4 *4 (-970 *5))))) +(-10 -7 (-15 -3972 (|#3| (-1 |#4| |#2|) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3365 ((|#1| $) 12)) (-3207 (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-535)))) (-3122 (((-112) $) NIL (|has| |#1| (-535)))) (-3042 (((-400 (-550)) $) NIL (|has| |#1| (-535)))) (-3961 (($ |#1| |#1| |#1| |#1|) 16)) (-3102 (((-112) $) NIL)) (-1389 ((|#1| $) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-4053 ((|#1| $) 15)) (-4136 ((|#1| $) 14)) (-4234 ((|#1| $) 13)) (-3337 (((-1088) $) NIL)) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-623 (-1144)) (-623 |#1|)) NIL (|has| |#1| (-505 (-1144) |#1|))) (($ $ (-1144) |#1|) NIL (|has| |#1| (-505 (-1144) |#1|)))) (-2680 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-2393 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1270 (($ $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-356)) (|has| |#1| (-1011 (-400 (-550))))))) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-1635 ((|#1| $) NIL (|has| |#1| (-1029)))) (-2626 (($) 8 T CONST)) (-2636 (($) 10 T CONST)) (-4183 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-356))) (($ (-400 (-550)) $) NIL (|has| |#1| (-356))))) +(((-972 |#1|) (-970 |#1|) (-170)) (T -972)) +NIL +(-970 |#1|) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-4047 (((-112) $ (-749)) NIL)) (-3513 (($) NIL T CONST)) (-1945 (($ $) 20)) (-1368 (($ (-623 |#1|)) 29)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-3772 (((-749) $) 22)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3638 ((|#1| $) 24)) (-1886 (($ |#1| $) 15)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1854 ((|#1| $) 23)) (-3760 ((|#1| $) 19)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2131 ((|#1| |#1| $) 14)) (-2902 (((-112) $) 17)) (-3498 (($) NIL)) (-2047 ((|#1| $) 18)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) NIL)) (-1752 ((|#1| $) 26)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-973 |#1|) (-13 (-968 |#1|) (-10 -8 (-15 -1368 ($ (-623 |#1|))))) (-1068)) (T -973)) +((-1368 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-973 *3))))) +(-13 (-968 |#1|) (-10 -8 (-15 -1368 ($ (-623 |#1|))))) +((-3353 (($ $) 12)) (-1460 (($ $ (-550)) 13))) +(((-974 |#1|) (-10 -8 (-15 -3353 (|#1| |#1|)) (-15 -1460 (|#1| |#1| (-550)))) (-975)) (T -974)) +NIL +(-10 -8 (-15 -3353 (|#1| |#1|)) (-15 -1460 (|#1| |#1| (-550)))) +((-3353 (($ $) 6)) (-1460 (($ $ (-550)) 7)) (** (($ $ (-400 (-550))) 8))) +(((-975) (-138)) (T -975)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-400 (-550))))) (-1460 (*1 *1 *1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-550)))) (-3353 (*1 *1 *1) (-4 *1 (-975)))) +(-13 (-10 -8 (-15 -3353 ($ $)) (-15 -1460 ($ $ (-550))) (-15 ** ($ $ (-400 (-550)))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1363 (((-2 (|:| |num| (-1227 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-1447 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4291 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1615 (((-667 (-400 |#2|)) (-1227 $)) NIL) (((-667 (-400 |#2|))) NIL)) (-2252 (((-400 |#2|) $) NIL)) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| (-400 |#2|) (-342)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3564 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3631 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4319 (((-749)) NIL (|has| (-400 |#2|) (-361)))) (-2438 (((-112)) NIL)) (-2332 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| (-400 |#2|) (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-400 |#2|) (-1011 (-400 (-550))))) (((-3 (-400 |#2|) "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| (-400 |#2|) (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| (-400 |#2|) (-1011 (-400 (-550))))) (((-400 |#2|) $) NIL)) (-4110 (($ (-1227 (-400 |#2|)) (-1227 $)) NIL) (($ (-1227 (-400 |#2|))) 70) (($ (-1227 |#2|) |#2|) NIL)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-342)))) (-3349 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2677 (((-667 (-400 |#2|)) $ (-1227 $)) NIL) (((-667 (-400 |#2|)) $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-400 |#2|) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-400 |#2|))) (|:| |vec| (-1227 (-400 |#2|)))) (-667 $) (-1227 $)) NIL) (((-667 (-400 |#2|)) (-667 $)) NIL)) (-3770 (((-1227 $) (-1227 $)) NIL)) (-2419 (($ |#3|) 65) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-1386 (((-3 $ "failed") $) NIL)) (-1774 (((-623 (-623 |#1|))) NIL (|has| |#1| (-361)))) (-1591 (((-112) |#1| |#1|) NIL)) (-2122 (((-894)) NIL)) (-1741 (($) NIL (|has| (-400 |#2|) (-361)))) (-2234 (((-112)) NIL)) (-2133 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-1519 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| (-400 |#2|) (-356)))) (-2674 (($ $) NIL)) (-3485 (($) NIL (|has| (-400 |#2|) (-342)))) (-3697 (((-112) $) NIL (|has| (-400 |#2|) (-342)))) (-3714 (($ $ (-749)) NIL (|has| (-400 |#2|) (-342))) (($ $) NIL (|has| (-400 |#2|) (-342)))) (-3933 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-2475 (((-894) $) NIL (|has| (-400 |#2|) (-342))) (((-811 (-894)) $) NIL (|has| (-400 |#2|) (-342)))) (-3102 (((-112) $) NIL)) (-2392 (((-749)) NIL)) (-2694 (((-1227 $) (-1227 $)) NIL)) (-1389 (((-400 |#2|) $) NIL)) (-1897 (((-623 (-925 |#1|)) (-1144)) NIL (|has| |#1| (-356)))) (-2826 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-342)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1428 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2253 (((-894) $) NIL (|has| (-400 |#2|) (-361)))) (-2407 ((|#3| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1825 (((-1126) $) NIL)) (-3298 (((-667 (-400 |#2|))) 52)) (-3519 (((-667 (-400 |#2|))) 51)) (-3235 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4179 (($ (-1227 |#2|) |#2|) 71)) (-3411 (((-667 (-400 |#2|))) 50)) (-3649 (((-667 (-400 |#2|))) 49)) (-4072 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4306 (((-2 (|:| |num| (-1227 |#2|)) (|:| |den| |#2|)) $) 77)) (-3119 (((-1227 $)) 46)) (-2372 (((-1227 $)) 45)) (-3022 (((-112) $) NIL)) (-2911 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3862 (($) NIL (|has| (-400 |#2|) (-342)) CONST)) (-2922 (($ (-894)) NIL (|has| (-400 |#2|) (-361)))) (-3858 (((-3 |#2| "failed")) 63)) (-3337 (((-1088) $) NIL)) (-1880 (((-749)) NIL)) (-3935 (($) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| (-400 |#2|) (-356)))) (-3139 (($ (-623 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| (-400 |#2|) (-342)))) (-3338 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3542 (((-749) $) NIL (|has| (-400 |#2|) (-356)))) (-2680 ((|#1| $ |#1| |#1|) NIL)) (-3959 (((-3 |#2| "failed")) 62)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3453 (((-400 |#2|) (-1227 $)) NIL) (((-400 |#2|)) 42)) (-3811 (((-749) $) NIL (|has| (-400 |#2|) (-342))) (((-3 (-749) "failed") $ $) NIL (|has| (-400 |#2|) (-342)))) (-2393 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-749)) NIL (-1561 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1561 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-3013 (((-667 (-400 |#2|)) (-1227 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-1310 ((|#3|) 53)) (-4288 (($) NIL (|has| (-400 |#2|) (-342)))) (-1373 (((-1227 (-400 |#2|)) $ (-1227 $)) NIL) (((-667 (-400 |#2|)) (-1227 $) (-1227 $)) NIL) (((-1227 (-400 |#2|)) $) 72) (((-667 (-400 |#2|)) (-1227 $)) NIL)) (-4028 (((-1227 (-400 |#2|)) $) NIL) (($ (-1227 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| (-400 |#2|) (-342)))) (-2794 (((-1227 $) (-1227 $)) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-550))) NIL (-1561 (|has| (-400 |#2|) (-1011 (-400 (-550)))) (|has| (-400 |#2|) (-356)))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4242 (($ $) NIL (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2608 ((|#3| $) NIL)) (-2390 (((-749)) NIL)) (-1449 (((-112)) 60)) (-2538 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2437 (((-1227 $)) 121)) (-1345 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-2013 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1726 (((-112)) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-873 (-1144))))) (($ $ (-749)) NIL (-1561 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1561 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-550)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-550))) NIL (|has| (-400 |#2|) (-356))))) +(((-976 |#1| |#2| |#3| |#4| |#5|) (-335 |#1| |#2| |#3|) (-1185) (-1203 |#1|) (-1203 (-400 |#2|)) (-400 |#2|) (-749)) (T -976)) NIL (-335 |#1| |#2| |#3|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3338 (((-618 (-535)) $) 54)) (-3334 (($ (-618 (-535))) 62)) (-3447 (((-535) $) 40 (|has| (-535) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-535) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) 49) (((-3 (-1142) #2#) $) NIL (|has| (-535) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) 47 (|has| (-535) (-1009 (-535)))) (((-3 (-535) #2#) $) 49 (|has| (-535) (-1009 (-535))))) (-3490 (((-535) $) NIL) (((-1142) $) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-535) (-1009 (-535)))) (((-535) $) NIL (|has| (-535) (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-535) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3336 (((-618 (-535)) $) 60)) (-3520 (((-112) $) NIL (|has| (-535) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-535) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-535) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-535) $) 37)) (-3786 (((-3 $ "failed") $) NIL (|has| (-535) (-1117)))) (-3521 (((-112) $) NIL (|has| (-535) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-535) (-823)))) (-4301 (($ (-1 (-535) (-535)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-535) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-535) (-300))) (((-400 (-535)) $) 42)) (-3337 (((-1119 (-535)) $) 59)) (-3333 (($ (-618 (-535)) (-618 (-535))) 63)) (-3448 (((-535) $) 53 (|has| (-535) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-535)) (-618 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-535) (-535)) NIL (|has| (-535) (-302 (-535)))) (($ $ (-286 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-286 (-535)))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-1142)) (-618 (-535))) NIL (|has| (-535) (-505 (-1142) (-535)))) (($ $ (-1142) (-535)) NIL (|has| (-535) (-505 (-1142) (-535))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-535)) NIL (|has| (-535) (-279 (-535) (-535))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) 11 (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-535) $) 39)) (-3335 (((-618 (-535)) $) 61)) (-4313 (((-861 (-535)) $) NIL (|has| (-535) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-535) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-535) (-594 (-524)))) (((-371) $) NIL (|has| (-535) (-991))) (((-219) $) NIL (|has| (-535) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-535) (-881))))) (-4300 (((-835) $) 77) (($ (-535)) 43) (($ $) NIL) (($ (-400 (-535))) 20) (($ (-535)) 43) (($ (-1142)) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) 18)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-535) (-881))) (|has| (-535) (-143))))) (-3444 (((-747)) 9)) (-3449 (((-535) $) 51 (|has| (-535) (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-535) (-796)))) (-2979 (($) 10 T CONST)) (-2985 (($) 12 T CONST)) (-2990 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-535) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3375 (((-112) $ $) 14)) (-3005 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3006 (((-112) $ $) 33 (|has| (-535) (-823)))) (-4291 (($ $ $) 29) (($ (-535) (-535)) 31)) (-4180 (($ $) 15) (($ $ $) 23)) (-4182 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 25) (($ $ $) 27) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-535) $) 25) (($ $ (-535)) NIL))) -(((-975 |#1|) (-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -3338 ((-618 (-535)) $)) (-15 -3337 ((-1119 (-535)) $)) (-15 -3336 ((-618 (-535)) $)) (-15 -3335 ((-618 (-535)) $)) (-15 -3334 ($ (-618 (-535)))) (-15 -3333 ($ (-618 (-535)) (-618 (-535)))))) (-535)) (T -975)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3335 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3333 (*1 *1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))) -(-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -3338 ((-618 (-535)) $)) (-15 -3337 ((-1119 (-535)) $)) (-15 -3336 ((-618 (-535)) $)) (-15 -3335 ((-618 (-535)) $)) (-15 -3334 ($ (-618 (-535)))) (-15 -3333 ($ (-618 (-535)) (-618 (-535)))))) -((-3339 (((-51) (-400 (-535)) (-535)) 9))) -(((-976) (-10 -7 (-15 -3339 ((-51) (-400 (-535)) (-535))))) (T -976)) -((-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-535))) (-5 *4 (-535)) (-5 *2 (-51)) (-5 *1 (-976))))) -(-10 -7 (-15 -3339 ((-51) (-400 (-535)) (-535)))) -((-3454 (((-535)) 13)) (-3342 (((-535)) 16)) (-3341 (((-1230) (-535)) 15)) (-3340 (((-535) (-535)) 17) (((-535)) 12))) -(((-977) (-10 -7 (-15 -3340 ((-535))) (-15 -3454 ((-535))) (-15 -3340 ((-535) (-535))) (-15 -3341 ((-1230) (-535))) (-15 -3342 ((-535))))) (T -977)) -((-3342 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-977)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))) (-3454 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))) (-3340 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977))))) -(-10 -7 (-15 -3340 ((-535))) (-15 -3454 ((-535))) (-15 -3340 ((-535) (-535))) (-15 -3341 ((-1230) (-535))) (-15 -3342 ((-535)))) -((-4076 (((-398 |#1|) |#1|) 41)) (-4075 (((-398 |#1|) |#1|) 40))) -(((-978 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1|))) (-1200 (-400 (-535)))) (T -978)) -((-4076 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1200 (-400 (-535)))))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1200 (-400 (-535))))))) -(-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1|))) -((-3345 (((-3 (-400 (-535)) "failed") |#1|) 15)) (-3344 (((-112) |#1|) 14)) (-3343 (((-400 (-535)) |#1|) 10))) -(((-979 |#1|) (-10 -7 (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|))) (-1009 (-400 (-535)))) (T -979)) -((-3345 (*1 *2 *3) (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))) (-3344 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-1009 (-400 (-535)))))) (-3343 (*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2))))) -(-10 -7 (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|))) -((-4130 ((|#2| $ "value" |#2|) 12)) (-4142 ((|#2| $ "value") 10)) (-3349 (((-112) $ $) 18))) -(((-980 |#1| |#2|) (-10 -8 (-15 -4130 (|#2| |#1| "value" |#2|)) (-15 -3349 ((-112) |#1| |#1|)) (-15 -4142 (|#2| |#1| "value"))) (-981 |#2|) (-1178)) (T -980)) -NIL -(-10 -8 (-15 -4130 (|#2| |#1| "value" |#2|)) (-15 -3349 ((-112) |#1| |#1|)) (-15 -4142 (|#2| |#1| "value"))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ "value") 47)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-981 |#1|) (-138) (-1178)) (T -981)) -((-3859 (*1 *2 *1) (-12 (-4 *3 (-1178)) (-5 *2 (-618 *1)) (-4 *1 (-981 *3)))) (-3352 (*1 *2 *1) (-12 (-4 *3 (-1178)) (-5 *2 (-618 *1)) (-4 *1 (-981 *3)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-981 *2)) (-4 *2 (-1178)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-618 *3)))) (-3350 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-535)))) (-3349 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3348 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3347 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *1)) (|has| *1 (-6 -4337)) (-4 *1 (-981 *3)) (-4 *3 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1178)))) (-3346 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1178))))) -(-13 (-481 |t#1|) (-10 -8 (-15 -3859 ((-618 $) $)) (-15 -3352 ((-618 $) $)) (-15 -3864 ((-112) $)) (-15 -3744 (|t#1| $)) (-15 -4142 (|t#1| $ "value")) (-15 -3979 ((-112) $)) (-15 -3351 ((-618 |t#1|) $)) (-15 -3350 ((-535) $ $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -3349 ((-112) $ $)) (-15 -3348 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -3347 ($ $ (-618 $))) (-15 -4130 (|t#1| $ "value" |t#1|)) (-15 -3346 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-3358 (($ $) 9) (($ $ (-890)) 43) (($ (-400 (-535))) 13) (($ (-535)) 15)) (-3517 (((-3 $ "failed") (-1136 $) (-890) (-835)) 23) (((-3 $ "failed") (-1136 $) (-890)) 28)) (-3332 (($ $ (-535)) 49)) (-3444 (((-747)) 17)) (-3518 (((-618 $) (-1136 $)) NIL) (((-618 $) (-1136 (-400 (-535)))) 54) (((-618 $) (-1136 (-535))) 59) (((-618 $) (-917 $)) 63) (((-618 $) (-917 (-400 (-535)))) 67) (((-618 $) (-917 (-535))) 71)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL) (($ $ (-400 (-535))) 47))) -(((-982 |#1|) (-10 -8 (-15 -3358 (|#1| (-535))) (-15 -3358 (|#1| (-400 (-535)))) (-15 -3358 (|#1| |#1| (-890))) (-15 -3518 ((-618 |#1|) (-917 (-535)))) (-15 -3518 ((-618 |#1|) (-917 (-400 (-535))))) (-15 -3518 ((-618 |#1|) (-917 |#1|))) (-15 -3518 ((-618 |#1|) (-1136 (-535)))) (-15 -3518 ((-618 |#1|) (-1136 (-400 (-535))))) (-15 -3518 ((-618 |#1|) (-1136 |#1|))) (-15 -3517 ((-3 |#1| "failed") (-1136 |#1|) (-890))) (-15 -3517 ((-3 |#1| "failed") (-1136 |#1|) (-890) (-835))) (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3332 (|#1| |#1| (-535))) (-15 -3358 (|#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -3444 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890)))) (-983)) (T -982)) -((-3444 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-982 *3)) (-4 *3 (-983))))) -(-10 -8 (-15 -3358 (|#1| (-535))) (-15 -3358 (|#1| (-400 (-535)))) (-15 -3358 (|#1| |#1| (-890))) (-15 -3518 ((-618 |#1|) (-917 (-535)))) (-15 -3518 ((-618 |#1|) (-917 (-400 (-535))))) (-15 -3518 ((-618 |#1|) (-917 |#1|))) (-15 -3518 ((-618 |#1|) (-1136 (-535)))) (-15 -3518 ((-618 |#1|) (-1136 (-400 (-535))))) (-15 -3518 ((-618 |#1|) (-1136 |#1|))) (-15 -3517 ((-3 |#1| "failed") (-1136 |#1|) (-890))) (-15 -3517 ((-3 |#1| "failed") (-1136 |#1|) (-890) (-835))) (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3332 (|#1| |#1| (-535))) (-15 -3358 (|#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -3444 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 87)) (-2171 (($ $) 88)) (-2169 (((-112) $) 90)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 107)) (-4312 (((-398 $) $) 108)) (-3358 (($ $) 71) (($ $ (-890)) 57) (($ (-400 (-535))) 56) (($ (-535)) 55)) (-1700 (((-112) $ $) 98)) (-3969 (((-535) $) 124)) (-3879 (($) 17 T CONST)) (-3517 (((-3 $ "failed") (-1136 $) (-890) (-835)) 65) (((-3 $ "failed") (-1136 $) (-890)) 64)) (-3491 (((-3 (-535) #1="failed") $) 83 (|has| (-400 (-535)) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 81 (|has| (-400 (-535)) (-1009 (-400 (-535))))) (((-3 (-400 (-535)) #1#) $) 79)) (-3490 (((-535) $) 84 (|has| (-400 (-535)) (-1009 (-535)))) (((-400 (-535)) $) 82 (|has| (-400 (-535)) (-1009 (-400 (-535))))) (((-400 (-535)) $) 78)) (-3354 (($ $ (-835)) 54)) (-3353 (($ $ (-835)) 53)) (-2883 (($ $ $) 102)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 101)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 96)) (-4069 (((-112) $) 109)) (-3520 (((-112) $) 122)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 70)) (-3521 (((-112) $) 123)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 105)) (-3660 (($ $ $) 121)) (-3661 (($ $ $) 120)) (-3355 (((-3 (-1136 $) "failed") $) 66)) (-3357 (((-3 (-835) "failed") $) 68)) (-3356 (((-3 (-1136 $) "failed") $) 67)) (-2008 (($ (-618 $)) 94) (($ $ $) 93)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 110)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 95)) (-3478 (($ (-618 $)) 92) (($ $ $) 91)) (-4075 (((-398 $) $) 106)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 103)) (-3803 (((-3 $ "failed") $ $) 86)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 97)) (-1699 (((-747) $) 99)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 100)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 114) (($ $) 85) (($ (-400 (-535))) 80) (($ (-535)) 77) (($ (-400 (-535))) 74)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 89)) (-4112 (((-400 (-535)) $ $) 52)) (-3518 (((-618 $) (-1136 $)) 63) (((-618 $) (-1136 (-400 (-535)))) 62) (((-618 $) (-1136 (-535))) 61) (((-618 $) (-917 $)) 60) (((-618 $) (-917 (-400 (-535)))) 59) (((-618 $) (-917 (-535))) 58)) (-3725 (($ $) 125)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 118)) (-2886 (((-112) $ $) 117)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 119)) (-3006 (((-112) $ $) 116)) (-4291 (($ $ $) 115)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 111) (($ $ (-400 (-535))) 69)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ (-400 (-535)) $) 113) (($ $ (-400 (-535))) 112) (($ (-535) $) 76) (($ $ (-535)) 75) (($ (-400 (-535)) $) 73) (($ $ (-400 (-535))) 72))) -(((-983) (-138)) (T -983)) -((-3358 (*1 *1 *1) (-4 *1 (-983))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-983)) (-5 *2 (-835)))) (-3356 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136 *1)) (-4 *1 (-983)))) (-3355 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136 *1)) (-4 *1 (-983)))) (-3517 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1136 *1)) (-5 *3 (-890)) (-5 *4 (-835)) (-4 *1 (-983)))) (-3517 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1136 *1)) (-5 *3 (-890)) (-4 *1 (-983)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-983)) (-5 *2 (-618 *1)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-1136 (-400 (-535)))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-1136 (-535))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-983)) (-5 *2 (-618 *1)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-917 (-535))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) (-3358 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-890)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-983)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-983)))) (-3354 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-835)))) (-3353 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-835)))) (-4112 (*1 *2 *1 *1) (-12 (-4 *1 (-983)) (-5 *2 (-400 (-535)))))) -(-13 (-145) (-821) (-170) (-356) (-405 (-400 (-535))) (-38 (-535)) (-38 (-400 (-535))) (-973) (-10 -8 (-15 -3357 ((-3 (-835) "failed") $)) (-15 -3356 ((-3 (-1136 $) "failed") $)) (-15 -3355 ((-3 (-1136 $) "failed") $)) (-15 -3517 ((-3 $ "failed") (-1136 $) (-890) (-835))) (-15 -3517 ((-3 $ "failed") (-1136 $) (-890))) (-15 -3518 ((-618 $) (-1136 $))) (-15 -3518 ((-618 $) (-1136 (-400 (-535))))) (-15 -3518 ((-618 $) (-1136 (-535)))) (-15 -3518 ((-618 $) (-917 $))) (-15 -3518 ((-618 $) (-917 (-400 (-535))))) (-15 -3518 ((-618 $) (-917 (-535)))) (-15 -3358 ($ $ (-890))) (-15 -3358 ($ $)) (-15 -3358 ($ (-400 (-535)))) (-15 -3358 ($ (-535))) (-15 -3354 ($ $ (-835))) (-15 -3353 ($ $ (-835))) (-15 -4112 ((-400 (-535)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 #2=(-535)) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-405 (-400 (-535))) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 #2#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 #2#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-821) . T) ((-823) . T) ((-892) . T) ((-973) . T) ((-1009 (-400 (-535))) . T) ((-1009 (-535)) |has| (-400 (-535)) (-1009 (-535))) ((-1024 #1#) . T) ((-1024 #2#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T)) -((-3359 (((-2 (|:| |ans| |#2|) (|:| -3455 |#2|) (|:| |sol?| (-112))) (-535) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-984 |#1| |#2|) (-10 -7 (-15 -3359 ((-2 (|:| |ans| |#2|) (|:| -3455 |#2|) (|:| |sol?| (-112))) (-535) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-27) (-414 |#1|))) (T -984)) -((-3359 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1142)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-618 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1164) (-27) (-414 *8))) (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-535)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3455 *4) (|:| |sol?| (-112)))) (-5 *1 (-984 *8 *4))))) -(-10 -7 (-15 -3359 ((-2 (|:| |ans| |#2|) (|:| -3455 |#2|) (|:| |sol?| (-112))) (-535) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3360 (((-3 (-618 |#2|) "failed") (-535) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-985 |#1| |#2|) (-10 -7 (-15 -3360 ((-3 (-618 |#2|) "failed") (-535) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-27) (-414 |#1|))) (T -985)) -((-3360 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1142)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-618 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1164) (-27) (-414 *8))) (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-535)) (-5 *2 (-618 *4)) (-5 *1 (-985 *8 *4))))) -(-10 -7 (-15 -3360 ((-3 (-618 |#2|) "failed") (-535) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3363 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3600 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-535)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-535) (-1 |#2| |#2|)) 30)) (-3361 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 58)) (-3362 (((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|)) 63))) -(((-986 |#1| |#2|) (-10 -7 (-15 -3361 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3362 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3363 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3600 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-535)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-535) (-1 |#2| |#2|)))) (-13 (-356) (-145) (-1009 (-535))) (-1200 |#1|)) (T -986)) -((-3363 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1200 *6)) (-4 *6 (-13 (-356) (-145) (-1009 *4))) (-5 *4 (-535)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3600 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-986 *6 *3)))) (-3362 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-986 *4 *5)) (-5 *3 (-400 *5)))) (-3361 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -3417 *6))) (-5 *1 (-986 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -3361 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3362 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3363 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3600 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-535)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-535) (-1 |#2| |#2|)))) -((-3364 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 22)) (-3365 (((-3 (-618 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 33))) -(((-987 |#1| |#2|) (-10 -7 (-15 -3364 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3365 ((-3 (-618 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) (-13 (-356) (-145) (-1009 (-535))) (-1200 |#1|)) (T -987)) -((-3365 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-400 *5))) (-5 *1 (-987 *4 *5)) (-5 *3 (-400 *5)))) (-3364 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -3417 *6))) (-5 *1 (-987 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -3364 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3365 ((-3 (-618 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) -((-3366 (((-1 |#1|) (-618 (-2 (|:| -3744 |#1|) (|:| -1572 (-535))))) 37)) (-3419 (((-1 |#1|) (-1063 |#1|)) 45)) (-3367 (((-1 |#1|) (-1224 |#1|) (-1224 (-535)) (-535)) 34))) -(((-988 |#1|) (-10 -7 (-15 -3419 ((-1 |#1|) (-1063 |#1|))) (-15 -3366 ((-1 |#1|) (-618 (-2 (|:| -3744 |#1|) (|:| -1572 (-535)))))) (-15 -3367 ((-1 |#1|) (-1224 |#1|) (-1224 (-535)) (-535)))) (-1067)) (T -988)) -((-3367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1224 *6)) (-5 *4 (-1224 (-535))) (-5 *5 (-535)) (-4 *6 (-1067)) (-5 *2 (-1 *6)) (-5 *1 (-988 *6)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3744 *4) (|:| -1572 (-535))))) (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-1063 *4)) (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4))))) -(-10 -7 (-15 -3419 ((-1 |#1|) (-1063 |#1|))) (-15 -3366 ((-1 |#1|) (-618 (-2 (|:| -3744 |#1|) (|:| -1572 (-535)))))) (-15 -3367 ((-1 |#1|) (-1224 |#1|) (-1224 (-535)) (-535)))) -((-4114 (((-747) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4114 ((-747) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-13 (-361) (-356))) (T -989)) -((-4114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-4 *4 (-1200 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) (-4 *9 (-13 (-361) (-356))) (-5 *2 (-747)) (-5 *1 (-989 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -4114 ((-747) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2887 (((-112) $ $) NIL)) (-3368 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 11)) (-3375 (((-112) $ $) NIL))) -(((-990) (-13 (-1049) (-10 -8 (-15 -3368 ((-1101) $)) (-15 -3567 ((-1101) $))))) (T -990)) -((-3368 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990))))) -(-13 (-1049) (-10 -8 (-15 -3368 ((-1101) $)) (-15 -3567 ((-1101) $)))) -((-4313 (((-219) $) 6) (((-371) $) 9))) -(((-991) (-138)) (T -991)) -NIL -(-13 (-594 (-219)) (-594 (-371))) -(((-594 (-219)) . T) ((-594 (-371)) . T)) -((-3452 (((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 31) (((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535))) 28)) (-3371 (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535))) 33) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535))) 29) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 32) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|) 27)) (-3370 (((-618 (-400 (-535))) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) 19)) (-3369 (((-400 (-535)) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 16))) -(((-992 |#1|) (-10 -7 (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|)) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535)))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3369 ((-400 (-535)) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3370 ((-618 (-400 (-535))) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))))) (-1200 (-535))) (T -992)) -((-3370 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *2 (-618 (-400 (-535)))) (-5 *1 (-992 *4)) (-4 *4 (-1200 (-535))))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *2 (-400 (-535))) (-5 *1 (-992 *4)) (-4 *4 (-1200 (-535))))) (-3452 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))))) (-3452 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *4 (-400 (-535))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))))) (-3371 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *5) (|:| -3455 *5)))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) (-5 *4 (-2 (|:| -3456 *5) (|:| -3455 *5))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) (-5 *4 (-400 (-535))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) (-5 *4 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535)))))) -(-10 -7 (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|)) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535)))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3369 ((-400 (-535)) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3370 ((-618 (-400 (-535))) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))))) -((-3452 (((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 35) (((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535))) 32)) (-3371 (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535))) 30) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535))) 26) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 28) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|) 24))) -(((-993 |#1|) (-10 -7 (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|)) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535)))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-1200 (-400 (-535)))) (T -993)) -((-3452 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535)))))) (-3452 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *4 (-400 (-535))) (-5 *1 (-993 *3)) (-4 *3 (-1200 *4)))) (-3371 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *5) (|:| -3455 *5)))) (-5 *1 (-993 *3)) (-4 *3 (-1200 *5)) (-5 *4 (-2 (|:| -3456 *5) (|:| -3455 *5))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *4) (|:| -3455 *4)))) (-5 *1 (-993 *3)) (-4 *3 (-1200 *4)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535)))) (-5 *4 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535))))))) -(-10 -7 (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|)) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535)))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) -((-3919 (((-618 (-371)) (-917 (-535)) (-371)) 28) (((-618 (-371)) (-917 (-400 (-535))) (-371)) 27)) (-4310 (((-618 (-618 (-371))) (-618 (-917 (-535))) (-618 (-1142)) (-371)) 37))) -(((-994) (-10 -7 (-15 -3919 ((-618 (-371)) (-917 (-400 (-535))) (-371))) (-15 -3919 ((-618 (-371)) (-917 (-535)) (-371))) (-15 -4310 ((-618 (-618 (-371))) (-618 (-917 (-535))) (-618 (-1142)) (-371))))) (T -994)) -((-4310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-618 (-1142))) (-5 *2 (-618 (-618 (-371)))) (-5 *1 (-994)) (-5 *5 (-371)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-917 (-535))) (-5 *2 (-618 (-371))) (-5 *1 (-994)) (-5 *4 (-371)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *2 (-618 (-371))) (-5 *1 (-994)) (-5 *4 (-371))))) -(-10 -7 (-15 -3919 ((-618 (-371)) (-917 (-400 (-535))) (-371))) (-15 -3919 ((-618 (-371)) (-917 (-535)) (-371))) (-15 -4310 ((-618 (-618 (-371))) (-618 (-917 (-535))) (-618 (-1142)) (-371)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 70)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) NIL) (($ $ (-890)) NIL) (($ (-400 (-535))) NIL) (($ (-535)) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) 65)) (-3879 (($) NIL T CONST)) (-3517 (((-3 $ #1="failed") (-1136 $) (-890) (-835)) NIL) (((-3 $ #1#) (-1136 $) (-890)) 50)) (-3491 (((-3 (-400 (-535)) #2="failed") $) NIL (|has| (-400 (-535)) (-1009 (-400 (-535))))) (((-3 (-400 (-535)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-535) #2#) $) NIL (-3874 (|has| (-400 (-535)) (-1009 (-535))) (|has| |#1| (-1009 (-535)))))) (-3490 (((-400 (-535)) $) 15 (|has| (-400 (-535)) (-1009 (-400 (-535))))) (((-400 (-535)) $) 15) ((|#1| $) 108) (((-535) $) NIL (-3874 (|has| (-400 (-535)) (-1009 (-535))) (|has| |#1| (-1009 (-535)))))) (-3354 (($ $ (-835)) 42)) (-3353 (($ $ (-835)) 43)) (-2883 (($ $ $) NIL)) (-3516 (((-400 (-535)) $ $) 19)) (-3804 (((-3 $ "failed") $) 83)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) 61)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL)) (-3521 (((-112) $) 64)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3355 (((-3 (-1136 $) #1#) $) 78)) (-3357 (((-3 (-835) #1#) $) 77)) (-3356 (((-3 (-1136 $) #1#) $) 75)) (-3372 (((-3 (-1028 $ (-1136 $)) "failed") $) 73)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 84)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4300 (((-835) $) 82) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ $) 58) (($ (-400 (-535))) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 110)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-4112 (((-400 (-535)) $ $) 25)) (-3518 (((-618 $) (-1136 $)) 56) (((-618 $) (-1136 (-400 (-535)))) NIL) (((-618 $) (-1136 (-535))) NIL) (((-618 $) (-917 $)) NIL) (((-618 $) (-917 (-400 (-535)))) NIL) (((-618 $) (-917 (-535))) NIL)) (-3373 (($ (-1028 $ (-1136 $)) (-835)) 41)) (-3725 (($ $) 20)) (-2979 (($) 29 T CONST)) (-2985 (($) 35 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 71)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 22)) (-4291 (($ $ $) 33)) (-4180 (($ $) 34) (($ $ $) 69)) (-4182 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL) (($ $ (-400 (-535))) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 91) (($ $ $) 96) (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ (-535) $) 91) (($ $ (-535)) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-995 |#1|) (-13 (-983) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -3373 ($ (-1028 $ (-1136 $)) (-835))) (-15 -3372 ((-3 (-1028 $ (-1136 $)) "failed") $)) (-15 -3516 ((-400 (-535)) $ $)))) (-13 (-821) (-356) (-991))) (T -995)) -((-3373 (*1 *1 *2 *3) (-12 (-5 *2 (-1028 (-995 *4) (-1136 (-995 *4)))) (-5 *3 (-835)) (-5 *1 (-995 *4)) (-4 *4 (-13 (-821) (-356) (-991))))) (-3372 (*1 *2 *1) (|partial| -12 (-5 *2 (-1028 (-995 *3) (-1136 (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-991))))) (-3516 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-991)))))) -(-13 (-983) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -3373 ($ (-1028 $ (-1136 $)) (-835))) (-15 -3372 ((-3 (-1028 $ (-1136 $)) "failed") $)) (-15 -3516 ((-400 (-535)) $ $)))) -((-3374 (((-2 (|:| -3600 |#2|) (|:| -2827 (-618 |#1|))) |#2| (-618 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-996 |#1| |#2|) (-10 -7 (-15 -3374 (|#2| |#2| |#1|)) (-15 -3374 ((-2 (|:| -3600 |#2|) (|:| -2827 (-618 |#1|))) |#2| (-618 |#1|)))) (-356) (-634 |#1|)) (T -996)) -((-3374 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -3600 *3) (|:| -2827 (-618 *5)))) (-5 *1 (-996 *5 *3)) (-5 *4 (-618 *5)) (-4 *3 (-634 *5)))) (-3374 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-996 *3 *2)) (-4 *2 (-634 *3))))) -(-10 -7 (-15 -3374 (|#2| |#2| |#1|)) (-15 -3374 ((-2 (|:| -3600 |#2|) (|:| -2827 (-618 |#1|))) |#2| (-618 |#1|)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3376 ((|#1| $ |#1|) 14)) (-4130 ((|#1| $ |#1|) 12)) (-3378 (($ |#1|) 10)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4142 ((|#1| $) 11)) (-3377 ((|#1| $) 13)) (-4300 (((-835) $) 21 (|has| |#1| (-1067)))) (-3375 (((-112) $ $) 9))) -(((-997 |#1|) (-13 (-1178) (-10 -8 (-15 -3378 ($ |#1|)) (-15 -4142 (|#1| $)) (-15 -4130 (|#1| $ |#1|)) (-15 -3377 (|#1| $)) (-15 -3376 (|#1| $ |#1|)) (-15 -3375 ((-112) $ $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1178)) (T -997)) -((-3378 (*1 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-4130 (*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-3377 (*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-3376 (*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-3375 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-997 *3)) (-4 *3 (-1178))))) -(-13 (-1178) (-10 -8 (-15 -3378 ($ |#1|)) (-15 -4142 (|#1| $)) (-15 -4130 (|#1| $ |#1|)) (-15 -3377 (|#1| $)) (-15 -3376 (|#1| $ |#1|)) (-15 -3375 ((-112) $ $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) NIL)) (-4028 (((-618 $) (-618 |#4|)) 105) (((-618 $) (-618 |#4|) (-112)) 106) (((-618 $) (-618 |#4|) (-112) (-112)) 104) (((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3405 (((-618 |#3|) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4034 ((|#4| |#4| $) NIL)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 99)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) 26 (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3221 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) NIL)) (-3490 (($ (-618 |#4|)) NIL)) (-4141 (((-3 $ #1#) $) 39)) (-4031 ((|#4| |#4| $) 57)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4029 ((|#4| |#4| $) NIL)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) NIL)) (-3531 (((-112) |#4| $) NIL)) (-3529 (((-112) |#4| $) NIL)) (-3532 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3780 (((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112)) 119)) (-2063 (((-618 |#4|) $) 16 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 33)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 17 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 21)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) NIL)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 97)) (-4140 (((-3 |#4| #1#) $) 37)) (-3526 (((-618 $) |#4| $) 80)) (-3528 (((-3 (-112) (-618 $)) |#4| $) NIL)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3572 (((-618 $) |#4| $) 102) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) 103) (((-618 $) |#4| (-618 $)) NIL)) (-3781 (((-618 $) (-618 |#4|) (-112) (-112) (-112)) 114)) (-3782 (($ |#4| $) 70) (($ (-618 |#4|) $) 71) (((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4043 (((-618 |#4|) $) NIL)) (-4037 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4032 ((|#4| |#4| $) NIL)) (-4045 (((-112) $ $) NIL)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4033 ((|#4| |#4| $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 |#4| #1#) $) 35)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4025 (((-3 $ #1#) $ |#4|) 48)) (-4111 (($ $ |#4|) NIL) (((-618 $) |#4| $) 82) (((-618 $) |#4| (-618 $)) NIL) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) 77)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 15)) (-3911 (($) 13)) (-4290 (((-747) $) NIL)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) 12)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-3233 (($ $ |#3|) 44)) (-4030 (($ $) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) 31) (((-618 |#4|) $) 40)) (-4024 (((-747) $) NIL (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) NIL)) (-3523 (((-618 $) |#4| $) 79) (((-618 $) |#4| (-618 $)) NIL) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) NIL)) (-3530 (((-112) |#4| $) NIL)) (-4276 (((-112) |#3| $) 53)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-998 |#1| |#2| |#3| |#4|) (-13 (-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3782 ((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112))) (-15 -3781 ((-618 $) (-618 |#4|) (-112) (-112) (-112))) (-15 -3780 ((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112))))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -998)) -((-3782 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *3))) (-5 *1 (-998 *5 *6 *7 *3)) (-4 *3 (-1032 *5 *6 *7)))) (-4028 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-4028 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-3781 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-3780 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-618 *8)) (|:| |towers| (-618 (-998 *5 *6 *7 *8))))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *3 (-618 *8))))) -(-13 (-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3782 ((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112))) (-15 -3781 ((-618 $) (-618 |#4|) (-112) (-112) (-112))) (-15 -3780 ((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112))))) -((-3379 (((-618 (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) (|:| |radvect| (-618 (-665 (-307 (-535))))))) (-665 (-400 (-917 (-535))))) 59)) (-3380 (((-618 (-665 (-307 (-535)))) (-307 (-535)) (-665 (-400 (-917 (-535))))) 48)) (-3381 (((-618 (-307 (-535))) (-665 (-400 (-917 (-535))))) 41)) (-3385 (((-618 (-665 (-307 (-535)))) (-665 (-400 (-917 (-535))))) 68)) (-3383 (((-665 (-307 (-535))) (-665 (-307 (-535)))) 34)) (-3384 (((-618 (-665 (-307 (-535)))) (-618 (-665 (-307 (-535))))) 62)) (-3382 (((-3 (-665 (-307 (-535))) "failed") (-665 (-400 (-917 (-535))))) 66))) -(((-999) (-10 -7 (-15 -3379 ((-618 (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) (|:| |radvect| (-618 (-665 (-307 (-535))))))) (-665 (-400 (-917 (-535)))))) (-15 -3380 ((-618 (-665 (-307 (-535)))) (-307 (-535)) (-665 (-400 (-917 (-535)))))) (-15 -3381 ((-618 (-307 (-535))) (-665 (-400 (-917 (-535)))))) (-15 -3382 ((-3 (-665 (-307 (-535))) "failed") (-665 (-400 (-917 (-535)))))) (-15 -3383 ((-665 (-307 (-535))) (-665 (-307 (-535))))) (-15 -3384 ((-618 (-665 (-307 (-535)))) (-618 (-665 (-307 (-535)))))) (-15 -3385 ((-618 (-665 (-307 (-535)))) (-665 (-400 (-917 (-535)))))))) (T -999)) -((-3385 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-665 (-307 (-535))))) (-5 *1 (-999)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-618 (-665 (-307 (-535))))) (-5 *1 (-999)))) (-3383 (*1 *2 *2) (-12 (-5 *2 (-665 (-307 (-535)))) (-5 *1 (-999)))) (-3382 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-665 (-307 (-535)))) (-5 *1 (-999)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-307 (-535)))) (-5 *1 (-999)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-665 (-307 (-535))))) (-5 *1 (-999)) (-5 *3 (-307 (-535))))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) (|:| |radvect| (-618 (-665 (-307 (-535)))))))) (-5 *1 (-999))))) -(-10 -7 (-15 -3379 ((-618 (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) (|:| |radvect| (-618 (-665 (-307 (-535))))))) (-665 (-400 (-917 (-535)))))) (-15 -3380 ((-618 (-665 (-307 (-535)))) (-307 (-535)) (-665 (-400 (-917 (-535)))))) (-15 -3381 ((-618 (-307 (-535))) (-665 (-400 (-917 (-535)))))) (-15 -3382 ((-3 (-665 (-307 (-535))) "failed") (-665 (-400 (-917 (-535)))))) (-15 -3383 ((-665 (-307 (-535))) (-665 (-307 (-535))))) (-15 -3384 ((-618 (-665 (-307 (-535)))) (-618 (-665 (-307 (-535)))))) (-15 -3385 ((-618 (-665 (-307 (-535)))) (-665 (-400 (-917 (-535))))))) -((-3389 (((-618 (-665 |#1|)) (-618 (-665 |#1|))) 58) (((-665 |#1|) (-665 |#1|)) 57) (((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-618 (-665 |#1|))) 56) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 53)) (-3388 (((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890)) 52) (((-665 |#1|) (-665 |#1|) (-890)) 51)) (-3390 (((-618 (-665 (-535))) (-618 (-618 (-535)))) 68) (((-618 (-665 (-535))) (-618 (-873 (-535))) (-535)) 67) (((-665 (-535)) (-618 (-535))) 64) (((-665 (-535)) (-873 (-535)) (-535)) 63)) (-3387 (((-665 (-917 |#1|)) (-747)) 81)) (-3386 (((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890)) 37 (|has| |#1| (-6 (-4338 "*")))) (((-665 |#1|) (-665 |#1|) (-890)) 35 (|has| |#1| (-6 (-4338 "*")))))) -(((-1000 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -3386 ((-665 |#1|) (-665 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -3386 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890))) |%noBranch|) (-15 -3387 ((-665 (-917 |#1|)) (-747))) (-15 -3388 ((-665 |#1|) (-665 |#1|) (-890))) (-15 -3388 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890))) (-15 -3389 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3389 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3389 ((-665 |#1|) (-665 |#1|))) (-15 -3389 ((-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3390 ((-665 (-535)) (-873 (-535)) (-535))) (-15 -3390 ((-665 (-535)) (-618 (-535)))) (-15 -3390 ((-618 (-665 (-535))) (-618 (-873 (-535))) (-535))) (-15 -3390 ((-618 (-665 (-535))) (-618 (-618 (-535)))))) (-1018)) (T -1000)) -((-3390 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-535)))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-1000 *4)) (-4 *4 (-1018)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-873 (-535)))) (-5 *4 (-535)) (-5 *2 (-618 (-665 *4))) (-5 *1 (-1000 *5)) (-4 *5 (-1018)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1000 *4)) (-4 *4 (-1018)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-535))) (-5 *4 (-535)) (-5 *2 (-665 *4)) (-5 *1 (-1000 *5)) (-4 *5 (-1018)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-618 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-618 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) (-3388 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-665 *4))) (-5 *3 (-890)) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) (-3388 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-890)) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-665 (-917 *4))) (-5 *1 (-1000 *4)) (-4 *4 (-1018)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-665 *4))) (-5 *3 (-890)) (|has| *4 (-6 (-4338 "*"))) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4338 "*"))) (-4 *4 (-1018)) (-5 *1 (-1000 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -3386 ((-665 |#1|) (-665 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -3386 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890))) |%noBranch|) (-15 -3387 ((-665 (-917 |#1|)) (-747))) (-15 -3388 ((-665 |#1|) (-665 |#1|) (-890))) (-15 -3388 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890))) (-15 -3389 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3389 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3389 ((-665 |#1|) (-665 |#1|))) (-15 -3389 ((-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3390 ((-665 (-535)) (-873 (-535)) (-535))) (-15 -3390 ((-665 (-535)) (-618 (-535)))) (-15 -3390 ((-618 (-665 (-535))) (-618 (-873 (-535))) (-535))) (-15 -3390 ((-618 (-665 (-535))) (-618 (-618 (-535)))))) -((-3394 (((-665 |#1|) (-618 (-665 |#1|)) (-1224 |#1|)) 50 (|has| |#1| (-300)))) (-3760 (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 (-1224 |#1|))) 76 (|has| |#1| (-356))) (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 |#1|)) 79 (|has| |#1| (-356)))) (-3398 (((-1224 |#1|) (-618 (-1224 |#1|)) (-535)) 93 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3397 (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-890)) 85 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112)) 83 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|))) 82 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112) (-535) (-535)) 81 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3396 (((-112) (-618 (-665 |#1|))) 71 (|has| |#1| (-356))) (((-112) (-618 (-665 |#1|)) (-535)) 73 (|has| |#1| (-356)))) (-3393 (((-1224 (-1224 |#1|)) (-618 (-665 |#1|)) (-1224 |#1|)) 48 (|has| |#1| (-300)))) (-3392 (((-665 |#1|) (-618 (-665 |#1|)) (-665 |#1|)) 34)) (-3391 (((-665 |#1|) (-1224 (-1224 |#1|))) 31)) (-3395 (((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-535)) 65 (|has| |#1| (-356))) (((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|))) 64 (|has| |#1| (-356))) (((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-112) (-535)) 69 (|has| |#1| (-356))))) -(((-1001 |#1|) (-10 -7 (-15 -3391 ((-665 |#1|) (-1224 (-1224 |#1|)))) (-15 -3392 ((-665 |#1|) (-618 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3393 ((-1224 (-1224 |#1|)) (-618 (-665 |#1|)) (-1224 |#1|))) (-15 -3394 ((-665 |#1|) (-618 (-665 |#1|)) (-1224 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-112) (-535))) (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-535))) (-15 -3396 ((-112) (-618 (-665 |#1|)) (-535))) (-15 -3396 ((-112) (-618 (-665 |#1|)))) (-15 -3760 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 |#1|))) (-15 -3760 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 (-1224 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112) (-535) (-535))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-890))) (-15 -3398 ((-1224 |#1|) (-618 (-1224 |#1|)) (-535)))) |%noBranch|) |%noBranch|)) (-1018)) (T -1001)) -((-3398 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1224 *5))) (-5 *4 (-535)) (-5 *2 (-1224 *5)) (-5 *1 (-1001 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) (-5 *3 (-618 (-665 *5))))) (-3397 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) (-5 *3 (-618 (-665 *5))))) (-3397 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1018)) (-5 *2 (-618 (-618 (-665 *4)))) (-5 *1 (-1001 *4)) (-5 *3 (-618 (-665 *4))))) (-3397 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-535)) (-4 *6 (-356)) (-4 *6 (-361)) (-4 *6 (-1018)) (-5 *2 (-618 (-618 (-665 *6)))) (-5 *1 (-1001 *6)) (-5 *3 (-618 (-665 *6))))) (-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-1224 (-1224 *5))) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) (-5 *3 (-618 (-665 *5))))) (-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) (-5 *3 (-618 (-665 *5))))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-618 (-665 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-1001 *4)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-535)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-112)) (-5 *1 (-1001 *5)))) (-3395 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-535)) (-5 *2 (-665 *5)) (-5 *1 (-1001 *5)) (-4 *5 (-356)) (-4 *5 (-1018)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-665 *4))) (-5 *2 (-665 *4)) (-5 *1 (-1001 *4)) (-4 *4 (-356)) (-4 *4 (-1018)))) (-3395 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-618 (-665 *6))) (-5 *4 (-112)) (-5 *5 (-535)) (-5 *2 (-665 *6)) (-5 *1 (-1001 *6)) (-4 *6 (-356)) (-4 *6 (-1018)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-1224 *5)) (-4 *5 (-300)) (-4 *5 (-1018)) (-5 *2 (-665 *5)) (-5 *1 (-1001 *5)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-665 *5))) (-4 *5 (-300)) (-4 *5 (-1018)) (-5 *2 (-1224 (-1224 *5))) (-5 *1 (-1001 *5)) (-5 *4 (-1224 *5)))) (-3392 (*1 *2 *3 *2) (-12 (-5 *3 (-618 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1001 *4)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-1224 (-1224 *4))) (-4 *4 (-1018)) (-5 *2 (-665 *4)) (-5 *1 (-1001 *4))))) -(-10 -7 (-15 -3391 ((-665 |#1|) (-1224 (-1224 |#1|)))) (-15 -3392 ((-665 |#1|) (-618 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3393 ((-1224 (-1224 |#1|)) (-618 (-665 |#1|)) (-1224 |#1|))) (-15 -3394 ((-665 |#1|) (-618 (-665 |#1|)) (-1224 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-112) (-535))) (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-535))) (-15 -3396 ((-112) (-618 (-665 |#1|)) (-535))) (-15 -3396 ((-112) (-618 (-665 |#1|)))) (-15 -3760 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 |#1|))) (-15 -3760 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 (-1224 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112) (-535) (-535))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-890))) (-15 -3398 ((-1224 |#1|) (-618 (-1224 |#1|)) (-535)))) |%noBranch|) |%noBranch|)) -((-3399 ((|#1| (-890) |#1|) 9))) -(((-1002 |#1|) (-10 -7 (-15 -3399 (|#1| (-890) |#1|))) (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $))))) (T -1002)) -((-3399 (*1 *2 *3 *2) (-12 (-5 *3 (-890)) (-5 *1 (-1002 *2)) (-4 *2 (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $)))))))) -(-10 -7 (-15 -3399 (|#1| (-890) |#1|))) -((-3400 ((|#1| |#1| (-890)) 9))) -(((-1003 |#1|) (-10 -7 (-15 -3400 (|#1| |#1| (-890)))) (-13 (-1067) (-10 -8 (-15 * ($ $ $))))) (T -1003)) -((-3400 (*1 *2 *2 *3) (-12 (-5 *3 (-890)) (-5 *1 (-1003 *2)) (-4 *2 (-13 (-1067) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3400 (|#1| |#1| (-890)))) -((-4300 ((|#1| (-304)) 11) (((-1230) |#1|) 9))) -(((-1004 |#1|) (-10 -7 (-15 -4300 ((-1230) |#1|)) (-15 -4300 (|#1| (-304)))) (-1178)) (T -1004)) -((-4300 (*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1004 *2)) (-4 *2 (-1178)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-1230)) (-5 *1 (-1004 *3)) (-4 *3 (-1178))))) -(-10 -7 (-15 -4300 ((-1230) |#1|)) (-15 -4300 (|#1| (-304)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4185 (($ |#4|) 25)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3401 ((|#4| $) 27)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 46) (($ (-535)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3444 (((-747)) 43)) (-2979 (($) 21 T CONST)) (-2985 (($) 23 T CONST)) (-3375 (((-112) $ $) 40)) (-4180 (($ $) 31) (($ $ $) NIL)) (-4182 (($ $ $) 29)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1005 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -4185 ($ |#4|)) (-15 -4300 ($ |#4|)) (-15 -3401 (|#4| $)))) (-356) (-769) (-823) (-921 |#1| |#2| |#3|) (-618 |#4|)) (T -1005)) -((-4185 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-921 *3 *4 *5)) (-14 *6 (-618 *2)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-921 *3 *4 *5)) (-14 *6 (-618 *2)))) (-3401 (*1 *2 *1) (-12 (-4 *2 (-921 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-14 *6 (-618 *2))))) -(-13 (-170) (-38 |#1|) (-10 -8 (-15 -4185 ($ |#4|)) (-15 -4300 ($ |#4|)) (-15 -3401 (|#4| $)))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2296 (((-1230) $ (-1142) (-1142)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-3403 (((-112) (-112)) 39)) (-3402 (((-112) (-112)) 38)) (-4130 (((-51) $ (-1142) (-51)) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 (-51) #1="failed") (-1142) $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3747 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-51) #1#) (-1142) $) NIL)) (-3748 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-51) $ (-1142) (-51)) NIL (|has| $ (-6 -4337)))) (-3431 (((-51) $ (-1142)) NIL)) (-2063 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1142) $) NIL (|has| (-1142) (-823)))) (-2502 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2299 (((-1142) $) NIL (|has| (-1142) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-2735 (((-618 (-1142)) $) 34)) (-2306 (((-112) (-1142) $) NIL)) (-1326 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-2301 (((-618 (-1142)) $) NIL)) (-2302 (((-112) (-1142) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-4143 (((-51) $) NIL (|has| (-1142) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) "failed") (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL)) (-2297 (($ $ (-51)) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-51)) (-618 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-618 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2303 (((-618 (-51)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-51) $ (-1142)) 35) (((-51) $ (-1142) (-51)) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-747) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067)))) (((-747) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-4300 (((-835) $) 37 (-3874 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-593 (-835))) (|has| (-51) (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1006) (-13 (-1155 (-1142) (-51)) (-10 -7 (-15 -3403 ((-112) (-112))) (-15 -3402 ((-112) (-112))) (-6 -4336)))) (T -1006)) -((-3403 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006))))) -(-13 (-1155 (-1142) (-51)) (-10 -7 (-15 -3403 ((-112) (-112))) (-15 -3402 ((-112) (-112))) (-6 -4336))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 9)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-1007) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $))))) (T -1007)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1007))))) -(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)))) -((-3490 ((|#2| $) 10))) -(((-1008 |#1| |#2|) (-10 -8 (-15 -3490 (|#2| |#1|))) (-1009 |#2|) (-1178)) (T -1008)) -NIL -(-10 -8 (-15 -3490 (|#2| |#1|))) -((-3491 (((-3 |#1| "failed") $) 7)) (-3490 ((|#1| $) 8)) (-4300 (($ |#1|) 6))) -(((-1009 |#1|) (-138) (-1178)) (T -1009)) -((-3490 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1178)))) (-3491 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *2)) (-4 *2 (-1178)))) (-4300 (*1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1178))))) -(-13 (-10 -8 (-15 -4300 ($ |t#1|)) (-15 -3491 ((-3 |t#1| "failed") $)) (-15 -3490 (|t#1| $)))) -((-3404 (((-618 (-618 (-286 (-400 (-917 |#2|))))) (-618 (-917 |#2|)) (-618 (-1142))) 38))) -(((-1010 |#1| |#2|) (-10 -7 (-15 -3404 ((-618 (-618 (-286 (-400 (-917 |#2|))))) (-618 (-917 |#2|)) (-618 (-1142))))) (-542) (-13 (-542) (-1009 |#1|))) (T -1010)) -((-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-4 *6 (-13 (-542) (-1009 *5))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *6)))))) (-5 *1 (-1010 *5 *6))))) -(-10 -7 (-15 -3404 ((-618 (-618 (-286 (-400 (-917 |#2|))))) (-618 (-917 |#2|)) (-618 (-1142))))) -((-3405 (((-618 (-1142)) (-400 (-917 |#1|))) 17)) (-3407 (((-400 (-1136 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142)) 24)) (-3408 (((-400 (-917 |#1|)) (-400 (-1136 (-400 (-917 |#1|)))) (-1142)) 26)) (-3406 (((-3 (-1142) "failed") (-400 (-917 |#1|))) 20)) (-4110 (((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-286 (-400 (-917 |#1|))))) 32) (((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|)))) 33) (((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-1142)) (-618 (-400 (-917 |#1|)))) 28) (((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|))) 29)) (-4300 (((-400 (-917 |#1|)) |#1|) 11))) -(((-1011 |#1|) (-10 -7 (-15 -3405 ((-618 (-1142)) (-400 (-917 |#1|)))) (-15 -3406 ((-3 (-1142) "failed") (-400 (-917 |#1|)))) (-15 -3407 ((-400 (-1136 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142))) (-15 -3408 ((-400 (-917 |#1|)) (-400 (-1136 (-400 (-917 |#1|)))) (-1142))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-1142)) (-618 (-400 (-917 |#1|))))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -4300 ((-400 (-917 |#1|)) |#1|))) (-542)) (T -1011)) -((-4300 (*1 *2 *3) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-1011 *3)) (-4 *3 (-542)))) (-4110 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-286 (-400 (-917 *4))))) (-5 *2 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *1 (-1011 *4)))) (-4110 (*1 *2 *2 *3) (-12 (-5 *3 (-286 (-400 (-917 *4)))) (-5 *2 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *1 (-1011 *4)))) (-4110 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-618 (-1142))) (-5 *4 (-618 (-400 (-917 *5)))) (-5 *2 (-400 (-917 *5))) (-4 *5 (-542)) (-5 *1 (-1011 *5)))) (-4110 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-400 (-917 *4))) (-5 *3 (-1142)) (-4 *4 (-542)) (-5 *1 (-1011 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1136 (-400 (-917 *5))))) (-5 *4 (-1142)) (-5 *2 (-400 (-917 *5))) (-5 *1 (-1011 *5)) (-4 *5 (-542)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-400 (-1136 (-400 (-917 *5))))) (-5 *1 (-1011 *5)) (-5 *3 (-400 (-917 *5))))) (-3406 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-1142)) (-5 *1 (-1011 *4)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-618 (-1142))) (-5 *1 (-1011 *4))))) -(-10 -7 (-15 -3405 ((-618 (-1142)) (-400 (-917 |#1|)))) (-15 -3406 ((-3 (-1142) "failed") (-400 (-917 |#1|)))) (-15 -3407 ((-400 (-1136 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142))) (-15 -3408 ((-400 (-917 |#1|)) (-400 (-1136 (-400 (-917 |#1|)))) (-1142))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-1142)) (-618 (-400 (-917 |#1|))))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -4300 ((-400 (-917 |#1|)) |#1|))) -((-3409 (((-371)) 15)) (-3419 (((-1 (-371)) (-371) (-371)) 20)) (-3417 (((-1 (-371)) (-747)) 43)) (-3410 (((-371)) 34)) (-3413 (((-1 (-371)) (-371) (-371)) 35)) (-3411 (((-371)) 26)) (-3414 (((-1 (-371)) (-371)) 27)) (-3412 (((-371) (-747)) 38)) (-3415 (((-1 (-371)) (-747)) 39)) (-3416 (((-1 (-371)) (-747) (-747)) 42)) (-3726 (((-1 (-371)) (-747) (-747)) 40))) -(((-1012) (-10 -7 (-15 -3409 ((-371))) (-15 -3410 ((-371))) (-15 -3411 ((-371))) (-15 -3412 ((-371) (-747))) (-15 -3419 ((-1 (-371)) (-371) (-371))) (-15 -3413 ((-1 (-371)) (-371) (-371))) (-15 -3414 ((-1 (-371)) (-371))) (-15 -3415 ((-1 (-371)) (-747))) (-15 -3726 ((-1 (-371)) (-747) (-747))) (-15 -3416 ((-1 (-371)) (-747) (-747))) (-15 -3417 ((-1 (-371)) (-747))))) (T -1012)) -((-3417 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) (-3416 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) (-3726 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) (-3415 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))) (-3419 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-371)) (-5 *1 (-1012)))) (-3411 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012)))) (-3410 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012)))) (-3409 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012))))) -(-10 -7 (-15 -3409 ((-371))) (-15 -3410 ((-371))) (-15 -3411 ((-371))) (-15 -3412 ((-371) (-747))) (-15 -3419 ((-1 (-371)) (-371) (-371))) (-15 -3413 ((-1 (-371)) (-371) (-371))) (-15 -3414 ((-1 (-371)) (-371))) (-15 -3415 ((-1 (-371)) (-747))) (-15 -3726 ((-1 (-371)) (-747) (-747))) (-15 -3416 ((-1 (-371)) (-747) (-747))) (-15 -3417 ((-1 (-371)) (-747)))) -((-4075 (((-398 |#1|) |#1|) 33))) -(((-1013 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1|))) (-1200 (-400 (-917 (-535))))) (T -1013)) -((-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1200 (-400 (-917 (-535)))))))) -(-10 -7 (-15 -4075 ((-398 |#1|) |#1|))) -((-3418 (((-400 (-398 (-917 |#1|))) (-400 (-917 |#1|))) 14))) -(((-1014 |#1|) (-10 -7 (-15 -3418 ((-400 (-398 (-917 |#1|))) (-400 (-917 |#1|))))) (-300)) (T -1014)) -((-3418 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-398 (-917 *4)))) (-5 *1 (-1014 *4))))) -(-10 -7 (-15 -3418 ((-400 (-398 (-917 |#1|))) (-400 (-917 |#1|))))) -((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 (-756 |#1| (-836 |#2|)))))) (-618 (-756 |#1| (-836 |#2|)))) NIL)) (-4028 (((-618 $) (-618 (-756 |#1| (-836 |#2|)))) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-112)) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-112) (-112)) NIL)) (-3405 (((-618 (-836 |#2|)) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-4034 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4117 (((-618 (-2 (|:| |val| (-756 |#1| (-836 |#2|))) (|:| -1655 $))) (-756 |#1| (-836 |#2|)) $) NIL)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ (-836 |#2|)) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 (-756 |#1| (-836 |#2|)) #1="failed") $ (-836 |#2|)) NIL)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) NIL (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))) $ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-3221 (((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 (-756 |#1| (-836 |#2|)))) NIL)) (-3490 (($ (-618 (-756 |#1| (-836 |#2|)))) NIL)) (-4141 (((-3 $ #1#) $) NIL)) (-4031 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-3748 (($ (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-756 |#1| (-836 |#2|))) (|:| |den| |#1|)) (-756 |#1| (-836 |#2|)) $) NIL (|has| |#1| (-542)))) (-4040 (((-112) (-756 |#1| (-836 |#2|)) $ (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-4029 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4185 (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $ (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $ (-756 |#1| (-836 |#2|))) NIL (|has| $ (-6 -4336))) (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-4042 (((-2 (|:| -4204 (-618 (-756 |#1| (-836 |#2|)))) (|:| -1813 (-618 (-756 |#1| (-836 |#2|))))) $) NIL)) (-3531 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-3529 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-3532 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-2063 (((-618 (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4041 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-3514 (((-836 |#2|) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-2067 (($ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL)) (-3235 (((-618 (-836 |#2|)) $) NIL)) (-3234 (((-112) (-836 |#2|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3525 (((-3 (-756 |#1| (-836 |#2|)) (-618 $)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3524 (((-618 (-2 (|:| |val| (-756 |#1| (-836 |#2|))) (|:| -1655 $))) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4140 (((-3 (-756 |#1| (-836 |#2|)) #1#) $) NIL)) (-3526 (((-618 $) (-756 |#1| (-836 |#2|)) $) NIL)) (-3528 (((-3 (-112) (-618 $)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-3572 (((-618 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) $) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-618 $)) NIL) (((-618 $) (-756 |#1| (-836 |#2|)) (-618 $)) NIL)) (-3782 (($ (-756 |#1| (-836 |#2|)) $) NIL) (($ (-618 (-756 |#1| (-836 |#2|))) $) NIL)) (-4043 (((-618 (-756 |#1| (-836 |#2|))) $) NIL)) (-4037 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-4032 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4045 (((-112) $ $) NIL)) (-3224 (((-2 (|:| |num| (-756 |#1| (-836 |#2|))) (|:| |den| |#1|)) (-756 |#1| (-836 |#2|)) $) NIL (|has| |#1| (-542)))) (-4038 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-4033 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 (-756 |#1| (-836 |#2|)) #1#) $) NIL)) (-1395 (((-3 (-756 |#1| (-836 |#2|)) "failed") (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL)) (-4025 (((-3 $ #1#) $ (-756 |#1| (-836 |#2|))) NIL)) (-4111 (($ $ (-756 |#1| (-836 |#2|))) NIL) (((-618 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-618 $) (-756 |#1| (-836 |#2|)) (-618 $)) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) $) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-618 $)) NIL)) (-2065 (((-112) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|)))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-286 (-756 |#1| (-836 |#2|)))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-618 (-286 (-756 |#1| (-836 |#2|))))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4290 (((-747) $) NIL)) (-2064 (((-747) (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (((-747) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-756 |#1| (-836 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-756 |#1| (-836 |#2|)))) NIL)) (-3231 (($ $ (-836 |#2|)) NIL)) (-3233 (($ $ (-836 |#2|)) NIL)) (-4030 (($ $) NIL)) (-3232 (($ $ (-836 |#2|)) NIL)) (-4300 (((-835) $) NIL) (((-618 (-756 |#1| (-836 |#2|))) $) NIL)) (-4024 (((-747) $) NIL (|has| (-836 |#2|) (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 (-756 |#1| (-836 |#2|))))) #1#) (-618 (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 (-756 |#1| (-836 |#2|))))) #1#) (-618 (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-4036 (((-112) $ (-1 (-112) (-756 |#1| (-836 |#2|)) (-618 (-756 |#1| (-836 |#2|))))) NIL)) (-3523 (((-618 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-618 $) (-756 |#1| (-836 |#2|)) (-618 $)) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) $) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-618 $)) NIL)) (-2066 (((-112) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 (-836 |#2|)) $) NIL)) (-3530 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-4276 (((-112) (-836 |#2|) $) NIL)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1015 |#1| |#2|) (-13 (-1038 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) (-10 -8 (-15 -4028 ((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-112) (-112))))) (-444) (-618 (-1142))) (T -1015)) -((-4028 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-1015 *5 *6))))) -(-13 (-1038 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) (-10 -8 (-15 -4028 ((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-112) (-112))))) -((-3419 (((-1 (-535)) (-1055 (-535))) 33)) (-3423 (((-535) (-535) (-535) (-535) (-535)) 30)) (-3421 (((-1 (-535)) |RationalNumber|) NIL)) (-3422 (((-1 (-535)) |RationalNumber|) NIL)) (-3420 (((-1 (-535)) (-535) |RationalNumber|) NIL))) -(((-1016) (-10 -7 (-15 -3419 ((-1 (-535)) (-1055 (-535)))) (-15 -3420 ((-1 (-535)) (-535) |RationalNumber|)) (-15 -3421 ((-1 (-535)) |RationalNumber|)) (-15 -3422 ((-1 (-535)) |RationalNumber|)) (-15 -3423 ((-535) (-535) (-535) (-535) (-535))))) (T -1016)) -((-3423 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1016)))) (-3422 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)))) (-3421 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)) (-5 *3 (-535)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-1055 (-535))) (-5 *2 (-1 (-535))) (-5 *1 (-1016))))) -(-10 -7 (-15 -3419 ((-1 (-535)) (-1055 (-535)))) (-15 -3420 ((-1 (-535)) (-535) |RationalNumber|)) (-15 -3421 ((-1 (-535)) |RationalNumber|)) (-15 -3422 ((-1 (-535)) |RationalNumber|)) (-15 -3423 ((-535) (-535) (-535) (-535) (-535)))) -((-4300 (((-835) $) NIL) (($ (-535)) 10))) -(((-1017 |#1|) (-10 -8 (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-1018)) (T -1017)) -NIL -(-10 -8 (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-1018) (-138)) (T -1018)) -((-3444 (*1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-747)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1018))))) -(-13 (-1025) (-703) (-624 $) (-10 -8 (-15 -3444 ((-747))) (-15 -4300 ($ (-535))) (-6 -4333))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-3424 (((-400 (-917 |#2|)) (-618 |#2|) (-618 |#2|) (-747) (-747)) 46))) -(((-1019 |#1| |#2|) (-10 -7 (-15 -3424 ((-400 (-917 |#2|)) (-618 |#2|) (-618 |#2|) (-747) (-747)))) (-1142) (-356)) (T -1019)) -((-3424 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-747)) (-4 *6 (-356)) (-5 *2 (-400 (-917 *6))) (-5 *1 (-1019 *5 *6)) (-14 *5 (-1142))))) -(-10 -7 (-15 -3424 ((-400 (-917 |#2|)) (-618 |#2|) (-618 |#2|) (-747) (-747)))) -((-3439 (((-112) $) 29)) (-3441 (((-112) $) 16)) (-3433 (((-747) $) 13)) (-3432 (((-747) $) 14)) (-3440 (((-112) $) 26)) (-3438 (((-112) $) 31))) -(((-1020 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3432 ((-747) |#1|)) (-15 -3433 ((-747) |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3440 ((-112) |#1|)) (-15 -3441 ((-112) |#1|))) (-1021 |#2| |#3| |#4| |#5| |#6|) (-747) (-747) (-1018) (-232 |#3| |#4|) (-232 |#2| |#4|)) (T -1020)) -NIL -(-10 -8 (-15 -3432 ((-747) |#1|)) (-15 -3433 ((-747) |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3440 ((-112) |#1|)) (-15 -3441 ((-112) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3439 (((-112) $) 51)) (-1363 (((-3 $ "failed") $ $) 19)) (-3441 (((-112) $) 53)) (-1264 (((-112) $ (-747)) 61)) (-3879 (($) 17 T CONST)) (-3428 (($ $) 34 (|has| |#3| (-300)))) (-3430 ((|#4| $ (-535)) 39)) (-3427 (((-747) $) 33 (|has| |#3| (-542)))) (-3431 ((|#3| $ (-535) (-535)) 41)) (-2063 (((-618 |#3|) $) 68 (|has| $ (-6 -4336)))) (-3426 (((-747) $) 32 (|has| |#3| (-542)))) (-3425 (((-618 |#5|) $) 31 (|has| |#3| (-542)))) (-3433 (((-747) $) 45)) (-3432 (((-747) $) 44)) (-4065 (((-112) $ (-747)) 60)) (-3437 (((-535) $) 49)) (-3435 (((-535) $) 47)) (-2502 (((-618 |#3|) $) 69 (|has| $ (-6 -4336)))) (-3579 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1067)) (|has| $ (-6 -4336))))) (-3436 (((-535) $) 48)) (-3434 (((-535) $) 46)) (-3442 (($ (-618 (-618 |#3|))) 54)) (-2067 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3939 (((-618 (-618 |#3|)) $) 43)) (-4062 (((-112) $ (-747)) 59)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-542)))) (-2065 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#3|) (-618 |#3|)) 75 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-286 |#3|)) 73 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-618 (-286 |#3|))) 72 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-1265 (((-112) $ $) 55)) (-3745 (((-112) $) 58)) (-3911 (($) 57)) (-4142 ((|#3| $ (-535) (-535)) 42) ((|#3| $ (-535) (-535) |#3|) 40)) (-3440 (((-112) $) 52)) (-2064 (((-747) |#3| $) 70 (-12 (|has| |#3| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4336)))) (-3742 (($ $) 56)) (-3429 ((|#5| $ (-535)) 38)) (-4300 (((-835) $) 11)) (-2066 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4336)))) (-3438 (((-112) $) 50)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#3|) 35 (|has| |#3| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4299 (((-747) $) 62 (|has| $ (-6 -4336))))) -(((-1021 |#1| |#2| |#3| |#4| |#5|) (-138) (-747) (-747) (-1018) (-232 |t#2| |t#3|) (-232 |t#1| |t#3|)) (T -1021)) -((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *5))) (-4 *5 (-1018)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-618 (-618 *5))))) (-4142 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) (-3431 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) (-4142 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *2 (-1018)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *6 *2 *7)) (-4 *6 (-1018)) (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))) (-3429 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *6 *7 *2)) (-4 *6 (-1018)) (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))) (-4301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-542)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-747)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-747)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-618 *7))))) -(-13 (-111 |t#3| |t#3|) (-481 |t#3|) (-10 -8 (-6 -4336) (IF (|has| |t#3| (-170)) (-6 (-694 |t#3|)) |%noBranch|) (-15 -3442 ($ (-618 (-618 |t#3|)))) (-15 -3441 ((-112) $)) (-15 -3440 ((-112) $)) (-15 -3439 ((-112) $)) (-15 -3438 ((-112) $)) (-15 -3437 ((-535) $)) (-15 -3436 ((-535) $)) (-15 -3435 ((-535) $)) (-15 -3434 ((-535) $)) (-15 -3433 ((-747) $)) (-15 -3432 ((-747) $)) (-15 -3939 ((-618 (-618 |t#3|)) $)) (-15 -4142 (|t#3| $ (-535) (-535))) (-15 -3431 (|t#3| $ (-535) (-535))) (-15 -4142 (|t#3| $ (-535) (-535) |t#3|)) (-15 -3430 (|t#4| $ (-535))) (-15 -3429 (|t#5| $ (-535))) (-15 -4301 ($ (-1 |t#3| |t#3|) $)) (-15 -4301 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-542)) (-15 -3803 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-356)) (-15 -4291 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-300)) (-15 -3428 ($ $)) |%noBranch|) (IF (|has| |t#3| (-542)) (PROGN (-15 -3427 ((-747) $)) (-15 -3426 ((-747) $)) (-15 -3425 ((-618 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-593 (-835)) . T) ((-302 |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))) ((-481 |#3|) . T) ((-505 |#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))) ((-624 |#3|) . T) ((-694 |#3|) |has| |#3| (-170)) ((-1024 |#3|) . T) ((-1067) . T) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3439 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3428 (($ $) 43 (|has| |#3| (-300)))) (-3430 (((-233 |#2| |#3|) $ (-535)) 32)) (-3443 (($ (-665 |#3|)) 41)) (-3427 (((-747) $) 45 (|has| |#3| (-542)))) (-3431 ((|#3| $ (-535) (-535)) NIL)) (-2063 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3426 (((-747) $) 47 (|has| |#3| (-542)))) (-3425 (((-618 (-233 |#1| |#3|)) $) 51 (|has| |#3| (-542)))) (-3433 (((-747) $) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#3|))) 27)) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3939 (((-618 (-618 |#3|)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-542)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#3|) (-618 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-618 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#3| $ (-535) (-535)) NIL) ((|#3| $ (-535) (-535) |#3|) NIL)) (-4254 (((-133)) 54 (|has| |#3| (-356)))) (-3440 (((-112) $) NIL)) (-2064 (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067)))) (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 63 (|has| |#3| (-594 (-524))))) (-3429 (((-233 |#1| |#3|) $ (-535)) 36)) (-4300 (((-835) $) 16) (((-665 |#3|) $) 38)) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-2979 (($) 13 T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1022 |#1| |#2| |#3|) (-13 (-1021 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-593 (-665 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1232 |#3|)) |%noBranch|) (IF (|has| |#3| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (-15 -3443 ($ (-665 |#3|))) (-15 -4300 ((-665 |#3|) $)))) (-747) (-747) (-1018)) (T -1022)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-665 *5)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-1018)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-665 *5)) (-4 *5 (-1018)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747))))) -(-13 (-1021 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-593 (-665 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1232 |#3|)) |%noBranch|) (IF (|has| |#3| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (-15 -3443 ($ (-665 |#3|))) (-15 -4300 ((-665 |#3|) $)))) -((-4185 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4301 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1023 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4301 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4185 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-747) (-747) (-1018) (-232 |#2| |#3|) (-232 |#1| |#3|) (-1021 |#1| |#2| |#3| |#4| |#5|) (-1018) (-232 |#2| |#7|) (-232 |#1| |#7|) (-1021 |#1| |#2| |#7| |#8| |#9|)) (T -1023)) -((-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1018)) (-4 *2 (-1018)) (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *12 (-1021 *5 *6 *2 *10 *11)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1018)) (-4 *10 (-1018)) (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *2 (-1021 *5 *6 *10 *11 *12)) (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10))))) -(-10 -7 (-15 -4301 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4185 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ |#1|) 23))) -(((-1024 |#1|) (-138) (-1025)) (T -1024)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1025))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3812 (((-623 (-550)) $) 54)) (-3479 (($ (-623 (-550))) 62)) (-1453 (((-550) $) 40 (|has| (-550) (-300)))) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL (|has| (-550) (-798)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) 49) (((-3 (-1144) "failed") $) NIL (|has| (-550) (-1011 (-1144)))) (((-3 (-400 (-550)) "failed") $) 47 (|has| (-550) (-1011 (-550)))) (((-3 (-550) "failed") $) 49 (|has| (-550) (-1011 (-550))))) (-2726 (((-550) $) NIL) (((-1144) $) NIL (|has| (-550) (-1011 (-1144)))) (((-400 (-550)) $) NIL (|has| (-550) (-1011 (-550)))) (((-550) $) NIL (|has| (-550) (-1011 (-550))))) (-3349 (($ $ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| (-550) (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1741 (($) NIL (|has| (-550) (-535)))) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-3652 (((-623 (-550)) $) 60)) (-1416 (((-112) $) NIL (|has| (-550) (-798)))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (|has| (-550) (-859 (-550)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (|has| (-550) (-859 (-372))))) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL)) (-2705 (((-550) $) 37)) (-2826 (((-3 $ "failed") $) NIL (|has| (-550) (-1119)))) (-3329 (((-112) $) NIL (|has| (-550) (-798)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| (-550) (-825)))) (-3972 (($ (-1 (-550) (-550)) $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL)) (-3862 (($) NIL (|has| (-550) (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-3948 (($ $) NIL (|has| (-550) (-300))) (((-400 (-550)) $) 42)) (-3734 (((-1124 (-550)) $) 59)) (-3381 (($ (-623 (-550)) (-623 (-550))) 63)) (-1608 (((-550) $) 53 (|has| (-550) (-535)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| (-550) (-882)))) (-3338 (((-411 $) $) NIL)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3866 (($ $ (-623 (-550)) (-623 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-302 (-550)))) (($ $ (-287 (-550))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-287 (-550)))) NIL (|has| (-550) (-302 (-550)))) (($ $ (-623 (-1144)) (-623 (-550))) NIL (|has| (-550) (-505 (-1144) (-550)))) (($ $ (-1144) (-550)) NIL (|has| (-550) (-505 (-1144) (-550))))) (-3542 (((-749) $) NIL)) (-2680 (($ $ (-550)) NIL (|has| (-550) (-279 (-550) (-550))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $) 11 (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1144)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2639 (($ $) NIL)) (-2715 (((-550) $) 39)) (-3566 (((-623 (-550)) $) 61)) (-4028 (((-865 (-550)) $) NIL (|has| (-550) (-596 (-865 (-550))))) (((-865 (-372)) $) NIL (|has| (-550) (-596 (-865 (-372))))) (((-526) $) NIL (|has| (-550) (-596 (-526)))) (((-372) $) NIL (|has| (-550) (-995))) (((-219) $) NIL (|has| (-550) (-995)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-550) (-882))))) (-1518 (((-836) $) 77) (($ (-550)) 43) (($ $) NIL) (($ (-400 (-550))) 20) (($ (-550)) 43) (($ (-1144)) NIL (|has| (-550) (-1011 (-1144)))) (((-400 (-550)) $) 18)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-550) (-882))) (|has| (-550) (-143))))) (-2390 (((-749)) 9)) (-1754 (((-550) $) 51 (|has| (-550) (-535)))) (-1345 (((-112) $ $) NIL)) (-1635 (($ $) NIL (|has| (-550) (-798)))) (-2626 (($) 10 T CONST)) (-2636 (($) 12 T CONST)) (-4183 (($ $) NIL (|has| (-550) (-227))) (($ $ (-749)) NIL (|has| (-550) (-227))) (($ $ (-1144)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| (-550) (-873 (-1144)))) (($ $ (-1 (-550) (-550)) (-749)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2363 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2316 (((-112) $ $) 14)) (-2354 (((-112) $ $) NIL (|has| (-550) (-825)))) (-2335 (((-112) $ $) 33 (|has| (-550) (-825)))) (-2414 (($ $ $) 29) (($ (-550) (-550)) 31)) (-2403 (($ $) 15) (($ $ $) 23)) (-2391 (($ $ $) 21)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 25) (($ $ $) 27) (($ $ (-400 (-550))) NIL) (($ (-400 (-550)) $) NIL) (($ (-550) $) 25) (($ $ (-550)) NIL))) +(((-977 |#1|) (-13 (-965 (-550)) (-10 -8 (-15 -1518 ((-400 (-550)) $)) (-15 -3948 ((-400 (-550)) $)) (-15 -3812 ((-623 (-550)) $)) (-15 -3734 ((-1124 (-550)) $)) (-15 -3652 ((-623 (-550)) $)) (-15 -3566 ((-623 (-550)) $)) (-15 -3479 ($ (-623 (-550)))) (-15 -3381 ($ (-623 (-550)) (-623 (-550)))))) (-550)) (T -977)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) (-3812 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1124 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) (-3381 (*1 *1 *2 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550))))) +(-13 (-965 (-550)) (-10 -8 (-15 -1518 ((-400 (-550)) $)) (-15 -3948 ((-400 (-550)) $)) (-15 -3812 ((-623 (-550)) $)) (-15 -3734 ((-1124 (-550)) $)) (-15 -3652 ((-623 (-550)) $)) (-15 -3566 ((-623 (-550)) $)) (-15 -3479 ($ (-623 (-550)))) (-15 -3381 ($ (-623 (-550)) (-623 (-550)))))) +((-2713 (((-52) (-400 (-550)) (-550)) 9))) +(((-978) (-10 -7 (-15 -2713 ((-52) (-400 (-550)) (-550))))) (T -978)) +((-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-550))) (-5 *4 (-550)) (-5 *2 (-52)) (-5 *1 (-978))))) +(-10 -7 (-15 -2713 ((-52) (-400 (-550)) (-550)))) +((-4319 (((-550)) 13)) (-2966 (((-550)) 16)) (-2885 (((-1232) (-550)) 15)) (-2799 (((-550) (-550)) 17) (((-550)) 12))) +(((-979) (-10 -7 (-15 -2799 ((-550))) (-15 -4319 ((-550))) (-15 -2799 ((-550) (-550))) (-15 -2885 ((-1232) (-550))) (-15 -2966 ((-550))))) (T -979)) +((-2966 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-979)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-979)))) (-2799 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-979)))) (-4319 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-979)))) (-2799 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-979))))) +(-10 -7 (-15 -2799 ((-550))) (-15 -4319 ((-550))) (-15 -2799 ((-550) (-550))) (-15 -2885 ((-1232) (-550))) (-15 -2966 ((-550)))) +((-1338 (((-411 |#1|) |#1|) 41)) (-3338 (((-411 |#1|) |#1|) 40))) +(((-980 |#1|) (-10 -7 (-15 -3338 ((-411 |#1|) |#1|)) (-15 -1338 ((-411 |#1|) |#1|))) (-1203 (-400 (-550)))) (T -980)) +((-1338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-980 *3)) (-4 *3 (-1203 (-400 (-550)))))) (-3338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-980 *3)) (-4 *3 (-1203 (-400 (-550))))))) +(-10 -7 (-15 -3338 ((-411 |#1|) |#1|)) (-15 -1338 ((-411 |#1|) |#1|))) +((-3207 (((-3 (-400 (-550)) "failed") |#1|) 15)) (-3122 (((-112) |#1|) 14)) (-3042 (((-400 (-550)) |#1|) 10))) +(((-981 |#1|) (-10 -7 (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|))) (-1011 (-400 (-550)))) (T -981)) +((-3207 (*1 *2 *3) (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-981 *3)) (-4 *3 (-1011 *2)))) (-3122 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-981 *3)) (-4 *3 (-1011 (-400 (-550)))))) (-3042 (*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-981 *3)) (-4 *3 (-1011 *2))))) +(-10 -7 (-15 -3042 ((-400 (-550)) |#1|)) (-15 -3122 ((-112) |#1|)) (-15 -3207 ((-3 (-400 (-550)) "failed") |#1|))) +((-1705 ((|#2| $ "value" |#2|) 12)) (-2680 ((|#2| $ "value") 10)) (-2413 (((-112) $ $) 18))) +(((-982 |#1| |#2|) (-10 -8 (-15 -1705 (|#2| |#1| "value" |#2|)) (-15 -2413 ((-112) |#1| |#1|)) (-15 -2680 (|#2| |#1| "value"))) (-983 |#2|) (-1181)) (T -982)) +NIL +(-10 -8 (-15 -1705 (|#2| |#1| "value" |#2|)) (-15 -2413 ((-112) |#1| |#1|)) (-15 -2680 (|#2| |#1| "value"))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3625 ((|#1| $) 48)) (-4047 (((-112) $ (-749)) 8)) (-2190 ((|#1| $ |#1|) 39 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-3513 (($) 7 T CONST)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 50)) (-2333 (((-112) $ $) 42 (|has| |#1| (-1068)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-2513 (((-623 |#1|) $) 45)) (-3312 (((-112) $) 49)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ "value") 47)) (-2487 (((-550) $ $) 44)) (-2136 (((-112) $) 46)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 51)) (-2413 (((-112) $ $) 43 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-983 |#1|) (-138) (-1181)) (T -983)) +((-3997 (*1 *2 *1) (-12 (-4 *3 (-1181)) (-5 *2 (-623 *1)) (-4 *1 (-983 *3)))) (-2560 (*1 *2 *1) (-12 (-4 *3 (-1181)) (-5 *2 (-623 *1)) (-4 *1 (-983 *3)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-5 *2 (-112)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-1181)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-983 *2)) (-4 *2 (-1181)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-5 *2 (-112)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-5 *2 (-623 *3)))) (-2487 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-5 *2 (-550)))) (-2413 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-2333 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-2266 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *1)) (|has| *1 (-6 -4343)) (-4 *1 (-983 *3)) (-4 *3 (-1181)))) (-1705 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4343)) (-4 *1 (-983 *2)) (-4 *2 (-1181)))) (-2190 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-983 *2)) (-4 *2 (-1181))))) +(-13 (-481 |t#1|) (-10 -8 (-15 -3997 ((-623 $) $)) (-15 -2560 ((-623 $) $)) (-15 -3312 ((-112) $)) (-15 -3625 (|t#1| $)) (-15 -2680 (|t#1| $ "value")) (-15 -2136 ((-112) $)) (-15 -2513 ((-623 |t#1|) $)) (-15 -2487 ((-550) $ $)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -2413 ((-112) $ $)) (-15 -2333 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4343)) (PROGN (-15 -2266 ($ $ (-623 $))) (-15 -1705 (|t#1| $ "value" |t#1|)) (-15 -2190 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-3353 (($ $) 9) (($ $ (-894)) 43) (($ (-400 (-550))) 13) (($ (-550)) 15)) (-4146 (((-3 $ "failed") (-1140 $) (-894) (-836)) 23) (((-3 $ "failed") (-1140 $) (-894)) 28)) (-1460 (($ $ (-550)) 49)) (-2390 (((-749)) 17)) (-4258 (((-623 $) (-1140 $)) NIL) (((-623 $) (-1140 (-400 (-550)))) 54) (((-623 $) (-1140 (-550))) 59) (((-623 $) (-925 $)) 63) (((-623 $) (-925 (-400 (-550)))) 67) (((-623 $) (-925 (-550))) 71)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL) (($ $ (-400 (-550))) 47))) +(((-984 |#1|) (-10 -8 (-15 -3353 (|#1| (-550))) (-15 -3353 (|#1| (-400 (-550)))) (-15 -3353 (|#1| |#1| (-894))) (-15 -4258 ((-623 |#1|) (-925 (-550)))) (-15 -4258 ((-623 |#1|) (-925 (-400 (-550))))) (-15 -4258 ((-623 |#1|) (-925 |#1|))) (-15 -4258 ((-623 |#1|) (-1140 (-550)))) (-15 -4258 ((-623 |#1|) (-1140 (-400 (-550))))) (-15 -4258 ((-623 |#1|) (-1140 |#1|))) (-15 -4146 ((-3 |#1| "failed") (-1140 |#1|) (-894))) (-15 -4146 ((-3 |#1| "failed") (-1140 |#1|) (-894) (-836))) (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -1460 (|#1| |#1| (-550))) (-15 -3353 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2390 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-894)))) (-985)) (T -984)) +((-2390 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-984 *3)) (-4 *3 (-985))))) +(-10 -8 (-15 -3353 (|#1| (-550))) (-15 -3353 (|#1| (-400 (-550)))) (-15 -3353 (|#1| |#1| (-894))) (-15 -4258 ((-623 |#1|) (-925 (-550)))) (-15 -4258 ((-623 |#1|) (-925 (-400 (-550))))) (-15 -4258 ((-623 |#1|) (-925 |#1|))) (-15 -4258 ((-623 |#1|) (-1140 (-550)))) (-15 -4258 ((-623 |#1|) (-1140 (-400 (-550))))) (-15 -4258 ((-623 |#1|) (-1140 |#1|))) (-15 -4146 ((-3 |#1| "failed") (-1140 |#1|) (-894))) (-15 -4146 ((-3 |#1| "failed") (-1140 |#1|) (-894) (-836))) (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -1460 (|#1| |#1| (-550))) (-15 -3353 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -2390 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-894)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 87)) (-1447 (($ $) 88)) (-4291 (((-112) $) 90)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 107)) (-3564 (((-411 $) $) 108)) (-3353 (($ $) 71) (($ $ (-894)) 57) (($ (-400 (-550))) 56) (($ (-550)) 55)) (-3631 (((-112) $ $) 98)) (-3712 (((-550) $) 124)) (-3513 (($) 17 T CONST)) (-4146 (((-3 $ "failed") (-1140 $) (-894) (-836)) 65) (((-3 $ "failed") (-1140 $) (-894)) 64)) (-3880 (((-3 (-550) "failed") $) 83 (|has| (-400 (-550)) (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 81 (|has| (-400 (-550)) (-1011 (-400 (-550))))) (((-3 (-400 (-550)) "failed") $) 79)) (-2726 (((-550) $) 84 (|has| (-400 (-550)) (-1011 (-550)))) (((-400 (-550)) $) 82 (|has| (-400 (-550)) (-1011 (-400 (-550))))) (((-400 (-550)) $) 78)) (-1544 (($ $ (-836)) 54)) (-2635 (($ $ (-836)) 53)) (-3349 (($ $ $) 102)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 101)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 96)) (-3933 (((-112) $) 109)) (-1416 (((-112) $) 122)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 70)) (-3329 (((-112) $) 123)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 105)) (-2707 (($ $ $) 121)) (-4164 (($ $ $) 120)) (-1631 (((-3 (-1140 $) "failed") $) 66)) (-1835 (((-3 (-836) "failed") $) 68)) (-1733 (((-3 (-1140 $) "failed") $) 67)) (-3106 (($ (-623 $)) 94) (($ $ $) 93)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 110)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 95)) (-3139 (($ (-623 $)) 92) (($ $ $) 91)) (-3338 (((-411 $) $) 106)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 103)) (-1495 (((-3 $ "failed") $ $) 86)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 97)) (-3542 (((-749) $) 99)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 100)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 114) (($ $) 85) (($ (-400 (-550))) 80) (($ (-550)) 77) (($ (-400 (-550))) 74)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 89)) (-2001 (((-400 (-550)) $ $) 52)) (-4258 (((-623 $) (-1140 $)) 63) (((-623 $) (-1140 (-400 (-550)))) 62) (((-623 $) (-1140 (-550))) 61) (((-623 $) (-925 $)) 60) (((-623 $) (-925 (-400 (-550)))) 59) (((-623 $) (-925 (-550))) 58)) (-1635 (($ $) 125)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2363 (((-112) $ $) 118)) (-2345 (((-112) $ $) 117)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 119)) (-2335 (((-112) $ $) 116)) (-2414 (($ $ $) 115)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 111) (($ $ (-400 (-550))) 69)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ (-400 (-550)) $) 113) (($ $ (-400 (-550))) 112) (($ (-550) $) 76) (($ $ (-550)) 75) (($ (-400 (-550)) $) 73) (($ $ (-400 (-550))) 72))) +(((-985) (-138)) (T -985)) +((-3353 (*1 *1 *1) (-4 *1 (-985))) (-1835 (*1 *2 *1) (|partial| -12 (-4 *1 (-985)) (-5 *2 (-836)))) (-1733 (*1 *2 *1) (|partial| -12 (-5 *2 (-1140 *1)) (-4 *1 (-985)))) (-1631 (*1 *2 *1) (|partial| -12 (-5 *2 (-1140 *1)) (-4 *1 (-985)))) (-4146 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1140 *1)) (-5 *3 (-894)) (-5 *4 (-836)) (-4 *1 (-985)))) (-4146 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1140 *1)) (-5 *3 (-894)) (-4 *1 (-985)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1140 *1)) (-4 *1 (-985)) (-5 *2 (-623 *1)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1140 (-400 (-550)))) (-5 *2 (-623 *1)) (-4 *1 (-985)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1140 (-550))) (-5 *2 (-623 *1)) (-4 *1 (-985)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-925 *1)) (-4 *1 (-985)) (-5 *2 (-623 *1)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-925 (-400 (-550)))) (-5 *2 (-623 *1)) (-4 *1 (-985)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-925 (-550))) (-5 *2 (-623 *1)) (-4 *1 (-985)))) (-3353 (*1 *1 *1 *2) (-12 (-4 *1 (-985)) (-5 *2 (-894)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-4 *1 (-985)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-985)))) (-1544 (*1 *1 *1 *2) (-12 (-4 *1 (-985)) (-5 *2 (-836)))) (-2635 (*1 *1 *1 *2) (-12 (-4 *1 (-985)) (-5 *2 (-836)))) (-2001 (*1 *2 *1 *1) (-12 (-4 *1 (-985)) (-5 *2 (-400 (-550)))))) +(-13 (-145) (-823) (-170) (-356) (-404 (-400 (-550))) (-38 (-550)) (-38 (-400 (-550))) (-975) (-10 -8 (-15 -1835 ((-3 (-836) "failed") $)) (-15 -1733 ((-3 (-1140 $) "failed") $)) (-15 -1631 ((-3 (-1140 $) "failed") $)) (-15 -4146 ((-3 $ "failed") (-1140 $) (-894) (-836))) (-15 -4146 ((-3 $ "failed") (-1140 $) (-894))) (-15 -4258 ((-623 $) (-1140 $))) (-15 -4258 ((-623 $) (-1140 (-400 (-550))))) (-15 -4258 ((-623 $) (-1140 (-550)))) (-15 -4258 ((-623 $) (-925 $))) (-15 -4258 ((-623 $) (-925 (-400 (-550))))) (-15 -4258 ((-623 $) (-925 (-550)))) (-15 -3353 ($ $ (-894))) (-15 -3353 ($ $)) (-15 -3353 ($ (-400 (-550)))) (-15 -3353 ($ (-550))) (-15 -1544 ($ $ (-836))) (-15 -2635 ($ $ (-836))) (-15 -2001 ((-400 (-550)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 #1=(-550)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-836)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-404 (-400 (-550))) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-823) . T) ((-825) . T) ((-893) . T) ((-975) . T) ((-1011 (-400 (-550))) . T) ((-1011 (-550)) |has| (-400 (-550)) (-1011 (-550))) ((-1026 #0#) . T) ((-1026 #1#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) . T)) +((-1929 (((-2 (|:| |ans| |#2|) (|:| -2682 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1144) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-986 |#1| |#2|) (-10 -7 (-15 -1929 ((-2 (|:| |ans| |#2|) (|:| -2682 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1144) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550))) (-13 (-1166) (-27) (-423 |#1|))) (T -986)) +((-1929 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1144)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-623 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1653 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1166) (-27) (-423 *8))) (-4 *8 (-13 (-444) (-825) (-145) (-1011 *3) (-619 *3))) (-5 *3 (-550)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2682 *4) (|:| |sol?| (-112)))) (-5 *1 (-986 *8 *4))))) +(-10 -7 (-15 -1929 ((-2 (|:| |ans| |#2|) (|:| -2682 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1144) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2011 (((-3 (-623 |#2|) "failed") (-550) |#2| |#2| |#2| (-1144) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-987 |#1| |#2|) (-10 -7 (-15 -2011 ((-3 (-623 |#2|) "failed") (-550) |#2| |#2| |#2| (-1144) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550))) (-13 (-1166) (-27) (-423 |#1|))) (T -987)) +((-2011 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1144)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-623 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1653 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1166) (-27) (-423 *8))) (-4 *8 (-13 (-444) (-825) (-145) (-1011 *3) (-619 *3))) (-5 *3 (-550)) (-5 *2 (-623 *4)) (-5 *1 (-987 *8 *4))))) +(-10 -7 (-15 -2011 ((-3 (-623 |#2|) "failed") (-550) |#2| |#2| |#2| (-1144) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-623 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|)) (-1 (-3 (-2 (|:| -1653 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3545 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1721 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)) 30)) (-2090 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2110 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 58)) (-2164 (((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|)) 63))) +(((-988 |#1| |#2|) (-10 -7 (-15 -2090 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2110 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2164 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3545 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1721 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)))) (-13 (-356) (-145) (-1011 (-550))) (-1203 |#1|)) (T -988)) +((-3545 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1203 *6)) (-4 *6 (-13 (-356) (-145) (-1011 *4))) (-5 *4 (-550)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -1721 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-988 *6 *3)))) (-2164 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-550)))) (-4 *5 (-1203 *4)) (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-988 *4 *5)) (-5 *3 (-400 *5)))) (-2090 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -2110 *6))) (-5 *1 (-988 *5 *6)) (-5 *3 (-400 *6))))) +(-10 -7 (-15 -2090 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2110 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2164 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3545 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1721 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)))) +((-3674 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2110 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 22)) (-2627 (((-3 (-623 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 33))) +(((-989 |#1| |#2|) (-10 -7 (-15 -3674 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2110 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2627 ((-3 (-623 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) (-13 (-356) (-145) (-1011 (-550))) (-1203 |#1|)) (T -989)) +((-2627 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1011 (-550)))) (-4 *5 (-1203 *4)) (-5 *2 (-623 (-400 *5))) (-5 *1 (-989 *4 *5)) (-5 *3 (-400 *5)))) (-3674 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -2110 *6))) (-5 *1 (-989 *5 *6)) (-5 *3 (-400 *6))))) +(-10 -7 (-15 -3674 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2110 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2627 ((-3 (-623 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) +((-2706 (((-1 |#1|) (-623 (-2 (|:| -3625 |#1|) (|:| -4073 (-550))))) 37)) (-4107 (((-1 |#1|) (-1070 |#1|)) 45)) (-2825 (((-1 |#1|) (-1227 |#1|) (-1227 (-550)) (-550)) 34))) +(((-990 |#1|) (-10 -7 (-15 -4107 ((-1 |#1|) (-1070 |#1|))) (-15 -2706 ((-1 |#1|) (-623 (-2 (|:| -3625 |#1|) (|:| -4073 (-550)))))) (-15 -2825 ((-1 |#1|) (-1227 |#1|) (-1227 (-550)) (-550)))) (-1068)) (T -990)) +((-2825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1227 *6)) (-5 *4 (-1227 (-550))) (-5 *5 (-550)) (-4 *6 (-1068)) (-5 *2 (-1 *6)) (-5 *1 (-990 *6)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -3625 *4) (|:| -4073 (-550))))) (-4 *4 (-1068)) (-5 *2 (-1 *4)) (-5 *1 (-990 *4)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-1068)) (-5 *2 (-1 *4)) (-5 *1 (-990 *4))))) +(-10 -7 (-15 -4107 ((-1 |#1|) (-1070 |#1|))) (-15 -2706 ((-1 |#1|) (-623 (-2 (|:| -3625 |#1|) (|:| -4073 (-550)))))) (-15 -2825 ((-1 |#1|) (-1227 |#1|) (-1227 (-550)) (-550)))) +((-2475 (((-749) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2475 ((-749) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-356) (-1203 |#1|) (-1203 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-13 (-361) (-356))) (T -991)) +((-2475 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-329 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) (-4 *7 (-1203 *6)) (-4 *4 (-1203 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) (-4 *9 (-13 (-361) (-356))) (-5 *2 (-749)) (-5 *1 (-991 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -2475 ((-749) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-1504 (((-112) $ $) NIL)) (-2926 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) NIL) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-1103) $) 11)) (-2316 (((-112) $ $) NIL))) +(((-992) (-13 (-1051) (-10 -8 (-15 -2926 ((-1103) $)) (-15 -1925 ((-1103) $))))) (T -992)) +((-2926 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-992)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-992))))) +(-13 (-1051) (-10 -8 (-15 -2926 ((-1103) $)) (-15 -1925 ((-1103) $)))) +((-1682 (((-3 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) "failed") |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) 31) (((-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550))) 28)) (-2139 (((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550))) 33) (((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-400 (-550))) 29) (((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) 32) (((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1|) 27)) (-3115 (((-623 (-400 (-550))) (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) 19)) (-3026 (((-400 (-550)) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) 16))) +(((-993 |#1|) (-10 -7 (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1|)) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-400 (-550)))) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550)))) (-15 -1682 ((-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550)))) (-15 -1682 ((-3 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) "failed") |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-15 -3026 ((-400 (-550)) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-15 -3115 ((-623 (-400 (-550))) (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))))) (-1203 (-550))) (T -993)) +((-3115 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-5 *2 (-623 (-400 (-550)))) (-5 *1 (-993 *4)) (-4 *4 (-1203 (-550))))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) (-5 *2 (-400 (-550))) (-5 *1 (-993 *4)) (-4 *4 (-1203 (-550))))) (-1682 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))))) (-1682 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) (-5 *4 (-400 (-550))) (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))))) (-2139 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-550))) (-5 *2 (-623 (-2 (|:| -2671 *5) (|:| -2682 *5)))) (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))) (-5 *4 (-2 (|:| -2671 *5) (|:| -2682 *5))))) (-2139 (*1 *2 *3 *4) (-12 (-5 *2 (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))) (-5 *4 (-400 (-550))))) (-2139 (*1 *2 *3 *4) (-12 (-5 *2 (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))) (-5 *4 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))))) (-2139 (*1 *2 *3) (-12 (-5 *2 (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550)))))) +(-10 -7 (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1|)) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-400 (-550)))) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550)))) (-15 -1682 ((-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550)))) (-15 -1682 ((-3 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) "failed") |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-15 -3026 ((-400 (-550)) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-15 -3115 ((-623 (-400 (-550))) (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))))) +((-1682 (((-3 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) "failed") |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) 35) (((-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550))) 32)) (-2139 (((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550))) 30) (((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-400 (-550))) 26) (((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) 28) (((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1|) 24))) +(((-994 |#1|) (-10 -7 (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1|)) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-400 (-550)))) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550)))) (-15 -1682 ((-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550)))) (-15 -1682 ((-3 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) "failed") |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))))) (-1203 (-400 (-550)))) (T -994)) +((-1682 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) (-5 *1 (-994 *3)) (-4 *3 (-1203 (-400 (-550)))))) (-1682 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) (-5 *4 (-400 (-550))) (-5 *1 (-994 *3)) (-4 *3 (-1203 *4)))) (-2139 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-550))) (-5 *2 (-623 (-2 (|:| -2671 *5) (|:| -2682 *5)))) (-5 *1 (-994 *3)) (-4 *3 (-1203 *5)) (-5 *4 (-2 (|:| -2671 *5) (|:| -2682 *5))))) (-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-550))) (-5 *2 (-623 (-2 (|:| -2671 *4) (|:| -2682 *4)))) (-5 *1 (-994 *3)) (-4 *3 (-1203 *4)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *2 (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-5 *1 (-994 *3)) (-4 *3 (-1203 (-400 (-550)))) (-5 *4 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))))) (-2139 (*1 *2 *3) (-12 (-5 *2 (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-5 *1 (-994 *3)) (-4 *3 (-1203 (-400 (-550))))))) +(-10 -7 (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1|)) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-400 (-550)))) (-15 -2139 ((-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550)))) (-15 -1682 ((-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-400 (-550)))) (-15 -1682 ((-3 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) "failed") |#1| (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))) (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))))) +((-4028 (((-219) $) 6) (((-372) $) 9))) +(((-995) (-138)) (T -995)) +NIL +(-13 (-596 (-219)) (-596 (-372))) +(((-596 (-219)) . T) ((-596 (-372)) . T)) +((-2903 (((-623 (-372)) (-925 (-550)) (-372)) 28) (((-623 (-372)) (-925 (-400 (-550))) (-372)) 27)) (-3367 (((-623 (-623 (-372))) (-623 (-925 (-550))) (-623 (-1144)) (-372)) 37))) +(((-996) (-10 -7 (-15 -2903 ((-623 (-372)) (-925 (-400 (-550))) (-372))) (-15 -2903 ((-623 (-372)) (-925 (-550)) (-372))) (-15 -3367 ((-623 (-623 (-372))) (-623 (-925 (-550))) (-623 (-1144)) (-372))))) (T -996)) +((-3367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-623 (-1144))) (-5 *2 (-623 (-623 (-372)))) (-5 *1 (-996)) (-5 *5 (-372)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-925 (-550))) (-5 *2 (-623 (-372))) (-5 *1 (-996)) (-5 *4 (-372)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-925 (-400 (-550)))) (-5 *2 (-623 (-372))) (-5 *1 (-996)) (-5 *4 (-372))))) +(-10 -7 (-15 -2903 ((-623 (-372)) (-925 (-400 (-550))) (-372))) (-15 -2903 ((-623 (-372)) (-925 (-550)) (-372))) (-15 -3367 ((-623 (-623 (-372))) (-623 (-925 (-550))) (-623 (-1144)) (-372)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 70)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3353 (($ $) NIL) (($ $ (-894)) NIL) (($ (-400 (-550))) NIL) (($ (-550)) NIL)) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) 65)) (-3513 (($) NIL T CONST)) (-4146 (((-3 $ "failed") (-1140 $) (-894) (-836)) NIL) (((-3 $ "failed") (-1140 $) (-894)) 50)) (-3880 (((-3 (-400 (-550)) "failed") $) NIL (|has| (-400 (-550)) (-1011 (-400 (-550))))) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-550) "failed") $) NIL (-1561 (|has| (-400 (-550)) (-1011 (-550))) (|has| |#1| (-1011 (-550)))))) (-2726 (((-400 (-550)) $) 15 (|has| (-400 (-550)) (-1011 (-400 (-550))))) (((-400 (-550)) $) 15) ((|#1| $) 108) (((-550) $) NIL (-1561 (|has| (-400 (-550)) (-1011 (-550))) (|has| |#1| (-1011 (-550)))))) (-1544 (($ $ (-836)) 42)) (-2635 (($ $ (-836)) 43)) (-3349 (($ $ $) NIL)) (-4054 (((-400 (-550)) $ $) 19)) (-1386 (((-3 $ "failed") $) 83)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-1416 (((-112) $) 61)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL)) (-3329 (((-112) $) 64)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-1631 (((-3 (-1140 $) "failed") $) 78)) (-1835 (((-3 (-836) "failed") $) 77)) (-1733 (((-3 (-1140 $) "failed") $) 75)) (-2230 (((-3 (-1030 $ (-1140 $)) "failed") $) 73)) (-3106 (($ (-623 $)) NIL) (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 84)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ (-623 $)) NIL) (($ $ $) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-1518 (((-836) $) 82) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ $) 58) (($ (-400 (-550))) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ |#1|) 110)) (-2390 (((-749)) NIL)) (-1345 (((-112) $ $) NIL)) (-2001 (((-400 (-550)) $ $) 25)) (-4258 (((-623 $) (-1140 $)) 56) (((-623 $) (-1140 (-400 (-550)))) NIL) (((-623 $) (-1140 (-550))) NIL) (((-623 $) (-925 $)) NIL) (((-623 $) (-925 (-400 (-550)))) NIL) (((-623 $) (-925 (-550))) NIL)) (-2327 (($ (-1030 $ (-1140 $)) (-836)) 41)) (-1635 (($ $) 20)) (-2626 (($) 29 T CONST)) (-2636 (($) 35 T CONST)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 71)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 22)) (-2414 (($ $ $) 33)) (-2403 (($ $) 34) (($ $ $) 69)) (-2391 (($ $ $) 103)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL) (($ $ (-400 (-550))) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 91) (($ $ $) 96) (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ (-550) $) 91) (($ $ (-550)) NIL) (($ (-400 (-550)) $) NIL) (($ $ (-400 (-550))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-997 |#1|) (-13 (-985) (-404 |#1|) (-38 |#1|) (-10 -8 (-15 -2327 ($ (-1030 $ (-1140 $)) (-836))) (-15 -2230 ((-3 (-1030 $ (-1140 $)) "failed") $)) (-15 -4054 ((-400 (-550)) $ $)))) (-13 (-823) (-356) (-995))) (T -997)) +((-2327 (*1 *1 *2 *3) (-12 (-5 *2 (-1030 (-997 *4) (-1140 (-997 *4)))) (-5 *3 (-836)) (-5 *1 (-997 *4)) (-4 *4 (-13 (-823) (-356) (-995))))) (-2230 (*1 *2 *1) (|partial| -12 (-5 *2 (-1030 (-997 *3) (-1140 (-997 *3)))) (-5 *1 (-997 *3)) (-4 *3 (-13 (-823) (-356) (-995))))) (-4054 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-997 *3)) (-4 *3 (-13 (-823) (-356) (-995)))))) +(-13 (-985) (-404 |#1|) (-38 |#1|) (-10 -8 (-15 -2327 ($ (-1030 $ (-1140 $)) (-836))) (-15 -2230 ((-3 (-1030 $ (-1140 $)) "failed") $)) (-15 -4054 ((-400 (-550)) $ $)))) +((-2442 (((-2 (|:| -1721 |#2|) (|:| -3903 (-623 |#1|))) |#2| (-623 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-998 |#1| |#2|) (-10 -7 (-15 -2442 (|#2| |#2| |#1|)) (-15 -2442 ((-2 (|:| -1721 |#2|) (|:| -3903 (-623 |#1|))) |#2| (-623 |#1|)))) (-356) (-634 |#1|)) (T -998)) +((-2442 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -1721 *3) (|:| -3903 (-623 *5)))) (-5 *1 (-998 *5 *3)) (-5 *4 (-623 *5)) (-4 *3 (-634 *5)))) (-2442 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-998 *3 *2)) (-4 *2 (-634 *3))))) +(-10 -7 (-15 -2442 (|#2| |#2| |#1|)) (-15 -2442 ((-2 (|:| -1721 |#2|) (|:| -3903 (-623 |#1|))) |#2| (-623 |#1|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2526 ((|#1| $ |#1|) 14)) (-1705 ((|#1| $ |#1|) 12)) (-1550 (($ |#1|) 10)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-2680 ((|#1| $) 11)) (-1425 ((|#1| $) 13)) (-1518 (((-836) $) 21 (|has| |#1| (-1068)))) (-2316 (((-112) $ $) 9))) +(((-999 |#1|) (-13 (-1181) (-10 -8 (-15 -1550 ($ |#1|)) (-15 -2680 (|#1| $)) (-15 -1705 (|#1| $ |#1|)) (-15 -1425 (|#1| $)) (-15 -2526 (|#1| $ |#1|)) (-15 -2316 ((-112) $ $)) (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|))) (-1181)) (T -999)) +((-1550 (*1 *1 *2) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181)))) (-2680 (*1 *2 *1) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181)))) (-1705 (*1 *2 *1 *2) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181)))) (-1425 (*1 *2 *1) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181)))) (-2526 (*1 *2 *1 *2) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181)))) (-2316 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-999 *3)) (-4 *3 (-1181))))) +(-13 (-1181) (-10 -8 (-15 -1550 ($ |#1|)) (-15 -2680 (|#1| $)) (-15 -1705 (|#1| $ |#1|)) (-15 -1425 (|#1| $)) (-15 -2526 (|#1| $ |#1|)) (-15 -2316 ((-112) $ $)) (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) NIL)) (-1779 (((-623 $) (-623 |#4|)) 105) (((-623 $) (-623 |#4|) (-112)) 106) (((-623 $) (-623 |#4|) (-112) (-112)) 104) (((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3141 (((-623 |#3|) $) NIL)) (-2238 (((-112) $) NIL)) (-3670 (((-112) $) NIL (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4074 ((|#4| |#4| $) NIL)) (-1505 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| $) 99)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4253 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) 54)) (-3513 (($) NIL T CONST)) (-2976 (((-112) $) 26 (|has| |#1| (-542)))) (-3156 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3059 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3253 (((-112) $) NIL (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3774 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) NIL)) (-2726 (($ (-623 |#4|)) NIL)) (-1308 (((-3 $ "failed") $) 39)) (-2067 ((|#4| |#4| $) 57)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3137 (($ |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1878 ((|#4| |#4| $) NIL)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) NIL)) (-3113 (((-112) |#4| $) NIL)) (-2933 (((-112) |#4| $) NIL)) (-3208 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3580 (((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112)) 119)) (-3450 (((-623 |#4|) $) 16 (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3952 ((|#3| $) 33)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#4|) $) 17 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3234 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 21)) (-2650 (((-623 |#3|) $) NIL)) (-2568 (((-112) |#3| $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-3735 (((-3 |#4| (-623 $)) |#4| |#4| $) NIL)) (-3632 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| |#4| $) 97)) (-3159 (((-3 |#4| "failed") $) 37)) (-3830 (((-623 $) |#4| $) 80)) (-2845 (((-3 (-112) (-623 $)) |#4| $) NIL)) (-2743 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-1623 (((-623 $) |#4| $) 102) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) 103) (((-623 $) |#4| (-623 $)) NIL)) (-3665 (((-623 $) (-623 |#4|) (-112) (-112) (-112)) 114)) (-3757 (($ |#4| $) 70) (($ (-623 |#4|) $) 71) (((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-3671 (((-623 |#4|) $) NIL)) (-1296 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3900 ((|#4| |#4| $) NIL)) (-3831 (((-112) $ $) NIL)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3984 ((|#4| |#4| $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-3 |#4| "failed") $) 35)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2654 (((-3 $ "failed") $ |#4|) 48)) (-2272 (($ $ |#4|) NIL) (((-623 $) |#4| $) 82) (((-623 $) |#4| (-623 $)) NIL) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) 77)) (-1543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 15)) (-3498 (($) 13)) (-2970 (((-749) $) NIL)) (-3350 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) 12)) (-4028 (((-526) $) NIL (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 20)) (-2315 (($ $ |#3|) 42)) (-2486 (($ $ |#3|) 44)) (-1969 (($ $) NIL)) (-2401 (($ $ |#3|) NIL)) (-1518 (((-836) $) 31) (((-623 |#4|) $) 40)) (-2580 (((-749) $) NIL (|has| |#3| (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) NIL)) (-3532 (((-623 $) |#4| $) 79) (((-623 $) |#4| (-623 $)) NIL) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) NIL)) (-1675 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) NIL)) (-3024 (((-112) |#4| $) NIL)) (-1288 (((-112) |#3| $) 53)) (-2316 (((-112) $ $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1000 |#1| |#2| |#3| |#4|) (-13 (-1040 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3757 ((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1779 ((-623 $) (-623 |#4|) (-112) (-112))) (-15 -1779 ((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112))) (-15 -3665 ((-623 $) (-623 |#4|) (-112) (-112) (-112))) (-15 -3580 ((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112))))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|)) (T -1000)) +((-3757 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1000 *5 *6 *7 *3))) (-5 *1 (-1000 *5 *6 *7 *3)) (-4 *3 (-1034 *5 *6 *7)))) (-1779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1000 *5 *6 *7 *8))) (-5 *1 (-1000 *5 *6 *7 *8)))) (-1779 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1000 *5 *6 *7 *8))) (-5 *1 (-1000 *5 *6 *7 *8)))) (-3665 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1000 *5 *6 *7 *8))) (-5 *1 (-1000 *5 *6 *7 *8)))) (-3580 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-623 *8)) (|:| |towers| (-623 (-1000 *5 *6 *7 *8))))) (-5 *1 (-1000 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) +(-13 (-1040 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3757 ((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1779 ((-623 $) (-623 |#4|) (-112) (-112))) (-15 -1779 ((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112))) (-15 -3665 ((-623 $) (-623 |#4|) (-112) (-112) (-112))) (-15 -3580 ((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112))))) +((-3317 (((-623 (-667 |#1|)) (-623 (-667 |#1|))) 58) (((-667 |#1|) (-667 |#1|)) 57) (((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-623 (-667 |#1|))) 56) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 53)) (-1392 (((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-894)) 52) (((-667 |#1|) (-667 |#1|) (-894)) 51)) (-3432 (((-623 (-667 (-550))) (-623 (-623 (-550)))) 68) (((-623 (-667 (-550))) (-623 (-878 (-550))) (-550)) 67) (((-667 (-550)) (-623 (-550))) 64) (((-667 (-550)) (-878 (-550)) (-550)) 63)) (-1269 (((-667 (-925 |#1|)) (-749)) 81)) (-4204 (((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-894)) 37 (|has| |#1| (-6 (-4344 "*")))) (((-667 |#1|) (-667 |#1|) (-894)) 35 (|has| |#1| (-6 (-4344 "*")))))) +(((-1001 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4344 "*"))) (-15 -4204 ((-667 |#1|) (-667 |#1|) (-894))) |%noBranch|) (IF (|has| |#1| (-6 (-4344 "*"))) (-15 -4204 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-894))) |%noBranch|) (-15 -1269 ((-667 (-925 |#1|)) (-749))) (-15 -1392 ((-667 |#1|) (-667 |#1|) (-894))) (-15 -1392 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-894))) (-15 -3317 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3317 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -3317 ((-667 |#1|) (-667 |#1|))) (-15 -3317 ((-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -3432 ((-667 (-550)) (-878 (-550)) (-550))) (-15 -3432 ((-667 (-550)) (-623 (-550)))) (-15 -3432 ((-623 (-667 (-550))) (-623 (-878 (-550))) (-550))) (-15 -3432 ((-623 (-667 (-550))) (-623 (-623 (-550)))))) (-1020)) (T -1001)) +((-3432 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-550)))) (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-1001 *4)) (-4 *4 (-1020)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-878 (-550)))) (-5 *4 (-550)) (-5 *2 (-623 (-667 *4))) (-5 *1 (-1001 *5)) (-4 *5 (-1020)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1001 *4)) (-4 *4 (-1020)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-878 (-550))) (-5 *4 (-550)) (-5 *2 (-667 *4)) (-5 *1 (-1001 *5)) (-4 *5 (-1020)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-623 (-667 *3))) (-4 *3 (-1020)) (-5 *1 (-1001 *3)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-1001 *3)))) (-3317 (*1 *2 *2 *2) (-12 (-5 *2 (-623 (-667 *3))) (-4 *3 (-1020)) (-5 *1 (-1001 *3)))) (-3317 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-1001 *3)))) (-1392 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-667 *4))) (-5 *3 (-894)) (-4 *4 (-1020)) (-5 *1 (-1001 *4)))) (-1392 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-894)) (-4 *4 (-1020)) (-5 *1 (-1001 *4)))) (-1269 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-667 (-925 *4))) (-5 *1 (-1001 *4)) (-4 *4 (-1020)))) (-4204 (*1 *2 *2 *3) (-12 (-5 *2 (-623 (-667 *4))) (-5 *3 (-894)) (|has| *4 (-6 (-4344 "*"))) (-4 *4 (-1020)) (-5 *1 (-1001 *4)))) (-4204 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-894)) (|has| *4 (-6 (-4344 "*"))) (-4 *4 (-1020)) (-5 *1 (-1001 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4344 "*"))) (-15 -4204 ((-667 |#1|) (-667 |#1|) (-894))) |%noBranch|) (IF (|has| |#1| (-6 (-4344 "*"))) (-15 -4204 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-894))) |%noBranch|) (-15 -1269 ((-667 (-925 |#1|)) (-749))) (-15 -1392 ((-667 |#1|) (-667 |#1|) (-894))) (-15 -1392 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-894))) (-15 -3317 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3317 ((-623 (-667 |#1|)) (-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -3317 ((-667 |#1|) (-667 |#1|))) (-15 -3317 ((-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -3432 ((-667 (-550)) (-878 (-550)) (-550))) (-15 -3432 ((-667 (-550)) (-623 (-550)))) (-15 -3432 ((-623 (-667 (-550))) (-623 (-878 (-550))) (-550))) (-15 -3432 ((-623 (-667 (-550))) (-623 (-623 (-550)))))) +((-2711 (((-667 |#1|) (-623 (-667 |#1|)) (-1227 |#1|)) 50 (|has| |#1| (-300)))) (-1716 (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1227 (-1227 |#1|))) 76 (|has| |#1| (-356))) (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1227 |#1|)) 79 (|has| |#1| (-356)))) (-3144 (((-1227 |#1|) (-623 (-1227 |#1|)) (-550)) 93 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3041 (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-894)) 85 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112)) 83 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|))) 82 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112) (-550) (-550)) 81 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-2932 (((-112) (-623 (-667 |#1|))) 71 (|has| |#1| (-356))) (((-112) (-623 (-667 |#1|)) (-550)) 73 (|has| |#1| (-356)))) (-3790 (((-1227 (-1227 |#1|)) (-623 (-667 |#1|)) (-1227 |#1|)) 48 (|has| |#1| (-300)))) (-3669 (((-667 |#1|) (-623 (-667 |#1|)) (-667 |#1|)) 34)) (-3541 (((-667 |#1|) (-1227 (-1227 |#1|))) 31)) (-2821 (((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-550)) 65 (|has| |#1| (-356))) (((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|))) 64 (|has| |#1| (-356))) (((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-112) (-550)) 69 (|has| |#1| (-356))))) +(((-1002 |#1|) (-10 -7 (-15 -3541 ((-667 |#1|) (-1227 (-1227 |#1|)))) (-15 -3669 ((-667 |#1|) (-623 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3790 ((-1227 (-1227 |#1|)) (-623 (-667 |#1|)) (-1227 |#1|))) (-15 -2711 ((-667 |#1|) (-623 (-667 |#1|)) (-1227 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2821 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-112) (-550))) (-15 -2821 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -2821 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-550))) (-15 -2932 ((-112) (-623 (-667 |#1|)) (-550))) (-15 -2932 ((-112) (-623 (-667 |#1|)))) (-15 -1716 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1227 |#1|))) (-15 -1716 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1227 (-1227 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3041 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112) (-550) (-550))) (-15 -3041 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)))) (-15 -3041 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112))) (-15 -3041 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-894))) (-15 -3144 ((-1227 |#1|) (-623 (-1227 |#1|)) (-550)))) |%noBranch|) |%noBranch|)) (-1020)) (T -1002)) +((-3144 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1227 *5))) (-5 *4 (-550)) (-5 *2 (-1227 *5)) (-5 *1 (-1002 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1020)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *4 (-894)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1020)) (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1002 *5)) (-5 *3 (-623 (-667 *5))))) (-3041 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1020)) (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1002 *5)) (-5 *3 (-623 (-667 *5))))) (-3041 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1020)) (-5 *2 (-623 (-623 (-667 *4)))) (-5 *1 (-1002 *4)) (-5 *3 (-623 (-667 *4))))) (-3041 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-550)) (-4 *6 (-356)) (-4 *6 (-361)) (-4 *6 (-1020)) (-5 *2 (-623 (-623 (-667 *6)))) (-5 *1 (-1002 *6)) (-5 *3 (-623 (-667 *6))))) (-1716 (*1 *2 *3 *4) (-12 (-5 *4 (-1227 (-1227 *5))) (-4 *5 (-356)) (-4 *5 (-1020)) (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1002 *5)) (-5 *3 (-623 (-667 *5))))) (-1716 (*1 *2 *3 *4) (-12 (-5 *4 (-1227 *5)) (-4 *5 (-356)) (-4 *5 (-1020)) (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1002 *5)) (-5 *3 (-623 (-667 *5))))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-623 (-667 *4))) (-4 *4 (-356)) (-4 *4 (-1020)) (-5 *2 (-112)) (-5 *1 (-1002 *4)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-550)) (-4 *5 (-356)) (-4 *5 (-1020)) (-5 *2 (-112)) (-5 *1 (-1002 *5)))) (-2821 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-550)) (-5 *2 (-667 *5)) (-5 *1 (-1002 *5)) (-4 *5 (-356)) (-4 *5 (-1020)))) (-2821 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-667 *4))) (-5 *2 (-667 *4)) (-5 *1 (-1002 *4)) (-4 *4 (-356)) (-4 *4 (-1020)))) (-2821 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-623 (-667 *6))) (-5 *4 (-112)) (-5 *5 (-550)) (-5 *2 (-667 *6)) (-5 *1 (-1002 *6)) (-4 *6 (-356)) (-4 *6 (-1020)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-1227 *5)) (-4 *5 (-300)) (-4 *5 (-1020)) (-5 *2 (-667 *5)) (-5 *1 (-1002 *5)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-667 *5))) (-4 *5 (-300)) (-4 *5 (-1020)) (-5 *2 (-1227 (-1227 *5))) (-5 *1 (-1002 *5)) (-5 *4 (-1227 *5)))) (-3669 (*1 *2 *3 *2) (-12 (-5 *3 (-623 (-667 *4))) (-5 *2 (-667 *4)) (-4 *4 (-1020)) (-5 *1 (-1002 *4)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-1227 (-1227 *4))) (-4 *4 (-1020)) (-5 *2 (-667 *4)) (-5 *1 (-1002 *4))))) +(-10 -7 (-15 -3541 ((-667 |#1|) (-1227 (-1227 |#1|)))) (-15 -3669 ((-667 |#1|) (-623 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3790 ((-1227 (-1227 |#1|)) (-623 (-667 |#1|)) (-1227 |#1|))) (-15 -2711 ((-667 |#1|) (-623 (-667 |#1|)) (-1227 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2821 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-112) (-550))) (-15 -2821 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -2821 ((-667 |#1|) (-623 (-667 |#1|)) (-623 (-667 |#1|)) (-550))) (-15 -2932 ((-112) (-623 (-667 |#1|)) (-550))) (-15 -2932 ((-112) (-623 (-667 |#1|)))) (-15 -1716 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1227 |#1|))) (-15 -1716 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-1227 (-1227 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3041 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112) (-550) (-550))) (-15 -3041 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)))) (-15 -3041 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-112))) (-15 -3041 ((-623 (-623 (-667 |#1|))) (-623 (-667 |#1|)) (-894))) (-15 -3144 ((-1227 |#1|) (-623 (-1227 |#1|)) (-550)))) |%noBranch|) |%noBranch|)) +((-2493 ((|#1| (-894) |#1|) 9))) +(((-1003 |#1|) (-10 -7 (-15 -2493 (|#1| (-894) |#1|))) (-13 (-1068) (-10 -8 (-15 -2391 ($ $ $))))) (T -1003)) +((-2493 (*1 *2 *3 *2) (-12 (-5 *3 (-894)) (-5 *1 (-1003 *2)) (-4 *2 (-13 (-1068) (-10 -8 (-15 -2391 ($ $ $)))))))) +(-10 -7 (-15 -2493 (|#1| (-894) |#1|))) +((-1670 (((-623 (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-623 (-667 (-309 (-550))))))) (-667 (-400 (-925 (-550))))) 59)) (-1801 (((-623 (-667 (-309 (-550)))) (-309 (-550)) (-667 (-400 (-925 (-550))))) 48)) (-1920 (((-623 (-309 (-550))) (-667 (-400 (-925 (-550))))) 41)) (-4092 (((-623 (-667 (-309 (-550)))) (-667 (-400 (-925 (-550))))) 68)) (-3881 (((-667 (-309 (-550))) (-667 (-309 (-550)))) 34)) (-3982 (((-623 (-667 (-309 (-550)))) (-623 (-667 (-309 (-550))))) 62)) (-2035 (((-3 (-667 (-309 (-550))) "failed") (-667 (-400 (-925 (-550))))) 66))) +(((-1004) (-10 -7 (-15 -1670 ((-623 (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-623 (-667 (-309 (-550))))))) (-667 (-400 (-925 (-550)))))) (-15 -1801 ((-623 (-667 (-309 (-550)))) (-309 (-550)) (-667 (-400 (-925 (-550)))))) (-15 -1920 ((-623 (-309 (-550))) (-667 (-400 (-925 (-550)))))) (-15 -2035 ((-3 (-667 (-309 (-550))) "failed") (-667 (-400 (-925 (-550)))))) (-15 -3881 ((-667 (-309 (-550))) (-667 (-309 (-550))))) (-15 -3982 ((-623 (-667 (-309 (-550)))) (-623 (-667 (-309 (-550)))))) (-15 -4092 ((-623 (-667 (-309 (-550)))) (-667 (-400 (-925 (-550)))))))) (T -1004)) +((-4092 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-925 (-550))))) (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1004)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1004)))) (-3881 (*1 *2 *2) (-12 (-5 *2 (-667 (-309 (-550)))) (-5 *1 (-1004)))) (-2035 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 (-400 (-925 (-550))))) (-5 *2 (-667 (-309 (-550)))) (-5 *1 (-1004)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-925 (-550))))) (-5 *2 (-623 (-309 (-550)))) (-5 *1 (-1004)))) (-1801 (*1 *2 *3 *4) (-12 (-5 *4 (-667 (-400 (-925 (-550))))) (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1004)) (-5 *3 (-309 (-550))))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-925 (-550))))) (-5 *2 (-623 (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-623 (-667 (-309 (-550)))))))) (-5 *1 (-1004))))) +(-10 -7 (-15 -1670 ((-623 (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-623 (-667 (-309 (-550))))))) (-667 (-400 (-925 (-550)))))) (-15 -1801 ((-623 (-667 (-309 (-550)))) (-309 (-550)) (-667 (-400 (-925 (-550)))))) (-15 -1920 ((-623 (-309 (-550))) (-667 (-400 (-925 (-550)))))) (-15 -2035 ((-3 (-667 (-309 (-550))) "failed") (-667 (-400 (-925 (-550)))))) (-15 -3881 ((-667 (-309 (-550))) (-667 (-309 (-550))))) (-15 -3982 ((-623 (-667 (-309 (-550)))) (-623 (-667 (-309 (-550)))))) (-15 -4092 ((-623 (-667 (-309 (-550)))) (-667 (-400 (-925 (-550))))))) +((-2153 ((|#1| |#1| (-894)) 9))) +(((-1005 |#1|) (-10 -7 (-15 -2153 (|#1| |#1| (-894)))) (-13 (-1068) (-10 -8 (-15 * ($ $ $))))) (T -1005)) +((-2153 (*1 *2 *2 *3) (-12 (-5 *3 (-894)) (-5 *1 (-1005 *2)) (-4 *2 (-13 (-1068) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2153 (|#1| |#1| (-894)))) +((-1518 ((|#1| (-305)) 11) (((-1232) |#1|) 9))) +(((-1006 |#1|) (-10 -7 (-15 -1518 ((-1232) |#1|)) (-15 -1518 (|#1| (-305)))) (-1181)) (T -1006)) +((-1518 (*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1006 *2)) (-4 *2 (-1181)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1232)) (-5 *1 (-1006 *3)) (-4 *3 (-1181))))) +(-10 -7 (-15 -1518 ((-1232) |#1|)) (-15 -1518 (|#1| (-305)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-2419 (($ |#4|) 25)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-2407 ((|#4| $) 27)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 46) (($ (-550)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2390 (((-749)) 43)) (-2626 (($) 21 T CONST)) (-2636 (($) 23 T CONST)) (-2316 (((-112) $ $) 40)) (-2403 (($ $) 31) (($ $ $) NIL)) (-2391 (($ $ $) 29)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1007 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -2419 ($ |#4|)) (-15 -1518 ($ |#4|)) (-15 -2407 (|#4| $)))) (-356) (-771) (-825) (-922 |#1| |#2| |#3|) (-623 |#4|)) (T -1007)) +((-2419 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *2 (-922 *3 *4 *5)) (-14 *6 (-623 *2)))) (-1518 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *2 (-922 *3 *4 *5)) (-14 *6 (-623 *2)))) (-2407 (*1 *2 *1) (-12 (-4 *2 (-922 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-14 *6 (-623 *2))))) +(-13 (-170) (-38 |#1|) (-10 -8 (-15 -2419 ($ |#4|)) (-15 -1518 ($ |#4|)) (-15 -2407 (|#4| $)))) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL)) (-3029 (((-1232) $ (-1144) (-1144)) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-2351 (((-112) (-112)) 39)) (-2255 (((-112) (-112)) 38)) (-1705 (((-52) $ (-1144) (-52)) NIL)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 (-52) "failed") (-1144) $) NIL)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-3112 (($ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-3 (-52) "failed") (-1144) $) NIL)) (-3137 (($ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-3245 (((-52) $ (-1144) (-52)) NIL (|has| $ (-6 -4343)))) (-3181 (((-52) $ (-1144)) NIL)) (-3450 (((-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-623 (-52)) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-1144) $) NIL (|has| (-1144) (-825)))) (-2689 (((-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-623 (-52)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068))))) (-3283 (((-1144) $) NIL (|has| (-1144) (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4343))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-3531 (((-623 (-1144)) $) 34)) (-2550 (((-112) (-1144) $) NIL)) (-3638 (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL)) (-1886 (($ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL)) (-2325 (((-623 (-1144)) $) NIL)) (-2400 (((-112) (-1144) $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-1293 (((-52) $) NIL (|has| (-1144) (-825)))) (-3321 (((-3 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) "failed") (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL)) (-3111 (($ $ (-52)) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))))) NIL (-12 (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ $ (-287 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL (-12 (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ $ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) NIL (-12 (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ $ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL (-12 (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ $ (-623 (-52)) (-623 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-623 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068))))) (-2477 (((-623 (-52)) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 (((-52) $ (-1144)) 35) (((-52) $ (-1144) (-52)) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (((-749) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068)))) (((-749) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL)) (-1518 (((-836) $) 37 (-1561 (|has| (-52) (-595 (-836))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1008) (-13 (-1157 (-1144) (-52)) (-10 -7 (-15 -2351 ((-112) (-112))) (-15 -2255 ((-112) (-112))) (-6 -4342)))) (T -1008)) +((-2351 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1008)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1008))))) +(-13 (-1157 (-1144) (-52)) (-10 -7 (-15 -2351 ((-112) (-112))) (-15 -2255 ((-112) (-112))) (-6 -4342))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2802 (((-1103) $) 9)) (-1518 (((-836) $) 17) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-1009) (-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $))))) (T -1009)) +((-2802 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1009))))) +(-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)))) +((-2726 ((|#2| $) 10))) +(((-1010 |#1| |#2|) (-10 -8 (-15 -2726 (|#2| |#1|))) (-1011 |#2|) (-1181)) (T -1010)) +NIL +(-10 -8 (-15 -2726 (|#2| |#1|))) +((-3880 (((-3 |#1| "failed") $) 7)) (-2726 ((|#1| $) 8)) (-1518 (($ |#1|) 6))) +(((-1011 |#1|) (-138) (-1181)) (T -1011)) +((-2726 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1181)))) (-3880 (*1 *2 *1) (|partial| -12 (-4 *1 (-1011 *2)) (-4 *2 (-1181)))) (-1518 (*1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1181))))) +(-13 (-10 -8 (-15 -1518 ($ |t#1|)) (-15 -3880 ((-3 |t#1| "failed") $)) (-15 -2726 (|t#1| $)))) +((-2455 (((-623 (-623 (-287 (-400 (-925 |#2|))))) (-623 (-925 |#2|)) (-623 (-1144))) 38))) +(((-1012 |#1| |#2|) (-10 -7 (-15 -2455 ((-623 (-623 (-287 (-400 (-925 |#2|))))) (-623 (-925 |#2|)) (-623 (-1144))))) (-542) (-13 (-542) (-1011 |#1|))) (T -1012)) +((-2455 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-925 *6))) (-5 *4 (-623 (-1144))) (-4 *6 (-13 (-542) (-1011 *5))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *6)))))) (-5 *1 (-1012 *5 *6))))) +(-10 -7 (-15 -2455 ((-623 (-623 (-287 (-400 (-925 |#2|))))) (-623 (-925 |#2|)) (-623 (-1144))))) +((-1478 (((-372)) 15)) (-4107 (((-1 (-372)) (-372) (-372)) 20)) (-2110 (((-1 (-372)) (-749)) 43)) (-1618 (((-372)) 34)) (-2005 (((-1 (-372)) (-372) (-372)) 35)) (-1757 (((-372)) 26)) (-2041 (((-1 (-372)) (-372)) 27)) (-1904 (((-372) (-749)) 38)) (-3893 (((-1 (-372)) (-749)) 39)) (-3260 (((-1 (-372)) (-749) (-749)) 42)) (-1763 (((-1 (-372)) (-749) (-749)) 40))) +(((-1013) (-10 -7 (-15 -1478 ((-372))) (-15 -1618 ((-372))) (-15 -1757 ((-372))) (-15 -1904 ((-372) (-749))) (-15 -4107 ((-1 (-372)) (-372) (-372))) (-15 -2005 ((-1 (-372)) (-372) (-372))) (-15 -2041 ((-1 (-372)) (-372))) (-15 -3893 ((-1 (-372)) (-749))) (-15 -1763 ((-1 (-372)) (-749) (-749))) (-15 -3260 ((-1 (-372)) (-749) (-749))) (-15 -2110 ((-1 (-372)) (-749))))) (T -1013)) +((-2110 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1013)))) (-3260 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1013)))) (-1763 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1013)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1013)))) (-2041 (*1 *2 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1013)) (-5 *3 (-372)))) (-2005 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1013)) (-5 *3 (-372)))) (-4107 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1013)) (-5 *3 (-372)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-372)) (-5 *1 (-1013)))) (-1757 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1013)))) (-1618 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1013)))) (-1478 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1013))))) +(-10 -7 (-15 -1478 ((-372))) (-15 -1618 ((-372))) (-15 -1757 ((-372))) (-15 -1904 ((-372) (-749))) (-15 -4107 ((-1 (-372)) (-372) (-372))) (-15 -2005 ((-1 (-372)) (-372) (-372))) (-15 -2041 ((-1 (-372)) (-372))) (-15 -3893 ((-1 (-372)) (-749))) (-15 -1763 ((-1 (-372)) (-749) (-749))) (-15 -3260 ((-1 (-372)) (-749) (-749))) (-15 -2110 ((-1 (-372)) (-749)))) +((-3338 (((-411 |#1|) |#1|) 33))) +(((-1014 |#1|) (-10 -7 (-15 -3338 ((-411 |#1|) |#1|))) (-1203 (-400 (-925 (-550))))) (T -1014)) +((-3338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1014 *3)) (-4 *3 (-1203 (-400 (-925 (-550)))))))) +(-10 -7 (-15 -3338 ((-411 |#1|) |#1|))) +((-3999 (((-400 (-411 (-925 |#1|))) (-400 (-925 |#1|))) 14))) +(((-1015 |#1|) (-10 -7 (-15 -3999 ((-400 (-411 (-925 |#1|))) (-400 (-925 |#1|))))) (-300)) (T -1015)) +((-3999 (*1 *2 *3) (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-411 (-925 *4)))) (-5 *1 (-1015 *4))))) +(-10 -7 (-15 -3999 ((-400 (-411 (-925 |#1|))) (-400 (-925 |#1|))))) +((-3141 (((-623 (-1144)) (-400 (-925 |#1|))) 17)) (-3306 (((-400 (-1140 (-400 (-925 |#1|)))) (-400 (-925 |#1|)) (-1144)) 24)) (-3129 (((-400 (-925 |#1|)) (-400 (-1140 (-400 (-925 |#1|)))) (-1144)) 26)) (-2558 (((-3 (-1144) "failed") (-400 (-925 |#1|))) 20)) (-3866 (((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-623 (-287 (-400 (-925 |#1|))))) 32) (((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|)))) 33) (((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-623 (-1144)) (-623 (-400 (-925 |#1|)))) 28) (((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|))) 29)) (-1518 (((-400 (-925 |#1|)) |#1|) 11))) +(((-1016 |#1|) (-10 -7 (-15 -3141 ((-623 (-1144)) (-400 (-925 |#1|)))) (-15 -2558 ((-3 (-1144) "failed") (-400 (-925 |#1|)))) (-15 -3306 ((-400 (-1140 (-400 (-925 |#1|)))) (-400 (-925 |#1|)) (-1144))) (-15 -3129 ((-400 (-925 |#1|)) (-400 (-1140 (-400 (-925 |#1|)))) (-1144))) (-15 -3866 ((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|)))) (-15 -3866 ((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-623 (-1144)) (-623 (-400 (-925 |#1|))))) (-15 -3866 ((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))))) (-15 -3866 ((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-623 (-287 (-400 (-925 |#1|)))))) (-15 -1518 ((-400 (-925 |#1|)) |#1|))) (-542)) (T -1016)) +((-1518 (*1 *2 *3) (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-1016 *3)) (-4 *3 (-542)))) (-3866 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-287 (-400 (-925 *4))))) (-5 *2 (-400 (-925 *4))) (-4 *4 (-542)) (-5 *1 (-1016 *4)))) (-3866 (*1 *2 *2 *3) (-12 (-5 *3 (-287 (-400 (-925 *4)))) (-5 *2 (-400 (-925 *4))) (-4 *4 (-542)) (-5 *1 (-1016 *4)))) (-3866 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-623 (-1144))) (-5 *4 (-623 (-400 (-925 *5)))) (-5 *2 (-400 (-925 *5))) (-4 *5 (-542)) (-5 *1 (-1016 *5)))) (-3866 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-400 (-925 *4))) (-5 *3 (-1144)) (-4 *4 (-542)) (-5 *1 (-1016 *4)))) (-3129 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1140 (-400 (-925 *5))))) (-5 *4 (-1144)) (-5 *2 (-400 (-925 *5))) (-5 *1 (-1016 *5)) (-4 *5 (-542)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-542)) (-5 *2 (-400 (-1140 (-400 (-925 *5))))) (-5 *1 (-1016 *5)) (-5 *3 (-400 (-925 *5))))) (-2558 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-5 *2 (-1144)) (-5 *1 (-1016 *4)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-5 *2 (-623 (-1144))) (-5 *1 (-1016 *4))))) +(-10 -7 (-15 -3141 ((-623 (-1144)) (-400 (-925 |#1|)))) (-15 -2558 ((-3 (-1144) "failed") (-400 (-925 |#1|)))) (-15 -3306 ((-400 (-1140 (-400 (-925 |#1|)))) (-400 (-925 |#1|)) (-1144))) (-15 -3129 ((-400 (-925 |#1|)) (-400 (-1140 (-400 (-925 |#1|)))) (-1144))) (-15 -3866 ((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|)))) (-15 -3866 ((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-623 (-1144)) (-623 (-400 (-925 |#1|))))) (-15 -3866 ((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-287 (-400 (-925 |#1|))))) (-15 -3866 ((-400 (-925 |#1|)) (-400 (-925 |#1|)) (-623 (-287 (-400 (-925 |#1|)))))) (-15 -1518 ((-400 (-925 |#1|)) |#1|))) +((-1504 (((-112) $ $) NIL)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 (-758 |#1| (-838 |#2|)))))) (-623 (-758 |#1| (-838 |#2|)))) NIL)) (-1779 (((-623 $) (-623 (-758 |#1| (-838 |#2|)))) NIL) (((-623 $) (-623 (-758 |#1| (-838 |#2|))) (-112)) NIL) (((-623 $) (-623 (-758 |#1| (-838 |#2|))) (-112) (-112)) NIL)) (-3141 (((-623 (-838 |#2|)) $) NIL)) (-2238 (((-112) $) NIL)) (-3670 (((-112) $) NIL (|has| |#1| (-542)))) (-3301 (((-112) (-758 |#1| (-838 |#2|)) $) NIL) (((-112) $) NIL)) (-4074 (((-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) $) NIL)) (-1505 (((-623 (-2 (|:| |val| (-758 |#1| (-838 |#2|))) (|:| -3223 $))) (-758 |#1| (-838 |#2|)) $) NIL)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ (-838 |#2|)) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4253 (($ (-1 (-112) (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-3 (-758 |#1| (-838 |#2|)) "failed") $ (-838 |#2|)) NIL)) (-3513 (($) NIL T CONST)) (-2976 (((-112) $) NIL (|has| |#1| (-542)))) (-3156 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3059 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3253 (((-112) $) NIL (|has| |#1| (-542)))) (-4156 (((-623 (-758 |#1| (-838 |#2|))) (-623 (-758 |#1| (-838 |#2|))) $ (-1 (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) (-1 (-112) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)))) NIL)) (-3774 (((-623 (-758 |#1| (-838 |#2|))) (-623 (-758 |#1| (-838 |#2|))) $) NIL (|has| |#1| (-542)))) (-3872 (((-623 (-758 |#1| (-838 |#2|))) (-623 (-758 |#1| (-838 |#2|))) $) NIL (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 (-758 |#1| (-838 |#2|)))) NIL)) (-2726 (($ (-623 (-758 |#1| (-838 |#2|)))) NIL)) (-1308 (((-3 $ "failed") $) NIL)) (-2067 (((-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-758 |#1| (-838 |#2|)) (-1068))))) (-3137 (($ (-758 |#1| (-838 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-758 |#1| (-838 |#2|)) (-1068)))) (($ (-1 (-112) (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-758 |#1| (-838 |#2|))) (|:| |den| |#1|)) (-758 |#1| (-838 |#2|)) $) NIL (|has| |#1| (-542)))) (-3404 (((-112) (-758 |#1| (-838 |#2|)) $ (-1 (-112) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)))) NIL)) (-1878 (((-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) $) NIL)) (-2419 (((-758 |#1| (-838 |#2|)) (-1 (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) $ (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-758 |#1| (-838 |#2|)) (-1068)))) (((-758 |#1| (-838 |#2|)) (-1 (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) $ (-758 |#1| (-838 |#2|))) NIL (|has| $ (-6 -4342))) (((-758 |#1| (-838 |#2|)) (-1 (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) $ (-1 (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) (-1 (-112) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)))) NIL)) (-3589 (((-2 (|:| -2027 (-623 (-758 |#1| (-838 |#2|)))) (|:| -3257 (-623 (-758 |#1| (-838 |#2|))))) $) NIL)) (-3113 (((-112) (-758 |#1| (-838 |#2|)) $) NIL)) (-2933 (((-112) (-758 |#1| (-838 |#2|)) $) NIL)) (-3208 (((-112) (-758 |#1| (-838 |#2|)) $) NIL) (((-112) $) NIL)) (-3450 (((-623 (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3499 (((-112) (-758 |#1| (-838 |#2|)) $) NIL) (((-112) $) NIL)) (-3952 (((-838 |#2|) $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-758 |#1| (-838 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-758 |#1| (-838 |#2|)) (-1068))))) (-3234 (($ (-1 (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) $) NIL)) (-2650 (((-623 (-838 |#2|)) $) NIL)) (-2568 (((-112) (-838 |#2|) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-3735 (((-3 (-758 |#1| (-838 |#2|)) (-623 $)) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) $) NIL)) (-3632 (((-623 (-2 (|:| |val| (-758 |#1| (-838 |#2|))) (|:| -3223 $))) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) $) NIL)) (-3159 (((-3 (-758 |#1| (-838 |#2|)) "failed") $) NIL)) (-3830 (((-623 $) (-758 |#1| (-838 |#2|)) $) NIL)) (-2845 (((-3 (-112) (-623 $)) (-758 |#1| (-838 |#2|)) $) NIL)) (-2743 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 $))) (-758 |#1| (-838 |#2|)) $) NIL) (((-112) (-758 |#1| (-838 |#2|)) $) NIL)) (-1623 (((-623 $) (-758 |#1| (-838 |#2|)) $) NIL) (((-623 $) (-623 (-758 |#1| (-838 |#2|))) $) NIL) (((-623 $) (-623 (-758 |#1| (-838 |#2|))) (-623 $)) NIL) (((-623 $) (-758 |#1| (-838 |#2|)) (-623 $)) NIL)) (-3757 (($ (-758 |#1| (-838 |#2|)) $) NIL) (($ (-623 (-758 |#1| (-838 |#2|))) $) NIL)) (-3671 (((-623 (-758 |#1| (-838 |#2|))) $) NIL)) (-1296 (((-112) (-758 |#1| (-838 |#2|)) $) NIL) (((-112) $) NIL)) (-3900 (((-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) $) NIL)) (-3831 (((-112) $ $) NIL)) (-2884 (((-2 (|:| |num| (-758 |#1| (-838 |#2|))) (|:| |den| |#1|)) (-758 |#1| (-838 |#2|)) $) NIL (|has| |#1| (-542)))) (-1394 (((-112) (-758 |#1| (-838 |#2|)) $) NIL) (((-112) $) NIL)) (-3984 (((-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)) $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-3 (-758 |#1| (-838 |#2|)) "failed") $) NIL)) (-3321 (((-3 (-758 |#1| (-838 |#2|)) "failed") (-1 (-112) (-758 |#1| (-838 |#2|))) $) NIL)) (-2654 (((-3 $ "failed") $ (-758 |#1| (-838 |#2|))) NIL)) (-2272 (($ $ (-758 |#1| (-838 |#2|))) NIL) (((-623 $) (-758 |#1| (-838 |#2|)) $) NIL) (((-623 $) (-758 |#1| (-838 |#2|)) (-623 $)) NIL) (((-623 $) (-623 (-758 |#1| (-838 |#2|))) $) NIL) (((-623 $) (-623 (-758 |#1| (-838 |#2|))) (-623 $)) NIL)) (-1543 (((-112) (-1 (-112) (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-758 |#1| (-838 |#2|))) (-623 (-758 |#1| (-838 |#2|)))) NIL (-12 (|has| (-758 |#1| (-838 |#2|)) (-302 (-758 |#1| (-838 |#2|)))) (|has| (-758 |#1| (-838 |#2|)) (-1068)))) (($ $ (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|))) NIL (-12 (|has| (-758 |#1| (-838 |#2|)) (-302 (-758 |#1| (-838 |#2|)))) (|has| (-758 |#1| (-838 |#2|)) (-1068)))) (($ $ (-287 (-758 |#1| (-838 |#2|)))) NIL (-12 (|has| (-758 |#1| (-838 |#2|)) (-302 (-758 |#1| (-838 |#2|)))) (|has| (-758 |#1| (-838 |#2|)) (-1068)))) (($ $ (-623 (-287 (-758 |#1| (-838 |#2|))))) NIL (-12 (|has| (-758 |#1| (-838 |#2|)) (-302 (-758 |#1| (-838 |#2|)))) (|has| (-758 |#1| (-838 |#2|)) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2970 (((-749) $) NIL)) (-3350 (((-749) (-758 |#1| (-838 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-758 |#1| (-838 |#2|)) (-1068)))) (((-749) (-1 (-112) (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-758 |#1| (-838 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-758 |#1| (-838 |#2|)))) NIL)) (-2315 (($ $ (-838 |#2|)) NIL)) (-2486 (($ $ (-838 |#2|)) NIL)) (-1969 (($ $) NIL)) (-2401 (($ $ (-838 |#2|)) NIL)) (-1518 (((-836) $) NIL) (((-623 (-758 |#1| (-838 |#2|))) $) NIL)) (-2580 (((-749) $) NIL (|has| (-838 |#2|) (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 (-758 |#1| (-838 |#2|))))) "failed") (-623 (-758 |#1| (-838 |#2|))) (-1 (-112) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 (-758 |#1| (-838 |#2|))))) "failed") (-623 (-758 |#1| (-838 |#2|))) (-1 (-112) (-758 |#1| (-838 |#2|))) (-1 (-112) (-758 |#1| (-838 |#2|)) (-758 |#1| (-838 |#2|)))) NIL)) (-4259 (((-112) $ (-1 (-112) (-758 |#1| (-838 |#2|)) (-623 (-758 |#1| (-838 |#2|))))) NIL)) (-3532 (((-623 $) (-758 |#1| (-838 |#2|)) $) NIL) (((-623 $) (-758 |#1| (-838 |#2|)) (-623 $)) NIL) (((-623 $) (-623 (-758 |#1| (-838 |#2|))) $) NIL) (((-623 $) (-623 (-758 |#1| (-838 |#2|))) (-623 $)) NIL)) (-1675 (((-112) (-1 (-112) (-758 |#1| (-838 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-1579 (((-623 (-838 |#2|)) $) NIL)) (-3024 (((-112) (-758 |#1| (-838 |#2|)) $) NIL)) (-1288 (((-112) (-838 |#2|) $) NIL)) (-2316 (((-112) $ $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1017 |#1| |#2|) (-13 (-1040 |#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|))) (-10 -8 (-15 -1779 ((-623 $) (-623 (-758 |#1| (-838 |#2|))) (-112) (-112))))) (-444) (-623 (-1144))) (T -1017)) +((-1779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-1017 *5 *6))) (-5 *1 (-1017 *5 *6))))) +(-13 (-1040 |#1| (-522 (-838 |#2|)) (-838 |#2|) (-758 |#1| (-838 |#2|))) (-10 -8 (-15 -1779 ((-623 $) (-623 (-758 |#1| (-838 |#2|))) (-112) (-112))))) +((-4107 (((-1 (-550)) (-1062 (-550))) 33)) (-3346 (((-550) (-550) (-550) (-550) (-550)) 30)) (-1275 (((-1 (-550)) |RationalNumber|) NIL)) (-1408 (((-1 (-550)) |RationalNumber|) NIL)) (-4224 (((-1 (-550)) (-550) |RationalNumber|) NIL))) +(((-1018) (-10 -7 (-15 -4107 ((-1 (-550)) (-1062 (-550)))) (-15 -4224 ((-1 (-550)) (-550) |RationalNumber|)) (-15 -1275 ((-1 (-550)) |RationalNumber|)) (-15 -1408 ((-1 (-550)) |RationalNumber|)) (-15 -3346 ((-550) (-550) (-550) (-550) (-550))))) (T -1018)) +((-3346 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1018)))) (-1408 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1018)))) (-1275 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1018)))) (-4224 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1018)) (-5 *3 (-550)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-1062 (-550))) (-5 *2 (-1 (-550))) (-5 *1 (-1018))))) +(-10 -7 (-15 -4107 ((-1 (-550)) (-1062 (-550)))) (-15 -4224 ((-1 (-550)) (-550) |RationalNumber|)) (-15 -1275 ((-1 (-550)) |RationalNumber|)) (-15 -1408 ((-1 (-550)) |RationalNumber|)) (-15 -3346 ((-550) (-550) (-550) (-550) (-550)))) +((-1518 (((-836) $) NIL) (($ (-550)) 10))) +(((-1019 |#1|) (-10 -8 (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) (-1020)) (T -1019)) +NIL +(-10 -8 (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-1020) (-138)) (T -1020)) +((-2390 (*1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-749)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1020))))) +(-13 (-1027) (-705) (-626 $) (-10 -8 (-15 -2390 ((-749))) (-15 -1518 ($ (-550))) (-6 -4339))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 $) . T) ((-705) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3448 (((-400 (-925 |#2|)) (-623 |#2|) (-623 |#2|) (-749) (-749)) 46))) +(((-1021 |#1| |#2|) (-10 -7 (-15 -3448 ((-400 (-925 |#2|)) (-623 |#2|) (-623 |#2|) (-749) (-749)))) (-1144) (-356)) (T -1021)) +((-3448 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-749)) (-4 *6 (-356)) (-5 *2 (-400 (-925 *6))) (-5 *1 (-1021 *5 *6)) (-14 *5 (-1144))))) +(-10 -7 (-15 -3448 ((-400 (-925 |#2|)) (-623 |#2|) (-623 |#2|) (-749) (-749)))) +((-1294 (((-112) $) 29)) (-3483 (((-112) $) 16)) (-2115 (((-749) $) 13)) (-2124 (((-749) $) 14)) (-1829 (((-112) $) 26)) (-1295 (((-112) $) 31))) +(((-1022 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2124 ((-749) |#1|)) (-15 -2115 ((-749) |#1|)) (-15 -1295 ((-112) |#1|)) (-15 -1294 ((-112) |#1|)) (-15 -1829 ((-112) |#1|)) (-15 -3483 ((-112) |#1|))) (-1023 |#2| |#3| |#4| |#5| |#6|) (-749) (-749) (-1020) (-232 |#3| |#4|) (-232 |#2| |#4|)) (T -1022)) +NIL +(-10 -8 (-15 -2124 ((-749) |#1|)) (-15 -2115 ((-749) |#1|)) (-15 -1295 ((-112) |#1|)) (-15 -1294 ((-112) |#1|)) (-15 -1829 ((-112) |#1|)) (-15 -3483 ((-112) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1294 (((-112) $) 51)) (-3219 (((-3 $ "failed") $ $) 19)) (-3483 (((-112) $) 53)) (-4047 (((-112) $ (-749)) 61)) (-3513 (($) 17 T CONST)) (-3707 (($ $) 34 (|has| |#3| (-300)))) (-3719 ((|#4| $ (-550)) 39)) (-2122 (((-749) $) 33 (|has| |#3| (-542)))) (-3181 ((|#3| $ (-550) (-550)) 41)) (-3450 (((-623 |#3|) $) 68 (|has| $ (-6 -4342)))) (-3613 (((-749) $) 32 (|has| |#3| (-542)))) (-3525 (((-623 |#5|) $) 31 (|has| |#3| (-542)))) (-2115 (((-749) $) 45)) (-2124 (((-749) $) 44)) (-1859 (((-112) $ (-749)) 60)) (-2938 (((-550) $) 49)) (-3895 (((-550) $) 47)) (-2689 (((-623 |#3|) $) 69 (|has| $ (-6 -4342)))) (-1921 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1068)) (|has| $ (-6 -4342))))) (-2828 (((-550) $) 48)) (-3816 (((-550) $) 46)) (-2458 (($ (-623 (-623 |#3|))) 54)) (-3234 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-4048 (((-623 (-623 |#3|)) $) 43)) (-1573 (((-112) $ (-749)) 59)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-542)))) (-1543 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#3|) (-623 |#3|)) 75 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ (-287 |#3|)) 73 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ (-623 (-287 |#3|))) 72 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068))))) (-4140 (((-112) $ $) 55)) (-2902 (((-112) $) 58)) (-3498 (($) 57)) (-2680 ((|#3| $ (-550) (-550)) 42) ((|#3| $ (-550) (-550) |#3|) 40)) (-1829 (((-112) $) 52)) (-3350 (((-749) |#3| $) 70 (-12 (|has| |#3| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4342)))) (-1731 (($ $) 56)) (-3615 ((|#5| $ (-550)) 38)) (-1518 (((-836) $) 11)) (-1675 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4342)))) (-1295 (((-112) $) 50)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#3|) 35 (|has| |#3| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3191 (((-749) $) 62 (|has| $ (-6 -4342))))) +(((-1023 |#1| |#2| |#3| |#4| |#5|) (-138) (-749) (-749) (-1020) (-232 |t#2| |t#3|) (-232 |t#1| |t#3|)) (T -1023)) +((-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *5))) (-4 *5 (-1020)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-1829 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-1294 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-1295 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550)))) (-3895 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-623 (-623 *5))))) (-2680 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1020)))) (-3181 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1020)))) (-2680 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *2 *6 *7)) (-4 *2 (-1020)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *6 *2 *7)) (-4 *6 (-1020)) (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))) (-3615 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *6 *7 *2)) (-4 *6 (-1020)) (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))) (-3972 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-1495 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *2 (-1020)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-542)))) (-2414 (*1 *1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *2 (-1020)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) (-3707 (*1 *1 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-749)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-749)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-623 *7))))) +(-13 (-111 |t#3| |t#3|) (-481 |t#3|) (-10 -8 (-6 -4342) (IF (|has| |t#3| (-170)) (-6 (-696 |t#3|)) |%noBranch|) (-15 -2458 ($ (-623 (-623 |t#3|)))) (-15 -3483 ((-112) $)) (-15 -1829 ((-112) $)) (-15 -1294 ((-112) $)) (-15 -1295 ((-112) $)) (-15 -2938 ((-550) $)) (-15 -2828 ((-550) $)) (-15 -3895 ((-550) $)) (-15 -3816 ((-550) $)) (-15 -2115 ((-749) $)) (-15 -2124 ((-749) $)) (-15 -4048 ((-623 (-623 |t#3|)) $)) (-15 -2680 (|t#3| $ (-550) (-550))) (-15 -3181 (|t#3| $ (-550) (-550))) (-15 -2680 (|t#3| $ (-550) (-550) |t#3|)) (-15 -3719 (|t#4| $ (-550))) (-15 -3615 (|t#5| $ (-550))) (-15 -3972 ($ (-1 |t#3| |t#3|) $)) (-15 -3972 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-542)) (-15 -1495 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-356)) (-15 -2414 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-300)) (-15 -3707 ($ $)) |%noBranch|) (IF (|has| |t#3| (-542)) (PROGN (-15 -2122 ((-749) $)) (-15 -3613 ((-749) $)) (-15 -3525 ((-623 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-595 (-836)) . T) ((-302 |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068))) ((-481 |#3|) . T) ((-505 |#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068))) ((-626 |#3|) . T) ((-696 |#3|) |has| |#3| (-170)) ((-1026 |#3|) . T) ((-1068) . T) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1294 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3483 (((-112) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-3513 (($) NIL T CONST)) (-3707 (($ $) 43 (|has| |#3| (-300)))) (-3719 (((-234 |#2| |#3|) $ (-550)) 32)) (-1717 (($ (-667 |#3|)) 41)) (-2122 (((-749) $) 45 (|has| |#3| (-542)))) (-3181 ((|#3| $ (-550) (-550)) NIL)) (-3450 (((-623 |#3|) $) NIL (|has| $ (-6 -4342)))) (-3613 (((-749) $) 47 (|has| |#3| (-542)))) (-3525 (((-623 (-234 |#1| |#3|)) $) 51 (|has| |#3| (-542)))) (-2115 (((-749) $) NIL)) (-2124 (((-749) $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-2938 (((-550) $) NIL)) (-3895 (((-550) $) NIL)) (-2689 (((-623 |#3|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#3| (-1068))))) (-2828 (((-550) $) NIL)) (-3816 (((-550) $) NIL)) (-2458 (($ (-623 (-623 |#3|))) 27)) (-3234 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4048 (((-623 (-623 |#3|)) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1495 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-542)))) (-1543 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#3|) (-623 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ (-623 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#3| $ (-550) (-550)) NIL) ((|#3| $ (-550) (-550) |#3|) NIL)) (-2854 (((-133)) 54 (|has| |#3| (-356)))) (-1829 (((-112) $) NIL)) (-3350 (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#3| (-1068)))) (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) 63 (|has| |#3| (-596 (-526))))) (-3615 (((-234 |#1| |#3|) $ (-550)) 36)) (-1518 (((-836) $) 16) (((-667 |#3|) $) 38)) (-1675 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342)))) (-1295 (((-112) $) NIL)) (-2626 (($) 13 T CONST)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1024 |#1| |#2| |#3|) (-13 (-1023 |#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) (-595 (-667 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1234 |#3|)) |%noBranch|) (IF (|has| |#3| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (-15 -1717 ($ (-667 |#3|))) (-15 -1518 ((-667 |#3|) $)))) (-749) (-749) (-1020)) (T -1024)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-667 *5)) (-5 *1 (-1024 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-1020)))) (-1717 (*1 *1 *2) (-12 (-5 *2 (-667 *5)) (-4 *5 (-1020)) (-5 *1 (-1024 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749))))) +(-13 (-1023 |#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) (-595 (-667 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1234 |#3|)) |%noBranch|) (IF (|has| |#3| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|) (-15 -1717 ($ (-667 |#3|))) (-15 -1518 ((-667 |#3|) $)))) +((-2419 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3972 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1025 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3972 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2419 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-749) (-749) (-1020) (-232 |#2| |#3|) (-232 |#1| |#3|) (-1023 |#1| |#2| |#3| |#4| |#5|) (-1020) (-232 |#2| |#7|) (-232 |#1| |#7|) (-1023 |#1| |#2| |#7| |#8| |#9|)) (T -1025)) +((-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1020)) (-4 *2 (-1020)) (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) (-5 *1 (-1025 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1023 *5 *6 *7 *8 *9)) (-4 *12 (-1023 *5 *6 *2 *10 *11)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1020)) (-4 *10 (-1020)) (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *2 (-1023 *5 *6 *10 *11 *12)) (-5 *1 (-1025 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1023 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10))))) +(-10 -7 (-15 -3972 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2419 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ |#1|) 23))) +(((-1026 |#1|) (-138) (-1027)) (T -1026)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1027))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-1025) (-138)) (T -1025)) -NIL -(-13 (-21) (-1078)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1078) . T) ((-1067) . T)) -((-4113 (($ $) 16)) (-3445 (($ $) 22)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 49)) (-3450 (($ $) 24)) (-3446 (($ $) 11)) (-3448 (($ $) 38)) (-4313 (((-371) $) NIL) (((-219) $) NIL) (((-861 (-371)) $) 33)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 28) (($ (-535)) NIL) (($ (-400 (-535))) 28)) (-3444 (((-747)) 8)) (-3449 (($ $) 39))) -(((-1026 |#1|) (-10 -8 (-15 -3445 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -4300 ((-835) |#1|))) (-1027)) (T -1026)) -((-3444 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1026 *3)) (-4 *3 (-1027))))) -(-10 -8 (-15 -3445 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3447 (((-535) $) 86)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-4113 (($ $) 84)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3358 (($ $) 94)) (-1700 (((-112) $ $) 57)) (-3969 (((-535) $) 111)) (-3879 (($) 17 T CONST)) (-3445 (($ $) 83)) (-3491 (((-3 (-535) #1="failed") $) 99) (((-3 (-400 (-535)) #1#) $) 96)) (-3490 (((-535) $) 98) (((-400 (-535)) $) 95)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-3520 (((-112) $) 109)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 90)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 93)) (-3450 (($ $) 89)) (-3521 (((-112) $) 110)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 50)) (-3660 (($ $ $) 108)) (-3661 (($ $ $) 107)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3446 (($ $) 85)) (-3448 (($ $) 87)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4313 (((-371) $) 102) (((-219) $) 101) (((-861 (-371)) $) 91)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ (-535)) 100) (($ (-400 (-535))) 97)) (-3444 (((-747)) 28)) (-3449 (($ $) 88)) (-2170 (((-112) $ $) 37)) (-3725 (($ $) 112)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 105)) (-2886 (((-112) $ $) 104)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 106)) (-3006 (((-112) $ $) 103)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66) (($ $ (-400 (-535))) 92)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) (((-1027) (-138)) (T -1027)) -((-3725 (*1 *1 *1) (-4 *1 (-1027))) (-3450 (*1 *1 *1) (-4 *1 (-1027))) (-3449 (*1 *1 *1) (-4 *1 (-1027))) (-3448 (*1 *1 *1) (-4 *1 (-1027))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-535)))) (-3446 (*1 *1 *1) (-4 *1 (-1027))) (-4113 (*1 *1 *1) (-4 *1 (-1027))) (-3445 (*1 *1 *1) (-4 *1 (-1027)))) -(-13 (-356) (-821) (-991) (-1009 (-535)) (-1009 (-400 (-535))) (-973) (-594 (-861 (-371))) (-857 (-371)) (-145) (-10 -8 (-15 -3450 ($ $)) (-15 -3449 ($ $)) (-15 -3448 ($ $)) (-15 -3447 ((-535) $)) (-15 -3446 ($ $)) (-15 -4113 ($ $)) (-15 -3445 ($ $)) (-15 -3725 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-371)) . T) ((-594 (-861 (-371))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-821) . T) ((-823) . T) ((-857 (-371)) . T) ((-892) . T) ((-973) . T) ((-991) . T) ((-1009 (-400 (-535))) . T) ((-1009 (-535)) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) |#2| $) 23)) (-3454 ((|#1| $) 10)) (-3969 (((-535) |#2| $) 88)) (-3517 (((-3 $ #1="failed") |#2| (-890)) 57)) (-3455 ((|#1| $) 28)) (-3516 ((|#1| |#2| $ |#1|) 37)) (-3452 (($ $) 25)) (-3804 (((-3 |#2| #1#) |#2| $) 87)) (-3520 (((-112) |#2| $) NIL)) (-3521 (((-112) |#2| $) NIL)) (-3451 (((-112) |#2| $) 24)) (-3453 ((|#1| $) 89)) (-3456 ((|#1| $) 27)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3519 ((|#2| $) 79)) (-4300 (((-835) $) 70)) (-4112 ((|#1| |#2| $ |#1|) 38)) (-3518 (((-618 $) |#2|) 59)) (-3375 (((-112) $ $) 74))) -(((-1028 |#1| |#2|) (-13 (-1035 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| $)) (-15 -3455 (|#1| $)) (-15 -3454 (|#1| $)) (-15 -3453 (|#1| $)) (-15 -3452 ($ $)) (-15 -3451 ((-112) |#2| $)) (-15 -3516 (|#1| |#2| $ |#1|)))) (-13 (-821) (-356)) (-1200 |#1|)) (T -1028)) -((-3516 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3456 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3455 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3454 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3453 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3452 (*1 *1 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3451 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-821) (-356))) (-5 *2 (-112)) (-5 *1 (-1028 *4 *3)) (-4 *3 (-1200 *4))))) -(-13 (-1035 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| $)) (-15 -3455 (|#1| $)) (-15 -3454 (|#1| $)) (-15 -3453 (|#1| $)) (-15 -3452 ($ $)) (-15 -3451 ((-112) |#2| $)) (-15 -3516 (|#1| |#2| $ |#1|)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2155 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2150 (($ $ $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-2681 (($ $ $) NIL)) (-3879 (($) NIL T CONST)) (-3457 (($ (-1142)) 10) (($ (-535)) 7)) (-3491 (((-3 (-535) "failed") $) NIL)) (-3490 (((-535) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL)) (-3344 (((-112) $) NIL)) (-3343 (((-400 (-535)) $) NIL)) (-3315 (($) NIL) (($ $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2148 (($ $ $ $) NIL)) (-2156 (($ $ $) NIL)) (-3520 (((-112) $) NIL)) (-1413 (($ $ $) NIL)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL)) (-2493 (((-112) $) NIL)) (-2994 (((-112) $) NIL)) (-3786 (((-3 $ "failed") $) NIL)) (-3521 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2149 (($ $ $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2152 (($ $) NIL)) (-4176 (($ $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2147 (($ $ $) NIL)) (-3787 (($) NIL T CONST)) (-2154 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1411 (($ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-2153 (($ $) NIL)) (-3742 (($ $) NIL)) (-4313 (((-535) $) 16) (((-524) $) NIL) (((-861 (-535)) $) NIL) (((-371) $) NIL) (((-219) $) NIL) (($ (-1142)) 9)) (-4300 (((-835) $) 20) (($ (-535)) 6) (($ $) NIL) (($ (-535)) 6)) (-3444 (((-747)) NIL)) (-2157 (((-112) $ $) NIL)) (-3420 (($ $ $) NIL)) (-3015 (($) NIL)) (-2170 (((-112) $ $) NIL)) (-2151 (($ $ $ $) NIL)) (-3725 (($ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4180 (($ $) 19) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL))) -(((-1029) (-13 (-534) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -4313 ($ (-1142))) (-15 -3457 ($ (-1142))) (-15 -3457 ($ (-535)))))) (T -1029)) -((-4313 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1029))))) -(-13 (-534) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -4313 ($ (-1142))) (-15 -3457 ($ (-1142))) (-15 -3457 ($ (-535))))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2296 (((-1230) $ (-1142) (-1142)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-3459 (($) 9)) (-4130 (((-51) $ (-1142) (-51)) NIL)) (-3467 (($ $) 30)) (-3470 (($ $) 28)) (-3471 (($ $) 27)) (-3469 (($ $) 29)) (-3466 (($ $) 32)) (-3465 (($ $) 33)) (-3472 (($ $) 26)) (-3468 (($ $) 31)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) 25 (|has| $ (-6 -4336)))) (-2305 (((-3 (-51) #1="failed") (-1142) $) 40)) (-3879 (($) NIL T CONST)) (-3473 (($) 7)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3747 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) 50 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-51) #1#) (-1142) $) NIL)) (-3748 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-3458 (((-3 (-1124) "failed") $ (-1124) (-535)) 59)) (-1632 (((-51) $ (-1142) (-51)) NIL (|has| $ (-6 -4337)))) (-3431 (((-51) $ (-1142)) NIL)) (-2063 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1142) $) NIL (|has| (-1142) (-823)))) (-2502 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) 35 (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2299 (((-1142) $) NIL (|has| (-1142) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-2735 (((-618 (-1142)) $) NIL)) (-2306 (((-112) (-1142) $) NIL)) (-1326 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) 43)) (-2301 (((-618 (-1142)) $) NIL)) (-2302 (((-112) (-1142) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3462 (((-371) $ (-1142)) 49)) (-3461 (((-618 (-1124)) $ (-1124)) 60)) (-4143 (((-51) $) NIL (|has| (-1142) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) "failed") (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL)) (-2297 (($ $ (-51)) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-51)) (-618 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-618 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2303 (((-618 (-51)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-51) $ (-1142)) NIL) (((-51) $ (-1142) (-51)) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-3460 (($ $ (-1142)) 51)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-747) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067)))) (((-747) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) 37)) (-4144 (($ $ $) 38)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-593 (-835))) (|has| (-51) (-593 (-835)))))) (-3464 (($ $ (-1142) (-371)) 47)) (-3463 (($ $ (-1142) (-371)) 48)) (-1328 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1030) (-13 (-1155 (-1142) (-51)) (-10 -8 (-15 -4144 ($ $ $)) (-15 -3473 ($)) (-15 -3472 ($ $)) (-15 -3471 ($ $)) (-15 -3470 ($ $)) (-15 -3469 ($ $)) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -3466 ($ $)) (-15 -3465 ($ $)) (-15 -3464 ($ $ (-1142) (-371))) (-15 -3463 ($ $ (-1142) (-371))) (-15 -3462 ((-371) $ (-1142))) (-15 -3461 ((-618 (-1124)) $ (-1124))) (-15 -3460 ($ $ (-1142))) (-15 -3459 ($)) (-15 -3458 ((-3 (-1124) "failed") $ (-1124) (-535))) (-6 -4336)))) (T -1030)) -((-4144 (*1 *1 *1 *1) (-5 *1 (-1030))) (-3473 (*1 *1) (-5 *1 (-1030))) (-3472 (*1 *1 *1) (-5 *1 (-1030))) (-3471 (*1 *1 *1) (-5 *1 (-1030))) (-3470 (*1 *1 *1) (-5 *1 (-1030))) (-3469 (*1 *1 *1) (-5 *1 (-1030))) (-3468 (*1 *1 *1) (-5 *1 (-1030))) (-3467 (*1 *1 *1) (-5 *1 (-1030))) (-3466 (*1 *1 *1) (-5 *1 (-1030))) (-3465 (*1 *1 *1) (-5 *1 (-1030))) (-3464 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-371)) (-5 *1 (-1030)))) (-3463 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-371)) (-5 *1 (-1030)))) (-3462 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-371)) (-5 *1 (-1030)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1030)) (-5 *3 (-1124)))) (-3460 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1030)))) (-3459 (*1 *1) (-5 *1 (-1030))) (-3458 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-1030))))) -(-13 (-1155 (-1142) (-51)) (-10 -8 (-15 -4144 ($ $ $)) (-15 -3473 ($)) (-15 -3472 ($ $)) (-15 -3471 ($ $)) (-15 -3470 ($ $)) (-15 -3469 ($ $)) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -3466 ($ $)) (-15 -3465 ($ $)) (-15 -3464 ($ $ (-1142) (-371))) (-15 -3463 ($ $ (-1142) (-371))) (-15 -3462 ((-371) $ (-1142))) (-15 -3461 ((-618 (-1124)) $ (-1124))) (-15 -3460 ($ $ (-1142))) (-15 -3459 ($)) (-15 -3458 ((-3 (-1124) "failed") $ (-1124) (-535))) (-6 -4336))) -((-4139 (($ $) 45)) (-3500 (((-112) $ $) 74)) (-3491 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-917 (-400 (-535)))) 227) (((-3 $ "failed") (-917 (-535))) 226) (((-3 $ "failed") (-917 |#2|)) 229)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL) (((-535) $) NIL) ((|#4| $) NIL) (($ (-917 (-400 (-535)))) 215) (($ (-917 (-535))) 211) (($ (-917 |#2|)) 231)) (-4302 (($ $) NIL) (($ $ |#4|) 43)) (-4040 (((-112) $ $) 112) (((-112) $ (-618 $)) 113)) (-3506 (((-112) $) 56)) (-4095 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 107)) (-3477 (($ $) 138)) (-3488 (($ $) 134)) (-3489 (($ $) 133)) (-3499 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3498 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4041 (((-112) $ $) 121) (((-112) $ (-618 $)) 122)) (-3514 ((|#4| $) 33)) (-3493 (($ $ $) 110)) (-3507 (((-112) $) 55)) (-3513 (((-747) $) 35)) (-3474 (($ $) 152)) (-3475 (($ $) 149)) (-3502 (((-618 $) $) 68)) (-3505 (($ $) 57)) (-3476 (($ $) 145)) (-3503 (((-618 $) $) 65)) (-3504 (($ $) 59)) (-3508 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3492 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3818 (-747))) $ $) 111)) (-3494 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $) 108) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $ |#4|) 109)) (-3495 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $) 104) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $ |#4|) 105)) (-3497 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3496 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3510 (((-618 $) $) 51)) (-4037 (((-112) $ $) 118) (((-112) $ (-618 $)) 119)) (-4032 (($ $ $) 103)) (-3787 (($ $) 37)) (-4045 (((-112) $ $) 72)) (-4038 (((-112) $ $) 114) (((-112) $ (-618 $)) 116)) (-4033 (($ $ $) 101)) (-3512 (($ $) 40)) (-3478 ((|#2| |#2| $) 142) (($ (-618 $)) NIL) (($ $ $) NIL)) (-3486 (($ $ |#2|) NIL) (($ $ $) 131)) (-3487 (($ $ |#2|) 126) (($ $ $) 129)) (-3511 (($ $) 48)) (-3509 (($ $) 52)) (-4313 (((-861 (-371)) $) NIL) (((-861 (-535)) $) NIL) (((-524) $) NIL) (($ (-917 (-400 (-535)))) 217) (($ (-917 (-535))) 213) (($ (-917 |#2|)) 228) (((-1124) $) 250) (((-917 |#2|) $) 162)) (-4300 (((-835) $) 30) (($ (-535)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-917 |#2|) $) 163) (($ (-400 (-535))) NIL) (($ $) NIL)) (-3501 (((-3 (-112) "failed") $ $) 71))) -(((-1031 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 ((-917 |#2|) |#1|)) (-15 -4313 ((-917 |#2|) |#1|)) (-15 -4313 ((-1124) |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3478 (|#2| |#2| |#1|)) (-15 -3486 (|#1| |#1| |#1|)) (-15 -3487 (|#1| |#1| |#1|)) (-15 -3486 (|#1| |#1| |#2|)) (-15 -3487 (|#1| |#1| |#2|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -4313 (|#1| (-917 |#2|))) (-15 -3490 (|#1| (-917 |#2|))) (-15 -3491 ((-3 |#1| "failed") (-917 |#2|))) (-15 -4313 (|#1| (-917 (-535)))) (-15 -3490 (|#1| (-917 (-535)))) (-15 -3491 ((-3 |#1| "failed") (-917 (-535)))) (-15 -4313 (|#1| (-917 (-400 (-535))))) (-15 -3490 (|#1| (-917 (-400 (-535))))) (-15 -3491 ((-3 |#1| "failed") (-917 (-400 (-535))))) (-15 -4032 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3492 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3818 (-747))) |#1| |#1|)) (-15 -3493 (|#1| |#1| |#1|)) (-15 -4095 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3495 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3495 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3496 (|#1| |#1| |#1| |#4|)) (-15 -3497 (|#1| |#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1| |#4|)) (-15 -3499 (|#1| |#1| |#1| |#4|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -4041 ((-112) |#1| (-618 |#1|))) (-15 -4041 ((-112) |#1| |#1|)) (-15 -4037 ((-112) |#1| (-618 |#1|))) (-15 -4037 ((-112) |#1| |#1|)) (-15 -4038 ((-112) |#1| (-618 |#1|))) (-15 -4038 ((-112) |#1| |#1|)) (-15 -4040 ((-112) |#1| (-618 |#1|))) (-15 -4040 ((-112) |#1| |#1|)) (-15 -3500 ((-112) |#1| |#1|)) (-15 -4045 ((-112) |#1| |#1|)) (-15 -3501 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3502 ((-618 |#1|) |#1|)) (-15 -3503 ((-618 |#1|) |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4302 (|#1| |#1| |#4|)) (-15 -3508 (|#1| |#1| |#4|)) (-15 -3509 (|#1| |#1|)) (-15 -3510 ((-618 |#1|) |#1|)) (-15 -3511 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -3512 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3513 ((-747) |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -3490 (|#4| |#1|)) (-15 -3491 ((-3 |#4| #1="failed") |#1|)) (-15 -4300 (|#1| |#4|)) (-15 -3508 (|#2| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-1032 |#2| |#3| |#4|) (-1018) (-769) (-823)) (T -1031)) -NIL -(-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 ((-917 |#2|) |#1|)) (-15 -4313 ((-917 |#2|) |#1|)) (-15 -4313 ((-1124) |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3478 (|#2| |#2| |#1|)) (-15 -3486 (|#1| |#1| |#1|)) (-15 -3487 (|#1| |#1| |#1|)) (-15 -3486 (|#1| |#1| |#2|)) (-15 -3487 (|#1| |#1| |#2|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -4313 (|#1| (-917 |#2|))) (-15 -3490 (|#1| (-917 |#2|))) (-15 -3491 ((-3 |#1| "failed") (-917 |#2|))) (-15 -4313 (|#1| (-917 (-535)))) (-15 -3490 (|#1| (-917 (-535)))) (-15 -3491 ((-3 |#1| "failed") (-917 (-535)))) (-15 -4313 (|#1| (-917 (-400 (-535))))) (-15 -3490 (|#1| (-917 (-400 (-535))))) (-15 -3491 ((-3 |#1| "failed") (-917 (-400 (-535))))) (-15 -4032 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3492 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3818 (-747))) |#1| |#1|)) (-15 -3493 (|#1| |#1| |#1|)) (-15 -4095 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3495 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3495 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3496 (|#1| |#1| |#1| |#4|)) (-15 -3497 (|#1| |#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1| |#4|)) (-15 -3499 (|#1| |#1| |#1| |#4|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -4041 ((-112) |#1| (-618 |#1|))) (-15 -4041 ((-112) |#1| |#1|)) (-15 -4037 ((-112) |#1| (-618 |#1|))) (-15 -4037 ((-112) |#1| |#1|)) (-15 -4038 ((-112) |#1| (-618 |#1|))) (-15 -4038 ((-112) |#1| |#1|)) (-15 -4040 ((-112) |#1| (-618 |#1|))) (-15 -4040 ((-112) |#1| |#1|)) (-15 -3500 ((-112) |#1| |#1|)) (-15 -4045 ((-112) |#1| |#1|)) (-15 -3501 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3502 ((-618 |#1|) |#1|)) (-15 -3503 ((-618 |#1|) |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4302 (|#1| |#1| |#4|)) (-15 -3508 (|#1| |#1| |#4|)) (-15 -3509 (|#1| |#1|)) (-15 -3510 ((-618 |#1|) |#1|)) (-15 -3511 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -3512 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3513 ((-747) |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -3490 (|#4| |#1|)) (-15 -3491 ((-3 |#4| #1="failed") |#1|)) (-15 -4300 (|#1| |#4|)) (-15 -3508 (|#2| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 |#3|) $) 108)) (-3407 (((-1136 $) $ |#3|) 123) (((-1136 |#1|) $) 122)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-2171 (($ $) 86 (|has| |#1| (-542)))) (-2169 (((-112) $) 88 (|has| |#1| (-542)))) (-3140 (((-747) $) 110) (((-747) $ (-618 |#3|)) 109)) (-4139 (($ $) 269)) (-3500 (((-112) $ $) 255)) (-1363 (((-3 $ "failed") $ $) 19)) (-4098 (($ $ $) 214 (|has| |#1| (-542)))) (-3482 (((-618 $) $ $) 209 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) 98 (|has| |#1| (-881)))) (-4117 (($ $) 96 (|has| |#1| (-444)))) (-4312 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 101 (|has| |#1| (-881)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-535)) #2#) $) 160 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) 158 (|has| |#1| (-1009 (-535)))) (((-3 |#3| #2#) $) 134) (((-3 $ "failed") (-917 (-400 (-535)))) 229 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))) (((-3 $ "failed") (-917 (-535))) 226 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142)))))) (((-3 $ "failed") (-917 |#1|)) 223 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-38 (-535)))) (|has| |#3| (-594 (-1142)))) (-12 (-3659 (|has| |#1| (-534))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (-3659 (|has| |#1| (-962 (-535)))) (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))))) (-3490 ((|#1| $) 163) (((-400 (-535)) $) 159 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 157 (|has| |#1| (-1009 (-535)))) ((|#3| $) 133) (($ (-917 (-400 (-535)))) 228 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))) (($ (-917 (-535))) 225 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142)))))) (($ (-917 |#1|)) 222 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-38 (-535)))) (|has| |#3| (-594 (-1142)))) (-12 (-3659 (|has| |#1| (-534))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (-3659 (|has| |#1| (-962 (-535)))) (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))))) (-4099 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-542)))) (-4302 (($ $) 152) (($ $ |#3|) 264)) (-2353 (((-665 (-535)) (-665 $)) 132 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 131 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-4040 (((-112) $ $) 254) (((-112) $ (-618 $)) 253)) (-3804 (((-3 $ "failed") $) 32)) (-3506 (((-112) $) 262)) (-4095 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 234)) (-3477 (($ $) 203 (|has| |#1| (-444)))) (-3840 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3139 (((-618 $) $) 107)) (-4069 (((-112) $) 94 (|has| |#1| (-881)))) (-3488 (($ $) 219 (|has| |#1| (-542)))) (-3489 (($ $) 220 (|has| |#1| (-542)))) (-3499 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3498 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1716 (($ $ |#1| |#2| $) 170)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 82 (-12 (|has| |#3| (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 81 (-12 (|has| |#3| (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 167)) (-4041 (((-112) $ $) 248) (((-112) $ (-618 $)) 247)) (-3479 (($ $ $ $ $) 205 (|has| |#1| (-542)))) (-3514 ((|#3| $) 273)) (-3408 (($ (-1136 |#1|) |#3|) 115) (($ (-1136 $) |#3|) 114)) (-3142 (((-618 $) $) 124)) (-4280 (((-112) $) 150)) (-3214 (($ |#1| |#2|) 151) (($ $ |#3| (-747)) 117) (($ $ (-618 |#3|) (-618 (-747))) 116)) (-3493 (($ $ $) 233)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) 118)) (-3507 (((-112) $) 263)) (-3141 ((|#2| $) 168) (((-747) $ |#3|) 120) (((-618 (-747)) $ (-618 |#3|)) 119)) (-3660 (($ $ $) 77 (|has| |#1| (-823)))) (-3513 (((-747) $) 272)) (-3661 (($ $ $) 76 (|has| |#1| (-823)))) (-1717 (($ (-1 |#2| |#2|) $) 169)) (-4301 (($ (-1 |#1| |#1|) $) 149)) (-3406 (((-3 |#3| #3="failed") $) 121)) (-3474 (($ $) 200 (|has| |#1| (-444)))) (-3475 (($ $) 201 (|has| |#1| (-444)))) (-3502 (((-618 $) $) 258)) (-3505 (($ $) 261)) (-3476 (($ $) 202 (|has| |#1| (-444)))) (-3503 (((-618 $) $) 259)) (-3504 (($ $) 260)) (-3215 (($ $) 147)) (-3508 ((|#1| $) 146) (($ $ |#3|) 265)) (-2008 (($ (-618 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3492 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3818 (-747))) $ $) 232)) (-3494 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $) 236) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) 235)) (-3495 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $) 238) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $ |#3|) 237)) (-3497 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3496 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3576 (((-1124) $) 9)) (-3524 (($ $ $) 208 (|has| |#1| (-542)))) (-3510 (((-618 $) $) 267)) (-3144 (((-3 (-618 $) #3#) $) 112)) (-3143 (((-3 (-618 $) #3#) $) 113)) (-3145 (((-3 (-2 (|:| |var| |#3|) (|:| -2484 (-747))) #3#) $) 111)) (-4037 (((-112) $ $) 250) (((-112) $ (-618 $)) 249)) (-4032 (($ $ $) 230)) (-3787 (($ $) 271)) (-4045 (((-112) $ $) 256)) (-4038 (((-112) $ $) 252) (((-112) $ (-618 $)) 251)) (-4033 (($ $ $) 231)) (-3512 (($ $) 270)) (-3577 (((-1086) $) 10)) (-3483 (((-2 (|:| -3478 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-542)))) (-3484 (((-2 (|:| -3478 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-542)))) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93 (|has| |#1| (-444)))) (-3478 ((|#1| |#1| $) 204 (|has| |#1| (-444))) (($ (-618 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 100 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 99 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 97 (|has| |#1| (-881)))) (-3485 (((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-542)))) (-3803 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3486 (($ $ |#1|) 217 (|has| |#1| (-542))) (($ $ $) 215 (|has| |#1| (-542)))) (-3487 (($ $ |#1|) 218 (|has| |#1| (-542))) (($ $ $) 216 (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-618 $) (-618 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-618 |#3|) (-618 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-618 |#3|) (-618 $)) 136)) (-4100 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4153 (($ $ |#3|) 40) (($ $ (-618 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-618 |#3|) (-618 (-747))) 37)) (-4290 ((|#2| $) 148) (((-747) $ |#3|) 128) (((-618 (-747)) $ (-618 |#3|)) 127)) (-3511 (($ $) 268)) (-3509 (($ $) 266)) (-4313 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) 79 (-12 (|has| |#3| (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) 78 (-12 (|has| |#3| (-594 (-524))) (|has| |#1| (-594 (-524))))) (($ (-917 (-400 (-535)))) 227 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))) (($ (-917 (-535))) 224 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142)))))) (($ (-917 |#1|)) 221 (|has| |#3| (-594 (-1142)))) (((-1124) $) 199 (-12 (|has| |#1| (-1009 (-535))) (|has| |#3| (-594 (-1142))))) (((-917 |#1|) $) 198 (|has| |#3| (-594 (-1142))))) (-3138 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 102 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-917 |#1|) $) 197 (|has| |#3| (-594 (-1142)))) (($ (-400 (-535))) 70 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535)))))) (($ $) 83 (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) 166)) (-4023 ((|#1| $ |#2|) 153) (($ $ |#3| (-747)) 126) (($ $ (-618 |#3|) (-618 (-747))) 125)) (-3023 (((-3 $ #1#) $) 71 (-3874 (-3179 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-3501 (((-3 (-112) "failed") $ $) 257)) (-2985 (($) 29 T CONST)) (-3480 (($ $ $ $ (-747)) 206 (|has| |#1| (-542)))) (-3481 (($ $ $ (-747)) 207 (|has| |#1| (-542)))) (-2990 (($ $ |#3|) 36) (($ $ (-618 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-618 |#3|) (-618 (-747))) 33)) (-2885 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 73 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 75 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 72 (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 156 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 155 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1032 |#1| |#2| |#3|) (-138) (-1018) (-769) (-823)) (T -1032)) -((-3514 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-747)))) (-3787 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3512 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-4139 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3511 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3510 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3509 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3508 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-4302 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3503 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3502 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3501 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4045 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3500 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4040 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-4038 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-4037 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4037 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-4041 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4041 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-3499 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3498 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3499 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3498 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3497 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3496 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3497 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3496 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3495 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -3223 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3495 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -3223 *1))) (-4 *1 (-1032 *4 *5 *3)))) (-3494 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3494 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1032 *4 *5 *3)))) (-4095 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3493 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3492 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3818 (-747)))) (-4 *1 (-1032 *3 *4 *5)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-4032 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-3491 (*1 *1 *2) (|partial| -3874 (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-3490 (*1 *1 *2) (-3874 (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-4313 (*1 *1 *2) (-3874 (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-3491 (*1 *1 *2) (|partial| -3874 (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-3659 (-4 *3 (-38 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-534))) (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-962 (-535)))) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) (-3490 (*1 *1 *2) (-3874 (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-3659 (-4 *3 (-38 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-534))) (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-962 (-535)))) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *5 (-594 (-1142))) (-4 *4 (-769)) (-4 *5 (-823)))) (-3489 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3488 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3487 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3486 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3487 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3486 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-4098 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3485 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3478 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3484 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3478 *1) (|:| |coef1| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3483 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3478 *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-4099 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3482 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3524 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3481 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-542)))) (-3480 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-542)))) (-3479 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3478 (*1 *2 *2 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3476 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3475 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3474 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444))))) -(-13 (-921 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3514 (|t#3| $)) (-15 -3513 ((-747) $)) (-15 -3787 ($ $)) (-15 -3512 ($ $)) (-15 -4139 ($ $)) (-15 -3511 ($ $)) (-15 -3510 ((-618 $) $)) (-15 -3509 ($ $)) (-15 -3508 ($ $ |t#3|)) (-15 -4302 ($ $ |t#3|)) (-15 -3507 ((-112) $)) (-15 -3506 ((-112) $)) (-15 -3505 ($ $)) (-15 -3504 ($ $)) (-15 -3503 ((-618 $) $)) (-15 -3502 ((-618 $) $)) (-15 -3501 ((-3 (-112) "failed") $ $)) (-15 -4045 ((-112) $ $)) (-15 -3500 ((-112) $ $)) (-15 -4040 ((-112) $ $)) (-15 -4040 ((-112) $ (-618 $))) (-15 -4038 ((-112) $ $)) (-15 -4038 ((-112) $ (-618 $))) (-15 -4037 ((-112) $ $)) (-15 -4037 ((-112) $ (-618 $))) (-15 -4041 ((-112) $ $)) (-15 -4041 ((-112) $ (-618 $))) (-15 -3499 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -3499 ($ $ $ |t#3|)) (-15 -3498 ($ $ $ |t#3|)) (-15 -3497 ($ $ $)) (-15 -3496 ($ $ $)) (-15 -3497 ($ $ $ |t#3|)) (-15 -3496 ($ $ $ |t#3|)) (-15 -3495 ((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $)) (-15 -3495 ((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $ |t#3|)) (-15 -3494 ((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -3494 ((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $ |t#3|)) (-15 -4095 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -3493 ($ $ $)) (-15 -3492 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3818 (-747))) $ $)) (-15 -4033 ($ $ $)) (-15 -4032 ($ $ $)) (IF (|has| |t#3| (-594 (-1142))) (PROGN (-6 (-593 (-917 |t#1|))) (-6 (-594 (-917 |t#1|))) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -3491 ((-3 $ "failed") (-917 (-400 (-535))))) (-15 -3490 ($ (-917 (-400 (-535))))) (-15 -4313 ($ (-917 (-400 (-535))))) (-15 -3491 ((-3 $ "failed") (-917 (-535)))) (-15 -3490 ($ (-917 (-535)))) (-15 -4313 ($ (-917 (-535)))) (IF (|has| |t#1| (-962 (-535))) |%noBranch| (PROGN (-15 -3491 ((-3 $ "failed") (-917 |t#1|))) (-15 -3490 ($ (-917 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-535))) (IF (|has| |t#1| (-38 (-400 (-535)))) |%noBranch| (PROGN (-15 -3491 ((-3 $ "failed") (-917 (-535)))) (-15 -3490 ($ (-917 (-535)))) (-15 -4313 ($ (-917 (-535)))) (IF (|has| |t#1| (-534)) |%noBranch| (PROGN (-15 -3491 ((-3 $ "failed") (-917 |t#1|))) (-15 -3490 ($ (-917 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-535))) |%noBranch| (IF (|has| |t#1| (-38 (-400 (-535)))) |%noBranch| (PROGN (-15 -3491 ((-3 $ "failed") (-917 |t#1|))) (-15 -3490 ($ (-917 |t#1|)))))) (-15 -4313 ($ (-917 |t#1|))) (IF (|has| |t#1| (-1009 (-535))) (-6 (-594 (-1124))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $ |t#1|)) (-15 -3486 ($ $ |t#1|)) (-15 -3487 ($ $ $)) (-15 -3486 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3485 ((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3484 ((-2 (|:| -3478 $) (|:| |coef1| $)) $ $)) (-15 -3483 ((-2 (|:| -3478 $) (|:| |coef2| $)) $ $)) (-15 -4099 ($ $ $)) (-15 -3482 ((-618 $) $ $)) (-15 -3524 ($ $ $)) (-15 -3481 ($ $ $ (-747))) (-15 -3480 ($ $ $ $ (-747))) (-15 -3479 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3478 (|t#1| |t#1| $)) (-15 -3477 ($ $)) (-15 -3476 ($ $)) (-15 -3475 ($ $)) (-15 -3474 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-593 (-917 |#1|)) |has| |#3| (-594 (-1142))) ((-170) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535))))) ((-594 (-917 |#1|)) |has| |#3| (-594 (-1142))) ((-594 (-1124)) -12 (|has| |#1| (-1009 (-535))) (|has| |#3| (-594 (-1142)))) ((-283) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-881)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 |#3|) . T) ((-857 (-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))) ((-921 |#1| |#2| |#3|) . T) ((-881) |has| |#1| (-881)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1009 |#3|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) |has| |#1| (-881))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3515 (((-618 (-1101)) $) 13)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 24) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 15)) (-3375 (((-112) $ $) NIL))) -(((-1033) (-13 (-1049) (-10 -8 (-15 -3515 ((-618 (-1101)) $)) (-15 -3567 ((-1101) $))))) (T -1033)) -((-3515 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1033)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1033))))) -(-13 (-1049) (-10 -8 (-15 -3515 ((-618 (-1101)) $)) (-15 -3567 ((-1101) $)))) -((-3522 (((-112) |#3| $) 13)) (-3517 (((-3 $ "failed") |#3| (-890)) 23)) (-3804 (((-3 |#3| "failed") |#3| $) 38)) (-3520 (((-112) |#3| $) 16)) (-3521 (((-112) |#3| $) 14))) -(((-1034 |#1| |#2| |#3|) (-10 -8 (-15 -3517 ((-3 |#1| "failed") |#3| (-890))) (-15 -3804 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3520 ((-112) |#3| |#1|)) (-15 -3521 ((-112) |#3| |#1|)) (-15 -3522 ((-112) |#3| |#1|))) (-1035 |#2| |#3|) (-13 (-821) (-356)) (-1200 |#2|)) (T -1034)) -NIL -(-10 -8 (-15 -3517 ((-3 |#1| "failed") |#3| (-890))) (-15 -3804 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3520 ((-112) |#3| |#1|)) (-15 -3521 ((-112) |#3| |#1|)) (-15 -3522 ((-112) |#3| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) |#2| $) 21)) (-3969 (((-535) |#2| $) 22)) (-3517 (((-3 $ "failed") |#2| (-890)) 15)) (-3516 ((|#1| |#2| $ |#1|) 13)) (-3804 (((-3 |#2| "failed") |#2| $) 18)) (-3520 (((-112) |#2| $) 19)) (-3521 (((-112) |#2| $) 20)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3519 ((|#2| $) 17)) (-4300 (((-835) $) 11)) (-4112 ((|#1| |#2| $ |#1|) 14)) (-3518 (((-618 $) |#2|) 16)) (-3375 (((-112) $ $) 6))) -(((-1035 |#1| |#2|) (-138) (-13 (-821) (-356)) (-1200 |t#1|)) (T -1035)) -((-3969 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-535)))) (-3522 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-112)))) (-3521 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-112)))) (-3520 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-112)))) (-3804 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1200 *3)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1200 *3)))) (-3518 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-618 *1)) (-4 *1 (-1035 *4 *3)))) (-3517 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-821) (-356))) (-4 *1 (-1035 *4 *2)) (-4 *2 (-1200 *4)))) (-4112 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1200 *2)))) (-3516 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1200 *2))))) -(-13 (-1067) (-10 -8 (-15 -3969 ((-535) |t#2| $)) (-15 -3522 ((-112) |t#2| $)) (-15 -3521 ((-112) |t#2| $)) (-15 -3520 ((-112) |t#2| $)) (-15 -3804 ((-3 |t#2| "failed") |t#2| $)) (-15 -3519 (|t#2| $)) (-15 -3518 ((-618 $) |t#2|)) (-15 -3517 ((-3 $ "failed") |t#2| (-890))) (-15 -4112 (|t#1| |t#2| $ |t#1|)) (-15 -3516 (|t#1| |t#2| $ |t#1|)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-3778 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747)) 96)) (-3775 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747)) 56)) (-3779 (((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)) 87)) (-3773 (((-747) (-618 |#4|) (-618 |#5|)) 27)) (-3776 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747)) 58) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112)) 60)) (-3777 (((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112)) 79)) (-4313 (((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) 82)) (-3774 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112)) 55)) (-3772 (((-747) (-618 |#4|) (-618 |#5|)) 19))) -(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3773 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3774 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3778 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747))) (-15 -4313 ((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3779 ((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1036)) -((-3779 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124)) (-5 *1 (-1036 *4 *5 *6 *7 *8)))) (-3778 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-618 *11)) (|:| |todo| (-618 (-2 (|:| |val| *3) (|:| -1655 *11)))))) (-5 *6 (-747)) (-5 *2 (-618 (-2 (|:| |val| (-618 *10)) (|:| -1655 *11)))) (-5 *3 (-618 *10)) (-5 *4 (-618 *11)) (-4 *10 (-1032 *7 *8 *9)) (-4 *11 (-1038 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-5 *1 (-1036 *7 *8 *9 *10 *11)))) (-3777 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3777 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3776 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *7 *8 *9 *3 *4)) (-4 *4 (-1038 *7 *8 *9 *3)))) (-3775 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3774 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3772 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3773 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3774 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3778 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747))) (-15 -4313 ((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3779 ((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)))) -((-3531 (((-112) |#5| $) 21)) (-3529 (((-112) |#5| $) 24)) (-3532 (((-112) |#5| $) 16) (((-112) $) 45)) (-3572 (((-618 $) |#5| $) NIL) (((-618 $) (-618 |#5|) $) 77) (((-618 $) (-618 |#5|) (-618 $)) 75) (((-618 $) |#5| (-618 $)) 78)) (-4111 (($ $ |#5|) NIL) (((-618 $) |#5| $) NIL) (((-618 $) |#5| (-618 $)) 60) (((-618 $) (-618 |#5|) $) 62) (((-618 $) (-618 |#5|) (-618 $)) 64)) (-3523 (((-618 $) |#5| $) NIL) (((-618 $) |#5| (-618 $)) 54) (((-618 $) (-618 |#5|) $) 56) (((-618 $) (-618 |#5|) (-618 $)) 58)) (-3530 (((-112) |#5| $) 27))) -(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4111 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -4111 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -4111 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -4111 ((-618 |#1|) |#5| |#1|)) (-15 -3523 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -3523 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -3523 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -3523 ((-618 |#1|) |#5| |#1|)) (-15 -3572 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -3572 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -3572 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -3572 ((-618 |#1|) |#5| |#1|)) (-15 -3529 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#1|)) (-15 -3530 ((-112) |#5| |#1|)) (-15 -3531 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#5| |#1|)) (-15 -4111 (|#1| |#1| |#5|))) (-1038 |#2| |#3| |#4| |#5|) (-444) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -1037)) -NIL -(-10 -8 (-15 -4111 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -4111 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -4111 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -4111 ((-618 |#1|) |#5| |#1|)) (-15 -3523 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -3523 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -3523 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -3523 ((-618 |#1|) |#5| |#1|)) (-15 -3572 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -3572 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -3572 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -3572 ((-618 |#1|) |#5| |#1|)) (-15 -3529 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#1|)) (-15 -3530 ((-112) |#5| |#1|)) (-15 -3531 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#5| |#1|)) (-15 -4111 (|#1| |#1| |#5|))) -((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86) (((-618 $) (-618 |#4|) (-112)) 111)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ #1#) $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-3531 (((-112) |#4| $) 136)) (-3529 (((-112) |#4| $) 133)) (-3532 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) 128)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4140 (((-3 |#4| #1#) $) 83)) (-3526 (((-618 $) |#4| $) 129)) (-3528 (((-3 (-112) (-618 $)) |#4| $) 132)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3572 (((-618 $) |#4| $) 125) (((-618 $) (-618 |#4|) $) 124) (((-618 $) (-618 |#4|) (-618 $)) 123) (((-618 $) |#4| (-618 $)) 122)) (-3782 (($ |#4| $) 117) (($ (-618 |#4|) $) 116)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| #1#) $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ #1#) $ |#4|) 78)) (-4111 (($ $ |#4|) 77) (((-618 $) |#4| $) 115) (((-618 $) |#4| (-618 $)) 114) (((-618 $) (-618 |#4|) $) 113) (((-618 $) (-618 |#4|) (-618 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-3523 (((-618 $) |#4| $) 121) (((-618 $) |#4| (-618 $)) 120) (((-618 $) (-618 |#4|) $) 119) (((-618 $) (-618 |#4|) (-618 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-3530 (((-112) |#4| $) 135)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336))))) -(((-1038 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1038)) -((-3532 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3531 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3530 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-3529 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3528 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 (-112) (-618 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3527 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3527 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3526 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3525 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 *3 (-618 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3524 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-4117 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3572 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3572 (*1 *2 *3 *1) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-3523 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3523 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-3523 (*1 *2 *3 *1) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-3523 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-3782 (*1 *1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3782 (*1 *1 *2 *1) (-12 (-5 *2 (-618 *6)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)))) (-4111 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-4111 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-4111 (*1 *2 *3 *1) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-4111 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *5 *6 *7 *8))))) -(-13 (-1173 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3532 ((-112) |t#4| $)) (-15 -3531 ((-112) |t#4| $)) (-15 -3530 ((-112) |t#4| $)) (-15 -3532 ((-112) $)) (-15 -3529 ((-112) |t#4| $)) (-15 -3528 ((-3 (-112) (-618 $)) |t#4| $)) (-15 -3527 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |t#4| $)) (-15 -3527 ((-112) |t#4| $)) (-15 -3526 ((-618 $) |t#4| $)) (-15 -3525 ((-3 |t#4| (-618 $)) |t#4| |t#4| $)) (-15 -3524 ((-618 (-2 (|:| |val| |t#4|) (|:| -1655 $))) |t#4| |t#4| $)) (-15 -4117 ((-618 (-2 (|:| |val| |t#4|) (|:| -1655 $))) |t#4| $)) (-15 -3572 ((-618 $) |t#4| $)) (-15 -3572 ((-618 $) (-618 |t#4|) $)) (-15 -3572 ((-618 $) (-618 |t#4|) (-618 $))) (-15 -3572 ((-618 $) |t#4| (-618 $))) (-15 -3523 ((-618 $) |t#4| $)) (-15 -3523 ((-618 $) |t#4| (-618 $))) (-15 -3523 ((-618 $) (-618 |t#4|) $)) (-15 -3523 ((-618 $) (-618 |t#4|) (-618 $))) (-15 -3782 ($ |t#4| $)) (-15 -3782 ($ (-618 |t#4|) $)) (-15 -4111 ((-618 $) |t#4| $)) (-15 -4111 ((-618 $) |t#4| (-618 $))) (-15 -4111 ((-618 $) (-618 |t#4|) $)) (-15 -4111 ((-618 $) (-618 |t#4|) (-618 $))) (-15 -4028 ((-618 $) (-618 |t#4|) (-112))))) -(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1178) . T)) -((-3539 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 81)) (-3536 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 113)) (-3538 (((-618 |#5|) |#4| |#5|) 70)) (-3537 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3621 (((-1230)) 37)) (-3619 (((-1230)) 26)) (-3620 (((-1230) (-1124) (-1124) (-1124)) 33)) (-3618 (((-1230) (-1124) (-1124) (-1124)) 22)) (-3533 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|) 96)) (-3534 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112)) 107) (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3535 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 102))) -(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3618 ((-1230) (-1124) (-1124) (-1124))) (-15 -3619 ((-1230))) (-15 -3620 ((-1230) (-1124) (-1124) (-1124))) (-15 -3621 ((-1230))) (-15 -3533 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3534 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3534 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3535 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3536 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3537 ((-112) |#4| |#5|)) (-15 -3537 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3538 ((-618 |#5|) |#4| |#5|)) (-15 -3539 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1039)) -((-3539 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3538 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 *4)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3537 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3537 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3536 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3535 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823)) (-5 *2 (-618 (-2 (|:| |val| *8) (|:| -1655 *9)))) (-5 *1 (-1039 *6 *7 *4 *8 *9)))) (-3534 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3533 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3621 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3620 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3619 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3618 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))) -(-10 -7 (-15 -3618 ((-1230) (-1124) (-1124) (-1124))) (-15 -3619 ((-1230))) (-15 -3620 ((-1230) (-1124) (-1124) (-1124))) (-15 -3621 ((-1230))) (-15 -3533 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3534 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3534 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3535 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3536 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3537 ((-112) |#4| |#5|)) (-15 -3537 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3538 ((-618 |#5|) |#4| |#5|)) (-15 -3539 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) -((-2887 (((-112) $ $) NIL)) (-3652 (((-1179) $) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 10)) (-4300 (((-835) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-1040) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))) (T -1040)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1040)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1040))))) -(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $)))) -((-2887 (((-112) $ $) NIL)) (-3543 (($ $ (-618 (-1142)) (-1 (-112) (-618 |#3|))) 33)) (-3544 (($ |#3| |#3|) 22) (($ |#3| |#3| (-618 (-1142))) 20)) (-3865 ((|#3| $) 13)) (-3491 (((-3 (-286 |#3|) "failed") $) 58)) (-3490 (((-286 |#3|) $) NIL)) (-3541 (((-618 (-1142)) $) 16)) (-3542 (((-861 |#1|) $) 11)) (-3866 ((|#3| $) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4142 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-890)) 39)) (-4300 (((-835) $) 86) (($ (-286 |#3|)) 21)) (-3375 (((-112) $ $) 36))) -(((-1041 |#1| |#2| |#3|) (-13 (-1067) (-279 |#3| |#3|) (-1009 (-286 |#3|)) (-10 -8 (-15 -3544 ($ |#3| |#3|)) (-15 -3544 ($ |#3| |#3| (-618 (-1142)))) (-15 -3543 ($ $ (-618 (-1142)) (-1 (-112) (-618 |#3|)))) (-15 -3542 ((-861 |#1|) $)) (-15 -3866 (|#3| $)) (-15 -3865 (|#3| $)) (-15 -4142 (|#3| $ |#3| (-890))) (-15 -3541 ((-618 (-1142)) $)))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-861 |#1|))) (-13 (-414 |#2|) (-857 |#1|) (-594 (-861 |#1|)))) (T -1041)) -((-3544 (*1 *1 *2 *2) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))))) (-3544 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-1041 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) (-3543 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-1 (-112) (-618 *6))) (-4 *6 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-1041 *4 *5 *6)))) (-3542 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 *2))) (-5 *2 (-861 *3)) (-5 *1 (-1041 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-857 *3) (-594 *2))))) (-3866 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) (-5 *1 (-1041 *3 *4 *2)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))))) (-3865 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) (-5 *1 (-1041 *3 *4 *2)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))))) (-4142 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-1041 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) (-3541 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) (-5 *2 (-618 (-1142))) (-5 *1 (-1041 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3))))))) -(-13 (-1067) (-279 |#3| |#3|) (-1009 (-286 |#3|)) (-10 -8 (-15 -3544 ($ |#3| |#3|)) (-15 -3544 ($ |#3| |#3| (-618 (-1142)))) (-15 -3543 ($ $ (-618 (-1142)) (-1 (-112) (-618 |#3|)))) (-15 -3542 ((-861 |#1|) $)) (-15 -3866 (|#3| $)) (-15 -3865 (|#3| $)) (-15 -4142 (|#3| $ |#3| (-890))) (-15 -3541 ((-618 (-1142)) $)))) -((-2887 (((-112) $ $) NIL)) (-3888 (((-1142) $) 8)) (-3576 (((-1124) $) 16)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 13))) -(((-1042 |#1|) (-13 (-1067) (-10 -8 (-15 -3888 ((-1142) $)))) (-1142)) (T -1042)) -((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1042 *3)) (-14 *3 *2)))) -(-13 (-1067) (-10 -8 (-15 -3888 ((-1142) $)))) -((-2887 (((-112) $ $) NIL)) (-3546 (($ (-618 (-1041 |#1| |#2| |#3|))) 13)) (-3545 (((-618 (-1041 |#1| |#2| |#3|)) $) 20)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4142 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-890)) 26)) (-4300 (((-835) $) 16)) (-3375 (((-112) $ $) 19))) -(((-1043 |#1| |#2| |#3|) (-13 (-1067) (-279 |#3| |#3|) (-10 -8 (-15 -3546 ($ (-618 (-1041 |#1| |#2| |#3|)))) (-15 -3545 ((-618 (-1041 |#1| |#2| |#3|)) $)) (-15 -4142 (|#3| $ |#3| (-890))))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-861 |#1|))) (-13 (-414 |#2|) (-857 |#1|) (-594 (-861 |#1|)))) (T -1043)) -((-3546 (*1 *1 *2) (-12 (-5 *2 (-618 (-1041 *3 *4 *5))) (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) (-5 *1 (-1043 *3 *4 *5)))) (-3545 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) (-5 *2 (-618 (-1041 *3 *4 *5))) (-5 *1 (-1043 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))))) (-4142 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-1043 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4))))))) -(-13 (-1067) (-279 |#3| |#3|) (-10 -8 (-15 -3546 ($ (-618 (-1041 |#1| |#2| |#3|)))) (-15 -3545 ((-618 (-1041 |#1| |#2| |#3|)) $)) (-15 -4142 (|#3| $ |#3| (-890))))) -((-3547 (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112)) 75) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|))) 77) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112)) 76))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112))) (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112)))) (-13 (-300) (-145)) (-618 (-1142))) (T -1044)) -((-3547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1044 *5 *6)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) (-5 *1 (-1044 *4 *5)) (-5 *3 (-618 (-917 *4))) (-14 *5 (-618 (-1142))))) (-3547 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1044 *5 *6)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142)))))) -(-10 -7 (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112))) (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 126)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-356)))) (-2171 (($ $) NIL (|has| |#1| (-356)))) (-2169 (((-112) $) NIL (|has| |#1| (-356)))) (-1896 (((-665 |#1|) (-1224 $)) NIL) (((-665 |#1|)) 115)) (-3672 ((|#1| $) 119)) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3454 (((-747)) 40 (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|) (-1224 $)) NIL) (($ (-1224 |#1|)) 43)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-1895 (((-665 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 106) (((-665 |#1|) (-665 $)) 101)) (-4185 (($ |#2|) 61) (((-3 $ "failed") (-400 |#2|)) NIL (|has| |#1| (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-3427 (((-890)) 77)) (-3315 (($) 44 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-3154 (($) NIL (|has| |#1| (-343)))) (-1791 (((-112) $) NIL (|has| |#1| (-343)))) (-1881 (($ $ (-747)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-4114 (((-890) $) NIL (|has| |#1| (-343))) (((-808 (-890)) $) NIL (|has| |#1| (-343)))) (-2493 (((-112) $) NIL)) (-3450 ((|#1| $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-2125 ((|#2| $) 84 (|has| |#1| (-356)))) (-2121 (((-890) $) 131 (|has| |#1| (-361)))) (-3401 ((|#2| $) 58)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-3787 (($) NIL (|has| |#1| (-343)) CONST)) (-2483 (($ (-890)) 125 (|has| |#1| (-361)))) (-3577 (((-1086) $) NIL)) (-2492 (($) 121)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-343)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4100 ((|#1| (-1224 $)) NIL) ((|#1|) 109)) (-1882 (((-747) $) NIL (|has| |#1| (-343))) (((-3 (-747) "failed") $ $) NIL (|has| |#1| (-343)))) (-4153 (($ $) NIL (-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-747)) NIL (-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1 |#1| |#1|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2491 (((-665 |#1|) (-1224 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3519 ((|#2|) 73)) (-1785 (($) NIL (|has| |#1| (-343)))) (-3558 (((-1224 |#1|) $ (-1224 $)) 89) (((-665 |#1|) (-1224 $) (-1224 $)) NIL) (((-1224 |#1|) $) 71) (((-665 |#1|) (-1224 $)) 85)) (-4313 (((-1224 |#1|) $) NIL) (($ (-1224 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-343)))) (-4300 (((-835) $) 57) (($ (-535)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-356))) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2689 ((|#2| $) 82)) (-3444 (((-747)) 75)) (-2123 (((-1224 $)) 81)) (-2170 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2979 (($) 30 T CONST)) (-2985 (($) 19 T CONST)) (-2990 (($ $) NIL (-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-747)) NIL (-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1 |#1| |#1|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3375 (((-112) $ $) 63)) (-4291 (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) 67) (($ $ $) NIL)) (-4182 (($ $ $) 65)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-400 (-535)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-535))) NIL (|has| |#1| (-356))))) -(((-1045 |#1| |#2| |#3|) (-701 |#1| |#2|) (-170) (-1200 |#1|) |#2|) (T -1045)) -NIL -(-701 |#1| |#2|) -((-4075 (((-398 |#3|) |#3|) 18))) -(((-1046 |#1| |#2| |#3|) (-10 -7 (-15 -4075 ((-398 |#3|) |#3|))) (-1200 (-400 (-535))) (-13 (-356) (-145) (-701 (-400 (-535)) |#1|)) (-1200 |#2|)) (T -1046)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-13 (-356) (-145) (-701 (-400 (-535)) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1046 *4 *5 *3)) (-4 *3 (-1200 *5))))) -(-10 -7 (-15 -4075 ((-398 |#3|) |#3|))) -((-4075 (((-398 |#3|) |#3|) 19))) -(((-1047 |#1| |#2| |#3|) (-10 -7 (-15 -4075 ((-398 |#3|) |#3|))) (-1200 (-400 (-917 (-535)))) (-13 (-356) (-145) (-701 (-400 (-917 (-535))) |#1|)) (-1200 |#2|)) (T -1047)) -((-4075 (*1 *2 *3) (-12 (-4 *4 (-1200 (-400 (-917 (-535))))) (-4 *5 (-13 (-356) (-145) (-701 (-400 (-917 (-535))) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1200 *5))))) -(-10 -7 (-15 -4075 ((-398 |#3|) |#3|))) -((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) 14)) (-3661 (($ $ $) 15)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3548 (($) 6)) (-4313 (((-1142) $) 18)) (-4300 (((-835) $) 12)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 13)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 8))) -(((-1048) (-13 (-823) (-10 -8 (-15 -3548 ($)) (-15 -4313 ((-1142) $))))) (T -1048)) -((-3548 (*1 *1) (-5 *1 (-1048))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1048))))) -(-13 (-823) (-10 -8 (-15 -3548 ($)) (-15 -4313 ((-1142) $)))) -((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-3375 (((-112) $ $) 6))) -(((-1049) (-138)) (T -1049)) +NIL +(-13 (-21) (-1080)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-836)) . T) ((-1080) . T) ((-1068) . T)) +((-2370 (($ $) 16)) (-3364 (($ $) 22)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 49)) (-1389 (($ $) 24)) (-3948 (($ $) 11)) (-1608 (($ $) 38)) (-4028 (((-372) $) NIL) (((-219) $) NIL) (((-865 (-372)) $) 33)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-400 (-550))) 28) (($ (-550)) NIL) (($ (-400 (-550))) 28)) (-2390 (((-749)) 8)) (-1754 (($ $) 39))) +(((-1028 |#1|) (-10 -8 (-15 -3364 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -4312 ((-862 (-372) |#1|) |#1| (-865 (-372)) (-862 (-372) |#1|))) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| (-550))) (-15 -4028 ((-219) |#1|)) (-15 -4028 ((-372) |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| |#1|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 -1518 ((-836) |#1|))) (-1029)) (T -1028)) +((-2390 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1028 *3)) (-4 *3 (-1029))))) +(-10 -8 (-15 -3364 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -4312 ((-862 (-372) |#1|) |#1| (-865 (-372)) (-862 (-372) |#1|))) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| (-550))) (-15 -4028 ((-219) |#1|)) (-15 -4028 ((-372) |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| |#1|)) (-15 -1518 (|#1| (-550))) (-15 -2390 ((-749))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1453 (((-550) $) 86)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-2370 (($ $) 84)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3353 (($ $) 94)) (-3631 (((-112) $ $) 57)) (-3712 (((-550) $) 111)) (-3513 (($) 17 T CONST)) (-3364 (($ $) 83)) (-3880 (((-3 (-550) "failed") $) 99) (((-3 (-400 (-550)) "failed") $) 96)) (-2726 (((-550) $) 98) (((-400 (-550)) $) 95)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3933 (((-112) $) 68)) (-1416 (((-112) $) 109)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 90)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 93)) (-1389 (($ $) 89)) (-3329 (((-112) $) 110)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-2707 (($ $ $) 108)) (-4164 (($ $ $) 107)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3948 (($ $) 85)) (-1608 (($ $) 87)) (-3338 (((-411 $) $) 71)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-4028 (((-372) $) 102) (((-219) $) 101) (((-865 (-372)) $) 91)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ (-550)) 100) (($ (-400 (-550))) 97)) (-2390 (((-749)) 28)) (-1754 (($ $) 88)) (-1345 (((-112) $ $) 37)) (-1635 (($ $) 112)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2363 (((-112) $ $) 105)) (-2345 (((-112) $ $) 104)) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 106)) (-2335 (((-112) $ $) 103)) (-2414 (($ $ $) 62)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66) (($ $ (-400 (-550))) 92)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64))) +(((-1029) (-138)) (T -1029)) +((-1635 (*1 *1 *1) (-4 *1 (-1029))) (-1389 (*1 *1 *1) (-4 *1 (-1029))) (-1754 (*1 *1 *1) (-4 *1 (-1029))) (-1608 (*1 *1 *1) (-4 *1 (-1029))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-1029)) (-5 *2 (-550)))) (-3948 (*1 *1 *1) (-4 *1 (-1029))) (-2370 (*1 *1 *1) (-4 *1 (-1029))) (-3364 (*1 *1 *1) (-4 *1 (-1029)))) +(-13 (-356) (-823) (-995) (-1011 (-550)) (-1011 (-400 (-550))) (-975) (-596 (-865 (-372))) (-859 (-372)) (-145) (-10 -8 (-15 -1389 ($ $)) (-15 -1754 ($ $)) (-15 -1608 ($ $)) (-15 -1453 ((-550) $)) (-15 -3948 ($ $)) (-15 -2370 ($ $)) (-15 -3364 ($ $)) (-15 -1635 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-836)) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-372)) . T) ((-596 (-865 (-372))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-773) . T) ((-823) . T) ((-825) . T) ((-859 (-372)) . T) ((-893) . T) ((-975) . T) ((-995) . T) ((-1011 (-400 (-550))) . T) ((-1011 (-550)) . T) ((-1026 #0#) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) |#2| $) 23)) (-4319 ((|#1| $) 10)) (-3712 (((-550) |#2| $) 88)) (-4146 (((-3 $ "failed") |#2| (-894)) 57)) (-2682 ((|#1| $) 28)) (-4054 ((|#1| |#2| $ |#1|) 37)) (-1682 (($ $) 25)) (-1386 (((-3 |#2| "failed") |#2| $) 87)) (-1416 (((-112) |#2| $) NIL)) (-3329 (((-112) |#2| $) NIL)) (-1534 (((-112) |#2| $) 24)) (-1837 ((|#1| $) 89)) (-2671 ((|#1| $) 27)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1310 ((|#2| $) 79)) (-1518 (((-836) $) 70)) (-2001 ((|#1| |#2| $ |#1|) 38)) (-4258 (((-623 $) |#2|) 59)) (-2316 (((-112) $ $) 74))) +(((-1030 |#1| |#2|) (-13 (-1037 |#1| |#2|) (-10 -8 (-15 -2671 (|#1| $)) (-15 -2682 (|#1| $)) (-15 -4319 (|#1| $)) (-15 -1837 (|#1| $)) (-15 -1682 ($ $)) (-15 -1534 ((-112) |#2| $)) (-15 -4054 (|#1| |#2| $ |#1|)))) (-13 (-823) (-356)) (-1203 |#1|)) (T -1030)) +((-4054 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) (-4 *3 (-1203 *2)))) (-2671 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) (-4 *3 (-1203 *2)))) (-2682 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) (-4 *3 (-1203 *2)))) (-4319 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) (-4 *3 (-1203 *2)))) (-1837 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) (-4 *3 (-1203 *2)))) (-1682 (*1 *1 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) (-4 *3 (-1203 *2)))) (-1534 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-823) (-356))) (-5 *2 (-112)) (-5 *1 (-1030 *4 *3)) (-4 *3 (-1203 *4))))) +(-13 (-1037 |#1| |#2|) (-10 -8 (-15 -2671 (|#1| $)) (-15 -2682 (|#1| $)) (-15 -4319 (|#1| $)) (-15 -1837 (|#1| $)) (-15 -1682 ($ $)) (-15 -1534 ((-112) |#2| $)) (-15 -4054 (|#1| |#2| $ |#1|)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-2347 (($ $ $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-2181 (($ $ $ $) NIL)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL)) (-3827 (($ $ $) NIL)) (-3513 (($) NIL T CONST)) (-1976 (($ (-1144)) 10) (($ (-550)) 7)) (-3880 (((-3 (-550) "failed") $) NIL)) (-2726 (((-550) $) NIL)) (-3349 (($ $ $) NIL)) (-3780 (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-667 (-550)) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3207 (((-3 (-400 (-550)) "failed") $) NIL)) (-3122 (((-112) $) NIL)) (-3042 (((-400 (-550)) $) NIL)) (-1741 (($) NIL) (($ $) NIL)) (-1519 (($ $ $) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-3064 (($ $ $ $) NIL)) (-2434 (($ $ $) NIL)) (-1416 (((-112) $) NIL)) (-3388 (($ $ $) NIL)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL)) (-3102 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-2826 (((-3 $ "failed") $) NIL)) (-3329 (((-112) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3178 (($ $ $ $) NIL)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-3833 (($ $) NIL)) (-3772 (($ $) NIL)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-2996 (($ $ $) NIL)) (-3862 (($) NIL T CONST)) (-3463 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1289 (($ $) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3777 (((-112) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-2393 (($ $ (-749)) NIL) (($ $) NIL)) (-2092 (($ $) NIL)) (-1731 (($ $) NIL)) (-4028 (((-550) $) 16) (((-526) $) NIL) (((-865 (-550)) $) NIL) (((-372) $) NIL) (((-219) $) NIL) (($ (-1144)) 9)) (-1518 (((-836) $) 20) (($ (-550)) 6) (($ $) NIL) (($ (-550)) 6)) (-2390 (((-749)) NIL)) (-2520 (((-112) $ $) NIL)) (-4224 (($ $ $) NIL)) (-1860 (($) NIL)) (-1345 (((-112) $ $) NIL)) (-2260 (($ $ $ $) NIL)) (-1635 (($ $) NIL)) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) NIL)) (-2403 (($ $) 19) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) +(((-1031) (-13 (-535) (-10 -8 (-6 -4329) (-6 -4334) (-6 -4330) (-15 -4028 ($ (-1144))) (-15 -1976 ($ (-1144))) (-15 -1976 ($ (-550)))))) (T -1031)) +((-4028 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1031)))) (-1976 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1031)))) (-1976 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1031))))) +(-13 (-535) (-10 -8 (-6 -4329) (-6 -4334) (-6 -4330) (-15 -4028 ($ (-1144))) (-15 -1976 ($ (-1144))) (-15 -1976 ($ (-550))))) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL)) (-3029 (((-1232) $ (-1144) (-1144)) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-3970 (($) 9)) (-1705 (((-52) $ (-1144) (-52)) NIL)) (-2609 (($ $) 30)) (-2910 (($ $) 28)) (-3012 (($ $) 27)) (-2807 (($ $) 29)) (-3679 (($ $) 32)) (-3550 (($ $) 33)) (-3110 (($ $) 26)) (-2701 (($ $) 31)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) 25 (|has| $ (-6 -4342)))) (-2908 (((-3 (-52) "failed") (-1144) $) 40)) (-3513 (($) NIL T CONST)) (-2123 (($) 7)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-3112 (($ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) 50 (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-3 (-52) "failed") (-1144) $) NIL)) (-3137 (($ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342)))) (-3849 (((-3 (-1126) "failed") $ (-1126) (-550)) 59)) (-3245 (((-52) $ (-1144) (-52)) NIL (|has| $ (-6 -4343)))) (-3181 (((-52) $ (-1144)) NIL)) (-3450 (((-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-623 (-52)) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-1144) $) NIL (|has| (-1144) (-825)))) (-2689 (((-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) 35 (|has| $ (-6 -4342))) (((-623 (-52)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068))))) (-3283 (((-1144) $) NIL (|has| (-1144) (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4343))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-3531 (((-623 (-1144)) $) NIL)) (-2550 (((-112) (-1144) $) NIL)) (-3638 (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL)) (-1886 (($ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) 43)) (-2325 (((-623 (-1144)) $) NIL)) (-2400 (((-112) (-1144) $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-3162 (((-372) $ (-1144)) 49)) (-4255 (((-623 (-1126)) $ (-1126)) 60)) (-1293 (((-52) $) NIL (|has| (-1144) (-825)))) (-3321 (((-3 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) "failed") (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL)) (-3111 (($ $ (-52)) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))))) NIL (-12 (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ $ (-287 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL (-12 (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ $ (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) NIL (-12 (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ $ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL (-12 (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-302 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (($ $ (-623 (-52)) (-623 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068)))) (($ $ (-623 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068))))) (-2477 (((-623 (-52)) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 (((-52) $ (-1144)) NIL) (((-52) $ (-1144) (-52)) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL)) (-4101 (($ $ (-1144)) 51)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068)))) (((-749) (-52) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-52) (-1068)))) (((-749) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) 37)) (-3227 (($ $ $) 38)) (-1518 (((-836) $) NIL (-1561 (|has| (-52) (-595 (-836))) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-595 (-836)))))) (-3420 (($ $ (-1144) (-372)) 47)) (-3288 (($ $ (-1144) (-372)) 48)) (-3685 (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 (-1144)) (|:| -2119 (-52)))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-52) (-1068)) (|has| (-2 (|:| -2763 (-1144)) (|:| -2119 (-52))) (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1032) (-13 (-1157 (-1144) (-52)) (-10 -8 (-15 -3227 ($ $ $)) (-15 -2123 ($)) (-15 -3110 ($ $)) (-15 -3012 ($ $)) (-15 -2910 ($ $)) (-15 -2807 ($ $)) (-15 -2701 ($ $)) (-15 -2609 ($ $)) (-15 -3679 ($ $)) (-15 -3550 ($ $)) (-15 -3420 ($ $ (-1144) (-372))) (-15 -3288 ($ $ (-1144) (-372))) (-15 -3162 ((-372) $ (-1144))) (-15 -4255 ((-623 (-1126)) $ (-1126))) (-15 -4101 ($ $ (-1144))) (-15 -3970 ($)) (-15 -3849 ((-3 (-1126) "failed") $ (-1126) (-550))) (-6 -4342)))) (T -1032)) +((-3227 (*1 *1 *1 *1) (-5 *1 (-1032))) (-2123 (*1 *1) (-5 *1 (-1032))) (-3110 (*1 *1 *1) (-5 *1 (-1032))) (-3012 (*1 *1 *1) (-5 *1 (-1032))) (-2910 (*1 *1 *1) (-5 *1 (-1032))) (-2807 (*1 *1 *1) (-5 *1 (-1032))) (-2701 (*1 *1 *1) (-5 *1 (-1032))) (-2609 (*1 *1 *1) (-5 *1 (-1032))) (-3679 (*1 *1 *1) (-5 *1 (-1032))) (-3550 (*1 *1 *1) (-5 *1 (-1032))) (-3420 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-372)) (-5 *1 (-1032)))) (-3288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-372)) (-5 *1 (-1032)))) (-3162 (*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-372)) (-5 *1 (-1032)))) (-4255 (*1 *2 *1 *3) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1032)) (-5 *3 (-1126)))) (-4101 (*1 *1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1032)))) (-3970 (*1 *1) (-5 *1 (-1032))) (-3849 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1126)) (-5 *3 (-550)) (-5 *1 (-1032))))) +(-13 (-1157 (-1144) (-52)) (-10 -8 (-15 -3227 ($ $ $)) (-15 -2123 ($)) (-15 -3110 ($ $)) (-15 -3012 ($ $)) (-15 -2910 ($ $)) (-15 -2807 ($ $)) (-15 -2701 ($ $)) (-15 -2609 ($ $)) (-15 -3679 ($ $)) (-15 -3550 ($ $)) (-15 -3420 ($ $ (-1144) (-372))) (-15 -3288 ($ $ (-1144) (-372))) (-15 -3162 ((-372) $ (-1144))) (-15 -4255 ((-623 (-1126)) $ (-1126))) (-15 -4101 ($ $ (-1144))) (-15 -3970 ($)) (-15 -3849 ((-3 (-1126) "failed") $ (-1126) (-550))) (-6 -4342))) +((-4180 (($ $) 45)) (-2167 (((-112) $ $) 74)) (-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-925 (-400 (-550)))) 227) (((-3 $ "failed") (-925 (-550))) 226) (((-3 $ "failed") (-925 |#2|)) 229)) (-2726 ((|#2| $) NIL) (((-400 (-550)) $) NIL) (((-550) $) NIL) ((|#4| $) NIL) (($ (-925 (-400 (-550)))) 215) (($ (-925 (-550))) 211) (($ (-925 |#2|)) 231)) (-3295 (($ $) NIL) (($ $ |#4|) 43)) (-3404 (((-112) $ $) 112) (((-112) $ (-623 $)) 113)) (-2653 (((-112) $) 56)) (-4113 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 107)) (-2494 (($ $) 138)) (-4137 (($ $) 134)) (-4260 (($ $) 133)) (-3151 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3037 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3499 (((-112) $ $) 121) (((-112) $ (-623 $)) 122)) (-3952 ((|#4| $) 33)) (-3244 (($ $ $) 110)) (-1590 (((-112) $) 55)) (-2113 (((-749) $) 35)) (-2225 (($ $) 152)) (-2303 (($ $) 149)) (-2319 (((-623 $) $) 68)) (-2573 (($ $) 57)) (-2397 (($ $) 145)) (-2406 (((-623 $) $) 65)) (-2491 (($ $) 59)) (-3277 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1298 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3363 (-749))) $ $) 111)) (-3345 (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $) 108) (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $ |#4|) 109)) (-2803 (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -2786 $)) $ $) 104) (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -2786 $)) $ $ |#4|) 105)) (-2979 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2887 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1815 (((-623 $) $) 51)) (-1296 (((-112) $ $) 118) (((-112) $ (-623 $)) 119)) (-3900 (($ $ $) 103)) (-3862 (($ $) 37)) (-3831 (((-112) $ $) 72)) (-1394 (((-112) $ $) 114) (((-112) $ (-623 $)) 116)) (-3984 (($ $ $) 101)) (-2026 (($ $) 40)) (-3139 ((|#2| |#2| $) 142) (($ (-623 $)) NIL) (($ $ $) NIL)) (-3921 (($ $ |#2|) NIL) (($ $ $) 131)) (-4031 (($ $ |#2|) 126) (($ $ $) 129)) (-1923 (($ $) 48)) (-1699 (($ $) 52)) (-4028 (((-865 (-372)) $) NIL) (((-865 (-550)) $) NIL) (((-526) $) NIL) (($ (-925 (-400 (-550)))) 217) (($ (-925 (-550))) 213) (($ (-925 |#2|)) 228) (((-1126) $) 250) (((-925 |#2|) $) 162)) (-1518 (((-836) $) 30) (($ (-550)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-925 |#2|) $) 163) (($ (-400 (-550))) NIL) (($ $) NIL)) (-2242 (((-3 (-112) "failed") $ $) 71))) +(((-1033 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1518 (|#1| |#1|)) (-15 -3139 (|#1| |#1| |#1|)) (-15 -3139 (|#1| (-623 |#1|))) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 ((-925 |#2|) |#1|)) (-15 -4028 ((-925 |#2|) |#1|)) (-15 -4028 ((-1126) |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -2494 (|#1| |#1|)) (-15 -3139 (|#2| |#2| |#1|)) (-15 -3921 (|#1| |#1| |#1|)) (-15 -4031 (|#1| |#1| |#1|)) (-15 -3921 (|#1| |#1| |#2|)) (-15 -4031 (|#1| |#1| |#2|)) (-15 -4137 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -4028 (|#1| (-925 |#2|))) (-15 -2726 (|#1| (-925 |#2|))) (-15 -3880 ((-3 |#1| "failed") (-925 |#2|))) (-15 -4028 (|#1| (-925 (-550)))) (-15 -2726 (|#1| (-925 (-550)))) (-15 -3880 ((-3 |#1| "failed") (-925 (-550)))) (-15 -4028 (|#1| (-925 (-400 (-550))))) (-15 -2726 (|#1| (-925 (-400 (-550))))) (-15 -3880 ((-3 |#1| "failed") (-925 (-400 (-550))))) (-15 -3900 (|#1| |#1| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -1298 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3363 (-749))) |#1| |#1|)) (-15 -3244 (|#1| |#1| |#1|)) (-15 -4113 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -3345 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1| |#4|)) (-15 -3345 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -2803 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -2786 |#1|)) |#1| |#1| |#4|)) (-15 -2803 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -2887 (|#1| |#1| |#1| |#4|)) (-15 -2979 (|#1| |#1| |#1| |#4|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2979 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1| |#1| |#4|)) (-15 -3151 (|#1| |#1| |#1| |#4|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3499 ((-112) |#1| (-623 |#1|))) (-15 -3499 ((-112) |#1| |#1|)) (-15 -1296 ((-112) |#1| (-623 |#1|))) (-15 -1296 ((-112) |#1| |#1|)) (-15 -1394 ((-112) |#1| (-623 |#1|))) (-15 -1394 ((-112) |#1| |#1|)) (-15 -3404 ((-112) |#1| (-623 |#1|))) (-15 -3404 ((-112) |#1| |#1|)) (-15 -2167 ((-112) |#1| |#1|)) (-15 -3831 ((-112) |#1| |#1|)) (-15 -2242 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2319 ((-623 |#1|) |#1|)) (-15 -2406 ((-623 |#1|) |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -2653 ((-112) |#1|)) (-15 -1590 ((-112) |#1|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3277 (|#1| |#1| |#4|)) (-15 -1699 (|#1| |#1|)) (-15 -1815 ((-623 |#1|) |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -2026 (|#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -2113 ((-749) |#1|)) (-15 -3952 (|#4| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -2726 (|#4| |#1|)) (-15 -3880 ((-3 |#4| "failed") |#1|)) (-15 -1518 (|#1| |#4|)) (-15 -3277 (|#2| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) (-1034 |#2| |#3| |#4|) (-1020) (-771) (-825)) (T -1033)) +NIL +(-10 -8 (-15 -1518 (|#1| |#1|)) (-15 -3139 (|#1| |#1| |#1|)) (-15 -3139 (|#1| (-623 |#1|))) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 ((-925 |#2|) |#1|)) (-15 -4028 ((-925 |#2|) |#1|)) (-15 -4028 ((-1126) |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -2494 (|#1| |#1|)) (-15 -3139 (|#2| |#2| |#1|)) (-15 -3921 (|#1| |#1| |#1|)) (-15 -4031 (|#1| |#1| |#1|)) (-15 -3921 (|#1| |#1| |#2|)) (-15 -4031 (|#1| |#1| |#2|)) (-15 -4137 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -4028 (|#1| (-925 |#2|))) (-15 -2726 (|#1| (-925 |#2|))) (-15 -3880 ((-3 |#1| "failed") (-925 |#2|))) (-15 -4028 (|#1| (-925 (-550)))) (-15 -2726 (|#1| (-925 (-550)))) (-15 -3880 ((-3 |#1| "failed") (-925 (-550)))) (-15 -4028 (|#1| (-925 (-400 (-550))))) (-15 -2726 (|#1| (-925 (-400 (-550))))) (-15 -3880 ((-3 |#1| "failed") (-925 (-400 (-550))))) (-15 -3900 (|#1| |#1| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -1298 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3363 (-749))) |#1| |#1|)) (-15 -3244 (|#1| |#1| |#1|)) (-15 -4113 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -3345 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1| |#4|)) (-15 -3345 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -2803 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -2786 |#1|)) |#1| |#1| |#4|)) (-15 -2803 ((-2 (|:| -2855 |#1|) (|:| |gap| (-749)) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -2887 (|#1| |#1| |#1| |#4|)) (-15 -2979 (|#1| |#1| |#1| |#4|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2979 (|#1| |#1| |#1|)) (-15 -3037 (|#1| |#1| |#1| |#4|)) (-15 -3151 (|#1| |#1| |#1| |#4|)) (-15 -3037 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3499 ((-112) |#1| (-623 |#1|))) (-15 -3499 ((-112) |#1| |#1|)) (-15 -1296 ((-112) |#1| (-623 |#1|))) (-15 -1296 ((-112) |#1| |#1|)) (-15 -1394 ((-112) |#1| (-623 |#1|))) (-15 -1394 ((-112) |#1| |#1|)) (-15 -3404 ((-112) |#1| (-623 |#1|))) (-15 -3404 ((-112) |#1| |#1|)) (-15 -2167 ((-112) |#1| |#1|)) (-15 -3831 ((-112) |#1| |#1|)) (-15 -2242 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2319 ((-623 |#1|) |#1|)) (-15 -2406 ((-623 |#1|) |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -2653 ((-112) |#1|)) (-15 -1590 ((-112) |#1|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3277 (|#1| |#1| |#4|)) (-15 -1699 (|#1| |#1|)) (-15 -1815 ((-623 |#1|) |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -2026 (|#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -2113 ((-749) |#1|)) (-15 -3952 (|#4| |#1|)) (-15 -4028 ((-526) |#1|)) (-15 -4028 ((-865 (-550)) |#1|)) (-15 -4028 ((-865 (-372)) |#1|)) (-15 -2726 (|#4| |#1|)) (-15 -3880 ((-3 |#4| "failed") |#1|)) (-15 -1518 (|#1| |#4|)) (-15 -3277 (|#2| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 |#3|) $) 108)) (-3306 (((-1140 $) $ |#3|) 123) (((-1140 |#1|) $) 122)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-1447 (($ $) 86 (|has| |#1| (-542)))) (-4291 (((-112) $) 88 (|has| |#1| (-542)))) (-1520 (((-749) $) 110) (((-749) $ (-623 |#3|)) 109)) (-4180 (($ $) 269)) (-2167 (((-112) $ $) 255)) (-3219 (((-3 $ "failed") $ $) 19)) (-3238 (($ $ $) 214 (|has| |#1| (-542)))) (-1769 (((-623 $) $ $) 209 (|has| |#1| (-542)))) (-3688 (((-411 (-1140 $)) (-1140 $)) 98 (|has| |#1| (-882)))) (-1505 (($ $) 96 (|has| |#1| (-444)))) (-3564 (((-411 $) $) 95 (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 101 (|has| |#1| (-882)))) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-550)) "failed") $) 160 (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) 158 (|has| |#1| (-1011 (-550)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-925 (-400 (-550)))) 229 (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1144))))) (((-3 $ "failed") (-925 (-550))) 226 (-1561 (-12 (-3462 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1144)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1144)))))) (((-3 $ "failed") (-925 |#1|)) 223 (-1561 (-12 (-3462 (|has| |#1| (-38 (-400 (-550))))) (-3462 (|has| |#1| (-38 (-550)))) (|has| |#3| (-596 (-1144)))) (-12 (-3462 (|has| |#1| (-535))) (-3462 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1144)))) (-12 (-3462 (|has| |#1| (-965 (-550)))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1144))))))) (-2726 ((|#1| $) 163) (((-400 (-550)) $) 159 (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) 157 (|has| |#1| (-1011 (-550)))) ((|#3| $) 133) (($ (-925 (-400 (-550)))) 228 (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1144))))) (($ (-925 (-550))) 225 (-1561 (-12 (-3462 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1144)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1144)))))) (($ (-925 |#1|)) 222 (-1561 (-12 (-3462 (|has| |#1| (-38 (-400 (-550))))) (-3462 (|has| |#1| (-38 (-550)))) (|has| |#3| (-596 (-1144)))) (-12 (-3462 (|has| |#1| (-535))) (-3462 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1144)))) (-12 (-3462 (|has| |#1| (-965 (-550)))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1144))))))) (-3340 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-542)))) (-3295 (($ $) 152) (($ $ |#3|) 264)) (-3780 (((-667 (-550)) (-667 $)) 132 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 131 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-3404 (((-112) $ $) 254) (((-112) $ (-623 $)) 253)) (-1386 (((-3 $ "failed") $) 32)) (-2653 (((-112) $) 262)) (-4113 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 234)) (-2494 (($ $) 203 (|has| |#1| (-444)))) (-2674 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3287 (((-623 $) $) 107)) (-3933 (((-112) $) 94 (|has| |#1| (-882)))) (-4137 (($ $) 219 (|has| |#1| (-542)))) (-4260 (($ $) 220 (|has| |#1| (-542)))) (-3151 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3037 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2613 (($ $ |#1| |#2| $) 170)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 82 (-12 (|has| |#3| (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 81 (-12 (|has| |#3| (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-3102 (((-112) $) 30)) (-2603 (((-749) $) 167)) (-3499 (((-112) $ $) 248) (((-112) $ (-623 $)) 247)) (-1383 (($ $ $ $ $) 205 (|has| |#1| (-542)))) (-3952 ((|#3| $) 273)) (-3129 (($ (-1140 |#1|) |#3|) 115) (($ (-1140 $) |#3|) 114)) (-1822 (((-623 $) $) 124)) (-3439 (((-112) $) 150)) (-3118 (($ |#1| |#2|) 151) (($ $ |#3| (-749)) 117) (($ $ (-623 |#3|) (-623 (-749))) 116)) (-3244 (($ $ $) 233)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ |#3|) 118)) (-1590 (((-112) $) 263)) (-1667 ((|#2| $) 168) (((-749) $ |#3|) 120) (((-623 (-749)) $ (-623 |#3|)) 119)) (-2707 (($ $ $) 77 (|has| |#1| (-825)))) (-2113 (((-749) $) 272)) (-4164 (($ $ $) 76 (|has| |#1| (-825)))) (-2688 (($ (-1 |#2| |#2|) $) 169)) (-3972 (($ (-1 |#1| |#1|) $) 149)) (-2558 (((-3 |#3| "failed") $) 121)) (-2225 (($ $) 200 (|has| |#1| (-444)))) (-2303 (($ $) 201 (|has| |#1| (-444)))) (-2319 (((-623 $) $) 258)) (-2573 (($ $) 261)) (-2397 (($ $) 202 (|has| |#1| (-444)))) (-2406 (((-623 $) $) 259)) (-2491 (($ $) 260)) (-3267 (($ $) 147)) (-3277 ((|#1| $) 146) (($ $ |#3|) 265)) (-3106 (($ (-623 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-1298 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3363 (-749))) $ $) 232)) (-3345 (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $) 236) (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $ |#3|) 235)) (-2803 (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -2786 $)) $ $) 238) (((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -2786 $)) $ $ |#3|) 237)) (-2979 (($ $ $) 242) (($ $ $ |#3|) 240)) (-2887 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1825 (((-1126) $) 9)) (-3632 (($ $ $) 208 (|has| |#1| (-542)))) (-1815 (((-623 $) $) 267)) (-1598 (((-3 (-623 $) "failed") $) 112)) (-1444 (((-3 (-623 $) "failed") $) 113)) (-1748 (((-3 (-2 (|:| |var| |#3|) (|:| -3521 (-749))) "failed") $) 111)) (-1296 (((-112) $ $) 250) (((-112) $ (-623 $)) 249)) (-3900 (($ $ $) 230)) (-3862 (($ $) 271)) (-3831 (((-112) $ $) 256)) (-1394 (((-112) $ $) 252) (((-112) $ (-623 $)) 251)) (-3984 (($ $ $) 231)) (-2026 (($ $) 270)) (-3337 (((-1088) $) 10)) (-1867 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-542)))) (-1982 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-542)))) (-3248 (((-112) $) 164)) (-3256 ((|#1| $) 165)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 93 (|has| |#1| (-444)))) (-3139 ((|#1| |#1| $) 204 (|has| |#1| (-444))) (($ (-623 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) 100 (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) 99 (|has| |#1| (-882)))) (-3338 (((-411 $) $) 97 (|has| |#1| (-882)))) (-3834 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-542)))) (-1495 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3921 (($ $ |#1|) 217 (|has| |#1| (-542))) (($ $ $) 215 (|has| |#1| (-542)))) (-4031 (($ $ |#1|) 218 (|has| |#1| (-542))) (($ $ $) 216 (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-623 $) (-623 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-623 |#3|) (-623 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-623 |#3|) (-623 $)) 136)) (-3453 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2393 (($ $ |#3|) 40) (($ $ (-623 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-623 |#3|) (-623 (-749))) 37)) (-2970 ((|#2| $) 148) (((-749) $ |#3|) 128) (((-623 (-749)) $ (-623 |#3|)) 127)) (-1923 (($ $) 268)) (-1699 (($ $) 266)) (-4028 (((-865 (-372)) $) 80 (-12 (|has| |#3| (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) 79 (-12 (|has| |#3| (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) 78 (-12 (|has| |#3| (-596 (-526))) (|has| |#1| (-596 (-526))))) (($ (-925 (-400 (-550)))) 227 (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1144))))) (($ (-925 (-550))) 224 (-1561 (-12 (-3462 (|has| |#1| (-38 (-400 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-596 (-1144)))) (-12 (|has| |#1| (-38 (-400 (-550)))) (|has| |#3| (-596 (-1144)))))) (($ (-925 |#1|)) 221 (|has| |#3| (-596 (-1144)))) (((-1126) $) 199 (-12 (|has| |#1| (-1011 (-550))) (|has| |#3| (-596 (-1144))))) (((-925 |#1|) $) 198 (|has| |#3| (-596 (-1144))))) (-2503 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 102 (-1262 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-925 |#1|) $) 197 (|has| |#3| (-596 (-1144)))) (($ (-400 (-550))) 70 (-1561 (|has| |#1| (-1011 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550)))))) (($ $) 83 (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) 166)) (-2510 ((|#1| $ |#2|) 153) (($ $ |#3| (-749)) 126) (($ $ (-623 |#3|) (-623 (-749))) 125)) (-4242 (((-3 $ "failed") $) 71 (-1561 (-1262 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) 28)) (-2540 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-1345 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2626 (($) 18 T CONST)) (-2242 (((-3 (-112) "failed") $ $) 257)) (-2636 (($) 29 T CONST)) (-1516 (($ $ $ $ (-749)) 206 (|has| |#1| (-542)))) (-1628 (($ $ $ (-749)) 207 (|has| |#1| (-542)))) (-4183 (($ $ |#3|) 36) (($ $ (-623 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-623 |#3|) (-623 (-749))) 33)) (-2363 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 73 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 75 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 72 (|has| |#1| (-825)))) (-2414 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 156 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 155 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1034 |#1| |#2| |#3|) (-138) (-1020) (-771) (-825)) (T -1034)) +((-3952 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)))) (-2113 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-749)))) (-3862 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2026 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-1815 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1034 *3 *4 *5)))) (-1699 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3277 (*1 *1 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3295 (*1 *1 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-2653 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-2573 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2491 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2406 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1034 *3 *4 *5)))) (-2319 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1034 *3 *4 *5)))) (-2242 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3831 (*1 *2 *1 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-2167 (*1 *2 *1 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3404 (*1 *2 *1 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3404 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1034 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-1394 (*1 *2 *1 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-1394 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1034 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-1296 (*1 *2 *1 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-1296 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1034 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-3499 (*1 *2 *1 *1) (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3499 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1034 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-3151 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3037 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3151 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3037 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)))) (-2979 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2887 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-2979 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)))) (-2887 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *2 (-825)))) (-2803 (*1 *2 *1 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -2855 *1) (|:| |gap| (-749)) (|:| -2786 *1))) (-4 *1 (-1034 *3 *4 *5)))) (-2803 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -2855 *1) (|:| |gap| (-749)) (|:| -2786 *1))) (-4 *1 (-1034 *4 *5 *3)))) (-3345 (*1 *2 *1 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -2855 *1) (|:| |gap| (-749)) (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-1034 *3 *4 *5)))) (-3345 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -2855 *1) (|:| |gap| (-749)) (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-1034 *4 *5 *3)))) (-4113 (*1 *2 *1 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-1034 *3 *4 *5)))) (-3244 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-1298 (*1 *2 *1 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3363 (-749)))) (-4 *1 (-1034 *3 *4 *5)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3900 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-925 (-400 (-550)))) (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-925 (-400 (-550)))) (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-925 (-400 (-550)))) (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)))) (-3880 (*1 *1 *2) (|partial| -1561 (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))))) (-2726 (*1 *1 *2) (-1561 (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))))) (-4028 (*1 *1 *2) (-1561 (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))))) (-3880 (*1 *1 *2) (|partial| -1561 (-12 (-5 *2 (-925 *3)) (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) (-3462 (-4 *3 (-38 (-550)))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-925 *3)) (-12 (-3462 (-4 *3 (-535))) (-3462 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-925 *3)) (-12 (-3462 (-4 *3 (-965 (-550)))) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) (-2726 (*1 *1 *2) (-1561 (-12 (-5 *2 (-925 *3)) (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) (-3462 (-4 *3 (-38 (-550)))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-925 *3)) (-12 (-3462 (-4 *3 (-535))) (-3462 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-925 *3)) (-12 (-3462 (-4 *3 (-965 (-550)))) (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144)))) (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *5 (-596 (-1144))) (-4 *4 (-771)) (-4 *5 (-825)))) (-4260 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-4137 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-4031 (*1 *1 *1 *2) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3921 (*1 *1 *1 *2) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-4031 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3921 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3834 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1034 *3 *4 *5)))) (-1982 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1))) (-4 *1 (-1034 *3 *4 *5)))) (-1867 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef2| *1))) (-4 *1 (-1034 *3 *4 *5)))) (-3340 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-1769 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1034 *3 *4 *5)))) (-3632 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-1628 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-542)))) (-1516 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-542)))) (-1383 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-542)))) (-3139 (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-2494 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-2397 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-2303 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-2225 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444))))) +(-13 (-922 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3952 (|t#3| $)) (-15 -2113 ((-749) $)) (-15 -3862 ($ $)) (-15 -2026 ($ $)) (-15 -4180 ($ $)) (-15 -1923 ($ $)) (-15 -1815 ((-623 $) $)) (-15 -1699 ($ $)) (-15 -3277 ($ $ |t#3|)) (-15 -3295 ($ $ |t#3|)) (-15 -1590 ((-112) $)) (-15 -2653 ((-112) $)) (-15 -2573 ($ $)) (-15 -2491 ($ $)) (-15 -2406 ((-623 $) $)) (-15 -2319 ((-623 $) $)) (-15 -2242 ((-3 (-112) "failed") $ $)) (-15 -3831 ((-112) $ $)) (-15 -2167 ((-112) $ $)) (-15 -3404 ((-112) $ $)) (-15 -3404 ((-112) $ (-623 $))) (-15 -1394 ((-112) $ $)) (-15 -1394 ((-112) $ (-623 $))) (-15 -1296 ((-112) $ $)) (-15 -1296 ((-112) $ (-623 $))) (-15 -3499 ((-112) $ $)) (-15 -3499 ((-112) $ (-623 $))) (-15 -3151 ($ $ $)) (-15 -3037 ($ $ $)) (-15 -3151 ($ $ $ |t#3|)) (-15 -3037 ($ $ $ |t#3|)) (-15 -2979 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -2979 ($ $ $ |t#3|)) (-15 -2887 ($ $ $ |t#3|)) (-15 -2803 ((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -2786 $)) $ $)) (-15 -2803 ((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -2786 $)) $ $ |t#3|)) (-15 -3345 ((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -3345 ((-2 (|:| -2855 $) (|:| |gap| (-749)) (|:| -3526 $) (|:| -2786 $)) $ $ |t#3|)) (-15 -4113 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -3244 ($ $ $)) (-15 -1298 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3363 (-749))) $ $)) (-15 -3984 ($ $ $)) (-15 -3900 ($ $ $)) (IF (|has| |t#3| (-596 (-1144))) (PROGN (-6 (-595 (-925 |t#1|))) (-6 (-596 (-925 |t#1|))) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -3880 ((-3 $ "failed") (-925 (-400 (-550))))) (-15 -2726 ($ (-925 (-400 (-550))))) (-15 -4028 ($ (-925 (-400 (-550))))) (-15 -3880 ((-3 $ "failed") (-925 (-550)))) (-15 -2726 ($ (-925 (-550)))) (-15 -4028 ($ (-925 (-550)))) (IF (|has| |t#1| (-965 (-550))) |%noBranch| (PROGN (-15 -3880 ((-3 $ "failed") (-925 |t#1|))) (-15 -2726 ($ (-925 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-550))) (IF (|has| |t#1| (-38 (-400 (-550)))) |%noBranch| (PROGN (-15 -3880 ((-3 $ "failed") (-925 (-550)))) (-15 -2726 ($ (-925 (-550)))) (-15 -4028 ($ (-925 (-550)))) (IF (|has| |t#1| (-535)) |%noBranch| (PROGN (-15 -3880 ((-3 $ "failed") (-925 |t#1|))) (-15 -2726 ($ (-925 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-550))) |%noBranch| (IF (|has| |t#1| (-38 (-400 (-550)))) |%noBranch| (PROGN (-15 -3880 ((-3 $ "failed") (-925 |t#1|))) (-15 -2726 ($ (-925 |t#1|)))))) (-15 -4028 ($ (-925 |t#1|))) (IF (|has| |t#1| (-1011 (-550))) (-6 (-596 (-1126))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -4260 ($ $)) (-15 -4137 ($ $)) (-15 -4031 ($ $ |t#1|)) (-15 -3921 ($ $ |t#1|)) (-15 -4031 ($ $ $)) (-15 -3921 ($ $ $)) (-15 -3238 ($ $ $)) (-15 -3834 ((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1982 ((-2 (|:| -3139 $) (|:| |coef1| $)) $ $)) (-15 -1867 ((-2 (|:| -3139 $) (|:| |coef2| $)) $ $)) (-15 -3340 ($ $ $)) (-15 -1769 ((-623 $) $ $)) (-15 -3632 ($ $ $)) (-15 -1628 ($ $ $ (-749))) (-15 -1516 ($ $ $ $ (-749))) (-15 -1383 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3139 (|t#1| |t#1| $)) (-15 -2494 ($ $)) (-15 -2397 ($ $)) (-15 -2303 ($ $)) (-15 -2225 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-595 (-925 |#1|)) |has| |#3| (-596 (-1144))) ((-170) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-526)) -12 (|has| |#1| (-596 (-526))) (|has| |#3| (-596 (-526)))) ((-596 (-865 (-372))) -12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#3| (-596 (-865 (-372))))) ((-596 (-865 (-550))) -12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#3| (-596 (-865 (-550))))) ((-596 (-925 |#1|)) |has| |#3| (-596 (-1144))) ((-596 (-1126)) -12 (|has| |#1| (-1011 (-550))) (|has| |#3| (-596 (-1144)))) ((-283) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1561 (|has| |#1| (-882)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-873 |#3|) . T) ((-859 (-372)) -12 (|has| |#1| (-859 (-372))) (|has| |#3| (-859 (-372)))) ((-859 (-550)) -12 (|has| |#1| (-859 (-550))) (|has| |#3| (-859 (-550)))) ((-922 |#1| |#2| |#3|) . T) ((-882) |has| |#1| (-882)) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 |#1|) . T) ((-1011 |#3|) . T) ((-1026 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) |has| |#1| (-882))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-1873 (((-623 (-1103)) $) 13)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 24) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-1103) $) 15)) (-2316 (((-112) $ $) NIL))) +(((-1035) (-13 (-1051) (-10 -8 (-15 -1873 ((-623 (-1103)) $)) (-15 -1925 ((-1103) $))))) (T -1035)) +((-1873 (*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-1035)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1035))))) +(-13 (-1051) (-10 -8 (-15 -1873 ((-623 (-1103)) $)) (-15 -1925 ((-1103) $)))) +((-3433 (((-112) |#3| $) 13)) (-4146 (((-3 $ "failed") |#3| (-894)) 23)) (-1386 (((-3 |#3| "failed") |#3| $) 38)) (-1416 (((-112) |#3| $) 16)) (-3329 (((-112) |#3| $) 14))) +(((-1036 |#1| |#2| |#3|) (-10 -8 (-15 -4146 ((-3 |#1| "failed") |#3| (-894))) (-15 -1386 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1416 ((-112) |#3| |#1|)) (-15 -3329 ((-112) |#3| |#1|)) (-15 -3433 ((-112) |#3| |#1|))) (-1037 |#2| |#3|) (-13 (-823) (-356)) (-1203 |#2|)) (T -1036)) +NIL +(-10 -8 (-15 -4146 ((-3 |#1| "failed") |#3| (-894))) (-15 -1386 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1416 ((-112) |#3| |#1|)) (-15 -3329 ((-112) |#3| |#1|)) (-15 -3433 ((-112) |#3| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) |#2| $) 21)) (-3712 (((-550) |#2| $) 22)) (-4146 (((-3 $ "failed") |#2| (-894)) 15)) (-4054 ((|#1| |#2| $ |#1|) 13)) (-1386 (((-3 |#2| "failed") |#2| $) 18)) (-1416 (((-112) |#2| $) 19)) (-3329 (((-112) |#2| $) 20)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1310 ((|#2| $) 17)) (-1518 (((-836) $) 11)) (-2001 ((|#1| |#2| $ |#1|) 14)) (-4258 (((-623 $) |#2|) 16)) (-2316 (((-112) $ $) 6))) +(((-1037 |#1| |#2|) (-138) (-13 (-823) (-356)) (-1203 |t#1|)) (T -1037)) +((-3712 (*1 *2 *3 *1) (-12 (-4 *1 (-1037 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1203 *4)) (-5 *2 (-550)))) (-3433 (*1 *2 *3 *1) (-12 (-4 *1 (-1037 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1203 *4)) (-5 *2 (-112)))) (-3329 (*1 *2 *3 *1) (-12 (-4 *1 (-1037 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1203 *4)) (-5 *2 (-112)))) (-1416 (*1 *2 *3 *1) (-12 (-4 *1 (-1037 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1203 *4)) (-5 *2 (-112)))) (-1386 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1037 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1203 *3)))) (-1310 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1203 *3)))) (-4258 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1203 *4)) (-5 *2 (-623 *1)) (-4 *1 (-1037 *4 *3)))) (-4146 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-894)) (-4 *4 (-13 (-823) (-356))) (-4 *1 (-1037 *4 *2)) (-4 *2 (-1203 *4)))) (-2001 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1037 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1203 *2)))) (-4054 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1037 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1203 *2))))) +(-13 (-1068) (-10 -8 (-15 -3712 ((-550) |t#2| $)) (-15 -3433 ((-112) |t#2| $)) (-15 -3329 ((-112) |t#2| $)) (-15 -1416 ((-112) |t#2| $)) (-15 -1386 ((-3 |t#2| "failed") |t#2| $)) (-15 -1310 (|t#2| $)) (-15 -4258 ((-623 $) |t#2|)) (-15 -4146 ((-3 $ "failed") |t#2| (-894))) (-15 -2001 (|t#1| |t#2| $ |t#1|)) (-15 -4054 (|t#1| |t#2| $ |t#1|)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-3492 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-749)) 96)) (-1372 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749)) 56)) (-3842 (((-1232) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-749)) 87)) (-4187 (((-749) (-623 |#4|) (-623 |#5|)) 27)) (-3314 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749)) 58) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749) (-112)) 60)) (-3417 (((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112)) 79)) (-4028 (((-1126) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) 82)) (-4300 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-112)) 55)) (-4076 (((-749) (-623 |#4|) (-623 |#5|)) 19))) +(((-1038 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4076 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4187 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4300 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-112))) (-15 -1372 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749))) (-15 -1372 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749))) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -3417 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -3417 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3492 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-749))) (-15 -4028 ((-1126) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) (-15 -3842 ((-1232) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-749)))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1040 |#1| |#2| |#3| |#4|)) (T -1038)) +((-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -3223 *9)))) (-5 *4 (-749)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1232)) (-5 *1 (-1038 *5 *6 *7 *8 *9)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -3223 *8))) (-4 *7 (-1034 *4 *5 *6)) (-4 *8 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1126)) (-5 *1 (-1038 *4 *5 *6 *7 *8)))) (-3492 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-623 *11)) (|:| |todo| (-623 (-2 (|:| |val| *3) (|:| -3223 *11)))))) (-5 *6 (-749)) (-5 *2 (-623 (-2 (|:| |val| (-623 *10)) (|:| -3223 *11)))) (-5 *3 (-623 *10)) (-5 *4 (-623 *11)) (-4 *10 (-1034 *7 *8 *9)) (-4 *11 (-1040 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-5 *1 (-1038 *7 *8 *9 *10 *11)))) (-3417 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1038 *5 *6 *7 *8 *9)))) (-3417 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1038 *5 *6 *7 *8 *9)))) (-3314 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-3314 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1034 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) (-3314 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-4 *3 (-1034 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1038 *7 *8 *9 *3 *4)) (-4 *4 (-1040 *7 *8 *9 *3)))) (-1372 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-1372 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1034 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) (-4300 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1034 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) (-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1038 *5 *6 *7 *8 *9)))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1038 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4076 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4187 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4300 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-112))) (-15 -1372 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749))) (-15 -1372 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749))) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -3417 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -3417 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3492 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-749))) (-15 -4028 ((-1126) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) (-15 -3842 ((-1232) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-749)))) +((-3113 (((-112) |#5| $) 21)) (-2933 (((-112) |#5| $) 24)) (-3208 (((-112) |#5| $) 16) (((-112) $) 45)) (-1623 (((-623 $) |#5| $) NIL) (((-623 $) (-623 |#5|) $) 77) (((-623 $) (-623 |#5|) (-623 $)) 75) (((-623 $) |#5| (-623 $)) 78)) (-2272 (($ $ |#5|) NIL) (((-623 $) |#5| $) NIL) (((-623 $) |#5| (-623 $)) 60) (((-623 $) (-623 |#5|) $) 62) (((-623 $) (-623 |#5|) (-623 $)) 64)) (-3532 (((-623 $) |#5| $) NIL) (((-623 $) |#5| (-623 $)) 54) (((-623 $) (-623 |#5|) $) 56) (((-623 $) (-623 |#5|) (-623 $)) 58)) (-3024 (((-112) |#5| $) 27))) +(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2272 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -2272 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -2272 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -2272 ((-623 |#1|) |#5| |#1|)) (-15 -3532 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -3532 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -3532 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -3532 ((-623 |#1|) |#5| |#1|)) (-15 -1623 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -1623 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -1623 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -1623 ((-623 |#1|) |#5| |#1|)) (-15 -2933 ((-112) |#5| |#1|)) (-15 -3208 ((-112) |#1|)) (-15 -3024 ((-112) |#5| |#1|)) (-15 -3113 ((-112) |#5| |#1|)) (-15 -3208 ((-112) |#5| |#1|)) (-15 -2272 (|#1| |#1| |#5|))) (-1040 |#2| |#3| |#4| |#5|) (-444) (-771) (-825) (-1034 |#2| |#3| |#4|)) (T -1039)) +NIL +(-10 -8 (-15 -2272 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -2272 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -2272 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -2272 ((-623 |#1|) |#5| |#1|)) (-15 -3532 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -3532 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -3532 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -3532 ((-623 |#1|) |#5| |#1|)) (-15 -1623 ((-623 |#1|) |#5| (-623 |#1|))) (-15 -1623 ((-623 |#1|) (-623 |#5|) (-623 |#1|))) (-15 -1623 ((-623 |#1|) (-623 |#5|) |#1|)) (-15 -1623 ((-623 |#1|) |#5| |#1|)) (-15 -2933 ((-112) |#5| |#1|)) (-15 -3208 ((-112) |#1|)) (-15 -3024 ((-112) |#5| |#1|)) (-15 -3113 ((-112) |#5| |#1|)) (-15 -3208 ((-112) |#5| |#1|)) (-15 -2272 (|#1| |#1| |#5|))) +((-1504 (((-112) $ $) 7)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) 85)) (-1779 (((-623 $) (-623 |#4|)) 86) (((-623 $) (-623 |#4|) (-112)) 111)) (-3141 (((-623 |#3|) $) 33)) (-2238 (((-112) $) 26)) (-3670 (((-112) $) 17 (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-1505 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| $) 126)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) 27)) (-4047 (((-112) $ (-749)) 44)) (-4253 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) 79)) (-3513 (($) 45 T CONST)) (-2976 (((-112) $) 22 (|has| |#1| (-542)))) (-3156 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3059 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3253 (((-112) $) 25 (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3774 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) 36)) (-2726 (($ (-623 |#4|)) 35)) (-1308 (((-3 $ "failed") $) 82)) (-2067 ((|#4| |#4| $) 89)) (-1328 (($ $) 68 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#4| $) 67 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1878 ((|#4| |#4| $) 87)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) 105)) (-3113 (((-112) |#4| $) 136)) (-2933 (((-112) |#4| $) 133)) (-3208 (((-112) |#4| $) 137) (((-112) $) 134)) (-3450 (((-623 |#4|) $) 52 (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) 104) (((-112) $) 103)) (-3952 ((|#3| $) 34)) (-1859 (((-112) $ (-749)) 43)) (-2689 (((-623 |#4|) $) 53 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 47)) (-2650 (((-623 |#3|) $) 32)) (-2568 (((-112) |#3| $) 31)) (-1573 (((-112) $ (-749)) 42)) (-1825 (((-1126) $) 9)) (-3735 (((-3 |#4| (-623 $)) |#4| |#4| $) 128)) (-3632 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| |#4| $) 127)) (-3159 (((-3 |#4| "failed") $) 83)) (-3830 (((-623 $) |#4| $) 129)) (-2845 (((-3 (-112) (-623 $)) |#4| $) 132)) (-2743 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1623 (((-623 $) |#4| $) 125) (((-623 $) (-623 |#4|) $) 124) (((-623 $) (-623 |#4|) (-623 $)) 123) (((-623 $) |#4| (-623 $)) 122)) (-3757 (($ |#4| $) 117) (($ (-623 |#4|) $) 116)) (-3671 (((-623 |#4|) $) 107)) (-1296 (((-112) |#4| $) 99) (((-112) $) 95)) (-3900 ((|#4| |#4| $) 90)) (-3831 (((-112) $ $) 110)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) 100) (((-112) $) 96)) (-3984 ((|#4| |#4| $) 91)) (-3337 (((-1088) $) 10)) (-1293 (((-3 |#4| "failed") $) 84)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2654 (((-3 $ "failed") $ |#4|) 78)) (-2272 (($ $ |#4|) 77) (((-623 $) |#4| $) 115) (((-623 $) |#4| (-623 $)) 114) (((-623 $) (-623 |#4|) $) 113) (((-623 $) (-623 |#4|) (-623 $)) 112)) (-1543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) 38)) (-2902 (((-112) $) 41)) (-3498 (($) 40)) (-2970 (((-749) $) 106)) (-3350 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4342)))) (-1731 (($ $) 39)) (-4028 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 60)) (-2315 (($ $ |#3|) 28)) (-2486 (($ $ |#3|) 30)) (-1969 (($ $) 88)) (-2401 (($ $ |#3|) 29)) (-1518 (((-836) $) 11) (((-623 |#4|) $) 37)) (-2580 (((-749) $) 76 (|has| |#3| (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3532 (((-623 $) |#4| $) 121) (((-623 $) |#4| (-623 $)) 120) (((-623 $) (-623 |#4|) $) 119) (((-623 $) (-623 |#4|) (-623 $)) 118)) (-1675 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) 81)) (-3024 (((-112) |#4| $) 135)) (-1288 (((-112) |#3| $) 80)) (-2316 (((-112) $ $) 6)) (-3191 (((-749) $) 46 (|has| $ (-6 -4342))))) +(((-1040 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1034 |t#1| |t#2| |t#3|)) (T -1040)) +((-3208 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-3113 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-3024 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) (-2933 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-2845 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-3 (-112) (-623 *1))) (-4 *1 (-1040 *4 *5 *6 *3)))) (-2743 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *1)))) (-4 *1 (-1040 *4 *5 *6 *3)))) (-2743 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-3830 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)))) (-3735 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-3 *3 (-623 *1))) (-4 *1 (-1040 *4 *5 *6 *3)))) (-3632 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *1)))) (-4 *1 (-1040 *4 *5 *6 *3)))) (-1505 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *1)))) (-4 *1 (-1040 *4 *5 *6 *3)))) (-1623 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)))) (-1623 (*1 *2 *3 *1) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *7)))) (-1623 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)))) (-1623 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)))) (-3532 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)))) (-3532 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)))) (-3532 (*1 *2 *3 *1) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *7)))) (-3532 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)))) (-3757 (*1 *1 *2 *1) (-12 (-4 *1 (-1040 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-3757 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *6)) (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)))) (-2272 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)))) (-2272 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)))) (-2272 (*1 *2 *3 *1) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *7)))) (-2272 (*1 *2 *3 *2) (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1040 *5 *6 *7 *8))))) +(-13 (-1174 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3208 ((-112) |t#4| $)) (-15 -3113 ((-112) |t#4| $)) (-15 -3024 ((-112) |t#4| $)) (-15 -3208 ((-112) $)) (-15 -2933 ((-112) |t#4| $)) (-15 -2845 ((-3 (-112) (-623 $)) |t#4| $)) (-15 -2743 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 $))) |t#4| $)) (-15 -2743 ((-112) |t#4| $)) (-15 -3830 ((-623 $) |t#4| $)) (-15 -3735 ((-3 |t#4| (-623 $)) |t#4| |t#4| $)) (-15 -3632 ((-623 (-2 (|:| |val| |t#4|) (|:| -3223 $))) |t#4| |t#4| $)) (-15 -1505 ((-623 (-2 (|:| |val| |t#4|) (|:| -3223 $))) |t#4| $)) (-15 -1623 ((-623 $) |t#4| $)) (-15 -1623 ((-623 $) (-623 |t#4|) $)) (-15 -1623 ((-623 $) (-623 |t#4|) (-623 $))) (-15 -1623 ((-623 $) |t#4| (-623 $))) (-15 -3532 ((-623 $) |t#4| $)) (-15 -3532 ((-623 $) |t#4| (-623 $))) (-15 -3532 ((-623 $) (-623 |t#4|) $)) (-15 -3532 ((-623 $) (-623 |t#4|) (-623 $))) (-15 -3757 ($ |t#4| $)) (-15 -3757 ($ (-623 |t#4|) $)) (-15 -2272 ((-623 $) |t#4| $)) (-15 -2272 ((-623 $) |t#4| (-623 $))) (-15 -2272 ((-623 $) (-623 |t#4|) $)) (-15 -2272 ((-623 $) (-623 |t#4|) (-623 $))) (-15 -1779 ((-623 $) (-623 |t#4|) (-112))))) +(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-836)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-949 |#1| |#2| |#3| |#4|) . T) ((-1068) . T) ((-1174 |#1| |#2| |#3| |#4|) . T) ((-1181) . T)) +((-2697 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|) 81)) (-2449 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|) 113)) (-2614 (((-623 |#5|) |#4| |#5|) 70)) (-2532 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2019 (((-1232)) 37)) (-1834 (((-1232)) 26)) (-1927 (((-1232) (-1126) (-1126) (-1126)) 33)) (-1730 (((-1232) (-1126) (-1126) (-1126)) 22)) (-2201 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#4| |#4| |#5|) 96)) (-2281 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#3| (-112)) 107) (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2362 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|) 102))) +(((-1041 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1730 ((-1232) (-1126) (-1126) (-1126))) (-15 -1834 ((-1232))) (-15 -1927 ((-1232) (-1126) (-1126) (-1126))) (-15 -2019 ((-1232))) (-15 -2201 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -2281 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2281 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#3| (-112))) (-15 -2362 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -2449 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -2532 ((-112) |#4| |#5|)) (-15 -2532 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -2614 ((-623 |#5|) |#4| |#5|)) (-15 -2697 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1040 |#1| |#2| |#3| |#4|)) (T -1041)) +((-2697 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-2614 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 *4)) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-2532 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-2532 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-2449 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-2362 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-2281 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -3223 *9)))) (-5 *5 (-112)) (-4 *8 (-1034 *6 *7 *4)) (-4 *9 (-1040 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) (-5 *2 (-623 (-2 (|:| |val| *8) (|:| -3223 *9)))) (-5 *1 (-1041 *6 *7 *4 *8 *9)))) (-2281 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1034 *6 *7 *8)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) (-2201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-2019 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) (-5 *1 (-1041 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) (-1927 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) (-5 *1 (-1041 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-1834 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) (-5 *1 (-1041 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) (-1730 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) (-5 *1 (-1041 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(-10 -7 (-15 -1730 ((-1232) (-1126) (-1126) (-1126))) (-15 -1834 ((-1232))) (-15 -1927 ((-1232) (-1126) (-1126) (-1126))) (-15 -2019 ((-1232))) (-15 -2201 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -2281 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2281 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#3| (-112))) (-15 -2362 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -2449 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -2532 ((-112) |#4| |#5|)) (-15 -2532 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -2614 ((-623 |#5|) |#4| |#5|)) (-15 -2697 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|))) +((-1504 (((-112) $ $) NIL)) (-1551 (((-1180) $) 13)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2802 (((-1103) $) 10)) (-1518 (((-836) $) 22) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-1042) (-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)) (-15 -1551 ((-1180) $))))) (T -1042)) +((-2802 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1042)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1042))))) +(-13 (-1051) (-10 -8 (-15 -2802 ((-1103) $)) (-15 -1551 ((-1180) $)))) +((-1504 (((-112) $ $) NIL)) (-1916 (((-1144) $) 8)) (-1825 (((-1126) $) 16)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 13))) +(((-1043 |#1|) (-13 (-1068) (-10 -8 (-15 -1916 ((-1144) $)))) (-1144)) (T -1043)) +((-1916 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1043 *3)) (-14 *3 *2)))) +(-13 (-1068) (-10 -8 (-15 -1916 ((-1144) $)))) +((-1504 (((-112) $ $) NIL)) (-1560 (($ $ (-623 (-1144)) (-1 (-112) (-623 |#3|))) 33)) (-2180 (($ |#3| |#3|) 22) (($ |#3| |#3| (-623 (-1144))) 20)) (-2874 ((|#3| $) 13)) (-3880 (((-3 (-287 |#3|) "failed") $) 58)) (-2726 (((-287 |#3|) $) NIL)) (-1643 (((-623 (-1144)) $) 16)) (-3068 (((-865 |#1|) $) 11)) (-2864 ((|#3| $) 12)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2680 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-894)) 39)) (-1518 (((-836) $) 86) (($ (-287 |#3|)) 21)) (-2316 (((-112) $ $) 36))) +(((-1044 |#1| |#2| |#3|) (-13 (-1068) (-279 |#3| |#3|) (-1011 (-287 |#3|)) (-10 -8 (-15 -2180 ($ |#3| |#3|)) (-15 -2180 ($ |#3| |#3| (-623 (-1144)))) (-15 -1560 ($ $ (-623 (-1144)) (-1 (-112) (-623 |#3|)))) (-15 -3068 ((-865 |#1|) $)) (-15 -2864 (|#3| $)) (-15 -2874 (|#3| $)) (-15 -2680 (|#3| $ |#3| (-894))) (-15 -1643 ((-623 (-1144)) $)))) (-1068) (-13 (-1020) (-859 |#1|) (-825) (-596 (-865 |#1|))) (-13 (-423 |#2|) (-859 |#1|) (-596 (-865 |#1|)))) (T -1044)) +((-2180 (*1 *1 *2 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))) (-5 *1 (-1044 *3 *4 *2)) (-4 *2 (-13 (-423 *4) (-859 *3) (-596 (-865 *3)))))) (-2180 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-623 (-1144))) (-4 *4 (-1068)) (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) (-5 *1 (-1044 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))))) (-1560 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-1 (-112) (-623 *6))) (-4 *6 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))) (-4 *4 (-1068)) (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) (-5 *1 (-1044 *4 *5 *6)))) (-3068 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 *2))) (-5 *2 (-865 *3)) (-5 *1 (-1044 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-859 *3) (-596 *2))))) (-2864 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *2 (-13 (-423 *4) (-859 *3) (-596 (-865 *3)))) (-5 *1 (-1044 *3 *4 *2)) (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))))) (-2874 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *2 (-13 (-423 *4) (-859 *3) (-596 (-865 *3)))) (-5 *1 (-1044 *3 *4 *2)) (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))))) (-2680 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-894)) (-4 *4 (-1068)) (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) (-5 *1 (-1044 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))))) (-1643 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))) (-5 *2 (-623 (-1144))) (-5 *1 (-1044 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-859 *3) (-596 (-865 *3))))))) +(-13 (-1068) (-279 |#3| |#3|) (-1011 (-287 |#3|)) (-10 -8 (-15 -2180 ($ |#3| |#3|)) (-15 -2180 ($ |#3| |#3| (-623 (-1144)))) (-15 -1560 ($ $ (-623 (-1144)) (-1 (-112) (-623 |#3|)))) (-15 -3068 ((-865 |#1|) $)) (-15 -2864 (|#3| $)) (-15 -2874 (|#3| $)) (-15 -2680 (|#3| $ |#3| (-894))) (-15 -1643 ((-623 (-1144)) $)))) +((-1504 (((-112) $ $) NIL)) (-3272 (($ (-623 (-1044 |#1| |#2| |#3|))) 13)) (-2717 (((-623 (-1044 |#1| |#2| |#3|)) $) 20)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2680 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-894)) 26)) (-1518 (((-836) $) 16)) (-2316 (((-112) $ $) 19))) +(((-1045 |#1| |#2| |#3|) (-13 (-1068) (-279 |#3| |#3|) (-10 -8 (-15 -3272 ($ (-623 (-1044 |#1| |#2| |#3|)))) (-15 -2717 ((-623 (-1044 |#1| |#2| |#3|)) $)) (-15 -2680 (|#3| $ |#3| (-894))))) (-1068) (-13 (-1020) (-859 |#1|) (-825) (-596 (-865 |#1|))) (-13 (-423 |#2|) (-859 |#1|) (-596 (-865 |#1|)))) (T -1045)) +((-3272 (*1 *1 *2) (-12 (-5 *2 (-623 (-1044 *3 *4 *5))) (-4 *3 (-1068)) (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))) (-4 *5 (-13 (-423 *4) (-859 *3) (-596 (-865 *3)))) (-5 *1 (-1045 *3 *4 *5)))) (-2717 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))) (-5 *2 (-623 (-1044 *3 *4 *5))) (-5 *1 (-1045 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-859 *3) (-596 (-865 *3)))))) (-2680 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-894)) (-4 *4 (-1068)) (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) (-5 *1 (-1045 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4))))))) +(-13 (-1068) (-279 |#3| |#3|) (-10 -8 (-15 -3272 ($ (-623 (-1044 |#1| |#2| |#3|)))) (-15 -2717 ((-623 (-1044 |#1| |#2| |#3|)) $)) (-15 -2680 (|#3| $ |#3| (-894))))) +((-1758 (((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112)) 75) (((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|))) 77) (((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112)) 76))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -1758 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112))) (-15 -1758 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)))) (-15 -1758 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112)))) (-13 (-300) (-145)) (-623 (-1144))) (T -1046)) +((-1758 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) (-5 *1 (-1046 *5 *6)) (-5 *3 (-623 (-925 *5))) (-14 *6 (-623 (-1144))))) (-1758 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-5 *2 (-623 (-2 (|:| -2553 (-1140 *4)) (|:| -1373 (-623 (-925 *4)))))) (-5 *1 (-1046 *4 *5)) (-5 *3 (-623 (-925 *4))) (-14 *5 (-623 (-1144))))) (-1758 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) (-5 *1 (-1046 *5 *6)) (-5 *3 (-623 (-925 *5))) (-14 *6 (-623 (-1144)))))) +(-10 -7 (-15 -1758 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112))) (-15 -1758 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)))) (-15 -1758 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112)))) +((-3338 (((-411 |#3|) |#3|) 18))) +(((-1047 |#1| |#2| |#3|) (-10 -7 (-15 -3338 ((-411 |#3|) |#3|))) (-1203 (-400 (-550))) (-13 (-356) (-145) (-703 (-400 (-550)) |#1|)) (-1203 |#2|)) (T -1047)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-1203 (-400 (-550)))) (-4 *5 (-13 (-356) (-145) (-703 (-400 (-550)) *4))) (-5 *2 (-411 *3)) (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1203 *5))))) +(-10 -7 (-15 -3338 ((-411 |#3|) |#3|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 126)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-356)))) (-1447 (($ $) NIL (|has| |#1| (-356)))) (-4291 (((-112) $) NIL (|has| |#1| (-356)))) (-1615 (((-667 |#1|) (-1227 $)) NIL) (((-667 |#1|)) 115)) (-2252 ((|#1| $) 119)) (-1337 (((-1154 (-894) (-749)) (-550)) NIL (|has| |#1| (-342)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4319 (((-749)) 40 (|has| |#1| (-361)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-4110 (($ (-1227 |#1|) (-1227 $)) NIL) (($ (-1227 |#1|)) 43)) (-4161 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-2677 (((-667 |#1|) $ (-1227 $)) NIL) (((-667 |#1|) $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 106) (((-667 |#1|) (-667 $)) 101)) (-2419 (($ |#2|) 61) (((-3 $ "failed") (-400 |#2|)) NIL (|has| |#1| (-356)))) (-1386 (((-3 $ "failed") $) NIL)) (-2122 (((-894)) 77)) (-1741 (($) 44 (|has| |#1| (-361)))) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3485 (($) NIL (|has| |#1| (-342)))) (-3697 (((-112) $) NIL (|has| |#1| (-342)))) (-3714 (($ $ (-749)) NIL (|has| |#1| (-342))) (($ $) NIL (|has| |#1| (-342)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-2475 (((-894) $) NIL (|has| |#1| (-342))) (((-811 (-894)) $) NIL (|has| |#1| (-342)))) (-3102 (((-112) $) NIL)) (-1389 ((|#1| $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1428 ((|#2| $) 84 (|has| |#1| (-356)))) (-2253 (((-894) $) 131 (|has| |#1| (-361)))) (-2407 ((|#2| $) 58)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-3862 (($) NIL (|has| |#1| (-342)) CONST)) (-2922 (($ (-894)) 125 (|has| |#1| (-361)))) (-3337 (((-1088) $) NIL)) (-3935 (($) 121)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1464 (((-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550))))) NIL (|has| |#1| (-342)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-3453 ((|#1| (-1227 $)) NIL) ((|#1|) 109)) (-3811 (((-749) $) NIL (|has| |#1| (-342))) (((-3 (-749) "failed") $ $) NIL (|has| |#1| (-342)))) (-2393 (($ $) NIL (-1561 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-749)) NIL (-1561 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) (($ $ (-1 |#1| |#1|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3013 (((-667 |#1|) (-1227 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-1310 ((|#2|) 73)) (-4288 (($) NIL (|has| |#1| (-342)))) (-1373 (((-1227 |#1|) $ (-1227 $)) 89) (((-667 |#1|) (-1227 $) (-1227 $)) NIL) (((-1227 |#1|) $) 71) (((-667 |#1|) (-1227 $)) 85)) (-4028 (((-1227 |#1|) $) NIL) (($ (-1227 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (|has| |#1| (-342)))) (-1518 (((-836) $) 57) (($ (-550)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-356))) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-356)) (|has| |#1| (-1011 (-400 (-550))))))) (-4242 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2608 ((|#2| $) 82)) (-2390 (((-749)) 75)) (-2437 (((-1227 $)) 81)) (-1345 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2626 (($) 30 T CONST)) (-2636 (($) 19 T CONST)) (-4183 (($ $) NIL (-1561 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-749)) NIL (-1561 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-873 (-1144))))) (($ $ (-1 |#1| |#1|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2316 (((-112) $ $) 63)) (-2414 (($ $ $) NIL (|has| |#1| (-356)))) (-2403 (($ $) 67) (($ $ $) NIL)) (-2391 (($ $ $) 65)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-400 (-550)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-550))) NIL (|has| |#1| (-356))))) +(((-1048 |#1| |#2| |#3|) (-703 |#1| |#2|) (-170) (-1203 |#1|) |#2|) (T -1048)) +NIL +(-703 |#1| |#2|) +((-3338 (((-411 |#3|) |#3|) 19))) +(((-1049 |#1| |#2| |#3|) (-10 -7 (-15 -3338 ((-411 |#3|) |#3|))) (-1203 (-400 (-925 (-550)))) (-13 (-356) (-145) (-703 (-400 (-925 (-550))) |#1|)) (-1203 |#2|)) (T -1049)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-1203 (-400 (-925 (-550))))) (-4 *5 (-13 (-356) (-145) (-703 (-400 (-925 (-550))) *4))) (-5 *2 (-411 *3)) (-5 *1 (-1049 *4 *5 *3)) (-4 *3 (-1203 *5))))) +(-10 -7 (-15 -3338 ((-411 |#3|) |#3|))) +((-1504 (((-112) $ $) NIL)) (-2707 (($ $ $) 14)) (-4164 (($ $ $) 15)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1871 (($) 6)) (-4028 (((-1144) $) 18)) (-1518 (((-836) $) 12)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 13)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 8))) +(((-1050) (-13 (-825) (-10 -8 (-15 -1871 ($)) (-15 -4028 ((-1144) $))))) (T -1050)) +((-1871 (*1 *1) (-5 *1 (-1050))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1050))))) +(-13 (-825) (-10 -8 (-15 -1871 ($)) (-15 -4028 ((-1144) $)))) +((-1504 (((-112) $ $) 7)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (((-1149) $) 15) (($ (-1149)) 14)) (-2316 (((-112) $ $) 6))) +(((-1051) (-138)) (T -1051)) NIL (-13 (-92)) -(((-92) . T) ((-101) . T) ((-593 (-835)) . T) ((-593 (-1147)) . T) ((-1067) . T)) -((-3551 ((|#1| |#1| (-1 (-535) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-3549 (((-1230)) 15)) (-3550 (((-618 |#1|)) 9))) -(((-1050 |#1|) (-10 -7 (-15 -3549 ((-1230))) (-15 -3550 ((-618 |#1|))) (-15 -3551 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3551 (|#1| |#1| (-1 (-535) |#1| |#1|)))) (-131)) (T -1050)) -((-3551 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-535) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))) (-3551 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))) (-3550 (*1 *2) (-12 (-5 *2 (-618 *3)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))) (-3549 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1050 *3)) (-4 *3 (-131))))) -(-10 -7 (-15 -3549 ((-1230))) (-15 -3550 ((-618 |#1|))) (-15 -3551 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3551 (|#1| |#1| (-1 (-535) |#1| |#1|)))) -((-3554 (($ (-108) $) 16)) (-3555 (((-3 (-108) "failed") (-1142) $) 15)) (-3911 (($) 7)) (-3553 (($) 17)) (-3552 (($) 18)) (-3556 (((-618 (-173)) $) 10)) (-4300 (((-835) $) 21))) -(((-1051) (-13 (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -3556 ((-618 (-173)) $)) (-15 -3555 ((-3 (-108) "failed") (-1142) $)) (-15 -3554 ($ (-108) $)) (-15 -3553 ($)) (-15 -3552 ($))))) (T -1051)) -((-3911 (*1 *1) (-5 *1 (-1051))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-618 (-173))) (-5 *1 (-1051)))) (-3555 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-1051)))) (-3554 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1051)))) (-3553 (*1 *1) (-5 *1 (-1051))) (-3552 (*1 *1) (-5 *1 (-1051)))) -(-13 (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -3556 ((-618 (-173)) $)) (-15 -3555 ((-3 (-108) "failed") (-1142) $)) (-15 -3554 ($ (-108) $)) (-15 -3553 ($)) (-15 -3552 ($)))) -((-3557 (((-1224 (-665 |#1|)) (-618 (-665 |#1|))) 42) (((-1224 (-665 (-917 |#1|))) (-618 (-1142)) (-665 (-917 |#1|))) 63) (((-1224 (-665 (-400 (-917 |#1|)))) (-618 (-1142)) (-665 (-400 (-917 |#1|)))) 79)) (-3558 (((-1224 |#1|) (-665 |#1|) (-618 (-665 |#1|))) 36))) -(((-1052 |#1|) (-10 -7 (-15 -3557 ((-1224 (-665 (-400 (-917 |#1|)))) (-618 (-1142)) (-665 (-400 (-917 |#1|))))) (-15 -3557 ((-1224 (-665 (-917 |#1|))) (-618 (-1142)) (-665 (-917 |#1|)))) (-15 -3557 ((-1224 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3558 ((-1224 |#1|) (-665 |#1|) (-618 (-665 |#1|))))) (-356)) (T -1052)) -((-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-665 *5))) (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-1224 *5)) (-5 *1 (-1052 *5)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-618 (-665 *4))) (-4 *4 (-356)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-1052 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1142))) (-4 *5 (-356)) (-5 *2 (-1224 (-665 (-917 *5)))) (-5 *1 (-1052 *5)) (-5 *4 (-665 (-917 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1142))) (-4 *5 (-356)) (-5 *2 (-1224 (-665 (-400 (-917 *5))))) (-5 *1 (-1052 *5)) (-5 *4 (-665 (-400 (-917 *5))))))) -(-10 -7 (-15 -3557 ((-1224 (-665 (-400 (-917 |#1|)))) (-618 (-1142)) (-665 (-400 (-917 |#1|))))) (-15 -3557 ((-1224 (-665 (-917 |#1|))) (-618 (-1142)) (-665 (-917 |#1|)))) (-15 -3557 ((-1224 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3558 ((-1224 |#1|) (-665 |#1|) (-618 (-665 |#1|))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1538 (((-618 (-747)) $) NIL) (((-618 (-747)) $ (-1142)) NIL)) (-1572 (((-747) $) NIL) (((-747) $ (-1142)) NIL)) (-3405 (((-618 (-1054 (-1142))) $) NIL)) (-3407 (((-1136 $) $ (-1054 (-1142))) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1054 (-1142)))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1534 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1054 (-1142)) #2#) $) NIL) (((-3 (-1142) #2#) $) NIL) (((-3 (-1091 |#1| (-1142)) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1054 (-1142)) $) NIL) (((-1142) $) NIL) (((-1091 |#1| (-1142)) $) NIL)) (-4099 (($ $ $ (-1054 (-1142))) NIL (|has| |#1| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1054 (-1142))) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 (-1054 (-1142))) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1054 (-1142)) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1054 (-1142)) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ (-1142)) NIL) (((-747) $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#1|) (-1054 (-1142))) NIL) (($ (-1136 $) (-1054 (-1142))) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-618 (-1054 (-1142))) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1054 (-1142))) NIL)) (-3141 (((-521 (-1054 (-1142))) $) NIL) (((-747) $ (-1054 (-1142))) NIL) (((-618 (-747)) $ (-618 (-1054 (-1142)))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 (-1054 (-1142))) (-521 (-1054 (-1142)))) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-747)) (-1142)) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-3406 (((-3 (-1054 (-1142)) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-1536 (((-1054 (-1142)) $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-1537 (((-112) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1054 (-1142))) (|:| -2484 (-747))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1054 (-1142)) |#1|) NIL) (($ $ (-618 (-1054 (-1142))) (-618 |#1|)) NIL) (($ $ (-1054 (-1142)) $) NIL) (($ $ (-618 (-1054 (-1142))) (-618 $)) NIL) (($ $ (-1142) $) NIL (|has| |#1| (-227))) (($ $ (-618 (-1142)) (-618 $)) NIL (|has| |#1| (-227))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-227))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-227)))) (-4100 (($ $ (-1054 (-1142))) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-1054 (-1142))) NIL) (($ $ (-618 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-618 (-1054 (-1142))) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-618 (-1142)) $) NIL)) (-4290 (((-521 (-1054 (-1142))) $) NIL) (((-747) $ (-1054 (-1142))) NIL) (((-618 (-747)) $ (-618 (-1054 (-1142)))) NIL) (((-747) $ (-1142)) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1054 (-1142))) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-1054 (-1142))) NIL) (($ (-1142)) NIL) (($ (-1091 |#1| (-1142))) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-618 (-1054 (-1142))) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1054 (-1142))) NIL) (($ $ (-618 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-618 (-1054 (-1142))) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1053 |#1|) (-13 (-246 |#1| (-1142) (-1054 (-1142)) (-521 (-1054 (-1142)))) (-1009 (-1091 |#1| (-1142)))) (-1018)) (T -1053)) -NIL -(-13 (-246 |#1| (-1142) (-1054 (-1142)) (-521 (-1054 (-1142)))) (-1009 (-1091 |#1| (-1142)))) -((-2887 (((-112) $ $) NIL)) (-1572 (((-747) $) NIL)) (-4174 ((|#1| $) 10)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-4114 (((-747) $) 11)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-1573 (($ |#1| (-747)) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4153 (($ $) NIL) (($ $ (-747)) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 15))) -(((-1054 |#1|) (-259 |#1|) (-823)) (T -1054)) +(((-92) . T) ((-101) . T) ((-595 (-836)) . T) ((-595 (-1149)) . T) ((-1068) . T)) +((-1962 ((|#1| |#1| (-1 (-550) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-3092 (((-1232)) 15)) (-3804 (((-623 |#1|)) 9))) +(((-1052 |#1|) (-10 -7 (-15 -3092 ((-1232))) (-15 -3804 ((-623 |#1|))) (-15 -1962 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1962 (|#1| |#1| (-1 (-550) |#1| |#1|)))) (-131)) (T -1052)) +((-1962 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-550) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1052 *2)))) (-1962 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1052 *2)))) (-3804 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-1052 *3)) (-4 *3 (-131)))) (-3092 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1052 *3)) (-4 *3 (-131))))) +(-10 -7 (-15 -3092 ((-1232))) (-15 -3804 ((-623 |#1|))) (-15 -1962 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1962 (|#1| |#1| (-1 (-550) |#1| |#1|)))) +((-3979 (($ (-108) $) 16)) (-4089 (((-3 (-108) "failed") (-1144) $) 15)) (-3498 (($) 7)) (-2148 (($) 17)) (-2062 (($) 18)) (-4199 (((-623 (-173)) $) 10)) (-1518 (((-836) $) 21))) +(((-1053) (-13 (-595 (-836)) (-10 -8 (-15 -3498 ($)) (-15 -4199 ((-623 (-173)) $)) (-15 -4089 ((-3 (-108) "failed") (-1144) $)) (-15 -3979 ($ (-108) $)) (-15 -2148 ($)) (-15 -2062 ($))))) (T -1053)) +((-3498 (*1 *1) (-5 *1 (-1053))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-623 (-173))) (-5 *1 (-1053)))) (-4089 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1144)) (-5 *2 (-108)) (-5 *1 (-1053)))) (-3979 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1053)))) (-2148 (*1 *1) (-5 *1 (-1053))) (-2062 (*1 *1) (-5 *1 (-1053)))) +(-13 (-595 (-836)) (-10 -8 (-15 -3498 ($)) (-15 -4199 ((-623 (-173)) $)) (-15 -4089 ((-3 (-108) "failed") (-1144) $)) (-15 -3979 ($ (-108) $)) (-15 -2148 ($)) (-15 -2062 ($)))) +((-1265 (((-1227 (-667 |#1|)) (-623 (-667 |#1|))) 42) (((-1227 (-667 (-925 |#1|))) (-623 (-1144)) (-667 (-925 |#1|))) 63) (((-1227 (-667 (-400 (-925 |#1|)))) (-623 (-1144)) (-667 (-400 (-925 |#1|)))) 79)) (-1373 (((-1227 |#1|) (-667 |#1|) (-623 (-667 |#1|))) 36))) +(((-1054 |#1|) (-10 -7 (-15 -1265 ((-1227 (-667 (-400 (-925 |#1|)))) (-623 (-1144)) (-667 (-400 (-925 |#1|))))) (-15 -1265 ((-1227 (-667 (-925 |#1|))) (-623 (-1144)) (-667 (-925 |#1|)))) (-15 -1265 ((-1227 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -1373 ((-1227 |#1|) (-667 |#1|) (-623 (-667 |#1|))))) (-356)) (T -1054)) +((-1373 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-667 *5))) (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-1227 *5)) (-5 *1 (-1054 *5)))) (-1265 (*1 *2 *3) (-12 (-5 *3 (-623 (-667 *4))) (-4 *4 (-356)) (-5 *2 (-1227 (-667 *4))) (-5 *1 (-1054 *4)))) (-1265 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1144))) (-4 *5 (-356)) (-5 *2 (-1227 (-667 (-925 *5)))) (-5 *1 (-1054 *5)) (-5 *4 (-667 (-925 *5))))) (-1265 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-1144))) (-4 *5 (-356)) (-5 *2 (-1227 (-667 (-400 (-925 *5))))) (-5 *1 (-1054 *5)) (-5 *4 (-667 (-400 (-925 *5))))))) +(-10 -7 (-15 -1265 ((-1227 (-667 (-400 (-925 |#1|)))) (-623 (-1144)) (-667 (-400 (-925 |#1|))))) (-15 -1265 ((-1227 (-667 (-925 |#1|))) (-623 (-1144)) (-667 (-925 |#1|)))) (-15 -1265 ((-1227 (-667 |#1|)) (-623 (-667 |#1|)))) (-15 -1373 ((-1227 |#1|) (-667 |#1|) (-623 (-667 |#1|))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1662 (((-623 (-749)) $) NIL) (((-623 (-749)) $ (-1144)) NIL)) (-4073 (((-749) $) NIL) (((-749) $ (-1144)) NIL)) (-3141 (((-623 (-1056 (-1144))) $) NIL)) (-3306 (((-1140 $) $ (-1056 (-1144))) NIL) (((-1140 |#1|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-1056 (-1144)))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1417 (($ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-1056 (-1144)) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL) (((-3 (-1093 |#1| (-1144)) "failed") $) NIL)) (-2726 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-1056 (-1144)) $) NIL) (((-1144) $) NIL) (((-1093 |#1| (-1144)) $) NIL)) (-3340 (($ $ $ (-1056 (-1144))) NIL (|has| |#1| (-170)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1056 (-1144))) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-2613 (($ $ |#1| (-522 (-1056 (-1144))) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-1056 (-1144)) (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-1056 (-1144)) (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-2475 (((-749) $ (-1144)) NIL) (((-749) $) NIL)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3129 (($ (-1140 |#1|) (-1056 (-1144))) NIL) (($ (-1140 $) (-1056 (-1144))) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-522 (-1056 (-1144)))) NIL) (($ $ (-1056 (-1144)) (-749)) NIL) (($ $ (-623 (-1056 (-1144))) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-1056 (-1144))) NIL)) (-1667 (((-522 (-1056 (-1144))) $) NIL) (((-749) $ (-1056 (-1144))) NIL) (((-623 (-749)) $ (-623 (-1056 (-1144)))) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-522 (-1056 (-1144))) (-522 (-1056 (-1144)))) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-4167 (((-1 $ (-749)) (-1144)) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-2558 (((-3 (-1056 (-1144)) "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1970 (((-1056 (-1144)) $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1825 (((-1126) $) NIL)) (-1539 (((-112) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-1056 (-1144))) (|:| -3521 (-749))) "failed") $) NIL)) (-3083 (($ $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-882)))) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1056 (-1144)) |#1|) NIL) (($ $ (-623 (-1056 (-1144))) (-623 |#1|)) NIL) (($ $ (-1056 (-1144)) $) NIL) (($ $ (-623 (-1056 (-1144))) (-623 $)) NIL) (($ $ (-1144) $) NIL (|has| |#1| (-227))) (($ $ (-623 (-1144)) (-623 $)) NIL (|has| |#1| (-227))) (($ $ (-1144) |#1|) NIL (|has| |#1| (-227))) (($ $ (-623 (-1144)) (-623 |#1|)) NIL (|has| |#1| (-227)))) (-3453 (($ $ (-1056 (-1144))) NIL (|has| |#1| (-170)))) (-2393 (($ $ (-1056 (-1144))) NIL) (($ $ (-623 (-1056 (-1144)))) NIL) (($ $ (-1056 (-1144)) (-749)) NIL) (($ $ (-623 (-1056 (-1144))) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4299 (((-623 (-1144)) $) NIL)) (-2970 (((-522 (-1056 (-1144))) $) NIL) (((-749) $ (-1056 (-1144))) NIL) (((-623 (-749)) $ (-623 (-1056 (-1144)))) NIL) (((-749) $ (-1144)) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-1056 (-1144)) (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-1056 (-1144)) (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-1056 (-1144)) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1056 (-1144))) NIL (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1056 (-1144))) NIL) (($ (-1144)) NIL) (($ (-1093 |#1| (-1144))) NIL) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-522 (-1056 (-1144)))) NIL) (($ $ (-1056 (-1144)) (-749)) NIL) (($ $ (-623 (-1056 (-1144))) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-1056 (-1144))) NIL) (($ $ (-623 (-1056 (-1144)))) NIL) (($ $ (-1056 (-1144)) (-749)) NIL) (($ $ (-623 (-1056 (-1144))) (-623 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1055 |#1|) (-13 (-246 |#1| (-1144) (-1056 (-1144)) (-522 (-1056 (-1144)))) (-1011 (-1093 |#1| (-1144)))) (-1020)) (T -1055)) +NIL +(-13 (-246 |#1| (-1144) (-1056 (-1144)) (-522 (-1056 (-1144)))) (-1011 (-1093 |#1| (-1144)))) +((-1504 (((-112) $ $) NIL)) (-4073 (((-749) $) NIL)) (-1861 ((|#1| $) 10)) (-3880 (((-3 |#1| "failed") $) NIL)) (-2726 ((|#1| $) NIL)) (-2475 (((-749) $) 11)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-4167 (($ |#1| (-749)) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2393 (($ $) NIL) (($ $ (-749)) NIL)) (-1518 (((-836) $) NIL) (($ |#1|) NIL)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 15))) +(((-1056 |#1|) (-259 |#1|) (-825)) (T -1056)) NIL (-259 |#1|) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4079 (($ |#1| |#1|) 15)) (-4301 (((-618 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-821)))) (-3563 ((|#1| $) 10)) (-3565 ((|#1| $) 9)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3561 (((-535) $) 14)) (-3562 ((|#1| $) 12)) (-3564 ((|#1| $) 11)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4306 (((-618 |#1|) $) 36 (|has| |#1| (-821))) (((-618 |#1|) (-618 $)) 35 (|has| |#1| (-821)))) (-4313 (($ |#1|) 26)) (-4300 (((-835) $) 25 (|has| |#1| (-1067)))) (-4080 (($ |#1| |#1|) 8)) (-3566 (($ $ (-535)) 16)) (-3375 (((-112) $ $) 19 (|has| |#1| (-1067))))) -(((-1055 |#1|) (-13 (-1060 |#1|) (-10 -7 (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-618 |#1|))) |%noBranch|))) (-1178)) (T -1055)) -NIL -(-13 (-1060 |#1|) (-10 -7 (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-618 |#1|))) |%noBranch|))) -((-4301 (((-618 |#2|) (-1 |#2| |#1|) (-1055 |#1|)) 24 (|has| |#1| (-821))) (((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|)) 14))) -(((-1056 |#1| |#2|) (-10 -7 (-15 -4301 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (IF (|has| |#1| (-821)) (-15 -4301 ((-618 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) |%noBranch|)) (-1178) (-1178)) (T -1056)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-821)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-618 *6)) (-5 *1 (-1056 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1055 *6)) (-5 *1 (-1056 *5 *6))))) -(-10 -7 (-15 -4301 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (IF (|has| |#1| (-821)) (-15 -4301 ((-618 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3559 (((-618 (-1101)) $) 9)) (-3375 (((-112) $ $) NIL))) -(((-1057) (-13 (-1049) (-10 -8 (-15 -3559 ((-618 (-1101)) $))))) (T -1057)) -((-3559 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1057))))) -(-13 (-1049) (-10 -8 (-15 -3559 ((-618 (-1101)) $)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4174 (((-1142) $) 11)) (-4079 (((-1055 |#1|) $) 12)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-3560 (($ (-1142) (-1055 |#1|)) 10)) (-4300 (((-835) $) 20 (|has| |#1| (-1067)))) (-3375 (((-112) $ $) 15 (|has| |#1| (-1067))))) -(((-1058 |#1|) (-13 (-1178) (-10 -8 (-15 -3560 ($ (-1142) (-1055 |#1|))) (-15 -4174 ((-1142) $)) (-15 -4079 ((-1055 |#1|) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1178)) (T -1058)) -((-3560 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1055 *4)) (-4 *4 (-1178)) (-5 *1 (-1058 *4)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1058 *3)) (-4 *3 (-1178)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-1178))))) -(-13 (-1178) (-10 -8 (-15 -3560 ($ (-1142) (-1055 |#1|))) (-15 -4174 ((-1142) $)) (-15 -4079 ((-1055 |#1|) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) -((-4301 (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 19))) -(((-1059 |#1| |#2|) (-10 -7 (-15 -4301 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)))) (-1178) (-1178)) (T -1059)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1058 *6)) (-5 *1 (-1059 *5 *6))))) -(-10 -7 (-15 -4301 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)))) -((-4079 (($ |#1| |#1|) 7)) (-3563 ((|#1| $) 10)) (-3565 ((|#1| $) 12)) (-3561 (((-535) $) 8)) (-3562 ((|#1| $) 9)) (-3564 ((|#1| $) 11)) (-4313 (($ |#1|) 6)) (-4080 (($ |#1| |#1|) 14)) (-3566 (($ $ (-535)) 13))) -(((-1060 |#1|) (-138) (-1178)) (T -1060)) -((-4080 (*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3566 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1060 *3)) (-4 *3 (-1178)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1178)) (-5 *2 (-535)))) (-4079 (*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178))))) -(-13 (-1178) (-10 -8 (-15 -4080 ($ |t#1| |t#1|)) (-15 -3566 ($ $ (-535))) (-15 -3565 (|t#1| $)) (-15 -3564 (|t#1| $)) (-15 -3563 (|t#1| $)) (-15 -3562 (|t#1| $)) (-15 -3561 ((-535) $)) (-15 -4079 ($ |t#1| |t#1|)) (-15 -4313 ($ |t#1|)))) -(((-1178) . T)) -((-4079 (($ |#1| |#1|) 7)) (-4301 ((|#2| (-1 |#1| |#1|) $) 16)) (-3563 ((|#1| $) 10)) (-3565 ((|#1| $) 12)) (-3561 (((-535) $) 8)) (-3562 ((|#1| $) 9)) (-3564 ((|#1| $) 11)) (-4306 ((|#2| (-618 $)) 18) ((|#2| $) 17)) (-4313 (($ |#1|) 6)) (-4080 (($ |#1| |#1|) 14)) (-3566 (($ $ (-535)) 13))) -(((-1061 |#1| |#2|) (-138) (-821) (-1115 |t#1|)) (T -1061)) -((-4306 (*1 *2 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1115 *4)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1115 *3)))) (-4301 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1115 *4))))) -(-13 (-1060 |t#1|) (-10 -8 (-15 -4306 (|t#2| (-618 $))) (-15 -4306 (|t#2| $)) (-15 -4301 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1060 |#1|) . T) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-4140 (((-1101) $) 12)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-618 (-1101)) $) 10)) (-3375 (((-112) $ $) NIL))) -(((-1062) (-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $)) (-15 -4140 ((-1101) $))))) (T -1062)) -((-3567 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1062)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1062))))) -(-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $)) (-15 -4140 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-1916 (($) NIL (|has| |#1| (-361)))) (-3568 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3570 (($ $ $) 72)) (-3569 (((-112) $ $) 73)) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3573 (($ (-618 |#1|)) NIL) (($) 13)) (-1626 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) 67 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4336)))) (-3315 (($) NIL (|has| |#1| (-361)))) (-2063 (((-618 |#1|) $) 19 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3660 ((|#1| $) 57 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3661 ((|#1| $) 55 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 34)) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3572 (($ $ $) 70)) (-1326 ((|#1| $) 25)) (-3953 (($ |#1| $) 65)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-3577 (((-1086) $) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1327 ((|#1| $) 27)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 21)) (-3911 (($) 11)) (-3571 (($ $ |#1|) NIL) (($ $ $) 71)) (-1518 (($) NIL) (($ (-618 |#1|)) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 16)) (-4313 (((-524) $) 52 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 61)) (-1917 (($ $) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) NIL)) (-1918 (((-747) $) NIL)) (-3574 (($ (-618 |#1|)) NIL) (($) 12)) (-1328 (($ (-618 |#1|)) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 54)) (-4299 (((-747) $) 10 (|has| $ (-6 -4336))))) -(((-1063 |#1|) (-419 |#1|) (-1067)) (T -1063)) -NIL -(-419 |#1|) -((-3568 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3570 (($ $ $) 10)) (-3571 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1064 |#1| |#2|) (-10 -8 (-15 -3568 (|#1| |#2| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3571 (|#1| |#1| |#1|))) (-1065 |#2|) (-1067)) (T -1064)) -NIL -(-10 -8 (-15 -3568 (|#1| |#2| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3571 (|#1| |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-3568 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3570 (($ $ $) 20)) (-3569 (((-112) $ $) 19)) (-1264 (((-112) $ (-747)) 35)) (-3573 (($) 25) (($ (-618 |#1|)) 24)) (-4056 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4336)))) (-3879 (($) 36 T CONST)) (-1394 (($ $) 59 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 43 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 28)) (-4065 (((-112) $ (-747)) 34)) (-2502 (((-618 |#1|) $) 44 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 38)) (-4062 (((-112) $ (-747)) 33)) (-3576 (((-1124) $) 9)) (-3572 (($ $ $) 23)) (-3577 (((-1086) $) 10)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2065 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 50 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 48 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 (-286 |#1|))) 47 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 29)) (-3745 (((-112) $) 32)) (-3911 (($) 31)) (-3571 (($ $ $) 22) (($ $ |#1|) 21)) (-2064 (((-747) |#1| $) 45 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4336)))) (-3742 (($ $) 30)) (-4313 (((-524) $) 60 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 51)) (-4300 (((-835) $) 11)) (-3574 (($) 27) (($ (-618 |#1|)) 26)) (-2066 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 37 (|has| $ (-6 -4336))))) -(((-1065 |#1|) (-138) (-1067)) (T -1065)) -((-3575 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3574 (*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3)))) (-3573 (*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3)))) (-3572 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3571 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3571 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3570 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3569 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3568 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3568 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3568 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))) -(-13 (-1067) (-149 |t#1|) (-10 -8 (-6 -4326) (-15 -3575 ((-112) $ $)) (-15 -3574 ($)) (-15 -3574 ($ (-618 |t#1|))) (-15 -3573 ($)) (-15 -3573 ($ (-618 |t#1|))) (-15 -3572 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -3571 ($ $ |t#1|)) (-15 -3570 ($ $ $)) (-15 -3569 ((-112) $ $)) (-15 -3568 ($ $ $)) (-15 -3568 ($ $ |t#1|)) (-15 -3568 ($ |t#1| $)))) -(((-34) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) . T) ((-1178) . T)) -((-3576 (((-1124) $) 10)) (-3577 (((-1086) $) 8))) -(((-1066 |#1|) (-10 -8 (-15 -3576 ((-1124) |#1|)) (-15 -3577 ((-1086) |#1|))) (-1067)) (T -1066)) -NIL -(-10 -8 (-15 -3576 ((-1124) |#1|)) (-15 -3577 ((-1086) |#1|))) -((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6))) -(((-1067) (-138)) (T -1067)) -((-3577 (*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1086)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1124))))) -(-13 (-101) (-593 (-835)) (-10 -8 (-15 -3577 ((-1086) $)) (-15 -3576 ((-1124) $)))) -(((-101) . T) ((-593 (-835)) . T)) -((-2887 (((-112) $ $) NIL)) (-3454 (((-747)) 30)) (-3581 (($ (-618 (-890))) 52)) (-3583 (((-3 $ #1="failed") $ (-890) (-890)) 58)) (-3315 (($) 32)) (-3579 (((-112) (-890) $) 35)) (-2121 (((-890) $) 50)) (-3576 (((-1124) $) NIL)) (-2483 (($ (-890)) 31)) (-3584 (((-3 $ #1#) $ (-890)) 55)) (-3577 (((-1086) $) NIL)) (-3580 (((-1224 $)) 40)) (-3582 (((-618 (-890)) $) 24)) (-3578 (((-747) $ (-890) (-890)) 56)) (-4300 (((-835) $) 29)) (-3375 (((-112) $ $) 21))) -(((-1068 |#1| |#2|) (-13 (-361) (-10 -8 (-15 -3584 ((-3 $ #1="failed") $ (-890))) (-15 -3583 ((-3 $ #1#) $ (-890) (-890))) (-15 -3582 ((-618 (-890)) $)) (-15 -3581 ($ (-618 (-890)))) (-15 -3580 ((-1224 $))) (-15 -3579 ((-112) (-890) $)) (-15 -3578 ((-747) $ (-890) (-890))))) (-890) (-890)) (T -1068)) -((-3584 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3583 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3580 (*1 *2) (-12 (-5 *2 (-1224 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3579 (*1 *2 *3 *1) (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3578 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-747)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-361) (-10 -8 (-15 -3584 ((-3 $ #1="failed") $ (-890))) (-15 -3583 ((-3 $ #1#) $ (-890) (-890))) (-15 -3582 ((-618 (-890)) $)) (-15 -3581 ($ (-618 (-890)))) (-15 -3580 ((-1224 $))) (-15 -3579 ((-112) (-890) $)) (-15 -3578 ((-747) $ (-890) (-890))))) -((-2887 (((-112) $ $) NIL)) (-3594 (((-112) $) NIL)) (-3590 (((-1142) $) NIL)) (-3595 (((-112) $) NIL)) (-3881 (((-1124) $) NIL)) (-3597 (((-112) $) NIL)) (-3599 (((-112) $) NIL)) (-3596 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-3593 (((-112) $) NIL)) (-3589 (((-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-3592 (((-112) $) NIL)) (-3588 (((-219) $) NIL)) (-3587 (((-835) $) NIL)) (-3600 (((-112) $ $) NIL)) (-4142 (($ $ (-535)) NIL) (($ $ (-618 (-535))) NIL)) (-3591 (((-618 $) $) NIL)) (-4313 (($ (-618 $)) NIL) (($ (-1124)) NIL) (($ (-1142)) NIL) (($ (-535)) NIL) (($ (-219)) NIL) (($ (-835)) NIL)) (-4300 (((-835) $) NIL)) (-3585 (($ $) NIL)) (-3586 (($ $) NIL)) (-3598 (((-112) $) NIL)) (-3375 (((-112) $ $) NIL)) (-4299 (((-535) $) NIL))) -(((-1069) (-1070 (-1124) (-1142) (-535) (-219) (-835))) (T -1069)) -NIL -(-1070 (-1124) (-1142) (-535) (-219) (-835)) -((-2887 (((-112) $ $) 7)) (-3594 (((-112) $) 32)) (-3590 ((|#2| $) 27)) (-3595 (((-112) $) 33)) (-3881 ((|#1| $) 28)) (-3597 (((-112) $) 35)) (-3599 (((-112) $) 37)) (-3596 (((-112) $) 34)) (-3576 (((-1124) $) 9)) (-3593 (((-112) $) 31)) (-3589 ((|#3| $) 26)) (-3577 (((-1086) $) 10)) (-3592 (((-112) $) 30)) (-3588 ((|#4| $) 25)) (-3587 ((|#5| $) 24)) (-3600 (((-112) $ $) 38)) (-4142 (($ $ (-535)) 14) (($ $ (-618 (-535))) 13)) (-3591 (((-618 $) $) 29)) (-4313 (($ (-618 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4300 (((-835) $) 11)) (-3585 (($ $) 16)) (-3586 (($ $) 17)) (-3598 (((-112) $) 36)) (-3375 (((-112) $ $) 6)) (-4299 (((-535) $) 15))) -(((-1070 |#1| |#2| |#3| |#4| |#5|) (-138) (-1067) (-1067) (-1067) (-1067) (-1067)) (T -1070)) -((-3600 (*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3591 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-618 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *2 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *2 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *2 (-1067)) (-4 *6 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-3585 (*1 *1 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-535)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067))))) -(-13 (-1067) (-10 -8 (-15 -3600 ((-112) $ $)) (-15 -3599 ((-112) $)) (-15 -3598 ((-112) $)) (-15 -3597 ((-112) $)) (-15 -3596 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -3593 ((-112) $)) (-15 -3592 ((-112) $)) (-15 -3591 ((-618 $) $)) (-15 -3881 (|t#1| $)) (-15 -3590 (|t#2| $)) (-15 -3589 (|t#3| $)) (-15 -3588 (|t#4| $)) (-15 -3587 (|t#5| $)) (-15 -4313 ($ (-618 $))) (-15 -4313 ($ |t#1|)) (-15 -4313 ($ |t#2|)) (-15 -4313 ($ |t#3|)) (-15 -4313 ($ |t#4|)) (-15 -4313 ($ |t#5|)) (-15 -3586 ($ $)) (-15 -3585 ($ $)) (-15 -4299 ((-535) $)) (-15 -4142 ($ $ (-535))) (-15 -4142 ($ $ (-618 (-535)))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3594 (((-112) $) 38)) (-3590 ((|#2| $) 42)) (-3595 (((-112) $) 37)) (-3881 ((|#1| $) 41)) (-3597 (((-112) $) 35)) (-3599 (((-112) $) 14)) (-3596 (((-112) $) 36)) (-3576 (((-1124) $) NIL)) (-3593 (((-112) $) 39)) (-3589 ((|#3| $) 44)) (-3577 (((-1086) $) NIL)) (-3592 (((-112) $) 40)) (-3588 ((|#4| $) 43)) (-3587 ((|#5| $) 45)) (-3600 (((-112) $ $) 34)) (-4142 (($ $ (-535)) 56) (($ $ (-618 (-535))) 58)) (-3591 (((-618 $) $) 22)) (-4313 (($ (-618 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4300 (((-835) $) 23)) (-3585 (($ $) 21)) (-3586 (($ $) 52)) (-3598 (((-112) $) 18)) (-3375 (((-112) $ $) 33)) (-4299 (((-535) $) 54))) -(((-1071 |#1| |#2| |#3| |#4| |#5|) (-1070 |#1| |#2| |#3| |#4| |#5|) (-1067) (-1067) (-1067) (-1067) (-1067)) (T -1071)) -NIL -(-1070 |#1| |#2| |#3| |#4| |#5|) -((-3722 (((-1230) $) 23)) (-3601 (($ (-1142) (-427) |#2|) 11)) (-4300 (((-835) $) 16))) -(((-1072 |#1| |#2|) (-13 (-389) (-10 -8 (-15 -3601 ($ (-1142) (-427) |#2|)))) (-823) (-414 |#1|)) (T -1072)) -((-3601 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-427)) (-4 *5 (-823)) (-5 *1 (-1072 *5 *4)) (-4 *4 (-414 *5))))) -(-13 (-389) (-10 -8 (-15 -3601 ($ (-1142) (-427) |#2|)))) -((-3604 (((-112) |#5| |#5|) 38)) (-3607 (((-112) |#5| |#5|) 52)) (-3612 (((-112) |#5| (-618 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3608 (((-112) (-618 |#4|) (-618 |#4|)) 58)) (-3614 (((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) 63)) (-3603 (((-1230)) 33)) (-3602 (((-1230) (-1124) (-1124) (-1124)) 29)) (-3613 (((-618 |#5|) (-618 |#5|)) 82)) (-3615 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) 80)) (-3616 (((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112)) 102)) (-3606 (((-112) |#5| |#5|) 47)) (-3611 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3609 (((-112) (-618 |#4|) (-618 |#4|)) 57)) (-3610 (((-112) (-618 |#4|) (-618 |#4|)) 59)) (-4045 (((-112) (-618 |#4|) (-618 |#4|)) 60)) (-3617 (((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3605 (((-618 |#5|) (-618 |#5|)) 43))) -(((-1073 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3602 ((-1230) (-1124) (-1124) (-1124))) (-15 -3603 ((-1230))) (-15 -3604 ((-112) |#5| |#5|)) (-15 -3605 ((-618 |#5|) (-618 |#5|))) (-15 -3606 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3608 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3609 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3610 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -4045 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3611 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3612 ((-112) |#5| |#5|)) (-15 -3612 ((-112) |#5| (-618 |#5|))) (-15 -3613 ((-618 |#5|) (-618 |#5|))) (-15 -3614 ((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3615 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-15 -3616 ((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3617 ((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1073)) -((-3617 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *4) (|:| |ineq| (-618 *9)))) (-5 *1 (-1073 *6 *7 *8 *9 *4)) (-5 *3 (-618 *9)) (-4 *4 (-1038 *6 *7 *8 *9)))) (-3616 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-618 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *10) (|:| |ineq| (-618 *9))))) (-5 *1 (-1073 *6 *7 *8 *9 *10)) (-5 *3 (-618 *9)))) (-3615 (*1 *2 *2) (-12 (-5 *2 (-618 (-2 (|:| |val| (-618 *6)) (|:| -1655 *7)))) (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-3614 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1073 *5 *6 *7 *8 *3)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3611 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3610 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3609 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3608 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3606 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-3604 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3603 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3602 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))) -(-10 -7 (-15 -3602 ((-1230) (-1124) (-1124) (-1124))) (-15 -3603 ((-1230))) (-15 -3604 ((-112) |#5| |#5|)) (-15 -3605 ((-618 |#5|) (-618 |#5|))) (-15 -3606 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3608 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3609 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3610 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -4045 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3611 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3612 ((-112) |#5| |#5|)) (-15 -3612 ((-112) |#5| (-618 |#5|))) (-15 -3613 ((-618 |#5|) (-618 |#5|))) (-15 -3614 ((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3615 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-15 -3616 ((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3617 ((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3632 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 96)) (-3622 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|) 72)) (-3625 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 91)) (-3627 (((-618 |#5|) |#4| |#5|) 110)) (-3629 (((-618 |#5|) |#4| |#5|) 117)) (-3631 (((-618 |#5|) |#4| |#5|) 118)) (-3626 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 97)) (-3628 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 116)) (-3630 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3623 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112)) 84) (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3624 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 79)) (-3621 (((-1230)) 37)) (-3619 (((-1230)) 26)) (-3620 (((-1230) (-1124) (-1124) (-1124)) 33)) (-3618 (((-1230) (-1124) (-1124) (-1124)) 22))) -(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3618 ((-1230) (-1124) (-1124) (-1124))) (-15 -3619 ((-1230))) (-15 -3620 ((-1230) (-1124) (-1124) (-1124))) (-15 -3621 ((-1230))) (-15 -3622 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3623 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3623 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3624 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3625 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3630 ((-112) |#4| |#5|)) (-15 -3626 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3627 ((-618 |#5|) |#4| |#5|)) (-15 -3628 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3629 ((-618 |#5|) |#4| |#5|)) (-15 -3630 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3631 ((-618 |#5|) |#4| |#5|)) (-15 -3632 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1074)) -((-3632 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3631 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3629 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3628 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3627 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3626 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3625 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823)) (-5 *2 (-618 (-2 (|:| |val| *8) (|:| -1655 *9)))) (-5 *1 (-1074 *6 *7 *4 *8 *9)))) (-3623 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3622 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3621 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3620 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3619 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3618 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))) -(-10 -7 (-15 -3618 ((-1230) (-1124) (-1124) (-1124))) (-15 -3619 ((-1230))) (-15 -3620 ((-1230) (-1124) (-1124) (-1124))) (-15 -3621 ((-1230))) (-15 -3622 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3623 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3623 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3624 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3625 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3630 ((-112) |#4| |#5|)) (-15 -3626 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3627 ((-618 |#5|) |#4| |#5|)) (-15 -3628 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3629 ((-618 |#5|) |#4| |#5|)) (-15 -3630 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3631 ((-618 |#5|) |#4| |#5|)) (-15 -3632 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) -((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86) (((-618 $) (-618 |#4|) (-112)) 111)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ #1#) $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-3531 (((-112) |#4| $) 136)) (-3529 (((-112) |#4| $) 133)) (-3532 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) 128)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4140 (((-3 |#4| #1#) $) 83)) (-3526 (((-618 $) |#4| $) 129)) (-3528 (((-3 (-112) (-618 $)) |#4| $) 132)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3572 (((-618 $) |#4| $) 125) (((-618 $) (-618 |#4|) $) 124) (((-618 $) (-618 |#4|) (-618 $)) 123) (((-618 $) |#4| (-618 $)) 122)) (-3782 (($ |#4| $) 117) (($ (-618 |#4|) $) 116)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| #1#) $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ #1#) $ |#4|) 78)) (-4111 (($ $ |#4|) 77) (((-618 $) |#4| $) 115) (((-618 $) |#4| (-618 $)) 114) (((-618 $) (-618 |#4|) $) 113) (((-618 $) (-618 |#4|) (-618 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-3523 (((-618 $) |#4| $) 121) (((-618 $) |#4| (-618 $)) 120) (((-618 $) (-618 |#4|) $) 119) (((-618 $) (-618 |#4|) (-618 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-3530 (((-112) |#4| $) 135)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336))))) -(((-1075 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1075)) -NIL -(-13 (-1038 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1178) . T)) -((-3643 (((-618 (-535)) (-535) (-535) (-535)) 22)) (-3642 (((-618 (-535)) (-535) (-535) (-535)) 12)) (-3641 (((-618 (-535)) (-535) (-535) (-535)) 18)) (-3640 (((-535) (-535) (-535)) 9)) (-3639 (((-1224 (-535)) (-618 (-535)) (-1224 (-535)) (-535)) 46) (((-1224 (-535)) (-1224 (-535)) (-1224 (-535)) (-535)) 41)) (-3638 (((-618 (-535)) (-618 (-535)) (-618 (-535)) (-112)) 28)) (-3637 (((-665 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535))) 45)) (-3636 (((-665 (-535)) (-618 (-535)) (-618 (-535))) 33)) (-3635 (((-618 (-665 (-535))) (-618 (-535))) 35)) (-3634 (((-618 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535))) 49)) (-3633 (((-665 (-535)) (-618 (-535)) (-618 (-535)) (-618 (-535))) 57))) -(((-1076) (-10 -7 (-15 -3633 ((-665 (-535)) (-618 (-535)) (-618 (-535)) (-618 (-535)))) (-15 -3634 ((-618 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535)))) (-15 -3635 ((-618 (-665 (-535))) (-618 (-535)))) (-15 -3636 ((-665 (-535)) (-618 (-535)) (-618 (-535)))) (-15 -3637 ((-665 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535)))) (-15 -3638 ((-618 (-535)) (-618 (-535)) (-618 (-535)) (-112))) (-15 -3639 ((-1224 (-535)) (-1224 (-535)) (-1224 (-535)) (-535))) (-15 -3639 ((-1224 (-535)) (-618 (-535)) (-1224 (-535)) (-535))) (-15 -3640 ((-535) (-535) (-535))) (-15 -3641 ((-618 (-535)) (-535) (-535) (-535))) (-15 -3642 ((-618 (-535)) (-535) (-535) (-535))) (-15 -3643 ((-618 (-535)) (-535) (-535) (-535))))) (T -1076)) -((-3643 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))) (-3642 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))) (-3641 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))) (-3640 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1076)))) (-3639 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1224 (-535))) (-5 *3 (-618 (-535))) (-5 *4 (-535)) (-5 *1 (-1076)))) (-3639 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1224 (-535))) (-5 *3 (-535)) (-5 *1 (-1076)))) (-3638 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *3 (-112)) (-5 *1 (-1076)))) (-3637 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-665 (-535))) (-5 *3 (-618 (-535))) (-5 *1 (-1076)))) (-3636 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1076)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-1076)))) (-3634 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *3 (-665 (-535))) (-5 *1 (-1076)))) (-3633 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1076))))) -(-10 -7 (-15 -3633 ((-665 (-535)) (-618 (-535)) (-618 (-535)) (-618 (-535)))) (-15 -3634 ((-618 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535)))) (-15 -3635 ((-618 (-665 (-535))) (-618 (-535)))) (-15 -3636 ((-665 (-535)) (-618 (-535)) (-618 (-535)))) (-15 -3637 ((-665 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535)))) (-15 -3638 ((-618 (-535)) (-618 (-535)) (-618 (-535)) (-112))) (-15 -3639 ((-1224 (-535)) (-1224 (-535)) (-1224 (-535)) (-535))) (-15 -3639 ((-1224 (-535)) (-618 (-535)) (-1224 (-535)) (-535))) (-15 -3640 ((-535) (-535) (-535))) (-15 -3641 ((-618 (-535)) (-535) (-535) (-535))) (-15 -3642 ((-618 (-535)) (-535) (-535) (-535))) (-15 -3643 ((-618 (-535)) (-535) (-535) (-535)))) -((** (($ $ (-890)) 10))) -(((-1077 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890)))) (-1078)) (T -1077)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-890)))) -((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 14))) -(((-1078) (-138)) (T -1078)) -((* (*1 *1 *1 *1) (-4 *1 (-1078))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1078)) (-5 *2 (-890))))) -(-13 (-1067) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-890))))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL (|has| |#3| (-1067)))) (-3522 (((-112) $) NIL (|has| |#3| (-130)))) (-4053 (($ (-890)) NIL (|has| |#3| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#3| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#3| (-361)))) (-3969 (((-535) $) NIL (|has| |#3| (-821)))) (-4130 ((|#3| $ (-535) |#3|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1067)))) (-3490 (((-535) $) NIL (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067)))) ((|#3| $) NIL (|has| |#3| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018)))) (((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 $) (-1224 $)) NIL (|has| |#3| (-1018))) (((-665 |#3|) (-665 $)) NIL (|has| |#3| (-1018)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#3| (-703)))) (-3315 (($) NIL (|has| |#3| (-361)))) (-1632 ((|#3| $ (-535) |#3|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#3| $ (-535)) 12)) (-3520 (((-112) $) NIL (|has| |#3| (-821)))) (-2063 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (|has| |#3| (-703)))) (-3521 (((-112) $) NIL (|has| |#3| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2502 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#3| |#3|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#3| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#3| (-1067)))) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#3| (-361)))) (-3577 (((-1086) $) NIL (|has| |#3| (-1067)))) (-4143 ((|#3| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#3|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-618 |#3|) (-618 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-2303 (((-618 |#3|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#3| $ (-535) |#3|) NIL) ((|#3| $ (-535)) NIL)) (-4179 ((|#3| $ $) NIL (|has| |#3| (-1018)))) (-1520 (($ (-1224 |#3|)) NIL)) (-4254 (((-133)) NIL (|has| |#3| (-356)))) (-4153 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018)))) (-2064 (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336))) (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#3|) $) NIL) (($ (-535)) NIL (-3874 (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067))) (|has| |#3| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067)))) (($ |#3|) NIL (|has| |#3| (-1067))) (((-835) $) NIL (|has| |#3| (-593 (-835))))) (-3444 (((-747)) NIL (|has| |#3| (-1018)))) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#3| (-821)))) (-2979 (($) NIL (|has| |#3| (-130)) CONST)) (-2985 (($) NIL (|has| |#3| (-703)) CONST)) (-2990 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018)))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-3375 (((-112) $ $) NIL (|has| |#3| (-1067)))) (-3005 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-3006 (((-112) $ $) 17 (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-4291 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4180 (($ $ $) NIL (|has| |#3| (-1018))) (($ $) NIL (|has| |#3| (-1018)))) (-4182 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-747)) NIL (|has| |#3| (-703))) (($ $ (-890)) NIL (|has| |#3| (-703)))) (* (($ (-535) $) NIL (|has| |#3| (-1018))) (($ $ $) NIL (|has| |#3| (-703))) (($ $ |#3|) NIL (|has| |#3| (-703))) (($ |#3| $) NIL (|has| |#3| (-703))) (($ (-747) $) NIL (|has| |#3| (-130))) (($ (-890) $) NIL (|has| |#3| (-25)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1079 |#1| |#2| |#3|) (-232 |#1| |#3|) (-747) (-747) (-769)) (T -1079)) +((-3972 (((-623 |#2|) (-1 |#2| |#1|) (-1062 |#1|)) 24 (|has| |#1| (-823))) (((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|)) 14))) +(((-1057 |#1| |#2|) (-10 -7 (-15 -3972 ((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) (IF (|has| |#1| (-823)) (-15 -3972 ((-623 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) |%noBranch|)) (-1181) (-1181)) (T -1057)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-823)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-623 *6)) (-5 *1 (-1057 *5 *6)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1062 *6)) (-5 *1 (-1057 *5 *6))))) +(-10 -7 (-15 -3972 ((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) (IF (|has| |#1| (-823)) (-15 -3972 ((-623 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 17) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1509 (((-623 (-1103)) $) 9)) (-2316 (((-112) $ $) NIL))) +(((-1058) (-13 (-1051) (-10 -8 (-15 -1509 ((-623 (-1103)) $))))) (T -1058)) +((-1509 (*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-1058))))) +(-13 (-1051) (-10 -8 (-15 -1509 ((-623 (-1103)) $)))) +((-3972 (((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|)) 19))) +(((-1059 |#1| |#2|) (-10 -7 (-15 -3972 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|)))) (-1181) (-1181)) (T -1059)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1060 *6)) (-5 *1 (-1059 *5 *6))))) +(-10 -7 (-15 -3972 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-1861 (((-1144) $) 11)) (-3939 (((-1062 |#1|) $) 12)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3065 (($ (-1144) (-1062 |#1|)) 10)) (-1518 (((-836) $) 20 (|has| |#1| (-1068)))) (-2316 (((-112) $ $) 15 (|has| |#1| (-1068))))) +(((-1060 |#1|) (-13 (-1181) (-10 -8 (-15 -3065 ($ (-1144) (-1062 |#1|))) (-15 -1861 ((-1144) $)) (-15 -3939 ((-1062 |#1|) $)) (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|))) (-1181)) (T -1060)) +((-3065 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1062 *4)) (-4 *4 (-1181)) (-5 *1 (-1060 *4)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1060 *3)) (-4 *3 (-1181)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1062 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-1181))))) +(-13 (-1181) (-10 -8 (-15 -3065 ($ (-1144) (-1062 |#1|))) (-15 -1861 ((-1144) $)) (-15 -3939 ((-1062 |#1|) $)) (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|))) +((-3939 (($ |#1| |#1|) 7)) (-1374 ((|#1| $) 10)) (-4024 ((|#1| $) 12)) (-4036 (((-550) $) 8)) (-3429 ((|#1| $) 9)) (-4049 ((|#1| $) 11)) (-4028 (($ |#1|) 6)) (-1299 (($ |#1| |#1|) 14)) (-2132 (($ $ (-550)) 13))) +(((-1061 |#1|) (-138) (-1181)) (T -1061)) +((-1299 (*1 *1 *2 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) (-2132 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1061 *3)) (-4 *3 (-1181)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1181)) (-5 *2 (-550)))) (-3939 (*1 *1 *2 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) (-4028 (*1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181))))) +(-13 (-1181) (-10 -8 (-15 -1299 ($ |t#1| |t#1|)) (-15 -2132 ($ $ (-550))) (-15 -4024 (|t#1| $)) (-15 -4049 (|t#1| $)) (-15 -1374 (|t#1| $)) (-15 -3429 (|t#1| $)) (-15 -4036 ((-550) $)) (-15 -3939 ($ |t#1| |t#1|)) (-15 -4028 ($ |t#1|)))) +(((-1181) . T)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3939 (($ |#1| |#1|) 15)) (-3972 (((-623 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-823)))) (-1374 ((|#1| $) 10)) (-4024 ((|#1| $) 9)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-4036 (((-550) $) 14)) (-3429 ((|#1| $) 12)) (-4049 ((|#1| $) 11)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-4214 (((-623 |#1|) $) 36 (|has| |#1| (-823))) (((-623 |#1|) (-623 $)) 35 (|has| |#1| (-823)))) (-4028 (($ |#1|) 26)) (-1518 (((-836) $) 25 (|has| |#1| (-1068)))) (-1299 (($ |#1| |#1|) 8)) (-2132 (($ $ (-550)) 16)) (-2316 (((-112) $ $) 19 (|has| |#1| (-1068))))) +(((-1062 |#1|) (-13 (-1061 |#1|) (-10 -7 (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1063 |#1| (-623 |#1|))) |%noBranch|))) (-1181)) (T -1062)) +NIL +(-13 (-1061 |#1|) (-10 -7 (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1063 |#1| (-623 |#1|))) |%noBranch|))) +((-3939 (($ |#1| |#1|) 7)) (-3972 ((|#2| (-1 |#1| |#1|) $) 16)) (-1374 ((|#1| $) 10)) (-4024 ((|#1| $) 12)) (-4036 (((-550) $) 8)) (-3429 ((|#1| $) 9)) (-4049 ((|#1| $) 11)) (-4214 ((|#2| (-623 $)) 18) ((|#2| $) 17)) (-4028 (($ |#1|) 6)) (-1299 (($ |#1| |#1|) 14)) (-2132 (($ $ (-550)) 13))) +(((-1063 |#1| |#2|) (-138) (-823) (-1117 |t#1|)) (T -1063)) +((-4214 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1063 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1117 *4)))) (-4214 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1117 *3)))) (-3972 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1063 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1117 *4))))) +(-13 (-1061 |t#1|) (-10 -8 (-15 -4214 (|t#2| (-623 $))) (-15 -4214 (|t#2| $)) (-15 -3972 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1061 |#1|) . T) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3159 (((-1103) $) 12)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 20) (((-1149) $) NIL) (($ (-1149)) NIL)) (-1925 (((-623 (-1103)) $) 10)) (-2316 (((-112) $ $) NIL))) +(((-1064) (-13 (-1051) (-10 -8 (-15 -1925 ((-623 (-1103)) $)) (-15 -3159 ((-1103) $))))) (T -1064)) +((-1925 (*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-1064)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1064))))) +(-13 (-1051) (-10 -8 (-15 -1925 ((-623 (-1103)) $)) (-15 -3159 ((-1103) $)))) +((-3965 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1445 (($ $ $) 10)) (-1525 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1065 |#1| |#2|) (-10 -8 (-15 -3965 (|#1| |#2| |#1|)) (-15 -3965 (|#1| |#1| |#2|)) (-15 -3965 (|#1| |#1| |#1|)) (-15 -1445 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#2|)) (-15 -1525 (|#1| |#1| |#1|))) (-1066 |#2|) (-1068)) (T -1065)) +NIL +(-10 -8 (-15 -3965 (|#1| |#2| |#1|)) (-15 -3965 (|#1| |#1| |#2|)) (-15 -3965 (|#1| |#1| |#1|)) (-15 -1445 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#2|)) (-15 -1525 (|#1| |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-3965 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1445 (($ $ $) 20)) (-1467 (((-112) $ $) 19)) (-4047 (((-112) $ (-749)) 35)) (-2142 (($) 25) (($ (-623 |#1|)) 24)) (-4253 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4342)))) (-3513 (($) 36 T CONST)) (-1328 (($ $) 59 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#1| $) 58 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4342)))) (-3450 (((-623 |#1|) $) 43 (|has| $ (-6 -4342)))) (-1723 (((-112) $ $) 28)) (-1859 (((-112) $ (-749)) 34)) (-2689 (((-623 |#1|) $) 44 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 38)) (-1573 (((-112) $ (-749)) 33)) (-1825 (((-1126) $) 9)) (-1623 (($ $ $) 23)) (-3337 (((-1088) $) 10)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1543 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#1|) (-623 |#1|)) 50 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 48 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 (-287 |#1|))) 47 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 29)) (-2902 (((-112) $) 32)) (-3498 (($) 31)) (-1525 (($ $ $) 22) (($ $ |#1|) 21)) (-3350 (((-749) |#1| $) 45 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4342)))) (-1731 (($ $) 30)) (-4028 (((-526) $) 60 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 51)) (-1518 (((-836) $) 11)) (-3578 (($) 27) (($ (-623 |#1|)) 26)) (-1675 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 6)) (-3191 (((-749) $) 37 (|has| $ (-6 -4342))))) +(((-1066 |#1|) (-138) (-1068)) (T -1066)) +((-1723 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3578 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-4 *1 (-1066 *3)))) (-2142 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) (-2142 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-4 *1 (-1066 *3)))) (-1623 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) (-1525 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) (-1525 (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) (-1445 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) (-1467 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3965 (*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) (-3965 (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) (-3965 (*1 *1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068))))) +(-13 (-1068) (-149 |t#1|) (-10 -8 (-6 -4332) (-15 -1723 ((-112) $ $)) (-15 -3578 ($)) (-15 -3578 ($ (-623 |t#1|))) (-15 -2142 ($)) (-15 -2142 ($ (-623 |t#1|))) (-15 -1623 ($ $ $)) (-15 -1525 ($ $ $)) (-15 -1525 ($ $ |t#1|)) (-15 -1445 ($ $ $)) (-15 -1467 ((-112) $ $)) (-15 -3965 ($ $ $)) (-15 -3965 ($ $ |t#1|)) (-15 -3965 ($ |t#1| $)))) +(((-34) . T) ((-101) . T) ((-595 (-836)) . T) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) . T) ((-1181) . T)) +((-1825 (((-1126) $) 10)) (-3337 (((-1088) $) 8))) +(((-1067 |#1|) (-10 -8 (-15 -1825 ((-1126) |#1|)) (-15 -3337 ((-1088) |#1|))) (-1068)) (T -1067)) +NIL +(-10 -8 (-15 -1825 ((-1126) |#1|)) (-15 -3337 ((-1088) |#1|))) +((-1504 (((-112) $ $) 7)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6))) +(((-1068) (-138)) (T -1068)) +((-3337 (*1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1088)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1126))))) +(-13 (-101) (-595 (-836)) (-10 -8 (-15 -3337 ((-1088) $)) (-15 -1825 ((-1126) $)))) +(((-101) . T) ((-595 (-836)) . T)) +((-1504 (((-112) $ $) NIL)) (-4319 (((-749)) 30)) (-3859 (($ (-623 (-894))) 52)) (-4052 (((-3 $ "failed") $ (-894) (-894)) 58)) (-1741 (($) 32)) (-1921 (((-112) (-894) $) 35)) (-2253 (((-894) $) 50)) (-1825 (((-1126) $) NIL)) (-2922 (($ (-894)) 31)) (-4155 (((-3 $ "failed") $ (-894)) 55)) (-3337 (((-1088) $) NIL)) (-2024 (((-1227 $)) 40)) (-3949 (((-623 (-894)) $) 24)) (-3754 (((-749) $ (-894) (-894)) 56)) (-1518 (((-836) $) 29)) (-2316 (((-112) $ $) 21))) +(((-1069 |#1| |#2|) (-13 (-361) (-10 -8 (-15 -4155 ((-3 $ "failed") $ (-894))) (-15 -4052 ((-3 $ "failed") $ (-894) (-894))) (-15 -3949 ((-623 (-894)) $)) (-15 -3859 ($ (-623 (-894)))) (-15 -2024 ((-1227 $))) (-15 -1921 ((-112) (-894) $)) (-15 -3754 ((-749) $ (-894) (-894))))) (-894) (-894)) (T -1069)) +((-4155 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-894)) (-5 *1 (-1069 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4052 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-894)) (-5 *1 (-1069 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-623 (-894))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-894)) (-14 *4 (-894)))) (-3859 (*1 *1 *2) (-12 (-5 *2 (-623 (-894))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-894)) (-14 *4 (-894)))) (-2024 (*1 *2) (-12 (-5 *2 (-1227 (-1069 *3 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-894)) (-14 *4 (-894)))) (-1921 (*1 *2 *3 *1) (-12 (-5 *3 (-894)) (-5 *2 (-112)) (-5 *1 (-1069 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3754 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-894)) (-5 *2 (-749)) (-5 *1 (-1069 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-361) (-10 -8 (-15 -4155 ((-3 $ "failed") $ (-894))) (-15 -4052 ((-3 $ "failed") $ (-894) (-894))) (-15 -3949 ((-623 (-894)) $)) (-15 -3859 ($ (-623 (-894)))) (-15 -2024 ((-1227 $))) (-15 -1921 ((-112) (-894) $)) (-15 -3754 ((-749) $ (-894) (-894))))) +((-1504 (((-112) $ $) NIL)) (-1597 (($) NIL (|has| |#1| (-361)))) (-3965 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1445 (($ $ $) 72)) (-1467 (((-112) $ $) 73)) (-4047 (((-112) $ (-749)) NIL)) (-4319 (((-749)) NIL (|has| |#1| (-361)))) (-2142 (($ (-623 |#1|)) NIL) (($) 13)) (-3378 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3112 (($ |#1| $) 67 (|has| $ (-6 -4342))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4342)))) (-1741 (($) NIL (|has| |#1| (-361)))) (-3450 (((-623 |#1|) $) 19 (|has| $ (-6 -4342)))) (-1723 (((-112) $ $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-2707 ((|#1| $) 57 (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-4164 ((|#1| $) 55 (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 34)) (-2253 (((-894) $) NIL (|has| |#1| (-361)))) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-1623 (($ $ $) 70)) (-3638 ((|#1| $) 25)) (-1886 (($ |#1| $) 65)) (-2922 (($ (-894)) NIL (|has| |#1| (-361)))) (-3337 (((-1088) $) NIL)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3760 ((|#1| $) 27)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 21)) (-3498 (($) 11)) (-1525 (($ $ |#1|) NIL) (($ $ $) 71)) (-2729 (($) NIL) (($ (-623 |#1|)) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) 16)) (-4028 (((-526) $) 52 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 61)) (-1696 (($ $) NIL (|has| |#1| (-361)))) (-1518 (((-836) $) NIL)) (-1800 (((-749) $) NIL)) (-3578 (($ (-623 |#1|)) NIL) (($) 12)) (-3685 (($ (-623 |#1|)) NIL)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 54)) (-3191 (((-749) $) 10 (|has| $ (-6 -4342))))) +(((-1070 |#1|) (-418 |#1|) (-1068)) (T -1070)) +NIL +(-418 |#1|) +((-1504 (((-112) $ $) 7)) (-3259 (((-112) $) 32)) (-2790 ((|#2| $) 27)) (-3355 (((-112) $) 33)) (-4038 ((|#1| $) 28)) (-3552 (((-112) $) 35)) (-3742 (((-112) $) 37)) (-3452 (((-112) $) 34)) (-1825 (((-1126) $) 9)) (-1331 (((-112) $) 31)) (-2815 ((|#3| $) 26)) (-3337 (((-1088) $) 10)) (-4282 (((-112) $) 30)) (-2708 ((|#4| $) 25)) (-1810 ((|#5| $) 24)) (-1721 (((-112) $ $) 38)) (-2680 (($ $ (-550)) 14) (($ $ (-623 (-550))) 13)) (-3076 (((-623 $) $) 29)) (-4028 (($ (-623 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1518 (((-836) $) 11)) (-4244 (($ $) 16)) (-4230 (($ $) 17)) (-3650 (((-112) $) 36)) (-2316 (((-112) $ $) 6)) (-3191 (((-550) $) 15))) +(((-1071 |#1| |#2| |#3| |#4| |#5|) (-138) (-1068) (-1068) (-1068) (-1068) (-1068)) (T -1071)) +((-1721 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-4282 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112)))) (-3076 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-623 *1)) (-4 *1 (-1071 *3 *4 *5 *6 *7)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *2 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *2 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *2)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)))) (-4028 (*1 *1 *2) (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *2 (-1068)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)))) (-4028 (*1 *1 *2) (-12 (-4 *1 (-1071 *3 *2 *4 *5 *6)) (-4 *3 (-1068)) (-4 *2 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)))) (-4028 (*1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *2 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)))) (-4028 (*1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *5 *2 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *2 (-1068)) (-4 *6 (-1068)))) (-4028 (*1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *2)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)))) (-4230 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *2 (-1068)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *2 (-1068)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-550)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068))))) +(-13 (-1068) (-10 -8 (-15 -1721 ((-112) $ $)) (-15 -3742 ((-112) $)) (-15 -3650 ((-112) $)) (-15 -3552 ((-112) $)) (-15 -3452 ((-112) $)) (-15 -3355 ((-112) $)) (-15 -3259 ((-112) $)) (-15 -1331 ((-112) $)) (-15 -4282 ((-112) $)) (-15 -3076 ((-623 $) $)) (-15 -4038 (|t#1| $)) (-15 -2790 (|t#2| $)) (-15 -2815 (|t#3| $)) (-15 -2708 (|t#4| $)) (-15 -1810 (|t#5| $)) (-15 -4028 ($ (-623 $))) (-15 -4028 ($ |t#1|)) (-15 -4028 ($ |t#2|)) (-15 -4028 ($ |t#3|)) (-15 -4028 ($ |t#4|)) (-15 -4028 ($ |t#5|)) (-15 -4230 ($ $)) (-15 -4244 ($ $)) (-15 -3191 ((-550) $)) (-15 -2680 ($ $ (-550))) (-15 -2680 ($ $ (-623 (-550)))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-3259 (((-112) $) NIL)) (-2790 (((-1144) $) NIL)) (-3355 (((-112) $) NIL)) (-4038 (((-1126) $) NIL)) (-3552 (((-112) $) NIL)) (-3742 (((-112) $) NIL)) (-3452 (((-112) $) NIL)) (-1825 (((-1126) $) NIL)) (-1331 (((-112) $) NIL)) (-2815 (((-550) $) NIL)) (-3337 (((-1088) $) NIL)) (-4282 (((-112) $) NIL)) (-2708 (((-219) $) NIL)) (-1810 (((-836) $) NIL)) (-1721 (((-112) $ $) NIL)) (-2680 (($ $ (-550)) NIL) (($ $ (-623 (-550))) NIL)) (-3076 (((-623 $) $) NIL)) (-4028 (($ (-623 $)) NIL) (($ (-1126)) NIL) (($ (-1144)) NIL) (($ (-550)) NIL) (($ (-219)) NIL) (($ (-836)) NIL)) (-1518 (((-836) $) NIL)) (-4244 (($ $) NIL)) (-4230 (($ $) NIL)) (-3650 (((-112) $) NIL)) (-2316 (((-112) $ $) NIL)) (-3191 (((-550) $) NIL))) +(((-1072) (-1071 (-1126) (-1144) (-550) (-219) (-836))) (T -1072)) +NIL +(-1071 (-1126) (-1144) (-550) (-219) (-836)) +((-1504 (((-112) $ $) NIL)) (-3259 (((-112) $) 38)) (-2790 ((|#2| $) 42)) (-3355 (((-112) $) 37)) (-4038 ((|#1| $) 41)) (-3552 (((-112) $) 35)) (-3742 (((-112) $) 14)) (-3452 (((-112) $) 36)) (-1825 (((-1126) $) NIL)) (-1331 (((-112) $) 39)) (-2815 ((|#3| $) 44)) (-3337 (((-1088) $) NIL)) (-4282 (((-112) $) 40)) (-2708 ((|#4| $) 43)) (-1810 ((|#5| $) 45)) (-1721 (((-112) $ $) 34)) (-2680 (($ $ (-550)) 56) (($ $ (-623 (-550))) 58)) (-3076 (((-623 $) $) 22)) (-4028 (($ (-623 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1518 (((-836) $) 23)) (-4244 (($ $) 21)) (-4230 (($ $) 52)) (-3650 (((-112) $) 18)) (-2316 (((-112) $ $) 33)) (-3191 (((-550) $) 54))) +(((-1073 |#1| |#2| |#3| |#4| |#5|) (-1071 |#1| |#2| |#3| |#4| |#5|) (-1068) (-1068) (-1068) (-1068) (-1068)) (T -1073)) +NIL +(-1071 |#1| |#2| |#3| |#4| |#5|) +((-3397 (((-1232) $) 23)) (-2321 (($ (-1144) (-427) |#2|) 11)) (-1518 (((-836) $) 16))) +(((-1074 |#1| |#2|) (-13 (-388) (-10 -8 (-15 -2321 ($ (-1144) (-427) |#2|)))) (-825) (-423 |#1|)) (T -1074)) +((-2321 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1144)) (-5 *3 (-427)) (-4 *5 (-825)) (-5 *1 (-1074 *5 *4)) (-4 *4 (-423 *5))))) +(-13 (-388) (-10 -8 (-15 -2321 ($ (-1144) (-427) |#2|)))) +((-2832 (((-112) |#5| |#5|) 38)) (-3080 (((-112) |#5| |#5|) 52)) (-2399 (((-112) |#5| (-623 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3174 (((-112) (-623 |#4|) (-623 |#4|)) 58)) (-2548 (((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) 63)) (-2741 (((-1232)) 33)) (-2657 (((-1232) (-1126) (-1126) (-1126)) 29)) (-2474 (((-623 |#5|) (-623 |#5|)) 82)) (-2623 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) 80)) (-1531 (((-623 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112)) 102)) (-2993 (((-112) |#5| |#5|) 47)) (-2323 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2162 (((-112) (-623 |#4|) (-623 |#4|)) 57)) (-2245 (((-112) (-623 |#4|) (-623 |#4|)) 59)) (-3831 (((-112) (-623 |#4|) (-623 |#4|)) 60)) (-1629 (((-3 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-2912 (((-623 |#5|) (-623 |#5|)) 43))) +(((-1075 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2657 ((-1232) (-1126) (-1126) (-1126))) (-15 -2741 ((-1232))) (-15 -2832 ((-112) |#5| |#5|)) (-15 -2912 ((-623 |#5|) (-623 |#5|))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -3080 ((-112) |#5| |#5|)) (-15 -3174 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2162 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2245 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3831 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2323 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2399 ((-112) |#5| |#5|)) (-15 -2399 ((-112) |#5| (-623 |#5|))) (-15 -2474 ((-623 |#5|) (-623 |#5|))) (-15 -2548 ((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) (-15 -2623 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-15 -1531 ((-623 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -1629 ((-3 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1040 |#1| |#2| |#3| |#4|)) (T -1075)) +((-1629 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1034 *6 *7 *8)) (-5 *2 (-2 (|:| -1721 (-623 *9)) (|:| -3223 *4) (|:| |ineq| (-623 *9)))) (-5 *1 (-1075 *6 *7 *8 *9 *4)) (-5 *3 (-623 *9)) (-4 *4 (-1040 *6 *7 *8 *9)))) (-1531 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-623 *10)) (-5 *5 (-112)) (-4 *10 (-1040 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1034 *6 *7 *8)) (-5 *2 (-623 (-2 (|:| -1721 (-623 *9)) (|:| -3223 *10) (|:| |ineq| (-623 *9))))) (-5 *1 (-1075 *6 *7 *8 *9 *10)) (-5 *3 (-623 *9)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-623 (-2 (|:| |val| (-623 *6)) (|:| -3223 *7)))) (-4 *6 (-1034 *3 *4 *5)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1075 *3 *4 *5 *6 *7)))) (-2548 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -3223 *8))) (-4 *7 (-1034 *4 *5 *6)) (-4 *8 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *8)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-623 *7)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *1 (-1075 *3 *4 *5 *6 *7)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1075 *5 *6 *7 *8 *3)))) (-2399 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-3831 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-2245 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-2162 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-3174 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-3080 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-2993 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-623 *7)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *1 (-1075 *3 *4 *5 *6 *7)))) (-2832 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) (-2741 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) (-2657 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(-10 -7 (-15 -2657 ((-1232) (-1126) (-1126) (-1126))) (-15 -2741 ((-1232))) (-15 -2832 ((-112) |#5| |#5|)) (-15 -2912 ((-623 |#5|) (-623 |#5|))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -3080 ((-112) |#5| |#5|)) (-15 -3174 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2162 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2245 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -3831 ((-112) (-623 |#4|) (-623 |#4|))) (-15 -2323 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2399 ((-112) |#5| |#5|)) (-15 -2399 ((-112) |#5| (-623 |#5|))) (-15 -2474 ((-623 |#5|) (-623 |#5|))) (-15 -2548 ((-112) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) (-15 -2623 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-15 -1531 ((-623 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|)))) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -1629 ((-3 (-2 (|:| -1721 (-623 |#4|)) (|:| -3223 |#5|) (|:| |ineq| (-623 |#4|))) "failed") (-623 |#4|) |#5| (-623 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3515 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|) 96)) (-2098 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#4| |#4| |#5|) 72)) (-4108 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|) 91)) (-4287 (((-623 |#5|) |#4| |#5|) 110)) (-1420 (((-623 |#5|) |#4| |#5|) 117)) (-3427 (((-623 |#5|) |#4| |#5|) 118)) (-4198 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|) 97)) (-1324 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|) 116)) (-3324 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3923 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#3| (-112)) 84) (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-4020 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|) 79)) (-2019 (((-1232)) 37)) (-1834 (((-1232)) 26)) (-1927 (((-1232) (-1126) (-1126) (-1126)) 33)) (-1730 (((-1232) (-1126) (-1126) (-1126)) 22))) +(((-1076 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1730 ((-1232) (-1126) (-1126) (-1126))) (-15 -1834 ((-1232))) (-15 -1927 ((-1232) (-1126) (-1126) (-1126))) (-15 -2019 ((-1232))) (-15 -2098 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -3923 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3923 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#3| (-112))) (-15 -4020 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -4108 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -3324 ((-112) |#4| |#5|)) (-15 -4198 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -4287 ((-623 |#5|) |#4| |#5|)) (-15 -1324 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -1420 ((-623 |#5|) |#4| |#5|)) (-15 -3324 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -3427 ((-623 |#5|) |#4| |#5|)) (-15 -3515 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1040 |#1| |#2| |#3| |#4|)) (T -1076)) +((-3515 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 *4)) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-3324 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-1420 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 *4)) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-1324 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-4287 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 *4)) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-4198 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-3324 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-4108 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-4020 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-3923 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -3223 *9)))) (-5 *5 (-112)) (-4 *8 (-1034 *6 *7 *4)) (-4 *9 (-1040 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) (-5 *2 (-623 (-2 (|:| |val| *8) (|:| -3223 *9)))) (-5 *1 (-1076 *6 *7 *4 *8 *9)))) (-3923 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1034 *6 *7 *8)) (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1076 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) (-2098 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) (-2019 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) (-1927 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) (-1834 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) (-1730 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(-10 -7 (-15 -1730 ((-1232) (-1126) (-1126) (-1126))) (-15 -1834 ((-1232))) (-15 -1927 ((-1232) (-1126) (-1126) (-1126))) (-15 -2019 ((-1232))) (-15 -2098 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -3923 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3923 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) |#3| (-112))) (-15 -4020 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -4108 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#4| |#5|)) (-15 -3324 ((-112) |#4| |#5|)) (-15 -4198 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -4287 ((-623 |#5|) |#4| |#5|)) (-15 -1324 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -1420 ((-623 |#5|) |#4| |#5|)) (-15 -3324 ((-623 (-2 (|:| |val| (-112)) (|:| -3223 |#5|))) |#4| |#5|)) (-15 -3427 ((-623 |#5|) |#4| |#5|)) (-15 -3515 ((-623 (-2 (|:| |val| |#4|) (|:| -3223 |#5|))) |#4| |#5|))) +((-1504 (((-112) $ $) 7)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) 85)) (-1779 (((-623 $) (-623 |#4|)) 86) (((-623 $) (-623 |#4|) (-112)) 111)) (-3141 (((-623 |#3|) $) 33)) (-2238 (((-112) $) 26)) (-3670 (((-112) $) 17 (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-1505 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| $) 126)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) 27)) (-4047 (((-112) $ (-749)) 44)) (-4253 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) 79)) (-3513 (($) 45 T CONST)) (-2976 (((-112) $) 22 (|has| |#1| (-542)))) (-3156 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3059 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3253 (((-112) $) 25 (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3774 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) 36)) (-2726 (($ (-623 |#4|)) 35)) (-1308 (((-3 $ "failed") $) 82)) (-2067 ((|#4| |#4| $) 89)) (-1328 (($ $) 68 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#4| $) 67 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1878 ((|#4| |#4| $) 87)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) 105)) (-3113 (((-112) |#4| $) 136)) (-2933 (((-112) |#4| $) 133)) (-3208 (((-112) |#4| $) 137) (((-112) $) 134)) (-3450 (((-623 |#4|) $) 52 (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) 104) (((-112) $) 103)) (-3952 ((|#3| $) 34)) (-1859 (((-112) $ (-749)) 43)) (-2689 (((-623 |#4|) $) 53 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 47)) (-2650 (((-623 |#3|) $) 32)) (-2568 (((-112) |#3| $) 31)) (-1573 (((-112) $ (-749)) 42)) (-1825 (((-1126) $) 9)) (-3735 (((-3 |#4| (-623 $)) |#4| |#4| $) 128)) (-3632 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| |#4| $) 127)) (-3159 (((-3 |#4| "failed") $) 83)) (-3830 (((-623 $) |#4| $) 129)) (-2845 (((-3 (-112) (-623 $)) |#4| $) 132)) (-2743 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1623 (((-623 $) |#4| $) 125) (((-623 $) (-623 |#4|) $) 124) (((-623 $) (-623 |#4|) (-623 $)) 123) (((-623 $) |#4| (-623 $)) 122)) (-3757 (($ |#4| $) 117) (($ (-623 |#4|) $) 116)) (-3671 (((-623 |#4|) $) 107)) (-1296 (((-112) |#4| $) 99) (((-112) $) 95)) (-3900 ((|#4| |#4| $) 90)) (-3831 (((-112) $ $) 110)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) 100) (((-112) $) 96)) (-3984 ((|#4| |#4| $) 91)) (-3337 (((-1088) $) 10)) (-1293 (((-3 |#4| "failed") $) 84)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2654 (((-3 $ "failed") $ |#4|) 78)) (-2272 (($ $ |#4|) 77) (((-623 $) |#4| $) 115) (((-623 $) |#4| (-623 $)) 114) (((-623 $) (-623 |#4|) $) 113) (((-623 $) (-623 |#4|) (-623 $)) 112)) (-1543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) 38)) (-2902 (((-112) $) 41)) (-3498 (($) 40)) (-2970 (((-749) $) 106)) (-3350 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4342)))) (-1731 (($ $) 39)) (-4028 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 60)) (-2315 (($ $ |#3|) 28)) (-2486 (($ $ |#3|) 30)) (-1969 (($ $) 88)) (-2401 (($ $ |#3|) 29)) (-1518 (((-836) $) 11) (((-623 |#4|) $) 37)) (-2580 (((-749) $) 76 (|has| |#3| (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3532 (((-623 $) |#4| $) 121) (((-623 $) |#4| (-623 $)) 120) (((-623 $) (-623 |#4|) $) 119) (((-623 $) (-623 |#4|) (-623 $)) 118)) (-1675 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) 81)) (-3024 (((-112) |#4| $) 135)) (-1288 (((-112) |#3| $) 80)) (-2316 (((-112) $ $) 6)) (-3191 (((-749) $) 46 (|has| $ (-6 -4342))))) +(((-1077 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1034 |t#1| |t#2| |t#3|)) (T -1077)) +NIL +(-13 (-1040 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-836)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-949 |#1| |#2| |#3| |#4|) . T) ((-1040 |#1| |#2| |#3| |#4|) . T) ((-1068) . T) ((-1174 |#1| |#2| |#3| |#4|) . T) ((-1181) . T)) +((-2384 (((-623 (-550)) (-550) (-550) (-550)) 22)) (-2301 (((-623 (-550)) (-550) (-550) (-550)) 12)) (-2232 (((-623 (-550)) (-550) (-550) (-550)) 18)) (-2158 (((-550) (-550) (-550)) 9)) (-3180 (((-1227 (-550)) (-623 (-550)) (-1227 (-550)) (-550)) 46) (((-1227 (-550)) (-1227 (-550)) (-1227 (-550)) (-550)) 41)) (-3086 (((-623 (-550)) (-623 (-550)) (-623 (-550)) (-112)) 28)) (-2998 (((-667 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550))) 45)) (-3837 (((-667 (-550)) (-623 (-550)) (-623 (-550))) 33)) (-3756 (((-623 (-667 (-550))) (-623 (-550))) 35)) (-3676 (((-623 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550))) 49)) (-3614 (((-667 (-550)) (-623 (-550)) (-623 (-550)) (-623 (-550))) 57))) +(((-1078) (-10 -7 (-15 -3614 ((-667 (-550)) (-623 (-550)) (-623 (-550)) (-623 (-550)))) (-15 -3676 ((-623 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550)))) (-15 -3756 ((-623 (-667 (-550))) (-623 (-550)))) (-15 -3837 ((-667 (-550)) (-623 (-550)) (-623 (-550)))) (-15 -2998 ((-667 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550)))) (-15 -3086 ((-623 (-550)) (-623 (-550)) (-623 (-550)) (-112))) (-15 -3180 ((-1227 (-550)) (-1227 (-550)) (-1227 (-550)) (-550))) (-15 -3180 ((-1227 (-550)) (-623 (-550)) (-1227 (-550)) (-550))) (-15 -2158 ((-550) (-550) (-550))) (-15 -2232 ((-623 (-550)) (-550) (-550) (-550))) (-15 -2301 ((-623 (-550)) (-550) (-550) (-550))) (-15 -2384 ((-623 (-550)) (-550) (-550) (-550))))) (T -1078)) +((-2384 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1078)) (-5 *3 (-550)))) (-2301 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1078)) (-5 *3 (-550)))) (-2232 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1078)) (-5 *3 (-550)))) (-2158 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1078)))) (-3180 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1227 (-550))) (-5 *3 (-623 (-550))) (-5 *4 (-550)) (-5 *1 (-1078)))) (-3180 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1227 (-550))) (-5 *3 (-550)) (-5 *1 (-1078)))) (-3086 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *3 (-112)) (-5 *1 (-1078)))) (-2998 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-667 (-550))) (-5 *3 (-623 (-550))) (-5 *1 (-1078)))) (-3837 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1078)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-1078)))) (-3676 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *3 (-667 (-550))) (-5 *1 (-1078)))) (-3614 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1078))))) +(-10 -7 (-15 -3614 ((-667 (-550)) (-623 (-550)) (-623 (-550)) (-623 (-550)))) (-15 -3676 ((-623 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550)))) (-15 -3756 ((-623 (-667 (-550))) (-623 (-550)))) (-15 -3837 ((-667 (-550)) (-623 (-550)) (-623 (-550)))) (-15 -2998 ((-667 (-550)) (-623 (-550)) (-623 (-550)) (-667 (-550)))) (-15 -3086 ((-623 (-550)) (-623 (-550)) (-623 (-550)) (-112))) (-15 -3180 ((-1227 (-550)) (-1227 (-550)) (-1227 (-550)) (-550))) (-15 -3180 ((-1227 (-550)) (-623 (-550)) (-1227 (-550)) (-550))) (-15 -2158 ((-550) (-550) (-550))) (-15 -2232 ((-623 (-550)) (-550) (-550) (-550))) (-15 -2301 ((-623 (-550)) (-550) (-550) (-550))) (-15 -2384 ((-623 (-550)) (-550) (-550) (-550)))) +((** (($ $ (-894)) 10))) +(((-1079 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-894)))) (-1080)) (T -1079)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-894)))) +((-1504 (((-112) $ $) 7)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6)) (** (($ $ (-894)) 13)) (* (($ $ $) 14))) +(((-1080) (-138)) (T -1080)) +((* (*1 *1 *1 *1) (-4 *1 (-1080))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1080)) (-5 *2 (-894))))) +(-13 (-1068) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-894))))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL (|has| |#3| (-1068)))) (-3433 (((-112) $) NIL (|has| |#3| (-130)))) (-3230 (($ (-894)) NIL (|has| |#3| (-1020)))) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-2270 (($ $ $) NIL (|has| |#3| (-771)))) (-3219 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-4047 (((-112) $ (-749)) NIL)) (-4319 (((-749)) NIL (|has| |#3| (-361)))) (-3712 (((-550) $) NIL (|has| |#3| (-823)))) (-1705 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (-12 (|has| |#3| (-1011 (-550))) (|has| |#3| (-1068)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#3| (-1011 (-400 (-550)))) (|has| |#3| (-1068)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1068)))) (-2726 (((-550) $) NIL (-12 (|has| |#3| (-1011 (-550))) (|has| |#3| (-1068)))) (((-400 (-550)) $) NIL (-12 (|has| |#3| (-1011 (-400 (-550)))) (|has| |#3| (-1068)))) ((|#3| $) NIL (|has| |#3| (-1068)))) (-3780 (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| |#3| (-619 (-550))) (|has| |#3| (-1020)))) (((-2 (|:| -1340 (-667 |#3|)) (|:| |vec| (-1227 |#3|))) (-667 $) (-1227 $)) NIL (|has| |#3| (-1020))) (((-667 |#3|) (-667 $)) NIL (|has| |#3| (-1020)))) (-1386 (((-3 $ "failed") $) NIL (|has| |#3| (-705)))) (-1741 (($) NIL (|has| |#3| (-361)))) (-3245 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#3| $ (-550)) 12)) (-1416 (((-112) $) NIL (|has| |#3| (-823)))) (-3450 (((-623 |#3|) $) NIL (|has| $ (-6 -4342)))) (-3102 (((-112) $) NIL (|has| |#3| (-705)))) (-3329 (((-112) $) NIL (|has| |#3| (-823)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2689 (((-623 |#3|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#3| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3234 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#3| |#3|) $) NIL)) (-2253 (((-894) $) NIL (|has| |#3| (-361)))) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#3| (-1068)))) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-2922 (($ (-894)) NIL (|has| |#3| (-361)))) (-3337 (((-1088) $) NIL (|has| |#3| (-1068)))) (-1293 ((|#3| $) NIL (|has| (-550) (-825)))) (-3111 (($ $ |#3|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068)))) (($ $ (-623 |#3|) (-623 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#3| (-1068))))) (-2477 (((-623 |#3|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#3| $ (-550) |#3|) NIL) ((|#3| $ (-550)) NIL)) (-3440 ((|#3| $ $) NIL (|has| |#3| (-1020)))) (-3389 (($ (-1227 |#3|)) NIL)) (-2854 (((-133)) NIL (|has| |#3| (-356)))) (-2393 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1020))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1020)))) (-3350 (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342))) (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#3| (-1068))))) (-1731 (($ $) NIL)) (-1518 (((-1227 |#3|) $) NIL) (($ (-550)) NIL (-1561 (-12 (|has| |#3| (-1011 (-550))) (|has| |#3| (-1068))) (|has| |#3| (-1020)))) (($ (-400 (-550))) NIL (-12 (|has| |#3| (-1011 (-400 (-550)))) (|has| |#3| (-1068)))) (($ |#3|) NIL (|has| |#3| (-1068))) (((-836) $) NIL (|has| |#3| (-595 (-836))))) (-2390 (((-749)) NIL (|has| |#3| (-1020)))) (-1675 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4342)))) (-1635 (($ $) NIL (|has| |#3| (-823)))) (-2626 (($) NIL (|has| |#3| (-130)) CONST)) (-2636 (($) NIL (|has| |#3| (-705)) CONST)) (-4183 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1020)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1020)))) (($ $ (-1144)) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#3| (-873 (-1144))) (|has| |#3| (-1020)))) (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1020))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1020)))) (-2363 (((-112) $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2345 (((-112) $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2316 (((-112) $ $) NIL (|has| |#3| (-1068)))) (-2354 (((-112) $ $) NIL (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2335 (((-112) $ $) 17 (-1561 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2414 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2403 (($ $ $) NIL (|has| |#3| (-1020))) (($ $) NIL (|has| |#3| (-1020)))) (-2391 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-749)) NIL (|has| |#3| (-705))) (($ $ (-894)) NIL (|has| |#3| (-705)))) (* (($ (-550) $) NIL (|has| |#3| (-1020))) (($ $ $) NIL (|has| |#3| (-705))) (($ $ |#3|) NIL (|has| |#3| (-705))) (($ |#3| $) NIL (|has| |#3| (-705))) (($ (-749) $) NIL (|has| |#3| (-130))) (($ (-894) $) NIL (|has| |#3| (-25)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1081 |#1| |#2| |#3|) (-232 |#1| |#3|) (-749) (-749) (-771)) (T -1081)) NIL (-232 |#1| |#3|) -((-3644 (((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 37)) (-3650 (((-535) (-1193 |#2| |#1|)) 69 (|has| |#1| (-444)))) (-3648 (((-535) (-1193 |#2| |#1|)) 54)) (-3645 (((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 45)) (-3649 (((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 68 (|has| |#1| (-444)))) (-3646 (((-618 |#1|) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 48)) (-3647 (((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 53))) -(((-1080 |#1| |#2|) (-10 -7 (-15 -3644 ((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3645 ((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3646 ((-618 |#1|) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3647 ((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3648 ((-535) (-1193 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3649 ((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3650 ((-535) (-1193 |#2| |#1|)))) |%noBranch|)) (-796) (-1142)) (T -1080)) -((-3650 (*1 *2 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))) (-3649 (*1 *2 *3 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))) (-3647 (*1 *2 *3 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))) (-3646 (*1 *2 *3 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 *4)) (-5 *1 (-1080 *4 *5)))) (-3645 (*1 *2 *3 *3) (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 (-1193 *5 *4))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-1193 *5 *4)))) (-3644 (*1 *2 *3 *3) (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 (-1193 *5 *4))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-1193 *5 *4))))) -(-10 -7 (-15 -3644 ((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3645 ((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3646 ((-618 |#1|) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3647 ((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3648 ((-535) (-1193 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3649 ((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3650 ((-535) (-1193 |#2| |#1|)))) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3652 (((-1147) $) 10)) (-3651 (((-618 (-1147)) $) 11)) (-3653 (($ (-618 (-1147)) (-1147)) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20)) (-3375 (((-112) $ $) 14))) -(((-1081) (-13 (-1067) (-10 -8 (-15 -3653 ($ (-618 (-1147)) (-1147))) (-15 -3652 ((-1147) $)) (-15 -3651 ((-618 (-1147)) $))))) (T -1081)) -((-3653 (*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1147))) (-5 *3 (-1147)) (-5 *1 (-1081)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1081)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1081))))) -(-13 (-1067) (-10 -8 (-15 -3653 ($ (-618 (-1147)) (-1147))) (-15 -3652 ((-1147) $)) (-15 -3651 ((-618 (-1147)) $)))) -((-2887 (((-112) $ $) NIL)) (-3654 (($ (-497) (-1081)) 14)) (-3653 (((-1081) $) 20)) (-3888 (((-497) $) 17)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 28) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-1082) (-13 (-1049) (-10 -8 (-15 -3654 ($ (-497) (-1081))) (-15 -3888 ((-497) $)) (-15 -3653 ((-1081) $))))) (T -1082)) -((-3654 (*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1081)) (-5 *1 (-1082)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1082)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1082))))) -(-13 (-1049) (-10 -8 (-15 -3654 ($ (-497) (-1081))) (-15 -3888 ((-497) $)) (-15 -3653 ((-1081) $)))) -((-3969 (((-3 (-535) #1="failed") |#2| (-1142) |#2| (-1124)) 17) (((-3 (-535) #1#) |#2| (-1142) (-815 |#2|)) 15) (((-3 (-535) #1#) |#2|) 54))) -(((-1083 |#1| |#2|) (-10 -7 (-15 -3969 ((-3 (-535) #1="failed") |#2|)) (-15 -3969 ((-3 (-535) #1#) |#2| (-1142) (-815 |#2|))) (-15 -3969 ((-3 (-535) #1#) |#2| (-1142) |#2| (-1124)))) (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)) (-444)) (-13 (-27) (-1164) (-414 |#1|))) (T -1083)) -((-3969 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-1124)) (-4 *6 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535)) (-5 *1 (-1083 *6 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))))) (-3969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-815 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535)) (-5 *1 (-1083 *6 *3)))) (-3969 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535)) (-5 *1 (-1083 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4)))))) -(-10 -7 (-15 -3969 ((-3 (-535) #1="failed") |#2|)) (-15 -3969 ((-3 (-535) #1#) |#2| (-1142) (-815 |#2|))) (-15 -3969 ((-3 (-535) #1#) |#2| (-1142) |#2| (-1124)))) -((-3969 (((-3 (-535) #1="failed") (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)) (-1124)) 35) (((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-815 (-400 (-917 |#1|)))) 30) (((-3 (-535) #1#) (-400 (-917 |#1|))) 13))) -(((-1084 |#1|) (-10 -7 (-15 -3969 ((-3 (-535) #1="failed") (-400 (-917 |#1|)))) (-15 -3969 ((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-815 (-400 (-917 |#1|))))) (-15 -3969 ((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)) (-1124)))) (-444)) (T -1084)) -((-3969 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-400 (-917 *6))) (-5 *4 (-1142)) (-5 *5 (-1124)) (-4 *6 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *6)))) (-3969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-815 (-400 (-917 *6)))) (-5 *3 (-400 (-917 *6))) (-4 *6 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *6)))) (-3969 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *4))))) -(-10 -7 (-15 -3969 ((-3 (-535) #1="failed") (-400 (-917 |#1|)))) (-15 -3969 ((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-815 (-400 (-917 |#1|))))) (-15 -3969 ((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)) (-1124)))) -((-3995 (((-307 (-535)) (-48)) 12))) -(((-1085) (-10 -7 (-15 -3995 ((-307 (-535)) (-48))))) (T -1085)) -((-3995 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-535))) (-5 *1 (-1085))))) -(-10 -7 (-15 -3995 ((-307 (-535)) (-48)))) -((-2887 (((-112) $ $) NIL)) (-3662 (($ $) 41)) (-3522 (((-112) $) 65)) (-3658 (($ $ $) 48)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 86)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2155 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2150 (($ $ $ $) 75)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-2681 (($ $ $) 72)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) "failed") $) NIL)) (-3490 (((-535) $) NIL)) (-2883 (($ $ $) 59)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 80) (((-665 (-535)) (-665 $)) 28)) (-3804 (((-3 $ "failed") $) NIL)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL)) (-3344 (((-112) $) NIL)) (-3343 (((-400 (-535)) $) NIL)) (-3315 (($) 83) (($ $) 84)) (-2882 (($ $ $) 58)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2148 (($ $ $ $) NIL)) (-2156 (($ $ $) 81)) (-3520 (((-112) $) NIL)) (-1413 (($ $ $) NIL)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL)) (-2493 (((-112) $) 66)) (-2994 (((-112) $) 64)) (-3659 (($ $) 42)) (-3786 (((-3 $ "failed") $) NIL)) (-3521 (((-112) $) 76)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2149 (($ $ $ $) 73)) (-3660 (($ $ $) 68) (($) 39)) (-3661 (($ $ $) 67) (($) 38)) (-2152 (($ $) NIL)) (-4176 (($ $) 71)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2147 (($ $ $) NIL)) (-3787 (($) NIL T CONST)) (-2154 (($ $) 50)) (-3577 (((-1086) $) 70)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) 62) (($ (-618 $)) NIL)) (-1411 (($ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 61)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-2153 (($ $) 51)) (-3742 (($ $) NIL)) (-4313 (((-535) $) 32) (((-524) $) NIL) (((-861 (-535)) $) NIL) (((-371) $) NIL) (((-219) $) NIL)) (-4300 (((-835) $) 31) (($ (-535)) 82) (($ $) NIL) (($ (-535)) 82)) (-3444 (((-747)) NIL)) (-2157 (((-112) $ $) NIL)) (-3420 (($ $ $) NIL)) (-3015 (($) 37)) (-2170 (((-112) $ $) NIL)) (-2151 (($ $ $ $) 74)) (-3725 (($ $) 63)) (-3664 (($ $ $) 44)) (-2979 (($) 35 T CONST)) (-3655 (($ $ $) 47)) (-2985 (($) 36 T CONST)) (-2825 (((-1124) $) 21) (((-1124) $ (-112)) 23) (((-1230) (-799) $) 24) (((-1230) (-799) $ (-112)) 25)) (-3657 (($ $) 45)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3656 (($ $ $) 46)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 40)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 49)) (-3663 (($ $ $) 43)) (-4180 (($ $) 52) (($ $ $) 54)) (-4182 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-747)) 57)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 34) (($ $ $) 55))) -(((-1086) (-13 (-534) (-638) (-797) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -3661 ($)) (-15 -3660 ($)) (-15 -3659 ($ $)) (-15 -3662 ($ $)) (-15 -3663 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -3658 ($ $ $)) (-15 -3657 ($ $)) (-15 -3656 ($ $ $)) (-15 -3655 ($ $ $))))) (T -1086)) -((-3664 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3663 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3662 (*1 *1 *1) (-5 *1 (-1086))) (-3661 (*1 *1) (-5 *1 (-1086))) (-3660 (*1 *1) (-5 *1 (-1086))) (-3659 (*1 *1 *1) (-5 *1 (-1086))) (-3658 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3657 (*1 *1 *1) (-5 *1 (-1086))) (-3656 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3655 (*1 *1 *1 *1) (-5 *1 (-1086)))) -(-13 (-534) (-638) (-797) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -3661 ($)) (-15 -3660 ($)) (-15 -3659 ($ $)) (-15 -3662 ($ $)) (-15 -3663 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -3658 ($ $ $)) (-15 -3657 ($ $)) (-15 -3656 ($ $ $)) (-15 -3655 ($ $ $)))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3666 ((|#1| $) 44)) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-3668 ((|#1| |#1| $) 46)) (-3667 ((|#1| $) 45)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3665 (((-747) $) 43)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-1087 |#1|) (-138) (-1178)) (T -1087)) -((-3668 (*1 *2 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1178)) (-5 *2 (-747))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -3668 (|t#1| |t#1| $)) (-15 -3667 (|t#1| $)) (-15 -3666 (|t#1| $)) (-15 -3665 ((-747) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-3672 ((|#3| $) 76)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#3| $) 37)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 $) (-1224 $)) 73) (((-665 |#3|) (-665 $)) 65)) (-4153 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-3671 ((|#3| $) 78)) (-3673 ((|#4| $) 32)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ |#3|) 16)) (** (($ $ (-890)) NIL) (($ $ (-747)) 15) (($ $ (-535)) 82))) -(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-535))) (-15 -3671 (|#3| |#1|)) (-15 -3672 (|#3| |#1|)) (-15 -3673 (|#4| |#1|)) (-15 -2353 ((-665 |#3|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| #1="failed") |#1|)) (-15 -4300 (|#1| |#3|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4300 (|#1| (-535))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))) (-15 -4300 ((-835) |#1|))) (-1089 |#2| |#3| |#4| |#5|) (-747) (-1018) (-232 |#2| |#3|) (-232 |#2| |#3|)) (T -1088)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-535))) (-15 -3671 (|#3| |#1|)) (-15 -3672 (|#3| |#1|)) (-15 -3673 (|#4| |#1|)) (-15 -2353 ((-665 |#3|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| #1="failed") |#1|)) (-15 -4300 (|#1| |#3|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4300 (|#1| (-535))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3672 ((|#2| $) 70)) (-3439 (((-112) $) 110)) (-1363 (((-3 $ "failed") $ $) 19)) (-3441 (((-112) $) 108)) (-1264 (((-112) $ (-747)) 100)) (-3675 (($ |#2|) 73)) (-3879 (($) 17 T CONST)) (-3428 (($ $) 127 (|has| |#2| (-300)))) (-3430 ((|#3| $ (-535)) 122)) (-3491 (((-3 (-535) #1="failed") $) 84 (|has| |#2| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 82 (|has| |#2| (-1009 (-400 (-535))))) (((-3 |#2| #1#) $) 79)) (-3490 (((-535) $) 85 (|has| |#2| (-1009 (-535)))) (((-400 (-535)) $) 83 (|has| |#2| (-1009 (-400 (-535))))) ((|#2| $) 78)) (-2353 (((-665 (-535)) (-665 $)) 77 (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 76 (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 75) (((-665 |#2|) (-665 $)) 74)) (-3804 (((-3 $ "failed") $) 32)) (-3427 (((-747) $) 128 (|has| |#2| (-542)))) (-3431 ((|#2| $ (-535) (-535)) 120)) (-2063 (((-618 |#2|) $) 93 (|has| $ (-6 -4336)))) (-2493 (((-112) $) 30)) (-3426 (((-747) $) 129 (|has| |#2| (-542)))) (-3425 (((-618 |#4|) $) 130 (|has| |#2| (-542)))) (-3433 (((-747) $) 116)) (-3432 (((-747) $) 117)) (-4065 (((-112) $ (-747)) 101)) (-3669 ((|#2| $) 65 (|has| |#2| (-6 (-4338 #2="*"))))) (-3437 (((-535) $) 112)) (-3435 (((-535) $) 114)) (-2502 (((-618 |#2|) $) 92 (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-3436 (((-535) $) 113)) (-3434 (((-535) $) 115)) (-3442 (($ (-618 (-618 |#2|))) 107)) (-2067 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3939 (((-618 (-618 |#2|)) $) 118)) (-4062 (((-112) $ (-747)) 102)) (-3576 (((-1124) $) 9)) (-3935 (((-3 $ "failed") $) 64 (|has| |#2| (-356)))) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-542)))) (-2065 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) 89 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 88 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) 106)) (-3745 (((-112) $) 103)) (-3911 (($) 104)) (-4142 ((|#2| $ (-535) (-535) |#2|) 121) ((|#2| $ (-535) (-535)) 119)) (-4153 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-747)) 49) (($ $ (-618 (-1142)) (-618 (-747))) 42 (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) 41 (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) 40 (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) 39 (|has| |#2| (-871 (-1142)))) (($ $ (-747)) 37 (|has| |#2| (-227))) (($ $) 35 (|has| |#2| (-227)))) (-3671 ((|#2| $) 69)) (-3674 (($ (-618 |#2|)) 72)) (-3440 (((-112) $) 109)) (-3673 ((|#3| $) 71)) (-3670 ((|#2| $) 66 (|has| |#2| (-6 (-4338 #2#))))) (-2064 (((-747) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4336))) (((-747) |#2| $) 91 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 105)) (-3429 ((|#4| $ (-535)) 123)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 81 (|has| |#2| (-1009 (-400 (-535))))) (($ |#2|) 80)) (-3444 (((-747)) 28)) (-2066 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4336)))) (-3438 (((-112) $) 111)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-747)) 47) (($ $ (-618 (-1142)) (-618 (-747))) 46 (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) 45 (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) 44 (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) 43 (|has| |#2| (-871 (-1142)))) (($ $ (-747)) 38 (|has| |#2| (-227))) (($ $) 36 (|has| |#2| (-227)))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#2|) 126 (|has| |#2| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 63 (|has| |#2| (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-4299 (((-747) $) 99 (|has| $ (-6 -4336))))) -(((-1089 |#1| |#2| |#3| |#4|) (-138) (-747) (-1018) (-232 |t#1| |t#2|) (-232 |t#1| |t#2|)) (T -1089)) -((-3675 (*1 *1 *2) (-12 (-4 *2 (-1018)) (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-618 *4)) (-4 *4 (-1018)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *2 (-232 *3 *4)) (-4 *5 (-232 *3 *4)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4338 #1="*"))) (-4 *2 (-1018)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4338 #1#))) (-4 *2 (-1018)))) (-3935 (*1 *1 *1) (|partial| -12 (-4 *1 (-1089 *2 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356))))) -(-13 (-225 |t#2|) (-111 |t#2| |t#2|) (-1021 |t#1| |t#1| |t#2| |t#3| |t#4|) (-405 |t#2|) (-370 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-694 |t#2|)) |%noBranch|) (-15 -3675 ($ |t#2|)) (-15 -3674 ($ (-618 |t#2|))) (-15 -3673 (|t#3| $)) (-15 -3672 (|t#2| $)) (-15 -3671 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4338 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3670 (|t#2| $)) (-15 -3669 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-356)) (PROGN (-15 -3935 ((-3 $ "failed") $)) (-15 ** ($ $ (-535)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4338 #1="*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-835)) . T) ((-225 |#2|) . T) ((-227) |has| |#2| (-227)) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-370 |#2|) . T) ((-405 |#2|) . T) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-624 |#2|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#2| (-617 (-535))) ((-617 |#2|) . T) ((-694 |#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-6 (-4338 #1#)))) ((-703) . T) ((-871 (-1142)) |has| |#2| (-871 (-1142))) ((-1021 |#1| |#1| |#2| |#3| |#4|) . T) ((-1009 (-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#2| (-1009 (-535))) ((-1009 |#2|) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1178) . T)) -((-3678 ((|#4| |#4|) 70)) (-3676 ((|#4| |#4|) 65)) (-3680 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|) 78)) (-3679 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3677 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1090 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3676 (|#4| |#4|)) (-15 -3677 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3678 (|#4| |#4|)) (-15 -3679 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3680 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|))) (-300) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|)) (T -1090)) -((-3680 (*1 *2 *3 *4) (-12 (-4 *5 (-300)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-1090 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) (-3679 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3678 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(-10 -7 (-15 -3676 (|#4| |#4|)) (-15 -3677 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3678 (|#4| |#4|)) (-15 -3679 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3680 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 17)) (-3405 (((-618 |#2|) $) 159)) (-3407 (((-1136 $) $ |#2|) 54) (((-1136 |#1|) $) 43)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 108 (|has| |#1| (-542)))) (-2171 (($ $) 110 (|has| |#1| (-542)))) (-2169 (((-112) $) 112 (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 |#2|)) 192)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) 156) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 |#2| #2#) $) NIL)) (-3490 ((|#1| $) 154) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) ((|#2| $) NIL)) (-4099 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-4302 (($ $) 196)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) 82)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 |#2|) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| |#1| (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| |#1| (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) 19)) (-2501 (((-747) $) 26)) (-3408 (($ (-1136 |#1|) |#2|) 48) (($ (-1136 $) |#2|) 64)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) 32)) (-3214 (($ |#1| (-521 |#2|)) 71) (($ $ |#2| (-747)) 52) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#2|) NIL)) (-3141 (((-521 |#2|) $) 186) (((-747) $ |#2|) 187) (((-618 (-747)) $ (-618 |#2|)) 188)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 |#2|) (-521 |#2|)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 120)) (-3406 (((-3 |#2| #3="failed") $) 161)) (-3215 (($ $) 195)) (-3508 ((|#1| $) 37)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 33)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 138 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) 143 (|has| |#1| (-444))) (($ $ $) 130 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-618 |#2|) (-618 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-618 |#2|) (-618 $)) 176)) (-4100 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4153 (($ $ |#2|) 194) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4290 (((-521 |#2|) $) 182) (((-747) $ |#2|) 178) (((-618 (-747)) $ (-618 |#2|)) 180)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| |#1| (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#1| $) 126 (|has| |#1| (-444))) (($ $ |#2|) 129 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 149) (($ (-535)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-4160 (((-618 |#1|) $) 152)) (-4023 ((|#1| $ (-521 |#2|)) 73) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 79)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) 115 (|has| |#1| (-542)))) (-2979 (($) 12 T CONST)) (-2985 (($) 14 T CONST)) (-2990 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 97)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 124 (|has| |#1| (-356)))) (-4180 (($ $) 85) (($ $ $) 95)) (-4182 (($ $ $) 49)) (** (($ $ (-890)) 102) (($ $ (-747)) 100)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 88) (($ $ $) 65) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1091 |#1| |#2|) (-921 |#1| (-521 |#2|) |#2|) (-1018) (-823)) (T -1091)) -NIL -(-921 |#1| (-521 |#2|) |#2|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3829 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 113 (|has| |#1| (-38 (-400 (-535)))))) (-3831 (($ $) 145 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4157 (((-917 |#1|) $ (-747)) NIL) (((-917 |#1|) $ (-747) (-747)) NIL)) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $ |#2|) NIL) (((-747) $ |#2| (-747)) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4280 (((-112) $) NIL)) (-3214 (($ $ (-618 |#2|) (-618 (-521 |#2|))) NIL) (($ $ |#2| (-521 |#2|)) NIL) (($ |#1| (-521 |#2|)) NIL) (($ $ |#2| (-747)) 56) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) 111 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4155 (($ $ |#2|) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-4022 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-400 (-535)))))) (-4111 (($ $ (-747)) 13)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4286 (($ $) 109 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (($ $ |#2| $) 95) (($ $ (-618 |#2|) (-618 $)) 88) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL)) (-4153 (($ $ |#2|) 98) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4290 (((-521 |#2|) $) NIL)) (-3681 (((-1 (-1119 |#3|) |#3|) (-618 |#2|) (-618 (-1119 |#3|))) 77)) (-3832 (($ $) 147 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 143 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 15)) (-4300 (((-835) $) 180) (($ (-535)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#2|) 63) (($ |#3|) 61)) (-4023 ((|#1| $ (-521 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL) ((|#3| $ (-747)) 38)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-3835 (($ $) 153 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 149 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 157 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3838 (($ $) 159 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 155 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 151 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 47 T CONST)) (-2985 (($) 55 T CONST)) (-2990 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) 182 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 59)) (** (($ $ (-890)) NIL) (($ $ (-747)) 68) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 101 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 58) (($ $ (-400 (-535))) 106 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 104 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1092 |#1| |#2| |#3|) (-13 (-717 |#1| |#2|) (-10 -8 (-15 -4023 (|#3| $ (-747))) (-15 -4300 ($ |#2|)) (-15 -4300 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3681 ((-1 (-1119 |#3|) |#3|) (-618 |#2|) (-618 (-1119 |#3|)))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ |#2| |#1|)) (-15 -4022 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1018) (-823) (-921 |#1| (-521 |#2|) |#2|)) (T -1092)) -((-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *2 (-921 *4 (-521 *5) *5)) (-5 *1 (-1092 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-921 *3 (-521 *2) *2)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-921 *3 (-521 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-921 *3 (-521 *4) *4)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-1119 *7))) (-4 *6 (-823)) (-4 *7 (-921 *5 (-521 *6) *6)) (-4 *5 (-1018)) (-5 *2 (-1 (-1119 *7) *7)) (-5 *1 (-1092 *5 *6 *7)))) (-4155 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-921 *3 (-521 *2) *2)))) (-4022 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1092 *4 *3 *5))) (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *1 (-1092 *4 *3 *5)) (-4 *5 (-921 *4 (-521 *3) *3))))) -(-13 (-717 |#1| |#2|) (-10 -8 (-15 -4023 (|#3| $ (-747))) (-15 -4300 ($ |#2|)) (-15 -4300 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3681 ((-1 (-1119 |#3|) |#3|) (-618 |#2|) (-618 (-1119 |#3|)))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ |#2| |#1|)) (-15 -4022 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86) (((-618 $) (-618 |#4|) (-112)) 111)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ #1#) $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-3531 (((-112) |#4| $) 136)) (-3529 (((-112) |#4| $) 133)) (-3532 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) 128)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4140 (((-3 |#4| #1#) $) 83)) (-3526 (((-618 $) |#4| $) 129)) (-3528 (((-3 (-112) (-618 $)) |#4| $) 132)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3572 (((-618 $) |#4| $) 125) (((-618 $) (-618 |#4|) $) 124) (((-618 $) (-618 |#4|) (-618 $)) 123) (((-618 $) |#4| (-618 $)) 122)) (-3782 (($ |#4| $) 117) (($ (-618 |#4|) $) 116)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| #1#) $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ #1#) $ |#4|) 78)) (-4111 (($ $ |#4|) 77) (((-618 $) |#4| $) 115) (((-618 $) |#4| (-618 $)) 114) (((-618 $) (-618 |#4|) $) 113) (((-618 $) (-618 |#4|) (-618 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-3523 (((-618 $) |#4| $) 121) (((-618 $) |#4| (-618 $)) 120) (((-618 $) (-618 |#4|) $) 119) (((-618 $) (-618 |#4|) (-618 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-3530 (((-112) |#4| $) 135)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336))))) -(((-1093 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1093)) -NIL -(-13 (-1075 |t#1| |t#2| |t#3| |t#4|) (-760 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-760 |#1| |#2| |#3| |#4|) . T) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1075 |#1| |#2| |#3| |#4|) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1178) . T)) -((-3919 (((-618 |#2|) |#1|) 12)) (-3687 (((-618 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-618 |#2|) |#1|) 52)) (-3685 (((-618 |#2|) |#2| |#2| |#2|) 39) (((-618 |#2|) |#1|) 50)) (-3682 ((|#2| |#1|) 46)) (-3683 (((-2 (|:| |solns| (-618 |#2|)) (|:| |maps| (-618 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3684 (((-618 |#2|) |#2| |#2|) 38) (((-618 |#2|) |#1|) 49)) (-3686 (((-618 |#2|) |#2| |#2| |#2| |#2|) 40) (((-618 |#2|) |#1|) 51)) (-3691 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3689 ((|#2| |#2| |#2| |#2|) 43)) (-3688 ((|#2| |#2| |#2|) 42)) (-3690 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1094 |#1| |#2|) (-10 -7 (-15 -3919 ((-618 |#2|) |#1|)) (-15 -3682 (|#2| |#1|)) (-15 -3683 ((-2 (|:| |solns| (-618 |#2|)) (|:| |maps| (-618 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3684 ((-618 |#2|) |#1|)) (-15 -3685 ((-618 |#2|) |#1|)) (-15 -3686 ((-618 |#2|) |#1|)) (-15 -3687 ((-618 |#2|) |#1|)) (-15 -3684 ((-618 |#2|) |#2| |#2|)) (-15 -3685 ((-618 |#2|) |#2| |#2| |#2|)) (-15 -3686 ((-618 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3687 ((-618 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3688 (|#2| |#2| |#2|)) (-15 -3689 (|#2| |#2| |#2| |#2|)) (-15 -3690 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3691 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1200 |#2|) (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (T -1094)) -((-3691 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3690 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3689 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3688 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3687 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))) (-3686 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))) (-3684 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) (-3686 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) (-3685 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-2 (|:| |solns| (-618 *5)) (|:| |maps| (-618 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1094 *3 *5)) (-4 *3 (-1200 *5)))) (-3682 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -3919 ((-618 |#2|) |#1|)) (-15 -3682 (|#2| |#1|)) (-15 -3683 ((-2 (|:| |solns| (-618 |#2|)) (|:| |maps| (-618 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3684 ((-618 |#2|) |#1|)) (-15 -3685 ((-618 |#2|) |#1|)) (-15 -3686 ((-618 |#2|) |#1|)) (-15 -3687 ((-618 |#2|) |#1|)) (-15 -3684 ((-618 |#2|) |#2| |#2|)) (-15 -3685 ((-618 |#2|) |#2| |#2| |#2|)) (-15 -3686 ((-618 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3687 ((-618 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3688 (|#2| |#2| |#2|)) (-15 -3689 (|#2| |#2| |#2| |#2|)) (-15 -3690 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3691 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3692 (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|))))) 95) (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142))) 94) (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|)))) 92) (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))) (-618 (-1142))) 90) (((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|)))) 75) (((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))) (-1142)) 76) (((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|))) 70) (((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)) (-1142)) 59)) (-3693 (((-618 (-618 (-307 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142))) 88) (((-618 (-307 |#1|)) (-400 (-917 |#1|)) (-1142)) 43)) (-3694 (((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-400 (-917 |#1|)) (-1142)) 98) (((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142)) 97))) -(((-1095 |#1|) (-10 -7 (-15 -3692 ((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142)))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -3693 ((-618 (-307 |#1|)) (-400 (-917 |#1|)) (-1142))) (-15 -3693 ((-618 (-618 (-307 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3694 ((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3694 ((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-400 (-917 |#1|)) (-1142)))) (-13 (-300) (-823) (-145))) (T -1095)) -((-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-1131 (-618 (-307 *5)) (-618 (-286 (-307 *5))))) (-5 *1 (-1095 *5)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-917 *5)))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-1131 (-618 (-307 *5)) (-618 (-286 (-307 *5))))) (-5 *1 (-1095 *5)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-307 *5)))) (-5 *1 (-1095 *5)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-307 *5))) (-5 *1 (-1095 *5)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-618 (-286 (-400 (-917 *4))))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *4))))) (-5 *1 (-1095 *4)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-286 (-400 (-917 *5))))) (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5))))) (-5 *1 (-1095 *5)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-618 (-400 (-917 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *4))))) (-5 *1 (-1095 *4)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5))))) (-5 *1 (-1095 *5)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-286 (-400 (-917 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1095 *4)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-917 *5)))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1095 *5)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1095 *4)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1095 *5))))) -(-10 -7 (-15 -3692 ((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142)))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -3693 ((-618 (-307 |#1|)) (-400 (-917 |#1|)) (-1142))) (-15 -3693 ((-618 (-618 (-307 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3694 ((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3694 ((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-400 (-917 |#1|)) (-1142)))) -((-3696 (((-400 (-1136 (-307 |#1|))) (-1224 (-307 |#1|)) (-400 (-1136 (-307 |#1|))) (-535)) 29)) (-3695 (((-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|)))) 40))) -(((-1096 |#1|) (-10 -7 (-15 -3695 ((-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))))) (-15 -3696 ((-400 (-1136 (-307 |#1|))) (-1224 (-307 |#1|)) (-400 (-1136 (-307 |#1|))) (-535)))) (-13 (-542) (-823))) (T -1096)) -((-3696 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-400 (-1136 (-307 *5)))) (-5 *3 (-1224 (-307 *5))) (-5 *4 (-535)) (-4 *5 (-13 (-542) (-823))) (-5 *1 (-1096 *5)))) (-3695 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-400 (-1136 (-307 *3)))) (-4 *3 (-13 (-542) (-823))) (-5 *1 (-1096 *3))))) -(-10 -7 (-15 -3695 ((-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))))) (-15 -3696 ((-400 (-1136 (-307 |#1|))) (-1224 (-307 |#1|)) (-400 (-1136 (-307 |#1|))) (-535)))) -((-3919 (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-307 |#1|))) (-618 (-1142))) 224) (((-618 (-286 (-307 |#1|))) (-307 |#1|) (-1142)) 20) (((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1142)) 26) (((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|))) 25) (((-618 (-286 (-307 |#1|))) (-307 |#1|)) 21))) -(((-1097 |#1|) (-10 -7 (-15 -3919 ((-618 (-286 (-307 |#1|))) (-307 |#1|))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1142))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-307 |#1|) (-1142))) (-15 -3919 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-307 |#1|))) (-618 (-1142))))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (T -1097)) -((-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-618 (-286 (-307 *5)))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1097 *5)) (-5 *3 (-307 *5)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1097 *5)) (-5 *3 (-286 (-307 *5))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-286 (-307 *4))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-307 *4))))) -(-10 -7 (-15 -3919 ((-618 (-286 (-307 |#1|))) (-307 |#1|))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1142))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-307 |#1|) (-1142))) (-15 -3919 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-307 |#1|))) (-618 (-1142))))) -((-3698 ((|#2| |#2|) 20 (|has| |#1| (-823))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3697 ((|#2| |#2|) 19 (|has| |#1| (-823))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) -(((-1098 |#1| |#2|) (-10 -7 (-15 -3697 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3698 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-823)) (PROGN (-15 -3697 (|#2| |#2|)) (-15 -3698 (|#2| |#2|))) |%noBranch|)) (-1178) (-13 (-584 (-535) |#1|) (-10 -7 (-6 -4336) (-6 -4337)))) (T -1098)) -((-3698 (*1 *2 *2) (-12 (-4 *3 (-823)) (-4 *3 (-1178)) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-584 (-535) *3) (-10 -7 (-6 -4336) (-6 -4337)))))) (-3697 (*1 *2 *2) (-12 (-4 *3 (-823)) (-4 *3 (-1178)) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-584 (-535) *3) (-10 -7 (-6 -4336) (-6 -4337)))))) (-3698 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-584 (-535) *4) (-10 -7 (-6 -4336) (-6 -4337)))))) (-3697 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-584 (-535) *4) (-10 -7 (-6 -4336) (-6 -4337))))))) -(-10 -7 (-15 -3697 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3698 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-823)) (PROGN (-15 -3697 (|#2| |#2|)) (-15 -3698 (|#2| |#2|))) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-4231 (((-1130 3 |#1|) $) 107)) (-3708 (((-112) $) 72)) (-3709 (($ $ (-618 (-914 |#1|))) 20) (($ $ (-618 (-618 |#1|))) 75) (($ (-618 (-914 |#1|))) 74) (((-618 (-914 |#1|)) $) 73)) (-3714 (((-112) $) 41)) (-4052 (($ $ (-914 |#1|)) 46) (($ $ (-618 |#1|)) 51) (($ $ (-747)) 53) (($ (-914 |#1|)) 47) (((-914 |#1|) $) 45)) (-3700 (((-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $) 105)) (-3718 (((-747) $) 26)) (-3719 (((-747) $) 25)) (-4230 (($ $ (-747) (-914 |#1|)) 39)) (-3706 (((-112) $) 82)) (-3707 (($ $ (-618 (-618 (-914 |#1|))) (-618 (-169)) (-169)) 89) (($ $ (-618 (-618 (-618 |#1|))) (-618 (-169)) (-169)) 91) (($ $ (-618 (-618 (-914 |#1|))) (-112) (-112)) 85) (($ $ (-618 (-618 (-618 |#1|))) (-112) (-112)) 93) (($ (-618 (-618 (-914 |#1|)))) 86) (($ (-618 (-618 (-914 |#1|))) (-112) (-112)) 87) (((-618 (-618 (-914 |#1|))) $) 84)) (-3855 (($ (-618 $)) 28) (($ $ $) 29)) (-3701 (((-618 (-169)) $) 102)) (-3705 (((-618 (-914 |#1|)) $) 96)) (-3702 (((-618 (-618 (-169))) $) 101)) (-3703 (((-618 (-618 (-618 (-914 |#1|)))) $) NIL)) (-3704 (((-618 (-618 (-618 (-747)))) $) 99)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3715 (((-747) $ (-618 (-914 |#1|))) 37)) (-3712 (((-112) $) 54)) (-3713 (($ $ (-618 (-914 |#1|))) 56) (($ $ (-618 (-618 |#1|))) 62) (($ (-618 (-914 |#1|))) 57) (((-618 (-914 |#1|)) $) 55)) (-3720 (($) 23) (($ (-1130 3 |#1|)) 24)) (-3742 (($ $) 35)) (-3716 (((-618 $) $) 34)) (-4097 (($ (-618 $)) 31)) (-3717 (((-618 $) $) 33)) (-4300 (((-835) $) 111)) (-3710 (((-112) $) 64)) (-3711 (($ $ (-618 (-914 |#1|))) 66) (($ $ (-618 (-618 |#1|))) 69) (($ (-618 (-914 |#1|))) 67) (((-618 (-914 |#1|)) $) 65)) (-3699 (($ $) 106)) (-3375 (((-112) $ $) NIL))) -(((-1099 |#1|) (-1100 |#1|) (-1018)) (T -1099)) -NIL -(-1100 |#1|) -((-2887 (((-112) $ $) 7)) (-4231 (((-1130 3 |#1|) $) 13)) (-3708 (((-112) $) 29)) (-3709 (($ $ (-618 (-914 |#1|))) 33) (($ $ (-618 (-618 |#1|))) 32) (($ (-618 (-914 |#1|))) 31) (((-618 (-914 |#1|)) $) 30)) (-3714 (((-112) $) 44)) (-4052 (($ $ (-914 |#1|)) 49) (($ $ (-618 |#1|)) 48) (($ $ (-747)) 47) (($ (-914 |#1|)) 46) (((-914 |#1|) $) 45)) (-3700 (((-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $) 15)) (-3718 (((-747) $) 58)) (-3719 (((-747) $) 59)) (-4230 (($ $ (-747) (-914 |#1|)) 50)) (-3706 (((-112) $) 21)) (-3707 (($ $ (-618 (-618 (-914 |#1|))) (-618 (-169)) (-169)) 28) (($ $ (-618 (-618 (-618 |#1|))) (-618 (-169)) (-169)) 27) (($ $ (-618 (-618 (-914 |#1|))) (-112) (-112)) 26) (($ $ (-618 (-618 (-618 |#1|))) (-112) (-112)) 25) (($ (-618 (-618 (-914 |#1|)))) 24) (($ (-618 (-618 (-914 |#1|))) (-112) (-112)) 23) (((-618 (-618 (-914 |#1|))) $) 22)) (-3855 (($ (-618 $)) 57) (($ $ $) 56)) (-3701 (((-618 (-169)) $) 16)) (-3705 (((-618 (-914 |#1|)) $) 20)) (-3702 (((-618 (-618 (-169))) $) 17)) (-3703 (((-618 (-618 (-618 (-914 |#1|)))) $) 18)) (-3704 (((-618 (-618 (-618 (-747)))) $) 19)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3715 (((-747) $ (-618 (-914 |#1|))) 51)) (-3712 (((-112) $) 39)) (-3713 (($ $ (-618 (-914 |#1|))) 43) (($ $ (-618 (-618 |#1|))) 42) (($ (-618 (-914 |#1|))) 41) (((-618 (-914 |#1|)) $) 40)) (-3720 (($) 61) (($ (-1130 3 |#1|)) 60)) (-3742 (($ $) 52)) (-3716 (((-618 $) $) 53)) (-4097 (($ (-618 $)) 55)) (-3717 (((-618 $) $) 54)) (-4300 (((-835) $) 11)) (-3710 (((-112) $) 34)) (-3711 (($ $ (-618 (-914 |#1|))) 38) (($ $ (-618 (-618 |#1|))) 37) (($ (-618 (-914 |#1|))) 36) (((-618 (-914 |#1|)) $) 35)) (-3699 (($ $) 14)) (-3375 (((-112) $ $) 6))) -(((-1100 |#1|) (-138) (-1018)) (T -1100)) -((-4300 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-835)))) (-3720 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-3720 (*1 *1 *2) (-12 (-5 *2 (-1130 3 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3717 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)))) (-3716 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)))) (-3742 (*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-618 (-914 *4))) (-4 *1 (-1100 *4)) (-4 *4 (-1018)) (-5 *2 (-747)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-914 *4)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-4052 (*1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-914 *3)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3713 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3713 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3713 (*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3711 (*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3707 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-618 (-914 *5)))) (-5 *3 (-618 (-169))) (-5 *4 (-169)) (-4 *1 (-1100 *5)) (-4 *5 (-1018)))) (-3707 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-618 (-618 *5)))) (-5 *3 (-618 (-169))) (-5 *4 (-169)) (-4 *1 (-1100 *5)) (-4 *5 (-1018)))) (-3707 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-618 (-618 (-914 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-3707 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-618 (-618 (-618 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-3707 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 *3)))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3707 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-618 (-618 (-914 *4)))) (-5 *3 (-112)) (-4 *4 (-1018)) (-4 *1 (-1100 *4)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-914 *3)))))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-618 (-747))))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-618 (-914 *3))))))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-169)))))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-169))))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747)))))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-1130 3 *3))))) -(-13 (-1067) (-10 -8 (-15 -3720 ($)) (-15 -3720 ($ (-1130 3 |t#1|))) (-15 -3719 ((-747) $)) (-15 -3718 ((-747) $)) (-15 -3855 ($ (-618 $))) (-15 -3855 ($ $ $)) (-15 -4097 ($ (-618 $))) (-15 -3717 ((-618 $) $)) (-15 -3716 ((-618 $) $)) (-15 -3742 ($ $)) (-15 -3715 ((-747) $ (-618 (-914 |t#1|)))) (-15 -4230 ($ $ (-747) (-914 |t#1|))) (-15 -4052 ($ $ (-914 |t#1|))) (-15 -4052 ($ $ (-618 |t#1|))) (-15 -4052 ($ $ (-747))) (-15 -4052 ($ (-914 |t#1|))) (-15 -4052 ((-914 |t#1|) $)) (-15 -3714 ((-112) $)) (-15 -3713 ($ $ (-618 (-914 |t#1|)))) (-15 -3713 ($ $ (-618 (-618 |t#1|)))) (-15 -3713 ($ (-618 (-914 |t#1|)))) (-15 -3713 ((-618 (-914 |t#1|)) $)) (-15 -3712 ((-112) $)) (-15 -3711 ($ $ (-618 (-914 |t#1|)))) (-15 -3711 ($ $ (-618 (-618 |t#1|)))) (-15 -3711 ($ (-618 (-914 |t#1|)))) (-15 -3711 ((-618 (-914 |t#1|)) $)) (-15 -3710 ((-112) $)) (-15 -3709 ($ $ (-618 (-914 |t#1|)))) (-15 -3709 ($ $ (-618 (-618 |t#1|)))) (-15 -3709 ($ (-618 (-914 |t#1|)))) (-15 -3709 ((-618 (-914 |t#1|)) $)) (-15 -3708 ((-112) $)) (-15 -3707 ($ $ (-618 (-618 (-914 |t#1|))) (-618 (-169)) (-169))) (-15 -3707 ($ $ (-618 (-618 (-618 |t#1|))) (-618 (-169)) (-169))) (-15 -3707 ($ $ (-618 (-618 (-914 |t#1|))) (-112) (-112))) (-15 -3707 ($ $ (-618 (-618 (-618 |t#1|))) (-112) (-112))) (-15 -3707 ($ (-618 (-618 (-914 |t#1|))))) (-15 -3707 ($ (-618 (-618 (-914 |t#1|))) (-112) (-112))) (-15 -3707 ((-618 (-618 (-914 |t#1|))) $)) (-15 -3706 ((-112) $)) (-15 -3705 ((-618 (-914 |t#1|)) $)) (-15 -3704 ((-618 (-618 (-618 (-747)))) $)) (-15 -3703 ((-618 (-618 (-618 (-914 |t#1|)))) $)) (-15 -3702 ((-618 (-618 (-169))) $)) (-15 -3701 ((-618 (-169)) $)) (-15 -3700 ((-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $)) (-15 -3699 ($ $)) (-15 -4231 ((-1130 3 |t#1|) $)) (-15 -4300 ((-835) $)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 176) (((-1147) $) 7) (($ (-1147)) NIL)) (-3912 (((-112) $ (|[\|\|]| (-515))) 17) (((-112) $ (|[\|\|]| (-212))) 21) (((-112) $ (|[\|\|]| (-652))) 25) (((-112) $ (|[\|\|]| (-1235))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1082))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-657))) 49) (((-112) $ (|[\|\|]| (-508))) 53) (((-112) $ (|[\|\|]| (-1033))) 57) (((-112) $ (|[\|\|]| (-1236))) 61) (((-112) $ (|[\|\|]| (-516))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-647))) 73) (((-112) $ (|[\|\|]| (-305))) 77) (((-112) $ (|[\|\|]| (-1007))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-941))) 89) (((-112) $ (|[\|\|]| (-1040))) 93) (((-112) $ (|[\|\|]| (-1057))) 97) (((-112) $ (|[\|\|]| (-1062))) 101) (((-112) $ (|[\|\|]| (-604))) 105) (((-112) $ (|[\|\|]| (-1132))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-470))) 121) (((-112) $ (|[\|\|]| (-573))) 125) (((-112) $ (|[\|\|]| (-497))) 131) (((-112) $ (|[\|\|]| (-1124))) 135) (((-112) $ (|[\|\|]| (-535))) 139)) (-3918 (((-515) $) 18) (((-212) $) 22) (((-652) $) 26) (((-1235) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1082) $) 42) (((-95) $) 46) (((-657) $) 50) (((-508) $) 54) (((-1033) $) 58) (((-1236) $) 62) (((-516) $) 66) (((-152) $) 70) (((-647) $) 74) (((-305) $) 78) (((-1007) $) 82) (((-178) $) 86) (((-941) $) 90) (((-1040) $) 94) (((-1057) $) 98) (((-1062) $) 102) (((-604) $) 106) (((-1132) $) 110) (((-154) $) 114) (((-136) $) 118) (((-470) $) 122) (((-573) $) 126) (((-497) $) 132) (((-1124) $) 136) (((-535) $) 140)) (-3375 (((-112) $ $) NIL))) -(((-1101) (-1103)) (T -1101)) -NIL -(-1103) -((-3721 (((-618 (-1147)) (-1124)) 9))) -(((-1102) (-10 -7 (-15 -3721 ((-618 (-1147)) (-1124))))) (T -1102)) -((-3721 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-618 (-1147))) (-5 *1 (-1102))))) -(-10 -7 (-15 -3721 ((-618 (-1147)) (-1124)))) -((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-3912 (((-112) $ (|[\|\|]| (-515))) 80) (((-112) $ (|[\|\|]| (-212))) 78) (((-112) $ (|[\|\|]| (-652))) 76) (((-112) $ (|[\|\|]| (-1235))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1082))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-657))) 64) (((-112) $ (|[\|\|]| (-508))) 62) (((-112) $ (|[\|\|]| (-1033))) 60) (((-112) $ (|[\|\|]| (-1236))) 58) (((-112) $ (|[\|\|]| (-516))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-647))) 52) (((-112) $ (|[\|\|]| (-305))) 50) (((-112) $ (|[\|\|]| (-1007))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-941))) 44) (((-112) $ (|[\|\|]| (-1040))) 42) (((-112) $ (|[\|\|]| (-1057))) 40) (((-112) $ (|[\|\|]| (-1062))) 38) (((-112) $ (|[\|\|]| (-604))) 36) (((-112) $ (|[\|\|]| (-1132))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-470))) 28) (((-112) $ (|[\|\|]| (-573))) 26) (((-112) $ (|[\|\|]| (-497))) 24) (((-112) $ (|[\|\|]| (-1124))) 22) (((-112) $ (|[\|\|]| (-535))) 20)) (-3918 (((-515) $) 79) (((-212) $) 77) (((-652) $) 75) (((-1235) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1082) $) 67) (((-95) $) 65) (((-657) $) 63) (((-508) $) 61) (((-1033) $) 59) (((-1236) $) 57) (((-516) $) 55) (((-152) $) 53) (((-647) $) 51) (((-305) $) 49) (((-1007) $) 47) (((-178) $) 45) (((-941) $) 43) (((-1040) $) 41) (((-1057) $) 39) (((-1062) $) 37) (((-604) $) 35) (((-1132) $) 33) (((-154) $) 31) (((-136) $) 29) (((-470) $) 27) (((-573) $) 25) (((-497) $) 23) (((-1124) $) 21) (((-535) $) 19)) (-3375 (((-112) $ $) 6))) -(((-1103) (-138)) (T -1103)) -((-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-515)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-212)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-652))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-652)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1235))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1235)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-137)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-132)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1082)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-95)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-657)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-508)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1033)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1236))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1236)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-516)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-152)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-647))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-647)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-305)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1007)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-178)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-941)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1040)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1057)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1062)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-604)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1132)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-154)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-136)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-470)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-573)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-497)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1124)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-535))))) -(-13 (-1049) (-1220) (-10 -8 (-15 -3912 ((-112) $ (|[\|\|]| (-515)))) (-15 -3918 ((-515) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-212)))) (-15 -3918 ((-212) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-652)))) (-15 -3918 ((-652) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1235)))) (-15 -3918 ((-1235) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-137)))) (-15 -3918 ((-137) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-132)))) (-15 -3918 ((-132) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1082)))) (-15 -3918 ((-1082) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-95)))) (-15 -3918 ((-95) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-657)))) (-15 -3918 ((-657) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-508)))) (-15 -3918 ((-508) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1033)))) (-15 -3918 ((-1033) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1236)))) (-15 -3918 ((-1236) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-516)))) (-15 -3918 ((-516) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-152)))) (-15 -3918 ((-152) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-647)))) (-15 -3918 ((-647) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-305)))) (-15 -3918 ((-305) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1007)))) (-15 -3918 ((-1007) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-178)))) (-15 -3918 ((-178) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-941)))) (-15 -3918 ((-941) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1040)))) (-15 -3918 ((-1040) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1057)))) (-15 -3918 ((-1057) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1062)))) (-15 -3918 ((-1062) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-604)))) (-15 -3918 ((-604) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1132)))) (-15 -3918 ((-1132) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-154)))) (-15 -3918 ((-154) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-136)))) (-15 -3918 ((-136) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-470)))) (-15 -3918 ((-470) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-573)))) (-15 -3918 ((-573) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-497)))) (-15 -3918 ((-497) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1124)))) (-15 -3918 ((-1124) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-535)))) (-15 -3918 ((-535) $)))) -(((-92) . T) ((-101) . T) ((-593 (-835)) . T) ((-593 (-1147)) . T) ((-1067) . T) ((-1049) . T) ((-1220) . T)) -((-3724 (((-1230) (-618 (-835))) 23) (((-1230) (-835)) 22)) (-3723 (((-1230) (-618 (-835))) 21) (((-1230) (-835)) 20)) (-3722 (((-1230) (-618 (-835))) 19) (((-1230) (-835)) 11) (((-1230) (-1124) (-835)) 17))) -(((-1104) (-10 -7 (-15 -3722 ((-1230) (-1124) (-835))) (-15 -3722 ((-1230) (-835))) (-15 -3723 ((-1230) (-835))) (-15 -3724 ((-1230) (-835))) (-15 -3722 ((-1230) (-618 (-835)))) (-15 -3723 ((-1230) (-618 (-835)))) (-15 -3724 ((-1230) (-618 (-835)))))) (T -1104)) -((-3724 (*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104))))) -(-10 -7 (-15 -3722 ((-1230) (-1124) (-835))) (-15 -3722 ((-1230) (-835))) (-15 -3723 ((-1230) (-835))) (-15 -3724 ((-1230) (-835))) (-15 -3722 ((-1230) (-618 (-835)))) (-15 -3723 ((-1230) (-618 (-835)))) (-15 -3724 ((-1230) (-618 (-835))))) -((-3728 (($ $ $) 10)) (-3727 (($ $) 9)) (-3731 (($ $ $) 13)) (-3733 (($ $ $) 15)) (-3730 (($ $ $) 12)) (-3732 (($ $ $) 14)) (-3735 (($ $) 17)) (-3734 (($ $) 16)) (-3725 (($ $) 6)) (-3729 (($ $ $) 11) (($ $) 7)) (-3726 (($ $ $) 8))) +((-2460 (((-623 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 37)) (-1816 (((-550) (-1200 |#2| |#1|)) 69 (|has| |#1| (-444)))) (-1614 (((-550) (-1200 |#2| |#1|)) 54)) (-2536 (((-623 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 45)) (-1711 (((-550) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 68 (|has| |#1| (-444)))) (-2607 (((-623 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 48)) (-1514 (((-550) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 53))) +(((-1082 |#1| |#2|) (-10 -7 (-15 -2460 ((-623 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -2536 ((-623 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -2607 ((-623 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -1514 ((-550) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -1614 ((-550) (-1200 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -1711 ((-550) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -1816 ((-550) (-1200 |#2| |#1|)))) |%noBranch|)) (-798) (-1144)) (T -1082)) +((-1816 (*1 *2 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-550)) (-5 *1 (-1082 *4 *5)))) (-1711 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-550)) (-5 *1 (-1082 *4 *5)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-550)) (-5 *1 (-1082 *4 *5)))) (-1514 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-550)) (-5 *1 (-1082 *4 *5)))) (-2607 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-623 *4)) (-5 *1 (-1082 *4 *5)))) (-2536 (*1 *2 *3 *3) (-12 (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-623 (-1200 *5 *4))) (-5 *1 (-1082 *4 *5)) (-5 *3 (-1200 *5 *4)))) (-2460 (*1 *2 *3 *3) (-12 (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-623 (-1200 *5 *4))) (-5 *1 (-1082 *4 *5)) (-5 *3 (-1200 *5 *4))))) +(-10 -7 (-15 -2460 ((-623 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -2536 ((-623 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -2607 ((-623 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -1514 ((-550) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -1614 ((-550) (-1200 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -1711 ((-550) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -1816 ((-550) (-1200 |#2| |#1|)))) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-1911 (($ (-497) (-1086)) 14)) (-2838 (((-1086) $) 20)) (-1916 (((-497) $) 17)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 28) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-1083) (-13 (-1051) (-10 -8 (-15 -1911 ($ (-497) (-1086))) (-15 -1916 ((-497) $)) (-15 -2838 ((-1086) $))))) (T -1083)) +((-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1086)) (-5 *1 (-1083)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1083)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1083))))) +(-13 (-1051) (-10 -8 (-15 -1911 ($ (-497) (-1086))) (-15 -1916 ((-497) $)) (-15 -2838 ((-1086) $)))) +((-3712 (((-3 (-550) "failed") |#2| (-1144) |#2| (-1126)) 17) (((-3 (-550) "failed") |#2| (-1144) (-818 |#2|)) 15) (((-3 (-550) "failed") |#2|) 54))) +(((-1084 |#1| |#2|) (-10 -7 (-15 -3712 ((-3 (-550) "failed") |#2|)) (-15 -3712 ((-3 (-550) "failed") |#2| (-1144) (-818 |#2|))) (-15 -3712 ((-3 (-550) "failed") |#2| (-1144) |#2| (-1126)))) (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)) (-444)) (-13 (-27) (-1166) (-423 |#1|))) (T -1084)) +((-3712 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-1126)) (-4 *6 (-13 (-542) (-825) (-1011 *2) (-619 *2) (-444))) (-5 *2 (-550)) (-5 *1 (-1084 *6 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *6))))) (-3712 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-818 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *6))) (-4 *6 (-13 (-542) (-825) (-1011 *2) (-619 *2) (-444))) (-5 *2 (-550)) (-5 *1 (-1084 *6 *3)))) (-3712 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-825) (-1011 *2) (-619 *2) (-444))) (-5 *2 (-550)) (-5 *1 (-1084 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *4)))))) +(-10 -7 (-15 -3712 ((-3 (-550) "failed") |#2|)) (-15 -3712 ((-3 (-550) "failed") |#2| (-1144) (-818 |#2|))) (-15 -3712 ((-3 (-550) "failed") |#2| (-1144) |#2| (-1126)))) +((-3712 (((-3 (-550) "failed") (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|)) (-1126)) 35) (((-3 (-550) "failed") (-400 (-925 |#1|)) (-1144) (-818 (-400 (-925 |#1|)))) 30) (((-3 (-550) "failed") (-400 (-925 |#1|))) 13))) +(((-1085 |#1|) (-10 -7 (-15 -3712 ((-3 (-550) "failed") (-400 (-925 |#1|)))) (-15 -3712 ((-3 (-550) "failed") (-400 (-925 |#1|)) (-1144) (-818 (-400 (-925 |#1|))))) (-15 -3712 ((-3 (-550) "failed") (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|)) (-1126)))) (-444)) (T -1085)) +((-3712 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-400 (-925 *6))) (-5 *4 (-1144)) (-5 *5 (-1126)) (-4 *6 (-444)) (-5 *2 (-550)) (-5 *1 (-1085 *6)))) (-3712 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-818 (-400 (-925 *6)))) (-5 *3 (-400 (-925 *6))) (-4 *6 (-444)) (-5 *2 (-550)) (-5 *1 (-1085 *6)))) (-3712 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-444)) (-5 *2 (-550)) (-5 *1 (-1085 *4))))) +(-10 -7 (-15 -3712 ((-3 (-550) "failed") (-400 (-925 |#1|)))) (-15 -3712 ((-3 (-550) "failed") (-400 (-925 |#1|)) (-1144) (-818 (-400 (-925 |#1|))))) (-15 -3712 ((-3 (-550) "failed") (-400 (-925 |#1|)) (-1144) (-400 (-925 |#1|)) (-1126)))) +((-1504 (((-112) $ $) NIL)) (-1551 (((-1149) $) 10)) (-1486 (((-623 (-1149)) $) 11)) (-2838 (($ (-623 (-1149)) (-1149)) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 20)) (-2316 (((-112) $ $) 14))) +(((-1086) (-13 (-1068) (-10 -8 (-15 -2838 ($ (-623 (-1149)) (-1149))) (-15 -1551 ((-1149) $)) (-15 -1486 ((-623 (-1149)) $))))) (T -1086)) +((-2838 (*1 *1 *2 *3) (-12 (-5 *2 (-623 (-1149))) (-5 *3 (-1149)) (-5 *1 (-1086)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1086)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-623 (-1149))) (-5 *1 (-1086))))) +(-13 (-1068) (-10 -8 (-15 -2838 ($ (-623 (-1149)) (-1149))) (-15 -1551 ((-1149) $)) (-15 -1486 ((-623 (-1149)) $)))) +((-1594 (((-309 (-550)) (-48)) 12))) +(((-1087) (-10 -7 (-15 -1594 ((-309 (-550)) (-48))))) (T -1087)) +((-1594 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-550))) (-5 *1 (-1087))))) +(-10 -7 (-15 -1594 ((-309 (-550)) (-48)))) +((-1504 (((-112) $ $) NIL)) (-3239 (($ $) 41)) (-3433 (((-112) $) 65)) (-2678 (($ $ $) 48)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 86)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-2347 (($ $ $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-2181 (($ $ $ $) 75)) (-1505 (($ $) NIL)) (-3564 (((-411 $) $) NIL)) (-3631 (((-112) $ $) NIL)) (-3712 (((-550) $) NIL)) (-3827 (($ $ $) 72)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL)) (-2726 (((-550) $) NIL)) (-3349 (($ $ $) 59)) (-3780 (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 80) (((-667 (-550)) (-667 $)) 28)) (-1386 (((-3 $ "failed") $) NIL)) (-3207 (((-3 (-400 (-550)) "failed") $) NIL)) (-3122 (((-112) $) NIL)) (-3042 (((-400 (-550)) $) NIL)) (-1741 (($) 83) (($ $) 84)) (-1519 (($ $ $) 58)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL)) (-3933 (((-112) $) NIL)) (-3064 (($ $ $ $) NIL)) (-2434 (($ $ $) 81)) (-1416 (((-112) $) NIL)) (-3388 (($ $ $) NIL)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL)) (-3102 (((-112) $) 66)) (-3718 (((-112) $) 64)) (-3462 (($ $) 42)) (-2826 (((-3 $ "failed") $) NIL)) (-3329 (((-112) $) 76)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3178 (($ $ $ $) 73)) (-2707 (($ $ $) 68) (($) 39)) (-4164 (($ $ $) 67) (($) 38)) (-3833 (($ $) NIL)) (-3772 (($ $) 71)) (-3106 (($ $ $) NIL) (($ (-623 $)) NIL)) (-1825 (((-1126) $) NIL)) (-2996 (($ $ $) NIL)) (-3862 (($) NIL T CONST)) (-3463 (($ $) 50)) (-3337 (((-1088) $) 70)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL)) (-3139 (($ $ $) 62) (($ (-623 $)) NIL)) (-1289 (($ $) NIL)) (-3338 (((-411 $) $) NIL)) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL)) (-3777 (((-112) $) NIL)) (-3542 (((-749) $) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 61)) (-2393 (($ $ (-749)) NIL) (($ $) NIL)) (-2092 (($ $) 51)) (-1731 (($ $) NIL)) (-4028 (((-550) $) 32) (((-526) $) NIL) (((-865 (-550)) $) NIL) (((-372) $) NIL) (((-219) $) NIL)) (-1518 (((-836) $) 31) (($ (-550)) 82) (($ $) NIL) (($ (-550)) 82)) (-2390 (((-749)) NIL)) (-2520 (((-112) $ $) NIL)) (-4224 (($ $ $) NIL)) (-1860 (($) 37)) (-1345 (((-112) $ $) NIL)) (-2260 (($ $ $ $) 74)) (-1635 (($ $) 63)) (-1482 (($ $ $) 44)) (-2626 (($) 35 T CONST)) (-2611 (($ $ $) 47)) (-2636 (($) 36 T CONST)) (-3040 (((-1126) $) 21) (((-1126) $ (-112)) 23) (((-1232) (-800) $) 24) (((-1232) (-800) $ (-112)) 25)) (-2622 (($ $) 45)) (-4183 (($ $ (-749)) NIL) (($ $) NIL)) (-2602 (($ $ $) 46)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 40)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 49)) (-1466 (($ $ $) 43)) (-2403 (($ $) 52) (($ $ $) 54)) (-2391 (($ $ $) 53)) (** (($ $ (-894)) NIL) (($ $ (-749)) 57)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 34) (($ $ $) 55))) +(((-1088) (-13 (-535) (-639) (-806) (-10 -8 (-6 -4329) (-6 -4334) (-6 -4330) (-15 -4164 ($)) (-15 -2707 ($)) (-15 -3462 ($ $)) (-15 -3239 ($ $)) (-15 -1466 ($ $ $)) (-15 -1482 ($ $ $)) (-15 -2678 ($ $ $)) (-15 -2622 ($ $)) (-15 -2602 ($ $ $)) (-15 -2611 ($ $ $))))) (T -1088)) +((-1482 (*1 *1 *1 *1) (-5 *1 (-1088))) (-1466 (*1 *1 *1 *1) (-5 *1 (-1088))) (-3239 (*1 *1 *1) (-5 *1 (-1088))) (-4164 (*1 *1) (-5 *1 (-1088))) (-2707 (*1 *1) (-5 *1 (-1088))) (-3462 (*1 *1 *1) (-5 *1 (-1088))) (-2678 (*1 *1 *1 *1) (-5 *1 (-1088))) (-2622 (*1 *1 *1) (-5 *1 (-1088))) (-2602 (*1 *1 *1 *1) (-5 *1 (-1088))) (-2611 (*1 *1 *1 *1) (-5 *1 (-1088)))) +(-13 (-535) (-639) (-806) (-10 -8 (-6 -4329) (-6 -4334) (-6 -4330) (-15 -4164 ($)) (-15 -2707 ($)) (-15 -3462 ($ $)) (-15 -3239 ($ $)) (-15 -1466 ($ $ $)) (-15 -1482 ($ $ $)) (-15 -2678 ($ $ $)) (-15 -2622 ($ $)) (-15 -2602 ($ $ $)) (-15 -2611 ($ $ $)))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-2038 ((|#1| $) 44)) (-4047 (((-112) $ (-749)) 8)) (-3513 (($) 7 T CONST)) (-2094 ((|#1| |#1| $) 46)) (-2006 ((|#1| $) 45)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3638 ((|#1| $) 39)) (-1886 (($ |#1| $) 40)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-3760 ((|#1| $) 41)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2775 (((-749) $) 43)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) 42)) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-1089 |#1|) (-138) (-1181)) (T -1089)) +((-2094 (*1 *2 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1181)))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1181)))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1181)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1181)) (-5 *2 (-749))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4342) (-15 -2094 (|t#1| |t#1| $)) (-15 -2006 (|t#1| $)) (-15 -2038 (|t#1| $)) (-15 -2775 ((-749) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-2252 ((|#3| $) 76)) (-3880 (((-3 (-550) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2726 (((-550) $) NIL) (((-400 (-550)) $) NIL) ((|#3| $) 37)) (-3780 (((-667 (-550)) (-667 $)) NIL) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL) (((-2 (|:| -1340 (-667 |#3|)) (|:| |vec| (-1227 |#3|))) (-667 $) (-1227 $)) 73) (((-667 |#3|) (-667 $)) 65)) (-2393 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-4105 ((|#3| $) 78)) (-4195 ((|#4| $) 32)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ |#3|) 16)) (** (($ $ (-894)) NIL) (($ $ (-749)) 15) (($ $ (-550)) 82))) +(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 -4105 (|#3| |#1|)) (-15 -2252 (|#3| |#1|)) (-15 -4195 (|#4| |#1|)) (-15 -3780 ((-667 |#3|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#3|)) (|:| |vec| (-1227 |#3|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -2726 (|#3| |#1|)) (-15 -3880 ((-3 |#3| "failed") |#1|)) (-15 -1518 (|#1| |#3|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1518 (|#1| (-550))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-894))) (-15 -1518 ((-836) |#1|))) (-1091 |#2| |#3| |#4| |#5|) (-749) (-1020) (-232 |#2| |#3|) (-232 |#2| |#3|)) (T -1090)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 -4105 (|#3| |#1|)) (-15 -2252 (|#3| |#1|)) (-15 -4195 (|#4| |#1|)) (-15 -3780 ((-667 |#3|) (-667 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 |#3|)) (|:| |vec| (-1227 |#3|))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 |#1|) (-1227 |#1|))) (-15 -3780 ((-667 (-550)) (-667 |#1|))) (-15 -2726 (|#3| |#1|)) (-15 -3880 ((-3 |#3| "failed") |#1|)) (-15 -1518 (|#1| |#3|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-550) |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -2393 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1518 (|#1| (-550))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-894))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-2252 ((|#2| $) 70)) (-1294 (((-112) $) 110)) (-3219 (((-3 $ "failed") $ $) 19)) (-3483 (((-112) $) 108)) (-4047 (((-112) $ (-749)) 100)) (-1333 (($ |#2|) 73)) (-3513 (($) 17 T CONST)) (-3707 (($ $) 127 (|has| |#2| (-300)))) (-3719 ((|#3| $ (-550)) 122)) (-3880 (((-3 (-550) "failed") $) 84 (|has| |#2| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) 82 (|has| |#2| (-1011 (-400 (-550))))) (((-3 |#2| "failed") $) 79)) (-2726 (((-550) $) 85 (|has| |#2| (-1011 (-550)))) (((-400 (-550)) $) 83 (|has| |#2| (-1011 (-400 (-550))))) ((|#2| $) 78)) (-3780 (((-667 (-550)) (-667 $)) 77 (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 76 (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) 75) (((-667 |#2|) (-667 $)) 74)) (-1386 (((-3 $ "failed") $) 32)) (-2122 (((-749) $) 128 (|has| |#2| (-542)))) (-3181 ((|#2| $ (-550) (-550)) 120)) (-3450 (((-623 |#2|) $) 93 (|has| $ (-6 -4342)))) (-3102 (((-112) $) 30)) (-3613 (((-749) $) 129 (|has| |#2| (-542)))) (-3525 (((-623 |#4|) $) 130 (|has| |#2| (-542)))) (-2115 (((-749) $) 116)) (-2124 (((-749) $) 117)) (-1859 (((-112) $ (-749)) 101)) (-3928 ((|#2| $) 65 (|has| |#2| (-6 (-4344 "*"))))) (-2938 (((-550) $) 112)) (-3895 (((-550) $) 114)) (-2689 (((-623 |#2|) $) 92 (|has| $ (-6 -4342)))) (-1921 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342))))) (-2828 (((-550) $) 113)) (-3816 (((-550) $) 115)) (-2458 (($ (-623 (-623 |#2|))) 107)) (-3234 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-4048 (((-623 (-623 |#2|)) $) 118)) (-1573 (((-112) $ (-749)) 102)) (-1825 (((-1126) $) 9)) (-2031 (((-3 $ "failed") $) 64 (|has| |#2| (-356)))) (-3337 (((-1088) $) 10)) (-1495 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-542)))) (-1543 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#2|))) 89 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) 88 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) 106)) (-2902 (((-112) $) 103)) (-3498 (($) 104)) (-2680 ((|#2| $ (-550) (-550) |#2|) 121) ((|#2| $ (-550) (-550)) 119)) (-2393 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-749)) 49) (($ $ (-623 (-1144)) (-623 (-749))) 42 (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) 41 (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) 40 (|has| |#2| (-873 (-1144)))) (($ $ (-1144)) 39 (|has| |#2| (-873 (-1144)))) (($ $ (-749)) 37 (|has| |#2| (-227))) (($ $) 35 (|has| |#2| (-227)))) (-4105 ((|#2| $) 69)) (-4296 (($ (-623 |#2|)) 72)) (-1829 (((-112) $) 109)) (-4195 ((|#3| $) 71)) (-4017 ((|#2| $) 66 (|has| |#2| (-6 (-4344 "*"))))) (-3350 (((-749) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4342))) (((-749) |#2| $) 91 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 105)) (-3615 ((|#4| $ (-550)) 123)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 81 (|has| |#2| (-1011 (-400 (-550))))) (($ |#2|) 80)) (-2390 (((-749)) 28)) (-1675 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4342)))) (-1295 (((-112) $) 111)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-749)) 47) (($ $ (-623 (-1144)) (-623 (-749))) 46 (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) 45 (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) 44 (|has| |#2| (-873 (-1144)))) (($ $ (-1144)) 43 (|has| |#2| (-873 (-1144)))) (($ $ (-749)) 38 (|has| |#2| (-227))) (($ $) 36 (|has| |#2| (-227)))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#2|) 126 (|has| |#2| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 63 (|has| |#2| (-356)))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-3191 (((-749) $) 99 (|has| $ (-6 -4342))))) +(((-1091 |#1| |#2| |#3| |#4|) (-138) (-749) (-1020) (-232 |t#1| |t#2|) (-232 |t#1| |t#2|)) (T -1091)) +((-1333 (*1 *1 *2) (-12 (-4 *2 (-1020)) (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-1020)) (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-1091 *3 *4 *2 *5)) (-4 *4 (-1020)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1020)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1020)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1091 *3 *4 *5 *2)) (-4 *4 (-1020)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1091 *3 *4 *2 *5)) (-4 *4 (-1020)) (-4 *2 (-232 *3 *4)) (-4 *5 (-232 *3 *4)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4344 "*"))) (-4 *2 (-1020)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4344 "*"))) (-4 *2 (-1020)))) (-2031 (*1 *1 *1) (|partial| -12 (-4 *1 (-1091 *2 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *4 (-1020)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356))))) +(-13 (-225 |t#2|) (-111 |t#2| |t#2|) (-1023 |t#1| |t#1| |t#2| |t#3| |t#4|) (-404 |t#2|) (-370 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-696 |t#2|)) |%noBranch|) (-15 -1333 ($ |t#2|)) (-15 -4296 ($ (-623 |t#2|))) (-15 -4195 (|t#3| $)) (-15 -2252 (|t#2| $)) (-15 -4105 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4344 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4017 (|t#2| $)) (-15 -3928 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-356)) (PROGN (-15 -2031 ((-3 $ "failed") $)) (-15 ** ($ $ (-550)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4344 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-836)) . T) ((-225 |#2|) . T) ((-227) |has| |#2| (-227)) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-370 |#2|) . T) ((-404 |#2|) . T) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-626 |#2|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#2| (-619 (-550))) ((-619 |#2|) . T) ((-696 |#2|) -1561 (|has| |#2| (-170)) (|has| |#2| (-6 (-4344 "*")))) ((-705) . T) ((-873 (-1144)) |has| |#2| (-873 (-1144))) ((-1023 |#1| |#1| |#2| |#3| |#4|) . T) ((-1011 (-400 (-550))) |has| |#2| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#2| (-1011 (-550))) ((-1011 |#2|) . T) ((-1026 |#2|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1181) . T)) +((-3434 ((|#4| |#4|) 70)) (-1426 ((|#4| |#4|) 65)) (-3621 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|))) |#4| |#3|) 78)) (-3533 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3330 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1092 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1426 (|#4| |#4|)) (-15 -3330 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3434 (|#4| |#4|)) (-15 -3533 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3621 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|))) |#4| |#3|))) (-300) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|)) (T -1092)) +((-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-300)) (-4 *6 (-366 *5)) (-4 *4 (-366 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) (-5 *1 (-1092 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) (-3533 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1092 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1092 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1092 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) (-1426 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1092 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) +(-10 -7 (-15 -1426 (|#4| |#4|)) (-15 -3330 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3434 (|#4| |#4|)) (-15 -3533 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3621 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2437 (-623 |#3|))) |#4| |#3|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 17)) (-3141 (((-623 |#2|) $) 159)) (-3306 (((-1140 $) $ |#2|) 54) (((-1140 |#1|) $) 43)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 108 (|has| |#1| (-542)))) (-1447 (($ $) 110 (|has| |#1| (-542)))) (-4291 (((-112) $) 112 (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 |#2|)) 192)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) 156) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 |#2| "failed") $) NIL)) (-2726 ((|#1| $) 154) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) ((|#2| $) NIL)) (-3340 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-3295 (($ $) 196)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) 82)) (-2674 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-2613 (($ $ |#1| (-522 |#2|) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| |#1| (-859 (-372))) (|has| |#2| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| |#1| (-859 (-550))) (|has| |#2| (-859 (-550)))))) (-3102 (((-112) $) 19)) (-2603 (((-749) $) 26)) (-3129 (($ (-1140 |#1|) |#2|) 48) (($ (-1140 $) |#2|) 64)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) 32)) (-3118 (($ |#1| (-522 |#2|)) 71) (($ $ |#2| (-749)) 52) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ |#2|) NIL)) (-1667 (((-522 |#2|) $) 186) (((-749) $ |#2|) 187) (((-623 (-749)) $ (-623 |#2|)) 188)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-522 |#2|) (-522 |#2|)) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) 120)) (-2558 (((-3 |#2| "failed") $) 161)) (-3267 (($ $) 195)) (-3277 ((|#1| $) 37)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1825 (((-1126) $) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| |#2|) (|:| -3521 (-749))) "failed") $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) 33)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 138 (|has| |#1| (-444)))) (-3139 (($ (-623 $)) 143 (|has| |#1| (-444))) (($ $ $) 130 (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#1| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-882)))) (-1495 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-542)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-623 |#2|) (-623 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-623 |#2|) (-623 $)) 176)) (-3453 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-2393 (($ $ |#2|) 194) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2970 (((-522 |#2|) $) 182) (((-749) $ |#2|) 178) (((-623 (-749)) $ (-623 |#2|)) 180)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| |#1| (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| |#1| (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| |#1| (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-2503 ((|#1| $) 126 (|has| |#1| (-444))) (($ $ |#2|) 129 (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1518 (((-836) $) 149) (($ (-550)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550))))))) (-3511 (((-623 |#1|) $) 152)) (-2510 ((|#1| $ (-522 |#2|)) 73) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) 79)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) 115 (|has| |#1| (-542)))) (-2626 (($) 12 T CONST)) (-2636 (($) 14 T CONST)) (-4183 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) 97)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) 124 (|has| |#1| (-356)))) (-2403 (($ $) 85) (($ $ $) 95)) (-2391 (($ $ $) 49)) (** (($ $ (-894)) 102) (($ $ (-749)) 100)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 88) (($ $ $) 65) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1093 |#1| |#2|) (-922 |#1| (-522 |#2|) |#2|) (-1020) (-825)) (T -1093)) +NIL +(-922 |#1| (-522 |#2|) |#2|) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 |#2|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-3123 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3103 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 113 (|has| |#1| (-38 (-400 (-550)))))) (-3146 (($ $) 145 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1402 (((-925 |#1|) $ (-749)) NIL) (((-925 |#1|) $ (-749) (-749)) NIL)) (-3478 (((-112) $) NIL)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-749) $ |#2|) NIL) (((-749) $ |#2| (-749)) NIL)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3439 (((-112) $) NIL)) (-3118 (($ $ (-623 |#2|) (-623 (-522 |#2|))) NIL) (($ $ |#2| (-522 |#2|)) NIL) (($ |#1| (-522 |#2|)) NIL) (($ $ |#2| (-749)) 56) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2958 (($ $) 111 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-1489 (($ $ |#2|) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) NIL)) (-2435 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-400 (-550)))))) (-2272 (($ $ (-749)) 13)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1812 (($ $) 109 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (($ $ |#2| $) 95) (($ $ (-623 |#2|) (-623 $)) 88) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL)) (-2393 (($ $ |#2|) 98) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2970 (((-522 |#2|) $) NIL)) (-3703 (((-1 (-1124 |#3|) |#3|) (-623 |#2|) (-623 (-1124 |#3|))) 77)) (-3157 (($ $) 147 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 143 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 15)) (-1518 (((-836) $) 180) (($ (-550)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#2|) 63) (($ |#3|) 61)) (-2510 ((|#1| $ (-522 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL) ((|#3| $ (-749)) 38)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-3187 (($ $) 153 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) 149 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 157 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-3294 (($ $) 159 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 155 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 151 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 47 T CONST)) (-2636 (($) 55 T CONST)) (-4183 (($ $ |#2|) NIL) (($ $ (-623 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-623 |#2|) (-623 (-749))) NIL)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#1|) 182 (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 59)) (** (($ $ (-894)) NIL) (($ $ (-749)) 68) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 101 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 58) (($ $ (-400 (-550))) 106 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 104 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1094 |#1| |#2| |#3|) (-13 (-719 |#1| |#2|) (-10 -8 (-15 -2510 (|#3| $ (-749))) (-15 -1518 ($ |#2|)) (-15 -1518 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3703 ((-1 (-1124 |#3|) |#3|) (-623 |#2|) (-623 (-1124 |#3|)))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $ |#2| |#1|)) (-15 -2435 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1020) (-825) (-922 |#1| (-522 |#2|) |#2|)) (T -1094)) +((-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *2 (-922 *4 (-522 *5) *5)) (-5 *1 (-1094 *4 *5 *2)) (-4 *4 (-1020)) (-4 *5 (-825)))) (-1518 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-4 *2 (-825)) (-5 *1 (-1094 *3 *2 *4)) (-4 *4 (-922 *3 (-522 *2) *2)))) (-1518 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-4 *4 (-825)) (-5 *1 (-1094 *3 *4 *2)) (-4 *2 (-922 *3 (-522 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-825)) (-5 *1 (-1094 *3 *4 *2)) (-4 *2 (-922 *3 (-522 *4) *4)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-1124 *7))) (-4 *6 (-825)) (-4 *7 (-922 *5 (-522 *6) *6)) (-4 *5 (-1020)) (-5 *2 (-1 (-1124 *7) *7)) (-5 *1 (-1094 *5 *6 *7)))) (-1489 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-4 *2 (-825)) (-5 *1 (-1094 *3 *2 *4)) (-4 *4 (-922 *3 (-522 *2) *2)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1094 *4 *3 *5))) (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1020)) (-4 *3 (-825)) (-5 *1 (-1094 *4 *3 *5)) (-4 *5 (-922 *4 (-522 *3) *3))))) +(-13 (-719 |#1| |#2|) (-10 -8 (-15 -2510 (|#3| $ (-749))) (-15 -1518 ($ |#2|)) (-15 -1518 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3703 ((-1 (-1124 |#3|) |#3|) (-623 |#2|) (-623 (-1124 |#3|)))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $ |#2| |#1|)) (-15 -2435 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-1504 (((-112) $ $) 7)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) 85)) (-1779 (((-623 $) (-623 |#4|)) 86) (((-623 $) (-623 |#4|) (-112)) 111)) (-3141 (((-623 |#3|) $) 33)) (-2238 (((-112) $) 26)) (-3670 (((-112) $) 17 (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-1505 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| $) 126)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) 27)) (-4047 (((-112) $ (-749)) 44)) (-4253 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) 79)) (-3513 (($) 45 T CONST)) (-2976 (((-112) $) 22 (|has| |#1| (-542)))) (-3156 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3059 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3253 (((-112) $) 25 (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3774 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) 36)) (-2726 (($ (-623 |#4|)) 35)) (-1308 (((-3 $ "failed") $) 82)) (-2067 ((|#4| |#4| $) 89)) (-1328 (($ $) 68 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#4| $) 67 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1878 ((|#4| |#4| $) 87)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) 105)) (-3113 (((-112) |#4| $) 136)) (-2933 (((-112) |#4| $) 133)) (-3208 (((-112) |#4| $) 137) (((-112) $) 134)) (-3450 (((-623 |#4|) $) 52 (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) 104) (((-112) $) 103)) (-3952 ((|#3| $) 34)) (-1859 (((-112) $ (-749)) 43)) (-2689 (((-623 |#4|) $) 53 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 47)) (-2650 (((-623 |#3|) $) 32)) (-2568 (((-112) |#3| $) 31)) (-1573 (((-112) $ (-749)) 42)) (-1825 (((-1126) $) 9)) (-3735 (((-3 |#4| (-623 $)) |#4| |#4| $) 128)) (-3632 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| |#4| $) 127)) (-3159 (((-3 |#4| "failed") $) 83)) (-3830 (((-623 $) |#4| $) 129)) (-2845 (((-3 (-112) (-623 $)) |#4| $) 132)) (-2743 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1623 (((-623 $) |#4| $) 125) (((-623 $) (-623 |#4|) $) 124) (((-623 $) (-623 |#4|) (-623 $)) 123) (((-623 $) |#4| (-623 $)) 122)) (-3757 (($ |#4| $) 117) (($ (-623 |#4|) $) 116)) (-3671 (((-623 |#4|) $) 107)) (-1296 (((-112) |#4| $) 99) (((-112) $) 95)) (-3900 ((|#4| |#4| $) 90)) (-3831 (((-112) $ $) 110)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) 100) (((-112) $) 96)) (-3984 ((|#4| |#4| $) 91)) (-3337 (((-1088) $) 10)) (-1293 (((-3 |#4| "failed") $) 84)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2654 (((-3 $ "failed") $ |#4|) 78)) (-2272 (($ $ |#4|) 77) (((-623 $) |#4| $) 115) (((-623 $) |#4| (-623 $)) 114) (((-623 $) (-623 |#4|) $) 113) (((-623 $) (-623 |#4|) (-623 $)) 112)) (-1543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) 38)) (-2902 (((-112) $) 41)) (-3498 (($) 40)) (-2970 (((-749) $) 106)) (-3350 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4342)))) (-1731 (($ $) 39)) (-4028 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 60)) (-2315 (($ $ |#3|) 28)) (-2486 (($ $ |#3|) 30)) (-1969 (($ $) 88)) (-2401 (($ $ |#3|) 29)) (-1518 (((-836) $) 11) (((-623 |#4|) $) 37)) (-2580 (((-749) $) 76 (|has| |#3| (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-3532 (((-623 $) |#4| $) 121) (((-623 $) |#4| (-623 $)) 120) (((-623 $) (-623 |#4|) $) 119) (((-623 $) (-623 |#4|) (-623 $)) 118)) (-1675 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) 81)) (-3024 (((-112) |#4| $) 135)) (-1288 (((-112) |#3| $) 80)) (-2316 (((-112) $ $) 6)) (-3191 (((-749) $) 46 (|has| $ (-6 -4342))))) +(((-1095 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1034 |t#1| |t#2| |t#3|)) (T -1095)) +NIL +(-13 (-1077 |t#1| |t#2| |t#3| |t#4|) (-762 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-836)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-762 |#1| |#2| |#3| |#4|) . T) ((-949 |#1| |#2| |#3| |#4|) . T) ((-1040 |#1| |#2| |#3| |#4|) . T) ((-1068) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1174 |#1| |#2| |#3| |#4|) . T) ((-1181) . T)) +((-2903 (((-623 |#2|) |#1|) 12)) (-2934 (((-623 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-623 |#2|) |#1|) 52)) (-2765 (((-623 |#2|) |#2| |#2| |#2|) 39) (((-623 |#2|) |#1|) 50)) (-3784 ((|#2| |#1|) 46)) (-3861 (((-2 (|:| |solns| (-623 |#2|)) (|:| |maps| (-623 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1377 (((-623 |#2|) |#2| |#2|) 38) (((-623 |#2|) |#1|) 49)) (-2853 (((-623 |#2|) |#2| |#2| |#2| |#2|) 40) (((-623 |#2|) |#1|) 51)) (-3262 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3093 ((|#2| |#2| |#2| |#2|) 43)) (-3015 ((|#2| |#2| |#2|) 42)) (-3175 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1096 |#1| |#2|) (-10 -7 (-15 -2903 ((-623 |#2|) |#1|)) (-15 -3784 (|#2| |#1|)) (-15 -3861 ((-2 (|:| |solns| (-623 |#2|)) (|:| |maps| (-623 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1377 ((-623 |#2|) |#1|)) (-15 -2765 ((-623 |#2|) |#1|)) (-15 -2853 ((-623 |#2|) |#1|)) (-15 -2934 ((-623 |#2|) |#1|)) (-15 -1377 ((-623 |#2|) |#2| |#2|)) (-15 -2765 ((-623 |#2|) |#2| |#2| |#2|)) (-15 -2853 ((-623 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2934 ((-623 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3015 (|#2| |#2| |#2|)) (-15 -3093 (|#2| |#2| |#2| |#2|)) (-15 -3175 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3262 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1203 |#2|) (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (T -1096)) +((-3262 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2)))) (-3175 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2)))) (-3093 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2)))) (-3015 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2)))) (-2934 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *3)) (-5 *1 (-1096 *4 *3)) (-4 *4 (-1203 *3)))) (-2853 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *3)) (-5 *1 (-1096 *4 *3)) (-4 *4 (-1203 *3)))) (-2765 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *3)) (-5 *1 (-1096 *4 *3)) (-4 *4 (-1203 *3)))) (-1377 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *3)) (-5 *1 (-1096 *4 *3)) (-4 *4 (-1203 *3)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) (-2853 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) (-2765 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) (-1377 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) (-3861 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-2 (|:| |solns| (-623 *5)) (|:| |maps| (-623 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1096 *3 *5)) (-4 *3 (-1203 *5)))) (-3784 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2)))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -2903 ((-623 |#2|) |#1|)) (-15 -3784 (|#2| |#1|)) (-15 -3861 ((-2 (|:| |solns| (-623 |#2|)) (|:| |maps| (-623 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1377 ((-623 |#2|) |#1|)) (-15 -2765 ((-623 |#2|) |#1|)) (-15 -2853 ((-623 |#2|) |#1|)) (-15 -2934 ((-623 |#2|) |#1|)) (-15 -1377 ((-623 |#2|) |#2| |#2|)) (-15 -2765 ((-623 |#2|) |#2| |#2| |#2|)) (-15 -2853 ((-623 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2934 ((-623 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3015 (|#2| |#2| |#2|)) (-15 -3093 (|#2| |#2| |#2| |#2|)) (-15 -3175 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3262 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2239 (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-925 |#1|))))) 95) (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-925 |#1|)))) (-623 (-1144))) 94) (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-925 |#1|)))) 92) (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-925 |#1|))) (-623 (-1144))) 90) (((-623 (-287 (-309 |#1|))) (-287 (-400 (-925 |#1|)))) 75) (((-623 (-287 (-309 |#1|))) (-287 (-400 (-925 |#1|))) (-1144)) 76) (((-623 (-287 (-309 |#1|))) (-400 (-925 |#1|))) 70) (((-623 (-287 (-309 |#1|))) (-400 (-925 |#1|)) (-1144)) 59)) (-2307 (((-623 (-623 (-309 |#1|))) (-623 (-400 (-925 |#1|))) (-623 (-1144))) 88) (((-623 (-309 |#1|)) (-400 (-925 |#1|)) (-1144)) 43)) (-2380 (((-1133 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-400 (-925 |#1|)) (-1144)) 98) (((-1133 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-287 (-400 (-925 |#1|))) (-1144)) 97))) +(((-1097 |#1|) (-10 -7 (-15 -2239 ((-623 (-287 (-309 |#1|))) (-400 (-925 |#1|)) (-1144))) (-15 -2239 ((-623 (-287 (-309 |#1|))) (-400 (-925 |#1|)))) (-15 -2239 ((-623 (-287 (-309 |#1|))) (-287 (-400 (-925 |#1|))) (-1144))) (-15 -2239 ((-623 (-287 (-309 |#1|))) (-287 (-400 (-925 |#1|))))) (-15 -2239 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-925 |#1|))) (-623 (-1144)))) (-15 -2239 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-925 |#1|))))) (-15 -2239 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-925 |#1|)))) (-623 (-1144)))) (-15 -2239 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-925 |#1|)))))) (-15 -2307 ((-623 (-309 |#1|)) (-400 (-925 |#1|)) (-1144))) (-15 -2307 ((-623 (-623 (-309 |#1|))) (-623 (-400 (-925 |#1|))) (-623 (-1144)))) (-15 -2380 ((-1133 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-287 (-400 (-925 |#1|))) (-1144))) (-15 -2380 ((-1133 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-400 (-925 |#1|)) (-1144)))) (-13 (-300) (-825) (-145))) (T -1097)) +((-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-1133 (-623 (-309 *5)) (-623 (-287 (-309 *5))))) (-5 *1 (-1097 *5)))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-925 *5)))) (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-1133 (-623 (-309 *5)) (-623 (-287 (-309 *5))))) (-5 *1 (-1097 *5)))) (-2307 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-925 *5)))) (-5 *4 (-623 (-1144))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-309 *5)))) (-5 *1 (-1097 *5)))) (-2307 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-309 *5))) (-5 *1 (-1097 *5)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-623 (-287 (-400 (-925 *4))))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *4))))) (-5 *1 (-1097 *4)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-287 (-400 (-925 *5))))) (-5 *4 (-623 (-1144))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1097 *5)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-623 (-400 (-925 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *4))))) (-5 *1 (-1097 *4)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-925 *5)))) (-5 *4 (-623 (-1144))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1097 *5)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-287 (-400 (-925 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1097 *4)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-925 *5)))) (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1097 *5)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1097 *4)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1097 *5))))) +(-10 -7 (-15 -2239 ((-623 (-287 (-309 |#1|))) (-400 (-925 |#1|)) (-1144))) (-15 -2239 ((-623 (-287 (-309 |#1|))) (-400 (-925 |#1|)))) (-15 -2239 ((-623 (-287 (-309 |#1|))) (-287 (-400 (-925 |#1|))) (-1144))) (-15 -2239 ((-623 (-287 (-309 |#1|))) (-287 (-400 (-925 |#1|))))) (-15 -2239 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-925 |#1|))) (-623 (-1144)))) (-15 -2239 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-400 (-925 |#1|))))) (-15 -2239 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-925 |#1|)))) (-623 (-1144)))) (-15 -2239 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-400 (-925 |#1|)))))) (-15 -2307 ((-623 (-309 |#1|)) (-400 (-925 |#1|)) (-1144))) (-15 -2307 ((-623 (-623 (-309 |#1|))) (-623 (-400 (-925 |#1|))) (-623 (-1144)))) (-15 -2380 ((-1133 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-287 (-400 (-925 |#1|))) (-1144))) (-15 -2380 ((-1133 (-623 (-309 |#1|)) (-623 (-287 (-309 |#1|)))) (-400 (-925 |#1|)) (-1144)))) +((-2533 (((-400 (-1140 (-309 |#1|))) (-1227 (-309 |#1|)) (-400 (-1140 (-309 |#1|))) (-550)) 29)) (-2456 (((-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|)))) 40))) +(((-1098 |#1|) (-10 -7 (-15 -2456 ((-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|))))) (-15 -2533 ((-400 (-1140 (-309 |#1|))) (-1227 (-309 |#1|)) (-400 (-1140 (-309 |#1|))) (-550)))) (-13 (-542) (-825))) (T -1098)) +((-2533 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-400 (-1140 (-309 *5)))) (-5 *3 (-1227 (-309 *5))) (-5 *4 (-550)) (-4 *5 (-13 (-542) (-825))) (-5 *1 (-1098 *5)))) (-2456 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-400 (-1140 (-309 *3)))) (-4 *3 (-13 (-542) (-825))) (-5 *1 (-1098 *3))))) +(-10 -7 (-15 -2456 ((-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|))) (-400 (-1140 (-309 |#1|))))) (-15 -2533 ((-400 (-1140 (-309 |#1|))) (-1227 (-309 |#1|)) (-400 (-1140 (-309 |#1|))) (-550)))) +((-2903 (((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-309 |#1|))) (-623 (-1144))) 224) (((-623 (-287 (-309 |#1|))) (-309 |#1|) (-1144)) 20) (((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1144)) 26) (((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|))) 25) (((-623 (-287 (-309 |#1|))) (-309 |#1|)) 21))) +(((-1099 |#1|) (-10 -7 (-15 -2903 ((-623 (-287 (-309 |#1|))) (-309 |#1|))) (-15 -2903 ((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)))) (-15 -2903 ((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1144))) (-15 -2903 ((-623 (-287 (-309 |#1|))) (-309 |#1|) (-1144))) (-15 -2903 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-309 |#1|))) (-623 (-1144))))) (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (T -1099)) +((-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-1144))) (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1099 *5)) (-5 *3 (-623 (-287 (-309 *5)))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1099 *5)) (-5 *3 (-309 *5)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1099 *5)) (-5 *3 (-287 (-309 *5))))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1099 *4)) (-5 *3 (-287 (-309 *4))))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1099 *4)) (-5 *3 (-309 *4))))) +(-10 -7 (-15 -2903 ((-623 (-287 (-309 |#1|))) (-309 |#1|))) (-15 -2903 ((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)))) (-15 -2903 ((-623 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1144))) (-15 -2903 ((-623 (-287 (-309 |#1|))) (-309 |#1|) (-1144))) (-15 -2903 ((-623 (-623 (-287 (-309 |#1|)))) (-623 (-287 (-309 |#1|))) (-623 (-1144))))) +((-2679 ((|#2| |#2|) 20 (|has| |#1| (-825))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-2604 ((|#2| |#2|) 19 (|has| |#1| (-825))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) +(((-1100 |#1| |#2|) (-10 -7 (-15 -2604 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2679 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-825)) (PROGN (-15 -2604 (|#2| |#2|)) (-15 -2679 (|#2| |#2|))) |%noBranch|)) (-1181) (-13 (-586 (-550) |#1|) (-10 -7 (-6 -4342) (-6 -4343)))) (T -1100)) +((-2679 (*1 *2 *2) (-12 (-4 *3 (-825)) (-4 *3 (-1181)) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-586 (-550) *3) (-10 -7 (-6 -4342) (-6 -4343)))))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-825)) (-4 *3 (-1181)) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-586 (-550) *3) (-10 -7 (-6 -4342) (-6 -4343)))))) (-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-1100 *4 *2)) (-4 *2 (-13 (-586 (-550) *4) (-10 -7 (-6 -4342) (-6 -4343)))))) (-2604 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-1100 *4 *2)) (-4 *2 (-13 (-586 (-550) *4) (-10 -7 (-6 -4342) (-6 -4343))))))) +(-10 -7 (-15 -2604 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2679 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-825)) (PROGN (-15 -2604 (|#2| |#2|)) (-15 -2679 (|#2| |#2|))) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-2501 (((-1132 3 |#1|) $) 107)) (-3968 (((-112) $) 72)) (-4035 (($ $ (-623 (-916 |#1|))) 20) (($ $ (-623 (-623 |#1|))) 75) (($ (-623 (-916 |#1|))) 74) (((-623 (-916 |#1|)) $) 73)) (-2997 (((-112) $) 41)) (-2644 (($ $ (-916 |#1|)) 46) (($ $ (-623 |#1|)) 51) (($ $ (-749)) 53) (($ (-916 |#1|)) 47) (((-916 |#1|) $) 45)) (-1848 (((-2 (|:| -3030 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $) 105)) (-2291 (((-749) $) 26)) (-2392 (((-749) $) 25)) (-2417 (($ $ (-749) (-916 |#1|)) 39)) (-2063 (((-112) $) 82)) (-2138 (($ $ (-623 (-623 (-916 |#1|))) (-623 (-169)) (-169)) 89) (($ $ (-623 (-623 (-623 |#1|))) (-623 (-169)) (-169)) 91) (($ $ (-623 (-623 (-916 |#1|))) (-112) (-112)) 85) (($ $ (-623 (-623 (-623 |#1|))) (-112) (-112)) 93) (($ (-623 (-623 (-916 |#1|)))) 86) (($ (-623 (-623 (-916 |#1|))) (-112) (-112)) 87) (((-623 (-623 (-916 |#1|))) $) 84)) (-1832 (($ (-623 $)) 28) (($ $ $) 29)) (-1694 (((-623 (-169)) $) 102)) (-3560 (((-623 (-916 |#1|)) $) 96)) (-1798 (((-623 (-623 (-169))) $) 101)) (-1893 (((-623 (-623 (-623 (-916 |#1|)))) $) NIL)) (-1974 (((-623 (-623 (-623 (-749)))) $) 99)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3084 (((-749) $ (-623 (-916 |#1|))) 37)) (-2789 (((-112) $) 54)) (-2895 (($ $ (-623 (-916 |#1|))) 56) (($ $ (-623 (-623 |#1|))) 62) (($ (-623 (-916 |#1|))) 57) (((-623 (-916 |#1|)) $) 55)) (-2499 (($) 23) (($ (-1132 3 |#1|)) 24)) (-1731 (($ $) 35)) (-2111 (((-623 $) $) 34)) (-1292 (($ (-623 $)) 31)) (-2204 (((-623 $) $) 33)) (-1518 (((-836) $) 111)) (-4131 (((-112) $) 64)) (-4239 (($ $ (-623 (-916 |#1|))) 66) (($ $ (-623 (-623 |#1|))) 69) (($ (-623 (-916 |#1|))) 67) (((-623 (-916 |#1|)) $) 65)) (-1606 (($ $) 106)) (-2316 (((-112) $ $) NIL))) +(((-1101 |#1|) (-1102 |#1|) (-1020)) (T -1101)) +NIL +(-1102 |#1|) +((-1504 (((-112) $ $) 7)) (-2501 (((-1132 3 |#1|) $) 13)) (-3968 (((-112) $) 29)) (-4035 (($ $ (-623 (-916 |#1|))) 33) (($ $ (-623 (-623 |#1|))) 32) (($ (-623 (-916 |#1|))) 31) (((-623 (-916 |#1|)) $) 30)) (-2997 (((-112) $) 44)) (-2644 (($ $ (-916 |#1|)) 49) (($ $ (-623 |#1|)) 48) (($ $ (-749)) 47) (($ (-916 |#1|)) 46) (((-916 |#1|) $) 45)) (-1848 (((-2 (|:| -3030 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $) 15)) (-2291 (((-749) $) 58)) (-2392 (((-749) $) 59)) (-2417 (($ $ (-749) (-916 |#1|)) 50)) (-2063 (((-112) $) 21)) (-2138 (($ $ (-623 (-623 (-916 |#1|))) (-623 (-169)) (-169)) 28) (($ $ (-623 (-623 (-623 |#1|))) (-623 (-169)) (-169)) 27) (($ $ (-623 (-623 (-916 |#1|))) (-112) (-112)) 26) (($ $ (-623 (-623 (-623 |#1|))) (-112) (-112)) 25) (($ (-623 (-623 (-916 |#1|)))) 24) (($ (-623 (-623 (-916 |#1|))) (-112) (-112)) 23) (((-623 (-623 (-916 |#1|))) $) 22)) (-1832 (($ (-623 $)) 57) (($ $ $) 56)) (-1694 (((-623 (-169)) $) 16)) (-3560 (((-623 (-916 |#1|)) $) 20)) (-1798 (((-623 (-623 (-169))) $) 17)) (-1893 (((-623 (-623 (-623 (-916 |#1|)))) $) 18)) (-1974 (((-623 (-623 (-623 (-749)))) $) 19)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3084 (((-749) $ (-623 (-916 |#1|))) 51)) (-2789 (((-112) $) 39)) (-2895 (($ $ (-623 (-916 |#1|))) 43) (($ $ (-623 (-623 |#1|))) 42) (($ (-623 (-916 |#1|))) 41) (((-623 (-916 |#1|)) $) 40)) (-2499 (($) 61) (($ (-1132 3 |#1|)) 60)) (-1731 (($ $) 52)) (-2111 (((-623 $) $) 53)) (-1292 (($ (-623 $)) 55)) (-2204 (((-623 $) $) 54)) (-1518 (((-836) $) 11)) (-4131 (((-112) $) 34)) (-4239 (($ $ (-623 (-916 |#1|))) 38) (($ $ (-623 (-623 |#1|))) 37) (($ (-623 (-916 |#1|))) 36) (((-623 (-916 |#1|)) $) 35)) (-1606 (($ $) 14)) (-2316 (((-112) $ $) 6))) +(((-1102 |#1|) (-138) (-1020)) (T -1102)) +((-1518 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-836)))) (-2499 (*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1020)))) (-2499 (*1 *1 *2) (-12 (-5 *2 (-1132 3 *3)) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) (-2291 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-1832 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1020)))) (-1292 (*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-2204 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-5 *2 (-623 *1)) (-4 *1 (-1102 *3)))) (-2111 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-5 *2 (-623 *1)) (-4 *1 (-1102 *3)))) (-1731 (*1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1020)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-623 (-916 *4))) (-4 *1 (-1102 *4)) (-4 *4 (-1020)) (-5 *2 (-749)))) (-2417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-916 *4)) (-4 *1 (-1102 *4)) (-4 *4 (-1020)))) (-2644 (*1 *1 *1 *2) (-12 (-5 *2 (-916 *3)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-2644 (*1 *1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-2644 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-2644 (*1 *1 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-916 *3)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-916 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-623 (-916 *3))) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-916 *3))))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112)))) (-4239 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-916 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-4239 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-4239 (*1 *1 *2) (-12 (-5 *2 (-623 (-916 *3))) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-916 *3))))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112)))) (-4035 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-916 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-4035 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) (-4035 (*1 *1 *2) (-12 (-5 *2 (-623 (-916 *3))) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-916 *3))))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112)))) (-2138 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-623 (-916 *5)))) (-5 *3 (-623 (-169))) (-5 *4 (-169)) (-4 *1 (-1102 *5)) (-4 *5 (-1020)))) (-2138 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-623 (-623 (-623 *5)))) (-5 *3 (-623 (-169))) (-5 *4 (-169)) (-4 *1 (-1102 *5)) (-4 *5 (-1020)))) (-2138 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-623 (-623 (-916 *4)))) (-5 *3 (-112)) (-4 *1 (-1102 *4)) (-4 *4 (-1020)))) (-2138 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-623 (-623 (-623 *4)))) (-5 *3 (-112)) (-4 *1 (-1102 *4)) (-4 *4 (-1020)))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-916 *3)))) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) (-2138 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-623 (-623 (-916 *4)))) (-5 *3 (-112)) (-4 *4 (-1020)) (-4 *1 (-1102 *4)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-623 (-916 *3)))))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-916 *3))))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-623 (-623 (-749))))))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-623 (-623 (-916 *3))))))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-623 (-169)))))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-169))))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| -3030 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749)))))) (-1606 (*1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1020)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-1132 3 *3))))) +(-13 (-1068) (-10 -8 (-15 -2499 ($)) (-15 -2499 ($ (-1132 3 |t#1|))) (-15 -2392 ((-749) $)) (-15 -2291 ((-749) $)) (-15 -1832 ($ (-623 $))) (-15 -1832 ($ $ $)) (-15 -1292 ($ (-623 $))) (-15 -2204 ((-623 $) $)) (-15 -2111 ((-623 $) $)) (-15 -1731 ($ $)) (-15 -3084 ((-749) $ (-623 (-916 |t#1|)))) (-15 -2417 ($ $ (-749) (-916 |t#1|))) (-15 -2644 ($ $ (-916 |t#1|))) (-15 -2644 ($ $ (-623 |t#1|))) (-15 -2644 ($ $ (-749))) (-15 -2644 ($ (-916 |t#1|))) (-15 -2644 ((-916 |t#1|) $)) (-15 -2997 ((-112) $)) (-15 -2895 ($ $ (-623 (-916 |t#1|)))) (-15 -2895 ($ $ (-623 (-623 |t#1|)))) (-15 -2895 ($ (-623 (-916 |t#1|)))) (-15 -2895 ((-623 (-916 |t#1|)) $)) (-15 -2789 ((-112) $)) (-15 -4239 ($ $ (-623 (-916 |t#1|)))) (-15 -4239 ($ $ (-623 (-623 |t#1|)))) (-15 -4239 ($ (-623 (-916 |t#1|)))) (-15 -4239 ((-623 (-916 |t#1|)) $)) (-15 -4131 ((-112) $)) (-15 -4035 ($ $ (-623 (-916 |t#1|)))) (-15 -4035 ($ $ (-623 (-623 |t#1|)))) (-15 -4035 ($ (-623 (-916 |t#1|)))) (-15 -4035 ((-623 (-916 |t#1|)) $)) (-15 -3968 ((-112) $)) (-15 -2138 ($ $ (-623 (-623 (-916 |t#1|))) (-623 (-169)) (-169))) (-15 -2138 ($ $ (-623 (-623 (-623 |t#1|))) (-623 (-169)) (-169))) (-15 -2138 ($ $ (-623 (-623 (-916 |t#1|))) (-112) (-112))) (-15 -2138 ($ $ (-623 (-623 (-623 |t#1|))) (-112) (-112))) (-15 -2138 ($ (-623 (-623 (-916 |t#1|))))) (-15 -2138 ($ (-623 (-623 (-916 |t#1|))) (-112) (-112))) (-15 -2138 ((-623 (-623 (-916 |t#1|))) $)) (-15 -2063 ((-112) $)) (-15 -3560 ((-623 (-916 |t#1|)) $)) (-15 -1974 ((-623 (-623 (-623 (-749)))) $)) (-15 -1893 ((-623 (-623 (-623 (-916 |t#1|)))) $)) (-15 -1798 ((-623 (-623 (-169))) $)) (-15 -1694 ((-623 (-169)) $)) (-15 -1848 ((-2 (|:| -3030 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $)) (-15 -1606 ($ $)) (-15 -2501 ((-1132 3 |t#1|) $)) (-15 -1518 ((-836) $)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 176) (((-1149) $) 7) (($ (-1149)) NIL)) (-2615 (((-112) $ (|[\|\|]| (-515))) 17) (((-112) $ (|[\|\|]| (-212))) 21) (((-112) $ (|[\|\|]| (-654))) 25) (((-112) $ (|[\|\|]| (-1237))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1083))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-659))) 49) (((-112) $ (|[\|\|]| (-508))) 53) (((-112) $ (|[\|\|]| (-1035))) 57) (((-112) $ (|[\|\|]| (-1238))) 61) (((-112) $ (|[\|\|]| (-516))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-649))) 73) (((-112) $ (|[\|\|]| (-304))) 77) (((-112) $ (|[\|\|]| (-1009))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-943))) 89) (((-112) $ (|[\|\|]| (-1042))) 93) (((-112) $ (|[\|\|]| (-1058))) 97) (((-112) $ (|[\|\|]| (-1064))) 101) (((-112) $ (|[\|\|]| (-606))) 105) (((-112) $ (|[\|\|]| (-1134))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-470))) 121) (((-112) $ (|[\|\|]| (-575))) 125) (((-112) $ (|[\|\|]| (-497))) 131) (((-112) $ (|[\|\|]| (-1126))) 135) (((-112) $ (|[\|\|]| (-550))) 139)) (-1771 (((-515) $) 18) (((-212) $) 22) (((-654) $) 26) (((-1237) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1083) $) 42) (((-95) $) 46) (((-659) $) 50) (((-508) $) 54) (((-1035) $) 58) (((-1238) $) 62) (((-516) $) 66) (((-152) $) 70) (((-649) $) 74) (((-304) $) 78) (((-1009) $) 82) (((-178) $) 86) (((-943) $) 90) (((-1042) $) 94) (((-1058) $) 98) (((-1064) $) 102) (((-606) $) 106) (((-1134) $) 110) (((-154) $) 114) (((-136) $) 118) (((-470) $) 122) (((-575) $) 126) (((-497) $) 132) (((-1126) $) 136) (((-550) $) 140)) (-2316 (((-112) $ $) NIL))) +(((-1103) (-1105)) (T -1103)) +NIL +(-1105) +((-2809 (((-623 (-1149)) (-1126)) 9))) +(((-1104) (-10 -7 (-15 -2809 ((-623 (-1149)) (-1126))))) (T -1104)) +((-2809 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-623 (-1149))) (-5 *1 (-1104))))) +(-10 -7 (-15 -2809 ((-623 (-1149)) (-1126)))) +((-1504 (((-112) $ $) 7)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (((-1149) $) 15) (($ (-1149)) 14)) (-2615 (((-112) $ (|[\|\|]| (-515))) 80) (((-112) $ (|[\|\|]| (-212))) 78) (((-112) $ (|[\|\|]| (-654))) 76) (((-112) $ (|[\|\|]| (-1237))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1083))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-659))) 64) (((-112) $ (|[\|\|]| (-508))) 62) (((-112) $ (|[\|\|]| (-1035))) 60) (((-112) $ (|[\|\|]| (-1238))) 58) (((-112) $ (|[\|\|]| (-516))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-649))) 52) (((-112) $ (|[\|\|]| (-304))) 50) (((-112) $ (|[\|\|]| (-1009))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-943))) 44) (((-112) $ (|[\|\|]| (-1042))) 42) (((-112) $ (|[\|\|]| (-1058))) 40) (((-112) $ (|[\|\|]| (-1064))) 38) (((-112) $ (|[\|\|]| (-606))) 36) (((-112) $ (|[\|\|]| (-1134))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-470))) 28) (((-112) $ (|[\|\|]| (-575))) 26) (((-112) $ (|[\|\|]| (-497))) 24) (((-112) $ (|[\|\|]| (-1126))) 22) (((-112) $ (|[\|\|]| (-550))) 20)) (-1771 (((-515) $) 79) (((-212) $) 77) (((-654) $) 75) (((-1237) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1083) $) 67) (((-95) $) 65) (((-659) $) 63) (((-508) $) 61) (((-1035) $) 59) (((-1238) $) 57) (((-516) $) 55) (((-152) $) 53) (((-649) $) 51) (((-304) $) 49) (((-1009) $) 47) (((-178) $) 45) (((-943) $) 43) (((-1042) $) 41) (((-1058) $) 39) (((-1064) $) 37) (((-606) $) 35) (((-1134) $) 33) (((-154) $) 31) (((-136) $) 29) (((-470) $) 27) (((-575) $) 25) (((-497) $) 23) (((-1126) $) 21) (((-550) $) 19)) (-2316 (((-112) $ $) 6))) (((-1105) (-138)) (T -1105)) -((-3735 (*1 *1 *1) (-4 *1 (-1105))) (-3734 (*1 *1 *1) (-4 *1 (-1105))) (-3733 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3732 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3731 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3730 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3729 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3728 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3727 (*1 *1 *1) (-4 *1 (-1105))) (-3726 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3729 (*1 *1 *1) (-4 *1 (-1105))) (-3725 (*1 *1 *1) (-4 *1 (-1105)))) -(-13 (-10 -8 (-15 -3725 ($ $)) (-15 -3729 ($ $)) (-15 -3726 ($ $ $)) (-15 -3727 ($ $)) (-15 -3728 ($ $ $)) (-15 -3729 ($ $ $)) (-15 -3730 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3732 ($ $ $)) (-15 -3733 ($ $ $)) (-15 -3734 ($ $)) (-15 -3735 ($ $)))) -((-2887 (((-112) $ $) 41)) (-3744 ((|#1| $) 15)) (-3736 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-3743 (((-112) $) 17)) (-3741 (($ $ |#1|) 28)) (-3739 (($ $ (-112)) 30)) (-3738 (($ $) 31)) (-3740 (($ $ |#2|) 29)) (-3576 (((-1124) $) NIL)) (-3737 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3577 (((-1086) $) NIL)) (-3745 (((-112) $) 14)) (-3911 (($) 10)) (-3742 (($ $) 27)) (-3867 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) 21) (((-618 $) (-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) 24) (((-618 $) |#1| (-618 |#2|)) 26)) (-4265 ((|#2| $) 16)) (-4300 (((-835) $) 50)) (-3375 (((-112) $ $) 39))) -(((-1106 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3911 ($)) (-15 -3745 ((-112) $)) (-15 -3744 (|#1| $)) (-15 -4265 (|#2| $)) (-15 -3743 ((-112) $)) (-15 -3867 ($ |#1| |#2| (-112))) (-15 -3867 ($ |#1| |#2|)) (-15 -3867 ($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) (-15 -3867 ((-618 $) (-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))))) (-15 -3867 ((-618 $) |#1| (-618 |#2|))) (-15 -3742 ($ $)) (-15 -3741 ($ $ |#1|)) (-15 -3740 ($ $ |#2|)) (-15 -3739 ($ $ (-112))) (-15 -3738 ($ $)) (-15 -3737 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3736 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1067) (-34)) (-13 (-1067) (-34))) (T -1106)) -((-3911 (*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3744 (*1 *2 *1) (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1106 *2 *3)) (-4 *3 (-13 (-1067) (-34))))) (-4265 (*1 *2 *1) (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1067) (-34))))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2 *3) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1655 *4))) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1106 *3 *4)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| |val| *4) (|:| -1655 *5)))) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-618 (-1106 *4 *5))) (-5 *1 (-1106 *4 *5)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *5)) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-618 (-1106 *3 *5))) (-5 *1 (-1106 *3 *5)) (-4 *3 (-13 (-1067) (-34))))) (-3742 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3741 (*1 *1 *1 *2) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3740 (*1 *1 *1 *2) (-12 (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1067) (-34))) (-4 *2 (-13 (-1067) (-34))))) (-3739 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3738 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3737 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1106 *5 *6)))) (-3736 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-13 (-1067) (-34)))))) -(-13 (-1067) (-10 -8 (-15 -3911 ($)) (-15 -3745 ((-112) $)) (-15 -3744 (|#1| $)) (-15 -4265 (|#2| $)) (-15 -3743 ((-112) $)) (-15 -3867 ($ |#1| |#2| (-112))) (-15 -3867 ($ |#1| |#2|)) (-15 -3867 ($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) (-15 -3867 ((-618 $) (-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))))) (-15 -3867 ((-618 $) |#1| (-618 |#2|))) (-15 -3742 ($ $)) (-15 -3741 ($ $ |#1|)) (-15 -3740 ($ $ |#2|)) (-15 -3739 ($ $ (-112))) (-15 -3738 ($ $)) (-15 -3737 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3736 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2887 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-3744 (((-1106 |#1| |#2|) $) 25)) (-3753 (($ $) 76)) (-3749 (((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3746 (($ $ $ (-618 (-1106 |#1| |#2|))) 90) (($ $ $ (-618 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1264 (((-112) $ (-747)) NIL)) (-3346 (((-1106 |#1| |#2|) $ (-1106 |#1| |#2|)) 43 (|has| $ (-6 -4337)))) (-4130 (((-1106 |#1| |#2|) $ #1="value" (-1106 |#1| |#2|)) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3751 (((-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $) 80)) (-3747 (($ (-1106 |#1| |#2|) $) 39)) (-3748 (($ (-1106 |#1| |#2|) $) 31)) (-2063 (((-618 (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 51)) (-3750 (((-112) (-1106 |#1| |#2|) $) 82)) (-3348 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 (-1106 |#1| |#2|)) $) 55 (|has| $ (-6 -4336)))) (-3579 (((-112) (-1106 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-1106 |#1| |#2|) (-1067))))) (-2067 (($ (-1 (-1106 |#1| |#2|) (-1106 |#1| |#2|)) $) 47 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-1106 |#1| |#2|) (-1106 |#1| |#2|)) $) 46)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 (-1106 |#1| |#2|)) $) 53)) (-3864 (((-112) $) 42)) (-3576 (((-1124) $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-3577 (((-1086) $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-3754 (((-3 $ "failed") $) 75)) (-2065 (((-112) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-1106 |#1| |#2|)))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1067)))) (($ $ (-286 (-1106 |#1| |#2|))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1067)))) (($ $ (-1106 |#1| |#2|) (-1106 |#1| |#2|)) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1067)))) (($ $ (-618 (-1106 |#1| |#2|)) (-618 (-1106 |#1| |#2|))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1067))))) (-1265 (((-112) $ $) 50)) (-3745 (((-112) $) 22)) (-3911 (($) 24)) (-4142 (((-1106 |#1| |#2|) $ #1#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) 44)) (-2064 (((-747) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336))) (((-747) (-1106 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-1106 |#1| |#2|) (-1067))))) (-3742 (($ $) 49)) (-3867 (($ (-1106 |#1| |#2|)) 9) (($ |#1| |#2| (-618 $)) 12) (($ |#1| |#2| (-618 (-1106 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-618 |#2|)) 17)) (-3752 (((-618 |#2|) $) 81)) (-4300 (((-835) $) 73 (|has| (-1106 |#1| |#2|) (-593 (-835))))) (-3859 (((-618 $) $) 28)) (-3349 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-2066 (((-112) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 64 (|has| (-1106 |#1| |#2|) (-1067)))) (-4299 (((-747) $) 58 (|has| $ (-6 -4336))))) -(((-1107 |#1| |#2|) (-13 (-981 (-1106 |#1| |#2|)) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3754 ((-3 $ "failed") $)) (-15 -3753 ($ $)) (-15 -3867 ($ (-1106 |#1| |#2|))) (-15 -3867 ($ |#1| |#2| (-618 $))) (-15 -3867 ($ |#1| |#2| (-618 (-1106 |#1| |#2|)))) (-15 -3867 ($ |#1| |#2| |#1| (-618 |#2|))) (-15 -3752 ((-618 |#2|) $)) (-15 -3751 ((-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $)) (-15 -3750 ((-112) (-1106 |#1| |#2|) $)) (-15 -3749 ((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3748 ($ (-1106 |#1| |#2|) $)) (-15 -3747 ($ (-1106 |#1| |#2|) $)) (-15 -3746 ($ $ $ (-618 (-1106 |#1| |#2|)))) (-15 -3746 ($ $ $ (-618 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1067) (-34)) (-13 (-1067) (-34))) (T -1107)) -((-3754 (*1 *1 *1) (|partial| -12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3753 (*1 *1 *1) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-618 (-1107 *2 *3))) (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-618 (-1106 *2 *3))) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3)))) (-3867 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-618 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3750 (*1 *2 *3 *1) (-12 (-5 *3 (-1106 *4 *5)) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)))) (-3749 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1106 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6)))) (-3748 (*1 *1 *2 *1) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3747 (*1 *1 *2 *1) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3746 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-618 (-1106 *3 *4))) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3746 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1106 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *1 (-1107 *4 *5))))) -(-13 (-981 (-1106 |#1| |#2|)) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3754 ((-3 $ "failed") $)) (-15 -3753 ($ $)) (-15 -3867 ($ (-1106 |#1| |#2|))) (-15 -3867 ($ |#1| |#2| (-618 $))) (-15 -3867 ($ |#1| |#2| (-618 (-1106 |#1| |#2|)))) (-15 -3867 ($ |#1| |#2| |#1| (-618 |#2|))) (-15 -3752 ((-618 |#2|) $)) (-15 -3751 ((-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $)) (-15 -3750 ((-112) (-1106 |#1| |#2|) $)) (-15 -3749 ((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3748 ($ (-1106 |#1| |#2|) $)) (-15 -3747 ($ (-1106 |#1| |#2|) $)) (-15 -3746 ($ $ $ (-618 (-1106 |#1| |#2|)))) (-15 -3746 ($ $ $ (-618 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3756 (($ $) NIL)) (-3672 ((|#2| $) NIL)) (-3439 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3755 (($ (-665 |#2|)) 50)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3675 (($ |#2|) 10)) (-3879 (($) NIL T CONST)) (-3428 (($ $) 63 (|has| |#2| (-300)))) (-3430 (((-233 |#1| |#2|) $ (-535)) 36)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 |#2| #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) ((|#2| $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) 77)) (-3427 (((-747) $) 65 (|has| |#2| (-542)))) (-3431 ((|#2| $ (-535) (-535)) NIL)) (-2063 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL)) (-3426 (((-747) $) 67 (|has| |#2| (-542)))) (-3425 (((-618 (-233 |#1| |#2|)) $) 71 (|has| |#2| (-542)))) (-3433 (((-747) $) NIL)) (-3960 (($ |#2|) 20)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#2| $) 61 (|has| |#2| (-6 (-4338 #2="*"))))) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#2|))) 31)) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3939 (((-618 (-618 |#2|)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3935 (((-3 $ "failed") $) 74 (|has| |#2| (-356)))) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) (-535) |#2|) NIL) ((|#2| $ (-535) (-535)) NIL)) (-4153 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3671 ((|#2| $) NIL)) (-3674 (($ (-618 |#2|)) 44)) (-3440 (((-112) $) NIL)) (-3673 (((-233 |#1| |#2|) $) NIL)) (-3670 ((|#2| $) 59 (|has| |#2| (-6 (-4338 #2#))))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 86 (|has| |#2| (-594 (-524))))) (-3429 (((-233 |#1| |#2|) $ (-535)) 38)) (-4300 (((-835) $) 41) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#2| (-1009 (-400 (-535))))) (($ |#2|) NIL) (((-665 |#2|) $) 46)) (-3444 (((-747)) 18)) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-2979 (($) 12 T CONST)) (-2985 (($) 15 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) 57) (($ $ (-535)) 76 (|has| |#2| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) 53) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) 55)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1108 |#1| |#2|) (-13 (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-593 (-665 |#2|)) (-10 -8 (-15 -3960 ($ |#2|)) (-15 -3756 ($ $)) (-15 -3755 ($ (-665 |#2|))) (IF (|has| |#2| (-6 (-4338 "*"))) (-6 -4325) |%noBranch|) (IF (|has| |#2| (-6 (-4338 "*"))) (IF (|has| |#2| (-6 -4333)) (-6 -4333) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|))) (-747) (-1018)) (T -1108)) -((-3960 (*1 *1 *2) (-12 (-5 *1 (-1108 *3 *2)) (-14 *3 (-747)) (-4 *2 (-1018)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-14 *2 (-747)) (-4 *3 (-1018)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1108 *3 *4)) (-14 *3 (-747))))) -(-13 (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-593 (-665 |#2|)) (-10 -8 (-15 -3960 ($ |#2|)) (-15 -3756 ($ $)) (-15 -3755 ($ (-665 |#2|))) (IF (|has| |#2| (-6 (-4338 "*"))) (-6 -4325) |%noBranch|) (IF (|has| |#2| (-6 (-4338 "*"))) (IF (|has| |#2| (-6 -4333)) (-6 -4333) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|))) -((-3769 (($ $) 19)) (-3759 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3767 (((-112) $ $) 24)) (-3771 (($ $) 17)) (-4142 (((-142) $ (-535) (-142)) NIL) (((-142) $ (-535)) NIL) (($ $ (-1191 (-535))) NIL) (($ $ $) 29)) (-4300 (($ (-142)) 27) (((-835) $) NIL))) -(((-1109 |#1|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#1| (-139))) (-15 -3759 (|#1| |#1| (-142))) (-15 -4300 (|#1| (-142))) (-15 -3767 ((-112) |#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4142 ((-142) |#1| (-535))) (-15 -4142 ((-142) |#1| (-535) (-142)))) (-1110)) (T -1109)) -NIL -(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#1| (-139))) (-15 -3759 (|#1| |#1| (-142))) (-15 -4300 (|#1| (-142))) (-15 -3767 ((-112) |#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4142 ((-142) |#1| (-535))) (-15 -4142 ((-142) |#1| (-535) (-142)))) -((-2887 (((-112) $ $) 19 (|has| (-142) (-1067)))) (-3768 (($ $) 120)) (-3769 (($ $) 121)) (-3759 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-3766 (((-112) $ $) 118)) (-3765 (((-112) $ $ (-535)) 117)) (-3760 (((-618 $) $ (-142)) 110) (((-618 $) $ (-139)) 109)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-823)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| (-142) (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 (((-142) $ (-535) (-142)) 52 (|has| $ (-6 -4337))) (((-142) $ (-1191 (-535)) (-142)) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-3757 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-3762 (($ $ (-1191 (-535)) $) 114)) (-1394 (($ $) 78 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-142) $) 77 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4336)))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4336)))) (-1632 (((-142) $ (-535) (-142)) 53 (|has| $ (-6 -4337)))) (-3431 (((-142) $ (-535)) 51)) (-3767 (((-112) $ $) 119)) (-3761 (((-535) (-1 (-112) (-142)) $) 97) (((-535) (-142) $) 96 (|has| (-142) (-1067))) (((-535) (-142) $ (-535)) 95 (|has| (-142) (-1067))) (((-535) $ $ (-535)) 113) (((-535) (-139) $ (-535)) 112)) (-2063 (((-618 (-142)) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-142)) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| (-142) (-823)))) (-3855 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| (-142) (-823)))) (-3763 (((-112) $ $ (-142)) 115)) (-3764 (((-747) $ $ (-142)) 116)) (-2067 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3770 (($ $) 122)) (-3771 (($ $) 123)) (-4062 (((-112) $ (-747)) 10)) (-3758 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3576 (((-1124) $) 22 (|has| (-142) (-1067)))) (-2373 (($ (-142) $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| (-142) (-1067)))) (-4143 (((-142) $) 42 (|has| (-535) (-823)))) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2297 (($ $ (-142)) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-142)) (-618 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2303 (((-618 (-142)) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 (((-142) $ (-535) (-142)) 50) (((-142) $ (-535)) 49) (($ $ (-1191 (-535))) 63) (($ $ $) 102)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4336))) (((-747) (-142) $) 28 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| (-142) (-594 (-524))))) (-3867 (($ (-618 (-142))) 70)) (-4144 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (($ (-142)) 111) (((-835) $) 18 (|has| (-142) (-593 (-835))))) (-2066 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| (-142) (-823)))) (-2886 (((-112) $ $) 83 (|has| (-142) (-823)))) (-3375 (((-112) $ $) 20 (|has| (-142) (-1067)))) (-3005 (((-112) $ $) 85 (|has| (-142) (-823)))) (-3006 (((-112) $ $) 82 (|has| (-142) (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-1110) (-138)) (T -1110)) -((-3771 (*1 *1 *1) (-4 *1 (-1110))) (-3770 (*1 *1 *1) (-4 *1 (-1110))) (-3769 (*1 *1 *1) (-4 *1 (-1110))) (-3768 (*1 *1 *1) (-4 *1 (-1110))) (-3767 (*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))) (-3766 (*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))) (-3765 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-535)) (-5 *2 (-112)))) (-3764 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-747)))) (-3763 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-112)))) (-3762 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1191 (-535))))) (-3761 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-535)))) (-3761 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-535)) (-5 *3 (-139)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1110)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-618 *1)) (-4 *1 (-1110)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-618 *1)) (-4 *1 (-1110)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-4142 (*1 *1 *1 *1) (-4 *1 (-1110)))) -(-13 (-19 (-142)) (-10 -8 (-15 -3771 ($ $)) (-15 -3770 ($ $)) (-15 -3769 ($ $)) (-15 -3768 ($ $)) (-15 -3767 ((-112) $ $)) (-15 -3766 ((-112) $ $)) (-15 -3765 ((-112) $ $ (-535))) (-15 -3764 ((-747) $ $ (-142))) (-15 -3763 ((-112) $ $ (-142))) (-15 -3762 ($ $ (-1191 (-535)) $)) (-15 -3761 ((-535) $ $ (-535))) (-15 -3761 ((-535) (-139) $ (-535))) (-15 -4300 ($ (-142))) (-15 -3760 ((-618 $) $ (-142))) (-15 -3760 ((-618 $) $ (-139))) (-15 -3759 ($ $ (-142))) (-15 -3759 ($ $ (-139))) (-15 -3758 ($ $ (-142))) (-15 -3758 ($ $ (-139))) (-15 -3757 ($ $ (-142))) (-15 -3757 ($ $ (-139))) (-15 -4142 ($ $ $)))) -(((-34) . T) ((-101) -3874 (|has| (-142) (-1067)) (|has| (-142) (-823))) ((-593 (-835)) -3874 (|has| (-142) (-1067)) (|has| (-142) (-823)) (|has| (-142) (-593 (-835)))) ((-149 #1=(-142)) . T) ((-594 (-524)) |has| (-142) (-594 (-524))) ((-279 #2=(-535) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-365 #1#) . T) ((-481 #1#) . T) ((-584 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-627 #1#) . T) ((-19 #1#) . T) ((-823) |has| (-142) (-823)) ((-1067) -3874 (|has| (-142) (-1067)) (|has| (-142) (-823))) ((-1178) . T)) -((-3778 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747)) 94)) (-3775 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747)) 54)) (-3779 (((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)) 85)) (-3773 (((-747) (-618 |#4|) (-618 |#5|)) 27)) (-3776 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747)) 56) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112)) 58)) (-3777 (((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112)) 77)) (-4313 (((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) 80)) (-3774 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 53)) (-3772 (((-747) (-618 |#4|) (-618 |#5|)) 19))) -(((-1111 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3773 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3774 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3778 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747))) (-15 -4313 ((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3779 ((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -1111)) -((-3779 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124)) (-5 *1 (-1111 *4 *5 *6 *7 *8)))) (-3778 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-618 *11)) (|:| |todo| (-618 (-2 (|:| |val| *3) (|:| -1655 *11)))))) (-5 *6 (-747)) (-5 *2 (-618 (-2 (|:| |val| (-618 *10)) (|:| -1655 *11)))) (-5 *3 (-618 *10)) (-5 *4 (-618 *11)) (-4 *10 (-1032 *7 *8 *9)) (-4 *11 (-1075 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-5 *1 (-1111 *7 *8 *9 *10 *11)))) (-3777 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3777 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3776 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *7 *8 *9 *3 *4)) (-4 *4 (-1075 *7 *8 *9 *3)))) (-3775 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3774 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3772 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3773 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3774 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3778 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747))) (-15 -4313 ((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3779 ((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)))) -((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) NIL)) (-4028 (((-618 $) (-618 |#4|)) 110) (((-618 $) (-618 |#4|) (-112)) 111) (((-618 $) (-618 |#4|) (-112) (-112)) 109) (((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3405 (((-618 |#3|) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4034 ((|#4| |#4| $) NIL)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 84)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) 26 (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3221 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) NIL)) (-3490 (($ (-618 |#4|)) NIL)) (-4141 (((-3 $ #1#) $) 39)) (-4031 ((|#4| |#4| $) 65)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4029 ((|#4| |#4| $) NIL)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) NIL)) (-3531 (((-112) |#4| $) NIL)) (-3529 (((-112) |#4| $) NIL)) (-3532 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3780 (((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112)) 124)) (-2063 (((-618 |#4|) $) 16 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 33)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 17 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 21)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) NIL)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 103)) (-4140 (((-3 |#4| #1#) $) 37)) (-3526 (((-618 $) |#4| $) 88)) (-3528 (((-3 (-112) (-618 $)) |#4| $) NIL)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3572 (((-618 $) |#4| $) 107) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) 108) (((-618 $) |#4| (-618 $)) NIL)) (-3781 (((-618 $) (-618 |#4|) (-112) (-112) (-112)) 119)) (-3782 (($ |#4| $) 75) (($ (-618 |#4|) $) 76) (((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4043 (((-618 |#4|) $) NIL)) (-4037 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4032 ((|#4| |#4| $) NIL)) (-4045 (((-112) $ $) NIL)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4033 ((|#4| |#4| $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 |#4| #1#) $) 35)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4025 (((-3 $ #1#) $ |#4|) 48)) (-4111 (($ $ |#4|) NIL) (((-618 $) |#4| $) 90) (((-618 $) |#4| (-618 $)) NIL) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) 86)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 15)) (-3911 (($) 13)) (-4290 (((-747) $) NIL)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) 12)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-3233 (($ $ |#3|) 44)) (-4030 (($ $) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) 31) (((-618 |#4|) $) 40)) (-4024 (((-747) $) NIL (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) NIL)) (-3523 (((-618 $) |#4| $) 54) (((-618 $) |#4| (-618 $)) NIL) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) NIL)) (-3530 (((-112) |#4| $) NIL)) (-4276 (((-112) |#3| $) 61)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1112 |#1| |#2| |#3| |#4|) (-13 (-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3782 ((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112))) (-15 -3781 ((-618 $) (-618 |#4|) (-112) (-112) (-112))) (-15 -3780 ((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112))))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -1112)) -((-3782 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *3))) (-5 *1 (-1112 *5 *6 *7 *3)) (-4 *3 (-1032 *5 *6 *7)))) (-4028 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-4028 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-3781 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-3780 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-618 *8)) (|:| |towers| (-618 (-1112 *5 *6 *7 *8))))) (-5 *1 (-1112 *5 *6 *7 *8)) (-5 *3 (-618 *8))))) -(-13 (-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3782 ((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112))) (-15 -3781 ((-618 $) (-618 |#4|) (-112) (-112) (-112))) (-15 -3780 ((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112))))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3666 ((|#1| $) 34)) (-3783 (($ (-618 |#1|)) 39)) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3668 ((|#1| |#1| $) 36)) (-3667 ((|#1| $) 32)) (-2063 (((-618 |#1|) $) 18 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 22)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) 35)) (-3953 (($ |#1| $) 37)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1327 ((|#1| $) 33)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 31)) (-3911 (($) 38)) (-3665 (((-747) $) 29)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 27)) (-4300 (((-835) $) 14 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 17 (|has| |#1| (-1067)))) (-4299 (((-747) $) 30 (|has| $ (-6 -4336))))) -(((-1113 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -3783 ($ (-618 |#1|))))) (-1178)) (T -1113)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1113 *3))))) -(-13 (-1087 |#1|) (-10 -8 (-15 -3783 ($ (-618 |#1|))))) -((-4130 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1191 (-535)) |#2|) 44) ((|#2| $ (-535) |#2|) 41)) (-3784 (((-112) $) 12)) (-2067 (($ (-1 |#2| |#2|) $) 39)) (-4143 ((|#2| $) NIL) (($ $ (-747)) 17)) (-2297 (($ $ |#2|) 40)) (-3785 (((-112) $) 11)) (-4142 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1191 (-535))) 31) ((|#2| $ (-535)) 23) ((|#2| $ (-535) |#2|) NIL)) (-4133 (($ $ $) 47) (($ $ |#2|) NIL)) (-4144 (($ $ $) 33) (($ |#2| $) NIL) (($ (-618 $)) 36) (($ $ |#2|) NIL))) -(((-1114 |#1| |#2|) (-10 -8 (-15 -3784 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -4130 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -2297 (|#1| |#1| |#2|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4130 (|#2| |#1| (-1191 (-535)) |#2|)) (-15 -4130 (|#2| |#1| #1="last" |#2|)) (-15 -4130 (|#1| |#1| #2="rest" |#1|)) (-15 -4130 (|#2| |#1| #3="first" |#2|)) (-15 -4133 (|#1| |#1| |#2|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -4142 (|#1| |#1| #2#)) (-15 -4143 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| #3#)) (-15 -4143 (|#2| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4130 (|#2| |#1| #4="value" |#2|)) (-15 -4142 (|#2| |#1| #4#)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|))) (-1115 |#2|) (-1178)) (T -1114)) -NIL -(-10 -8 (-15 -3784 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -4130 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -2297 (|#1| |#1| |#2|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4130 (|#2| |#1| (-1191 (-535)) |#2|)) (-15 -4130 (|#2| |#1| #1="last" |#2|)) (-15 -4130 (|#1| |#1| #2="rest" |#1|)) (-15 -4130 (|#2| |#1| #3="first" |#2|)) (-15 -4133 (|#1| |#1| |#2|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -4142 (|#1| |#1| #2#)) (-15 -4143 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| #3#)) (-15 -4143 (|#2| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4130 (|#2| |#1| #4="value" |#2|)) (-15 -4142 (|#2| |#1| #4#)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4137 ((|#1| $) 65)) (-4139 (($ $) 67)) (-2296 (((-1230) $ (-535) (-535)) 97 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 52 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) 86 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4336)))) (-4138 ((|#1| $) 66)) (-3879 (($) 7 T CONST)) (-4141 (($ $) 73) (($ $ (-747)) 71)) (-1394 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4336))) (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1632 ((|#1| $ (-535) |#1|) 85 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 87)) (-3784 (((-112) $) 83)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) 108)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 95 (|has| (-535) (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 94 (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 70) (($ $ (-747)) 68)) (-2373 (($ $ $ (-535)) 116) (($ |#1| $ (-535)) 115)) (-2301 (((-618 (-535)) $) 92)) (-2302 (((-112) (-535) $) 91)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 76) (($ $ (-747)) 74)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2297 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-3785 (((-112) $) 84)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 90)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1191 (-535))) 112) ((|#1| $ (-535)) 89) ((|#1| $ (-535) |#1|) 88)) (-3350 (((-535) $ $) 44)) (-2374 (($ $ (-1191 (-535))) 114) (($ $ (-535)) 113)) (-3979 (((-112) $) 46)) (-4134 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 63)) (-4136 (($ $) 64)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 98 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 107)) (-4133 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-4144 (($ $ $) 78) (($ |#1| $) 77) (($ (-618 $)) 110) (($ $ |#1|) 109)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-1115 |#1|) (-138) (-1178)) (T -1115)) -((-3785 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1178)) (-5 *2 (-112))))) -(-13 (-1213 |t#1|) (-627 |t#1|) (-10 -8 (-15 -3785 ((-112) $)) (-15 -3784 ((-112) $)))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T) ((-1213 |#1|) . T)) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) NIL)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1116 |#1| |#2| |#3|) (-1155 |#1| |#2|) (-1067) (-1067) |#2|) (T -1116)) -NIL -(-1155 |#1| |#2|) -((-2887 (((-112) $ $) 7)) (-3786 (((-3 $ "failed") $) 13)) (-3576 (((-1124) $) 9)) (-3787 (($) 14 T CONST)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6))) -(((-1117) (-138)) (T -1117)) -((-3787 (*1 *1) (-4 *1 (-1117))) (-3786 (*1 *1 *1) (|partial| -4 *1 (-1117)))) -(-13 (-1067) (-10 -8 (-15 -3787 ($) -4294) (-15 -3786 ((-3 $ "failed") $)))) -(((-101) . T) ((-593 (-835)) . T) ((-1067) . T)) -((-3790 (((-1119 |#1|) (-1119 |#1|)) 17)) (-3788 (((-1119 |#1|) (-1119 |#1|)) 13)) (-3791 (((-1119 |#1|) (-1119 |#1|) (-535) (-535)) 20)) (-3789 (((-1119 |#1|) (-1119 |#1|)) 15))) -(((-1118 |#1|) (-10 -7 (-15 -3788 ((-1119 |#1|) (-1119 |#1|))) (-15 -3789 ((-1119 |#1|) (-1119 |#1|))) (-15 -3790 ((-1119 |#1|) (-1119 |#1|))) (-15 -3791 ((-1119 |#1|) (-1119 |#1|) (-535) (-535)))) (-13 (-542) (-145))) (T -1118)) -((-3791 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1118 *4)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3))))) -(-10 -7 (-15 -3788 ((-1119 |#1|) (-1119 |#1|))) (-15 -3789 ((-1119 |#1|) (-1119 |#1|))) (-15 -3790 ((-1119 |#1|) (-1119 |#1|))) (-15 -3791 ((-1119 |#1|) (-1119 |#1|) (-535) (-535)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-4137 ((|#1| $) NIL)) (-4139 (($ $) 52)) (-2296 (((-1230) $ (-535) (-535)) 77 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 111 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-3796 (((-835) $) 41 (|has| |#1| (-1067)))) (-3795 (((-112)) 40 (|has| |#1| (-1067)))) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) 99 (|has| $ (-6 -4337))) (($ $ (-535) $) 123)) (-4128 ((|#1| $ |#1|) 108 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 103 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 105 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 107 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) 110 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 90 (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) 56 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 59)) (-4138 ((|#1| $) NIL)) (-3879 (($) NIL T CONST)) (-2389 (($ $) 14)) (-4141 (($ $) 29) (($ $ (-747)) 89)) (-3801 (((-112) (-618 |#1|) $) 117 (|has| |#1| (-1067)))) (-3802 (($ (-618 |#1|)) 113)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) 58)) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3797 (((-1230) (-535) $) 122 (|has| |#1| (-1067)))) (-2388 (((-747) $) 119)) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-2391 (($ $) 91)) (-2392 (((-112) $) 13)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-4140 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) 75)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-3794 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2390 ((|#1| $) 10)) (-4143 ((|#1| $) 28) (($ $ (-747)) 50)) (-3800 (((-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747))) (-747) $) 25)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3793 (($ (-1 (-112) |#1|) $) 127)) (-3792 (($ (-1 (-112) |#1|) $) 128)) (-2297 (($ $ |#1|) 69 (|has| $ (-6 -4337)))) (-4111 (($ $ (-535)) 32)) (-3785 (((-112) $) 73)) (-2393 (((-112) $) 12)) (-2394 (((-112) $) 118)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 20)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) 15)) (-3911 (($) 45)) (-4142 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1191 (-535))) NIL) ((|#1| $ (-535)) 55) ((|#1| $ (-535) |#1|) NIL)) (-3350 (((-535) $ $) 49)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-3799 (($ (-1 $)) 48)) (-3979 (((-112) $) 70)) (-4134 (($ $) 71)) (-4132 (($ $) 100 (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 44)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 54)) (-3798 (($ |#1| $) 98)) (-4133 (($ $ $) 101 (|has| $ (-6 -4337))) (($ $ |#1|) 102 (|has| $ (-6 -4337)))) (-4144 (($ $ $) 79) (($ |#1| $) 46) (($ (-618 $)) 84) (($ $ |#1|) 78)) (-3212 (($ $) 51)) (-4300 (($ (-618 |#1|)) 112) (((-835) $) 42 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 115 (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1119 |#1|) (-13 (-650 |#1|) (-10 -8 (-6 -4337) (-15 -4300 ($ (-618 |#1|))) (-15 -3802 ($ (-618 |#1|))) (IF (|has| |#1| (-1067)) (-15 -3801 ((-112) (-618 |#1|) $)) |%noBranch|) (-15 -3800 ((-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747))) (-747) $)) (-15 -3799 ($ (-1 $))) (-15 -3798 ($ |#1| $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -3797 ((-1230) (-535) $)) (-15 -3796 ((-835) $)) (-15 -3795 ((-112)))) |%noBranch|) (-15 -4129 ($ $ (-535) $)) (-15 -3794 ($ (-1 |#1|))) (-15 -3794 ($ (-1 |#1| |#1|) |#1|)) (-15 -3793 ($ (-1 (-112) |#1|) $)) (-15 -3792 ($ (-1 (-112) |#1|) $)))) (-1178)) (T -1119)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3801 (*1 *2 *3 *1) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-4 *4 (-1178)) (-5 *2 (-112)) (-5 *1 (-1119 *4)))) (-3800 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747)))) (-5 *1 (-1119 *4)) (-4 *4 (-1178)) (-5 *3 (-747)))) (-3799 (*1 *1 *2) (-12 (-5 *2 (-1 (-1119 *3))) (-5 *1 (-1119 *3)) (-4 *3 (-1178)))) (-3798 (*1 *1 *2 *1) (-12 (-5 *1 (-1119 *2)) (-4 *2 (-1178)))) (-3797 (*1 *2 *3 *1) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1119 *4)) (-4 *4 (-1067)) (-4 *4 (-1178)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1119 *3)) (-4 *3 (-1067)) (-4 *3 (-1178)))) (-3795 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1119 *3)) (-4 *3 (-1067)) (-4 *3 (-1178)))) (-4129 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1119 *3)) (-4 *3 (-1178)))) (-3794 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3793 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3792 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3))))) -(-13 (-650 |#1|) (-10 -8 (-6 -4337) (-15 -4300 ($ (-618 |#1|))) (-15 -3802 ($ (-618 |#1|))) (IF (|has| |#1| (-1067)) (-15 -3801 ((-112) (-618 |#1|) $)) |%noBranch|) (-15 -3800 ((-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747))) (-747) $)) (-15 -3799 ($ (-1 $))) (-15 -3798 ($ |#1| $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -3797 ((-1230) (-535) $)) (-15 -3796 ((-835) $)) (-15 -3795 ((-112)))) |%noBranch|) (-15 -4129 ($ $ (-535) $)) (-15 -3794 ($ (-1 |#1|))) (-15 -3794 ($ (-1 |#1| |#1|) |#1|)) (-15 -3793 ($ (-1 (-112) |#1|) $)) (-15 -3792 ($ (-1 (-112) |#1|) $)))) -((-4144 (((-1119 |#1|) (-1119 (-1119 |#1|))) 15))) -(((-1120 |#1|) (-10 -7 (-15 -4144 ((-1119 |#1|) (-1119 (-1119 |#1|))))) (-1178)) (T -1120)) -((-4144 (*1 *2 *3) (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-1178))))) -(-10 -7 (-15 -4144 ((-1119 |#1|) (-1119 (-1119 |#1|))))) -((-4184 (((-1119 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|)) 25)) (-4185 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|)) 26)) (-4301 (((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|)) 16))) -(((-1121 |#1| |#2|) (-10 -7 (-15 -4301 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (-15 -4184 ((-1119 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|))) (-15 -4185 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|)))) (-1178) (-1178)) (T -1121)) -((-4185 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1119 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-1121 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1119 *6)) (-4 *6 (-1178)) (-4 *3 (-1178)) (-5 *2 (-1119 *3)) (-5 *1 (-1121 *6 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1119 *6)) (-5 *1 (-1121 *5 *6))))) -(-10 -7 (-15 -4301 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (-15 -4184 ((-1119 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|))) (-15 -4185 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|)))) -((-4301 (((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-1119 |#2|)) 21))) -(((-1122 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-1119 |#2|)))) (-1178) (-1178) (-1178)) (T -1122)) -((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1119 *6)) (-5 *5 (-1119 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) (-5 *1 (-1122 *6 *7 *8))))) -(-10 -7 (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-1119 |#2|)))) -((-2887 (((-112) $ $) 19)) (-3768 (($ $) 120)) (-3769 (($ $) 121)) (-3759 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-3766 (((-112) $ $) 118)) (-3765 (((-112) $ $ (-535)) 117)) (-3881 (($ (-535)) 127)) (-3760 (((-618 $) $ (-142)) 110) (((-618 $) $ (-139)) 109)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-823)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| (-142) (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 (((-142) $ (-535) (-142)) 52 (|has| $ (-6 -4337))) (((-142) $ (-1191 (-535)) (-142)) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-3757 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-3762 (($ $ (-1191 (-535)) $) 114)) (-1394 (($ $) 78 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-142) $) 77 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4336)))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4336)))) (-1632 (((-142) $ (-535) (-142)) 53 (|has| $ (-6 -4337)))) (-3431 (((-142) $ (-535)) 51)) (-3767 (((-112) $ $) 119)) (-3761 (((-535) (-1 (-112) (-142)) $) 97) (((-535) (-142) $) 96 (|has| (-142) (-1067))) (((-535) (-142) $ (-535)) 95 (|has| (-142) (-1067))) (((-535) $ $ (-535)) 113) (((-535) (-139) $ (-535)) 112)) (-2063 (((-618 (-142)) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-142)) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| (-142) (-823)))) (-3855 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| (-142) (-823)))) (-3763 (((-112) $ $ (-142)) 115)) (-3764 (((-747) $ $ (-142)) 116)) (-2067 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3770 (($ $) 122)) (-3771 (($ $) 123)) (-4062 (((-112) $ (-747)) 10)) (-3758 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3576 (((-1124) $) 22)) (-2373 (($ (-142) $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21)) (-4143 (((-142) $) 42 (|has| (-535) (-823)))) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2297 (($ $ (-142)) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-142)) (-618 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2303 (((-618 (-142)) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 (((-142) $ (-535) (-142)) 50) (((-142) $ (-535)) 49) (($ $ (-1191 (-535))) 63) (($ $ $) 102)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4336))) (((-747) (-142) $) 28 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| (-142) (-594 (-524))))) (-3867 (($ (-618 (-142))) 70)) (-4144 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (($ (-142)) 111) (((-835) $) 18)) (-2066 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4336)))) (-2825 (((-1124) $) 131) (((-1124) $ (-112)) 130) (((-1230) (-799) $) 129) (((-1230) (-799) $ (-112)) 128)) (-2885 (((-112) $ $) 84 (|has| (-142) (-823)))) (-2886 (((-112) $ $) 83 (|has| (-142) (-823)))) (-3375 (((-112) $ $) 20)) (-3005 (((-112) $ $) 85 (|has| (-142) (-823)))) (-3006 (((-112) $ $) 82 (|has| (-142) (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-1123) (-138)) (T -1123)) -((-3881 (*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1123))))) -(-13 (-1110) (-1067) (-797) (-10 -8 (-15 -3881 ($ (-535))))) -(((-34) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 #1=(-142)) . T) ((-594 (-524)) |has| (-142) (-594 (-524))) ((-279 #2=(-535) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-365 #1#) . T) ((-481 #1#) . T) ((-584 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-627 #1#) . T) ((-19 #1#) . T) ((-797) . T) ((-823) |has| (-142) (-823)) ((-1067) . T) ((-1110) . T) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3768 (($ $) NIL)) (-3769 (($ $) NIL)) (-3759 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-3766 (((-112) $ $) NIL)) (-3765 (((-112) $ $ (-535)) NIL)) (-3881 (($ (-535)) 7)) (-3760 (((-618 $) $ (-142)) NIL) (((-618 $) $ (-139)) NIL)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-823)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-823))))) (-3230 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-142) $ (-535) (-142)) NIL (|has| $ (-6 -4337))) (((-142) $ (-1191 (-535)) (-142)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-3757 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-3762 (($ $ (-1191 (-535)) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3748 (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-142) $ (-535) (-142)) NIL (|has| $ (-6 -4337)))) (-3431 (((-142) $ (-535)) NIL)) (-3767 (((-112) $ $) NIL)) (-3761 (((-535) (-1 (-112) (-142)) $) NIL) (((-535) (-142) $) NIL (|has| (-142) (-1067))) (((-535) (-142) $ (-535)) NIL (|has| (-142) (-1067))) (((-535) $ $ (-535)) NIL) (((-535) (-139) $ (-535)) NIL)) (-2063 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-142)) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| (-142) (-823)))) (-3855 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-142) (-823)))) (-3763 (((-112) $ $ (-142)) NIL)) (-3764 (((-747) $ $ (-142)) NIL)) (-2067 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3770 (($ $) NIL)) (-3771 (($ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3758 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3576 (((-1124) $) NIL)) (-2373 (($ (-142) $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-142) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2297 (($ $ (-142)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-142)) (-618 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2303 (((-618 (-142)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-142) $ (-535) (-142)) NIL) (((-142) $ (-535)) NIL) (($ $ (-1191 (-535))) NIL) (($ $ $) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-142) (-594 (-524))))) (-3867 (($ (-618 (-142))) NIL)) (-4144 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (($ (-142)) NIL) (((-835) $) NIL)) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2825 (((-1124) $) 18) (((-1124) $ (-112)) 20) (((-1230) (-799) $) 21) (((-1230) (-799) $ (-112)) 22)) (-2885 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-142) (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1124) (-1123)) (T -1124)) -NIL -(-1123) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-2296 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-1124) |#1|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#1| #1="failed") (-1124) $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#1| #1#) (-1124) $) NIL)) (-3748 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-1124) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-1124)) NIL)) (-2063 (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2502 (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-2735 (((-618 (-1124)) $) NIL)) (-2306 (((-112) (-1124) $) NIL)) (-1326 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-2301 (((-618 (-1124)) $) NIL)) (-2302 (((-112) (-1124) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-4143 ((|#1| $) NIL (|has| (-1124) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) "failed") (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-1124)) NIL) ((|#1| $ (-1124) |#1|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-593 (-835))) (|has| |#1| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1125 |#1|) (-13 (-1155 (-1124) |#1|) (-10 -7 (-6 -4336))) (-1067)) (T -1125)) -NIL -(-13 (-1155 (-1124) |#1|) (-10 -7 (-6 -4336))) -((-4147 (((-1119 |#1|) (-1119 |#1|)) 77)) (-3804 (((-3 (-1119 |#1|) "failed") (-1119 |#1|)) 37)) (-3815 (((-1119 |#1|) (-400 (-535)) (-1119 |#1|)) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3818 (((-1119 |#1|) |#1| (-1119 |#1|)) 127 (|has| |#1| (-356)))) (-4150 (((-1119 |#1|) (-1119 |#1|)) 90)) (-3806 (((-1119 (-535)) (-535)) 57)) (-3814 (((-1119 |#1|) (-1119 (-1119 |#1|))) 109 (|has| |#1| (-38 (-400 (-535)))))) (-4146 (((-1119 |#1|) (-535) (-535) (-1119 |#1|)) 95)) (-4281 (((-1119 |#1|) |#1| (-535)) 45)) (-3808 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 60)) (-3816 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 124 (|has| |#1| (-356)))) (-3813 (((-1119 |#1|) |#1| (-1 (-1119 |#1|))) 108 (|has| |#1| (-38 (-400 (-535)))))) (-3817 (((-1119 |#1|) (-1 |#1| (-535)) |#1| (-1 (-1119 |#1|))) 125 (|has| |#1| (-356)))) (-4151 (((-1119 |#1|) (-1119 |#1|)) 89)) (-4152 (((-1119 |#1|) (-1119 |#1|)) 76)) (-4145 (((-1119 |#1|) (-535) (-535) (-1119 |#1|)) 96)) (-4155 (((-1119 |#1|) |#1| (-1119 |#1|)) 105 (|has| |#1| (-38 (-400 (-535)))))) (-3805 (((-1119 (-535)) (-535)) 56)) (-3807 (((-1119 |#1|) |#1|) 59)) (-4148 (((-1119 |#1|) (-1119 |#1|) (-535) (-535)) 92)) (-3810 (((-1119 |#1|) (-1 |#1| (-535)) (-1119 |#1|)) 66)) (-3803 (((-3 (-1119 |#1|) "failed") (-1119 |#1|) (-1119 |#1|)) 35)) (-4149 (((-1119 |#1|) (-1119 |#1|)) 91)) (-4110 (((-1119 |#1|) (-1119 |#1|) |#1|) 71)) (-3809 (((-1119 |#1|) (-1119 |#1|)) 62)) (-3811 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 72)) (-4300 (((-1119 |#1|) |#1|) 67)) (-3812 (((-1119 |#1|) (-1119 (-1119 |#1|))) 82)) (-4291 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 36)) (-4180 (((-1119 |#1|) (-1119 |#1|)) 21) (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 23)) (-4182 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 17)) (* (((-1119 |#1|) (-1119 |#1|) |#1|) 29) (((-1119 |#1|) |#1| (-1119 |#1|)) 26) (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 27))) -(((-1126 |#1|) (-10 -7 (-15 -4182 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4180 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4180 ((-1119 |#1|) (-1119 |#1|))) (-15 * ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 * ((-1119 |#1|) |#1| (-1119 |#1|))) (-15 * ((-1119 |#1|) (-1119 |#1|) |#1|)) (-15 -3803 ((-3 (-1119 |#1|) "failed") (-1119 |#1|) (-1119 |#1|))) (-15 -4291 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3804 ((-3 (-1119 |#1|) "failed") (-1119 |#1|))) (-15 -4281 ((-1119 |#1|) |#1| (-535))) (-15 -3805 ((-1119 (-535)) (-535))) (-15 -3806 ((-1119 (-535)) (-535))) (-15 -3807 ((-1119 |#1|) |#1|)) (-15 -3808 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3809 ((-1119 |#1|) (-1119 |#1|))) (-15 -3810 ((-1119 |#1|) (-1 |#1| (-535)) (-1119 |#1|))) (-15 -4300 ((-1119 |#1|) |#1|)) (-15 -4110 ((-1119 |#1|) (-1119 |#1|) |#1|)) (-15 -3811 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4152 ((-1119 |#1|) (-1119 |#1|))) (-15 -4147 ((-1119 |#1|) (-1119 |#1|))) (-15 -3812 ((-1119 |#1|) (-1119 (-1119 |#1|)))) (-15 -4151 ((-1119 |#1|) (-1119 |#1|))) (-15 -4150 ((-1119 |#1|) (-1119 |#1|))) (-15 -4149 ((-1119 |#1|) (-1119 |#1|))) (-15 -4148 ((-1119 |#1|) (-1119 |#1|) (-535) (-535))) (-15 -4146 ((-1119 |#1|) (-535) (-535) (-1119 |#1|))) (-15 -4145 ((-1119 |#1|) (-535) (-535) (-1119 |#1|))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ((-1119 |#1|) |#1| (-1119 |#1|))) (-15 -3813 ((-1119 |#1|) |#1| (-1 (-1119 |#1|)))) (-15 -3814 ((-1119 |#1|) (-1119 (-1119 |#1|)))) (-15 -3815 ((-1119 |#1|) (-400 (-535)) (-1119 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3816 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3817 ((-1119 |#1|) (-1 |#1| (-535)) |#1| (-1 (-1119 |#1|)))) (-15 -3818 ((-1119 |#1|) |#1| (-1119 |#1|)))) |%noBranch|)) (-1018)) (T -1126)) -((-3818 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-535))) (-5 *5 (-1 (-1119 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)))) (-3816 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3815 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1018)) (-5 *3 (-400 (-535))) (-5 *1 (-1126 *4)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1119 *3))) (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)))) (-4155 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4145 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-4146 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-4148 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-1018)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3811 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4110 (*1 *2 *2 *3) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-1 *4 (-535))) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3807 (*1 *2 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3806 (*1 *2 *3) (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-1126 *4)) (-4 *4 (-1018)) (-5 *3 (-535)))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-1126 *4)) (-4 *4 (-1018)) (-5 *3 (-535)))) (-4281 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3804 (*1 *2 *2) (|partial| -12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4291 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3803 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4180 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4182 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))) -(-10 -7 (-15 -4182 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4180 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4180 ((-1119 |#1|) (-1119 |#1|))) (-15 * ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 * ((-1119 |#1|) |#1| (-1119 |#1|))) (-15 * ((-1119 |#1|) (-1119 |#1|) |#1|)) (-15 -3803 ((-3 (-1119 |#1|) "failed") (-1119 |#1|) (-1119 |#1|))) (-15 -4291 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3804 ((-3 (-1119 |#1|) "failed") (-1119 |#1|))) (-15 -4281 ((-1119 |#1|) |#1| (-535))) (-15 -3805 ((-1119 (-535)) (-535))) (-15 -3806 ((-1119 (-535)) (-535))) (-15 -3807 ((-1119 |#1|) |#1|)) (-15 -3808 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3809 ((-1119 |#1|) (-1119 |#1|))) (-15 -3810 ((-1119 |#1|) (-1 |#1| (-535)) (-1119 |#1|))) (-15 -4300 ((-1119 |#1|) |#1|)) (-15 -4110 ((-1119 |#1|) (-1119 |#1|) |#1|)) (-15 -3811 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4152 ((-1119 |#1|) (-1119 |#1|))) (-15 -4147 ((-1119 |#1|) (-1119 |#1|))) (-15 -3812 ((-1119 |#1|) (-1119 (-1119 |#1|)))) (-15 -4151 ((-1119 |#1|) (-1119 |#1|))) (-15 -4150 ((-1119 |#1|) (-1119 |#1|))) (-15 -4149 ((-1119 |#1|) (-1119 |#1|))) (-15 -4148 ((-1119 |#1|) (-1119 |#1|) (-535) (-535))) (-15 -4146 ((-1119 |#1|) (-535) (-535) (-1119 |#1|))) (-15 -4145 ((-1119 |#1|) (-535) (-535) (-1119 |#1|))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ((-1119 |#1|) |#1| (-1119 |#1|))) (-15 -3813 ((-1119 |#1|) |#1| (-1 (-1119 |#1|)))) (-15 -3814 ((-1119 |#1|) (-1119 (-1119 |#1|)))) (-15 -3815 ((-1119 |#1|) (-400 (-535)) (-1119 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3816 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3817 ((-1119 |#1|) (-1 |#1| (-535)) |#1| (-1 (-1119 |#1|)))) (-15 -3818 ((-1119 |#1|) |#1| (-1119 |#1|)))) |%noBranch|)) -((-3829 (((-1119 |#1|) (-1119 |#1|)) 100)) (-3985 (((-1119 |#1|) (-1119 |#1|)) 64)) (-3820 (((-2 (|:| -3827 (-1119 |#1|)) (|:| -3828 (-1119 |#1|))) (-1119 |#1|)) 96)) (-3827 (((-1119 |#1|) (-1119 |#1|)) 97)) (-3819 (((-2 (|:| -3984 (-1119 |#1|)) (|:| -3980 (-1119 |#1|))) (-1119 |#1|)) 53)) (-3984 (((-1119 |#1|) (-1119 |#1|)) 54)) (-3831 (((-1119 |#1|) (-1119 |#1|)) 102)) (-3983 (((-1119 |#1|) (-1119 |#1|)) 71)) (-4285 (((-1119 |#1|) (-1119 |#1|)) 39)) (-4286 (((-1119 |#1|) (-1119 |#1|)) 36)) (-3832 (((-1119 |#1|) (-1119 |#1|)) 103)) (-3982 (((-1119 |#1|) (-1119 |#1|)) 72)) (-3830 (((-1119 |#1|) (-1119 |#1|)) 101)) (-3981 (((-1119 |#1|) (-1119 |#1|)) 67)) (-3828 (((-1119 |#1|) (-1119 |#1|)) 98)) (-3980 (((-1119 |#1|) (-1119 |#1|)) 55)) (-3835 (((-1119 |#1|) (-1119 |#1|)) 111)) (-3823 (((-1119 |#1|) (-1119 |#1|)) 86)) (-3833 (((-1119 |#1|) (-1119 |#1|)) 105)) (-3821 (((-1119 |#1|) (-1119 |#1|)) 82)) (-3837 (((-1119 |#1|) (-1119 |#1|)) 115)) (-3825 (((-1119 |#1|) (-1119 |#1|)) 90)) (-3838 (((-1119 |#1|) (-1119 |#1|)) 117)) (-3826 (((-1119 |#1|) (-1119 |#1|)) 92)) (-3836 (((-1119 |#1|) (-1119 |#1|)) 113)) (-3824 (((-1119 |#1|) (-1119 |#1|)) 88)) (-3834 (((-1119 |#1|) (-1119 |#1|)) 107)) (-3822 (((-1119 |#1|) (-1119 |#1|)) 84)) (** (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 40))) -(((-1127 |#1|) (-10 -7 (-15 -4286 ((-1119 |#1|) (-1119 |#1|))) (-15 -4285 ((-1119 |#1|) (-1119 |#1|))) (-15 ** ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3819 ((-2 (|:| -3984 (-1119 |#1|)) (|:| -3980 (-1119 |#1|))) (-1119 |#1|))) (-15 -3984 ((-1119 |#1|) (-1119 |#1|))) (-15 -3980 ((-1119 |#1|) (-1119 |#1|))) (-15 -3985 ((-1119 |#1|) (-1119 |#1|))) (-15 -3981 ((-1119 |#1|) (-1119 |#1|))) (-15 -3983 ((-1119 |#1|) (-1119 |#1|))) (-15 -3982 ((-1119 |#1|) (-1119 |#1|))) (-15 -3821 ((-1119 |#1|) (-1119 |#1|))) (-15 -3822 ((-1119 |#1|) (-1119 |#1|))) (-15 -3823 ((-1119 |#1|) (-1119 |#1|))) (-15 -3824 ((-1119 |#1|) (-1119 |#1|))) (-15 -3825 ((-1119 |#1|) (-1119 |#1|))) (-15 -3826 ((-1119 |#1|) (-1119 |#1|))) (-15 -3820 ((-2 (|:| -3827 (-1119 |#1|)) (|:| -3828 (-1119 |#1|))) (-1119 |#1|))) (-15 -3827 ((-1119 |#1|) (-1119 |#1|))) (-15 -3828 ((-1119 |#1|) (-1119 |#1|))) (-15 -3829 ((-1119 |#1|) (-1119 |#1|))) (-15 -3830 ((-1119 |#1|) (-1119 |#1|))) (-15 -3831 ((-1119 |#1|) (-1119 |#1|))) (-15 -3832 ((-1119 |#1|) (-1119 |#1|))) (-15 -3833 ((-1119 |#1|) (-1119 |#1|))) (-15 -3834 ((-1119 |#1|) (-1119 |#1|))) (-15 -3835 ((-1119 |#1|) (-1119 |#1|))) (-15 -3836 ((-1119 |#1|) (-1119 |#1|))) (-15 -3837 ((-1119 |#1|) (-1119 |#1|))) (-15 -3838 ((-1119 |#1|) (-1119 |#1|)))) (-38 (-400 (-535)))) (T -1127)) -((-3838 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3830 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3820 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-2 (|:| -3827 (-1119 *4)) (|:| -3828 (-1119 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1119 *4)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3824 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-2 (|:| -3984 (-1119 *4)) (|:| -3980 (-1119 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1119 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-4286 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))) -(-10 -7 (-15 -4286 ((-1119 |#1|) (-1119 |#1|))) (-15 -4285 ((-1119 |#1|) (-1119 |#1|))) (-15 ** ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3819 ((-2 (|:| -3984 (-1119 |#1|)) (|:| -3980 (-1119 |#1|))) (-1119 |#1|))) (-15 -3984 ((-1119 |#1|) (-1119 |#1|))) (-15 -3980 ((-1119 |#1|) (-1119 |#1|))) (-15 -3985 ((-1119 |#1|) (-1119 |#1|))) (-15 -3981 ((-1119 |#1|) (-1119 |#1|))) (-15 -3983 ((-1119 |#1|) (-1119 |#1|))) (-15 -3982 ((-1119 |#1|) (-1119 |#1|))) (-15 -3821 ((-1119 |#1|) (-1119 |#1|))) (-15 -3822 ((-1119 |#1|) (-1119 |#1|))) (-15 -3823 ((-1119 |#1|) (-1119 |#1|))) (-15 -3824 ((-1119 |#1|) (-1119 |#1|))) (-15 -3825 ((-1119 |#1|) (-1119 |#1|))) (-15 -3826 ((-1119 |#1|) (-1119 |#1|))) (-15 -3820 ((-2 (|:| -3827 (-1119 |#1|)) (|:| -3828 (-1119 |#1|))) (-1119 |#1|))) (-15 -3827 ((-1119 |#1|) (-1119 |#1|))) (-15 -3828 ((-1119 |#1|) (-1119 |#1|))) (-15 -3829 ((-1119 |#1|) (-1119 |#1|))) (-15 -3830 ((-1119 |#1|) (-1119 |#1|))) (-15 -3831 ((-1119 |#1|) (-1119 |#1|))) (-15 -3832 ((-1119 |#1|) (-1119 |#1|))) (-15 -3833 ((-1119 |#1|) (-1119 |#1|))) (-15 -3834 ((-1119 |#1|) (-1119 |#1|))) (-15 -3835 ((-1119 |#1|) (-1119 |#1|))) (-15 -3836 ((-1119 |#1|) (-1119 |#1|))) (-15 -3837 ((-1119 |#1|) (-1119 |#1|))) (-15 -3838 ((-1119 |#1|) (-1119 |#1|)))) -((-3829 (((-1119 |#1|) (-1119 |#1|)) 57)) (-3985 (((-1119 |#1|) (-1119 |#1|)) 39)) (-3827 (((-1119 |#1|) (-1119 |#1|)) 53)) (-3984 (((-1119 |#1|) (-1119 |#1|)) 35)) (-3831 (((-1119 |#1|) (-1119 |#1|)) 60)) (-3983 (((-1119 |#1|) (-1119 |#1|)) 42)) (-4285 (((-1119 |#1|) (-1119 |#1|)) 31)) (-4286 (((-1119 |#1|) (-1119 |#1|)) 27)) (-3832 (((-1119 |#1|) (-1119 |#1|)) 61)) (-3982 (((-1119 |#1|) (-1119 |#1|)) 43)) (-3830 (((-1119 |#1|) (-1119 |#1|)) 58)) (-3981 (((-1119 |#1|) (-1119 |#1|)) 40)) (-3828 (((-1119 |#1|) (-1119 |#1|)) 55)) (-3980 (((-1119 |#1|) (-1119 |#1|)) 37)) (-3835 (((-1119 |#1|) (-1119 |#1|)) 65)) (-3823 (((-1119 |#1|) (-1119 |#1|)) 47)) (-3833 (((-1119 |#1|) (-1119 |#1|)) 63)) (-3821 (((-1119 |#1|) (-1119 |#1|)) 45)) (-3837 (((-1119 |#1|) (-1119 |#1|)) 68)) (-3825 (((-1119 |#1|) (-1119 |#1|)) 50)) (-3838 (((-1119 |#1|) (-1119 |#1|)) 69)) (-3826 (((-1119 |#1|) (-1119 |#1|)) 51)) (-3836 (((-1119 |#1|) (-1119 |#1|)) 67)) (-3824 (((-1119 |#1|) (-1119 |#1|)) 49)) (-3834 (((-1119 |#1|) (-1119 |#1|)) 66)) (-3822 (((-1119 |#1|) (-1119 |#1|)) 48)) (** (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 33))) -(((-1128 |#1|) (-10 -7 (-15 -4286 ((-1119 |#1|) (-1119 |#1|))) (-15 -4285 ((-1119 |#1|) (-1119 |#1|))) (-15 ** ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3984 ((-1119 |#1|) (-1119 |#1|))) (-15 -3980 ((-1119 |#1|) (-1119 |#1|))) (-15 -3985 ((-1119 |#1|) (-1119 |#1|))) (-15 -3981 ((-1119 |#1|) (-1119 |#1|))) (-15 -3983 ((-1119 |#1|) (-1119 |#1|))) (-15 -3982 ((-1119 |#1|) (-1119 |#1|))) (-15 -3821 ((-1119 |#1|) (-1119 |#1|))) (-15 -3822 ((-1119 |#1|) (-1119 |#1|))) (-15 -3823 ((-1119 |#1|) (-1119 |#1|))) (-15 -3824 ((-1119 |#1|) (-1119 |#1|))) (-15 -3825 ((-1119 |#1|) (-1119 |#1|))) (-15 -3826 ((-1119 |#1|) (-1119 |#1|))) (-15 -3827 ((-1119 |#1|) (-1119 |#1|))) (-15 -3828 ((-1119 |#1|) (-1119 |#1|))) (-15 -3829 ((-1119 |#1|) (-1119 |#1|))) (-15 -3830 ((-1119 |#1|) (-1119 |#1|))) (-15 -3831 ((-1119 |#1|) (-1119 |#1|))) (-15 -3832 ((-1119 |#1|) (-1119 |#1|))) (-15 -3833 ((-1119 |#1|) (-1119 |#1|))) (-15 -3834 ((-1119 |#1|) (-1119 |#1|))) (-15 -3835 ((-1119 |#1|) (-1119 |#1|))) (-15 -3836 ((-1119 |#1|) (-1119 |#1|))) (-15 -3837 ((-1119 |#1|) (-1119 |#1|))) (-15 -3838 ((-1119 |#1|) (-1119 |#1|)))) (-38 (-400 (-535)))) (T -1128)) -((-3838 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3830 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3824 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-4286 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) -(-10 -7 (-15 -4286 ((-1119 |#1|) (-1119 |#1|))) (-15 -4285 ((-1119 |#1|) (-1119 |#1|))) (-15 ** ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3984 ((-1119 |#1|) (-1119 |#1|))) (-15 -3980 ((-1119 |#1|) (-1119 |#1|))) (-15 -3985 ((-1119 |#1|) (-1119 |#1|))) (-15 -3981 ((-1119 |#1|) (-1119 |#1|))) (-15 -3983 ((-1119 |#1|) (-1119 |#1|))) (-15 -3982 ((-1119 |#1|) (-1119 |#1|))) (-15 -3821 ((-1119 |#1|) (-1119 |#1|))) (-15 -3822 ((-1119 |#1|) (-1119 |#1|))) (-15 -3823 ((-1119 |#1|) (-1119 |#1|))) (-15 -3824 ((-1119 |#1|) (-1119 |#1|))) (-15 -3825 ((-1119 |#1|) (-1119 |#1|))) (-15 -3826 ((-1119 |#1|) (-1119 |#1|))) (-15 -3827 ((-1119 |#1|) (-1119 |#1|))) (-15 -3828 ((-1119 |#1|) (-1119 |#1|))) (-15 -3829 ((-1119 |#1|) (-1119 |#1|))) (-15 -3830 ((-1119 |#1|) (-1119 |#1|))) (-15 -3831 ((-1119 |#1|) (-1119 |#1|))) (-15 -3832 ((-1119 |#1|) (-1119 |#1|))) (-15 -3833 ((-1119 |#1|) (-1119 |#1|))) (-15 -3834 ((-1119 |#1|) (-1119 |#1|))) (-15 -3835 ((-1119 |#1|) (-1119 |#1|))) (-15 -3836 ((-1119 |#1|) (-1119 |#1|))) (-15 -3837 ((-1119 |#1|) (-1119 |#1|))) (-15 -3838 ((-1119 |#1|) (-1119 |#1|)))) -((-3839 (((-929 |#2|) |#2| |#2|) 35)) (-3840 ((|#2| |#2| |#1|) 19 (|has| |#1| (-300))))) -(((-1129 |#1| |#2|) (-10 -7 (-15 -3839 ((-929 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -3840 (|#2| |#2| |#1|)) |%noBranch|)) (-542) (-1200 |#1|)) (T -1129)) -((-3840 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1200 *3)))) (-3839 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-929 *3)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -3839 ((-929 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -3840 (|#2| |#2| |#1|)) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3848 (($ $ (-618 (-747))) 67)) (-4231 (($) 26)) (-3857 (($ $) 42)) (-4094 (((-618 $) $) 51)) (-3863 (((-112) $) 16)) (-3841 (((-618 (-914 |#2|)) $) 74)) (-3842 (($ $) 68)) (-3858 (((-747) $) 37)) (-3960 (($) 25)) (-3851 (($ $ (-618 (-747)) (-914 |#2|)) 60) (($ $ (-618 (-747)) (-747)) 61) (($ $ (-747) (-914 |#2|)) 63)) (-3855 (($ $ $) 48) (($ (-618 $)) 50)) (-3843 (((-747) $) 75)) (-3864 (((-112) $) 15)) (-3576 (((-1124) $) NIL)) (-3862 (((-112) $) 18)) (-3577 (((-1086) $) NIL)) (-3844 (((-169) $) 73)) (-3847 (((-914 |#2|) $) 69)) (-3846 (((-747) $) 70)) (-3845 (((-112) $) 72)) (-3849 (($ $ (-618 (-747)) (-169)) 66)) (-3856 (($ $) 43)) (-4300 (((-835) $) 86)) (-3850 (($ $ (-618 (-747)) (-112)) 65)) (-3859 (((-618 $) $) 11)) (-3860 (($ $ (-747)) 36)) (-3861 (($ $) 32)) (-3852 (($ $ $ (-914 |#2|) (-747)) 56)) (-3853 (($ $ (-914 |#2|)) 55)) (-3854 (($ $ (-618 (-747)) (-914 |#2|)) 54) (($ $ (-618 (-747)) (-747)) 58) (((-747) $ (-914 |#2|)) 59)) (-3375 (((-112) $ $) 80))) -(((-1130 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3864 ((-112) $)) (-15 -3863 ((-112) $)) (-15 -3862 ((-112) $)) (-15 -3960 ($)) (-15 -4231 ($)) (-15 -3861 ($ $)) (-15 -3860 ($ $ (-747))) (-15 -3859 ((-618 $) $)) (-15 -3858 ((-747) $)) (-15 -3857 ($ $)) (-15 -3856 ($ $)) (-15 -3855 ($ $ $)) (-15 -3855 ($ (-618 $))) (-15 -4094 ((-618 $) $)) (-15 -3854 ($ $ (-618 (-747)) (-914 |#2|))) (-15 -3853 ($ $ (-914 |#2|))) (-15 -3852 ($ $ $ (-914 |#2|) (-747))) (-15 -3851 ($ $ (-618 (-747)) (-914 |#2|))) (-15 -3854 ($ $ (-618 (-747)) (-747))) (-15 -3851 ($ $ (-618 (-747)) (-747))) (-15 -3854 ((-747) $ (-914 |#2|))) (-15 -3851 ($ $ (-747) (-914 |#2|))) (-15 -3850 ($ $ (-618 (-747)) (-112))) (-15 -3849 ($ $ (-618 (-747)) (-169))) (-15 -3848 ($ $ (-618 (-747)))) (-15 -3847 ((-914 |#2|) $)) (-15 -3846 ((-747) $)) (-15 -3845 ((-112) $)) (-15 -3844 ((-169) $)) (-15 -3843 ((-747) $)) (-15 -3842 ($ $)) (-15 -3841 ((-618 (-914 |#2|)) $)))) (-890) (-1018)) (T -1130)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3960 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-4231 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3861 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3860 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3857 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3856 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3855 (*1 *1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-914 *4)) (-4 *4 (-1018)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)))) (-3852 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-914 *5)) (-5 *3 (-747)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3851 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1018)))) (-3851 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1018)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *2 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3851 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3850 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-112)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1018)))) (-3849 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-169)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1018)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-914 *4)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3842 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-618 (-914 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(-13 (-1067) (-10 -8 (-15 -3864 ((-112) $)) (-15 -3863 ((-112) $)) (-15 -3862 ((-112) $)) (-15 -3960 ($)) (-15 -4231 ($)) (-15 -3861 ($ $)) (-15 -3860 ($ $ (-747))) (-15 -3859 ((-618 $) $)) (-15 -3858 ((-747) $)) (-15 -3857 ($ $)) (-15 -3856 ($ $)) (-15 -3855 ($ $ $)) (-15 -3855 ($ (-618 $))) (-15 -4094 ((-618 $) $)) (-15 -3854 ($ $ (-618 (-747)) (-914 |#2|))) (-15 -3853 ($ $ (-914 |#2|))) (-15 -3852 ($ $ $ (-914 |#2|) (-747))) (-15 -3851 ($ $ (-618 (-747)) (-914 |#2|))) (-15 -3854 ($ $ (-618 (-747)) (-747))) (-15 -3851 ($ $ (-618 (-747)) (-747))) (-15 -3854 ((-747) $ (-914 |#2|))) (-15 -3851 ($ $ (-747) (-914 |#2|))) (-15 -3850 ($ $ (-618 (-747)) (-112))) (-15 -3849 ($ $ (-618 (-747)) (-169))) (-15 -3848 ($ $ (-618 (-747)))) (-15 -3847 ((-914 |#2|) $)) (-15 -3846 ((-747) $)) (-15 -3845 ((-112) $)) (-15 -3844 ((-169) $)) (-15 -3843 ((-747) $)) (-15 -3842 ($ $)) (-15 -3841 ((-618 (-914 |#2|)) $)))) -((-2887 (((-112) $ $) NIL)) (-3865 ((|#2| $) 11)) (-3866 ((|#1| $) 10)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3867 (($ |#1| |#2|) 9)) (-4300 (((-835) $) 16)) (-3375 (((-112) $ $) NIL))) -(((-1131 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3867 ($ |#1| |#2|)) (-15 -3866 (|#1| $)) (-15 -3865 (|#2| $)))) (-1067) (-1067)) (T -1131)) -((-3867 (*1 *1 *2 *3) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3866 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1131 *2 *3)) (-4 *3 (-1067)))) (-3865 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1067))))) -(-13 (-1067) (-10 -8 (-15 -3867 ($ |#1| |#2|)) (-15 -3866 (|#1| $)) (-15 -3865 (|#2| $)))) -((-2887 (((-112) $ $) NIL)) (-3868 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-1132) (-13 (-1049) (-10 -8 (-15 -3868 ((-1101) $))))) (T -1132)) -((-3868 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1132))))) -(-13 (-1049) (-10 -8 (-15 -3868 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 11)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2171 (($ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2169 (((-112) $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-4113 (($ $ (-535)) NIL) (($ $ (-535) (-535)) 66)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) NIL)) (-4074 (((-1140 |#1| |#2| |#3|) $) 36)) (-4071 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) 29)) (-4072 (((-1140 |#1| |#2| |#3|) $) 30)) (-3829 (($ $) 107 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 83 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) 103 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 79 (|has| |#1| (-38 (-400 (-535)))))) (-3969 (((-535) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) 111 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 87 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1140 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1142) #2#) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-3 (-400 (-535)) #2#) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356)))) (((-3 (-535) #2#) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))))) (-3490 (((-1140 |#1| |#2| |#3|) $) 131) (((-1142) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-400 (-535)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356)))) (((-535) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))))) (-4073 (($ $) 34) (($ (-535) $) 35)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-1140 |#1| |#2| |#3|)) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-1140 |#1| |#2| |#3|))) (|:| |vec| (-1224 (-1140 |#1| |#2| |#3|)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-617 (-535))) (|has| |#1| (-356)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-617 (-535))) (|has| |#1| (-356))))) (-3804 (((-3 $ "failed") $) 48)) (-4070 (((-400 (-917 |#1|)) $ (-535)) 65 (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) 67 (|has| |#1| (-542)))) (-3315 (($) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3520 (((-112) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3213 (((-112) $) 25)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-857 (-535))) (|has| |#1| (-356)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-857 (-371))) (|has| |#1| (-356))))) (-4114 (((-535) $) NIL) (((-535) $ (-535)) 24)) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL (|has| |#1| (-356)))) (-3319 (((-1140 |#1| |#2| |#3|) $) 38 (|has| |#1| (-356)))) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3786 (((-3 $ "failed") $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))))) (-3521 (((-112) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-4119 (($ $ (-890)) NIL)) (-4158 (($ (-1 |#1| (-535)) $) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-535)) 18) (($ $ (-1048) (-535)) NIL) (($ $ (-618 (-1048)) (-618 (-535))) NIL)) (-3660 (($ $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3661 (($ $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-4285 (($ $) 72 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4121 (($ (-535) (-1140 |#1| |#2| |#3|)) 33)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 70 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 71 (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3446 (($ $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3448 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-535)) 145)) (-3803 (((-3 $ "failed") $ $) 49 (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) 73 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-535))))) (($ $ (-1142) (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-286 (-1140 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-286 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-1140 |#1| |#2| |#3|)) (-618 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) NIL) (($ $ $) 54 (|has| (-535) (-1078))) (($ $ (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-279 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1221 |#2|)) 51) (($ $ (-747)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 50 (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-3316 (($ $) NIL (|has| |#1| (-356)))) (-3318 (((-1140 |#1| |#2| |#3|) $) 41 (|has| |#1| (-356)))) (-4290 (((-535) $) 37)) (-3832 (($ $) 113 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 89 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 109 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 85 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 105 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 81 (|has| |#1| (-38 (-400 (-535)))))) (-4313 (((-524) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-524))) (|has| |#1| (-356)))) (((-371) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-991)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-991)) (|has| |#1| (-356)))) (((-861 (-371)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-861 (-371)))) (|has| |#1| (-356)))) (((-861 (-535)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-861 (-535)))) (|has| |#1| (-356))))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) 149) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1140 |#1| |#2| |#3|)) 27) (($ (-1221 |#2|)) 23) (($ (-1142)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (($ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542)))) (($ (-400 (-535))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-535))))))) (-4023 ((|#1| $ (-535)) 68)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 12)) (-3449 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-3835 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 95 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3833 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 91 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 99 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 101 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 97 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 93 (|has| |#1| (-38 (-400 (-535)))))) (-3725 (($ $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2979 (($) 20 T CONST)) (-2985 (($) 16 T CONST)) (-2990 (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-2885 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2886 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3006 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 44 (|has| |#1| (-356))) (($ (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) 45 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-747)) 53) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) 74 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 128 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1140 |#1| |#2| |#3|)) 43 (|has| |#1| (-356))) (($ (-1140 |#1| |#2| |#3|) $) 42 (|has| |#1| (-356))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1133 |#1| |#2| |#3|) (-13 (-1188 |#1| (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1133)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))) -(-13 (-1188 |#1| (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) -((-3869 ((|#2| |#2| (-1058 |#2|)) 26) ((|#2| |#2| (-1142)) 28))) -(((-1134 |#1| |#2|) (-10 -7 (-15 -3869 (|#2| |#2| (-1142))) (-15 -3869 (|#2| |#2| (-1058 |#2|)))) (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-414 |#1|) (-158) (-27) (-1164))) (T -1134)) -((-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1164))) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1134 *4 *2)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1164)))))) -(-10 -7 (-15 -3869 (|#2| |#2| (-1142))) (-15 -3869 (|#2| |#2| (-1058 |#2|)))) -((-3869 (((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1058 (-400 (-917 |#1|)))) 31) (((-400 (-917 |#1|)) (-917 |#1|) (-1058 (-917 |#1|))) 44) (((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1142)) 33) (((-400 (-917 |#1|)) (-917 |#1|) (-1142)) 36))) -(((-1135 |#1|) (-10 -7 (-15 -3869 ((-400 (-917 |#1|)) (-917 |#1|) (-1142))) (-15 -3869 ((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1142))) (-15 -3869 ((-400 (-917 |#1|)) (-917 |#1|) (-1058 (-917 |#1|)))) (-15 -3869 ((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1058 (-400 (-917 |#1|)))))) (-13 (-542) (-823) (-1009 (-535)))) (T -1135)) -((-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-3 *3 (-307 *5))) (-5 *1 (-1135 *5)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-917 *5))) (-5 *3 (-917 *5)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-400 *3)) (-5 *1 (-1135 *5)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-3 (-400 (-917 *5)) (-307 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-400 (-917 *5))))) (-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-400 (-917 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-917 *5))))) -(-10 -7 (-15 -3869 ((-400 (-917 |#1|)) (-917 |#1|) (-1142))) (-15 -3869 ((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1142))) (-15 -3869 ((-400 (-917 |#1|)) (-917 |#1|) (-1058 (-917 |#1|)))) (-15 -3869 ((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1058 (-400 (-917 |#1|)))))) -((-2887 (((-112) $ $) 137)) (-3522 (((-112) $) 27)) (-4109 (((-1224 |#1|) $ (-747)) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4107 (($ (-1136 |#1|)) NIL)) (-3407 (((-1136 $) $ (-1048)) 58) (((-1136 |#1|) $) 47)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) 132 (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4098 (($ $ $) 126 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) 71 (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 91 (|has| |#1| (-881)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4103 (($ $ (-747)) 39)) (-4102 (($ $ (-747)) 40)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1048) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1048) $) NIL)) (-4099 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) 56)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4101 (($ $ $) 104)) (-4096 (($ $ $) NIL (|has| |#1| (-542)))) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-3840 (($ $) 133 (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-747) $) 45)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1048) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1048) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-3870 (((-835) $ (-835)) 117)) (-4114 (((-747) $ $) NIL (|has| |#1| (-542)))) (-2493 (((-112) $) 30)) (-2501 (((-747) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-3408 (($ (-1136 |#1|) (-1048)) 49) (($ (-1136 $) (-1048)) 65)) (-4119 (($ $ (-747)) 32)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) 63) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) NIL) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 121)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4108 (((-1136 |#1|) $) NIL)) (-3406 (((-3 (-1048) #4="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) 52)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) 38)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) NIL)) (-4155 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 31)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 79 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) 135 (|has| |#1| (-444)))) (-4081 (($ $ (-747) |#1| $) 99)) (-3026 (((-398 (-1136 $)) (-1136 $)) 77 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 76 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 84 (|has| |#1| (-881)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-618 (-1048)) (-618 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-618 (-1048)) (-618 $)) NIL)) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-4106 (((-3 $ #5="failed") $ (-747)) 35)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 138 (|has| |#1| (-356)))) (-4100 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-4153 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4290 (((-747) $) 54) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1048) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) 130 (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4097 (((-3 $ #5#) $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-542)))) (-4300 (((-835) $) 118) (($ (-535)) NIL) (($ |#1|) 53) (($ (-1048)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) 25 (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 15 T CONST)) (-2985 (($) 16 T CONST)) (-2990 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 96)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 139 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 66)) (** (($ $ (-890)) 14) (($ $ (-747)) 12)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 24) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1136 |#1|) (-13 (-1200 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-835))) (-15 -4081 ($ $ (-747) |#1| $)))) (-1018)) (T -1136)) -((-3870 (*1 *2 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-1136 *3)) (-4 *3 (-1018)))) (-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1136 *3)) (-4 *3 (-1018))))) -(-13 (-1200 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-835))) (-15 -4081 ($ $ (-747) |#1| $)))) -((-4301 (((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|)) 13))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -4301 ((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|)))) (-1018) (-1018)) (T -1137)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1136 *6)) (-5 *1 (-1137 *5 *6))))) -(-10 -7 (-15 -4301 ((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|)))) -((-4312 (((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|))) 51)) (-4075 (((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|))) 52))) -(((-1138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|)))) (-15 -4312 ((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|))))) (-769) (-823) (-444) (-921 |#3| |#1| |#2|)) (T -1138)) -((-4312 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-398 (-1136 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7)) (-5 *3 (-1136 (-400 *7))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-398 (-1136 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7)) (-5 *3 (-1136 (-400 *7)))))) -(-10 -7 (-15 -4075 ((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|)))) (-15 -4312 ((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 11)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) NIL) (($ $ (-400 (-535)) (-400 (-535))) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1133 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1140 |#1| |#2| |#3|) #1#) $) 36)) (-3490 (((-1133 |#1| |#2| |#3|) $) NIL) (((-1140 |#1| |#2| |#3|) $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4123 (((-400 (-535)) $) 55)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4124 (($ (-400 (-535)) (-1133 |#1| |#2| |#3|)) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) NIL) (((-400 (-535)) $ (-400 (-535))) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL) (($ $ (-400 (-535))) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) 20) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4122 (((-1133 |#1| |#2| |#3|) $) 41)) (-4120 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) NIL)) (-4121 (((-1133 |#1| |#2| |#3|) $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 39 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 40 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) NIL) (($ $ $) NIL (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $ (-1221 |#2|)) 38)) (-4290 (((-400 (-535)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) 58) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1133 |#1| |#2| |#3|)) 30) (($ (-1140 |#1| |#2| |#3|)) 31) (($ (-1221 |#2|)) 26) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 12)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 22 T CONST)) (-2985 (($) 16 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 24)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1139 |#1| |#2| |#3|) (-13 (-1209 |#1| (-1133 |#1| |#2| |#3|)) (-1009 (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1139)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))) -(-13 (-1209 |#1| (-1133 |#1| |#2| |#3|)) (-1009 (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 125)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 116)) (-4154 (((-1193 |#2| |#1|) $ (-747)) 63)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-747)) 79) (($ $ (-747) (-747)) 76)) (-4116 (((-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 102)) (-3829 (($ $) 169 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 145 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) 165 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 115) (($ (-1119 |#1|)) 110)) (-3831 (($ $) 173 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 149 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) 23)) (-4159 (($ $) 26)) (-4157 (((-917 |#1|) $ (-747)) 75) (((-917 |#1|) $ (-747) (-747)) 77)) (-3213 (((-112) $) 120)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $) 122) (((-747) $ (-747)) 124)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL)) (-4158 (($ (-1 |#1| (-535)) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) 13) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4155 (($ $) 129 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-4111 (($ $ (-747)) 15)) (-3803 (((-3 $ "failed") $ $) 24 (|has| |#1| (-542)))) (-4286 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-4142 ((|#1| $ (-747)) 119) (($ $ $) 128 (|has| (-747) (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $ (-1221 |#2|)) 29)) (-4290 (((-747) $) NIL)) (-3832 (($ $) 175 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 151 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 171 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 147 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 167 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 143 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) 201) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1193 |#2| |#1|)) 51) (($ (-1221 |#2|)) 32)) (-4160 (((-1119 |#1|) $) 98)) (-4023 ((|#1| $ (-747)) 118)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 54)) (-3835 (($ $) 181 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 157 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 177 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 153 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 185 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 161 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-747)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 187 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 163 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 183 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 159 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 179 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 155 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 17 T CONST)) (-2985 (($) 19 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) 194)) (-4182 (($ $ $) 31)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ |#1|) 198 (|has| |#1| (-356))) (($ $ $) 134 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 137 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1140 |#1| |#2| |#3|) (-13 (-1217 |#1|) (-10 -8 (-15 -4300 ($ (-1193 |#2| |#1|))) (-15 -4154 ((-1193 |#2| |#1|) $ (-747))) (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1140)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1193 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-1140 *3 *4 *5)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1193 *5 *4)) (-5 *1 (-1140 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))) -(-13 (-1217 |#1|) (-10 -8 (-15 -4300 ($ (-1193 |#2| |#1|))) (-15 -4154 ((-1193 |#2| |#1|) $ (-747))) (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) -((-4300 (((-835) $) 27) (($ (-1142)) 29)) (-3874 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 40)) (-3871 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 33) (($ $) 34)) (-3878 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 35)) (-3876 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 37)) (-3877 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 36)) (-3875 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 38)) (-3873 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 39))) -(((-1141) (-13 (-593 (-835)) (-10 -8 (-15 -4300 ($ (-1142))) (-15 -3878 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3877 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3876 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3875 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3874 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3873 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3871 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3871 ($ $))))) (T -1141)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1141)))) (-3878 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3877 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3876 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3875 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3874 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3873 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3871 (*1 *1 *1) (-5 *1 (-1141)))) -(-13 (-593 (-835)) (-10 -8 (-15 -4300 ($ (-1142))) (-15 -3878 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3877 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3876 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3875 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3874 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3873 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3871 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3871 ($ $)))) -((-2887 (((-112) $ $) NIL)) (-3883 (($ $ (-618 (-835))) 59)) (-3884 (($ $ (-618 (-835))) 57)) (-3881 (((-1124) $) 84)) (-3886 (((-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))) $) 87)) (-3887 (((-112) $) 22)) (-3885 (($ $ (-618 (-618 (-835)))) 56) (($ $ (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835))))) 82)) (-3879 (($) 124 T CONST)) (-3889 (((-1230)) 106)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 66) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 73)) (-3960 (($) 95) (($ $) 101)) (-3888 (($ $) 83)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3880 (((-618 $) $) 107)) (-3576 (((-1124) $) 90)) (-3577 (((-1086) $) NIL)) (-4142 (($ $ (-618 (-835))) 58)) (-4313 (((-524) $) 46) (((-1142) $) 47) (((-861 (-535)) $) 77) (((-861 (-371)) $) 75)) (-4300 (((-835) $) 53) (($ (-1124)) 48)) (-3882 (($ $ (-618 (-835))) 60)) (-2825 (((-1124) $) 33) (((-1124) $ (-112)) 34) (((-1230) (-799) $) 35) (((-1230) (-799) $ (-112)) 36)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 49)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 50))) -(((-1142) (-13 (-823) (-594 (-524)) (-797) (-594 (-1142)) (-594 (-861 (-535))) (-594 (-861 (-371))) (-857 (-535)) (-857 (-371)) (-10 -8 (-15 -3960 ($)) (-15 -3960 ($ $)) (-15 -3889 ((-1230))) (-15 -4300 ($ (-1124))) (-15 -3888 ($ $)) (-15 -3887 ((-112) $)) (-15 -3886 ((-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))) $)) (-15 -3885 ($ $ (-618 (-618 (-835))))) (-15 -3885 ($ $ (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))))) (-15 -3884 ($ $ (-618 (-835)))) (-15 -3883 ($ $ (-618 (-835)))) (-15 -3882 ($ $ (-618 (-835)))) (-15 -4142 ($ $ (-618 (-835)))) (-15 -3881 ((-1124) $)) (-15 -3880 ((-618 $) $)) (-15 -3879 ($) -4294)))) (T -1142)) -((-3960 (*1 *1) (-5 *1 (-1142))) (-3960 (*1 *1 *1) (-5 *1 (-1142))) (-3889 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1142)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))) (-3888 (*1 *1 *1) (-5 *1 (-1142))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835))))) (-5 *1 (-1142)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 (-835)))) (-5 *1 (-1142)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835))))) (-5 *1 (-1142)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1142)))) (-3879 (*1 *1) (-5 *1 (-1142)))) -(-13 (-823) (-594 (-524)) (-797) (-594 (-1142)) (-594 (-861 (-535))) (-594 (-861 (-371))) (-857 (-535)) (-857 (-371)) (-10 -8 (-15 -3960 ($)) (-15 -3960 ($ $)) (-15 -3889 ((-1230))) (-15 -4300 ($ (-1124))) (-15 -3888 ($ $)) (-15 -3887 ((-112) $)) (-15 -3886 ((-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))) $)) (-15 -3885 ($ $ (-618 (-618 (-835))))) (-15 -3885 ($ $ (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))))) (-15 -3884 ($ $ (-618 (-835)))) (-15 -3883 ($ $ (-618 (-835)))) (-15 -3882 ($ $ (-618 (-835)))) (-15 -4142 ($ $ (-618 (-835)))) (-15 -3881 ((-1124) $)) (-15 -3880 ((-618 $) $)) (-15 -3879 ($) -4294))) -((-3890 (((-1224 |#1|) |#1| (-890)) 16) (((-1224 |#1|) (-618 |#1|)) 20))) -(((-1143 |#1|) (-10 -7 (-15 -3890 ((-1224 |#1|) (-618 |#1|))) (-15 -3890 ((-1224 |#1|) |#1| (-890)))) (-1018)) (T -1143)) -((-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1224 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1018)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1018)) (-5 *2 (-1224 *4)) (-5 *1 (-1143 *4))))) -(-10 -7 (-15 -3890 ((-1224 |#1|) (-618 |#1|))) (-15 -3890 ((-1224 |#1|) |#1| (-890)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-1716 (($ $ |#1| (-942) $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-942)) NIL)) (-3141 (((-942) $) NIL)) (-1717 (($ (-1 (-942) (-942)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-4081 (($ $ (-942) |#1| $) NIL (-12 (|has| (-942) (-130)) (|has| |#1| (-542))))) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-4290 (((-942) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-942)) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 9 T CONST)) (-2985 (($) 14 T CONST)) (-3375 (((-112) $ $) 16)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1144 |#1|) (-13 (-319 |#1| (-942)) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| (-942) (-130)) (-15 -4081 ($ $ (-942) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018)) (T -1144)) -((-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-942)) (-4 *2 (-130)) (-5 *1 (-1144 *3)) (-4 *3 (-542)) (-4 *3 (-1018))))) -(-13 (-319 |#1| #1=(-942)) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| #1# (-130)) (-15 -4081 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) -((-3891 (((-1146) (-1142) $) 25)) (-3901 (($) 29)) (-3893 (((-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) (-1142) $) 22)) (-3895 (((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) $) 41) (((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) 42) (((-1230) (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) 43)) (-3903 (((-1230) (-1142)) 58)) (-3894 (((-1230) (-1142) $) 55) (((-1230) (-1142)) 56) (((-1230)) 57)) (-3899 (((-1230) (-1142)) 37)) (-3897 (((-1142)) 36)) (-3911 (($) 34)) (-3910 (((-429) (-1142) (-429) (-1142) $) 45) (((-429) (-618 (-1142)) (-429) (-1142) $) 49) (((-429) (-1142) (-429)) 46) (((-429) (-1142) (-429) (-1142)) 50)) (-3898 (((-1142)) 35)) (-4300 (((-835) $) 28)) (-3900 (((-1230)) 30) (((-1230) (-1142)) 33)) (-3892 (((-618 (-1142)) (-1142) $) 24)) (-3896 (((-1230) (-1142) (-618 (-1142)) $) 38) (((-1230) (-1142) (-618 (-1142))) 39) (((-1230) (-618 (-1142))) 40))) -(((-1145) (-13 (-593 (-835)) (-10 -8 (-15 -3901 ($)) (-15 -3900 ((-1230))) (-15 -3900 ((-1230) (-1142))) (-15 -3910 ((-429) (-1142) (-429) (-1142) $)) (-15 -3910 ((-429) (-618 (-1142)) (-429) (-1142) $)) (-15 -3910 ((-429) (-1142) (-429))) (-15 -3910 ((-429) (-1142) (-429) (-1142))) (-15 -3899 ((-1230) (-1142))) (-15 -3898 ((-1142))) (-15 -3897 ((-1142))) (-15 -3896 ((-1230) (-1142) (-618 (-1142)) $)) (-15 -3896 ((-1230) (-1142) (-618 (-1142)))) (-15 -3896 ((-1230) (-618 (-1142)))) (-15 -3895 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $)) (-15 -3895 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))) (-15 -3895 ((-1230) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))) (-15 -3894 ((-1230) (-1142) $)) (-15 -3894 ((-1230) (-1142))) (-15 -3894 ((-1230))) (-15 -3903 ((-1230) (-1142))) (-15 -3911 ($)) (-15 -3893 ((-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-1142) $)) (-15 -3892 ((-618 (-1142)) (-1142) $)) (-15 -3891 ((-1146) (-1142) $))))) (T -1145)) -((-3901 (*1 *1) (-5 *1 (-1145))) (-3900 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3910 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-3910 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-429)) (-5 *3 (-618 (-1142))) (-5 *4 (-1142)) (-5 *1 (-1145)))) (-3910 (*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-3910 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3898 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))) (-3897 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))) (-3896 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3895 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3894 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3894 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3911 (*1 *1) (-5 *1 (-1145))) (-3893 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *1 (-1145)))) (-3892 (*1 *2 *3 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1145)) (-5 *3 (-1142)))) (-3891 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1146)) (-5 *1 (-1145))))) -(-13 (-593 (-835)) (-10 -8 (-15 -3901 ($)) (-15 -3900 ((-1230))) (-15 -3900 ((-1230) (-1142))) (-15 -3910 ((-429) (-1142) (-429) (-1142) $)) (-15 -3910 ((-429) (-618 (-1142)) (-429) (-1142) $)) (-15 -3910 ((-429) (-1142) (-429))) (-15 -3910 ((-429) (-1142) (-429) (-1142))) (-15 -3899 ((-1230) (-1142))) (-15 -3898 ((-1142))) (-15 -3897 ((-1142))) (-15 -3896 ((-1230) (-1142) (-618 (-1142)) $)) (-15 -3896 ((-1230) (-1142) (-618 (-1142)))) (-15 -3896 ((-1230) (-618 (-1142)))) (-15 -3895 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $)) (-15 -3895 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))) (-15 -3895 ((-1230) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))) (-15 -3894 ((-1230) (-1142) $)) (-15 -3894 ((-1230) (-1142))) (-15 -3894 ((-1230))) (-15 -3903 ((-1230) (-1142))) (-15 -3911 ($)) (-15 -3893 ((-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-1142) $)) (-15 -3892 ((-618 (-1142)) (-1142) $)) (-15 -3891 ((-1146) (-1142) $)))) -((-3905 (((-618 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) $) 59)) (-3907 (((-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))) (-427) $) 43)) (-3902 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429))))) 17)) (-3903 (((-1230) $) 67)) (-3908 (((-618 (-1142)) $) 22)) (-3904 (((-1069) $) 55)) (-3909 (((-429) (-1142) $) 27)) (-3906 (((-618 (-1142)) $) 30)) (-3911 (($) 19)) (-3910 (((-429) (-618 (-1142)) (-429) $) 25) (((-429) (-1142) (-429) $) 24)) (-4300 (((-835) $) 9) (((-1151 (-1142) (-429)) $) 13))) -(((-1146) (-13 (-593 (-835)) (-10 -8 (-15 -4300 ((-1151 (-1142) (-429)) $)) (-15 -3911 ($)) (-15 -3910 ((-429) (-618 (-1142)) (-429) $)) (-15 -3910 ((-429) (-1142) (-429) $)) (-15 -3909 ((-429) (-1142) $)) (-15 -3908 ((-618 (-1142)) $)) (-15 -3907 ((-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))) (-427) $)) (-15 -3906 ((-618 (-1142)) $)) (-15 -3905 ((-618 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) $)) (-15 -3904 ((-1069) $)) (-15 -3903 ((-1230) $)) (-15 -3902 ($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429))))))))) (T -1146)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-1151 (-1142) (-429))) (-5 *1 (-1146)))) (-3911 (*1 *1) (-5 *1 (-1146))) (-3910 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-618 (-1142))) (-5 *1 (-1146)))) (-3910 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1146)))) (-3909 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-429)) (-5 *1 (-1146)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1146)))) (-3907 (*1 *2 *3 *1) (-12 (-5 *3 (-427)) (-5 *2 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) (-5 *1 (-1146)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1146)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))))) (-5 *1 (-1146)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-1146)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1146)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429))))) (-5 *1 (-1146))))) -(-13 (-593 (-835)) (-10 -8 (-15 -4300 ((-1151 (-1142) (-429)) $)) (-15 -3911 ($)) (-15 -3910 ((-429) (-618 (-1142)) (-429) $)) (-15 -3910 ((-429) (-1142) (-429) $)) (-15 -3909 ((-429) (-1142) $)) (-15 -3908 ((-618 (-1142)) $)) (-15 -3907 ((-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))) (-427) $)) (-15 -3906 ((-618 (-1142)) $)) (-15 -3905 ((-618 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) $)) (-15 -3904 ((-1069) $)) (-15 -3903 ((-1230) $)) (-15 -3902 ($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429)))))))) -((-2887 (((-112) $ $) NIL)) (-3916 (((-112) $) 48)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3915 (((-3 (-535) (-219) (-1142) (-1124) $) $) 56)) (-3914 (((-618 $) $) 61)) (-4313 (((-1069) $) 30) (($ (-1069)) 31)) (-3913 (((-112) $) 58)) (-4300 (((-835) $) 29) (($ (-535)) 32) (((-535) $) 34) (($ (-219)) 35) (((-219) $) 37) (($ (-1142)) 38) (((-1142) $) 40) (($ (-1124)) 41) (((-1124) $) 43)) (-3912 (((-112) $ (|[\|\|]| (-535))) 13) (((-112) $ (|[\|\|]| (-219))) 17) (((-112) $ (|[\|\|]| (-1142))) 25) (((-112) $ (|[\|\|]| (-1124))) 21)) (-3917 (($ (-1142) (-618 $)) 45) (($ $ (-618 $)) 46)) (-3918 (((-535) $) 33) (((-219) $) 36) (((-1142) $) 39) (((-1124) $) 42)) (-3375 (((-112) $ $) 8))) -(((-1147) (-13 (-1220) (-1067) (-10 -8 (-15 -4313 ((-1069) $)) (-15 -4313 ($ (-1069))) (-15 -4300 ($ (-535))) (-15 -4300 ((-535) $)) (-15 -3918 ((-535) $)) (-15 -4300 ($ (-219))) (-15 -4300 ((-219) $)) (-15 -3918 ((-219) $)) (-15 -4300 ($ (-1142))) (-15 -4300 ((-1142) $)) (-15 -3918 ((-1142) $)) (-15 -4300 ($ (-1124))) (-15 -4300 ((-1124) $)) (-15 -3918 ((-1124) $)) (-15 -3917 ($ (-1142) (-618 $))) (-15 -3917 ($ $ (-618 $))) (-15 -3916 ((-112) $)) (-15 -3915 ((-3 (-535) (-219) (-1142) (-1124) $) $)) (-15 -3914 ((-618 $) $)) (-15 -3913 ((-112) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-535)))) (-15 -3912 ((-112) $ (|[\|\|]| (-219)))) (-15 -3912 ((-112) $ (|[\|\|]| (-1142)))) (-15 -3912 ((-112) $ (|[\|\|]| (-1124))))))) (T -1147)) -((-4313 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-1147)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1069)) (-5 *1 (-1147)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-3917 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-1147))) (-5 *1 (-1147)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1147)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-3 (-535) (-219) (-1142) (-1124) (-1147))) (-5 *1 (-1147)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1147)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)) (-5 *1 (-1147))))) -(-13 (-1220) (-1067) (-10 -8 (-15 -4313 ((-1069) $)) (-15 -4313 ($ (-1069))) (-15 -4300 ($ (-535))) (-15 -4300 ((-535) $)) (-15 -3918 ((-535) $)) (-15 -4300 ($ (-219))) (-15 -4300 ((-219) $)) (-15 -3918 ((-219) $)) (-15 -4300 ($ (-1142))) (-15 -4300 ((-1142) $)) (-15 -3918 ((-1142) $)) (-15 -4300 ($ (-1124))) (-15 -4300 ((-1124) $)) (-15 -3918 ((-1124) $)) (-15 -3917 ($ (-1142) (-618 $))) (-15 -3917 ($ $ (-618 $))) (-15 -3916 ((-112) $)) (-15 -3915 ((-3 (-535) (-219) (-1142) (-1124) $) $)) (-15 -3914 ((-618 $) $)) (-15 -3913 ((-112) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-535)))) (-15 -3912 ((-112) $ (|[\|\|]| (-219)))) (-15 -3912 ((-112) $ (|[\|\|]| (-1142)))) (-15 -3912 ((-112) $ (|[\|\|]| (-1124)))))) -((-3920 (((-618 (-618 (-917 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142))) 57)) (-3919 (((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|)))) 69) (((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|))) 65) (((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142)) 70) (((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142)) 64) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|))))) 93) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|)))) 92) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142))) 94) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))) (-618 (-1142))) 91))) -(((-1148 |#1|) (-10 -7 (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))))) (-15 -3920 ((-618 (-618 (-917 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142))))) (-542)) (T -1148)) -((-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-917 *5)))) (-5 *1 (-1148 *5)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *4))))) (-5 *1 (-1148 *4)) (-5 *3 (-286 (-400 (-917 *4)))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *4))))) (-5 *1 (-1148 *4)) (-5 *3 (-400 (-917 *4))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *5))))) (-5 *1 (-1148 *5)) (-5 *3 (-286 (-400 (-917 *5)))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *5))))) (-5 *1 (-1148 *5)) (-5 *3 (-400 (-917 *5))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-1148 *4)) (-5 *3 (-618 (-286 (-400 (-917 *4))))))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-618 (-400 (-917 *4)))) (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-1148 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-1148 *5)) (-5 *3 (-618 (-286 (-400 (-917 *5))))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-1148 *5))))) -(-10 -7 (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))))) (-15 -3920 ((-618 (-618 (-917 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142))))) -((-3921 (((-1124)) 7)) (-3923 (((-1124)) 9)) (-3924 (((-1230) (-1124)) 11)) (-3922 (((-1124)) 8))) -(((-1149) (-10 -7 (-15 -3921 ((-1124))) (-15 -3922 ((-1124))) (-15 -3923 ((-1124))) (-15 -3924 ((-1230) (-1124))))) (T -1149)) -((-3924 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1149)))) (-3923 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))) (-3922 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))) (-3921 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149))))) -(-10 -7 (-15 -3921 ((-1124))) (-15 -3922 ((-1124))) (-15 -3923 ((-1124))) (-15 -3924 ((-1230) (-1124)))) -((-3928 (((-618 (-618 |#1|)) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|)))) 38)) (-3931 (((-618 (-618 (-618 |#1|))) (-618 (-618 |#1|))) 24)) (-3932 (((-1152 (-618 |#1|)) (-618 |#1|)) 34)) (-3934 (((-618 (-618 |#1|)) (-618 |#1|)) 30)) (-3937 (((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 (-618 (-618 |#1|)))) 37)) (-3936 (((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 |#1|) (-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|)))) 36)) (-3933 (((-618 (-618 |#1|)) (-618 (-618 |#1|))) 28)) (-3935 (((-618 |#1|) (-618 |#1|)) 31)) (-3927 (((-618 (-618 (-618 |#1|))) (-618 |#1|) (-618 (-618 (-618 |#1|)))) 18)) (-3926 (((-618 (-618 (-618 |#1|))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 (-618 |#1|)))) 16)) (-3925 (((-2 (|:| |fs| (-112)) (|:| |sd| (-618 |#1|)) (|:| |td| (-618 (-618 |#1|)))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 |#1|))) 14)) (-3929 (((-618 (-618 |#1|)) (-618 (-618 (-618 |#1|)))) 39)) (-3930 (((-618 (-618 |#1|)) (-1152 (-618 |#1|))) 41))) -(((-1150 |#1|) (-10 -7 (-15 -3925 ((-2 (|:| |fs| (-112)) (|:| |sd| (-618 |#1|)) (|:| |td| (-618 (-618 |#1|)))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 |#1|)))) (-15 -3926 ((-618 (-618 (-618 |#1|))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 (-618 |#1|))))) (-15 -3927 ((-618 (-618 (-618 |#1|))) (-618 |#1|) (-618 (-618 (-618 |#1|))))) (-15 -3928 ((-618 (-618 |#1|)) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))))) (-15 -3929 ((-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))))) (-15 -3930 ((-618 (-618 |#1|)) (-1152 (-618 |#1|)))) (-15 -3931 ((-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)))) (-15 -3932 ((-1152 (-618 |#1|)) (-618 |#1|))) (-15 -3933 ((-618 (-618 |#1|)) (-618 (-618 |#1|)))) (-15 -3934 ((-618 (-618 |#1|)) (-618 |#1|))) (-15 -3935 ((-618 |#1|) (-618 |#1|))) (-15 -3936 ((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 |#1|) (-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))))) (-15 -3937 ((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 (-618 (-618 |#1|)))))) (-823)) (T -1150)) -((-3937 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-2 (|:| |f1| (-618 *4)) (|:| |f2| (-618 (-618 (-618 *4)))) (|:| |f3| (-618 (-618 *4))) (|:| |f4| (-618 (-618 (-618 *4)))))) (-5 *1 (-1150 *4)) (-5 *3 (-618 (-618 (-618 *4)))))) (-3936 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-823)) (-5 *3 (-618 *6)) (-5 *5 (-618 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-618 *5)) (|:| |f3| *5) (|:| |f4| (-618 *5)))) (-5 *1 (-1150 *6)) (-5 *4 (-618 *5)))) (-3935 (*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-1150 *3)))) (-3934 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-618 (-618 *4))) (-5 *1 (-1150 *4)) (-5 *3 (-618 *4)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-823)) (-5 *1 (-1150 *3)))) (-3932 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-1152 (-618 *4))) (-5 *1 (-1150 *4)) (-5 *3 (-618 *4)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-618 (-618 (-618 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-618 (-618 *4))))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1152 (-618 *4))) (-4 *4 (-823)) (-5 *2 (-618 (-618 *4))) (-5 *1 (-1150 *4)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-618 *4)))) (-5 *2 (-618 (-618 *4))) (-5 *1 (-1150 *4)) (-4 *4 (-823)))) (-3928 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-618 (-618 *4)))) (-5 *2 (-618 (-618 *4))) (-4 *4 (-823)) (-5 *1 (-1150 *4)))) (-3927 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-618 (-618 *4)))) (-5 *3 (-618 *4)) (-4 *4 (-823)) (-5 *1 (-1150 *4)))) (-3926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-618 (-618 (-618 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-618 *5)) (-4 *5 (-823)) (-5 *1 (-1150 *5)))) (-3925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-823)) (-5 *4 (-618 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-618 *4)))) (-5 *1 (-1150 *6)) (-5 *5 (-618 *4))))) -(-10 -7 (-15 -3925 ((-2 (|:| |fs| (-112)) (|:| |sd| (-618 |#1|)) (|:| |td| (-618 (-618 |#1|)))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 |#1|)))) (-15 -3926 ((-618 (-618 (-618 |#1|))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 (-618 |#1|))))) (-15 -3927 ((-618 (-618 (-618 |#1|))) (-618 |#1|) (-618 (-618 (-618 |#1|))))) (-15 -3928 ((-618 (-618 |#1|)) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))))) (-15 -3929 ((-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))))) (-15 -3930 ((-618 (-618 |#1|)) (-1152 (-618 |#1|)))) (-15 -3931 ((-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)))) (-15 -3932 ((-1152 (-618 |#1|)) (-618 |#1|))) (-15 -3933 ((-618 (-618 |#1|)) (-618 (-618 |#1|)))) (-15 -3934 ((-618 (-618 |#1|)) (-618 |#1|))) (-15 -3935 ((-618 |#1|) (-618 |#1|))) (-15 -3936 ((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 |#1|) (-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))))) (-15 -3937 ((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 (-618 (-618 |#1|)))))) -((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) NIL)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1151 |#1| |#2|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1067) (-1067)) (T -1151)) -NIL -(-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) -((-3938 (($ (-618 (-618 |#1|))) 10)) (-3939 (((-618 (-618 |#1|)) $) 11)) (-4300 (((-835) $) 26))) -(((-1152 |#1|) (-10 -8 (-15 -3938 ($ (-618 (-618 |#1|)))) (-15 -3939 ((-618 (-618 |#1|)) $)) (-15 -4300 ((-835) $))) (-1067)) (T -1152)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 *3))) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-1152 *3))))) -(-10 -8 (-15 -3938 ($ (-618 (-618 |#1|)))) (-15 -3939 ((-618 (-618 |#1|)) $)) (-15 -4300 ((-835) $))) -((-3940 ((|#1| (-618 |#1|)) 32)) (-3942 ((|#1| |#1| (-535)) 18)) (-3941 (((-1136 |#1|) |#1| (-890)) 15))) -(((-1153 |#1|) (-10 -7 (-15 -3940 (|#1| (-618 |#1|))) (-15 -3941 ((-1136 |#1|) |#1| (-890))) (-15 -3942 (|#1| |#1| (-535)))) (-356)) (T -1153)) -((-3942 (*1 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1136 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-356)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-1153 *2)) (-4 *2 (-356))))) -(-10 -7 (-15 -3940 (|#1| (-618 |#1|))) (-15 -3941 ((-1136 |#1|) |#1| (-890))) (-15 -3942 (|#1| |#1| (-535)))) -((-3943 (($) 10) (($ (-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)))) 14)) (-3747 (($ (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) 39) (((-618 |#3|) $) 41)) (-2067 (($ (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4301 (($ (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1326 (((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 54)) (-3953 (($ (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 16)) (-2301 (((-618 |#2|) $) 19)) (-2302 (((-112) |#2| $) 59)) (-1395 (((-3 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) "failed") (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) 58)) (-1327 (((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 63)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2303 (((-618 |#3|) $) 43)) (-4142 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) NIL) (((-747) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) NIL) (((-747) |#3| $) NIL) (((-747) (-1 (-112) |#3|) $) 68)) (-4300 (((-835) $) 27)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3375 (((-112) $ $) 49))) -(((-1154 |#1| |#2| |#3|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3943 (|#1| (-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))))) (-15 -3943 (|#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#3|) |#1|)) (-15 -2063 ((-618 |#3|) |#1|)) (-15 -2064 ((-747) |#3| |#1|)) (-15 -4142 (|#3| |#1| |#2| |#3|)) (-15 -4142 (|#3| |#1| |#2|)) (-15 -2303 ((-618 |#3|) |#1|)) (-15 -2302 ((-112) |#2| |#1|)) (-15 -2301 ((-618 |#2|) |#1|)) (-15 -3747 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3747 (|#1| (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -3747 (|#1| (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -1395 ((-3 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) "failed") (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -1326 ((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -3953 (|#1| (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -1327 ((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -2064 ((-747) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -2063 ((-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2064 ((-747) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2065 ((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2066 ((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2067 (|#1| (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -4301 (|#1| (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|))) (-1155 |#2| |#3|) (-1067) (-1067)) (T -1154)) -NIL -(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3943 (|#1| (-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))))) (-15 -3943 (|#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#3|) |#1|)) (-15 -2063 ((-618 |#3|) |#1|)) (-15 -2064 ((-747) |#3| |#1|)) (-15 -4142 (|#3| |#1| |#2| |#3|)) (-15 -4142 (|#3| |#1| |#2|)) (-15 -2303 ((-618 |#3|) |#1|)) (-15 -2302 ((-112) |#2| |#1|)) (-15 -2301 ((-618 |#2|) |#1|)) (-15 -3747 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3747 (|#1| (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -3747 (|#1| (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -1395 ((-3 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) "failed") (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -1326 ((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -3953 (|#1| (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -1327 ((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -2064 ((-747) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -2063 ((-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2064 ((-747) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2065 ((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2066 ((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2067 (|#1| (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -4301 (|#1| (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|))) -((-2887 (((-112) $ $) 19 (-3874 (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3943 (($) 72) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 71)) (-2296 (((-1230) $ |#1| |#1|) 99 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#2| $ |#1| |#2|) 73)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 55 (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) 61)) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) 62)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 54 (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 56 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 52 (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) 88)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 30 (|has| $ (-6 -4336))) (((-618 |#2|) $) 79 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2298 ((|#1| $) 96 (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 29 (|has| $ (-6 -4336))) (((-618 |#2|) $) 80 (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-2299 ((|#1| $) 95 (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 34 (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (-3874 (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-2735 (((-618 |#1|) $) 63)) (-2306 (((-112) |#1| $) 64)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 39)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 40)) (-2301 (((-618 |#1|) $) 93)) (-2302 (((-112) |#1| $) 92)) (-3577 (((-1086) $) 21 (-3874 (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-4143 ((|#2| $) 97 (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 51)) (-2297 (($ $ |#2|) 98 (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 41)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 32 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) 26 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 25 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 24 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 23 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) 91)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1518 (($) 49) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 48)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-747) |#2| $) 81 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4336)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 50)) (-4300 (((-835) $) 18 (-3874 (|has| |#2| (-593 (-835))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 42)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 33 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (-3874 (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-1155 |#1| |#2|) (-138) (-1067) (-1067)) (T -1155)) -((-4130 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-3943 (*1 *1) (-12 (-4 *1 (-1155 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 *3) (|:| -2184 *4)))) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *1 (-1155 *3 *4)))) (-4301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1155 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(-13 (-590 |t#1| |t#2|) (-584 |t#1| |t#2|) (-10 -8 (-15 -4130 (|t#2| $ |t#1| |t#2|)) (-15 -3943 ($)) (-15 -3943 ($ (-618 (-2 (|:| -4203 |t#1|) (|:| -2184 |t#2|))))) (-15 -4301 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-106 #1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((-101) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))) ((-593 (-835)) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-1067)) (|has| |#2| (-593 (-835)))) ((-149 #1#) . T) ((-594 (-524)) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))) ((-223 #1#) . T) ((-229 #1#) . T) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 #1#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-481 #1#) . T) ((-481 |#2|) . T) ((-584 |#1| |#2|) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-590 |#1| |#2|) . T) ((-1067) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))) ((-1178) . T)) -((-3949 (((-112)) 24)) (-3946 (((-1230) (-1124)) 26)) (-3950 (((-112)) 36)) (-3947 (((-1230)) 34)) (-3945 (((-1230) (-1124) (-1124)) 25)) (-3951 (((-112)) 37)) (-3953 (((-1230) |#1| |#2|) 44)) (-3944 (((-1230)) 20)) (-3952 (((-3 |#2| "failed") |#1|) 42)) (-3948 (((-1230)) 35))) -(((-1156 |#1| |#2|) (-10 -7 (-15 -3944 ((-1230))) (-15 -3945 ((-1230) (-1124) (-1124))) (-15 -3946 ((-1230) (-1124))) (-15 -3947 ((-1230))) (-15 -3948 ((-1230))) (-15 -3949 ((-112))) (-15 -3950 ((-112))) (-15 -3951 ((-112))) (-15 -3952 ((-3 |#2| "failed") |#1|)) (-15 -3953 ((-1230) |#1| |#2|))) (-1067) (-1067)) (T -1156)) -((-3953 (*1 *2 *3 *4) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3952 (*1 *2 *3) (|partial| -12 (-4 *2 (-1067)) (-5 *1 (-1156 *3 *2)) (-4 *3 (-1067)))) (-3951 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3950 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3949 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3948 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3947 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)))) (-3945 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)))) (-3944 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(-10 -7 (-15 -3944 ((-1230))) (-15 -3945 ((-1230) (-1124) (-1124))) (-15 -3946 ((-1230) (-1124))) (-15 -3947 ((-1230))) (-15 -3948 ((-1230))) (-15 -3949 ((-112))) (-15 -3950 ((-112))) (-15 -3951 ((-112))) (-15 -3952 ((-3 |#2| "failed") |#1|)) (-15 -3953 ((-1230) |#1| |#2|))) -((-3955 (((-1124) (-1124)) 18)) (-3954 (((-51) (-1124)) 21))) -(((-1157) (-10 -7 (-15 -3954 ((-51) (-1124))) (-15 -3955 ((-1124) (-1124))))) (T -1157)) -((-3955 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1157)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-1157))))) -(-10 -7 (-15 -3954 ((-51) (-1124))) (-15 -3955 ((-1124) (-1124)))) -((-2887 (((-112) $ $) NIL)) (-3961 (((-618 (-1124)) $) 34)) (-3957 (((-618 (-1124)) $ (-618 (-1124))) 37)) (-3956 (((-618 (-1124)) $ (-618 (-1124))) 36)) (-3958 (((-618 (-1124)) $ (-618 (-1124))) 38)) (-3959 (((-618 (-1124)) $) 33)) (-3960 (($) 22)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3962 (((-618 (-1124)) $) 35)) (-3963 (((-1230) $ (-535)) 29) (((-1230) $) 30)) (-4313 (($ (-835) (-535)) 26) (($ (-835) (-535) (-835)) NIL)) (-4300 (((-835) $) 40) (($ (-835)) 24)) (-3375 (((-112) $ $) NIL))) -(((-1158) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-835))) (-15 -4313 ($ (-835) (-535))) (-15 -4313 ($ (-835) (-535) (-835))) (-15 -3963 ((-1230) $ (-535))) (-15 -3963 ((-1230) $)) (-15 -3962 ((-618 (-1124)) $)) (-15 -3961 ((-618 (-1124)) $)) (-15 -3960 ($)) (-15 -3959 ((-618 (-1124)) $)) (-15 -3958 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3957 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3956 ((-618 (-1124)) $ (-618 (-1124))))))) (T -1158)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-1158)))) (-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-1158)))) (-4313 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-1158)))) (-3963 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1158)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1158)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3960 (*1 *1) (-5 *1 (-1158))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3958 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3957 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3956 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158))))) -(-13 (-1067) (-10 -8 (-15 -4300 ($ (-835))) (-15 -4313 ($ (-835) (-535))) (-15 -4313 ($ (-835) (-535) (-835))) (-15 -3963 ((-1230) $ (-535))) (-15 -3963 ((-1230) $)) (-15 -3962 ((-618 (-1124)) $)) (-15 -3961 ((-618 (-1124)) $)) (-15 -3960 ($)) (-15 -3959 ((-618 (-1124)) $)) (-15 -3958 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3957 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3956 ((-618 (-1124)) $ (-618 (-1124)))))) -((-4300 (((-1158) |#1|) 11))) -(((-1159 |#1|) (-10 -7 (-15 -4300 ((-1158) |#1|))) (-1067)) (T -1159)) -((-4300 (*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-1159 *3)) (-4 *3 (-1067))))) -(-10 -7 (-15 -4300 ((-1158) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3968 (((-1124) $ (-1124)) 17) (((-1124) $) 16)) (-1808 (((-1124) $ (-1124)) 15)) (-1812 (($ $ (-1124)) NIL)) (-3966 (((-3 (-1124) "failed") $) 11)) (-3967 (((-1124) $) 8)) (-3965 (((-3 (-1124) "failed") $) 12)) (-1809 (((-1124) $) 9)) (-1813 (($ (-381)) NIL) (($ (-381) (-1124)) NIL)) (-3888 (((-381) $) NIL)) (-3576 (((-1124) $) NIL)) (-1810 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3964 (((-112) $) 18)) (-4300 (((-835) $) NIL)) (-1811 (($ $) NIL)) (-3375 (((-112) $ $) NIL))) -(((-1160) (-13 (-358 (-381) (-1124)) (-10 -8 (-15 -3968 ((-1124) $ (-1124))) (-15 -3968 ((-1124) $)) (-15 -3967 ((-1124) $)) (-15 -3966 ((-3 (-1124) "failed") $)) (-15 -3965 ((-3 (-1124) "failed") $)) (-15 -3964 ((-112) $))))) (T -1160)) -((-3968 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3966 (*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3965 (*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1160))))) -(-13 (-358 (-381) (-1124)) (-10 -8 (-15 -3968 ((-1124) $ (-1124))) (-15 -3968 ((-1124) $)) (-15 -3967 ((-1124) $)) (-15 -3966 ((-3 (-1124) "failed") $)) (-15 -3965 ((-3 (-1124) "failed") $)) (-15 -3964 ((-112) $)))) -((-3969 (((-3 (-535) "failed") |#1|) 19)) (-3970 (((-3 (-535) "failed") |#1|) 14)) (-3971 (((-535) (-1124)) 28))) -(((-1161 |#1|) (-10 -7 (-15 -3969 ((-3 (-535) "failed") |#1|)) (-15 -3970 ((-3 (-535) "failed") |#1|)) (-15 -3971 ((-535) (-1124)))) (-1018)) (T -1161)) -((-3971 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-535)) (-5 *1 (-1161 *4)) (-4 *4 (-1018)))) (-3970 (*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))) (-3969 (*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-1161 *3)) (-4 *3 (-1018))))) -(-10 -7 (-15 -3969 ((-3 (-535) "failed") |#1|)) (-15 -3970 ((-3 (-535) "failed") |#1|)) (-15 -3971 ((-535) (-1124)))) -((-3972 (((-1099 (-219))) 9))) -(((-1162) (-10 -7 (-15 -3972 ((-1099 (-219)))))) (T -1162)) -((-3972 (*1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1162))))) -(-10 -7 (-15 -3972 ((-1099 (-219))))) -((-3973 (($) 11)) (-3835 (($ $) 35)) (-3833 (($ $) 33)) (-3821 (($ $) 25)) (-3837 (($ $) 17)) (-3838 (($ $) 15)) (-3836 (($ $) 19)) (-3824 (($ $) 30)) (-3834 (($ $) 34)) (-3822 (($ $) 29))) -(((-1163 |#1|) (-10 -8 (-15 -3973 (|#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3822 (|#1| |#1|))) (-1164)) (T -1163)) -NIL -(-10 -8 (-15 -3973 (|#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3822 (|#1| |#1|))) -((-3829 (($ $) 26)) (-3985 (($ $) 11)) (-3827 (($ $) 27)) (-3984 (($ $) 10)) (-3831 (($ $) 28)) (-3983 (($ $) 9)) (-3973 (($) 16)) (-4285 (($ $) 19)) (-4286 (($ $) 18)) (-3832 (($ $) 29)) (-3982 (($ $) 8)) (-3830 (($ $) 30)) (-3981 (($ $) 7)) (-3828 (($ $) 31)) (-3980 (($ $) 6)) (-3835 (($ $) 20)) (-3823 (($ $) 32)) (-3833 (($ $) 21)) (-3821 (($ $) 33)) (-3837 (($ $) 22)) (-3825 (($ $) 34)) (-3838 (($ $) 23)) (-3826 (($ $) 35)) (-3836 (($ $) 24)) (-3824 (($ $) 36)) (-3834 (($ $) 25)) (-3822 (($ $) 37)) (** (($ $ $) 17))) -(((-1164) (-138)) (T -1164)) -((-3973 (*1 *1) (-4 *1 (-1164)))) -(-13 (-1167) (-94) (-484) (-35) (-277) (-10 -8 (-15 -3973 ($)))) -(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-1167) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 17)) (-3978 (($ |#1| (-618 $)) 23) (($ (-618 |#1|)) 27) (($ |#1|) 25)) (-1264 (((-112) $ (-747)) 48)) (-3346 ((|#1| $ |#1|) 14 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 13 (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-2063 (((-618 |#1|) $) 52 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 43)) (-3348 (((-112) $ $) 33 (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) 41)) (-2502 (((-618 |#1|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 22)) (-4062 (((-112) $ (-747)) 40)) (-3351 (((-618 |#1|) $) 37)) (-3864 (((-112) $) 36)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 74)) (-3745 (((-112) $) 9)) (-3911 (($) 10)) (-4142 ((|#1| $ #1#) NIL)) (-3350 (((-535) $ $) 32)) (-3974 (((-618 $) $) 59)) (-3975 (((-112) $ $) 77)) (-3976 (((-618 $) $) 72)) (-3977 (($ $) 73)) (-3979 (((-112) $) 56)) (-2064 (((-747) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4336))) (((-747) |#1| $) 16 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 58)) (-4300 (((-835) $) 61 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 12)) (-3349 (((-112) $ $) 29 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 28 (|has| |#1| (-1067)))) (-4299 (((-747) $) 39 (|has| $ (-6 -4336))))) -(((-1165 |#1|) (-13 (-981 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -3978 ($ |#1| (-618 $))) (-15 -3978 ($ (-618 |#1|))) (-15 -3978 ($ |#1|)) (-15 -3979 ((-112) $)) (-15 -3977 ($ $)) (-15 -3976 ((-618 $) $)) (-15 -3975 ((-112) $ $)) (-15 -3974 ((-618 $) $)))) (-1067)) (T -1165)) -((-3979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))) (-3978 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-1165 *2))) (-5 *1 (-1165 *2)) (-4 *2 (-1067)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-1165 *3)))) (-3978 (*1 *1 *2) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1067)))) (-3977 (*1 *1 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1067)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-618 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))) (-3975 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-618 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1067))))) -(-13 (-981 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -3978 ($ |#1| (-618 $))) (-15 -3978 ($ (-618 |#1|))) (-15 -3978 ($ |#1|)) (-15 -3979 ((-112) $)) (-15 -3977 ($ $)) (-15 -3976 ((-618 $) $)) (-15 -3975 ((-112) $ $)) (-15 -3974 ((-618 $) $)))) -((-3985 (($ $) 15)) (-3983 (($ $) 12)) (-3982 (($ $) 10)) (-3981 (($ $) 17))) -(((-1166 |#1|) (-10 -8 (-15 -3981 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3985 (|#1| |#1|))) (-1167)) (T -1166)) -NIL -(-10 -8 (-15 -3981 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3985 (|#1| |#1|))) -((-3985 (($ $) 11)) (-3984 (($ $) 10)) (-3983 (($ $) 9)) (-3982 (($ $) 8)) (-3981 (($ $) 7)) (-3980 (($ $) 6))) -(((-1167) (-138)) (T -1167)) -((-3985 (*1 *1 *1) (-4 *1 (-1167))) (-3984 (*1 *1 *1) (-4 *1 (-1167))) (-3983 (*1 *1 *1) (-4 *1 (-1167))) (-3982 (*1 *1 *1) (-4 *1 (-1167))) (-3981 (*1 *1 *1) (-4 *1 (-1167))) (-3980 (*1 *1 *1) (-4 *1 (-1167)))) -(-13 (-10 -8 (-15 -3980 ($ $)) (-15 -3981 ($ $)) (-15 -3982 ($ $)) (-15 -3983 ($ $)) (-15 -3984 ($ $)) (-15 -3985 ($ $)))) -((-3988 ((|#2| |#2|) 88)) (-3991 (((-112) |#2|) 26)) (-3989 ((|#2| |#2|) 30)) (-3990 ((|#2| |#2|) 32)) (-3986 ((|#2| |#2| (-1142)) 83) ((|#2| |#2|) 84)) (-3992 (((-166 |#2|) |#2|) 28)) (-3987 ((|#2| |#2| (-1142)) 85) ((|#2| |#2|) 86))) -(((-1168 |#1| |#2|) (-10 -7 (-15 -3986 (|#2| |#2|)) (-15 -3986 (|#2| |#2| (-1142))) (-15 -3987 (|#2| |#2|)) (-15 -3987 (|#2| |#2| (-1142))) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 ((-112) |#2|)) (-15 -3992 ((-166 |#2|) |#2|))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -1168)) -((-3992 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-166 *3)) (-5 *1 (-1168 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-3991 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-112)) (-5 *1 (-1168 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-3987 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-3986 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))) -(-10 -7 (-15 -3986 (|#2| |#2|)) (-15 -3986 (|#2| |#2| (-1142))) (-15 -3987 (|#2| |#2|)) (-15 -3987 (|#2| |#2| (-1142))) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 ((-112) |#2|)) (-15 -3992 ((-166 |#2|) |#2|))) -((-3993 ((|#4| |#4| |#1|) 27)) (-3994 ((|#4| |#4| |#1|) 28))) -(((-1169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 (|#4| |#4| |#1|)) (-15 -3994 (|#4| |#4| |#1|))) (-542) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|)) (T -1169)) -((-3994 (*1 *2 *2 *3) (-12 (-4 *3 (-542)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-3993 (*1 *2 *2 *3) (-12 (-4 *3 (-542)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(-10 -7 (-15 -3993 (|#4| |#4| |#1|)) (-15 -3994 (|#4| |#4| |#1|))) -((-4012 ((|#2| |#2|) 133)) (-4014 ((|#2| |#2|) 130)) (-4011 ((|#2| |#2|) 121)) (-4013 ((|#2| |#2|) 118)) (-4010 ((|#2| |#2|) 126)) (-4009 ((|#2| |#2|) 114)) (-3998 ((|#2| |#2|) 43)) (-3997 ((|#2| |#2|) 94)) (-3995 ((|#2| |#2|) 74)) (-4008 ((|#2| |#2|) 128)) (-4007 ((|#2| |#2|) 116)) (-4020 ((|#2| |#2|) 138)) (-4018 ((|#2| |#2|) 136)) (-4019 ((|#2| |#2|) 137)) (-4017 ((|#2| |#2|) 135)) (-3996 ((|#2| |#2|) 148)) (-4021 ((|#2| |#2|) 30 (-12 (|has| |#2| (-594 (-861 |#1|))) (|has| |#2| (-857 |#1|)) (|has| |#1| (-594 (-861 |#1|))) (|has| |#1| (-857 |#1|))))) (-3999 ((|#2| |#2|) 75)) (-4000 ((|#2| |#2|) 139)) (-4306 ((|#2| |#2|) 140)) (-4006 ((|#2| |#2|) 127)) (-4005 ((|#2| |#2|) 115)) (-4004 ((|#2| |#2|) 134)) (-4016 ((|#2| |#2|) 132)) (-4003 ((|#2| |#2|) 122)) (-4015 ((|#2| |#2|) 120)) (-4002 ((|#2| |#2|) 124)) (-4001 ((|#2| |#2|) 112))) -(((-1170 |#1| |#2|) (-10 -7 (-15 -4306 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (IF (|has| |#1| (-857 |#1|)) (IF (|has| |#1| (-594 (-861 |#1|))) (IF (|has| |#2| (-594 (-861 |#1|))) (IF (|has| |#2| (-857 |#1|)) (-15 -4021 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-823) (-444)) (-13 (-414 |#1|) (-1164))) (T -1170)) -((-4021 (*1 *2 *2) (-12 (-4 *3 (-594 (-861 *3))) (-4 *3 (-857 *3)) (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-594 (-861 *3))) (-4 *2 (-857 *3)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4016 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4011 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4010 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4009 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4306 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164)))))) -(-10 -7 (-15 -4306 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (IF (|has| |#1| (-857 |#1|)) (IF (|has| |#1| (-594 (-861 |#1|))) (IF (|has| |#2| (-594 (-861 |#1|))) (IF (|has| |#2| (-857 |#1|)) (-15 -4021 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1142)) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4157 (((-917 |#1|) $ (-747)) 17) (((-917 |#1|) $ (-747) (-747)) NIL)) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $ (-1142)) NIL) (((-747) $ (-1142) (-747)) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4280 (((-112) $) NIL)) (-3214 (($ $ (-618 (-1142)) (-618 (-521 (-1142)))) NIL) (($ $ (-1142) (-521 (-1142))) NIL) (($ |#1| (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4155 (($ $ (-1142)) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-4022 (($ (-1 $) (-1142) |#1|) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4111 (($ $ (-747)) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (($ $ (-1142) $) NIL) (($ $ (-618 (-1142)) (-618 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL)) (-4153 (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-4290 (((-521 (-1142)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-1142)) NIL) (($ (-917 |#1|)) NIL)) (-4023 ((|#1| $ (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (((-917 |#1|) $ (-747)) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1171 |#1|) (-13 (-717 |#1| (-1142)) (-10 -8 (-15 -4023 ((-917 |#1|) $ (-747))) (-15 -4300 ($ (-1142))) (-15 -4300 ($ (-917 |#1|))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ (-1142) |#1|)) (-15 -4022 ($ (-1 $) (-1142) |#1|))) |%noBranch|))) (-1018)) (T -1171)) -((-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-917 *4)) (-5 *1 (-1171 *4)) (-4 *4 (-1018)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1171 *3)) (-4 *3 (-1018)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-5 *1 (-1171 *3)))) (-4155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *1 (-1171 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)))) (-4022 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1171 *4))) (-5 *3 (-1142)) (-5 *1 (-1171 *4)) (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018))))) -(-13 (-717 |#1| (-1142)) (-10 -8 (-15 -4023 ((-917 |#1|) $ (-747))) (-15 -4300 ($ (-1142))) (-15 -4300 ($ (-917 |#1|))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ (-1142) |#1|)) (-15 -4022 ($ (-1 $) (-1142) |#1|))) |%noBranch|))) -((-4039 (((-112) |#5| $) 60) (((-112) $) 102)) (-4034 ((|#5| |#5| $) 75)) (-4056 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4035 (((-618 |#5|) (-618 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-3491 (((-3 $ "failed") (-618 |#5|)) 126)) (-4141 (((-3 $ "failed") $) 112)) (-4031 ((|#5| |#5| $) 94)) (-4040 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-4029 ((|#5| |#5| $) 98)) (-4185 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-4042 (((-2 (|:| -4204 (-618 |#5|)) (|:| -1813 (-618 |#5|))) $) 55)) (-4041 (((-112) |#5| $) 58) (((-112) $) 103)) (-3514 ((|#4| $) 108)) (-4140 (((-3 |#5| "failed") $) 110)) (-4043 (((-618 |#5|) $) 49)) (-4037 (((-112) |#5| $) 67) (((-112) $) 107)) (-4032 ((|#5| |#5| $) 81)) (-4045 (((-112) $ $) 27)) (-4038 (((-112) |#5| $) 63) (((-112) $) 105)) (-4033 ((|#5| |#5| $) 78)) (-4143 (((-3 |#5| "failed") $) 109)) (-4111 (($ $ |#5|) 127)) (-4290 (((-747) $) 52)) (-3867 (($ (-618 |#5|)) 124)) (-3231 (($ $ |#4|) 122)) (-3233 (($ $ |#4|) 121)) (-4030 (($ $) 120)) (-4300 (((-835) $) NIL) (((-618 |#5|) $) 113)) (-4024 (((-747) $) 130)) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-4036 (((-112) $ (-1 (-112) |#5| (-618 |#5|))) 100)) (-4026 (((-618 |#4|) $) 115)) (-4276 (((-112) |#4| $) 118)) (-3375 (((-112) $ $) 19))) -(((-1172 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4024 ((-747) |#1|)) (-15 -4111 (|#1| |#1| |#5|)) (-15 -4056 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4276 ((-112) |#4| |#1|)) (-15 -4026 ((-618 |#4|) |#1|)) (-15 -4141 ((-3 |#1| "failed") |#1|)) (-15 -4140 ((-3 |#5| "failed") |#1|)) (-15 -4143 ((-3 |#5| "failed") |#1|)) (-15 -4029 (|#5| |#5| |#1|)) (-15 -4030 (|#1| |#1|)) (-15 -4031 (|#5| |#5| |#1|)) (-15 -4032 (|#5| |#5| |#1|)) (-15 -4033 (|#5| |#5| |#1|)) (-15 -4034 (|#5| |#5| |#1|)) (-15 -4035 ((-618 |#5|) (-618 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4185 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4037 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -4039 ((-112) |#1|)) (-15 -4036 ((-112) |#1| (-1 (-112) |#5| (-618 |#5|)))) (-15 -4037 ((-112) |#5| |#1|)) (-15 -4038 ((-112) |#5| |#1|)) (-15 -4039 ((-112) |#5| |#1|)) (-15 -4040 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4041 ((-112) |#1|)) (-15 -4041 ((-112) |#5| |#1|)) (-15 -4042 ((-2 (|:| -4204 (-618 |#5|)) (|:| -1813 (-618 |#5|))) |#1|)) (-15 -4290 ((-747) |#1|)) (-15 -4043 ((-618 |#5|) |#1|)) (-15 -4044 ((-3 (-2 (|:| |bas| |#1|) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4044 ((-3 (-2 (|:| |bas| |#1|) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4045 ((-112) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3233 (|#1| |#1| |#4|)) (-15 -3514 (|#4| |#1|)) (-15 -3491 ((-3 |#1| "failed") (-618 |#5|))) (-15 -4300 ((-618 |#5|) |#1|)) (-15 -3867 (|#1| (-618 |#5|))) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4056 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-1173 |#2| |#3| |#4| |#5|) (-542) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -1172)) -NIL -(-10 -8 (-15 -4024 ((-747) |#1|)) (-15 -4111 (|#1| |#1| |#5|)) (-15 -4056 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4276 ((-112) |#4| |#1|)) (-15 -4026 ((-618 |#4|) |#1|)) (-15 -4141 ((-3 |#1| "failed") |#1|)) (-15 -4140 ((-3 |#5| "failed") |#1|)) (-15 -4143 ((-3 |#5| "failed") |#1|)) (-15 -4029 (|#5| |#5| |#1|)) (-15 -4030 (|#1| |#1|)) (-15 -4031 (|#5| |#5| |#1|)) (-15 -4032 (|#5| |#5| |#1|)) (-15 -4033 (|#5| |#5| |#1|)) (-15 -4034 (|#5| |#5| |#1|)) (-15 -4035 ((-618 |#5|) (-618 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4185 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4037 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -4039 ((-112) |#1|)) (-15 -4036 ((-112) |#1| (-1 (-112) |#5| (-618 |#5|)))) (-15 -4037 ((-112) |#5| |#1|)) (-15 -4038 ((-112) |#5| |#1|)) (-15 -4039 ((-112) |#5| |#1|)) (-15 -4040 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4041 ((-112) |#1|)) (-15 -4041 ((-112) |#5| |#1|)) (-15 -4042 ((-2 (|:| -4204 (-618 |#5|)) (|:| -1813 (-618 |#5|))) |#1|)) (-15 -4290 ((-747) |#1|)) (-15 -4043 ((-618 |#5|) |#1|)) (-15 -4044 ((-3 (-2 (|:| |bas| |#1|) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4044 ((-3 (-2 (|:| |bas| |#1|) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4045 ((-112) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3233 (|#1| |#1| |#4|)) (-15 -3514 (|#4| |#1|)) (-15 -3491 ((-3 |#1| "failed") (-618 |#5|))) (-15 -4300 ((-618 |#5|) |#1|)) (-15 -3867 (|#1| (-618 |#5|))) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4056 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) -((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ "failed") $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-4140 (((-3 |#4| "failed") $) 83)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| "failed") $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ "failed") $ |#4|) 78)) (-4111 (($ $ |#4|) 77)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336))))) -(((-1173 |#1| |#2| |#3| |#4|) (-138) (-542) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1173)) -((-4045 (*1 *2 *1 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4044 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3666 (-618 *8)))) (-5 *3 (-618 *8)) (-4 *1 (-1173 *5 *6 *7 *8)))) (-4044 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3666 (-618 *9)))) (-5 *3 (-618 *9)) (-4 *1 (-1173 *6 *7 *8 *9)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *6)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-747)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-2 (|:| -4204 (-618 *6)) (|:| -1813 (-618 *6)))))) (-4041 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4040 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1173 *5 *6 *7 *3)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)))) (-4039 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4038 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4037 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-618 *7))) (-4 *1 (-1173 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4185 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1173 *5 *6 *7 *2)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *2 (-1032 *5 *6 *7)))) (-4035 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-618 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1173 *5 *6 *7 *8)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)))) (-4034 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4033 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4032 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4031 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4030 (*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) (-4029 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1173 *4 *5 *6 *7)))) (-4027 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-618 (-2 (|:| -4204 *1) (|:| -1813 (-618 *7))))) (-5 *3 (-618 *7)) (-4 *1 (-1173 *4 *5 *6 *7)))) (-4143 (*1 *2 *1) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4140 (*1 *2 *1) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4141 (*1 *1 *1) (|partial| -12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))) (-4276 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *3 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) (-4056 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1173 *4 *5 *3 *2)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *2 (-1032 *4 *5 *3)))) (-4025 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4111 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-747))))) -(-13 (-947 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -4045 ((-112) $ $)) (-15 -4044 ((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |t#4|))) "failed") (-618 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4044 ((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |t#4|))) "failed") (-618 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4043 ((-618 |t#4|) $)) (-15 -4290 ((-747) $)) (-15 -4042 ((-2 (|:| -4204 (-618 |t#4|)) (|:| -1813 (-618 |t#4|))) $)) (-15 -4041 ((-112) |t#4| $)) (-15 -4041 ((-112) $)) (-15 -4040 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4039 ((-112) |t#4| $)) (-15 -4038 ((-112) |t#4| $)) (-15 -4037 ((-112) |t#4| $)) (-15 -4036 ((-112) $ (-1 (-112) |t#4| (-618 |t#4|)))) (-15 -4039 ((-112) $)) (-15 -4038 ((-112) $)) (-15 -4037 ((-112) $)) (-15 -4185 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4035 ((-618 |t#4|) (-618 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4034 (|t#4| |t#4| $)) (-15 -4033 (|t#4| |t#4| $)) (-15 -4032 (|t#4| |t#4| $)) (-15 -4031 (|t#4| |t#4| $)) (-15 -4030 ($ $)) (-15 -4029 (|t#4| |t#4| $)) (-15 -4028 ((-618 $) (-618 |t#4|))) (-15 -4027 ((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |t#4|)))) (-618 |t#4|))) (-15 -4143 ((-3 |t#4| "failed") $)) (-15 -4140 ((-3 |t#4| "failed") $)) (-15 -4141 ((-3 $ "failed") $)) (-15 -4026 ((-618 |t#3|) $)) (-15 -4276 ((-112) |t#3| $)) (-15 -4056 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4025 ((-3 $ "failed") $ |t#4|)) (-15 -4111 ($ $ |t#4|)) (IF (|has| |t#3| (-361)) (-15 -4024 ((-747) $)) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1178) . T)) -((-4051 (($ |#1| (-618 (-618 (-914 (-219)))) (-112)) 19)) (-4050 (((-112) $ (-112)) 18)) (-4049 (((-112) $) 17)) (-4047 (((-618 (-618 (-914 (-219)))) $) 13)) (-4046 ((|#1| $) 8)) (-4048 (((-112) $) 15))) -(((-1174 |#1|) (-10 -8 (-15 -4046 (|#1| $)) (-15 -4047 ((-618 (-618 (-914 (-219)))) $)) (-15 -4048 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -4050 ((-112) $ (-112))) (-15 -4051 ($ |#1| (-618 (-618 (-914 (-219)))) (-112)))) (-945)) (T -1174)) -((-4051 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-112)) (-5 *1 (-1174 *2)) (-4 *2 (-945)))) (-4050 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4046 (*1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-945))))) -(-10 -8 (-15 -4046 (|#1| $)) (-15 -4047 ((-618 (-618 (-914 (-219)))) $)) (-15 -4048 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -4050 ((-112) $ (-112))) (-15 -4051 ($ |#1| (-618 (-618 (-914 (-219)))) (-112)))) -((-4053 (((-914 (-219)) (-914 (-219))) 25)) (-4052 (((-914 (-219)) (-219) (-219) (-219) (-219)) 10)) (-4055 (((-618 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-618 (-618 (-219)))) 37)) (-4179 (((-219) (-914 (-219)) (-914 (-219))) 21)) (-4177 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 22)) (-4054 (((-618 (-618 (-219))) (-535)) 31)) (-4180 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 20)) (-4182 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 19)) (* (((-914 (-219)) (-219) (-914 (-219))) 18))) -(((-1175) (-10 -7 (-15 -4052 ((-914 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-914 (-219)) (-219) (-914 (-219)))) (-15 -4182 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4180 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4179 ((-219) (-914 (-219)) (-914 (-219)))) (-15 -4177 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4053 ((-914 (-219)) (-914 (-219)))) (-15 -4054 ((-618 (-618 (-219))) (-535))) (-15 -4055 ((-618 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-618 (-618 (-219))))))) (T -1175)) -((-4055 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-618 (-618 (-219)))) (-5 *4 (-219)) (-5 *2 (-618 (-914 *4))) (-5 *1 (-1175)) (-5 *3 (-914 *4)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *2 (-618 (-618 (-219)))) (-5 *1 (-1175)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-4177 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-4179 (*1 *2 *3 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-219)) (-5 *1 (-1175)))) (-4180 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-4182 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-914 (-219))) (-5 *3 (-219)) (-5 *1 (-1175)))) (-4052 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)) (-5 *3 (-219))))) -(-10 -7 (-15 -4052 ((-914 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-914 (-219)) (-219) (-914 (-219)))) (-15 -4182 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4180 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4179 ((-219) (-914 (-219)) (-914 (-219)))) (-15 -4177 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4053 ((-914 (-219)) (-914 (-219)))) (-15 -4054 ((-618 (-618 (-219))) (-535))) (-15 -4055 ((-618 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-618 (-618 (-219)))))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4056 ((|#1| $ (-747)) 13)) (-4176 (((-747) $) 12)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4300 (((-929 |#1|) $) 10) (($ (-929 |#1|)) 9) (((-835) $) 23 (|has| |#1| (-593 (-835))))) (-3375 (((-112) $ $) 16 (|has| |#1| (-1067))))) -(((-1176 |#1|) (-13 (-593 (-929 |#1|)) (-10 -8 (-15 -4300 ($ (-929 |#1|))) (-15 -4056 (|#1| $ (-747))) (-15 -4176 ((-747) $)) (IF (|has| |#1| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1178)) (T -1176)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-929 *3)) (-4 *3 (-1178)) (-5 *1 (-1176 *3)))) (-4056 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-1176 *2)) (-4 *2 (-1178)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1176 *3)) (-4 *3 (-1178))))) -(-13 (-593 (-929 |#1|)) (-10 -8 (-15 -4300 ($ (-929 |#1|))) (-15 -4056 (|#1| $ (-747))) (-15 -4176 ((-747) $)) (IF (|has| |#1| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) -((-4059 (((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)) (-535)) 80)) (-4057 (((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|))) 74)) (-4058 (((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|))) 59))) -(((-1177 |#1|) (-10 -7 (-15 -4057 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)))) (-15 -4058 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)))) (-15 -4059 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)) (-535)))) (-343)) (T -1177)) -((-4059 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-4 *5 (-343)) (-5 *2 (-398 (-1136 (-1136 *5)))) (-5 *1 (-1177 *5)) (-5 *3 (-1136 (-1136 *5))))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1136 (-1136 *4)))) (-5 *1 (-1177 *4)) (-5 *3 (-1136 (-1136 *4))))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1136 (-1136 *4)))) (-5 *1 (-1177 *4)) (-5 *3 (-1136 (-1136 *4)))))) -(-10 -7 (-15 -4057 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)))) (-15 -4058 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)))) (-15 -4059 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)) (-535)))) -NIL -(((-1178) (-138)) (T -1178)) -NIL -(-13 (-10 -7 (-6 -2359))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 9) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-1179) (-1049)) (T -1179)) -NIL -(-1049) -((-4063 (((-112)) 15)) (-4060 (((-1230) (-618 |#1|) (-618 |#1|)) 19) (((-1230) (-618 |#1|)) 20)) (-4065 (((-112) |#1| |#1|) 32 (|has| |#1| (-823)))) (-4062 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4064 ((|#1| (-618 |#1|)) 33 (|has| |#1| (-823))) ((|#1| (-618 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-4061 (((-2 (|:| -3563 (-618 |#1|)) (|:| -3562 (-618 |#1|)))) 17))) -(((-1180 |#1|) (-10 -7 (-15 -4060 ((-1230) (-618 |#1|))) (-15 -4060 ((-1230) (-618 |#1|) (-618 |#1|))) (-15 -4061 ((-2 (|:| -3563 (-618 |#1|)) (|:| -3562 (-618 |#1|))))) (-15 -4062 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4062 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4064 (|#1| (-618 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4063 ((-112))) (IF (|has| |#1| (-823)) (PROGN (-15 -4064 (|#1| (-618 |#1|))) (-15 -4065 ((-112) |#1| |#1|))) |%noBranch|)) (-1067)) (T -1180)) -((-4065 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-823)) (-5 *1 (-1180 *2)))) (-4063 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1067)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1180 *2)) (-4 *2 (-1067)))) (-4062 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1067)) (-5 *2 (-112)) (-5 *1 (-1180 *3)))) (-4062 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1067)))) (-4061 (*1 *2) (-12 (-5 *2 (-2 (|:| -3563 (-618 *3)) (|:| -3562 (-618 *3)))) (-5 *1 (-1180 *3)) (-4 *3 (-1067)))) (-4060 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-5 *2 (-1230)) (-5 *1 (-1180 *4)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-5 *2 (-1230)) (-5 *1 (-1180 *4))))) -(-10 -7 (-15 -4060 ((-1230) (-618 |#1|))) (-15 -4060 ((-1230) (-618 |#1|) (-618 |#1|))) (-15 -4061 ((-2 (|:| -3563 (-618 |#1|)) (|:| -3562 (-618 |#1|))))) (-15 -4062 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4062 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4064 (|#1| (-618 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4063 ((-112))) (IF (|has| |#1| (-823)) (PROGN (-15 -4064 (|#1| (-618 |#1|))) (-15 -4065 ((-112) |#1| |#1|))) |%noBranch|)) -((-4066 (((-1230) (-618 (-1142)) (-618 (-1142))) 13) (((-1230) (-618 (-1142))) 11)) (-4068 (((-1230)) 14)) (-4067 (((-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142))))) 18))) -(((-1181) (-10 -7 (-15 -4066 ((-1230) (-618 (-1142)))) (-15 -4066 ((-1230) (-618 (-1142)) (-618 (-1142)))) (-15 -4067 ((-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142)))))) (-15 -4068 ((-1230))))) (T -1181)) -((-4068 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1181)))) (-4067 (*1 *2) (-12 (-5 *2 (-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142))))) (-5 *1 (-1181)))) (-4066 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181))))) -(-10 -7 (-15 -4066 ((-1230) (-618 (-1142)))) (-15 -4066 ((-1230) (-618 (-1142)) (-618 (-1142)))) (-15 -4067 ((-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142)))))) (-15 -4068 ((-1230)))) -((-4117 (($ $) 17)) (-4069 (((-112) $) 24))) -(((-1182 |#1|) (-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4069 ((-112) |#1|))) (-1183)) (T -1182)) -NIL -(-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4069 ((-112) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 49)) (-4312 (((-398 $) $) 50)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-4069 (((-112) $) 51)) (-2493 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 48)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24))) -(((-1183) (-138)) (T -1183)) -((-4069 (*1 *2 *1) (-12 (-4 *1 (-1183)) (-5 *2 (-112)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1183)))) (-4117 (*1 *1 *1) (-4 *1 (-1183))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1183))))) -(-13 (-444) (-10 -8 (-15 -4069 ((-112) $)) (-15 -4312 ((-398 $) $)) (-15 -4117 ($ $)) (-15 -4075 ((-398 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-1214 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 10)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2171 (($ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2169 (((-112) $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-4113 (($ $ (-535)) NIL) (($ $ (-535) (-535)) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) NIL)) (-4074 (((-1214 |#1| |#2| |#3|) $) NIL)) (-4071 (((-3 (-1214 |#1| |#2| |#3|) "failed") $) NIL)) (-4072 (((-1214 |#1| |#2| |#3|) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3969 (((-535) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1214 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-3 (-400 (-535)) #2#) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356)))) (((-3 (-535) #2#) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))))) (-3490 (((-1214 |#1| |#2| |#3|) $) NIL) (((-1142) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-400 (-535)) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356)))) (((-535) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))))) (-4073 (($ $) NIL) (($ (-535) $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-1214 |#1| |#2| |#3|)) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-1214 |#1| |#2| |#3|))) (|:| |vec| (-1224 (-1214 |#1| |#2| |#3|)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-617 (-535))) (|has| |#1| (-356)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-617 (-535))) (|has| |#1| (-356))))) (-3804 (((-3 $ "failed") $) NIL)) (-4070 (((-400 (-917 |#1|)) $ (-535)) NIL (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) NIL (|has| |#1| (-542)))) (-3315 (($) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3520 (((-112) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-857 (-535))) (|has| |#1| (-356)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-857 (-371))) (|has| |#1| (-356))))) (-4114 (((-535) $) NIL) (((-535) $ (-535)) NIL)) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL (|has| |#1| (-356)))) (-3319 (((-1214 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3786 (((-3 $ "failed") $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))))) (-3521 (((-112) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-4119 (($ $ (-890)) NIL)) (-4158 (($ (-1 |#1| (-535)) $) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-535)) 17) (($ $ (-1048) (-535)) NIL) (($ $ (-618 (-1048)) (-618 (-535))) NIL)) (-3660 (($ $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3661 (($ $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4121 (($ (-535) (-1214 |#1| |#2| |#3|)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 25 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 26 (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3446 (($ $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3448 (((-1214 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-535)) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-535))))) (($ $ (-1142) (-1214 |#1| |#2| |#3|)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-505 (-1142) (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 (-1214 |#1| |#2| |#3|))) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-505 (-1142) (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-286 (-1214 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-286 (-1214 |#1| |#2| |#3|))) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-1214 |#1| |#2| |#3|)) (-618 (-1214 |#1| |#2| |#3|))) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) NIL) (($ $ $) NIL (|has| (-535) (-1078))) (($ $ (-1214 |#1| |#2| |#3|)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-279 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1221 |#2|)) 24) (($ $ (-747)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 23 (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-3316 (($ $) NIL (|has| |#1| (-356)))) (-3318 (((-1214 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-4290 (((-535) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4313 (((-524) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-594 (-524))) (|has| |#1| (-356)))) (((-371) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-991)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-991)) (|has| |#1| (-356)))) (((-861 (-371)) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-594 (-861 (-371)))) (|has| |#1| (-356)))) (((-861 (-535)) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-594 (-861 (-535)))) (|has| |#1| (-356))))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1214 |#1| |#2| |#3|)) NIL) (($ (-1221 |#2|)) 22) (($ (-1142)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (($ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542)))) (($ (-400 (-535))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-535))))))) (-4023 ((|#1| $ (-535)) NIL)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 11)) (-3449 (((-1214 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3725 (($ $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2979 (($) 19 T CONST)) (-2985 (($) 15 T CONST)) (-2990 (($ $ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-2885 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2886 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3006 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356))) (($ (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1214 |#1| |#2| |#3|)) NIL (|has| |#1| (-356))) (($ (-1214 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1184 |#1| |#2| |#3|) (-13 (-1188 |#1| (-1214 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1184)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))) -(-13 (-1188 |#1| (-1214 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) -((-4301 (((-1184 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1184 |#1| |#3| |#5|)) 23))) -(((-1185 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4301 ((-1184 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1184 |#1| |#3| |#5|)))) (-1018) (-1018) (-1142) (-1142) |#1| |#2|) (T -1185)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5 *7 *9)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1184 *6 *8 *10)) (-5 *1 (-1185 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1142))))) -(-10 -7 (-15 -4301 ((-1184 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1184 |#1| |#3| |#5|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-535)) 96) (($ $ (-535) (-535)) 95)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 103)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 160 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 171)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 155 (|has| |#1| (-356)))) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-4070 (((-400 (-917 |#1|)) $ (-535)) 169 (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) 168 (|has| |#1| (-542)))) (-2882 (($ $ $) 154 (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-356)))) (-4069 (((-112) $) 162 (|has| |#1| (-356)))) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-535) $) 98) (((-535) $ (-535)) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 99)) (-4158 (($ (-1 |#1| (-535)) $) 170)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 158 (|has| |#1| (-356)))) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-535)) 59) (($ $ (-1048) (-535)) 74) (($ $ (-618 (-1048)) (-618 (-535))) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 163 (|has| |#1| (-356)))) (-4155 (($ $) 167 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 166 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4075 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-356)))) (-4111 (($ $ (-535)) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-356)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-535)))))) (-1699 (((-747) $) 152 (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) 102) (($ $ $) 79 (|has| (-535) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (-4290 (((-535) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542)))) (-4023 ((|#1| $ (-535)) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-1186 |#1|) (-138) (-1018)) (T -1186)) -((-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-4 *3 (-1018)) (-4 *1 (-1186 *3)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-535))) (-4 *1 (-1186 *3)) (-4 *3 (-1018)))) (-4070 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-542)) (-5 *2 (-400 (-917 *4))))) (-4070 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-542)) (-5 *2 (-400 (-917 *4))))) (-4155 (*1 *1 *1) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) (-4155 (*1 *1 *1 *2) (-3874 (-12 (-5 *2 (-1142)) (-4 *1 (-1186 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-535)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1186 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535))))))))) -(-13 (-1203 |t#1| (-535)) (-10 -8 (-15 -4161 ($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |t#1|))))) (-15 -4158 ($ (-1 |t#1| (-535)) $)) (IF (|has| |t#1| (-542)) (PROGN (-15 -4070 ((-400 (-917 |t#1|)) $ (-535))) (-15 -4070 ((-400 (-917 |t#1|)) $ (-535) (-535)))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (IF (|has| |t#1| (-15 -4155 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -3405 ((-618 (-1142)) |t#1|))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-931)) (IF (|has| |t#1| (-29 (-535))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-535)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-535) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 $ $) |has| (-535) (-1078)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-624 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) ((-944 |#1| #1# (-1048)) . T) ((-892) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1024 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #1#) . T)) -((-3522 (((-112) $) 12)) (-3491 (((-3 |#3| #1="failed") $) 17) (((-3 (-1142) #1#) $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) NIL)) (-3490 ((|#3| $) 14) (((-1142) $) NIL) (((-400 (-535)) $) NIL) (((-535) $) NIL))) -(((-1187 |#1| |#2| |#3|) (-10 -8 (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| #1#) |#1|)) (-15 -3522 ((-112) |#1|))) (-1188 |#2| |#3|) (-1018) (-1217 |#2|)) (T -1187)) -NIL -(-10 -8 (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| #1#) |#1|)) (-15 -3522 ((-112) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3447 ((|#2| $) 228 (-3179 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-535)) 96) (($ $ (-535) (-535)) 95)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 103)) (-4074 ((|#2| $) 264)) (-4071 (((-3 |#2| "failed") $) 260)) (-4072 ((|#2| $) 261)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 237 (-3179 (|has| |#2| (-881)) (|has| |#1| (-356))))) (-4117 (($ $) 160 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 234 (-3179 (|has| |#2| (-881)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-3969 (((-535) $) 246 (-3179 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 171)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#2| #2="failed") $) 267) (((-3 (-535) #2#) $) 256 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#1| (-356)))) (((-3 (-400 (-535)) #2#) $) 254 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#1| (-356)))) (((-3 (-1142) #2#) $) 239 (-3179 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356))))) (-3490 ((|#2| $) 266) (((-535) $) 257 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#1| (-356)))) (((-400 (-535)) $) 255 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#1| (-356)))) (((-1142) $) 240 (-3179 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356))))) (-4073 (($ $) 263) (($ (-535) $) 262)) (-2883 (($ $ $) 155 (|has| |#1| (-356)))) (-4302 (($ $) 58)) (-2353 (((-665 |#2|) (-665 $)) 218 (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 217 (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 216 (-3179 (|has| |#2| (-617 (-535))) (|has| |#1| (-356)))) (((-665 (-535)) (-665 $)) 215 (-3179 (|has| |#2| (-617 (-535))) (|has| |#1| (-356))))) (-3804 (((-3 $ "failed") $) 32)) (-4070 (((-400 (-917 |#1|)) $ (-535)) 169 (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) 168 (|has| |#1| (-542)))) (-3315 (($) 230 (-3179 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-2882 (($ $ $) 154 (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-356)))) (-4069 (((-112) $) 162 (|has| |#1| (-356)))) (-3520 (((-112) $) 244 (-3179 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 222 (-3179 (|has| |#2| (-857 (-371))) (|has| |#1| (-356)))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 221 (-3179 (|has| |#2| (-857 (-535))) (|has| |#1| (-356))))) (-4114 (((-535) $) 98) (((-535) $ (-535)) 97)) (-2493 (((-112) $) 30)) (-3317 (($ $) 226 (|has| |#1| (-356)))) (-3319 ((|#2| $) 224 (|has| |#1| (-356)))) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-3786 (((-3 $ "failed") $) 258 (-3179 (|has| |#2| (-1117)) (|has| |#1| (-356))))) (-3521 (((-112) $) 245 (-3179 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-4119 (($ $ (-890)) 99)) (-4158 (($ (-1 |#1| (-535)) $) 170)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) 158 (|has| |#1| (-356)))) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-535)) 59) (($ $ (-1048) (-535)) 74) (($ $ (-618 (-1048)) (-618 (-535))) 73)) (-3660 (($ $ $) 248 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3661 (($ $ $) 249 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-4301 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-356)))) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4121 (($ (-535) |#2|) 265)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 163 (|has| |#1| (-356)))) (-4155 (($ $) 167 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 166 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3787 (($) 259 (-3179 (|has| |#2| (-1117)) (|has| |#1| (-356))) CONST)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-3446 (($ $) 229 (-3179 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3448 ((|#2| $) 232 (-3179 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-3026 (((-398 (-1136 $)) (-1136 $)) 235 (-3179 (|has| |#2| (-881)) (|has| |#1| (-356))))) (-3027 (((-398 (-1136 $)) (-1136 $)) 236 (-3179 (|has| |#2| (-881)) (|has| |#1| (-356))))) (-4075 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-356)))) (-4111 (($ $ (-535)) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-356)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-535))))) (($ $ (-1142) |#2|) 209 (-3179 (|has| |#2| (-505 (-1142) |#2|)) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 |#2|)) 208 (-3179 (|has| |#2| (-505 (-1142) |#2|)) (|has| |#1| (-356)))) (($ $ (-618 (-286 |#2|))) 207 (-3179 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-286 |#2|)) 206 (-3179 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) 205 (-3179 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-618 |#2|) (-618 |#2|)) 204 (-3179 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-1699 (((-747) $) 152 (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) 102) (($ $ $) 79 (|has| (-535) (-1078))) (($ $ |#2|) 203 (-3179 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-356)))) (-4153 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) 213 (|has| |#1| (-356))) (($ $ (-747)) 82 (-3874 (-3179 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 80 (-3874 (-3179 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) 87 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) 86 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) 85 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) 84 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-3316 (($ $) 227 (|has| |#1| (-356)))) (-3318 ((|#2| $) 225 (|has| |#1| (-356)))) (-4290 (((-535) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-4313 (((-219) $) 243 (-3179 (|has| |#2| (-991)) (|has| |#1| (-356)))) (((-371) $) 242 (-3179 (|has| |#2| (-991)) (|has| |#1| (-356)))) (((-524) $) 241 (-3179 (|has| |#2| (-594 (-524))) (|has| |#1| (-356)))) (((-861 (-371)) $) 220 (-3179 (|has| |#2| (-594 (-861 (-371)))) (|has| |#1| (-356)))) (((-861 (-535)) $) 219 (-3179 (|has| |#2| (-594 (-861 (-535)))) (|has| |#1| (-356))))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 233 (-3179 (-3179 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#1| (-356))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1142)) 238 (-3179 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356)))) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542)))) (-4023 ((|#1| $ (-535)) 57)) (-3023 (((-3 $ "failed") $) 46 (-3874 (-3179 (-3874 (|has| |#2| (-143)) (-3179 (|has| $ (-143)) (|has| |#2| (-881)))) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3449 ((|#2| $) 231 (-3179 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-3725 (($ $) 247 (-3179 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) 211 (|has| |#1| (-356))) (($ $ (-747)) 83 (-3874 (-3179 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 81 (-3874 (-3179 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) 91 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) 90 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) 89 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) 88 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-2885 (((-112) $ $) 251 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2886 (((-112) $ $) 252 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 250 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3006 (((-112) $ $) 253 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356))) (($ |#2| |#2|) 223 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-356))) (($ |#2| $) 201 (|has| |#1| (-356))) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-1188 |#1| |#2|) (-138) (-1018) (-1217 |t#1|)) (T -1188)) -((-4290 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3)) (-5 *2 (-535)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1188 *3 *2)) (-4 *2 (-1217 *3)))) (-4121 (*1 *1 *2 *3) (-12 (-5 *2 (-535)) (-4 *4 (-1018)) (-4 *1 (-1188 *4 *3)) (-4 *3 (-1217 *4)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))) (-4073 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1217 *2)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))) (-4071 (*1 *2 *1) (|partial| -12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3))))) -(-13 (-1186 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -4121 ($ (-535) |t#2|)) (-15 -4290 ((-535) $)) (-15 -4074 (|t#2| $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)) (-15 -4300 ($ |t#2|)) (-15 -4072 (|t#2| $)) (-15 -4071 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-356)) (-6 (-962 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-535)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-356)) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-356)) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) -3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-594 (-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) ((-594 (-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) ((-594 (-524)) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-535))))) ((-225 |#2|) |has| |#1| (-356)) ((-227) -3874 (|has| |#1| (-15 * (|#1| (-535) |#1|))) (-12 (|has| |#1| (-356)) (|has| |#2| (-227)))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 |#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) ((-279 $ $) |has| (-535) (-1078)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-356) |has| |#1| (-356)) ((-331 |#2|) |has| |#1| (-356)) ((-370 |#2|) |has| |#1| (-356)) ((-393 |#2|) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-505 (-1142) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|))) ((-505 |#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-624 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-624 |#1|) . T) ((-624 |#2|) |has| |#1| (-356)) ((-624 $) . T) ((-617 (-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-617 (-535)))) ((-617 |#2|) |has| |#1| (-356)) ((-694 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 |#2|) |has| |#1| (-356)) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-703) . T) ((-767) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-768) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-770) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-773) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-796) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-821) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-823) -3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-823))) (-12 (|has| |#1| (-356)) (|has| |#2| (-796)))) ((-871 (-1142)) -3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142))))) ((-857 (-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-535)))) ((-855 |#2|) |has| |#1| (-356)) ((-881) -12 (|has| |#1| (-356)) (|has| |#2| (-881))) ((-944 |#1| #1# (-1048)) . T) ((-892) |has| |#1| (-356)) ((-962 |#2|) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-991) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) ((-1009 (-400 (-535))) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535)))) ((-1009 (-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535)))) ((-1009 (-1142)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))) ((-1009 |#2|) . T) ((-1024 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-1024 |#1|) . T) ((-1024 |#2|) |has| |#1| (-356)) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) -12 (|has| |#1| (-356)) (|has| |#2| (-1117))) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1178) |has| |#1| (-356)) ((-1183) |has| |#1| (-356)) ((-1186 |#1|) . T) ((-1203 |#1| #1#) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 70)) (-3447 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-300))))) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 88)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-535)) 97) (($ $ (-535) (-535)) 99)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 47)) (-4074 ((|#2| $) 11)) (-4071 (((-3 |#2| "failed") $) 30)) (-4072 ((|#2| $) 31)) (-3829 (($ $) 192 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 168 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-881))))) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-881))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) 188 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 164 (|has| |#1| (-38 (-400 (-535)))))) (-3969 (((-535) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-796))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 57)) (-3831 (($ $) 196 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 172 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) 144) (((-3 (-535) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) (((-3 (-400 (-535)) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) (((-3 (-1142) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))))) (-3490 ((|#2| $) 143) (((-535) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) (((-400 (-535)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) (((-1142) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))))) (-4073 (($ $) 61) (($ (-535) $) 24)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 |#2|) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-617 (-535))))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-617 (-535)))))) (-3804 (((-3 $ "failed") $) 77)) (-4070 (((-400 (-917 |#1|)) $ (-535)) 112 (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) 114 (|has| |#1| (-542)))) (-3315 (($) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-534))))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3520 (((-112) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-796))))) (-3213 (((-112) $) 64)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-857 (-535)))))) (-4114 (((-535) $) 93) (((-535) $ (-535)) 95)) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL (|has| |#1| (-356)))) (-3319 ((|#2| $) 151 (|has| |#1| (-356)))) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3786 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1117))))) (-3521 (((-112) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-796))))) (-4119 (($ $ (-890)) 136)) (-4158 (($ (-1 |#1| (-535)) $) 132)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-535)) 19) (($ $ (-1048) (-535)) NIL) (($ $ (-618 (-1048)) (-618 (-535))) NIL)) (-3660 (($ $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-3661 (($ $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-4301 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-356)))) (-4285 (($ $) 162 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4121 (($ (-535) |#2|) 10)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 145 (|has| |#1| (-356)))) (-4155 (($ $) 214 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 219 (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))))))) (-3787 (($) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1117))) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3446 (($ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-300))))) (-3448 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-534))))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-881))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-881))))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-535)) 126)) (-3803 (((-3 $ "failed") $ $) 116 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) 160 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-535))))) (($ $ (-1142) |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|)))) (($ $ (-618 (-1142)) (-618 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) 91) (($ $ $) 79 (|has| (-535) (-1078))) (($ $ |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 137 (-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-1142)) 140 (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142))))))) (-3316 (($ $) NIL (|has| |#1| (-356)))) (-3318 ((|#2| $) 152 (|has| |#1| (-356)))) (-4290 (((-535) $) 12)) (-3832 (($ $) 198 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 174 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 194 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 170 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 190 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 166 (|has| |#1| (-38 (-400 (-535)))))) (-4313 (((-219) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-991)))) (((-371) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-991)))) (((-524) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-594 (-524))))) (((-861 (-371)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-535))))))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-356)) (|has| |#2| (-881))))) (-3212 (($ $) 124)) (-4300 (((-835) $) 245) (($ (-535)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1142)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142))))) (($ (-400 (-535))) 155 (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-535)) 74)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-356)) (|has| |#2| (-881))) (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))))) (-3444 (((-747)) 142)) (-4115 ((|#1| $) 90)) (-3449 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-534))))) (-3835 (($ $) 204 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 180 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 200 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 176 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 208 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 184 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 210 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 186 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 206 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 182 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 202 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 178 (|has| |#1| (-38 (-400 (-535)))))) (-3725 (($ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-796))))) (-2979 (($) 13 T CONST)) (-2985 (($) 17 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) NIL (-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142))))))) (-2885 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-2886 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-3375 (((-112) $ $) 63)) (-3005 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-3006 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 149 (|has| |#1| (-356))) (($ |#2| |#2|) 150 (|has| |#1| (-356)))) (-4180 (($ $) 213) (($ $ $) 68)) (-4182 (($ $ $) 66)) (** (($ $ (-890)) NIL) (($ $ (-747)) 73) (($ $ (-535)) 146 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 158 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-356))) (($ |#2| $) 147 (|has| |#1| (-356))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1189 |#1| |#2|) (-1188 |#1| |#2|) (-1018) (-1217 |#1|)) (T -1189)) -NIL -(-1188 |#1| |#2|) -((-4077 (((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112)) 12)) (-4076 (((-398 |#1|) |#1|) 22)) (-4075 (((-398 |#1|) |#1|) 21))) -(((-1190 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1|)) (-15 -4077 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112)))) (-1200 (-535))) (T -1190)) -((-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535)))))) -(-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1|)) (-15 -4077 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112)))) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4079 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4301 (((-1119 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-821)))) (-3563 ((|#1| $) 14)) (-3565 ((|#1| $) 10)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3561 (((-535) $) 18)) (-3562 ((|#1| $) 17)) (-3564 ((|#1| $) 11)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4078 (((-112) $) 16)) (-4306 (((-1119 |#1|) $) 38 (|has| |#1| (-821))) (((-1119 |#1|) (-618 $)) 37 (|has| |#1| (-821)))) (-4313 (($ |#1|) 25)) (-4300 (($ (-1055 |#1|)) 24) (((-835) $) 34 (|has| |#1| (-1067)))) (-4080 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3566 (($ $ (-535)) 13)) (-3375 (((-112) $ $) 27 (|has| |#1| (-1067))))) -(((-1191 |#1|) (-13 (-1060 |#1|) (-10 -8 (-15 -4080 ($ |#1|)) (-15 -4079 ($ |#1|)) (-15 -4300 ($ (-1055 |#1|))) (-15 -4078 ((-112) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-1119 |#1|))) |%noBranch|))) (-1178)) (T -1191)) -((-4080 (*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1178)))) (-4079 (*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1178)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-1178)) (-5 *1 (-1191 *3)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1178))))) -(-13 (-1060 |#1|) (-10 -8 (-15 -4080 ($ |#1|)) (-15 -4079 ($ |#1|)) (-15 -4300 ($ (-1055 |#1|))) (-15 -4078 ((-112) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-1119 |#1|))) |%noBranch|))) -((-4301 (((-1119 |#2|) (-1 |#2| |#1|) (-1191 |#1|)) 23 (|has| |#1| (-821))) (((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)) 17))) -(((-1192 |#1| |#2|) (-10 -7 (-15 -4301 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|))) (IF (|has| |#1| (-821)) (-15 -4301 ((-1119 |#2|) (-1 |#2| |#1|) (-1191 |#1|))) |%noBranch|)) (-1178) (-1178)) (T -1192)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-821)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1119 *6)) (-5 *1 (-1192 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1191 *6)) (-5 *1 (-1192 *5 *6))))) -(-10 -7 (-15 -4301 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|))) (IF (|has| |#1| (-821)) (-15 -4301 ((-1119 |#2|) (-1 |#2| |#1|) (-1191 |#1|))) |%noBranch|)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4109 (((-1224 |#2|) $ (-747)) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4107 (($ (-1136 |#2|)) NIL)) (-3407 (((-1136 $) $ (-1048)) NIL) (((-1136 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4098 (($ $ $) NIL (|has| |#2| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-1700 (((-112) $ $) NIL (|has| |#2| (-356)))) (-4103 (($ $ (-747)) NIL)) (-4102 (($ $ (-747)) NIL)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-444)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-1048) #2#) $) NIL)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-1048) $) NIL)) (-4099 (($ $ $ (-1048)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2883 (($ $ $) NIL (|has| |#2| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#2| (-356)))) (-4101 (($ $ $) NIL)) (-4096 (($ $ $) NIL (|has| |#2| (-542)))) (-4095 (((-2 (|:| -4296 |#2|) (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#2| (-356)))) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-1048)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| (-747) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1048) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1048) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-4114 (((-747) $ $) NIL (|has| |#2| (-542)))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#2| (-1117)))) (-3408 (($ (-1136 |#2|) (-1048)) NIL) (($ (-1136 $) (-1048)) NIL)) (-4119 (($ $ (-747)) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#2| (-356)))) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#2| (-747)) 17) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) NIL) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-4108 (((-1136 |#2|) $) NIL)) (-3406 (((-3 (-1048) #4="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) NIL)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) NIL)) (-4155 (($ $) NIL (|has| |#2| (-38 (-400 (-535)))))) (-3787 (($) NIL (|has| |#2| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-4081 (($ $ (-747) |#2| $) NIL)) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#2| (-356)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#2| (-356)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#2|) NIL) (($ $ (-618 (-1048)) (-618 |#2|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-618 (-1048)) (-618 $)) NIL)) (-1699 (((-747) $) NIL (|has| |#2| (-356)))) (-4142 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#2| (-542))) ((|#2| (-400 $) |#2|) NIL (|has| |#2| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#2| (-542)))) (-4106 (((-3 $ #5="failed") $ (-747)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-356)))) (-4100 (($ $ (-1048)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4290 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1048) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-1048)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4097 (((-3 $ #5#) $ $) NIL (|has| |#2| (-542))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#2| (-542)))) (-4300 (((-835) $) 13) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-1048)) NIL) (($ (-1221 |#1|)) 19) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#2| (-542)))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) 14 T CONST)) (-2990 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1193 |#1| |#2|) (-13 (-1200 |#2|) (-10 -8 (-15 -4300 ($ (-1221 |#1|))) (-15 -4081 ($ $ (-747) |#2| $)))) (-1142) (-1018)) (T -1193)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-1193 *3 *4)) (-4 *4 (-1018)))) (-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1193 *4 *3)) (-14 *4 (-1142)) (-4 *3 (-1018))))) -(-13 (-1200 |#2|) (-10 -8 (-15 -4300 ($ (-1221 |#1|))) (-15 -4081 ($ $ (-747) |#2| $)))) -((-4301 (((-1193 |#3| |#4|) (-1 |#4| |#2|) (-1193 |#1| |#2|)) 15))) -(((-1194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 ((-1193 |#3| |#4|) (-1 |#4| |#2|) (-1193 |#1| |#2|)))) (-1142) (-1018) (-1142) (-1018)) (T -1194)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1193 *5 *6)) (-14 *5 (-1142)) (-4 *6 (-1018)) (-4 *8 (-1018)) (-5 *2 (-1193 *7 *8)) (-5 *1 (-1194 *5 *6 *7 *8)) (-14 *7 (-1142))))) -(-10 -7 (-15 -4301 ((-1193 |#3| |#4|) (-1 |#4| |#2|) (-1193 |#1| |#2|)))) -((-4084 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4082 ((|#1| |#3|) 13)) (-4083 ((|#3| |#3|) 19))) -(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -4082 (|#1| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-542) (-962 |#1|) (-1200 |#2|)) (T -1195)) -((-4084 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1195 *4 *5 *3)) (-4 *3 (-1200 *5)))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *4 (-962 *3)) (-5 *1 (-1195 *3 *4 *2)) (-4 *2 (-1200 *4)))) (-4082 (*1 *2 *3) (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-1195 *2 *4 *3)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -4082 (|#1| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4086 (((-3 |#2| "failed") |#2| (-747) |#1|) 29)) (-4085 (((-3 |#2| "failed") |#2| (-747)) 30)) (-4088 (((-3 (-2 (|:| -3456 |#2|) (|:| -3455 |#2|)) "failed") |#2|) 43)) (-4089 (((-618 |#2|) |#2|) 45)) (-4087 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1196 |#1| |#2|) (-10 -7 (-15 -4085 ((-3 |#2| "failed") |#2| (-747))) (-15 -4086 ((-3 |#2| "failed") |#2| (-747) |#1|)) (-15 -4087 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4088 ((-3 (-2 (|:| -3456 |#2|) (|:| -3455 |#2|)) "failed") |#2|)) (-15 -4089 ((-618 |#2|) |#2|))) (-13 (-542) (-145)) (-1200 |#1|)) (T -1196)) -((-4089 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-618 *3)) (-5 *1 (-1196 *4 *3)) (-4 *3 (-1200 *4)))) (-4088 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-2 (|:| -3456 *3) (|:| -3455 *3))) (-5 *1 (-1196 *4 *3)) (-4 *3 (-1200 *4)))) (-4087 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-1200 *3)))) (-4086 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-1200 *4)))) (-4085 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-1200 *4))))) -(-10 -7 (-15 -4085 ((-3 |#2| "failed") |#2| (-747))) (-15 -4086 ((-3 |#2| "failed") |#2| (-747) |#1|)) (-15 -4087 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4088 ((-3 (-2 (|:| -3456 |#2|) (|:| -3455 |#2|)) "failed") |#2|)) (-15 -4089 ((-618 |#2|) |#2|))) -((-4090 (((-3 (-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) "failed") |#2| |#2|) 32))) -(((-1197 |#1| |#2|) (-10 -7 (-15 -4090 ((-3 (-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) "failed") |#2| |#2|))) (-542) (-1200 |#1|)) (T -1197)) -((-4090 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-1197 *4 *3)) (-4 *3 (-1200 *4))))) -(-10 -7 (-15 -4090 ((-3 (-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) "failed") |#2| |#2|))) -((-4091 ((|#2| |#2| |#2|) 19)) (-4092 ((|#2| |#2| |#2|) 30)) (-4093 ((|#2| |#2| |#2| (-747) (-747)) 36))) -(((-1198 |#1| |#2|) (-10 -7 (-15 -4091 (|#2| |#2| |#2|)) (-15 -4092 (|#2| |#2| |#2|)) (-15 -4093 (|#2| |#2| |#2| (-747) (-747)))) (-1018) (-1200 |#1|)) (T -1198)) -((-4093 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-1198 *4 *2)) (-4 *2 (-1200 *4)))) (-4092 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1200 *3)))) (-4091 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1200 *3))))) -(-10 -7 (-15 -4091 (|#2| |#2| |#2|)) (-15 -4092 (|#2| |#2| |#2|)) (-15 -4093 (|#2| |#2| |#2| (-747) (-747)))) -((-4109 (((-1224 |#2|) $ (-747)) 114)) (-3405 (((-618 (-1048)) $) 15)) (-4107 (($ (-1136 |#2|)) 67)) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) 18)) (-3028 (((-398 (-1136 $)) (-1136 $)) 185)) (-4117 (($ $) 175)) (-4312 (((-398 $) $) 173)) (-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 82)) (-4103 (($ $ (-747)) 71)) (-4102 (($ $ (-747)) 73)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3491 (((-3 |#2| #1="failed") $) 117) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 (-1048) #1#) $) NIL)) (-3490 ((|#2| $) 115) (((-400 (-535)) $) NIL) (((-535) $) NIL) (((-1048) $) NIL)) (-4096 (($ $ $) 151)) (-4095 (((-2 (|:| -4296 |#2|) (|:| -2091 $) (|:| -3223 $)) $ $) 153)) (-4114 (((-747) $ $) 170)) (-3786 (((-3 $ "failed") $) 123)) (-3214 (($ |#2| (-747)) NIL) (($ $ (-1048) (-747)) 47) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) 42) (((-618 (-747)) $ (-618 (-1048))) 43)) (-4108 (((-1136 |#2|) $) 59)) (-3406 (((-3 (-1048) "failed") $) 40)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) 70)) (-4155 (($ $) 197)) (-3787 (($) 119)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 182)) (-3026 (((-398 (-1136 $)) (-1136 $)) 88)) (-3027 (((-398 (-1136 $)) (-1136 $)) 86)) (-4075 (((-398 $) $) 107)) (-4110 (($ $ (-618 (-286 $))) 39) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#2|) 31) (($ $ (-618 (-1048)) (-618 |#2|)) 28) (($ $ (-1048) $) 25) (($ $ (-618 (-1048)) (-618 $)) 23)) (-1699 (((-747) $) 188)) (-4142 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) 147) ((|#2| (-400 $) |#2|) 187) (((-400 $) $ (-400 $)) 169)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 191)) (-4153 (($ $ (-1048)) 140) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) 138) (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4290 (((-747) $) NIL) (((-747) $ (-1048)) 16) (((-618 (-747)) $ (-618 (-1048))) 20)) (-3138 ((|#2| $) NIL) (($ $ (-1048)) 125)) (-4097 (((-3 $ "failed") $ $) 161) (((-3 (-400 $) "failed") (-400 $) $) 157)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-1048)) 51) (($ (-400 (-535))) NIL) (($ $) NIL))) -(((-1199 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -4142 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1699 ((-747) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4142 (|#2| (-400 |#1|) |#2|)) (-15 -4094 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4095 ((-2 (|:| -4296 |#2|) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -4096 (|#1| |#1| |#1|)) (-15 -4097 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4114 ((-747) |#1| |#1|)) (-15 -4142 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4102 (|#1| |#1| (-747))) (-15 -4103 (|#1| |#1| (-747))) (-15 -4104 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| (-747))) (-15 -4107 (|#1| (-1136 |#2|))) (-15 -4108 ((-1136 |#2|) |#1|)) (-15 -4109 ((-1224 |#2|) |#1| (-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| |#2|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3028 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3138 (|#1| |#1| (-1048))) (-15 -3405 ((-618 (-1048)) |#1|)) (-15 -3140 ((-747) |#1| (-618 (-1048)))) (-15 -3140 ((-747) |#1|)) (-15 -3214 (|#1| |#1| (-618 (-1048)) (-618 (-747)))) (-15 -3214 (|#1| |#1| (-1048) (-747))) (-15 -3141 ((-618 (-747)) |#1| (-618 (-1048)))) (-15 -3141 ((-747) |#1| (-1048))) (-15 -3406 ((-3 (-1048) "failed") |#1|)) (-15 -4290 ((-618 (-747)) |#1| (-618 (-1048)))) (-15 -4290 ((-747) |#1| (-1048))) (-15 -3490 ((-1048) |#1|)) (-15 -3491 ((-3 (-1048) #1="failed") |#1|)) (-15 -4300 (|#1| (-1048))) (-15 -4110 (|#1| |#1| (-618 (-1048)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-1048) |#1|)) (-15 -4110 (|#1| |#1| (-618 (-1048)) (-618 |#2|))) (-15 -4110 (|#1| |#1| (-1048) |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4290 ((-747) |#1|)) (-15 -3214 (|#1| |#2| (-747))) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3141 ((-747) |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-618 (-1048)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1048) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1048)))) (-15 -4153 (|#1| |#1| (-1048))) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-1200 |#2|) (-1018)) (T -1199)) -NIL -(-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -4142 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1699 ((-747) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4142 (|#2| (-400 |#1|) |#2|)) (-15 -4094 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4095 ((-2 (|:| -4296 |#2|) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -4096 (|#1| |#1| |#1|)) (-15 -4097 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4114 ((-747) |#1| |#1|)) (-15 -4142 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4102 (|#1| |#1| (-747))) (-15 -4103 (|#1| |#1| (-747))) (-15 -4104 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| (-747))) (-15 -4107 (|#1| (-1136 |#2|))) (-15 -4108 ((-1136 |#2|) |#1|)) (-15 -4109 ((-1224 |#2|) |#1| (-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| |#2|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3028 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3138 (|#1| |#1| (-1048))) (-15 -3405 ((-618 (-1048)) |#1|)) (-15 -3140 ((-747) |#1| (-618 (-1048)))) (-15 -3140 ((-747) |#1|)) (-15 -3214 (|#1| |#1| (-618 (-1048)) (-618 (-747)))) (-15 -3214 (|#1| |#1| (-1048) (-747))) (-15 -3141 ((-618 (-747)) |#1| (-618 (-1048)))) (-15 -3141 ((-747) |#1| (-1048))) (-15 -3406 ((-3 (-1048) "failed") |#1|)) (-15 -4290 ((-618 (-747)) |#1| (-618 (-1048)))) (-15 -4290 ((-747) |#1| (-1048))) (-15 -3490 ((-1048) |#1|)) (-15 -3491 ((-3 (-1048) #1="failed") |#1|)) (-15 -4300 (|#1| (-1048))) (-15 -4110 (|#1| |#1| (-618 (-1048)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-1048) |#1|)) (-15 -4110 (|#1| |#1| (-618 (-1048)) (-618 |#2|))) (-15 -4110 (|#1| |#1| (-1048) |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4290 ((-747) |#1|)) (-15 -3214 (|#1| |#2| (-747))) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3141 ((-747) |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-618 (-1048)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1048) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1048)))) (-15 -4153 (|#1| |#1| (-1048))) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4109 (((-1224 |#1|) $ (-747)) 236)) (-3405 (((-618 (-1048)) $) 108)) (-4107 (($ (-1136 |#1|)) 234)) (-3407 (((-1136 $) $ (-1048)) 123) (((-1136 |#1|) $) 122)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-2171 (($ $) 86 (|has| |#1| (-542)))) (-2169 (((-112) $) 88 (|has| |#1| (-542)))) (-3140 (((-747) $) 110) (((-747) $ (-618 (-1048))) 109)) (-1363 (((-3 $ "failed") $ $) 19)) (-4098 (($ $ $) 221 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) 98 (|has| |#1| (-881)))) (-4117 (($ $) 96 (|has| |#1| (-444)))) (-4312 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 101 (|has| |#1| (-881)))) (-1700 (((-112) $ $) 206 (|has| |#1| (-356)))) (-4103 (($ $ (-747)) 229)) (-4102 (($ $ (-747)) 228)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-444)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-535)) #2#) $) 160 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) 158 (|has| |#1| (-1009 (-535)))) (((-3 (-1048) #2#) $) 134)) (-3490 ((|#1| $) 163) (((-400 (-535)) $) 159 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 157 (|has| |#1| (-1009 (-535)))) (((-1048) $) 133)) (-4099 (($ $ $ (-1048)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2883 (($ $ $) 210 (|has| |#1| (-356)))) (-4302 (($ $) 152)) (-2353 (((-665 (-535)) (-665 $)) 132 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 131 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 209 (|has| |#1| (-356)))) (-4101 (($ $ $) 227)) (-4096 (($ $ $) 218 (|has| |#1| (-542)))) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 $) (|:| -3223 $)) $ $) 217 (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 204 (|has| |#1| (-356)))) (-3840 (($ $) 174 (|has| |#1| (-444))) (($ $ (-1048)) 103 (|has| |#1| (-444)))) (-3139 (((-618 $) $) 107)) (-4069 (((-112) $) 94 (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-747) $) 170)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 82 (-12 (|has| (-1048) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 81 (-12 (|has| (-1048) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ $) 222 (|has| |#1| (-542)))) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 167)) (-3786 (((-3 $ "failed") $) 202 (|has| |#1| (-1117)))) (-3408 (($ (-1136 |#1|) (-1048)) 115) (($ (-1136 $) (-1048)) 114)) (-4119 (($ $ (-747)) 233)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) 213 (|has| |#1| (-356)))) (-3142 (((-618 $) $) 124)) (-4280 (((-112) $) 150)) (-3214 (($ |#1| (-747)) 151) (($ $ (-1048) (-747)) 117) (($ $ (-618 (-1048)) (-618 (-747))) 116)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) 118) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 231)) (-3141 (((-747) $) 168) (((-747) $ (-1048)) 120) (((-618 (-747)) $ (-618 (-1048))) 119)) (-3660 (($ $ $) 77 (|has| |#1| (-823)))) (-3661 (($ $ $) 76 (|has| |#1| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) 169)) (-4301 (($ (-1 |#1| |#1|) $) 149)) (-4108 (((-1136 |#1|) $) 235)) (-3406 (((-3 (-1048) #4="failed") $) 121)) (-3215 (($ $) 147)) (-3508 ((|#1| $) 146)) (-2008 (($ (-618 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3576 (((-1124) $) 9)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) 230)) (-3144 (((-3 (-618 $) #4#) $) 112)) (-3143 (((-3 (-618 $) #4#) $) 113)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) 111)) (-4155 (($ $) 214 (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) 201 (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 100 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 99 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 97 (|has| |#1| (-881)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 212 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 211 (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 205 (|has| |#1| (-356)))) (-4110 (($ $ (-618 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-618 $) (-618 $)) 140) (($ $ (-1048) |#1|) 139) (($ $ (-618 (-1048)) (-618 |#1|)) 138) (($ $ (-1048) $) 137) (($ $ (-618 (-1048)) (-618 $)) 136)) (-1699 (((-747) $) 207 (|has| |#1| (-356)))) (-4142 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-400 $) (-400 $) (-400 $)) 223 (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) 215 (|has| |#1| (-356))) (((-400 $) $ (-400 $)) 203 (|has| |#1| (-542)))) (-4106 (((-3 $ "failed") $ (-747)) 232)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 208 (|has| |#1| (-356)))) (-4100 (($ $ (-1048)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-4153 (($ $ (-1048)) 40) (($ $ (-618 (-1048))) 39) (($ $ (-1048) (-747)) 38) (($ $ (-618 (-1048)) (-618 (-747))) 37) (($ $ (-747)) 251) (($ $) 249) (($ $ (-1142)) 248 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 247 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 246 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 245 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4290 (((-747) $) 148) (((-747) $ (-1048)) 128) (((-618 (-747)) $ (-618 (-1048))) 127)) (-4313 (((-861 (-371)) $) 80 (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) 79 (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) 78 (-12 (|has| (-1048) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ (-1048)) 104 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 102 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4097 (((-3 $ "failed") $ $) 220 (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) 219 (|has| |#1| (-542)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 161) (($ (-1048)) 135) (($ (-400 (-535))) 70 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535)))))) (($ $) 83 (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) 166)) (-4023 ((|#1| $ (-747)) 153) (($ $ (-1048) (-747)) 126) (($ $ (-618 (-1048)) (-618 (-747))) 125)) (-3023 (((-3 $ #1#) $) 71 (-3874 (-3179 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1048)) 36) (($ $ (-618 (-1048))) 35) (($ $ (-1048) (-747)) 34) (($ $ (-618 (-1048)) (-618 (-747))) 33) (($ $ (-747)) 252) (($ $) 250) (($ $ (-1142)) 244 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 243 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 242 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 241 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2885 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 73 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 75 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 72 (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 156 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 155 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1200 |#1|) (-138) (-1018)) (T -1200)) -((-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1200 *4)) (-4 *4 (-1018)) (-5 *2 (-1224 *4)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-5 *2 (-1136 *3)))) (-4107 (*1 *1 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-1018)) (-4 *1 (-1200 *3)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4106 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4105 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1200 *3)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1200 *4)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4102 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4101 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)))) (-4153 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))) (-4099 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))) (-4142 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)))) (-4114 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)) (-5 *2 (-747)))) (-4098 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) (-4097 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) (-4097 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)))) (-4096 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) (-4095 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4296 *3) (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1200 *3)))) (-4094 (*1 *2 *1 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1200 *3)))) (-4142 (*1 *2 *3 *2) (-12 (-5 *3 (-400 *1)) (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-4155 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535))))))) -(-13 (-921 |t#1| (-747) (-1048)) (-279 |t#1| |t#1|) (-279 $ $) (-227) (-225 |t#1|) (-10 -8 (-15 -4109 ((-1224 |t#1|) $ (-747))) (-15 -4108 ((-1136 |t#1|) $)) (-15 -4107 ($ (-1136 |t#1|))) (-15 -4119 ($ $ (-747))) (-15 -4106 ((-3 $ "failed") $ (-747))) (-15 -4105 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -4104 ((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747))) (-15 -4103 ($ $ (-747))) (-15 -4102 ($ $ (-747))) (-15 -4101 ($ $ $)) (-15 -4153 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4100 (|t#1| $)) (-15 -4099 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-279 (-400 $) (-400 $))) (-15 -4142 ((-400 $) (-400 $) (-400 $))) (-15 -4114 ((-747) $ $)) (-15 -4098 ($ $ $)) (-15 -4097 ((-3 $ "failed") $ $)) (-15 -4097 ((-3 (-400 $) "failed") (-400 $) $)) (-15 -4096 ($ $ $)) (-15 -4095 ((-2 (|:| -4296 |t#1|) (|:| -2091 $) (|:| -3223 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-15 -4094 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-300)) (-6 -4332) (-15 -4142 (|t#1| (-400 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-535)))) (-15 -4155 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-747)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-594 (-524)) -12 (|has| |#1| (-594 (-524))) (|has| (-1048) (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| (-1048) (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| (-1048) (-594 (-861 (-535))))) ((-225 |#1|) . T) ((-227) . T) ((-279 (-400 $) (-400 $)) |has| |#1| (-542)) ((-279 |#1| |#1|) . T) ((-279 $ $) . T) ((-283) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 $) . T) ((-319 |#1| #1#) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-881)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-505 #3=(-1048) |#1|) . T) ((-505 #3# $) . T) ((-505 $ $) . T) ((-542) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-624 #2#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #2#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 #3#) . T) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-371)) -12 (|has| |#1| (-857 (-371))) (|has| (-1048) (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-857 (-535))) (|has| (-1048) (-857 (-535)))) ((-921 |#1| #1# #3#) . T) ((-881) |has| |#1| (-881)) ((-892) |has| |#1| (-356)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 #3#) . T) ((-1009 |#1|) . T) ((-1024 #2#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-1117)) ((-1183) |has| |#1| (-881))) -((-4301 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|))) (-1018) (-1200 |#1|) (-1018) (-1200 |#3|)) (T -1201)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1200 *6)) (-5 *1 (-1201 *5 *4 *6 *2)) (-4 *4 (-1200 *5))))) -(-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|))) -((-3405 (((-618 (-1048)) $) 28)) (-4302 (($ $) 25)) (-3214 (($ |#2| |#3|) NIL) (($ $ (-1048) |#3|) 22) (($ $ (-618 (-1048)) (-618 |#3|)) 21)) (-3215 (($ $) 14)) (-3508 ((|#2| $) 12)) (-4290 ((|#3| $) 10))) -(((-1202 |#1| |#2| |#3|) (-10 -8 (-15 -3405 ((-618 (-1048)) |#1|)) (-15 -3214 (|#1| |#1| (-618 (-1048)) (-618 |#3|))) (-15 -3214 (|#1| |#1| (-1048) |#3|)) (-15 -4302 (|#1| |#1|)) (-15 -3214 (|#1| |#2| |#3|)) (-15 -4290 (|#3| |#1|)) (-15 -3215 (|#1| |#1|)) (-15 -3508 (|#2| |#1|))) (-1203 |#2| |#3|) (-1018) (-768)) (T -1202)) -NIL -(-10 -8 (-15 -3405 ((-618 (-1048)) |#1|)) (-15 -3214 (|#1| |#1| (-618 (-1048)) (-618 |#3|))) (-15 -3214 (|#1| |#1| (-1048) |#3|)) (-15 -4302 (|#1| |#1|)) (-15 -3214 (|#1| |#2| |#3|)) (-15 -4290 (|#3| |#1|)) (-15 -3215 (|#1| |#1|)) (-15 -3508 (|#2| |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4116 (((-1119 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-3213 (((-112) $) 71)) (-4114 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2493 (((-112) $) 30)) (-4119 (($ $ (-890)) 99)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| |#2|) 59) (($ $ (-1048) |#2|) 74) (($ $ (-618 (-1048)) (-618 |#2|)) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4111 (($ $ |#2|) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4142 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4290 ((|#2| $) 62)) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4023 ((|#1| $ |#2|) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-4112 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-1203 |#1| |#2|) (-138) (-1018) (-768)) (T -1203)) -((-4116 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1119 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4142 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1142)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4114 (*1 *2 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4113 (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4113 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4112 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4300 (*2 (-1142)))) (-4 *2 (-1018)))) (-4111 (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4110 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1119 *3))))) -(-13 (-944 |t#1| |t#2| (-1048)) (-10 -8 (-15 -4116 ((-1119 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4142 (|t#1| $ |t#2|)) (-15 -4174 ((-1142) $)) (-15 -4115 (|t#1| $)) (-15 -4119 ($ $ (-890))) (-15 -4114 (|t#2| $)) (-15 -4114 (|t#2| $ |t#2|)) (-15 -4113 ($ $ |t#2|)) (-15 -4113 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4300 (|t#1| (-1142)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4112 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4111 ($ $ |t#2|)) (IF (|has| |t#2| (-1078)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-227)) (IF (|has| |t#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4110 ((-1119 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-279 $ $) |has| |#2| (-1078)) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-944 |#1| |#2| (-1048)) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-4117 ((|#2| |#2|) 12)) (-4312 (((-398 |#2|) |#2|) 14)) (-4118 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-535))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-535)))) 30))) -(((-1204 |#1| |#2|) (-10 -7 (-15 -4312 ((-398 |#2|) |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4118 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-535))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-535)))))) (-542) (-13 (-1200 |#1|) (-542) (-10 -8 (-15 -3478 ($ $ $))))) (T -1204)) -((-4118 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-535)))) (-4 *4 (-13 (-1200 *3) (-542) (-10 -8 (-15 -3478 ($ $ $))))) (-4 *3 (-542)) (-5 *1 (-1204 *3 *4)))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-1200 *3) (-542) (-10 -8 (-15 -3478 ($ $ $))))))) (-4312 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-1204 *4 *3)) (-4 *3 (-13 (-1200 *4) (-542) (-10 -8 (-15 -3478 ($ $ $)))))))) -(-10 -7 (-15 -4312 ((-398 |#2|) |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4118 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-535))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-535)))))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 11)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) NIL) (($ $ (-400 (-535)) (-400 (-535))) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1184 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1214 |#1| |#2| |#3|) #1#) $) 22)) (-3490 (((-1184 |#1| |#2| |#3|) $) NIL) (((-1214 |#1| |#2| |#3|) $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4123 (((-400 (-535)) $) 57)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4124 (($ (-400 (-535)) (-1184 |#1| |#2| |#3|)) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) NIL) (((-400 (-535)) $ (-400 (-535))) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL) (($ $ (-400 (-535))) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) 30) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4122 (((-1184 |#1| |#2| |#3|) $) 60)) (-4120 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) NIL)) (-4121 (((-1184 |#1| |#2| |#3|) $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 39 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 40 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) NIL) (($ $ $) NIL (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $ (-1221 |#2|)) 38)) (-4290 (((-400 (-535)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) 89) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1184 |#1| |#2| |#3|)) 16) (($ (-1214 |#1| |#2| |#3|)) 17) (($ (-1221 |#2|)) 36) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 12)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 32 T CONST)) (-2985 (($) 26 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1205 |#1| |#2| |#3|) (-13 (-1209 |#1| (-1184 |#1| |#2| |#3|)) (-1009 (-1214 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1205)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))) -(-13 (-1209 |#1| (-1184 |#1| |#2| |#3|)) (-1009 (-1214 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) -((-4301 (((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)) 24))) -(((-1206 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4301 ((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)))) (-1018) (-1018) (-1142) (-1142) |#1| |#2|) (T -1206)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5 *7 *9)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1205 *6 *8 *10)) (-5 *1 (-1206 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1142))))) -(-10 -7 (-15 -4301 ((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) 96) (($ $ (-400 (-535)) (-400 (-535))) 95)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) 103)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 160 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) 169)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 155 (|has| |#1| (-356)))) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 154 (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-356)))) (-4069 (((-112) $) 162 (|has| |#1| (-356)))) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) 98) (((-400 (-535)) $ (-400 (-535))) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 99) (($ $ (-400 (-535))) 168)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 158 (|has| |#1| (-356)))) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-400 (-535))) 59) (($ $ (-1048) (-400 (-535))) 74) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 163 (|has| |#1| (-356)))) (-4155 (($ $) 167 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 166 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4075 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-356)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) 152 (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) 102) (($ $ $) 79 (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-4290 (((-400 (-535)) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-1207 |#1|) (-138) (-1018)) (T -1207)) -((-4161 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| *4)))) (-4 *4 (-1018)) (-4 *1 (-1207 *4)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-1207 *3)) (-4 *3 (-1018)))) (-4155 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) (-4155 (*1 *1 *1 *2) (-3874 (-12 (-5 *2 (-1142)) (-4 *1 (-1207 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-535)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1207 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535))))))))) -(-13 (-1203 |t#1| (-400 (-535))) (-10 -8 (-15 -4161 ($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |t#1|))))) (-15 -4119 ($ $ (-400 (-535)))) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (IF (|has| |t#1| (-15 -4155 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -3405 ((-618 (-1142)) |t#1|))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-931)) (IF (|has| |t#1| (-29 (-535))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-400 (-535))) . T) ((-25) . T) ((-38 #2=(-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 $ $) |has| (-400 (-535)) (-1078)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-624 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) ((-944 |#1| #1# (-1048)) . T) ((-892) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1024 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #1#) . T)) -((-3522 (((-112) $) 12)) (-3491 (((-3 |#3| "failed") $) 17)) (-3490 ((|#3| $) 14))) -(((-1208 |#1| |#2| |#3|) (-10 -8 (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| "failed") |#1|)) (-15 -3522 ((-112) |#1|))) (-1209 |#2| |#3|) (-1018) (-1186 |#2|)) (T -1208)) -NIL -(-10 -8 (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| "failed") |#1|)) (-15 -3522 ((-112) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) 96) (($ $ (-400 (-535)) (-400 (-535))) 95)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) 103)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 160 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) 169)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#2| "failed") $) 180)) (-3490 ((|#2| $) 179)) (-2883 (($ $ $) 155 (|has| |#1| (-356)))) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-4123 (((-400 (-535)) $) 177)) (-2882 (($ $ $) 154 (|has| |#1| (-356)))) (-4124 (($ (-400 (-535)) |#2|) 178)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-356)))) (-4069 (((-112) $) 162 (|has| |#1| (-356)))) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) 98) (((-400 (-535)) $ (-400 (-535))) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 99) (($ $ (-400 (-535))) 168)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 158 (|has| |#1| (-356)))) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-400 (-535))) 59) (($ $ (-1048) (-400 (-535))) 74) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4122 ((|#2| $) 176)) (-4120 (((-3 |#2| "failed") $) 174)) (-4121 ((|#2| $) 175)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 163 (|has| |#1| (-356)))) (-4155 (($ $) 167 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 166 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4075 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-356)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) 152 (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) 102) (($ $ $) 79 (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-4290 (((-400 (-535)) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-1209 |#1| |#2|) (-138) (-1018) (-1186 |t#1|)) (T -1209)) -((-4290 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3)) (-5 *2 (-400 (-535))))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1209 *3 *2)) (-4 *2 (-1186 *3)))) (-4124 (*1 *1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-4 *4 (-1018)) (-4 *1 (-1209 *4 *3)) (-4 *3 (-1186 *4)))) (-4123 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3)) (-5 *2 (-400 (-535))))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))) (-4120 (*1 *2 *1) (|partial| -12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3))))) -(-13 (-1207 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -4124 ($ (-400 (-535)) |t#2|)) (-15 -4123 ((-400 (-535)) $)) (-15 -4122 (|t#2| $)) (-15 -4290 ((-400 (-535)) $)) (-15 -4300 ($ |t#2|)) (-15 -4121 (|t#2| $)) (-15 -4120 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-400 (-535))) . T) ((-25) . T) ((-38 #2=(-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 $ $) |has| (-400 (-535)) (-1078)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-624 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) ((-944 |#1| #1# (-1048)) . T) ((-892) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1009 |#2|) . T) ((-1024 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #1#) . T) ((-1207 |#1|) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 96)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) 106) (($ $ (-400 (-535)) (-400 (-535))) 108)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) 51)) (-3829 (($ $) 180 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 156 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) 176 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 152 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) 61)) (-3831 (($ $) 184 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 160 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| "failed") $) NIL)) (-3490 ((|#2| $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) 79)) (-4123 (((-400 (-535)) $) 13)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4124 (($ (-400 (-535)) |#2|) 11)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) 68)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) 103) (((-400 (-535)) $ (-400 (-535))) 104)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 120) (($ $ (-400 (-535))) 118)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) 31) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 115)) (-4285 (($ $) 150 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4122 ((|#2| $) 12)) (-4120 (((-3 |#2| "failed") $) 41)) (-4121 ((|#2| $) 42)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 93 (|has| |#1| (-356)))) (-4155 (($ $) 135 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 140 (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) 112)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) 148 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) 100) (($ $ $) 86 (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 127 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-4290 (((-400 (-535)) $) 16)) (-3832 (($ $) 186 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 162 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 182 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 158 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 178 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 154 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 110)) (-4300 (((-835) $) NIL) (($ (-535)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-400 (-535))) 128 (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) 99)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 117)) (-4115 ((|#1| $) 98)) (-3835 (($ $) 192 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 168 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 188 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 164 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 196 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 172 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 198 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 174 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 194 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 170 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 190 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 166 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 21 T CONST)) (-2985 (($) 17 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) 66)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 92 (|has| |#1| (-356)))) (-4180 (($ $) 131) (($ $ $) 72)) (-4182 (($ $ $) 70)) (** (($ $ (-890)) NIL) (($ $ (-747)) 76) (($ $ (-535)) 145 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 146 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1210 |#1| |#2|) (-1209 |#1| |#2|) (-1018) (-1186 |#1|)) (T -1210)) -NIL -(-1209 |#1| |#2|) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 34)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| (-1205 |#2| |#3| |#4|) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-1009 (-400 (-535))))) (((-3 (-1205 |#2| |#3| |#4|) #1#) $) 20)) (-3490 (((-535) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-1009 (-400 (-535))))) (((-1205 |#2| |#3| |#4|) $) NIL)) (-4302 (($ $) 35)) (-3804 (((-3 $ "failed") $) 25)) (-3840 (($ $) NIL (|has| (-1205 |#2| |#3| |#4|) (-444)))) (-1716 (($ $ (-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|) $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) 11)) (-4280 (((-112) $) NIL)) (-3214 (($ (-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) 23)) (-3141 (((-312 |#2| |#3| |#4|) $) NIL)) (-1717 (($ (-1 (-312 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) $) NIL)) (-4301 (($ (-1 (-1205 |#2| |#3| |#4|) (-1205 |#2| |#3| |#4|)) $) NIL)) (-4126 (((-3 (-815 |#2|) "failed") $) 75)) (-3215 (($ $) NIL)) (-3508 (((-1205 |#2| |#3| |#4|) $) 18)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 (((-1205 |#2| |#3| |#4|) $) NIL)) (-3803 (((-3 $ "failed") $ (-1205 |#2| |#3| |#4|)) NIL (|has| (-1205 |#2| |#3| |#4|) (-542))) (((-3 $ "failed") $ $) NIL)) (-4125 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1205 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $) 58)) (-4290 (((-312 |#2| |#3| |#4|) $) 14)) (-3138 (((-1205 |#2| |#3| |#4|) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-1205 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL (-3874 (|has| (-1205 |#2| |#3| |#4|) (-1009 (-400 (-535)))) (|has| (-1205 |#2| |#3| |#4|) (-38 (-400 (-535))))))) (-4160 (((-618 (-1205 |#2| |#3| |#4|)) $) NIL)) (-4023 (((-1205 |#2| |#3| |#4|) $ (-312 |#2| |#3| |#4|)) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| (-1205 |#2| |#3| |#4|) (-143)))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| (-1205 |#2| |#3| |#4|) (-170)))) (-2170 (((-112) $ $) NIL)) (-2979 (($) 63 T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ (-1205 |#2| |#3| |#4|)) NIL (|has| (-1205 |#2| |#3| |#4|) (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-1205 |#2| |#3| |#4|)) NIL) (($ (-1205 |#2| |#3| |#4|) $) NIL) (($ (-400 (-535)) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| (-1205 |#2| |#3| |#4|) (-38 (-400 (-535))))))) -(((-1211 |#1| |#2| |#3| |#4|) (-13 (-319 (-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-542) (-10 -8 (-15 -4126 ((-3 (-815 |#2|) "failed") $)) (-15 -4125 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1205 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $)))) (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444)) (-13 (-27) (-1164) (-414 |#1|)) (-1142) |#2|) (T -1211)) -((-4126 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) (-5 *2 (-815 *4)) (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4))) (-4125 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1205 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| *4)))))) (|:| |%type| (-1124)))) (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4)))) -(-13 (-319 (-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-542) (-10 -8 (-15 -4126 ((-3 (-815 |#2|) "failed") $)) (-15 -4125 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1205 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $)))) -((-3744 ((|#2| $) 29)) (-4137 ((|#2| $) 18)) (-4139 (($ $) 36)) (-4127 (($ $ (-535)) 64)) (-1264 (((-112) $ (-747)) 33)) (-3346 ((|#2| $ |#2|) 61)) (-4128 ((|#2| $ |#2|) 59)) (-4130 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3347 (($ $ (-618 $)) 60)) (-4138 ((|#2| $) 17)) (-4141 (($ $) NIL) (($ $ (-747)) 42)) (-3352 (((-618 $) $) 26)) (-3348 (((-112) $ $) 50)) (-4065 (((-112) $ (-747)) 32)) (-4062 (((-112) $ (-747)) 31)) (-3864 (((-112) $) 28)) (-4140 ((|#2| $) 24) (($ $ (-747)) 46)) (-4142 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3979 (((-112) $) 22)) (-4134 (($ $) 39)) (-4132 (($ $) 65)) (-4135 (((-747) $) 41)) (-4136 (($ $) 40)) (-4144 (($ $ $) 58) (($ |#2| $) NIL)) (-3859 (((-618 $) $) 27)) (-3375 (((-112) $ $) 48)) (-4299 (((-747) $) 35))) -(((-1212 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| |#1| (-535))) (-15 -4130 (|#2| |#1| "last" |#2|)) (-15 -4128 (|#2| |#1| |#2|)) (-15 -4130 (|#1| |#1| "rest" |#1|)) (-15 -4130 (|#2| |#1| "first" |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4135 ((-747) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -4138 (|#2| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4140 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "last")) (-15 -4140 (|#2| |#1|)) (-15 -4141 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| "rest")) (-15 -4141 (|#1| |#1|)) (-15 -4142 (|#2| |#1| "first")) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#1|)) (-15 -3346 (|#2| |#1| |#2|)) (-15 -4130 (|#2| |#1| #1="value" |#2|)) (-15 -3347 (|#1| |#1| (-618 |#1|))) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -3744 (|#2| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747)))) (-1213 |#2|) (-1178)) (T -1212)) -NIL -(-10 -8 (-15 -4127 (|#1| |#1| (-535))) (-15 -4130 (|#2| |#1| "last" |#2|)) (-15 -4128 (|#2| |#1| |#2|)) (-15 -4130 (|#1| |#1| "rest" |#1|)) (-15 -4130 (|#2| |#1| "first" |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4135 ((-747) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -4138 (|#2| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4140 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "last")) (-15 -4140 (|#2| |#1|)) (-15 -4141 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| "rest")) (-15 -4141 (|#1| |#1|)) (-15 -4142 (|#2| |#1| "first")) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#1|)) (-15 -3346 (|#2| |#1| |#2|)) (-15 -4130 (|#2| |#1| #1="value" |#2|)) (-15 -3347 (|#1| |#1| (-618 |#1|))) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -3744 (|#2| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747)))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4137 ((|#1| $) 65)) (-4139 (($ $) 67)) (-4127 (($ $ (-535)) 52 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ "rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-4138 ((|#1| $) 66)) (-3879 (($) 7 T CONST)) (-4141 (($ $) 73) (($ $ (-747)) 71)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 70) (($ $ (-747)) 68)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 76) (($ $ (-747)) 74)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-4134 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 63)) (-4136 (($ $) 64)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4133 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-4144 (($ $ $) 78) (($ |#1| $) 77)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-1213 |#1|) (-138) (-1178)) (T -1213)) -((-4144 (*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4144 (*1 *1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4141 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4141 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4139 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4136 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) (-4134 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4133 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4133 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4132 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4131 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4129 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4130 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4128 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3)) (-4 *3 (-1178))))) -(-13 (-981 |t#1|) (-10 -8 (-15 -4144 ($ $ $)) (-15 -4144 ($ |t#1| $)) (-15 -4143 (|t#1| $)) (-15 -4142 (|t#1| $ "first")) (-15 -4143 ($ $ (-747))) (-15 -4141 ($ $)) (-15 -4142 ($ $ "rest")) (-15 -4141 ($ $ (-747))) (-15 -4140 (|t#1| $)) (-15 -4142 (|t#1| $ "last")) (-15 -4140 ($ $ (-747))) (-15 -4139 ($ $)) (-15 -4138 (|t#1| $)) (-15 -4137 (|t#1| $)) (-15 -4136 ($ $)) (-15 -4135 ((-747) $)) (-15 -4134 ($ $)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -4133 ($ $ $)) (-15 -4133 ($ $ |t#1|)) (-15 -4132 ($ $)) (-15 -4131 (|t#1| $ |t#1|)) (-15 -4130 (|t#1| $ "first" |t#1|)) (-15 -4129 ($ $ $)) (-15 -4130 ($ $ "rest" $)) (-15 -4128 (|t#1| $ |t#1|)) (-15 -4130 (|t#1| $ "last" |t#1|)) (-15 -4127 ($ $ (-535)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 87)) (-4154 (((-1193 |#2| |#1|) $ (-747)) 73)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) 137 (|has| |#1| (-542)))) (-4113 (($ $ (-747)) 122) (($ $ (-747) (-747)) 124)) (-4116 (((-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 42)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 53) (($ (-1119 |#1|)) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-4147 (($ $) 128)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4159 (($ $) 135)) (-4157 (((-917 |#1|) $ (-747)) 63) (((-917 |#1|) $ (-747) (-747)) 65)) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $) NIL) (((-747) $ (-747)) NIL)) (-2493 (((-112) $) NIL)) (-4150 (($ $) 112)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4146 (($ (-535) (-535) $) 130)) (-4119 (($ $ (-890)) 134)) (-4158 (($ (-1 |#1| (-535)) $) 106)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) 15) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 94)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4151 (($ $) 110)) (-4152 (($ $) 108)) (-4145 (($ (-535) (-535) $) 132)) (-4155 (($ $) 145 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 151 (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 146 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-4148 (($ $ (-535) (-535)) 116)) (-4111 (($ $ (-747)) 118)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4149 (($ $) 114)) (-4110 (((-1119 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-4142 ((|#1| $ (-747)) 91) (($ $ $) 126 (|has| (-747) (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) 103 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $ (-1221 |#2|)) 99)) (-4290 (((-747) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 120)) (-4300 (((-835) $) NIL) (($ (-535)) 24) (($ (-400 (-535))) 143 (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1193 |#2| |#1|)) 80) (($ (-1221 |#2|)) 20)) (-4160 (((-1119 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) 90)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 88)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-747)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 17 T CONST)) (-2985 (($) 13 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) 102)) (-4182 (($ $ $) 18)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ |#1|) 140 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))))) -(((-1214 |#1| |#2| |#3|) (-13 (-1217 |#1|) (-10 -8 (-15 -4300 ($ (-1193 |#2| |#1|))) (-15 -4154 ((-1193 |#2| |#1|) $ (-747))) (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (-15 -4152 ($ $)) (-15 -4151 ($ $)) (-15 -4150 ($ $)) (-15 -4149 ($ $)) (-15 -4148 ($ $ (-535) (-535))) (-15 -4147 ($ $)) (-15 -4146 ($ (-535) (-535) $)) (-15 -4145 ($ (-535) (-535) $)) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1214)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-1193 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-1214 *3 *4 *5)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1193 *5 *4)) (-5 *1 (-1214 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4152 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4150 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4149 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4148 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-4147 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4146 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-4145 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))) -(-13 (-1217 |#1|) (-10 -8 (-15 -4300 ($ (-1193 |#2| |#1|))) (-15 -4154 ((-1193 |#2| |#1|) $ (-747))) (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (-15 -4152 ($ $)) (-15 -4151 ($ $)) (-15 -4150 ($ $)) (-15 -4149 ($ $)) (-15 -4148 ($ $ (-535) (-535))) (-15 -4147 ($ $)) (-15 -4146 ($ (-535) (-535) $)) (-15 -4145 ($ (-535) (-535) $)) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) -((-4301 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#2| |#1|) |#3|))) (-1018) (-1018) (-1217 |#1|) (-1217 |#2|)) (T -1215)) -((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1217 *6)) (-5 *1 (-1215 *5 *6 *4 *2)) (-4 *4 (-1217 *5))))) -(-10 -7 (-15 -4301 (|#4| (-1 |#2| |#1|) |#3|))) -((-3522 (((-112) $) 15)) (-3829 (($ $) 92)) (-3985 (($ $) 68)) (-3827 (($ $) 88)) (-3984 (($ $) 64)) (-3831 (($ $) 96)) (-3983 (($ $) 72)) (-4285 (($ $) 62)) (-4286 (($ $) 60)) (-3832 (($ $) 98)) (-3982 (($ $) 74)) (-3830 (($ $) 94)) (-3981 (($ $) 70)) (-3828 (($ $) 90)) (-3980 (($ $) 66)) (-4300 (((-835) $) 48) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3835 (($ $) 104)) (-3823 (($ $) 80)) (-3833 (($ $) 100)) (-3821 (($ $) 76)) (-3837 (($ $) 108)) (-3825 (($ $) 84)) (-3838 (($ $) 110)) (-3826 (($ $) 86)) (-3836 (($ $) 106)) (-3824 (($ $) 82)) (-3834 (($ $) 102)) (-3822 (($ $) 78)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-400 (-535))) 58))) -(((-1216 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3985 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))) (-15 -3522 ((-112) |#1|)) (-15 -4300 ((-835) |#1|))) (-1217 |#2|) (-1018)) (T -1216)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3985 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))) (-15 -3522 ((-112) |#1|)) (-15 -4300 ((-835) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-747)) 96) (($ $ (-747) (-747)) 95)) (-4116 (((-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 103)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 153) (($ (-1119 |#1|)) 151)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-4159 (($ $) 150)) (-4157 (((-917 |#1|) $ (-747)) 148) (((-917 |#1|) $ (-747) (-747)) 147)) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $) 98) (((-747) $ (-747)) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 99)) (-4158 (($ (-1 |#1| (-535)) $) 149)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-747)) 59) (($ $ (-1048) (-747)) 74) (($ $ (-618 (-1048)) (-618 (-747))) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-4155 (($ $) 145 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 144 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3577 (((-1086) $) 10)) (-4111 (($ $ (-747)) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-4142 ((|#1| $ (-747)) 102) (($ $ $) 79 (|has| (-747) (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-4290 (((-747) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4160 (((-1119 |#1|) $) 152)) (-4023 ((|#1| $ (-747)) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-747)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ |#1|) 146 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535))))))) -(((-1217 |#1|) (-138) (-1018)) (T -1217)) -((-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 (-2 (|:| |k| (-747)) (|:| |c| *3)))) (-4 *3 (-1018)) (-4 *1 (-1217 *3)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-5 *2 (-1119 *3)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-4 *1 (-1217 *3)))) (-4159 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-535))) (-4 *1 (-1217 *3)) (-4 *3 (-1018)))) (-4157 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-917 *4)))) (-4157 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-917 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-4155 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) (-4155 (*1 *1 *1 *2) (-3874 (-12 (-5 *2 (-1142)) (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-535)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535))))))))) -(-13 (-1203 |t#1| (-747)) (-10 -8 (-15 -4161 ($ (-1119 (-2 (|:| |k| (-747)) (|:| |c| |t#1|))))) (-15 -4160 ((-1119 |t#1|) $)) (-15 -4161 ($ (-1119 |t#1|))) (-15 -4159 ($ $)) (-15 -4158 ($ (-1 |t#1| (-535)) $)) (-15 -4157 ((-917 |t#1|) $ (-747))) (-15 -4157 ((-917 |t#1|) $ (-747) (-747))) (IF (|has| |t#1| (-356)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (IF (|has| |t#1| (-15 -4155 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -3405 ((-618 (-1142)) |t#1|))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-931)) (IF (|has| |t#1| (-29 (-535))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-747)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-747) |#1|))) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 $ $) |has| (-747) (-1078)) ((-283) |has| |#1| (-542)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-542) |has| |#1| (-542)) ((-624 #2#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|)))) ((-944 |#1| #1# (-1048)) . T) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1024 #2#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1203 |#1| #1#) . T)) -((-4164 (((-1 (-1119 |#1|) (-618 (-1119 |#1|))) (-1 |#2| (-618 |#2|))) 24)) (-4163 (((-1 (-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4162 (((-1 (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2|)) 13)) (-4167 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4166 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4168 ((|#2| (-1 |#2| (-618 |#2|)) (-618 |#1|)) 54)) (-4169 (((-618 |#2|) (-618 |#1|) (-618 (-1 |#2| (-618 |#2|)))) 61)) (-4165 ((|#2| |#2| |#2|) 43))) -(((-1218 |#1| |#2|) (-10 -7 (-15 -4162 ((-1 (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2|))) (-15 -4163 ((-1 (-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4164 ((-1 (-1119 |#1|) (-618 (-1119 |#1|))) (-1 |#2| (-618 |#2|)))) (-15 -4165 (|#2| |#2| |#2|)) (-15 -4166 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4167 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4168 (|#2| (-1 |#2| (-618 |#2|)) (-618 |#1|))) (-15 -4169 ((-618 |#2|) (-618 |#1|) (-618 (-1 |#2| (-618 |#2|)))))) (-38 (-400 (-535))) (-1217 |#1|)) (T -1218)) -((-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 (-1 *6 (-618 *6)))) (-4 *5 (-38 (-400 (-535)))) (-4 *6 (-1217 *5)) (-5 *2 (-618 *6)) (-5 *1 (-1218 *5 *6)))) (-4168 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-618 *2))) (-5 *4 (-618 *5)) (-4 *5 (-38 (-400 (-535)))) (-4 *2 (-1217 *5)) (-5 *1 (-1218 *5 *2)))) (-4167 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1218 *4 *2)) (-4 *4 (-38 (-400 (-535)))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1218 *4 *2)) (-4 *4 (-38 (-400 (-535)))))) (-4165 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1217 *3)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-618 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-1 (-1119 *4) (-618 (-1119 *4)))) (-5 *1 (-1218 *4 *5)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-1 (-1119 *4) (-1119 *4) (-1119 *4))) (-5 *1 (-1218 *4 *5)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-1 (-1119 *4) (-1119 *4))) (-5 *1 (-1218 *4 *5))))) -(-10 -7 (-15 -4162 ((-1 (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2|))) (-15 -4163 ((-1 (-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4164 ((-1 (-1119 |#1|) (-618 (-1119 |#1|))) (-1 |#2| (-618 |#2|)))) (-15 -4165 (|#2| |#2| |#2|)) (-15 -4166 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4167 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4168 (|#2| (-1 |#2| (-618 |#2|)) (-618 |#1|))) (-15 -4169 ((-618 |#2|) (-618 |#1|) (-618 (-1 |#2| (-618 |#2|)))))) -((-4171 ((|#2| |#4| (-747)) 30)) (-4170 ((|#4| |#2|) 25)) (-4173 ((|#4| (-400 |#2|)) 52 (|has| |#1| (-542)))) (-4172 (((-1 |#4| (-618 |#4|)) |#3|) 46))) -(((-1219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4170 (|#4| |#2|)) (-15 -4171 (|#2| |#4| (-747))) (-15 -4172 ((-1 |#4| (-618 |#4|)) |#3|)) (IF (|has| |#1| (-542)) (-15 -4173 (|#4| (-400 |#2|))) |%noBranch|)) (-1018) (-1200 |#1|) (-634 |#2|) (-1217 |#1|)) (T -1219)) -((-4173 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-542)) (-4 *4 (-1018)) (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *5 *6 *2)) (-4 *6 (-634 *5)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-1200 *4)) (-5 *2 (-1 *6 (-618 *6))) (-5 *1 (-1219 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-1217 *4)))) (-4171 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-4 *2 (-1200 *5)) (-5 *1 (-1219 *5 *2 *6 *3)) (-4 *6 (-634 *2)) (-4 *3 (-1217 *5)))) (-4170 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *3 (-1200 *4)) (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *3 *5 *2)) (-4 *5 (-634 *3))))) -(-10 -7 (-15 -4170 (|#4| |#2|)) (-15 -4171 (|#2| |#4| (-747))) (-15 -4172 ((-1 |#4| (-618 |#4|)) |#3|)) (IF (|has| |#1| (-542)) (-15 -4173 (|#4| (-400 |#2|))) |%noBranch|)) -NIL -(((-1220) (-138)) (T -1220)) -NIL -(-13 (-10 -7 (-6 -2359))) -((-2887 (((-112) $ $) NIL)) (-4174 (((-1142)) 12)) (-3576 (((-1124) $) 17)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11) (((-1142) $) 8)) (-3375 (((-112) $ $) 14))) -(((-1221 |#1|) (-13 (-1067) (-593 (-1142)) (-10 -8 (-15 -4300 ((-1142) $)) (-15 -4174 ((-1142))))) (-1142)) (T -1221)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2))) (-4174 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2)))) -(-13 (-1067) (-593 (-1142)) (-10 -8 (-15 -4300 ((-1142) $)) (-15 -4174 ((-1142))))) -((-4181 (($ (-747)) 18)) (-4178 (((-665 |#2|) $ $) 40)) (-4175 ((|#2| $) 48)) (-4176 ((|#2| $) 47)) (-4179 ((|#2| $ $) 35)) (-4177 (($ $ $) 44)) (-4180 (($ $) 22) (($ $ $) 28)) (-4182 (($ $ $) 15)) (* (($ (-535) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1222 |#1| |#2|) (-10 -8 (-15 -4175 (|#2| |#1|)) (-15 -4176 (|#2| |#1|)) (-15 -4177 (|#1| |#1| |#1|)) (-15 -4178 ((-665 |#2|) |#1| |#1|)) (-15 -4179 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -4181 (|#1| (-747))) (-15 -4182 (|#1| |#1| |#1|))) (-1223 |#2|) (-1178)) (T -1222)) -NIL -(-10 -8 (-15 -4175 (|#2| |#1|)) (-15 -4176 (|#2| |#1|)) (-15 -4177 (|#1| |#1| |#1|)) (-15 -4178 ((-665 |#2|) |#1| |#1|)) (-15 -4179 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -4181 (|#1| (-747))) (-15 -4182 (|#1| |#1| |#1|))) -((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4181 (($ (-747)) 112 (|has| |#1| (-23)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-3761 (((-535) (-1 (-112) |#1|) $) 97) (((-535) |#1| $) 96 (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) 95 (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) 105 (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4175 ((|#1| $) 102 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-4062 (((-112) $ (-747)) 10)) (-4176 ((|#1| $) 103 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-4179 ((|#1| $ $) 106 (|has| |#1| (-1018)))) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-4177 (($ $ $) 104 (|has| |#1| (-1018)))) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 83 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 82 (|has| |#1| (-823)))) (-4180 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4182 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-535) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-703))) (($ $ |#1|) 107 (|has| |#1| (-703)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336))))) -(((-1223 |#1|) (-138) (-1178)) (T -1223)) -((-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-25)))) (-4181 (*1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1223 *3)) (-4 *3 (-23)) (-4 *3 (-1178)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-21)))) (-4180 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-4 *1 (-1223 *3)) (-4 *3 (-1178)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))) (-4178 (*1 *2 *1 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1178)) (-4 *3 (-1018)) (-5 *2 (-665 *3)))) (-4177 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-973)) (-4 *2 (-1018)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-973)) (-4 *2 (-1018))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4182 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4181 ($ (-747))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4180 ($ $)) (-15 -4180 ($ $ $)) (-15 * ($ (-535) $))) |%noBranch|) (IF (|has| |t#1| (-703)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-15 -4179 (|t#1| $ $)) (-15 -4178 ((-665 |t#1|) $ $)) (-15 -4177 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -4176 (|t#1| $)) (-15 -4175 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-19 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1178) . T)) -((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747)) NIL (|has| |#1| (-23)))) (-4183 (($ (-618 |#1|)) 9)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) 15 (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4175 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4062 (((-112) $ (-747)) NIL)) (-4176 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4179 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4177 (($ $ $) NIL (|has| |#1| (-1018)))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 19 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 8)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4182 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-535) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1224 |#1|) (-13 (-1223 |#1|) (-10 -8 (-15 -4183 ($ (-618 |#1|))))) (-1178)) (T -1224)) -((-4183 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1224 *3))))) -(-13 (-1223 |#1|) (-10 -8 (-15 -4183 ($ (-618 |#1|))))) -((-4184 (((-1224 |#2|) (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|) 13)) (-4185 ((|#2| (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|) 15)) (-4301 (((-3 (-1224 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1224 |#1|)) 28) (((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|)) 18))) -(((-1225 |#1| |#2|) (-10 -7 (-15 -4184 ((-1224 |#2|) (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|)) (-15 -4301 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (-15 -4301 ((-3 (-1224 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1224 |#1|)))) (-1178) (-1178)) (T -1225)) -((-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1224 *6)) (-5 *1 (-1225 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1224 *6)) (-5 *1 (-1225 *5 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-1225 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1224 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-5 *2 (-1224 *5)) (-5 *1 (-1225 *6 *5))))) -(-10 -7 (-15 -4184 ((-1224 |#2|) (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|)) (-15 -4301 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (-15 -4301 ((-3 (-1224 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1224 |#1|)))) -((-4186 (((-460) (-618 (-618 (-914 (-219)))) (-618 (-254))) 21) (((-460) (-618 (-618 (-914 (-219))))) 20) (((-460) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254))) 19)) (-4187 (((-1227) (-618 (-618 (-914 (-219)))) (-618 (-254))) 27) (((-1227) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254))) 26)) (-4300 (((-1227) (-460)) 38))) -(((-1226) (-10 -7 (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254)))) (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))))) (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))) (-618 (-254)))) (-15 -4187 ((-1227) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254)))) (-15 -4187 ((-1227) (-618 (-618 (-914 (-219)))) (-618 (-254)))) (-15 -4300 ((-1227) (-460))))) (T -1226)) -((-4300 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1227)) (-5 *1 (-1226)))) (-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-1226)))) (-4187 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *6 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-1226)))) (-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-618 (-254))) (-5 *2 (-460)) (-5 *1 (-1226)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-460)) (-5 *1 (-1226)))) (-4186 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *6 (-618 (-254))) (-5 *2 (-460)) (-5 *1 (-1226))))) -(-10 -7 (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254)))) (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))))) (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))) (-618 (-254)))) (-15 -4187 ((-1227) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254)))) (-15 -4187 ((-1227) (-618 (-618 (-914 (-219)))) (-618 (-254)))) (-15 -4300 ((-1227) (-460)))) -((-2887 (((-112) $ $) NIL)) (-4205 (((-1124) $ (-1124)) 90) (((-1124) $ (-1124) (-1124)) 88) (((-1124) $ (-1124) (-618 (-1124))) 87)) (-4201 (($) 59)) (-4188 (((-1230) $ (-460) (-890)) 45)) (-4194 (((-1230) $ (-890) (-1124)) 73) (((-1230) $ (-890) (-845)) 74)) (-4216 (((-1230) $ (-890) (-371) (-371)) 48)) (-4226 (((-1230) $ (-1124)) 69)) (-4189 (((-1230) $ (-890) (-1124)) 78)) (-4190 (((-1230) $ (-890) (-371) (-371)) 49)) (-4227 (((-1230) $ (-890) (-890)) 46)) (-4207 (((-1230) $) 70)) (-4192 (((-1230) $ (-890) (-1124)) 77)) (-4196 (((-1230) $ (-460) (-890)) 31)) (-4193 (((-1230) $ (-890) (-1124)) 76)) (-4229 (((-618 (-254)) $) 23) (($ $ (-618 (-254))) 24)) (-4228 (((-1230) $ (-747) (-747)) 43)) (-4200 (($ $) 60) (($ (-460) (-618 (-254))) 61)) (-3576 (((-1124) $) NIL)) (-4203 (((-535) $) 38)) (-3577 (((-1086) $) NIL)) (-4197 (((-1224 (-3 (-460) "undefined")) $) 37)) (-4198 (((-1224 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535)))) $) 36)) (-4199 (((-1230) $ (-890) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-845) (-535) (-845) (-535)) 68)) (-4202 (((-618 (-914 (-219))) $) NIL)) (-4195 (((-460) $ (-890)) 33)) (-4225 (((-1230) $ (-747) (-747) (-890) (-890)) 40)) (-4223 (((-1230) $ (-1124)) 79)) (-4191 (((-1230) $ (-890) (-1124)) 75)) (-4300 (((-835) $) 85)) (-4204 (((-1230) $) 80)) (-4222 (((-1230) $ (-890) (-1124)) 71) (((-1230) $ (-890) (-845)) 72)) (-3375 (((-112) $ $) NIL))) -(((-1227) (-13 (-1067) (-10 -8 (-15 -4202 ((-618 (-914 (-219))) $)) (-15 -4201 ($)) (-15 -4200 ($ $)) (-15 -4229 ((-618 (-254)) $)) (-15 -4229 ($ $ (-618 (-254)))) (-15 -4200 ($ (-460) (-618 (-254)))) (-15 -4199 ((-1230) $ (-890) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-845) (-535) (-845) (-535))) (-15 -4198 ((-1224 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535)))) $)) (-15 -4197 ((-1224 (-3 (-460) "undefined")) $)) (-15 -4226 ((-1230) $ (-1124))) (-15 -4196 ((-1230) $ (-460) (-890))) (-15 -4195 ((-460) $ (-890))) (-15 -4222 ((-1230) $ (-890) (-1124))) (-15 -4222 ((-1230) $ (-890) (-845))) (-15 -4194 ((-1230) $ (-890) (-1124))) (-15 -4194 ((-1230) $ (-890) (-845))) (-15 -4193 ((-1230) $ (-890) (-1124))) (-15 -4192 ((-1230) $ (-890) (-1124))) (-15 -4191 ((-1230) $ (-890) (-1124))) (-15 -4223 ((-1230) $ (-1124))) (-15 -4204 ((-1230) $)) (-15 -4225 ((-1230) $ (-747) (-747) (-890) (-890))) (-15 -4190 ((-1230) $ (-890) (-371) (-371))) (-15 -4216 ((-1230) $ (-890) (-371) (-371))) (-15 -4189 ((-1230) $ (-890) (-1124))) (-15 -4228 ((-1230) $ (-747) (-747))) (-15 -4188 ((-1230) $ (-460) (-890))) (-15 -4227 ((-1230) $ (-890) (-890))) (-15 -4205 ((-1124) $ (-1124))) (-15 -4205 ((-1124) $ (-1124) (-1124))) (-15 -4205 ((-1124) $ (-1124) (-618 (-1124)))) (-15 -4207 ((-1230) $)) (-15 -4203 ((-535) $)) (-15 -4300 ((-835) $))))) (T -1227)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1227)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-618 (-914 (-219)))) (-5 *1 (-1227)))) (-4201 (*1 *1) (-5 *1 (-1227))) (-4200 (*1 *1 *1) (-5 *1 (-1227))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1227)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1227)))) (-4200 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-618 (-254))) (-5 *1 (-1227)))) (-4199 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-890)) (-5 *4 (-219)) (-5 *5 (-535)) (-5 *6 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-1224 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535))))) (-5 *1 (-1227)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-1224 (-3 (-460) "undefined"))) (-5 *1 (-1227)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4196 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4195 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-460)) (-5 *1 (-1227)))) (-4222 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4222 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4194 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4194 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4193 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4192 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4191 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4225 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-747)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4190 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4216 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4189 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4188 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4227 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4205 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))) (-4205 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))) (-4205 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1227)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1227))))) -(-13 (-1067) (-10 -8 (-15 -4202 ((-618 (-914 (-219))) $)) (-15 -4201 ($)) (-15 -4200 ($ $)) (-15 -4229 ((-618 (-254)) $)) (-15 -4229 ($ $ (-618 (-254)))) (-15 -4200 ($ (-460) (-618 (-254)))) (-15 -4199 ((-1230) $ (-890) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-845) (-535) (-845) (-535))) (-15 -4198 ((-1224 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535)))) $)) (-15 -4197 ((-1224 (-3 (-460) "undefined")) $)) (-15 -4226 ((-1230) $ (-1124))) (-15 -4196 ((-1230) $ (-460) (-890))) (-15 -4195 ((-460) $ (-890))) (-15 -4222 ((-1230) $ (-890) (-1124))) (-15 -4222 ((-1230) $ (-890) (-845))) (-15 -4194 ((-1230) $ (-890) (-1124))) (-15 -4194 ((-1230) $ (-890) (-845))) (-15 -4193 ((-1230) $ (-890) (-1124))) (-15 -4192 ((-1230) $ (-890) (-1124))) (-15 -4191 ((-1230) $ (-890) (-1124))) (-15 -4223 ((-1230) $ (-1124))) (-15 -4204 ((-1230) $)) (-15 -4225 ((-1230) $ (-747) (-747) (-890) (-890))) (-15 -4190 ((-1230) $ (-890) (-371) (-371))) (-15 -4216 ((-1230) $ (-890) (-371) (-371))) (-15 -4189 ((-1230) $ (-890) (-1124))) (-15 -4228 ((-1230) $ (-747) (-747))) (-15 -4188 ((-1230) $ (-460) (-890))) (-15 -4227 ((-1230) $ (-890) (-890))) (-15 -4205 ((-1124) $ (-1124))) (-15 -4205 ((-1124) $ (-1124) (-1124))) (-15 -4205 ((-1124) $ (-1124) (-618 (-1124)))) (-15 -4207 ((-1230) $)) (-15 -4203 ((-535) $)) (-15 -4300 ((-835) $)))) -((-2887 (((-112) $ $) NIL)) (-4217 (((-1230) $ (-371)) 140) (((-1230) $ (-371) (-371) (-371)) 141)) (-4205 (((-1124) $ (-1124)) 148) (((-1124) $ (-1124) (-1124)) 146) (((-1124) $ (-1124) (-618 (-1124))) 145)) (-4233 (($) 50)) (-4224 (((-1230) $ (-371) (-371) (-371) (-371) (-371)) 116) (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $) 114) (((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 115) (((-1230) $ (-535) (-535) (-371) (-371) (-371)) 117) (((-1230) $ (-371) (-371)) 118) (((-1230) $ (-371) (-371) (-371)) 125)) (-4236 (((-371)) 97) (((-371) (-371)) 98)) (-4238 (((-371)) 92) (((-371) (-371)) 94)) (-4237 (((-371)) 95) (((-371) (-371)) 96)) (-4234 (((-371)) 101) (((-371) (-371)) 102)) (-4235 (((-371)) 99) (((-371) (-371)) 100)) (-4216 (((-1230) $ (-371) (-371)) 142)) (-4226 (((-1230) $ (-1124)) 126)) (-4231 (((-1099 (-219)) $) 51) (($ $ (-1099 (-219))) 52)) (-4212 (((-1230) $ (-1124)) 154)) (-4211 (((-1230) $ (-1124)) 155)) (-4218 (((-1230) $ (-371) (-371)) 124) (((-1230) $ (-535) (-535)) 139)) (-4227 (((-1230) $ (-890) (-890)) 132)) (-4207 (((-1230) $) 112)) (-4215 (((-1230) $ (-1124)) 153)) (-4220 (((-1230) $ (-1124)) 109)) (-4229 (((-618 (-254)) $) 53) (($ $ (-618 (-254))) 54)) (-4228 (((-1230) $ (-747) (-747)) 131)) (-4230 (((-1230) $ (-747) (-914 (-219))) 160)) (-4232 (($ $) 56) (($ (-1099 (-219)) (-1124)) 57) (($ (-1099 (-219)) (-618 (-254))) 58)) (-4209 (((-1230) $ (-371) (-371) (-371)) 106)) (-3576 (((-1124) $) NIL)) (-4203 (((-535) $) 103)) (-4208 (((-1230) $ (-371)) 143)) (-4213 (((-1230) $ (-371)) 158)) (-3577 (((-1086) $) NIL)) (-4214 (((-1230) $ (-371)) 157)) (-4219 (((-1230) $ (-1124)) 111)) (-4225 (((-1230) $ (-747) (-747) (-890) (-890)) 130)) (-4221 (((-1230) $ (-1124)) 108)) (-4223 (((-1230) $ (-1124)) 110)) (-4206 (((-1230) $ (-155) (-155)) 129)) (-4300 (((-835) $) 137)) (-4204 (((-1230) $) 113)) (-4210 (((-1230) $ (-1124)) 156)) (-4222 (((-1230) $ (-1124)) 107)) (-3375 (((-112) $ $) NIL))) -(((-1228) (-13 (-1067) (-10 -8 (-15 -4238 ((-371))) (-15 -4238 ((-371) (-371))) (-15 -4237 ((-371))) (-15 -4237 ((-371) (-371))) (-15 -4236 ((-371))) (-15 -4236 ((-371) (-371))) (-15 -4235 ((-371))) (-15 -4235 ((-371) (-371))) (-15 -4234 ((-371))) (-15 -4234 ((-371) (-371))) (-15 -4233 ($)) (-15 -4232 ($ $)) (-15 -4232 ($ (-1099 (-219)) (-1124))) (-15 -4232 ($ (-1099 (-219)) (-618 (-254)))) (-15 -4231 ((-1099 (-219)) $)) (-15 -4231 ($ $ (-1099 (-219)))) (-15 -4230 ((-1230) $ (-747) (-914 (-219)))) (-15 -4229 ((-618 (-254)) $)) (-15 -4229 ($ $ (-618 (-254)))) (-15 -4228 ((-1230) $ (-747) (-747))) (-15 -4227 ((-1230) $ (-890) (-890))) (-15 -4226 ((-1230) $ (-1124))) (-15 -4225 ((-1230) $ (-747) (-747) (-890) (-890))) (-15 -4224 ((-1230) $ (-371) (-371) (-371) (-371) (-371))) (-15 -4224 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -4224 ((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4224 ((-1230) $ (-535) (-535) (-371) (-371) (-371))) (-15 -4224 ((-1230) $ (-371) (-371))) (-15 -4224 ((-1230) $ (-371) (-371) (-371))) (-15 -4223 ((-1230) $ (-1124))) (-15 -4222 ((-1230) $ (-1124))) (-15 -4221 ((-1230) $ (-1124))) (-15 -4220 ((-1230) $ (-1124))) (-15 -4219 ((-1230) $ (-1124))) (-15 -4218 ((-1230) $ (-371) (-371))) (-15 -4218 ((-1230) $ (-535) (-535))) (-15 -4217 ((-1230) $ (-371))) (-15 -4217 ((-1230) $ (-371) (-371) (-371))) (-15 -4216 ((-1230) $ (-371) (-371))) (-15 -4215 ((-1230) $ (-1124))) (-15 -4214 ((-1230) $ (-371))) (-15 -4213 ((-1230) $ (-371))) (-15 -4212 ((-1230) $ (-1124))) (-15 -4211 ((-1230) $ (-1124))) (-15 -4210 ((-1230) $ (-1124))) (-15 -4209 ((-1230) $ (-371) (-371) (-371))) (-15 -4208 ((-1230) $ (-371))) (-15 -4207 ((-1230) $)) (-15 -4206 ((-1230) $ (-155) (-155))) (-15 -4205 ((-1124) $ (-1124))) (-15 -4205 ((-1124) $ (-1124) (-1124))) (-15 -4205 ((-1124) $ (-1124) (-618 (-1124)))) (-15 -4204 ((-1230) $)) (-15 -4203 ((-535) $))))) (T -1228)) -((-4238 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4238 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4237 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4236 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4235 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4234 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4234 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4233 (*1 *1) (-5 *1 (-1228))) (-4232 (*1 *1 *1) (-5 *1 (-1228))) (-4232 (*1 *1 *2 *3) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1124)) (-5 *1 (-1228)))) (-4232 (*1 *1 *2 *3) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-618 (-254))) (-5 *1 (-1228)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1228)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1228)))) (-4230 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1228)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1228)))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4227 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4225 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-747)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-535)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4222 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4220 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4218 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4218 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4217 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4217 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4216 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4215 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4213 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4212 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4211 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4210 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4209 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4208 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4205 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1228)))) (-4205 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1228)))) (-4205 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1228)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1228))))) -(-13 (-1067) (-10 -8 (-15 -4238 ((-371))) (-15 -4238 ((-371) (-371))) (-15 -4237 ((-371))) (-15 -4237 ((-371) (-371))) (-15 -4236 ((-371))) (-15 -4236 ((-371) (-371))) (-15 -4235 ((-371))) (-15 -4235 ((-371) (-371))) (-15 -4234 ((-371))) (-15 -4234 ((-371) (-371))) (-15 -4233 ($)) (-15 -4232 ($ $)) (-15 -4232 ($ (-1099 (-219)) (-1124))) (-15 -4232 ($ (-1099 (-219)) (-618 (-254)))) (-15 -4231 ((-1099 (-219)) $)) (-15 -4231 ($ $ (-1099 (-219)))) (-15 -4230 ((-1230) $ (-747) (-914 (-219)))) (-15 -4229 ((-618 (-254)) $)) (-15 -4229 ($ $ (-618 (-254)))) (-15 -4228 ((-1230) $ (-747) (-747))) (-15 -4227 ((-1230) $ (-890) (-890))) (-15 -4226 ((-1230) $ (-1124))) (-15 -4225 ((-1230) $ (-747) (-747) (-890) (-890))) (-15 -4224 ((-1230) $ (-371) (-371) (-371) (-371) (-371))) (-15 -4224 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -4224 ((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4224 ((-1230) $ (-535) (-535) (-371) (-371) (-371))) (-15 -4224 ((-1230) $ (-371) (-371))) (-15 -4224 ((-1230) $ (-371) (-371) (-371))) (-15 -4223 ((-1230) $ (-1124))) (-15 -4222 ((-1230) $ (-1124))) (-15 -4221 ((-1230) $ (-1124))) (-15 -4220 ((-1230) $ (-1124))) (-15 -4219 ((-1230) $ (-1124))) (-15 -4218 ((-1230) $ (-371) (-371))) (-15 -4218 ((-1230) $ (-535) (-535))) (-15 -4217 ((-1230) $ (-371))) (-15 -4217 ((-1230) $ (-371) (-371) (-371))) (-15 -4216 ((-1230) $ (-371) (-371))) (-15 -4215 ((-1230) $ (-1124))) (-15 -4214 ((-1230) $ (-371))) (-15 -4213 ((-1230) $ (-371))) (-15 -4212 ((-1230) $ (-1124))) (-15 -4211 ((-1230) $ (-1124))) (-15 -4210 ((-1230) $ (-1124))) (-15 -4209 ((-1230) $ (-371) (-371) (-371))) (-15 -4208 ((-1230) $ (-371))) (-15 -4207 ((-1230) $)) (-15 -4206 ((-1230) $ (-155) (-155))) (-15 -4205 ((-1124) $ (-1124))) (-15 -4205 ((-1124) $ (-1124) (-1124))) (-15 -4205 ((-1124) $ (-1124) (-618 (-1124)))) (-15 -4204 ((-1230) $)) (-15 -4203 ((-535) $)))) -((-4247 (((-618 (-1124)) (-618 (-1124))) 94) (((-618 (-1124))) 90)) (-4248 (((-618 (-1124))) 88)) (-4245 (((-618 (-890)) (-618 (-890))) 63) (((-618 (-890))) 60)) (-4244 (((-618 (-747)) (-618 (-747))) 57) (((-618 (-747))) 53)) (-4246 (((-1230)) 65)) (-4250 (((-890) (-890)) 81) (((-890)) 80)) (-4249 (((-890) (-890)) 79) (((-890)) 78)) (-4242 (((-845) (-845)) 75) (((-845)) 74)) (-4252 (((-219)) 85) (((-219) (-371)) 87)) (-4251 (((-890)) 82) (((-890) (-890)) 83)) (-4243 (((-890) (-890)) 77) (((-890)) 76)) (-4239 (((-845) (-845)) 69) (((-845)) 67)) (-4240 (((-845) (-845)) 71) (((-845)) 70)) (-4241 (((-845) (-845)) 73) (((-845)) 72))) -(((-1229) (-10 -7 (-15 -4239 ((-845))) (-15 -4239 ((-845) (-845))) (-15 -4240 ((-845))) (-15 -4240 ((-845) (-845))) (-15 -4241 ((-845))) (-15 -4241 ((-845) (-845))) (-15 -4242 ((-845))) (-15 -4242 ((-845) (-845))) (-15 -4243 ((-890))) (-15 -4243 ((-890) (-890))) (-15 -4244 ((-618 (-747)))) (-15 -4244 ((-618 (-747)) (-618 (-747)))) (-15 -4245 ((-618 (-890)))) (-15 -4245 ((-618 (-890)) (-618 (-890)))) (-15 -4246 ((-1230))) (-15 -4247 ((-618 (-1124)))) (-15 -4247 ((-618 (-1124)) (-618 (-1124)))) (-15 -4248 ((-618 (-1124)))) (-15 -4249 ((-890))) (-15 -4250 ((-890))) (-15 -4249 ((-890) (-890))) (-15 -4250 ((-890) (-890))) (-15 -4251 ((-890) (-890))) (-15 -4251 ((-890))) (-15 -4252 ((-219) (-371))) (-15 -4252 ((-219))))) (T -1229)) -((-4252 (*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1229)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-1229)))) (-4251 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4251 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4250 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4250 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4249 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4248 (*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))) (-4247 (*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))) (-4247 (*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))) (-4246 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1229)))) (-4245 (*1 *2 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1229)))) (-4245 (*1 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1229)))) (-4244 (*1 *2 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1229)))) (-4244 (*1 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1229)))) (-4243 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4243 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4242 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4242 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4241 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4240 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4240 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4239 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))) -(-10 -7 (-15 -4239 ((-845))) (-15 -4239 ((-845) (-845))) (-15 -4240 ((-845))) (-15 -4240 ((-845) (-845))) (-15 -4241 ((-845))) (-15 -4241 ((-845) (-845))) (-15 -4242 ((-845))) (-15 -4242 ((-845) (-845))) (-15 -4243 ((-890))) (-15 -4243 ((-890) (-890))) (-15 -4244 ((-618 (-747)))) (-15 -4244 ((-618 (-747)) (-618 (-747)))) (-15 -4245 ((-618 (-890)))) (-15 -4245 ((-618 (-890)) (-618 (-890)))) (-15 -4246 ((-1230))) (-15 -4247 ((-618 (-1124)))) (-15 -4247 ((-618 (-1124)) (-618 (-1124)))) (-15 -4248 ((-618 (-1124)))) (-15 -4249 ((-890))) (-15 -4250 ((-890))) (-15 -4249 ((-890) (-890))) (-15 -4250 ((-890) (-890))) (-15 -4251 ((-890) (-890))) (-15 -4251 ((-890))) (-15 -4252 ((-219) (-371))) (-15 -4252 ((-219)))) -((-4253 (($) 7)) (-4300 (((-835) $) 10))) -(((-1230) (-10 -8 (-15 -4253 ($)) (-15 -4300 ((-835) $)))) (T -1230)) -((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1230)))) (-4253 (*1 *1) (-5 *1 (-1230)))) -(-10 -8 (-15 -4253 ($)) (-15 -4300 ((-835) $))) -((-4291 (($ $ |#2|) 10))) -(((-1231 |#1| |#2|) (-10 -8 (-15 -4291 (|#1| |#1| |#2|))) (-1232 |#2|) (-356)) (T -1231)) -NIL -(-10 -8 (-15 -4291 (|#1| |#1| |#2|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4254 (((-133)) 28)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 29)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1232 |#1|) (-138) (-356)) (T -1232)) -((-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-356)))) (-4254 (*1 *2) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) -(-13 (-694 |t#1|) (-10 -8 (-15 -4291 ($ $ |t#1|)) (-15 -4254 ((-133))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T)) -((-4259 (((-618 (-1171 |#1|)) (-1142) (-1171 |#1|)) 74)) (-4257 (((-1119 (-1119 (-917 |#1|))) (-1142) (-1119 (-917 |#1|))) 53)) (-4260 (((-1 (-1119 (-1171 |#1|)) (-1119 (-1171 |#1|))) (-747) (-1171 |#1|) (-1119 (-1171 |#1|))) 64)) (-4255 (((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747)) 55)) (-4258 (((-1 (-1136 (-917 |#1|)) (-917 |#1|)) (-1142)) 29)) (-4256 (((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747)) 54))) -(((-1233 |#1|) (-10 -7 (-15 -4255 ((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747))) (-15 -4256 ((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747))) (-15 -4257 ((-1119 (-1119 (-917 |#1|))) (-1142) (-1119 (-917 |#1|)))) (-15 -4258 ((-1 (-1136 (-917 |#1|)) (-917 |#1|)) (-1142))) (-15 -4259 ((-618 (-1171 |#1|)) (-1142) (-1171 |#1|))) (-15 -4260 ((-1 (-1119 (-1171 |#1|)) (-1119 (-1171 |#1|))) (-747) (-1171 |#1|) (-1119 (-1171 |#1|))))) (-356)) (T -1233)) -((-4260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-747)) (-4 *6 (-356)) (-5 *4 (-1171 *6)) (-5 *2 (-1 (-1119 *4) (-1119 *4))) (-5 *1 (-1233 *6)) (-5 *5 (-1119 *4)))) (-4259 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-618 (-1171 *5))) (-5 *1 (-1233 *5)) (-5 *4 (-1171 *5)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 (-1136 (-917 *4)) (-917 *4))) (-5 *1 (-1233 *4)) (-4 *4 (-356)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-1119 (-1119 (-917 *5)))) (-5 *1 (-1233 *5)) (-5 *4 (-1119 (-917 *5))))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1119 (-917 *4)) (-1119 (-917 *4)))) (-5 *1 (-1233 *4)) (-4 *4 (-356)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1119 (-917 *4)) (-1119 (-917 *4)))) (-5 *1 (-1233 *4)) (-4 *4 (-356))))) -(-10 -7 (-15 -4255 ((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747))) (-15 -4256 ((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747))) (-15 -4257 ((-1119 (-1119 (-917 |#1|))) (-1142) (-1119 (-917 |#1|)))) (-15 -4258 ((-1 (-1136 (-917 |#1|)) (-917 |#1|)) (-1142))) (-15 -4259 ((-618 (-1171 |#1|)) (-1142) (-1171 |#1|))) (-15 -4260 ((-1 (-1119 (-1171 |#1|)) (-1119 (-1171 |#1|))) (-747) (-1171 |#1|) (-1119 (-1171 |#1|))))) -((-4262 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|) 75)) (-4261 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) 74))) -(((-1234 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|))) (-343) (-1200 |#1|) (-1200 |#2|) (-403 |#2| |#3|)) (T -1234)) -((-4262 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-1234 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))) (-4261 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -2123 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) (-5 *1 (-1234 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) -(-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|))) -((-2887 (((-112) $ $) NIL)) (-4263 (((-1101) $) 11)) (-4264 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-1235) (-13 (-1049) (-10 -8 (-15 -4264 ((-1101) $)) (-15 -4263 ((-1101) $))))) (T -1235)) -((-4264 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235))))) -(-13 (-1049) (-10 -8 (-15 -4264 ((-1101) $)) (-15 -4263 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4265 (((-1101) $) 9)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL))) -(((-1236) (-13 (-1049) (-10 -8 (-15 -4265 ((-1101) $))))) (T -1236)) -((-4265 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1236))))) -(-13 (-1049) (-10 -8 (-15 -4265 ((-1101) $)))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 43)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 64) (($ (-535)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-3444 (((-747)) NIL)) (-4266 (((-1230) (-747)) 16)) (-2979 (($) 27 T CONST)) (-2985 (($) 67 T CONST)) (-3375 (((-112) $ $) 69)) (-4291 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) 71) (($ $ $) NIL)) (-4182 (($ $ $) 47)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-1237 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4300 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -4291 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4300 ($ |#4|)) (-15 -4266 ((-1230) (-747))))) (-1018) (-823) (-769) (-921 |#1| |#3| |#2|) (-618 |#2|) (-618 (-747)) (-747)) (T -1237)) -((-4300 (*1 *2 *1) (-12 (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-618 *4)) (-14 *7 (-618 (-747))) (-14 *8 (-747)))) (-4291 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-769)) (-14 *6 (-618 *3)) (-5 *1 (-1237 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-921 *2 *4 *3)) (-14 *7 (-618 (-747))) (-14 *8 (-747)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-618 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-921 *3 *5 *4)) (-14 *7 (-618 (-747))) (-14 *8 (-747)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-14 *8 (-618 *5)) (-5 *2 (-1230)) (-5 *1 (-1237 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-921 *4 *6 *5)) (-14 *9 (-618 *3)) (-14 *10 *3)))) -(-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4300 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -4291 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4300 ($ |#4|)) (-15 -4266 ((-1230) (-747))))) -((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) NIL)) (-4028 (((-618 $) (-618 |#4|)) 88)) (-3405 (((-618 |#3|) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4034 ((|#4| |#4| $) NIL)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) NIL (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3221 (((-618 |#4|) (-618 |#4|) $) 25 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) NIL)) (-3490 (($ (-618 |#4|)) NIL)) (-4141 (((-3 $ #1#) $) 70)) (-4031 ((|#4| |#4| $) 75)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4029 ((|#4| |#4| $) NIL)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) NIL)) (-2063 (((-618 |#4|) $) NIL (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 76)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-4269 (((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-618 |#4|)) 35)) (-2067 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) NIL)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-4140 (((-3 |#4| #1#) $) NIL)) (-4043 (((-618 |#4|) $) 50)) (-4037 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4032 ((|#4| |#4| $) 74)) (-4045 (((-112) $ $) 85)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4033 ((|#4| |#4| $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 |#4| #1#) $) 69)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4025 (((-3 $ #1#) $ |#4|) NIL)) (-4111 (($ $ |#4|) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 67)) (-3911 (($) 42)) (-4290 (((-747) $) NIL)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) NIL)) (-3231 (($ $ |#3|) NIL)) (-3233 (($ $ |#3|) NIL)) (-4030 (($ $) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) NIL) (((-618 |#4|) $) 57)) (-4024 (((-747) $) NIL (|has| |#3| (-361)))) (-4268 (((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-618 |#4|)) 41)) (-4267 (((-618 $) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-618 $) (-618 |#4|)) 66)) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) NIL)) (-4276 (((-112) |#3| $) NIL)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336))))) -(((-1238 |#1| |#2| |#3| |#4|) (-13 (-1173 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4269 ((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4269 ((-3 $ "failed") (-618 |#4|))) (-15 -4268 ((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4268 ((-3 $ "failed") (-618 |#4|))) (-15 -4267 ((-618 $) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4267 ((-618 $) (-618 |#4|))))) (-542) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -1238)) -((-4269 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))) (-4269 (*1 *1 *2) (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6)))) (-4268 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))) (-4268 (*1 *1 *2) (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6)))) (-4267 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-618 (-1238 *6 *7 *8 *9))) (-5 *1 (-1238 *6 *7 *8 *9)))) (-4267 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 (-1238 *4 *5 *6 *7))) (-5 *1 (-1238 *4 *5 *6 *7))))) -(-13 (-1173 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4269 ((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4269 ((-3 $ "failed") (-618 |#4|))) (-15 -4268 ((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4268 ((-3 $ "failed") (-618 |#4|))) (-15 -4267 ((-618 $) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4267 ((-618 $) (-618 |#4|))))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 36)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-1239 |#1|) (-138) (-1018)) (T -1239)) -((-4300 (*1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1018))))) -(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (-15 -4300 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T)) -((-2887 (((-112) $ $) 60)) (-3522 (((-112) $) NIL)) (-4277 (((-618 |#1|) $) 45)) (-4289 (($ $ (-747)) 39)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ (-747)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3879 (($) NIL T CONST)) (-4282 (($ $ $) 63) (($ $ (-795 |#1|)) 49) (($ $ |#1|) 53)) (-3491 (((-3 (-795 |#1|) "failed") $) NIL)) (-3490 (((-795 |#1|) $) NIL)) (-4302 (($ $) 32)) (-3804 (((-3 $ "failed") $) NIL)) (-4293 (((-112) $) NIL)) (-4292 (($ $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-795 |#1|) |#2|) 31)) (-4279 (($ $) 33)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 12)) (-4297 (((-795 |#1|) $) NIL)) (-4298 (((-795 |#1|) $) 34)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-4283 (($ $ $) 62) (($ $ (-795 |#1|)) 51) (($ $ |#1|) 55)) (-1860 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3215 (((-795 |#1|) $) 28)) (-3508 ((|#2| $) 30)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4290 (((-747) $) 36)) (-4295 (((-112) $) 40)) (-4294 ((|#2| $) NIL)) (-4300 (((-835) $) NIL) (($ (-795 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-535)) NIL)) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-795 |#1|)) NIL)) (-4296 ((|#2| $ $) 65) ((|#2| $ (-795 |#1|)) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) 13 T CONST)) (-2985 (($) 15 T CONST)) (-2984 (((-618 (-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3375 (((-112) $ $) 38)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 22)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-795 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1240 |#1| |#2|) (-13 (-377 |#2| (-795 |#1|)) (-1247 |#1| |#2|)) (-823) (-1018)) (T -1240)) -NIL -(-13 (-377 |#2| (-795 |#1|)) (-1247 |#1| |#2|)) -((-4285 ((|#3| |#3| (-747)) 23)) (-4286 ((|#3| |#3| (-747)) 27)) (-4270 ((|#3| |#3| |#3| (-747)) 28))) -(((-1241 |#1| |#2| |#3|) (-10 -7 (-15 -4286 (|#3| |#3| (-747))) (-15 -4285 (|#3| |#3| (-747))) (-15 -4270 (|#3| |#3| |#3| (-747)))) (-13 (-1018) (-694 (-400 (-535)))) (-823) (-1247 |#2| |#1|)) (T -1241)) -((-4270 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))) (-4285 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))) (-4286 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4))))) -(-10 -7 (-15 -4286 (|#3| |#3| (-747))) (-15 -4285 (|#3| |#3| (-747))) (-15 -4270 (|#3| |#3| |#3| (-747)))) -((-4275 (((-112) $) 15)) (-4276 (((-112) $) 14)) (-4271 (($ $) 19) (($ $ (-747)) 20))) -(((-1242 |#1| |#2|) (-10 -8 (-15 -4271 (|#1| |#1| (-747))) (-15 -4271 (|#1| |#1|)) (-15 -4275 ((-112) |#1|)) (-15 -4276 ((-112) |#1|))) (-1243 |#2|) (-356)) (T -1242)) -NIL -(-10 -8 (-15 -4271 (|#1| |#1| (-747))) (-15 -4271 (|#1| |#1|)) (-15 -4275 ((-112) |#1|)) (-15 -4276 ((-112) |#1|))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-4275 (((-112) $) 91)) (-4272 (((-747)) 87)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| "failed") $) 98)) (-3490 ((|#1| $) 97)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-1881 (($ $ (-747)) 84 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) 68)) (-4114 (((-808 (-890)) $) 81 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-4274 (((-112) $) 90)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 71)) (-4273 (((-808 (-890))) 88)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1882 (((-3 (-747) "failed") $ $) 82 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) 96)) (-4290 (((-808 (-890)) $) 89)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ |#1|) 99)) (-3023 (((-3 $ "failed") $) 80 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-4276 (((-112) $) 92)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-4271 (($ $) 86 (|has| |#1| (-361))) (($ $ (-747)) 85 (|has| |#1| (-361)))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62) (($ $ |#1|) 95)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1243 |#1|) (-138) (-356)) (T -1243)) -((-4276 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4275 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-808 (-890))))) (-4273 (*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-808 (-890))))) (-4272 (*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-747)))) (-4271 (*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-356)) (-4 *2 (-361)))) (-4271 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-4 *3 (-361))))) -(-13 (-356) (-1009 |t#1|) (-1232 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-395)) |%noBranch|) (-15 -4276 ((-112) $)) (-15 -4275 ((-112) $)) (-15 -4274 ((-112) $)) (-15 -4290 ((-808 (-890)) $)) (-15 -4273 ((-808 (-890)))) (-15 -4272 ((-747))) (IF (|has| |t#1| (-361)) (PROGN (-6 (-395)) (-15 -4271 ($ $)) (-15 -4271 ($ $ (-747)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) -3874 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1009 |#1|) . T) ((-1024 #1#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T) ((-1232 |#1|) . T)) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4277 (((-618 |#1|) $) 38)) (-1363 (((-3 $ "failed") $ $) 19)) (-4278 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-747)) 40 (|has| |#2| (-170)))) (-3879 (($) 17 T CONST)) (-4282 (($ $ |#1|) 52) (($ $ (-795 |#1|)) 51) (($ $ $) 50)) (-3491 (((-3 (-795 |#1|) "failed") $) 62)) (-3490 (((-795 |#1|) $) 61)) (-3804 (((-3 $ "failed") $) 32)) (-4293 (((-112) $) 43)) (-4292 (($ $) 42)) (-2493 (((-112) $) 30)) (-4280 (((-112) $) 48)) (-4281 (($ (-795 |#1|) |#2|) 49)) (-4279 (($ $) 47)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 58)) (-4297 (((-795 |#1|) $) 59)) (-4301 (($ (-1 |#2| |#2|) $) 39)) (-4283 (($ $ |#1|) 55) (($ $ (-795 |#1|)) 54) (($ $ $) 53)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4295 (((-112) $) 45)) (-4294 ((|#2| $) 44)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#2|) 66) (($ (-795 |#1|)) 63) (($ |#1|) 46)) (-4296 ((|#2| $ (-795 |#1|)) 57) ((|#2| $ $) 56)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1244 |#1| |#2|) (-138) (-823) (-1018)) (T -1244)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| |k| (-795 *3)) (|:| |c| *4))))) (-4296 (*1 *2 *1 *3) (-12 (-5 *3 (-795 *4)) (-4 *1 (-1244 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1018)))) (-4296 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (-4283 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4283 (*1 *1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4283 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4282 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4282 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4281 (*1 *1 *2 *3) (-12 (-5 *2 (-795 *4)) (-4 *4 (-823)) (-4 *1 (-1244 *4 *3)) (-4 *3 (-1018)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-4279 (*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4300 (*1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-4292 (*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4278 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)) (-4 *3 (-170)))) (-4278 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-4 *4 (-170)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-618 *3))))) -(-13 (-1018) (-1239 |t#2|) (-1009 (-795 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4297 ((-795 |t#1|) $)) (-15 -4284 ((-2 (|:| |k| (-795 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4296 (|t#2| $ (-795 |t#1|))) (-15 -4296 (|t#2| $ $)) (-15 -4283 ($ $ |t#1|)) (-15 -4283 ($ $ (-795 |t#1|))) (-15 -4283 ($ $ $)) (-15 -4282 ($ $ |t#1|)) (-15 -4282 ($ $ (-795 |t#1|))) (-15 -4282 ($ $ $)) (-15 -4281 ($ (-795 |t#1|) |t#2|)) (-15 -4280 ((-112) $)) (-15 -4279 ($ $)) (-15 -4300 ($ |t#1|)) (-15 -4295 ((-112) $)) (-15 -4294 (|t#2| $)) (-15 -4293 ((-112) $)) (-15 -4292 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -4278 ($ $ $)) (-15 -4278 ($ $ (-747)))) |%noBranch|) (-15 -4301 ($ (-1 |t#2| |t#2|) $)) (-15 -4277 ((-618 |t#1|) $)) (IF (|has| |t#2| (-6 -4329)) (-6 -4329) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#2|) . T) ((-624 $) . T) ((-694 |#2|) |has| |#2| (-170)) ((-703) . T) ((-1009 (-795 |#1|)) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1239 |#2|) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4277 (((-618 |#1|) $) 86)) (-4289 (($ $ (-747)) 89)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-747)) NIL (|has| |#2| (-170)))) (-3879 (($) NIL T CONST)) (-4282 (($ $ |#1|) NIL) (($ $ (-795 |#1|)) NIL) (($ $ $) NIL)) (-3491 (((-3 (-795 |#1|) #1="failed") $) NIL) (((-3 (-864 |#1|) #1#) $) NIL)) (-3490 (((-795 |#1|) $) NIL) (((-864 |#1|) $) NIL)) (-4302 (($ $) 88)) (-3804 (((-3 $ "failed") $) NIL)) (-4293 (((-112) $) 77)) (-4292 (($ $) 81)) (-4287 (($ $ $ (-747)) 90)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-795 |#1|) |#2|) NIL) (($ (-864 |#1|) |#2|) 26)) (-4279 (($ $) 103)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4297 (((-795 |#1|) $) NIL)) (-4298 (((-795 |#1|) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-4283 (($ $ |#1|) NIL) (($ $ (-795 |#1|)) NIL) (($ $ $) NIL)) (-4285 (($ $ (-747)) 97 (|has| |#2| (-694 (-400 (-535)))))) (-1860 (((-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3215 (((-864 |#1|) $) 70)) (-3508 ((|#2| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4286 (($ $ (-747)) 94 (|has| |#2| (-694 (-400 (-535)))))) (-4290 (((-747) $) 87)) (-4295 (((-112) $) 71)) (-4294 ((|#2| $) 75)) (-4300 (((-835) $) 57) (($ (-535)) NIL) (($ |#2|) 51) (($ (-795 |#1|)) NIL) (($ |#1|) 59) (($ (-864 |#1|)) NIL) (($ (-640 |#1| |#2|)) 43) (((-1240 |#1| |#2|) $) 64) (((-1249 |#1| |#2|) $) 69)) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-864 |#1|)) NIL)) (-4296 ((|#2| $ (-795 |#1|)) NIL) ((|#2| $ $) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) 21 T CONST)) (-2985 (($) 25 T CONST)) (-2984 (((-618 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4288 (((-3 (-640 |#1| |#2|) "failed") $) 102)) (-3375 (((-112) $ $) 65)) (-4180 (($ $) 96) (($ $ $) 95)) (-4182 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-864 |#1|)) NIL))) -(((-1245 |#1| |#2|) (-13 (-1247 |#1| |#2|) (-377 |#2| (-864 |#1|)) (-10 -8 (-15 -4300 ($ (-640 |#1| |#2|))) (-15 -4300 ((-1240 |#1| |#2|) $)) (-15 -4300 ((-1249 |#1| |#2|) $)) (-15 -4288 ((-3 (-640 |#1| |#2|) "failed") $)) (-15 -4287 ($ $ $ (-747))) (IF (|has| |#2| (-694 (-400 (-535)))) (PROGN (-15 -4286 ($ $ (-747))) (-15 -4285 ($ $ (-747)))) |%noBranch|))) (-823) (-170)) (T -1245)) -((-4300 (*1 *1 *2) (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *1 (-1245 *3 *4)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4288 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4287 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4286 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-535)))) (-4 *3 (-823)) (-4 *4 (-170)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-535)))) (-4 *3 (-823)) (-4 *4 (-170))))) -(-13 (-1247 |#1| |#2|) (-377 |#2| (-864 |#1|)) (-10 -8 (-15 -4300 ($ (-640 |#1| |#2|))) (-15 -4300 ((-1240 |#1| |#2|) $)) (-15 -4300 ((-1249 |#1| |#2|) $)) (-15 -4288 ((-3 (-640 |#1| |#2|) "failed") $)) (-15 -4287 ($ $ $ (-747))) (IF (|has| |#2| (-694 (-400 (-535)))) (PROGN (-15 -4286 ($ $ (-747))) (-15 -4285 ($ $ (-747)))) |%noBranch|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4277 (((-618 (-1142)) $) NIL)) (-4305 (($ (-1240 (-1142) |#1|)) NIL)) (-4289 (($ $ (-747)) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-747)) NIL (|has| |#1| (-170)))) (-3879 (($) NIL T CONST)) (-4282 (($ $ (-1142)) NIL) (($ $ (-795 (-1142))) NIL) (($ $ $) NIL)) (-3491 (((-3 (-795 (-1142)) "failed") $) NIL)) (-3490 (((-795 (-1142)) $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4293 (((-112) $) NIL)) (-4292 (($ $) NIL)) (-2493 (((-112) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-795 (-1142)) |#1|) NIL)) (-4279 (($ $) NIL)) (-4284 (((-2 (|:| |k| (-795 (-1142))) (|:| |c| |#1|)) $) NIL)) (-4297 (((-795 (-1142)) $) NIL)) (-4298 (((-795 (-1142)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4283 (($ $ (-1142)) NIL) (($ $ (-795 (-1142))) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4306 (((-1240 (-1142) |#1|) $) NIL)) (-4290 (((-747) $) NIL)) (-4295 (((-112) $) NIL)) (-4294 ((|#1| $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-795 (-1142))) NIL) (($ (-1142)) NIL)) (-4296 ((|#1| $ (-795 (-1142))) NIL) ((|#1| $ $) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) NIL T CONST)) (-4304 (((-618 (-2 (|:| |k| (-1142)) (|:| |c| $))) $) NIL)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1142) $) NIL))) -(((-1246 |#1|) (-13 (-1247 (-1142) |#1|) (-10 -8 (-15 -4306 ((-1240 (-1142) |#1|) $)) (-15 -4305 ($ (-1240 (-1142) |#1|))) (-15 -4304 ((-618 (-2 (|:| |k| (-1142)) (|:| |c| $))) $)))) (-1018)) (T -1246)) -((-4306 (*1 *2 *1) (-12 (-5 *2 (-1240 (-1142) *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1018)))) (-4305 (*1 *1 *2) (-12 (-5 *2 (-1240 (-1142) *3)) (-4 *3 (-1018)) (-5 *1 (-1246 *3)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |k| (-1142)) (|:| |c| (-1246 *3))))) (-5 *1 (-1246 *3)) (-4 *3 (-1018))))) -(-13 (-1247 #1=(-1142) |#1|) (-10 -8 (-15 -4306 ((-1240 #1# |#1|) $)) (-15 -4305 ($ (-1240 #1# |#1|))) (-15 -4304 ((-618 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) -((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4277 (((-618 |#1|) $) 38)) (-4289 (($ $ (-747)) 71)) (-1363 (((-3 $ "failed") $ $) 19)) (-4278 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-747)) 40 (|has| |#2| (-170)))) (-3879 (($) 17 T CONST)) (-4282 (($ $ |#1|) 52) (($ $ (-795 |#1|)) 51) (($ $ $) 50)) (-3491 (((-3 (-795 |#1|) "failed") $) 62)) (-3490 (((-795 |#1|) $) 61)) (-3804 (((-3 $ "failed") $) 32)) (-4293 (((-112) $) 43)) (-4292 (($ $) 42)) (-2493 (((-112) $) 30)) (-4280 (((-112) $) 48)) (-4281 (($ (-795 |#1|) |#2|) 49)) (-4279 (($ $) 47)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 58)) (-4297 (((-795 |#1|) $) 59)) (-4298 (((-795 |#1|) $) 73)) (-4301 (($ (-1 |#2| |#2|) $) 39)) (-4283 (($ $ |#1|) 55) (($ $ (-795 |#1|)) 54) (($ $ $) 53)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4290 (((-747) $) 72)) (-4295 (((-112) $) 45)) (-4294 ((|#2| $) 44)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#2|) 66) (($ (-795 |#1|)) 63) (($ |#1|) 46)) (-4296 ((|#2| $ (-795 |#1|)) 57) ((|#2| $ $) 56)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1247 |#1| |#2|) (-138) (-823) (-1018)) (T -1247)) -((-4298 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-747)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))))) -(-13 (-1244 |t#1| |t#2|) (-10 -8 (-15 -4298 ((-795 |t#1|) $)) (-15 -4290 ((-747) $)) (-15 -4289 ($ $ (-747))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#2|) . T) ((-624 $) . T) ((-694 |#2|) |has| |#2| (-170)) ((-703) . T) ((-1009 (-795 |#1|)) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1239 |#2|) . T) ((-1244 |#1| |#2|) . T)) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| "failed") $) NIL)) (-3490 ((|#2| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) 36)) (-4293 (((-112) $) 30)) (-4292 (($ $) 32)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ |#2| |#1|) NIL)) (-4297 ((|#2| $) 19)) (-4298 ((|#2| $) 16)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3215 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4295 (((-112) $) 27)) (-4294 ((|#1| $) 28)) (-4300 (((-835) $) 55) (($ (-535)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ |#2|) NIL)) (-4296 ((|#1| $ |#2|) 24)) (-3444 (((-747)) 14)) (-2979 (($) 25 T CONST)) (-2985 (($) 11 T CONST)) (-2984 (((-618 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3375 (((-112) $ $) 26)) (-4291 (($ $ |#1|) 57 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 44)) (** (($ $ (-890)) NIL) (($ $ (-747)) 46)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4299 (((-747) $) 15))) -(((-1248 |#1| |#2|) (-13 (-1018) (-1239 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4299 ((-747) $)) (-15 -4300 ($ |#2|)) (-15 -4298 (|#2| $)) (-15 -4297 (|#2| $)) (-15 -4302 ($ $)) (-15 -4296 (|#1| $ |#2|)) (-15 -4295 ((-112) $)) (-15 -4294 (|#1| $)) (-15 -4293 ((-112) $)) (-15 -4292 ($ $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -4291 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4329)) (-6 -4329) |%noBranch|) (IF (|has| |#1| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018) (-819)) (T -1248)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-1248 *3 *4)) (-4 *4 (-819)))) (-4300 (*1 *1 *2) (-12 (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-819)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-4298 (*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))) (-4297 (*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))) (-4296 (*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-4294 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-4292 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-819))))) -(-13 (-1018) (-1239 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4299 ((-747) $)) (-15 -4300 ($ |#2|)) (-15 -4298 (|#2| $)) (-15 -4297 (|#2| $)) (-15 -4302 ($ $)) (-15 -4296 (|#1| $ |#2|)) (-15 -4295 ((-112) $)) (-15 -4294 (|#1| $)) (-15 -4293 ((-112) $)) (-15 -4292 ($ $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -4291 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4329)) (-6 -4329) |%noBranch|) (IF (|has| |#1| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) -((-2887 (((-112) $ $) 26)) (-3522 (((-112) $) NIL)) (-4277 (((-618 |#1|) $) 120)) (-4305 (($ (-1240 |#1| |#2|)) 44)) (-4289 (($ $ (-747)) 32)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-747)) 46 (|has| |#2| (-170)))) (-3879 (($) NIL T CONST)) (-4282 (($ $ |#1|) 102) (($ $ (-795 |#1|)) 103) (($ $ $) 25)) (-3491 (((-3 (-795 |#1|) "failed") $) NIL)) (-3490 (((-795 |#1|) $) NIL)) (-3804 (((-3 $ "failed") $) 110)) (-4293 (((-112) $) 105)) (-4292 (($ $) 106)) (-2493 (((-112) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-795 |#1|) |#2|) 19)) (-4279 (($ $) NIL)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4297 (((-795 |#1|) $) 111)) (-4298 (((-795 |#1|) $) 114)) (-4301 (($ (-1 |#2| |#2|) $) 119)) (-4283 (($ $ |#1|) 100) (($ $ (-795 |#1|)) 101) (($ $ $) 56)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4306 (((-1240 |#1| |#2|) $) 84)) (-4290 (((-747) $) 117)) (-4295 (((-112) $) 70)) (-4294 ((|#2| $) 28)) (-4300 (((-835) $) 63) (($ (-535)) 77) (($ |#2|) 74) (($ (-795 |#1|)) 17) (($ |#1|) 73)) (-4296 ((|#2| $ (-795 |#1|)) 104) ((|#2| $ $) 27)) (-3444 (((-747)) 108)) (-2979 (($) 14 T CONST)) (-4304 (((-618 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 13)) (-4180 (($ $) 88) (($ $ $) 91)) (-4182 (($ $ $) 55)) (** (($ $ (-890)) NIL) (($ $ (-747)) 49)) (* (($ (-890) $) NIL) (($ (-747) $) 47) (($ (-535) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1249 |#1| |#2|) (-13 (-1247 |#1| |#2|) (-10 -8 (-15 -4306 ((-1240 |#1| |#2|) $)) (-15 -4305 ($ (-1240 |#1| |#2|))) (-15 -4304 ((-618 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-823) (-1018)) (T -1249)) -((-4306 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4305 (*1 *1 *2) (-12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *1 (-1249 *3 *4)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |k| *3) (|:| |c| (-1249 *3 *4))))) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))))) -(-13 (-1247 |#1| |#2|) (-10 -8 (-15 -4306 ((-1240 |#1| |#2|) $)) (-15 -4305 ($ (-1240 |#1| |#2|))) (-15 -4304 ((-618 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4307 (((-618 (-1119 |#1|)) (-1 (-618 (-1119 |#1|)) (-618 (-1119 |#1|))) (-535)) 15) (((-1119 |#1|) (-1 (-1119 |#1|) (-1119 |#1|))) 11))) -(((-1250 |#1|) (-10 -7 (-15 -4307 ((-1119 |#1|) (-1 (-1119 |#1|) (-1119 |#1|)))) (-15 -4307 ((-618 (-1119 |#1|)) (-1 (-618 (-1119 |#1|)) (-618 (-1119 |#1|))) (-535)))) (-1178)) (T -1250)) -((-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-618 (-1119 *5)) (-618 (-1119 *5)))) (-5 *4 (-535)) (-5 *2 (-618 (-1119 *5))) (-5 *1 (-1250 *5)) (-4 *5 (-1178)))) (-4307 (*1 *2 *3) (-12 (-5 *3 (-1 (-1119 *4) (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1250 *4)) (-4 *4 (-1178))))) -(-10 -7 (-15 -4307 ((-1119 |#1|) (-1 (-1119 |#1|) (-1119 |#1|)))) (-15 -4307 ((-618 (-1119 |#1|)) (-1 (-618 (-1119 |#1|)) (-618 (-1119 |#1|))) (-535)))) -((-4309 (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|))) 148) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112)) 147) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112)) 146) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112) (-112)) 145) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-1015 |#1| |#2|)) 130)) (-4308 (((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|))) 72) (((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112)) 71) (((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112) (-112)) 70)) (-4312 (((-618 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|)) 61)) (-4310 (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|))) 115) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112)) 114) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112)) 113) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112) (-112)) 112) (((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|)) 107)) (-4311 (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|))) 120) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112)) 119) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112)) 118) (((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|)) 117)) (-4313 (((-618 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) 98) (((-1136 (-995 (-400 |#1|))) (-1136 |#1|)) 89) (((-917 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|))) 96) (((-917 (-995 (-400 |#1|))) (-917 |#1|)) 94) (((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|))) 33))) -(((-1251 |#1| |#2| |#3|) (-10 -7 (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112))) (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-1015 |#1| |#2|))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)))) (-15 -4312 ((-618 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|))) (-15 -4313 ((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|)))) (-15 -4313 ((-917 (-995 (-400 |#1|))) (-917 |#1|))) (-15 -4313 ((-917 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|)))) (-15 -4313 ((-1136 (-995 (-400 |#1|))) (-1136 |#1|))) (-15 -4313 ((-618 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))))) (-13 (-821) (-300) (-145) (-991)) (-618 (-1142)) (-618 (-1142))) (T -1251)) -((-4313 (*1 *2 *3) (-12 (-5 *3 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6)))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-756 *4 (-836 *6)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-1136 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-756 *4 (-836 *6))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *6 (-618 (-1142))) (-5 *2 (-917 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-917 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-756 *4 (-836 *5))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-756 *4 (-836 *6))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4311 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4311 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4310 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4310 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4310 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4309 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) (-5 *1 (-1251 *4 *5 *6)) (-5 *3 (-618 (-917 *4))) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4309 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4309 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4309 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *4 *5))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4308 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4308 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142)))))) -(-10 -7 (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112))) (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-1015 |#1| |#2|))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)))) (-15 -4312 ((-618 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|))) (-15 -4313 ((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|)))) (-15 -4313 ((-917 (-995 (-400 |#1|))) (-917 |#1|))) (-15 -4313 ((-917 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|)))) (-15 -4313 ((-1136 (-995 (-400 |#1|))) (-1136 |#1|))) (-15 -4313 ((-618 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))))) -((-4316 (((-3 (-1224 (-400 (-535))) "failed") (-1224 |#1|) |#1|) 21)) (-4314 (((-112) (-1224 |#1|)) 12)) (-4315 (((-3 (-1224 (-535)) "failed") (-1224 |#1|)) 16))) -(((-1252 |#1|) (-10 -7 (-15 -4314 ((-112) (-1224 |#1|))) (-15 -4315 ((-3 (-1224 (-535)) "failed") (-1224 |#1|))) (-15 -4316 ((-3 (-1224 (-400 (-535))) "failed") (-1224 |#1|) |#1|))) (-617 (-535))) (T -1252)) -((-4316 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) (-5 *2 (-1224 (-400 (-535)))) (-5 *1 (-1252 *4)))) (-4315 (*1 *2 *3) (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) (-5 *2 (-1224 (-535))) (-5 *1 (-1252 *4)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) (-5 *2 (-112)) (-5 *1 (-1252 *4))))) -(-10 -7 (-15 -4314 ((-112) (-1224 |#1|))) (-15 -4315 ((-3 (-1224 (-535)) "failed") (-1224 |#1|))) (-15 -4316 ((-3 (-1224 (-400 (-535))) "failed") (-1224 |#1|) |#1|))) -((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 11)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747)) 8)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) 43)) (-3315 (($) 36)) (-2493 (((-112) $) NIL)) (-3786 (((-3 $ "failed") $) 29)) (-2121 (((-890) $) 15)) (-3576 (((-1124) $) NIL)) (-3787 (($) 25 T CONST)) (-2483 (($ (-890)) 37)) (-3577 (((-1086) $) NIL)) (-4313 (((-535) $) 13)) (-4300 (((-835) $) 22) (($ (-535)) 19)) (-3444 (((-747)) 9)) (-2979 (($) 23 T CONST)) (-2985 (($) 24 T CONST)) (-3375 (((-112) $ $) 27)) (-4180 (($ $) 38) (($ $ $) 35)) (-4182 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-747)) 40)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 32) (($ $ $) 31))) -(((-1253 |#1|) (-13 (-170) (-361) (-594 (-535)) (-1117)) (-890)) (T -1253)) -NIL -(-13 (-170) (-361) (-594 (-535)) (-1117)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3163802 3163807 3163812 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3163787 3163792 3163797 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3163772 3163777 3163782 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3163757 3163762 3163767 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1253 3162933 3163632 3163709 "ZMOD" 3163714 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1252 3162043 3162207 3162416 "ZLINDEP" 3162765 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1251 3151419 3153171 3155130 "ZDSOLVE" 3160185 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1250 3150665 3150806 3150995 "YSTREAM" 3151265 NIL YSTREAM (NIL T) -7 NIL NIL) (-1249 3148476 3149966 3150170 "XRPOLY" 3150508 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1248 3144968 3146251 3146835 "XPR" 3147939 NIL XPR (NIL T T) -8 NIL NIL) (-1247 3142817 3144151 3144206 "XPOLYC" 3144494 NIL XPOLYC (NIL T T) -9 NIL 3144607) (-1246 3140582 3142157 3142361 "XPOLY" 3142657 NIL XPOLY (NIL T) -8 NIL NIL) (-1245 3137002 3139099 3139487 "XPBWPOLY" 3140240 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1244 3132394 3133649 3133704 "XFALG" 3135876 NIL XFALG (NIL T T) -9 NIL 3136665) (-1243 3128381 3130627 3130669 "XF" 3131290 NIL XF (NIL T) -9 NIL 3131690) (-1242 3128002 3128090 3128259 "XF-" 3128264 NIL XF- (NIL T T) -8 NIL NIL) (-1241 3127135 3127239 3127444 "XEXPPKG" 3127894 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1240 3125279 3126985 3127081 "XDPOLY" 3127086 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1239 3124195 3124761 3124804 "XALG" 3124867 NIL XALG (NIL T) -9 NIL 3124987) (-1238 3117691 3122172 3122666 "WUTSET" 3123787 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1237 3115542 3116303 3116656 "WP" 3117472 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1236 3115171 3115364 3115434 "WHILEAST" 3115494 T WHILEAST (NIL) -8 NIL NIL) (-1235 3114670 3114888 3114982 "WHEREAST" 3115099 T WHEREAST (NIL) -8 NIL NIL) (-1234 3113556 3113754 3114049 "WFFINTBS" 3114467 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1233 3111460 3111887 3112349 "WEIER" 3113128 NIL WEIER (NIL T) -7 NIL NIL) (-1232 3110607 3111031 3111073 "VSPACE" 3111209 NIL VSPACE (NIL T) -9 NIL 3111283) (-1231 3110445 3110472 3110563 "VSPACE-" 3110568 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1230 3110191 3110234 3110305 "VOID" 3110396 T VOID (NIL) -8 NIL NIL) (-1229 3106616 3107254 3107991 "VIEWDEF" 3109476 T VIEWDEF (NIL) -7 NIL NIL) (-1228 3095954 3098164 3100337 "VIEW3D" 3104465 T VIEW3D (NIL) -8 NIL NIL) (-1227 3088236 3089865 3091444 "VIEW2D" 3094397 T VIEW2D (NIL) -8 NIL NIL) (-1226 3086372 3086731 3087137 "VIEW" 3087852 T VIEW (NIL) -7 NIL NIL) (-1225 3084949 3085208 3085526 "VECTOR2" 3086102 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1224 3080353 3084719 3084811 "VECTOR" 3084892 NIL VECTOR (NIL T) -8 NIL NIL) (-1223 3073880 3078137 3078180 "VECTCAT" 3079173 NIL VECTCAT (NIL T) -9 NIL 3079759) (-1222 3072894 3073148 3073538 "VECTCAT-" 3073543 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1221 3072375 3072545 3072665 "VARIABLE" 3072809 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1220 3072308 3072313 3072343 "UTYPE" 3072348 T UTYPE (NIL) -9 NIL NIL) (-1219 3071138 3071292 3071554 "UTSODETL" 3072134 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1218 3068578 3069038 3069562 "UTSODE" 3070679 NIL UTSODE (NIL T T) -7 NIL NIL) (-1217 3059951 3065270 3065313 "UTSCAT" 3066425 NIL UTSCAT (NIL T) -9 NIL 3067182) (-1216 3057305 3058021 3059010 "UTSCAT-" 3059015 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1215 3056932 3056975 3057108 "UTS2" 3057256 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1214 3048808 3054558 3055047 "UTS" 3056501 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1213 3043084 3045648 3045691 "URAGG" 3047761 NIL URAGG (NIL T) -9 NIL 3048483) (-1212 3040026 3040888 3042010 "URAGG-" 3042015 NIL URAGG- (NIL T T) -8 NIL NIL) (-1211 3035757 3038640 3039112 "UPXSSING" 3039690 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1210 3028872 3035661 3035733 "UPXSCONS" 3035738 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1209 3019232 3025975 3026037 "UPXSCCA" 3026693 NIL UPXSCCA (NIL T T) -9 NIL 3026935) (-1208 3018870 3018955 3019129 "UPXSCCA-" 3019134 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1207 3009156 3015672 3015715 "UPXSCAT" 3016363 NIL UPXSCAT (NIL T) -9 NIL 3016971) (-1206 3008586 3008665 3008844 "UPXS2" 3009071 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1205 3000560 3007701 3007983 "UPXS" 3008362 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1204 2999217 2999469 2999819 "UPSQFREE" 3000304 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1203 2993135 2996144 2996199 "UPSCAT" 2997360 NIL UPSCAT (NIL T T) -9 NIL 2998134) (-1202 2992339 2992546 2992873 "UPSCAT-" 2992878 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1201 2991966 2992009 2992142 "UPOLYC2" 2992290 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1200 2978090 2986053 2986096 "UPOLYC" 2988197 NIL UPOLYC (NIL T) -9 NIL 2989418) (-1199 2969455 2971868 2975003 "UPOLYC-" 2975008 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1198 2968794 2968901 2969065 "UPMP" 2969344 NIL UPMP (NIL T T) -7 NIL NIL) (-1197 2968347 2968428 2968567 "UPDIVP" 2968707 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1196 2966915 2967164 2967480 "UPDECOMP" 2968096 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1195 2966150 2966262 2966447 "UPCDEN" 2966799 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1194 2965669 2965738 2965887 "UP2" 2966075 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1193 2957166 2965235 2965373 "UP" 2965579 NIL UP (NIL NIL T) -8 NIL NIL) (-1192 2956381 2956508 2956713 "UNISEG2" 2957009 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1191 2954898 2955585 2955862 "UNISEG" 2956139 NIL UNISEG (NIL T) -8 NIL NIL) (-1190 2953958 2954138 2954364 "UNIFACT" 2954714 NIL UNIFACT (NIL T) -7 NIL NIL) (-1189 2942016 2953862 2953934 "ULSCONS" 2953939 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1188 2924836 2936755 2936817 "ULSCCAT" 2937537 NIL ULSCCAT (NIL T T) -9 NIL 2937834) (-1187 2923922 2924155 2924531 "ULSCCAT-" 2924536 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1186 2913985 2920415 2920458 "ULSCAT" 2921321 NIL ULSCAT (NIL T) -9 NIL 2922051) (-1185 2913415 2913494 2913673 "ULS2" 2913900 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1184 2897400 2912592 2912843 "ULS" 2913222 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1183 2895838 2896761 2896791 "UFD" 2897003 T UFD (NIL) -9 NIL 2897117) (-1182 2895632 2895678 2895773 "UFD-" 2895778 NIL UFD- (NIL T) -8 NIL NIL) (-1181 2894714 2894897 2895113 "UDVO" 2895438 T UDVO (NIL) -7 NIL NIL) (-1180 2892530 2892939 2893410 "UDPO" 2894278 NIL UDPO (NIL T) -7 NIL NIL) (-1179 2892317 2892485 2892516 "TYPEAST" 2892521 T TYPEAST (NIL) -8 NIL NIL) (-1178 2892250 2892255 2892285 "TYPE" 2892290 T TYPE (NIL) -9 NIL NIL) (-1177 2891221 2891423 2891663 "TWOFACT" 2892044 NIL TWOFACT (NIL T) -7 NIL NIL) (-1176 2890159 2890496 2890759 "TUPLE" 2890993 NIL TUPLE (NIL T) -8 NIL NIL) (-1175 2887850 2888369 2888908 "TUBETOOL" 2889642 T TUBETOOL (NIL) -7 NIL NIL) (-1174 2886699 2886904 2887145 "TUBE" 2887643 NIL TUBE (NIL T) -8 NIL NIL) (-1173 2875366 2879458 2879555 "TSETCAT" 2884824 NIL TSETCAT (NIL T T T T) -9 NIL 2886355) (-1172 2870100 2871698 2873589 "TSETCAT-" 2873594 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1171 2864864 2869072 2869355 "TS" 2869852 NIL TS (NIL T) -8 NIL NIL) (-1170 2859127 2859973 2860915 "TRMANIP" 2864000 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1169 2858568 2858631 2858794 "TRIMAT" 2859059 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1168 2856364 2856601 2856965 "TRIGMNIP" 2858317 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1167 2855884 2855997 2856027 "TRIGCAT" 2856240 T TRIGCAT (NIL) -9 NIL NIL) (-1166 2855553 2855632 2855773 "TRIGCAT-" 2855778 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1165 2852453 2854413 2854693 "TREE" 2855308 NIL TREE (NIL T) -8 NIL NIL) (-1164 2851727 2852255 2852285 "TRANFUN" 2852320 T TRANFUN (NIL) -9 NIL 2852386) (-1163 2851006 2851197 2851477 "TRANFUN-" 2851482 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1162 2850810 2850842 2850903 "TOPSP" 2850967 T TOPSP (NIL) -7 NIL NIL) (-1161 2850158 2850273 2850427 "TOOLSIGN" 2850691 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1160 2848819 2849335 2849574 "TEXTFILE" 2849941 T TEXTFILE (NIL) -8 NIL NIL) (-1159 2848600 2848631 2848703 "TEX1" 2848782 NIL TEX1 (NIL T) -7 NIL NIL) (-1158 2846465 2846979 2847417 "TEX" 2848184 T TEX (NIL) -8 NIL NIL) (-1157 2846113 2846176 2846266 "TEMUTL" 2846397 T TEMUTL (NIL) -7 NIL NIL) (-1156 2844267 2844547 2844872 "TBCMPPK" 2845836 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1155 2836157 2842427 2842483 "TBAGG" 2842883 NIL TBAGG (NIL T T) -9 NIL 2843094) (-1154 2831227 2832715 2834469 "TBAGG-" 2834474 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1153 2830611 2830718 2830863 "TANEXP" 2831116 NIL TANEXP (NIL T) -7 NIL NIL) (-1152 2830023 2830122 2830260 "TABLEAU" 2830508 NIL TABLEAU (NIL T) -8 NIL NIL) (-1151 2823526 2829880 2829973 "TABLE" 2829978 NIL TABLE (NIL T T) -8 NIL NIL) (-1150 2818134 2819354 2820602 "TABLBUMP" 2822312 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1149 2817562 2817662 2817790 "SYSTEM" 2818028 T SYSTEM (NIL) -7 NIL NIL) (-1148 2814025 2814720 2815503 "SYSSOLP" 2816813 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1147 2810317 2811024 2811758 "SYNTAX" 2813313 T SYNTAX (NIL) -8 NIL NIL) (-1146 2807475 2808077 2808709 "SYMTAB" 2809707 T SYMTAB (NIL) -8 NIL NIL) (-1145 2802748 2803644 2804621 "SYMS" 2806520 T SYMS (NIL) -8 NIL NIL) (-1144 2800030 2802209 2802439 "SYMPOLY" 2802556 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1143 2799547 2799622 2799745 "SYMFUNC" 2799942 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1142 2795524 2796784 2797606 "SYMBOL" 2798747 T SYMBOL (NIL) -8 NIL NIL) (-1141 2789063 2790752 2792472 "SWITCH" 2793826 T SWITCH (NIL) -8 NIL NIL) (-1140 2782333 2787884 2788187 "SUTS" 2788818 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1139 2774306 2781448 2781730 "SUPXS" 2782109 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1138 2773465 2773592 2773809 "SUPFRACF" 2774174 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1137 2773086 2773145 2773258 "SUP2" 2773400 NIL SUP2 (NIL T T) -7 NIL NIL) (-1136 2764655 2772704 2772830 "SUP" 2772995 NIL SUP (NIL T) -8 NIL NIL) (-1135 2763068 2763342 2763705 "SUMRF" 2764354 NIL SUMRF (NIL T) -7 NIL NIL) (-1134 2762382 2762448 2762647 "SUMFS" 2762989 NIL SUMFS (NIL T T) -7 NIL NIL) (-1133 2746407 2761559 2761810 "SULS" 2762189 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1132 2746036 2746229 2746299 "SUCHTAST" 2746359 T SUCHTAST (NIL) -8 NIL NIL) (-1131 2745358 2745561 2745701 "SUCH" 2745944 NIL SUCH (NIL T T) -8 NIL NIL) (-1130 2739252 2740264 2741223 "SUBSPACE" 2744446 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1129 2738682 2738772 2738936 "SUBRESP" 2739140 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1128 2732855 2733975 2735122 "STTFNC" 2737582 NIL STTFNC (NIL T) -7 NIL NIL) (-1127 2726224 2727520 2728831 "STTF" 2731591 NIL STTF (NIL T) -7 NIL NIL) (-1126 2717539 2719406 2721200 "STTAYLOR" 2724465 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1125 2710785 2717403 2717486 "STRTBL" 2717491 NIL STRTBL (NIL T) -8 NIL NIL) (-1124 2706176 2710740 2710771 "STRING" 2710776 T STRING (NIL) -8 NIL NIL) (-1123 2701064 2705549 2705579 "STRICAT" 2705638 T STRICAT (NIL) -9 NIL 2705700) (-1122 2700574 2700651 2700795 "STREAM3" 2700981 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1121 2699556 2699739 2699974 "STREAM2" 2700387 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1120 2699244 2699296 2699389 "STREAM1" 2699498 NIL STREAM1 (NIL T) -7 NIL NIL) (-1119 2691959 2696767 2697387 "STREAM" 2698659 NIL STREAM (NIL T) -8 NIL NIL) (-1118 2690975 2691156 2691387 "STINPROD" 2691775 NIL STINPROD (NIL T) -7 NIL NIL) (-1117 2690553 2690737 2690767 "STEP" 2690847 T STEP (NIL) -9 NIL 2690925) (-1116 2684098 2690452 2690529 "STBL" 2690534 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1115 2679275 2683320 2683363 "STAGG" 2683516 NIL STAGG (NIL T) -9 NIL 2683605) (-1114 2676983 2677583 2678453 "STAGG-" 2678458 NIL STAGG- (NIL T T) -8 NIL NIL) (-1113 2675178 2676753 2676845 "STACK" 2676926 NIL STACK (NIL T) -8 NIL NIL) (-1112 2667930 2673319 2673775 "SREGSET" 2674808 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1111 2660356 2661724 2663237 "SRDCMPK" 2666536 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1110 2653323 2657796 2657826 "SRAGG" 2659129 T SRAGG (NIL) -9 NIL 2659737) (-1109 2652340 2652595 2652974 "SRAGG-" 2652979 NIL SRAGG- (NIL T) -8 NIL NIL) (-1108 2646839 2651287 2651708 "SQMATRIX" 2651966 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1107 2640592 2643559 2644285 "SPLTREE" 2646185 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1106 2636582 2637248 2637894 "SPLNODE" 2640018 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1105 2635629 2635862 2635892 "SPFCAT" 2636336 T SPFCAT (NIL) -9 NIL NIL) (-1104 2634366 2634576 2634840 "SPECOUT" 2635387 T SPECOUT (NIL) -7 NIL NIL) (-1103 2626055 2627799 2627829 "SPADXPT" 2632221 T SPADXPT (NIL) -9 NIL 2634255) (-1102 2625816 2625856 2625925 "SPADPRSR" 2626008 T SPADPRSR (NIL) -7 NIL NIL) (-1101 2623999 2625771 2625802 "SPADAST" 2625807 T SPADAST (NIL) -8 NIL NIL) (-1100 2615970 2617717 2617760 "SPACEC" 2622133 NIL SPACEC (NIL T) -9 NIL 2623949) (-1099 2614141 2615902 2615951 "SPACE3" 2615956 NIL SPACE3 (NIL T) -8 NIL NIL) (-1098 2612893 2613064 2613355 "SORTPAK" 2613946 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1097 2610943 2611246 2611665 "SOLVETRA" 2612557 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1096 2609954 2610176 2610450 "SOLVESER" 2610716 NIL SOLVESER (NIL T) -7 NIL NIL) (-1095 2605174 2606055 2607057 "SOLVERAD" 2609006 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1094 2600989 2601598 2602327 "SOLVEFOR" 2604541 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1093 2595313 2600338 2600435 "SNTSCAT" 2600440 NIL SNTSCAT (NIL T T T T) -9 NIL 2600510) (-1092 2589456 2593636 2594027 "SMTS" 2595003 NIL SMTS (NIL T T T) -8 NIL NIL) (-1091 2583932 2589344 2589421 "SMP" 2589426 NIL SMP (NIL T T) -8 NIL NIL) (-1090 2582091 2582392 2582790 "SMITH" 2583629 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1089 2575072 2579223 2579326 "SMATCAT" 2580680 NIL SMATCAT (NIL NIL T T T) -9 NIL 2581230) (-1088 2572033 2572849 2574020 "SMATCAT-" 2574025 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1087 2569746 2571269 2571312 "SKAGG" 2571573 NIL SKAGG (NIL T) -9 NIL 2571708) (-1086 2565864 2568850 2569128 "SINT" 2569490 T SINT (NIL) -8 NIL NIL) (-1085 2565636 2565674 2565740 "SIMPAN" 2565820 T SIMPAN (NIL) -7 NIL NIL) (-1084 2564495 2564709 2564977 "SIGNRF" 2565402 NIL SIGNRF (NIL T) -7 NIL NIL) (-1083 2563321 2563465 2563749 "SIGNEF" 2564331 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1082 2562654 2562904 2563028 "SIGAST" 2563219 T SIGAST (NIL) -8 NIL NIL) (-1081 2561961 2562189 2562329 "SIG" 2562536 T SIG (NIL) -8 NIL NIL) (-1080 2559651 2560105 2560611 "SHP" 2561502 NIL SHP (NIL T NIL) -7 NIL NIL) (-1079 2553564 2559552 2559628 "SHDP" 2559633 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1078 2553163 2553329 2553359 "SGROUP" 2553452 T SGROUP (NIL) -9 NIL 2553514) (-1077 2553021 2553047 2553120 "SGROUP-" 2553125 NIL SGROUP- (NIL T) -8 NIL NIL) (-1076 2549857 2550554 2551277 "SGCF" 2552320 T SGCF (NIL) -7 NIL NIL) (-1075 2544279 2549304 2549401 "SFRTCAT" 2549406 NIL SFRTCAT (NIL T T T T) -9 NIL 2549445) (-1074 2537703 2538718 2539854 "SFRGCD" 2543262 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1073 2530831 2531902 2533088 "SFQCMPK" 2536636 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1072 2530453 2530542 2530652 "SFORT" 2530772 NIL SFORT (NIL T T) -8 NIL NIL) (-1071 2529598 2530293 2530414 "SEXOF" 2530419 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1070 2524374 2525063 2525158 "SEXCAT" 2528929 NIL SEXCAT (NIL T T T T T) -9 NIL 2529548) (-1069 2523508 2524255 2524323 "SEX" 2524328 T SEX (NIL) -8 NIL NIL) (-1068 2521765 2522225 2522528 "SETMN" 2523251 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1067 2521371 2521497 2521527 "SETCAT" 2521644 T SETCAT (NIL) -9 NIL 2521729) (-1066 2521151 2521203 2521302 "SETCAT-" 2521307 NIL SETCAT- (NIL T) -8 NIL NIL) (-1065 2517538 2519612 2519655 "SETAGG" 2520525 NIL SETAGG (NIL T) -9 NIL 2520865) (-1064 2516996 2517112 2517349 "SETAGG-" 2517354 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1063 2514176 2516930 2516978 "SET" 2516983 NIL SET (NIL T) -8 NIL NIL) (-1062 2513646 2513872 2513973 "SEQAST" 2514097 T SEQAST (NIL) -8 NIL NIL) (-1061 2512850 2513143 2513204 "SEGXCAT" 2513490 NIL SEGXCAT (NIL T T) -9 NIL 2513610) (-1060 2511757 2511970 2512013 "SEGCAT" 2512595 NIL SEGCAT (NIL T) -9 NIL 2512833) (-1059 2511378 2511437 2511550 "SEGBIND2" 2511692 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1058 2510427 2510757 2510957 "SEGBIND" 2511213 NIL SEGBIND (NIL T) -8 NIL NIL) (-1057 2510028 2510228 2510305 "SEGAST" 2510372 T SEGAST (NIL) -8 NIL NIL) (-1056 2509247 2509373 2509577 "SEG2" 2509872 NIL SEG2 (NIL T T) -7 NIL NIL) (-1055 2508303 2508913 2509095 "SEG" 2509100 NIL SEG (NIL T) -8 NIL NIL) (-1054 2507740 2508238 2508285 "SDVAR" 2508290 NIL SDVAR (NIL T) -8 NIL NIL) (-1053 2500071 2507510 2507640 "SDPOL" 2507645 NIL SDPOL (NIL T) -8 NIL NIL) (-1052 2498664 2498930 2499249 "SCPKG" 2499786 NIL SCPKG (NIL T) -7 NIL NIL) (-1051 2497800 2497980 2498180 "SCOPE" 2498486 T SCOPE (NIL) -8 NIL NIL) (-1050 2497021 2497154 2497333 "SCACHE" 2497655 NIL SCACHE (NIL T) -7 NIL NIL) (-1049 2496730 2496890 2496920 "SASTCAT" 2496925 T SASTCAT (NIL) -9 NIL 2496938) (-1048 2496169 2496490 2496575 "SAOS" 2496667 T SAOS (NIL) -8 NIL NIL) (-1047 2495734 2495769 2495942 "SAERFFC" 2496128 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1046 2495327 2495362 2495521 "SAEFACT" 2495693 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1045 2489310 2495224 2495304 "SAE" 2495309 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1044 2487631 2487945 2488346 "RURPK" 2488976 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1043 2486267 2486546 2486858 "RULESET" 2487465 NIL RULESET (NIL T T T) -8 NIL NIL) (-1042 2485906 2486061 2486144 "RULECOLD" 2486219 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1041 2483093 2483596 2484061 "RULE" 2485587 NIL RULE (NIL T T T) -8 NIL NIL) (-1040 2482591 2482810 2482904 "RSTRCAST" 2483021 T RSTRCAST (NIL) -8 NIL NIL) (-1039 2477440 2478234 2479154 "RSETGCD" 2481790 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1038 2466724 2471749 2471846 "RSETCAT" 2475965 NIL RSETCAT (NIL T T T T) -9 NIL 2477062) (-1037 2464651 2465190 2466014 "RSETCAT-" 2466019 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1036 2457038 2458413 2459933 "RSDCMPK" 2463250 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1035 2455043 2455484 2455558 "RRCC" 2456644 NIL RRCC (NIL T T) -9 NIL 2456988) (-1034 2454394 2454568 2454847 "RRCC-" 2454852 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1033 2453864 2454090 2454191 "RPTAST" 2454315 T RPTAST (NIL) -8 NIL NIL) (-1032 2428123 2437677 2437744 "RPOLCAT" 2448408 NIL RPOLCAT (NIL T T T) -9 NIL 2451567) (-1031 2419659 2421985 2425095 "RPOLCAT-" 2425100 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1030 2410708 2417870 2418352 "ROUTINE" 2419199 T ROUTINE (NIL) -8 NIL NIL) (-1029 2407468 2410259 2410408 "ROMAN" 2410581 T ROMAN (NIL) -8 NIL NIL) (-1028 2405745 2406328 2406588 "ROIRC" 2407273 NIL ROIRC (NIL T T) -8 NIL NIL) (-1027 2402200 2404435 2404465 "RNS" 2404769 T RNS (NIL) -9 NIL 2405041) (-1026 2400709 2401092 2401626 "RNS-" 2401701 NIL RNS- (NIL T) -8 NIL NIL) (-1025 2400158 2400540 2400570 "RNG" 2400575 T RNG (NIL) -9 NIL 2400596) (-1024 2399550 2399912 2399955 "RMODULE" 2400017 NIL RMODULE (NIL T) -9 NIL 2400059) (-1023 2398386 2398480 2398816 "RMCAT2" 2399451 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1022 2395091 2397560 2397885 "RMATRIX" 2398120 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1021 2388033 2390267 2390382 "RMATCAT" 2393741 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2394723) (-1020 2387408 2387555 2387862 "RMATCAT-" 2387867 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1019 2386975 2387050 2387178 "RINTERP" 2387327 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1018 2386063 2386583 2386613 "RING" 2386725 T RING (NIL) -9 NIL 2386820) (-1017 2385855 2385899 2385996 "RING-" 2386001 NIL RING- (NIL T) -8 NIL NIL) (-1016 2384696 2384933 2385191 "RIDIST" 2385619 T RIDIST (NIL) -7 NIL NIL) (-1015 2376039 2384164 2384370 "RGCHAIN" 2384544 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1014 2375685 2375748 2375851 "RFFACTOR" 2375970 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1013 2375410 2375445 2375542 "RFFACT" 2375644 NIL RFFACT (NIL T) -7 NIL NIL) (-1012 2373527 2373891 2374273 "RFDIST" 2375050 T RFDIST (NIL) -7 NIL NIL) (-1011 2370521 2371135 2371805 "RF" 2372891 NIL RF (NIL T) -7 NIL NIL) (-1010 2369974 2370066 2370229 "RETSOL" 2370423 NIL RETSOL (NIL T T) -7 NIL NIL) (-1009 2369562 2369642 2369685 "RETRACT" 2369878 NIL RETRACT (NIL T) -9 NIL NIL) (-1008 2369411 2369436 2369523 "RETRACT-" 2369528 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1007 2369040 2369233 2369303 "RETAST" 2369363 T RETAST (NIL) -8 NIL NIL) (-1006 2361896 2368693 2368820 "RESULT" 2368935 T RESULT (NIL) -8 NIL NIL) (-1005 2360522 2361165 2361364 "RESRING" 2361799 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1004 2360158 2360207 2360305 "RESLATC" 2360459 NIL RESLATC (NIL T) -7 NIL NIL) (-1003 2359864 2359898 2360005 "REPSQ" 2360117 NIL REPSQ (NIL T) -7 NIL NIL) (-1002 2359562 2359596 2359707 "REPDB" 2359823 NIL REPDB (NIL T) -7 NIL NIL) (-1001 2353472 2354851 2356074 "REP2" 2358374 NIL REP2 (NIL T) -7 NIL NIL) (-1000 2349849 2350530 2351338 "REP1" 2352699 NIL REP1 (NIL T) -7 NIL NIL) (-999 2347280 2347860 2348460 "REP" 2349269 T REP (NIL) -7 NIL NIL) (-998 2340045 2345433 2345887 "REGSET" 2346910 NIL REGSET (NIL T T T T) -8 NIL NIL) (-997 2338866 2339201 2339449 "REF" 2339830 NIL REF (NIL T) -8 NIL NIL) (-996 2338247 2338350 2338515 "REDORDER" 2338750 NIL REDORDER (NIL T T) -7 NIL NIL) (-995 2334298 2337475 2337698 "RECLOS" 2338076 NIL RECLOS (NIL T) -8 NIL NIL) (-994 2333355 2333536 2333749 "REALSOLV" 2334105 T REALSOLV (NIL) -7 NIL NIL) (-993 2329846 2330648 2331530 "REAL0Q" 2332520 NIL REAL0Q (NIL T) -7 NIL NIL) (-992 2325457 2326445 2327504 "REAL0" 2328827 NIL REAL0 (NIL T) -7 NIL NIL) (-991 2325305 2325346 2325374 "REAL" 2325379 T REAL (NIL) -9 NIL 2325414) (-990 2324807 2325026 2325118 "RDUCEAST" 2325233 T RDUCEAST (NIL) -8 NIL NIL) (-989 2324215 2324287 2324492 "RDIV" 2324729 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-988 2323288 2323462 2323673 "RDIST" 2324037 NIL RDIST (NIL T) -7 NIL NIL) (-987 2321889 2322176 2322546 "RDETRS" 2322996 NIL RDETRS (NIL T T) -7 NIL NIL) (-986 2319706 2320160 2320696 "RDETR" 2321431 NIL RDETR (NIL T T) -7 NIL NIL) (-985 2318320 2318598 2319000 "RDEEFS" 2319422 NIL RDEEFS (NIL T T) -7 NIL NIL) (-984 2316818 2317124 2317554 "RDEEF" 2318008 NIL RDEEF (NIL T T) -7 NIL NIL) (-983 2311164 2314026 2314054 "RCFIELD" 2315331 T RCFIELD (NIL) -9 NIL 2316061) (-982 2309233 2309737 2310430 "RCFIELD-" 2310503 NIL RCFIELD- (NIL T) -8 NIL NIL) (-981 2305564 2307349 2307390 "RCAGG" 2308461 NIL RCAGG (NIL T) -9 NIL 2308926) (-980 2305195 2305289 2305449 "RCAGG-" 2305454 NIL RCAGG- (NIL T T) -8 NIL NIL) (-979 2304535 2304647 2304810 "RATRET" 2305079 NIL RATRET (NIL T) -7 NIL NIL) (-978 2304092 2304159 2304278 "RATFACT" 2304463 NIL RATFACT (NIL T) -7 NIL NIL) (-977 2303407 2303527 2303677 "RANDSRC" 2303962 T RANDSRC (NIL) -7 NIL NIL) (-976 2303144 2303188 2303259 "RADUTIL" 2303356 T RADUTIL (NIL) -7 NIL NIL) (-975 2296230 2301887 2302204 "RADIX" 2302859 NIL RADIX (NIL NIL) -8 NIL NIL) (-974 2287897 2296074 2296202 "RADFF" 2296207 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-973 2287549 2287624 2287652 "RADCAT" 2287809 T RADCAT (NIL) -9 NIL NIL) (-972 2287334 2287382 2287479 "RADCAT-" 2287484 NIL RADCAT- (NIL T) -8 NIL NIL) (-971 2285485 2287109 2287198 "QUEUE" 2287278 NIL QUEUE (NIL T) -8 NIL NIL) (-970 2285123 2285166 2285293 "QUATCT2" 2285436 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-969 2278990 2282284 2282324 "QUATCAT" 2283104 NIL QUATCAT (NIL T) -9 NIL 2283870) (-968 2275155 2276185 2277565 "QUATCAT-" 2277659 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-967 2271738 2275092 2275137 "QUAT" 2275142 NIL QUAT (NIL T) -8 NIL NIL) (-966 2269258 2270822 2270863 "QUAGG" 2271238 NIL QUAGG (NIL T) -9 NIL 2271413) (-965 2268890 2269083 2269151 "QQUTAST" 2269210 T QQUTAST (NIL) -8 NIL NIL) (-964 2267815 2268288 2268460 "QFORM" 2268762 NIL QFORM (NIL NIL T) -8 NIL NIL) (-963 2267453 2267496 2267623 "QFCAT2" 2267766 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-962 2258802 2263989 2264029 "QFCAT" 2264687 NIL QFCAT (NIL T) -9 NIL 2265686) (-961 2254410 2255599 2257178 "QFCAT-" 2257272 NIL QFCAT- (NIL T T) -8 NIL NIL) (-960 2253870 2253980 2254110 "QEQUAT" 2254300 T QEQUAT (NIL) -8 NIL NIL) (-959 2247018 2248089 2249273 "QCMPACK" 2252803 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-958 2246263 2246437 2246669 "QALGSET2" 2246838 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-957 2243845 2244264 2244690 "QALGSET" 2245920 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-956 2242536 2242759 2243076 "PWFFINTB" 2243618 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-955 2240735 2240903 2241257 "PUSHVAR" 2242350 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-954 2236653 2237707 2237748 "PTRANFN" 2239632 NIL PTRANFN (NIL T) -9 NIL NIL) (-953 2235055 2235346 2235668 "PTPACK" 2236364 NIL PTPACK (NIL T) -7 NIL NIL) (-952 2234687 2234744 2234853 "PTFUNC2" 2234992 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-951 2229153 2233498 2233539 "PTCAT" 2233912 NIL PTCAT (NIL T) -9 NIL 2234074) (-950 2228811 2228846 2228970 "PSQFR" 2229112 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-949 2227406 2227704 2228038 "PSEUDLIN" 2228509 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-948 2214175 2216540 2218864 "PSETPK" 2225166 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-947 2207219 2209933 2210029 "PSETCAT" 2213050 NIL PSETCAT (NIL T T T T) -9 NIL 2213864) (-946 2205055 2205689 2206510 "PSETCAT-" 2206515 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-945 2204404 2204569 2204597 "PSCURVE" 2204865 T PSCURVE (NIL) -9 NIL 2205032) (-944 2200885 2202367 2202432 "PSCAT" 2203276 NIL PSCAT (NIL T T T) -9 NIL 2203516) (-943 2199948 2200164 2200564 "PSCAT-" 2200569 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-942 2198600 2199233 2199447 "PRTITION" 2199754 T PRTITION (NIL) -8 NIL NIL) (-941 2198102 2198321 2198413 "PRTDAST" 2198528 T PRTDAST (NIL) -8 NIL NIL) (-940 2187200 2189406 2191594 "PRS" 2195964 NIL PRS (NIL T T) -7 NIL NIL) (-939 2185058 2186550 2186590 "PRQAGG" 2186773 NIL PRQAGG (NIL T) -9 NIL 2186875) (-938 2184444 2184673 2184701 "PROPLOG" 2184886 T PROPLOG (NIL) -9 NIL 2185008) (-937 2181614 2182258 2182722 "PROPFRML" 2184012 NIL PROPFRML (NIL T) -8 NIL NIL) (-936 2181074 2181184 2181314 "PROPERTY" 2181504 T PROPERTY (NIL) -8 NIL NIL) (-935 2175159 2179240 2180060 "PRODUCT" 2180300 NIL PRODUCT (NIL T T) -8 NIL NIL) (-934 2174955 2174987 2175046 "PRINT" 2175120 T PRINT (NIL) -7 NIL NIL) (-933 2174295 2174412 2174564 "PRIMES" 2174835 NIL PRIMES (NIL T) -7 NIL NIL) (-932 2172360 2172761 2173227 "PRIMELT" 2173874 NIL PRIMELT (NIL T) -7 NIL NIL) (-931 2172089 2172138 2172166 "PRIMCAT" 2172290 T PRIMCAT (NIL) -9 NIL NIL) (-930 2171096 2171274 2171502 "PRIMARR2" 2171907 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-929 2167257 2171034 2171079 "PRIMARR" 2171084 NIL PRIMARR (NIL T) -8 NIL NIL) (-928 2166900 2166956 2167067 "PREASSOC" 2167195 NIL PREASSOC (NIL T T) -7 NIL NIL) (-927 2164220 2166358 2166592 "PR" 2166711 NIL PR (NIL T T) -8 NIL NIL) (-926 2163695 2163828 2163856 "PPCURVE" 2164061 T PPCURVE (NIL) -9 NIL 2164197) (-925 2163317 2163490 2163573 "PORTNUM" 2163632 T PORTNUM (NIL) -8 NIL NIL) (-924 2160676 2161075 2161667 "POLYROOT" 2162898 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-923 2160059 2160117 2160351 "POLYLIFT" 2160612 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-922 2156334 2156783 2157412 "POLYCATQ" 2159604 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-921 2143387 2148729 2148794 "POLYCAT" 2152308 NIL POLYCAT (NIL T T T) -9 NIL 2154236) (-920 2136894 2138736 2141101 "POLYCAT-" 2141106 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-919 2136481 2136549 2136669 "POLY2UP" 2136820 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-918 2136113 2136170 2136279 "POLY2" 2136418 NIL POLY2 (NIL T T) -7 NIL NIL) (-917 2130089 2135717 2135877 "POLY" 2135986 NIL POLY (NIL T) -8 NIL NIL) (-916 2128774 2129013 2129289 "POLUTIL" 2129863 NIL POLUTIL (NIL T T) -7 NIL NIL) (-915 2127129 2127406 2127737 "POLTOPOL" 2128496 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-914 2122647 2127065 2127111 "POINT" 2127116 NIL POINT (NIL T) -8 NIL NIL) (-913 2120834 2121191 2121566 "PNTHEORY" 2122292 T PNTHEORY (NIL) -7 NIL NIL) (-912 2119253 2119550 2119962 "PMTOOLS" 2120532 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-911 2118846 2118924 2119041 "PMSYM" 2119169 NIL PMSYM (NIL T) -7 NIL NIL) (-910 2118356 2118425 2118599 "PMQFCAT" 2118771 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-909 2117752 2117838 2117999 "PMPREDFS" 2118257 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-908 2117107 2117217 2117373 "PMPRED" 2117629 NIL PMPRED (NIL T) -7 NIL NIL) (-907 2115750 2115958 2116343 "PMPLCAT" 2116869 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-906 2115282 2115361 2115513 "PMLSAGG" 2115665 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-905 2114757 2114833 2115014 "PMKERNEL" 2115200 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-904 2114374 2114449 2114562 "PMINS" 2114676 NIL PMINS (NIL T) -7 NIL NIL) (-903 2113802 2113871 2114087 "PMFS" 2114299 NIL PMFS (NIL T T T) -7 NIL NIL) (-902 2113030 2113148 2113353 "PMDOWN" 2113679 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-901 2112304 2112415 2112578 "PMASSFS" 2112916 NIL PMASSFS (NIL T T) -7 NIL NIL) (-900 2111467 2111626 2111808 "PMASS" 2112142 T PMASS (NIL) -7 NIL NIL) (-899 2111122 2111190 2111284 "PLOTTOOL" 2111393 T PLOTTOOL (NIL) -7 NIL NIL) (-898 2106936 2107970 2108891 "PLOT3D" 2110221 T PLOT3D (NIL) -8 NIL NIL) (-897 2105848 2106025 2106260 "PLOT1" 2106740 NIL PLOT1 (NIL T) -7 NIL NIL) (-896 2100470 2101659 2102807 "PLOT" 2104720 T PLOT (NIL) -8 NIL NIL) (-895 2075864 2080536 2085387 "PLEQN" 2095736 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-894 2075557 2075604 2075707 "PINTERPA" 2075811 NIL PINTERPA (NIL T T) -7 NIL NIL) (-893 2074875 2074997 2075177 "PINTERP" 2075422 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-892 2073307 2074248 2074276 "PID" 2074458 T PID (NIL) -9 NIL 2074592) (-891 2073032 2073069 2073157 "PICOERCE" 2073264 NIL PICOERCE (NIL T) -7 NIL NIL) (-890 2072317 2072838 2072925 "PI" 2072965 T PI (NIL) -8 NIL NIL) (-889 2071637 2071776 2071952 "PGROEB" 2072173 NIL PGROEB (NIL T) -7 NIL NIL) (-888 2067224 2068038 2068943 "PGE" 2070752 T PGE (NIL) -7 NIL NIL) (-887 2065348 2065594 2065960 "PGCD" 2066941 NIL PGCD (NIL T T T T) -7 NIL NIL) (-886 2064686 2064789 2064950 "PFRPAC" 2065232 NIL PFRPAC (NIL T) -7 NIL NIL) (-885 2061368 2063234 2063587 "PFR" 2064365 NIL PFR (NIL T) -8 NIL NIL) (-884 2059757 2060001 2060326 "PFOTOOLS" 2061115 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-883 2058290 2058529 2058880 "PFOQ" 2059514 NIL PFOQ (NIL T T T) -7 NIL NIL) (-882 2056763 2056975 2057338 "PFO" 2058074 NIL PFO (NIL T T T T T) -7 NIL NIL) (-881 2054232 2055469 2055497 "PFECAT" 2056082 T PFECAT (NIL) -9 NIL 2056466) (-880 2053677 2053831 2054045 "PFECAT-" 2054050 NIL PFECAT- (NIL T) -8 NIL NIL) (-879 2052281 2052532 2052833 "PFBRU" 2053426 NIL PFBRU (NIL T T) -7 NIL NIL) (-878 2050148 2050499 2050931 "PFBR" 2051932 NIL PFBR (NIL T T T T) -7 NIL NIL) (-877 2046738 2050037 2050106 "PF" 2050111 NIL PF (NIL NIL) -8 NIL NIL) (-876 2042004 2042945 2043815 "PERMGRP" 2045901 NIL PERMGRP (NIL T) -8 NIL NIL) (-875 2040136 2041067 2041108 "PERMCAT" 2041554 NIL PERMCAT (NIL T) -9 NIL 2041859) (-874 2039789 2039830 2039954 "PERMAN" 2040089 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-873 2035705 2037165 2037841 "PERM" 2039146 NIL PERM (NIL T) -8 NIL NIL) (-872 2033147 2035274 2035405 "PENDTREE" 2035607 NIL PENDTREE (NIL T) -8 NIL NIL) (-871 2031260 2031994 2032035 "PDRING" 2032692 NIL PDRING (NIL T) -9 NIL 2032978) (-870 2030363 2030581 2030943 "PDRING-" 2030948 NIL PDRING- (NIL T T) -8 NIL NIL) (-869 2027504 2028255 2028946 "PDEPROB" 2029692 T PDEPROB (NIL) -8 NIL NIL) (-868 2025051 2025553 2026108 "PDEPACK" 2026969 T PDEPACK (NIL) -7 NIL NIL) (-867 2023963 2024153 2024404 "PDECOMP" 2024850 NIL PDECOMP (NIL T T) -7 NIL NIL) (-866 2021568 2022385 2022413 "PDECAT" 2023200 T PDECAT (NIL) -9 NIL 2023913) (-865 2021319 2021352 2021442 "PCOMP" 2021529 NIL PCOMP (NIL T T) -7 NIL NIL) (-864 2019524 2020120 2020417 "PBWLB" 2021048 NIL PBWLB (NIL T) -8 NIL NIL) (-863 2019156 2019213 2019322 "PATTERN2" 2019461 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-862 2016913 2017301 2017758 "PATTERN1" 2018745 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-861 2009419 2010986 2012324 "PATTERN" 2015596 NIL PATTERN (NIL T) -8 NIL NIL) (-860 2008983 2009050 2009182 "PATRES2" 2009346 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-859 2006378 2006932 2007413 "PATRES" 2008548 NIL PATRES (NIL T T) -8 NIL NIL) (-858 2004261 2004666 2005073 "PATMATCH" 2006045 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-857 2003797 2003980 2004021 "PATMAB" 2004128 NIL PATMAB (NIL T) -9 NIL 2004211) (-856 2002342 2002651 2002909 "PATLRES" 2003602 NIL PATLRES (NIL T T T) -8 NIL NIL) (-855 2001888 2002011 2002052 "PATAB" 2002057 NIL PATAB (NIL T) -9 NIL 2002229) (-854 1999369 1999901 2000474 "PARTPERM" 2001335 T PARTPERM (NIL) -7 NIL NIL) (-853 1998990 1999053 1999155 "PARSURF" 1999300 NIL PARSURF (NIL T) -8 NIL NIL) (-852 1998622 1998679 1998788 "PARSU2" 1998927 NIL PARSU2 (NIL T T) -7 NIL NIL) (-851 1998386 1998426 1998493 "PARSER" 1998575 T PARSER (NIL) -7 NIL NIL) (-850 1998007 1998070 1998172 "PARSCURV" 1998317 NIL PARSCURV (NIL T) -8 NIL NIL) (-849 1997639 1997696 1997805 "PARSC2" 1997944 NIL PARSC2 (NIL T T) -7 NIL NIL) (-848 1997278 1997336 1997433 "PARPCURV" 1997575 NIL PARPCURV (NIL T) -8 NIL NIL) (-847 1996910 1996967 1997076 "PARPC2" 1997215 NIL PARPC2 (NIL T T) -7 NIL NIL) (-846 1996430 1996516 1996635 "PAN2EXPR" 1996811 T PAN2EXPR (NIL) -7 NIL NIL) (-845 1995236 1995551 1995779 "PALETTE" 1996222 T PALETTE (NIL) -8 NIL NIL) (-844 1993704 1994241 1994601 "PAIR" 1994922 NIL PAIR (NIL T T) -8 NIL NIL) (-843 1987633 1992963 1993157 "PADICRC" 1993559 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-842 1980920 1986979 1987163 "PADICRAT" 1987481 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-841 1978167 1979695 1979735 "PADICCT" 1980316 NIL PADICCT (NIL NIL) -9 NIL 1980598) (-840 1976519 1978104 1978149 "PADIC" 1978154 NIL PADIC (NIL NIL) -8 NIL NIL) (-839 1975476 1975676 1975944 "PADEPAC" 1976306 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-838 1974688 1974821 1975027 "PADE" 1975338 NIL PADE (NIL T T T) -7 NIL NIL) (-837 1972738 1973524 1973841 "OWP" 1974455 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-836 1971847 1972343 1972515 "OVAR" 1972606 NIL OVAR (NIL NIL) -8 NIL NIL) (-835 1960901 1963072 1965242 "OUTFORM" 1969697 T OUTFORM (NIL) -8 NIL NIL) (-834 1960538 1960621 1960649 "OUTBCON" 1960800 T OUTBCON (NIL) -9 NIL 1960885) (-833 1960378 1960413 1960489 "OUTBCON-" 1960494 NIL OUTBCON- (NIL T) -8 NIL NIL) (-832 1959642 1959763 1959924 "OUT" 1960237 T OUT (NIL) -7 NIL NIL) (-831 1959050 1959371 1959460 "OSI" 1959573 T OSI (NIL) -8 NIL NIL) (-830 1958606 1958918 1958946 "OSGROUP" 1958951 T OSGROUP (NIL) -9 NIL 1958973) (-829 1957351 1957578 1957863 "ORTHPOL" 1958353 NIL ORTHPOL (NIL T) -7 NIL NIL) (-828 1954775 1957010 1957149 "OREUP" 1957294 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-827 1952227 1954466 1954593 "ORESUP" 1954717 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-826 1949755 1950255 1950816 "OREPCTO" 1951716 NIL OREPCTO (NIL T T) -7 NIL NIL) (-825 1943673 1945833 1945874 "OREPCAT" 1948222 NIL OREPCAT (NIL T) -9 NIL 1949326) (-824 1940841 1941616 1942667 "OREPCAT-" 1942672 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-823 1940018 1940290 1940318 "ORDSET" 1940627 T ORDSET (NIL) -9 NIL 1940791) (-822 1939537 1939659 1939852 "ORDSET-" 1939857 NIL ORDSET- (NIL T) -8 NIL NIL) (-821 1938191 1938948 1938976 "ORDRING" 1939178 T ORDRING (NIL) -9 NIL 1939303) (-820 1937836 1937930 1938074 "ORDRING-" 1938079 NIL ORDRING- (NIL T) -8 NIL NIL) (-819 1937242 1937679 1937707 "ORDMON" 1937712 T ORDMON (NIL) -9 NIL 1937733) (-818 1936404 1936551 1936746 "ORDFUNS" 1937091 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-817 1935915 1936274 1936302 "ORDFIN" 1936307 T ORDFIN (NIL) -9 NIL 1936328) (-816 1935181 1935308 1935494 "ORDCOMP2" 1935775 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-815 1931780 1933767 1934176 "ORDCOMP" 1934805 NIL ORDCOMP (NIL T) -8 NIL NIL) (-814 1928287 1929170 1930007 "OPTPROB" 1930963 T OPTPROB (NIL) -8 NIL NIL) (-813 1925089 1925728 1926432 "OPTPACK" 1927603 T OPTPACK (NIL) -7 NIL NIL) (-812 1922802 1923542 1923570 "OPTCAT" 1924389 T OPTCAT (NIL) -9 NIL 1925039) (-811 1922570 1922609 1922675 "OPQUERY" 1922756 T OPQUERY (NIL) -7 NIL NIL) (-810 1919738 1920881 1921385 "OP" 1922099 NIL OP (NIL T) -8 NIL NIL) (-809 1919043 1919158 1919332 "ONECOMP2" 1919610 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-808 1915895 1917840 1918209 "ONECOMP" 1918707 NIL ONECOMP (NIL T) -8 NIL NIL) (-807 1915314 1915420 1915550 "OMSERVER" 1915785 T OMSERVER (NIL) -7 NIL NIL) (-806 1912202 1914754 1914794 "OMSAGG" 1914855 NIL OMSAGG (NIL T) -9 NIL 1914919) (-805 1910825 1911088 1911370 "OMPKG" 1911940 T OMPKG (NIL) -7 NIL NIL) (-804 1909407 1910374 1910543 "OMLO" 1910706 NIL OMLO (NIL T T) -8 NIL NIL) (-803 1908332 1908479 1908706 "OMEXPR" 1909233 NIL OMEXPR (NIL T) -7 NIL NIL) (-802 1907510 1907753 1907913 "OMERRK" 1908192 T OMERRK (NIL) -8 NIL NIL) (-801 1906828 1907056 1907192 "OMERR" 1907394 T OMERR (NIL) -8 NIL NIL) (-800 1906306 1906505 1906613 "OMENC" 1906740 T OMENC (NIL) -8 NIL NIL) (-799 1900201 1901386 1902557 "OMDEV" 1905155 T OMDEV (NIL) -8 NIL NIL) (-798 1899270 1899441 1899635 "OMCONN" 1900027 T OMCONN (NIL) -8 NIL NIL) (-797 1898700 1898803 1898831 "OM" 1899130 T OM (NIL) -9 NIL NIL) (-796 1897356 1898298 1898326 "OINTDOM" 1898331 T OINTDOM (NIL) -9 NIL 1898352) (-795 1893162 1894346 1895062 "OFMONOID" 1896672 NIL OFMONOID (NIL T) -8 NIL NIL) (-794 1892600 1893099 1893144 "ODVAR" 1893149 NIL ODVAR (NIL T) -8 NIL NIL) (-793 1889812 1892097 1892282 "ODR" 1892475 NIL ODR (NIL T T NIL) -8 NIL NIL) (-792 1882197 1889588 1889714 "ODPOL" 1889719 NIL ODPOL (NIL T) -8 NIL NIL) (-791 1876080 1882069 1882174 "ODP" 1882179 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-790 1874846 1875061 1875336 "ODETOOLS" 1875854 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-789 1871815 1872471 1873187 "ODESYS" 1874179 NIL ODESYS (NIL T T) -7 NIL NIL) (-788 1866697 1867605 1868630 "ODERTRIC" 1870890 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-787 1866123 1866205 1866399 "ODERED" 1866609 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-786 1863019 1863565 1864240 "ODERAT" 1865548 NIL ODERAT (NIL T T) -7 NIL NIL) (-785 1859979 1860443 1861040 "ODEPRRIC" 1862548 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-784 1857848 1858417 1858926 "ODEPROB" 1859490 T ODEPROB (NIL) -8 NIL NIL) (-783 1854370 1854853 1855500 "ODEPRIM" 1857327 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-782 1853619 1853721 1853981 "ODEPAL" 1854262 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-781 1849781 1850572 1851436 "ODEPACK" 1852775 T ODEPACK (NIL) -7 NIL NIL) (-780 1848814 1848921 1849150 "ODEINT" 1849670 NIL ODEINT (NIL T T) -7 NIL NIL) (-779 1842915 1844340 1845787 "ODEIFTBL" 1847387 T ODEIFTBL (NIL) -8 NIL NIL) (-778 1838264 1839046 1840001 "ODEEF" 1842078 NIL ODEEF (NIL T T) -7 NIL NIL) (-777 1837599 1837688 1837918 "ODECONST" 1838169 NIL ODECONST (NIL T T T) -7 NIL NIL) (-776 1835750 1836385 1836413 "ODECAT" 1837018 T ODECAT (NIL) -9 NIL 1837549) (-775 1835388 1835431 1835558 "OCTCT2" 1835701 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-774 1832307 1835100 1835219 "OCT" 1835301 NIL OCT (NIL T) -8 NIL NIL) (-773 1831685 1832127 1832155 "OCAMON" 1832160 T OCAMON (NIL) -9 NIL 1832181) (-772 1826553 1828946 1828986 "OC" 1830083 NIL OC (NIL T) -9 NIL 1830941) (-771 1823801 1824542 1825525 "OC-" 1825619 NIL OC- (NIL T T) -8 NIL NIL) (-770 1823358 1823673 1823701 "OASGP" 1823706 T OASGP (NIL) -9 NIL 1823726) (-769 1822645 1823108 1823136 "OAMONS" 1823176 T OAMONS (NIL) -9 NIL 1823219) (-768 1822085 1822492 1822520 "OAMON" 1822525 T OAMON (NIL) -9 NIL 1822545) (-767 1821389 1821881 1821909 "OAGROUP" 1821914 T OAGROUP (NIL) -9 NIL 1821934) (-766 1821079 1821129 1821217 "NUMTUBE" 1821333 NIL NUMTUBE (NIL T) -7 NIL NIL) (-765 1814652 1816170 1817706 "NUMQUAD" 1819563 T NUMQUAD (NIL) -7 NIL NIL) (-764 1810408 1811396 1812421 "NUMODE" 1813647 T NUMODE (NIL) -7 NIL NIL) (-763 1807789 1808643 1808671 "NUMINT" 1809594 T NUMINT (NIL) -9 NIL 1810358) (-762 1806737 1806934 1807152 "NUMFMT" 1807591 T NUMFMT (NIL) -7 NIL NIL) (-761 1793096 1796041 1798573 "NUMERIC" 1804244 NIL NUMERIC (NIL T) -7 NIL NIL) (-760 1787520 1792545 1792640 "NTSCAT" 1792645 NIL NTSCAT (NIL T T T T) -9 NIL 1792684) (-759 1786714 1786879 1787072 "NTPOLFN" 1787359 NIL NTPOLFN (NIL T) -7 NIL NIL) (-758 1786346 1786403 1786512 "NSUP2" 1786651 NIL NSUP2 (NIL T T) -7 NIL NIL) (-757 1774231 1783171 1783983 "NSUP" 1785567 NIL NSUP (NIL T) -8 NIL NIL) (-756 1764276 1774005 1774138 "NSMP" 1774143 NIL NSMP (NIL T T) -8 NIL NIL) (-755 1762708 1763009 1763366 "NREP" 1763964 NIL NREP (NIL T) -7 NIL NIL) (-754 1761299 1761551 1761909 "NPCOEF" 1762451 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-753 1760365 1760480 1760696 "NORMRETR" 1761180 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-752 1758406 1758696 1759105 "NORMPK" 1760073 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-751 1758091 1758119 1758243 "NORMMA" 1758372 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-750 1757880 1757909 1757978 "NONE1" 1758055 NIL NONE1 (NIL T) -7 NIL NIL) (-749 1757707 1757837 1757866 "NONE" 1757871 T NONE (NIL) -8 NIL NIL) (-748 1757190 1757252 1757438 "NODE1" 1757639 NIL NODE1 (NIL T T) -7 NIL NIL) (-747 1755530 1756353 1756608 "NNI" 1756955 T NNI (NIL) -8 NIL NIL) (-746 1753950 1754263 1754627 "NLINSOL" 1755198 NIL NLINSOL (NIL T) -7 NIL NIL) (-745 1750117 1751085 1752007 "NIPROB" 1753048 T NIPROB (NIL) -8 NIL NIL) (-744 1748874 1749108 1749410 "NFINTBAS" 1749879 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-743 1747582 1747813 1748094 "NCODIV" 1748642 NIL NCODIV (NIL T T) -7 NIL NIL) (-742 1747344 1747381 1747456 "NCNTFRAC" 1747539 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-741 1745524 1745888 1746308 "NCEP" 1746969 NIL NCEP (NIL T) -7 NIL NIL) (-740 1744442 1745174 1745202 "NASRING" 1745312 T NASRING (NIL) -9 NIL 1745386) (-739 1744237 1744281 1744375 "NASRING-" 1744380 NIL NASRING- (NIL T) -8 NIL NIL) (-738 1743390 1743889 1743917 "NARNG" 1744034 T NARNG (NIL) -9 NIL 1744125) (-737 1743082 1743149 1743283 "NARNG-" 1743288 NIL NARNG- (NIL T) -8 NIL NIL) (-736 1741961 1742168 1742403 "NAGSP" 1742867 T NAGSP (NIL) -7 NIL NIL) (-735 1733233 1734917 1736590 "NAGS" 1740308 T NAGS (NIL) -7 NIL NIL) (-734 1731781 1732089 1732420 "NAGF07" 1732922 T NAGF07 (NIL) -7 NIL NIL) (-733 1726319 1727610 1728917 "NAGF04" 1730494 T NAGF04 (NIL) -7 NIL NIL) (-732 1719287 1720901 1722534 "NAGF02" 1724706 T NAGF02 (NIL) -7 NIL NIL) (-731 1714511 1715611 1716728 "NAGF01" 1718190 T NAGF01 (NIL) -7 NIL NIL) (-730 1708139 1709705 1711290 "NAGE04" 1712946 T NAGE04 (NIL) -7 NIL NIL) (-729 1699308 1701429 1703559 "NAGE02" 1706029 T NAGE02 (NIL) -7 NIL NIL) (-728 1695261 1696208 1697172 "NAGE01" 1698364 T NAGE01 (NIL) -7 NIL NIL) (-727 1693056 1693590 1694148 "NAGD03" 1694723 T NAGD03 (NIL) -7 NIL NIL) (-726 1684806 1686734 1688688 "NAGD02" 1691122 T NAGD02 (NIL) -7 NIL NIL) (-725 1678617 1680042 1681482 "NAGD01" 1683386 T NAGD01 (NIL) -7 NIL NIL) (-724 1674826 1675648 1676485 "NAGC06" 1677800 T NAGC06 (NIL) -7 NIL NIL) (-723 1673291 1673623 1673979 "NAGC05" 1674490 T NAGC05 (NIL) -7 NIL NIL) (-722 1672667 1672786 1672930 "NAGC02" 1673167 T NAGC02 (NIL) -7 NIL NIL) (-721 1671727 1672284 1672324 "NAALG" 1672403 NIL NAALG (NIL T) -9 NIL 1672464) (-720 1671562 1671591 1671681 "NAALG-" 1671686 NIL NAALG- (NIL T T) -8 NIL NIL) (-719 1665512 1666620 1667807 "MULTSQFR" 1670458 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-718 1664831 1664906 1665090 "MULTFACT" 1665424 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-717 1658054 1661919 1661972 "MTSCAT" 1663042 NIL MTSCAT (NIL T T) -9 NIL 1663556) (-716 1657766 1657820 1657912 "MTHING" 1657994 NIL MTHING (NIL T) -7 NIL NIL) (-715 1657558 1657591 1657651 "MSYSCMD" 1657726 T MSYSCMD (NIL) -7 NIL NIL) (-714 1654653 1657119 1657160 "MSETAGG" 1657165 NIL MSETAGG (NIL T) -9 NIL 1657199) (-713 1650765 1653408 1653728 "MSET" 1654366 NIL MSET (NIL T) -8 NIL NIL) (-712 1646650 1648144 1648889 "MRING" 1650065 NIL MRING (NIL T T) -8 NIL NIL) (-711 1646216 1646283 1646414 "MRF2" 1646577 NIL MRF2 (NIL T T T) -7 NIL NIL) (-710 1645834 1645869 1646013 "MRATFAC" 1646175 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-709 1643446 1643741 1644172 "MPRFF" 1645539 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-708 1637532 1643300 1643397 "MPOLY" 1643402 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-707 1637022 1637057 1637265 "MPCPF" 1637491 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-706 1636536 1636579 1636763 "MPC3" 1636973 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-705 1635731 1635812 1636033 "MPC2" 1636451 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-704 1634032 1634369 1634759 "MONOTOOL" 1635391 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-703 1633283 1633574 1633602 "MONOID" 1633821 T MONOID (NIL) -9 NIL 1633968) (-702 1632829 1632948 1633129 "MONOID-" 1633134 NIL MONOID- (NIL T) -8 NIL NIL) (-701 1623888 1629785 1629844 "MONOGEN" 1630518 NIL MONOGEN (NIL T T) -9 NIL 1630974) (-700 1621127 1621855 1622848 "MONOGEN-" 1622967 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-699 1619986 1620406 1620434 "MONADWU" 1620826 T MONADWU (NIL) -9 NIL 1621064) (-698 1619358 1619517 1619765 "MONADWU-" 1619770 NIL MONADWU- (NIL T) -8 NIL NIL) (-697 1618743 1618961 1618989 "MONAD" 1619196 T MONAD (NIL) -9 NIL 1619308) (-696 1618428 1618506 1618638 "MONAD-" 1618643 NIL MONAD- (NIL T) -8 NIL NIL) (-695 1616744 1617341 1617620 "MOEBIUS" 1618181 NIL MOEBIUS (NIL T) -8 NIL NIL) (-694 1616136 1616514 1616554 "MODULE" 1616559 NIL MODULE (NIL T) -9 NIL 1616585) (-693 1615704 1615800 1615990 "MODULE-" 1615995 NIL MODULE- (NIL T T) -8 NIL NIL) (-692 1613463 1614112 1614439 "MODRING" 1615528 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-691 1610451 1611568 1612089 "MODOP" 1612992 NIL MODOP (NIL T T) -8 NIL NIL) (-690 1608638 1609090 1609431 "MODMONOM" 1610250 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-689 1598386 1606830 1607253 "MODMON" 1608266 NIL MODMON (NIL T T) -8 NIL NIL) (-688 1595603 1597254 1597530 "MODFIELD" 1598261 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-687 1594607 1594884 1595074 "MMLFORM" 1595433 T MMLFORM (NIL) -8 NIL NIL) (-686 1594133 1594176 1594355 "MMAP" 1594558 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-685 1592402 1593135 1593176 "MLO" 1593599 NIL MLO (NIL T) -9 NIL 1593841) (-684 1589769 1590284 1590886 "MLIFT" 1591883 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-683 1589160 1589244 1589398 "MKUCFUNC" 1589680 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-682 1588759 1588829 1588952 "MKRECORD" 1589083 NIL MKRECORD (NIL T T) -7 NIL NIL) (-681 1587807 1587968 1588196 "MKFUNC" 1588570 NIL MKFUNC (NIL T) -7 NIL NIL) (-680 1587195 1587299 1587455 "MKFLCFN" 1587690 NIL MKFLCFN (NIL T) -7 NIL NIL) (-679 1586621 1586988 1587077 "MKCHSET" 1587139 NIL MKCHSET (NIL T) -8 NIL NIL) (-678 1585898 1586000 1586185 "MKBCFUNC" 1586514 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-677 1582642 1585452 1585588 "MINT" 1585782 T MINT (NIL) -8 NIL NIL) (-676 1581454 1581697 1581974 "MHROWRED" 1582397 NIL MHROWRED (NIL T) -7 NIL NIL) (-675 1576889 1579989 1580394 "MFLOAT" 1581069 T MFLOAT (NIL) -8 NIL NIL) (-674 1576246 1576322 1576493 "MFINFACT" 1576801 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-673 1572581 1573424 1574303 "MESH" 1575387 T MESH (NIL) -7 NIL NIL) (-672 1570971 1571283 1571636 "MDDFACT" 1572268 NIL MDDFACT (NIL T) -7 NIL NIL) (-671 1567813 1570130 1570171 "MDAGG" 1570426 NIL MDAGG (NIL T) -9 NIL 1570569) (-670 1557611 1567106 1567313 "MCMPLX" 1567626 T MCMPLX (NIL) -8 NIL NIL) (-669 1556752 1556898 1557098 "MCDEN" 1557460 NIL MCDEN (NIL T T) -7 NIL NIL) (-668 1554642 1554912 1555292 "MCALCFN" 1556482 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-667 1553553 1553726 1553967 "MAYBE" 1554440 NIL MAYBE (NIL T) -8 NIL NIL) (-666 1551165 1551688 1552250 "MATSTOR" 1553024 NIL MATSTOR (NIL T) -7 NIL NIL) (-665 1547170 1550537 1550785 "MATRIX" 1550950 NIL MATRIX (NIL T) -8 NIL NIL) (-664 1542939 1543643 1544379 "MATLIN" 1546527 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-663 1541533 1541686 1542019 "MATCAT2" 1542774 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-662 1531681 1534822 1534899 "MATCAT" 1539782 NIL MATCAT (NIL T T T) -9 NIL 1541199) (-661 1528045 1529058 1530414 "MATCAT-" 1530419 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-660 1526157 1526481 1526865 "MAPPKG3" 1527720 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-659 1525138 1525311 1525533 "MAPPKG2" 1525981 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-658 1523637 1523921 1524248 "MAPPKG1" 1524844 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-657 1522743 1523043 1523220 "MAPPAST" 1523480 T MAPPAST (NIL) -8 NIL NIL) (-656 1522354 1522412 1522535 "MAPHACK3" 1522679 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-655 1521946 1522007 1522121 "MAPHACK2" 1522286 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-654 1521384 1521487 1521629 "MAPHACK1" 1521837 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-653 1519490 1520084 1520388 "MAGMA" 1521112 NIL MAGMA (NIL T) -8 NIL NIL) (-652 1518996 1519214 1519305 "MACROAST" 1519419 T MACROAST (NIL) -8 NIL NIL) (-651 1515463 1517235 1517696 "M3D" 1518568 NIL M3D (NIL T) -8 NIL NIL) (-650 1509620 1513833 1513874 "LZSTAGG" 1514656 NIL LZSTAGG (NIL T) -9 NIL 1514951) (-649 1505593 1506751 1508208 "LZSTAGG-" 1508213 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-648 1502707 1503484 1503971 "LWORD" 1505138 NIL LWORD (NIL T) -8 NIL NIL) (-647 1502310 1502511 1502586 "LSTAST" 1502652 T LSTAST (NIL) -8 NIL NIL) (-646 1495542 1502081 1502215 "LSQM" 1502220 NIL LSQM (NIL NIL T) -8 NIL NIL) (-645 1494766 1494905 1495133 "LSPP" 1495397 NIL LSPP (NIL T T T T) -7 NIL NIL) (-644 1491608 1492265 1492978 "LSMP1" 1494085 NIL LSMP1 (NIL T) -7 NIL NIL) (-643 1489443 1489737 1490186 "LSMP" 1491304 NIL LSMP (NIL T T T T) -7 NIL NIL) (-642 1483371 1488611 1488652 "LSAGG" 1488714 NIL LSAGG (NIL T) -9 NIL 1488792) (-641 1480066 1480990 1482203 "LSAGG-" 1482208 NIL LSAGG- (NIL T T) -8 NIL NIL) (-640 1477692 1479210 1479459 "LPOLY" 1479861 NIL LPOLY (NIL T T) -8 NIL NIL) (-639 1477274 1477359 1477482 "LPEFRAC" 1477601 NIL LPEFRAC (NIL T) -7 NIL NIL) (-638 1476926 1477038 1477066 "LOGIC" 1477177 T LOGIC (NIL) -9 NIL 1477258) (-637 1476788 1476811 1476882 "LOGIC-" 1476887 NIL LOGIC- (NIL T) -8 NIL NIL) (-636 1475981 1476121 1476314 "LODOOPS" 1476644 NIL LODOOPS (NIL T T) -7 NIL NIL) (-635 1474519 1474754 1475107 "LODOF" 1475728 NIL LODOF (NIL T T) -7 NIL NIL) (-634 1470976 1473359 1473400 "LODOCAT" 1473838 NIL LODOCAT (NIL T) -9 NIL 1474049) (-633 1470709 1470767 1470894 "LODOCAT-" 1470899 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-632 1468078 1470550 1470668 "LODO2" 1470673 NIL LODO2 (NIL T T) -8 NIL NIL) (-631 1465562 1468015 1468060 "LODO1" 1468065 NIL LODO1 (NIL T) -8 NIL NIL) (-630 1463034 1465478 1465544 "LODO" 1465549 NIL LODO (NIL T NIL) -8 NIL NIL) (-629 1461894 1462059 1462371 "LODEEF" 1462857 NIL LODEEF (NIL T T T) -7 NIL NIL) (-628 1460241 1460988 1461241 "LO" 1461726 NIL LO (NIL T T T) -8 NIL NIL) (-627 1455527 1458371 1458412 "LNAGG" 1459359 NIL LNAGG (NIL T) -9 NIL 1459803) (-626 1454674 1454888 1455230 "LNAGG-" 1455235 NIL LNAGG- (NIL T T) -8 NIL NIL) (-625 1450837 1451599 1452238 "LMOPS" 1454089 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-624 1450232 1450594 1450635 "LMODULE" 1450696 NIL LMODULE (NIL T) -9 NIL 1450738) (-623 1447478 1449877 1450000 "LMDICT" 1450142 NIL LMDICT (NIL T) -8 NIL NIL) (-622 1447204 1447386 1447446 "LITERAL" 1447451 NIL LITERAL (NIL T) -8 NIL NIL) (-621 1446729 1446803 1446942 "LIST3" 1447124 NIL LIST3 (NIL T T T) -7 NIL NIL) (-620 1444863 1445175 1445574 "LIST2MAP" 1446376 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-619 1443870 1444048 1444276 "LIST2" 1444681 NIL LIST2 (NIL T T) -7 NIL NIL) (-618 1437099 1442816 1443114 "LIST" 1443605 NIL LIST (NIL T) -8 NIL NIL) (-617 1435849 1436485 1436526 "LINEXP" 1436781 NIL LINEXP (NIL T) -9 NIL 1436930) (-616 1434496 1434756 1435053 "LINDEP" 1435601 NIL LINDEP (NIL T T) -7 NIL NIL) (-615 1431334 1432034 1432792 "LIMITRF" 1433770 NIL LIMITRF (NIL T) -7 NIL NIL) (-614 1429633 1429921 1430330 "LIMITPS" 1431036 NIL LIMITPS (NIL T T) -7 NIL NIL) (-613 1428682 1429125 1429165 "LIECAT" 1429305 NIL LIECAT (NIL T) -9 NIL 1429456) (-612 1428523 1428550 1428638 "LIECAT-" 1428643 NIL LIECAT- (NIL T T) -8 NIL NIL) (-611 1423010 1428034 1428262 "LIE" 1428344 NIL LIE (NIL T T) -8 NIL NIL) (-610 1415624 1422459 1422624 "LIB" 1422865 T LIB (NIL) -8 NIL NIL) (-609 1411261 1412142 1413077 "LGROBP" 1414741 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-608 1410101 1410793 1410821 "LFCAT" 1411028 T LFCAT (NIL) -9 NIL 1411167) (-607 1407967 1408241 1408603 "LF" 1409822 NIL LF (NIL T T) -7 NIL NIL) (-606 1404871 1405499 1406187 "LEXTRIPK" 1407331 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-605 1401642 1402441 1402944 "LEXP" 1404451 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-604 1401145 1401363 1401455 "LETAST" 1401570 T LETAST (NIL) -8 NIL NIL) (-603 1399543 1399856 1400257 "LEADCDET" 1400827 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-602 1398733 1398807 1399036 "LAZM3PK" 1399464 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-601 1393703 1396810 1397348 "LAUPOL" 1398245 NIL LAUPOL (NIL T T) -8 NIL NIL) (-600 1393268 1393312 1393480 "LAPLACE" 1393653 NIL LAPLACE (NIL T T) -7 NIL NIL) (-599 1392369 1392919 1392960 "LALG" 1393022 NIL LALG (NIL T) -9 NIL 1393081) (-598 1392083 1392142 1392278 "LALG-" 1392283 NIL LALG- (NIL T T) -8 NIL NIL) (-597 1390057 1391184 1391435 "LA" 1391916 NIL LA (NIL T T T) -8 NIL NIL) (-596 1388857 1389274 1389503 "KTVLOGIC" 1389848 T KTVLOGIC (NIL) -8 NIL NIL) (-595 1387761 1387948 1388247 "KOVACIC" 1388657 NIL KOVACIC (NIL T T) -7 NIL NIL) (-594 1387596 1387620 1387661 "KONVERT" 1387723 NIL KONVERT (NIL T) -9 NIL NIL) (-593 1387431 1387455 1387496 "KOERCE" 1387558 NIL KOERCE (NIL T) -9 NIL NIL) (-592 1386933 1387014 1387144 "KERNEL2" 1387345 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-591 1384667 1385427 1385820 "KERNEL" 1386572 NIL KERNEL (NIL T) -8 NIL NIL) (-590 1378518 1383206 1383260 "KDAGG" 1383637 NIL KDAGG (NIL T T) -9 NIL 1383843) (-589 1378047 1378171 1378376 "KDAGG-" 1378381 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-588 1371224 1377708 1377863 "KAFILE" 1377925 NIL KAFILE (NIL T) -8 NIL NIL) (-587 1365711 1370735 1370963 "JORDAN" 1371045 NIL JORDAN (NIL T T) -8 NIL NIL) (-586 1365117 1365360 1365481 "JOINAST" 1365610 T JOINAST (NIL) -8 NIL NIL) (-585 1364846 1364905 1364992 "JAVACODE" 1365050 T JAVACODE (NIL) -8 NIL NIL) (-584 1361145 1363051 1363105 "IXAGG" 1364034 NIL IXAGG (NIL T T) -9 NIL 1364493) (-583 1360064 1360370 1360789 "IXAGG-" 1360794 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-582 1355644 1359986 1360045 "IVECTOR" 1360050 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-581 1354410 1354647 1354913 "ITUPLE" 1355411 NIL ITUPLE (NIL T) -8 NIL NIL) (-580 1352846 1353023 1353329 "ITRIGMNP" 1354232 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-579 1351591 1351795 1352078 "ITFUN3" 1352622 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-578 1351223 1351280 1351389 "ITFUN2" 1351528 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-577 1349060 1350085 1350384 "ITAYLOR" 1350957 NIL ITAYLOR (NIL T) -8 NIL NIL) (-576 1338054 1343206 1344366 "ISUPS" 1347933 NIL ISUPS (NIL T) -8 NIL NIL) (-575 1337158 1337298 1337534 "ISUMP" 1337901 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-574 1332422 1336959 1337038 "ISTRING" 1337111 NIL ISTRING (NIL NIL) -8 NIL NIL) (-573 1331925 1332143 1332235 "ISAST" 1332350 T ISAST (NIL) -8 NIL NIL) (-572 1331135 1331216 1331432 "IRURPK" 1331839 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-571 1330071 1330272 1330512 "IRSN" 1330915 T IRSN (NIL) -7 NIL NIL) (-570 1328100 1328455 1328891 "IRRF2F" 1329709 NIL IRRF2F (NIL T) -7 NIL NIL) (-569 1327847 1327885 1327961 "IRREDFFX" 1328056 NIL IRREDFFX (NIL T) -7 NIL NIL) (-568 1326462 1326721 1327020 "IROOT" 1327580 NIL IROOT (NIL T) -7 NIL NIL) (-567 1325534 1325647 1325868 "IR2F" 1326345 NIL IR2F (NIL T T) -7 NIL NIL) (-566 1323147 1323642 1324208 "IR2" 1325012 NIL IR2 (NIL T T) -7 NIL NIL) (-565 1319779 1320831 1321523 "IR" 1322487 NIL IR (NIL T) -8 NIL NIL) (-564 1319570 1319604 1319664 "IPRNTPK" 1319739 T IPRNTPK (NIL) -7 NIL NIL) (-563 1316191 1319459 1319528 "IPF" 1319533 NIL IPF (NIL NIL) -8 NIL NIL) (-562 1314556 1316116 1316173 "IPADIC" 1316178 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-561 1314320 1314460 1314488 "IOBCON" 1314493 T IOBCON (NIL) -9 NIL 1314514) (-560 1313817 1313875 1314065 "INVLAPLA" 1314256 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-559 1303514 1305855 1308229 "INTTR" 1311493 NIL INTTR (NIL T T) -7 NIL NIL) (-558 1299858 1300600 1301464 "INTTOOLS" 1302699 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-557 1299444 1299535 1299652 "INTSLPE" 1299761 T INTSLPE (NIL) -7 NIL NIL) (-556 1297439 1299367 1299426 "INTRVL" 1299431 NIL INTRVL (NIL T) -8 NIL NIL) (-555 1295041 1295553 1296128 "INTRF" 1296924 NIL INTRF (NIL T) -7 NIL NIL) (-554 1294452 1294549 1294691 "INTRET" 1294939 NIL INTRET (NIL T) -7 NIL NIL) (-553 1292449 1292838 1293308 "INTRAT" 1294060 NIL INTRAT (NIL T T) -7 NIL NIL) (-552 1289677 1290260 1290886 "INTPM" 1291934 NIL INTPM (NIL T T) -7 NIL NIL) (-551 1286403 1286995 1287733 "INTPAF" 1289070 NIL INTPAF (NIL T T T) -7 NIL NIL) (-550 1281582 1282544 1283595 "INTPACK" 1285372 T INTPACK (NIL) -7 NIL NIL) (-549 1280834 1280986 1281194 "INTHERTR" 1281424 NIL INTHERTR (NIL T T) -7 NIL NIL) (-548 1280273 1280353 1280541 "INTHERAL" 1280748 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-547 1278119 1278562 1279019 "INTHEORY" 1279836 T INTHEORY (NIL) -7 NIL NIL) (-546 1269485 1271088 1272849 "INTG0" 1276489 NIL INTG0 (NIL T T T) -7 NIL NIL) (-545 1255758 1259123 1262508 "INTFTBL" 1266120 T INTFTBL (NIL) -8 NIL NIL) (-544 1255007 1255145 1255318 "INTFACT" 1255617 NIL INTFACT (NIL T) -7 NIL NIL) (-543 1252398 1252842 1253404 "INTEF" 1254563 NIL INTEF (NIL T T) -7 NIL NIL) (-542 1250900 1251605 1251633 "INTDOM" 1251934 T INTDOM (NIL) -9 NIL 1252141) (-541 1250269 1250443 1250685 "INTDOM-" 1250690 NIL INTDOM- (NIL T) -8 NIL NIL) (-540 1246802 1248688 1248742 "INTCAT" 1249541 NIL INTCAT (NIL T) -9 NIL 1249861) (-539 1246275 1246377 1246505 "INTBIT" 1246694 T INTBIT (NIL) -7 NIL NIL) (-538 1244946 1245100 1245414 "INTALG" 1246120 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-537 1244403 1244493 1244663 "INTAF" 1244850 NIL INTAF (NIL T T) -7 NIL NIL) (-536 1237859 1244213 1244353 "INTABL" 1244358 NIL INTABL (NIL T T T) -8 NIL NIL) (-535 1234773 1237588 1237715 "INT" 1237752 T INT (NIL) -8 NIL NIL) (-534 1229830 1232499 1232527 "INS" 1233461 T INS (NIL) -9 NIL 1234125) (-533 1227070 1227841 1228815 "INS-" 1228888 NIL INS- (NIL T) -8 NIL NIL) (-532 1225918 1226123 1226399 "INPSIGN" 1226845 NIL INPSIGN (NIL T T) -7 NIL NIL) (-531 1225036 1225153 1225350 "INPRODPF" 1225798 NIL INPRODPF (NIL T T) -7 NIL NIL) (-530 1223930 1224047 1224284 "INPRODFF" 1224916 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-529 1222930 1223082 1223342 "INNMFACT" 1223766 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-528 1222127 1222224 1222412 "INMODGCD" 1222829 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-527 1220636 1220880 1221204 "INFSP" 1221872 NIL INFSP (NIL T T T) -7 NIL NIL) (-526 1219820 1219937 1220120 "INFPROD0" 1220516 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-525 1219430 1219490 1219588 "INFORM1" 1219755 NIL INFORM1 (NIL T) -7 NIL NIL) (-524 1216312 1217495 1218010 "INFORM" 1218923 T INFORM (NIL) -8 NIL NIL) (-523 1215835 1215924 1216038 "INFINITY" 1216218 T INFINITY (NIL) -7 NIL NIL) (-522 1214452 1214701 1215022 "INEP" 1215583 NIL INEP (NIL T T T) -7 NIL NIL) (-521 1213728 1214349 1214414 "INDE" 1214419 NIL INDE (NIL T) -8 NIL NIL) (-520 1213292 1213360 1213477 "INCRMAPS" 1213655 NIL INCRMAPS (NIL T) -7 NIL NIL) (-519 1208603 1209528 1210472 "INBFF" 1212380 NIL INBFF (NIL T) -7 NIL NIL) (-518 1208272 1208348 1208376 "INBCON" 1208509 T INBCON (NIL) -9 NIL 1208587) (-517 1208112 1208147 1208223 "INBCON-" 1208228 NIL INBCON- (NIL T) -8 NIL NIL) (-516 1207614 1207833 1207925 "INAST" 1208040 T INAST (NIL) -8 NIL NIL) (-515 1207068 1207293 1207399 "IMPTAST" 1207528 T IMPTAST (NIL) -8 NIL NIL) (-514 1203561 1206912 1207016 "IMATRIX" 1207021 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-513 1202273 1202396 1202711 "IMATQF" 1203417 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-512 1200493 1200720 1201057 "IMATLIN" 1202029 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-511 1195121 1200417 1200475 "ILIST" 1200480 NIL ILIST (NIL T NIL) -8 NIL NIL) (-510 1193074 1194981 1195094 "IIARRAY2" 1195099 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-509 1188509 1192985 1193049 "IFF" 1193054 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-508 1187883 1188126 1188242 "IFAST" 1188413 T IFAST (NIL) -8 NIL NIL) (-507 1182926 1187175 1187363 "IFARRAY" 1187740 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-506 1182133 1182830 1182903 "IFAMON" 1182908 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-505 1181717 1181782 1181836 "IEVALAB" 1182043 NIL IEVALAB (NIL T T) -9 NIL NIL) (-504 1181392 1181460 1181620 "IEVALAB-" 1181625 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-503 1180669 1181281 1181356 "IDPOAMS" 1181361 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-502 1180003 1180558 1180633 "IDPOAM" 1180638 NIL IDPOAM (NIL T T) -8 NIL NIL) (-501 1179661 1179917 1179980 "IDPO" 1179985 NIL IDPO (NIL T T) -8 NIL NIL) (-500 1178746 1178996 1179049 "IDPC" 1179462 NIL IDPC (NIL T T) -9 NIL 1179611) (-499 1178242 1178638 1178711 "IDPAM" 1178716 NIL IDPAM (NIL T T) -8 NIL NIL) (-498 1177645 1178134 1178207 "IDPAG" 1178212 NIL IDPAG (NIL T T) -8 NIL NIL) (-497 1177375 1177560 1177610 "IDENT" 1177615 T IDENT (NIL) -8 NIL NIL) (-496 1173630 1174478 1175373 "IDECOMP" 1176532 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-495 1166503 1167553 1168600 "IDEAL" 1172666 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-494 1165667 1165779 1165978 "ICDEN" 1166387 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-493 1164766 1165147 1165294 "ICARD" 1165540 T ICARD (NIL) -8 NIL NIL) (-492 1162826 1163139 1163544 "IBPTOOLS" 1164443 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-491 1158460 1162446 1162559 "IBITS" 1162745 NIL IBITS (NIL NIL) -8 NIL NIL) (-490 1155183 1155759 1156454 "IBATOOL" 1157877 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-489 1152963 1153424 1153957 "IBACHIN" 1154718 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-488 1150840 1152809 1152912 "IARRAY2" 1152917 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-487 1146993 1150766 1150823 "IARRAY1" 1150828 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-486 1140997 1145407 1145887 "IAN" 1146533 T IAN (NIL) -8 NIL NIL) (-485 1140508 1140565 1140738 "IALGFACT" 1140934 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-484 1140036 1140149 1140177 "HYPCAT" 1140384 T HYPCAT (NIL) -9 NIL NIL) (-483 1139574 1139691 1139877 "HYPCAT-" 1139882 NIL HYPCAT- (NIL T) -8 NIL NIL) (-482 1139196 1139369 1139452 "HOSTNAME" 1139511 T HOSTNAME (NIL) -8 NIL NIL) (-481 1135875 1137206 1137247 "HOAGG" 1138228 NIL HOAGG (NIL T) -9 NIL 1138907) (-480 1134469 1134868 1135394 "HOAGG-" 1135399 NIL HOAGG- (NIL T T) -8 NIL NIL) (-479 1128378 1133910 1134076 "HEXADEC" 1134323 T HEXADEC (NIL) -8 NIL NIL) (-478 1127126 1127348 1127611 "HEUGCD" 1128155 NIL HEUGCD (NIL T) -7 NIL NIL) (-477 1126229 1126963 1127093 "HELLFDIV" 1127098 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-476 1124457 1126006 1126094 "HEAP" 1126173 NIL HEAP (NIL T) -8 NIL NIL) (-475 1123748 1124009 1124143 "HEADAST" 1124343 T HEADAST (NIL) -8 NIL NIL) (-474 1117675 1123663 1123725 "HDP" 1123730 NIL HDP (NIL NIL T) -8 NIL NIL) (-473 1111457 1117310 1117462 "HDMP" 1117576 NIL HDMP (NIL NIL T) -8 NIL NIL) (-472 1110782 1110921 1111085 "HB" 1111313 T HB (NIL) -7 NIL NIL) (-471 1104281 1110628 1110732 "HASHTBL" 1110737 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-470 1103784 1104002 1104094 "HASAST" 1104209 T HASAST (NIL) -8 NIL NIL) (-469 1101602 1103408 1103589 "HACKPI" 1103623 T HACKPI (NIL) -8 NIL NIL) (-468 1097324 1101455 1101568 "GTSET" 1101573 NIL GTSET (NIL T T T T) -8 NIL NIL) (-467 1090852 1097202 1097300 "GSTBL" 1097305 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-466 1083167 1089883 1090148 "GSERIES" 1090643 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-465 1082334 1082725 1082753 "GROUP" 1082956 T GROUP (NIL) -9 NIL 1083090) (-464 1081700 1081859 1082110 "GROUP-" 1082115 NIL GROUP- (NIL T) -8 NIL NIL) (-463 1080069 1080388 1080775 "GROEBSOL" 1081377 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-462 1079009 1079271 1079322 "GRMOD" 1079851 NIL GRMOD (NIL T T) -9 NIL 1080019) (-461 1078777 1078813 1078941 "GRMOD-" 1078946 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-460 1074102 1075131 1076131 "GRIMAGE" 1077797 T GRIMAGE (NIL) -8 NIL NIL) (-459 1072569 1072829 1073153 "GRDEF" 1073798 T GRDEF (NIL) -7 NIL NIL) (-458 1072013 1072129 1072270 "GRAY" 1072448 T GRAY (NIL) -7 NIL NIL) (-457 1071244 1071624 1071675 "GRALG" 1071828 NIL GRALG (NIL T T) -9 NIL 1071921) (-456 1070905 1070978 1071141 "GRALG-" 1071146 NIL GRALG- (NIL T T T) -8 NIL NIL) (-455 1067709 1070490 1070668 "GPOLSET" 1070812 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-454 1067063 1067120 1067378 "GOSPER" 1067646 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-453 1062822 1063501 1064027 "GMODPOL" 1066762 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-452 1061827 1062011 1062249 "GHENSEL" 1062634 NIL GHENSEL (NIL T T) -7 NIL NIL) (-451 1055878 1056721 1057748 "GENUPS" 1060911 NIL GENUPS (NIL T T) -7 NIL NIL) (-450 1055575 1055626 1055715 "GENUFACT" 1055821 NIL GENUFACT (NIL T) -7 NIL NIL) (-449 1054987 1055064 1055229 "GENPGCD" 1055493 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-448 1054461 1054496 1054709 "GENMFACT" 1054946 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-447 1053029 1053284 1053591 "GENEEZ" 1054204 NIL GENEEZ (NIL T T) -7 NIL NIL) (-446 1046973 1052640 1052802 "GDMP" 1052952 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-445 1036372 1040744 1041850 "GCNAALG" 1045956 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-444 1034834 1035662 1035690 "GCDDOM" 1035945 T GCDDOM (NIL) -9 NIL 1036102) (-443 1034304 1034431 1034646 "GCDDOM-" 1034651 NIL GCDDOM- (NIL T) -8 NIL NIL) (-442 1022924 1025250 1027642 "GBINTERN" 1031995 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-441 1020761 1021053 1021474 "GBF" 1022599 NIL GBF (NIL T T T T) -7 NIL NIL) (-440 1019542 1019707 1019974 "GBEUCLID" 1020577 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-439 1018214 1018399 1018703 "GB" 1019321 NIL GB (NIL T T T T) -7 NIL NIL) (-438 1017563 1017688 1017837 "GAUSSFAC" 1018085 T GAUSSFAC (NIL) -7 NIL NIL) (-437 1015930 1016232 1016546 "GALUTIL" 1017282 NIL GALUTIL (NIL T) -7 NIL NIL) (-436 1014238 1014512 1014836 "GALPOLYU" 1015657 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-435 1011603 1011893 1012300 "GALFACTU" 1013935 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-434 1003409 1004908 1006516 "GALFACT" 1010035 NIL GALFACT (NIL T) -7 NIL NIL) (-433 1000797 1001455 1001483 "FVFUN" 1002639 T FVFUN (NIL) -9 NIL 1003359) (-432 1000063 1000245 1000273 "FVC" 1000564 T FVC (NIL) -9 NIL 1000747) (-431 999705 999860 999941 "FUNCTION" 1000015 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-430 998523 999006 999209 "FTEM" 999522 T FTEM (NIL) -8 NIL NIL) (-429 996205 996753 997239 "FT" 998057 T FT (NIL) -8 NIL NIL) (-428 994461 994750 995154 "FSUPFACT" 995896 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-427 992858 993147 993479 "FST" 994149 T FST (NIL) -8 NIL NIL) (-426 992029 992135 992330 "FSRED" 992740 NIL FSRED (NIL T T) -7 NIL NIL) (-425 990708 990963 991317 "FSPRMELT" 991744 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-424 987793 988231 988730 "FSPECF" 990271 NIL FSPECF (NIL T T) -7 NIL NIL) (-423 987307 987361 987538 "FSINT" 987734 NIL FSINT (NIL T T) -7 NIL NIL) (-422 985634 986300 986603 "FSERIES" 987086 NIL FSERIES (NIL T T) -8 NIL NIL) (-421 984648 984764 984995 "FSCINT" 985514 NIL FSCINT (NIL T T) -7 NIL NIL) (-420 983690 983833 984060 "FSAGG2" 984501 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-419 979924 982634 982675 "FSAGG" 983045 NIL FSAGG (NIL T) -9 NIL 983304) (-418 977686 978287 979083 "FSAGG-" 979178 NIL FSAGG- (NIL T T) -8 NIL NIL) (-417 975341 975620 976174 "FS2UPS" 977404 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-416 974198 974369 974678 "FS2EXPXP" 975166 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-415 973780 973823 973978 "FS2" 974149 NIL FS2 (NIL T T T T) -7 NIL NIL) (-414 956251 964664 964704 "FS" 968552 NIL FS (NIL T) -9 NIL 970841) (-413 944982 947945 951974 "FS-" 952271 NIL FS- (NIL T T) -8 NIL NIL) (-412 944408 944523 944675 "FRUTIL" 944862 NIL FRUTIL (NIL T) -7 NIL NIL) (-411 939515 942126 942166 "FRNAALG" 943562 NIL FRNAALG (NIL T) -9 NIL 944169) (-410 935244 936298 937556 "FRNAALG-" 938306 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-409 934882 934925 935052 "FRNAAF2" 935195 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-408 933289 933736 934031 "FRMOD" 934694 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-407 932484 932571 932860 "FRIDEAL2" 933196 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-406 930263 930867 931184 "FRIDEAL" 932275 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-405 929512 929919 929960 "FRETRCT" 929965 NIL FRETRCT (NIL T) -9 NIL 930141) (-404 928645 928869 929213 "FRETRCT-" 929218 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-403 925895 927071 927130 "FRAMALG" 928012 NIL FRAMALG (NIL T T) -9 NIL 928304) (-402 924029 924484 925114 "FRAMALG-" 925337 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-401 923665 923722 923829 "FRAC2" 923966 NIL FRAC2 (NIL T T) -7 NIL NIL) (-400 917646 923140 923416 "FRAC" 923421 NIL FRAC (NIL T) -8 NIL NIL) (-399 917282 917339 917446 "FR2" 917583 NIL FR2 (NIL T T) -7 NIL NIL) (-398 908858 912862 914191 "FR" 915985 NIL FR (NIL T) -8 NIL NIL) (-397 903592 906436 906464 "FPS" 907583 T FPS (NIL) -9 NIL 908140) (-396 903041 903150 903314 "FPS-" 903460 NIL FPS- (NIL T) -8 NIL NIL) (-395 900549 902182 902210 "FPC" 902435 T FPC (NIL) -9 NIL 902577) (-394 900342 900382 900479 "FPC-" 900484 NIL FPC- (NIL T) -8 NIL NIL) (-393 899220 899830 899871 "FPATMAB" 899876 NIL FPATMAB (NIL T) -9 NIL 900028) (-392 896920 897396 897822 "FPARFRAC" 898857 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-391 892352 892851 893533 "FORTRAN" 896352 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-390 890028 890590 890618 "FORTFN" 891678 T FORTFN (NIL) -9 NIL 892302) (-389 889792 889842 889870 "FORTCAT" 889929 T FORTCAT (NIL) -9 NIL 889991) (-388 887508 888008 888547 "FORT" 889273 T FORT (NIL) -7 NIL NIL) (-387 887296 887326 887395 "FORMULA1" 887472 NIL FORMULA1 (NIL T) -7 NIL NIL) (-386 885356 885839 886238 "FORMULA" 886917 T FORMULA (NIL) -8 NIL NIL) (-385 884879 884931 885104 "FORDER" 885298 NIL FORDER (NIL T T T T) -7 NIL NIL) (-384 883975 884139 884332 "FOP" 884706 T FOP (NIL) -7 NIL NIL) (-383 882583 883255 883429 "FNLA" 883857 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-382 881251 881640 881668 "FNCAT" 882240 T FNCAT (NIL) -9 NIL 882533) (-381 880817 881210 881238 "FNAME" 881243 T FNAME (NIL) -8 NIL NIL) (-380 879515 880444 880472 "FMTC" 880477 T FMTC (NIL) -9 NIL 880513) (-379 875877 877038 877667 "FMONOID" 878919 NIL FMONOID (NIL T) -8 NIL NIL) (-378 873301 873947 873975 "FMFUN" 875119 T FMFUN (NIL) -9 NIL 875827) (-377 870513 871347 871401 "FMCAT" 872596 NIL FMCAT (NIL T T) -9 NIL 873091) (-376 869782 869963 869991 "FMC" 870281 T FMC (NIL) -9 NIL 870463) (-375 868675 869548 869648 "FM1" 869727 NIL FM1 (NIL T T) -8 NIL NIL) (-374 867894 868417 868566 "FM" 868571 NIL FM (NIL T T) -8 NIL NIL) (-373 865668 866084 866578 "FLOATRP" 867445 NIL FLOATRP (NIL T) -7 NIL NIL) (-372 863106 863606 864184 "FLOATCP" 865135 NIL FLOATCP (NIL T) -7 NIL NIL) (-371 856661 860762 861392 "FLOAT" 862496 T FLOAT (NIL) -8 NIL NIL) (-370 855490 856294 856335 "FLINEXP" 856340 NIL FLINEXP (NIL T) -9 NIL 856433) (-369 854644 854879 855207 "FLINEXP-" 855212 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-368 853720 853864 854088 "FLASORT" 854496 NIL FLASORT (NIL T T) -7 NIL NIL) (-367 850937 851779 851831 "FLALG" 853058 NIL FLALG (NIL T T) -9 NIL 853525) (-366 849979 850122 850349 "FLAGG2" 850790 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-365 843763 847465 847506 "FLAGG" 848768 NIL FLAGG (NIL T) -9 NIL 849420) (-364 842489 842828 843318 "FLAGG-" 843323 NIL FLAGG- (NIL T T) -8 NIL NIL) (-363 839502 840476 840535 "FINRALG" 841663 NIL FINRALG (NIL T T) -9 NIL 842171) (-362 838662 838891 839230 "FINRALG-" 839235 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-361 838068 838281 838309 "FINITE" 838505 T FINITE (NIL) -9 NIL 838612) (-360 830526 832687 832727 "FINAALG" 836394 NIL FINAALG (NIL T) -9 NIL 837847) (-359 825867 826908 828052 "FINAALG-" 829431 NIL FINAALG- (NIL T T) -8 NIL NIL) (-358 824551 824863 824917 "FILECAT" 825601 NIL FILECAT (NIL T T) -9 NIL 825817) (-357 823946 824306 824409 "FILE" 824481 NIL FILE (NIL T) -8 NIL NIL) (-356 821868 823360 823388 "FIELD" 823428 T FIELD (NIL) -9 NIL 823508) (-355 820488 820873 821384 "FIELD-" 821389 NIL FIELD- (NIL T) -8 NIL NIL) (-354 818366 819123 819470 "FGROUP" 820174 NIL FGROUP (NIL T) -8 NIL NIL) (-353 817456 817620 817840 "FGLMICPK" 818198 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-352 813325 817381 817438 "FFX" 817443 NIL FFX (NIL T NIL) -8 NIL NIL) (-351 812926 812987 813122 "FFSLPE" 813258 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-350 812430 812466 812675 "FFPOLY2" 812884 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-349 808423 809202 809998 "FFPOLY" 811666 NIL FFPOLY (NIL T) -7 NIL NIL) (-348 804311 808342 808405 "FFP" 808410 NIL FFP (NIL T NIL) -8 NIL NIL) (-347 799474 803654 803844 "FFNBX" 804165 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-346 794450 798609 798867 "FFNBP" 799328 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-345 789120 793734 793945 "FFNB" 794283 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-344 787952 788150 788465 "FFINTBAS" 788917 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-343 784238 786411 786439 "FFIELDC" 787059 T FFIELDC (NIL) -9 NIL 787435) (-342 782901 783271 783768 "FFIELDC-" 783773 NIL FFIELDC- (NIL T) -8 NIL NIL) (-341 782471 782516 782640 "FFHOM" 782843 NIL FFHOM (NIL T T T) -7 NIL NIL) (-340 780169 780653 781170 "FFF" 781986 NIL FFF (NIL T) -7 NIL NIL) (-339 775824 779911 780012 "FFCGX" 780112 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-338 771493 775556 775663 "FFCGP" 775767 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-337 766713 771220 771328 "FFCG" 771429 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-336 766124 766167 766402 "FFCAT2" 766664 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-335 748191 757218 757304 "FFCAT" 762469 NIL FFCAT (NIL T T T) -9 NIL 763920) (-334 743389 744436 745750 "FFCAT-" 746980 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-333 738824 743300 743364 "FF" 743369 NIL FF (NIL NIL NIL) -8 NIL NIL) (-332 728038 731796 733016 "FEXPR" 737676 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-331 727038 727473 727514 "FEVALAB" 727598 NIL FEVALAB (NIL T) -9 NIL 727859) (-330 726197 726407 726745 "FEVALAB-" 726750 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-329 723263 723978 724093 "FDIVCAT" 725661 NIL FDIVCAT (NIL T T T T) -9 NIL 726098) (-328 723025 723052 723222 "FDIVCAT-" 723227 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-327 722245 722332 722609 "FDIV2" 722932 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-326 720838 721628 721831 "FDIV" 722144 NIL FDIV (NIL T T T T) -8 NIL NIL) (-325 719524 719783 720072 "FCPAK1" 720569 T FCPAK1 (NIL) -7 NIL NIL) (-324 718652 719024 719165 "FCOMP" 719415 NIL FCOMP (NIL T) -8 NIL NIL) (-323 702287 705701 709262 "FC" 715111 T FC (NIL) -8 NIL NIL) (-322 694942 698921 698961 "FAXF" 700763 NIL FAXF (NIL T) -9 NIL 701455) (-321 692221 692876 693701 "FAXF-" 694166 NIL FAXF- (NIL T T) -8 NIL NIL) (-320 687321 691597 691773 "FARRAY" 692078 NIL FARRAY (NIL T) -8 NIL NIL) (-319 682735 684760 684813 "FAMR" 685836 NIL FAMR (NIL T T) -9 NIL 686296) (-318 681625 681927 682362 "FAMR-" 682367 NIL FAMR- (NIL T T T) -8 NIL NIL) (-317 680821 681547 681600 "FAMONOID" 681605 NIL FAMONOID (NIL T) -8 NIL NIL) (-316 678651 679335 679388 "FAMONC" 680329 NIL FAMONC (NIL T T) -9 NIL 680715) (-315 677343 678405 678542 "FAGROUP" 678547 NIL FAGROUP (NIL T) -8 NIL NIL) (-314 675138 675457 675860 "FACUTIL" 677024 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-313 674237 674422 674644 "FACTFUNC" 674948 NIL FACTFUNC (NIL T) -7 NIL NIL) (-312 666644 673488 673700 "EXPUPXS" 674093 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-311 664127 664667 665253 "EXPRTUBE" 666078 T EXPRTUBE (NIL) -7 NIL NIL) (-310 660321 660913 661650 "EXPRODE" 663466 NIL EXPRODE (NIL T T) -7 NIL NIL) (-309 654728 655315 656128 "EXPR2UPS" 659619 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 654364 654421 654528 "EXPR2" 654665 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 639799 653019 653447 "EXPR" 653968 NIL EXPR (NIL T) -8 NIL NIL) (-306 631232 638931 639228 "EXPEXPAN" 639636 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-305 630739 630956 631047 "EXITAST" 631161 T EXITAST (NIL) -8 NIL NIL) (-304 630566 630696 630725 "EXIT" 630730 T EXIT (NIL) -8 NIL NIL) (-303 630193 630255 630368 "EVALCYC" 630498 NIL EVALCYC (NIL T) -7 NIL NIL) (-302 629734 629852 629893 "EVALAB" 630063 NIL EVALAB (NIL T) -9 NIL 630167) (-301 629215 629337 629558 "EVALAB-" 629563 NIL EVALAB- (NIL T T) -8 NIL NIL) (-300 626718 627986 628014 "EUCDOM" 628569 T EUCDOM (NIL) -9 NIL 628919) (-299 625123 625565 626155 "EUCDOM-" 626160 NIL EUCDOM- (NIL T) -8 NIL NIL) (-298 624755 624812 624921 "ESTOOLS2" 625060 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 624506 624548 624628 "ESTOOLS1" 624707 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 612046 614804 617554 "ESTOOLS" 621776 T ESTOOLS (NIL) -7 NIL NIL) (-295 611791 611823 611905 "ESCONT1" 612008 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-294 608166 608926 609706 "ESCONT" 611031 T ESCONT (NIL) -7 NIL NIL) (-293 607841 607891 607991 "ES2" 608110 NIL ES2 (NIL T T) -7 NIL NIL) (-292 607471 607529 607638 "ES1" 607777 NIL ES1 (NIL T T) -7 NIL NIL) (-291 601396 603124 603152 "ES" 605920 T ES (NIL) -9 NIL 607329) (-290 596343 597630 599447 "ES-" 599611 NIL ES- (NIL T) -8 NIL NIL) (-289 595559 595688 595864 "ERROR" 596187 T ERROR (NIL) -7 NIL NIL) (-288 589064 595418 595509 "EQTBL" 595514 NIL EQTBL (NIL T T) -8 NIL NIL) (-287 588696 588753 588862 "EQ2" 589001 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 581253 584010 585459 "EQ" 587280 NIL -3873 (NIL T) -8 NIL NIL) (-285 576545 577591 578684 "EP" 580192 NIL EP (NIL T) -7 NIL NIL) (-284 575127 575428 575745 "ENV" 576248 T ENV (NIL) -8 NIL NIL) (-283 574326 574846 574874 "ENTIRER" 574879 T ENTIRER (NIL) -9 NIL 574925) (-282 570884 572335 572705 "EMR" 574125 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-281 570028 570213 570267 "ELTAGG" 570647 NIL ELTAGG (NIL T T) -9 NIL 570858) (-280 569747 569809 569950 "ELTAGG-" 569955 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-279 569536 569565 569619 "ELTAB" 569703 NIL ELTAB (NIL T T) -9 NIL NIL) (-278 568662 568808 569007 "ELFUTS" 569387 NIL ELFUTS (NIL T T) -7 NIL NIL) (-277 568404 568460 568488 "ELEMFUN" 568593 T ELEMFUN (NIL) -9 NIL NIL) (-276 568274 568295 568363 "ELEMFUN-" 568368 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-275 563165 566374 566415 "ELAGG" 567355 NIL ELAGG (NIL T) -9 NIL 567818) (-274 561450 561884 562547 "ELAGG-" 562552 NIL ELAGG- (NIL T T) -8 NIL NIL) (-273 560107 560387 560682 "ELABEXPR" 561175 T ELABEXPR (NIL) -8 NIL NIL) (-272 553100 554774 555601 "EFUPXS" 559383 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-271 546677 548351 549161 "EFULS" 552376 NIL EFULS (NIL T T T) -8 NIL NIL) (-270 544099 544457 544936 "EFSTRUC" 546309 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-269 533171 534736 536296 "EF" 542614 NIL EF (NIL T T) -7 NIL NIL) (-268 532272 532656 532805 "EAB" 533042 T EAB (NIL) -8 NIL NIL) (-267 531481 532231 532259 "E04UCFA" 532264 T E04UCFA (NIL) -8 NIL NIL) (-266 530690 531440 531468 "E04NAFA" 531473 T E04NAFA (NIL) -8 NIL NIL) (-265 529899 530649 530677 "E04MBFA" 530682 T E04MBFA (NIL) -8 NIL NIL) (-264 529108 529858 529886 "E04JAFA" 529891 T E04JAFA (NIL) -8 NIL NIL) (-263 528319 529067 529095 "E04GCFA" 529100 T E04GCFA (NIL) -8 NIL NIL) (-262 527530 528278 528306 "E04FDFA" 528311 T E04FDFA (NIL) -8 NIL NIL) (-261 526739 527489 527517 "E04DGFA" 527522 T E04DGFA (NIL) -8 NIL NIL) (-260 520917 522264 523628 "E04AGNT" 525395 T E04AGNT (NIL) -7 NIL NIL) (-259 519641 520121 520161 "DVARCAT" 520636 NIL DVARCAT (NIL T) -9 NIL 520835) (-258 518845 519057 519371 "DVARCAT-" 519376 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-257 511786 518644 518773 "DSMP" 518778 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 511451 511510 511608 "DROPT1" 511721 NIL DROPT1 (NIL T) -7 NIL NIL) (-255 506566 507692 508829 "DROPT0" 510334 T DROPT0 (NIL) -7 NIL NIL) (-254 501376 502511 503579 "DROPT" 505518 T DROPT (NIL) -8 NIL NIL) (-253 499721 500046 500432 "DRAWPT" 501010 T DRAWPT (NIL) -7 NIL NIL) (-252 499354 499407 499525 "DRAWHACK" 499662 NIL DRAWHACK (NIL T) -7 NIL NIL) (-251 498085 498354 498645 "DRAWCX" 499083 T DRAWCX (NIL) -7 NIL NIL) (-250 497601 497669 497820 "DRAWCURV" 498011 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-249 488072 490031 492146 "DRAWCFUN" 495506 T DRAWCFUN (NIL) -7 NIL NIL) (-248 482659 483582 484661 "DRAW" 487046 NIL DRAW (NIL T) -7 NIL NIL) (-247 479472 481354 481395 "DQAGG" 482024 NIL DQAGG (NIL T) -9 NIL 482297) (-246 468027 474688 474771 "DPOLCAT" 476623 NIL DPOLCAT (NIL T T T T) -9 NIL 477168) (-245 462917 464246 466187 "DPOLCAT-" 466192 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 456079 462778 462876 "DPMO" 462881 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 449144 455859 456026 "DPMM" 456031 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 448564 448767 448881 "DOMAIN" 449050 T DOMAIN (NIL) -8 NIL NIL) (-241 442346 448199 448351 "DMP" 448465 NIL DMP (NIL NIL T) -8 NIL NIL) (-240 441946 442002 442146 "DLP" 442284 NIL DLP (NIL T) -7 NIL NIL) (-239 435592 441047 441274 "DLIST" 441751 NIL DLIST (NIL T) -8 NIL NIL) (-238 432439 434447 434488 "DLAGG" 435038 NIL DLAGG (NIL T) -9 NIL 435267) (-237 431289 431919 431947 "DIVRING" 432039 T DIVRING (NIL) -9 NIL 432122) (-236 430526 430716 431016 "DIVRING-" 431021 NIL DIVRING- (NIL T) -8 NIL NIL) (-235 428628 428985 429391 "DISPLAY" 430140 T DISPLAY (NIL) -7 NIL NIL) (-234 427476 427679 427944 "DIRPROD2" 428421 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-233 421425 427390 427453 "DIRPROD" 427458 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-232 410970 416915 416968 "DIRPCAT" 417378 NIL DIRPCAT (NIL NIL T) -9 NIL 418218) (-231 408296 408938 409819 "DIRPCAT-" 410156 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-230 407583 407743 407929 "DIOSP" 408130 T DIOSP (NIL) -7 NIL NIL) (-229 404285 406495 406536 "DIOPS" 406970 NIL DIOPS (NIL T) -9 NIL 407199) (-228 403834 403948 404139 "DIOPS-" 404144 NIL DIOPS- (NIL T T) -8 NIL NIL) (-227 402746 403340 403368 "DIFRING" 403555 T DIFRING (NIL) -9 NIL 403665) (-226 402392 402469 402621 "DIFRING-" 402626 NIL DIFRING- (NIL T) -8 NIL NIL) (-225 400217 401455 401496 "DIFEXT" 401859 NIL DIFEXT (NIL T) -9 NIL 402153) (-224 398502 398930 399596 "DIFEXT-" 399601 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-223 395824 398034 398075 "DIAGG" 398080 NIL DIAGG (NIL T) -9 NIL 398100) (-222 395208 395365 395617 "DIAGG-" 395622 NIL DIAGG- (NIL T T) -8 NIL NIL) (-221 390672 394167 394444 "DHMATRIX" 394977 NIL DHMATRIX (NIL T) -8 NIL NIL) (-220 386284 387193 388203 "DFSFUN" 389682 T DFSFUN (NIL) -7 NIL NIL) (-219 381256 385099 385441 "DFLOAT" 385962 T DFLOAT (NIL) -8 NIL NIL) (-218 379484 379765 380161 "DFINTTLS" 380964 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-217 376549 377505 377905 "DERHAM" 379150 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-216 374398 376324 376413 "DEQUEUE" 376493 NIL DEQUEUE (NIL T) -8 NIL NIL) (-215 373613 373746 373942 "DEGRED" 374260 NIL DEGRED (NIL T T) -7 NIL NIL) (-214 370188 370888 371696 "DEFINTRF" 372886 NIL DEFINTRF (NIL T) -7 NIL NIL) (-213 367827 368268 368839 "DEFINTEF" 369735 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-212 367204 367447 367562 "DEFAST" 367732 T DEFAST (NIL) -8 NIL NIL) (-211 361113 366645 366811 "DECIMAL" 367058 T DECIMAL (NIL) -8 NIL NIL) (-210 358625 359083 359589 "DDFACT" 360657 NIL DDFACT (NIL T T) -7 NIL NIL) (-209 358221 358264 358415 "DBLRESP" 358576 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-208 355931 356265 356634 "DBASE" 357979 NIL DBASE (NIL T) -8 NIL NIL) (-207 355200 355411 355557 "DATABUF" 355830 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-206 354333 355159 355187 "D03FAFA" 355192 T D03FAFA (NIL) -8 NIL NIL) (-205 353467 354292 354320 "D03EEFA" 354325 T D03EEFA (NIL) -8 NIL NIL) (-204 351417 351883 352372 "D03AGNT" 352998 T D03AGNT (NIL) -7 NIL NIL) (-203 350733 351376 351404 "D02EJFA" 351409 T D02EJFA (NIL) -8 NIL NIL) (-202 350049 350692 350720 "D02CJFA" 350725 T D02CJFA (NIL) -8 NIL NIL) (-201 349365 350008 350036 "D02BHFA" 350041 T D02BHFA (NIL) -8 NIL NIL) (-200 348681 349324 349352 "D02BBFA" 349357 T D02BBFA (NIL) -8 NIL NIL) (-199 341879 343467 345073 "D02AGNT" 347095 T D02AGNT (NIL) -7 NIL NIL) (-198 339648 340170 340716 "D01WGTS" 341353 T D01WGTS (NIL) -7 NIL NIL) (-197 338743 339607 339635 "D01TRNS" 339640 T D01TRNS (NIL) -8 NIL NIL) (-196 337838 338702 338730 "D01GBFA" 338735 T D01GBFA (NIL) -8 NIL NIL) (-195 336933 337797 337825 "D01FCFA" 337830 T D01FCFA (NIL) -8 NIL NIL) (-194 336028 336892 336920 "D01ASFA" 336925 T D01ASFA (NIL) -8 NIL NIL) (-193 335123 335987 336015 "D01AQFA" 336020 T D01AQFA (NIL) -8 NIL NIL) (-192 334218 335082 335110 "D01APFA" 335115 T D01APFA (NIL) -8 NIL NIL) (-191 333313 334177 334205 "D01ANFA" 334210 T D01ANFA (NIL) -8 NIL NIL) (-190 332408 333272 333300 "D01AMFA" 333305 T D01AMFA (NIL) -8 NIL NIL) (-189 331503 332367 332395 "D01ALFA" 332400 T D01ALFA (NIL) -8 NIL NIL) (-188 330598 331462 331490 "D01AKFA" 331495 T D01AKFA (NIL) -8 NIL NIL) (-187 329693 330557 330585 "D01AJFA" 330590 T D01AJFA (NIL) -8 NIL NIL) (-186 322990 324541 326102 "D01AGNT" 328152 T D01AGNT (NIL) -7 NIL NIL) (-185 322327 322455 322607 "CYCLOTOM" 322858 T CYCLOTOM (NIL) -7 NIL NIL) (-184 319062 319775 320502 "CYCLES" 321620 T CYCLES (NIL) -7 NIL NIL) (-183 318374 318508 318679 "CVMP" 318923 NIL CVMP (NIL T) -7 NIL NIL) (-182 316145 316403 316779 "CTRIGMNP" 318102 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-181 315656 315845 315944 "CTORCALL" 316066 T CTORCALL (NIL) -8 NIL NIL) (-180 315030 315129 315282 "CSTTOOLS" 315553 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 310829 311486 312244 "CRFP" 314342 NIL CRFP (NIL T T) -7 NIL NIL) (-178 310331 310550 310642 "CRCEAST" 310757 T CRCEAST (NIL) -8 NIL NIL) (-177 309378 309563 309791 "CRAPACK" 310135 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 308762 308863 309067 "CPMATCH" 309254 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 308487 308515 308621 "CPIMA" 308728 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 304851 305523 306241 "COORDSYS" 307822 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304235 304364 304514 "CONTOUR" 304721 T CONTOUR (NIL) -8 NIL NIL) (-172 300163 302238 302730 "CONTFRAC" 303775 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300043 300064 300092 "CONDUIT" 300129 T CONDUIT (NIL) -9 NIL NIL) (-170 299236 299756 299784 "COMRING" 299789 T COMRING (NIL) -9 NIL 299841) (-169 298317 298594 298778 "COMPPROP" 299072 T COMPPROP (NIL) -8 NIL NIL) (-168 297978 298013 298141 "COMPLPAT" 298276 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 297614 297671 297778 "COMPLEX2" 297915 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-166 287691 297423 297532 "COMPLEX" 297537 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287409 287444 287542 "COMPFACT" 287650 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 271816 282023 282063 "COMPCAT" 283067 NIL COMPCAT (NIL T) -9 NIL 284462) (-163 261352 264269 267889 "COMPCAT-" 268245 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261081 261109 261212 "COMMUPC" 261318 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 260876 260909 260968 "COMMONOP" 261042 T COMMONOP (NIL) -7 NIL NIL) (-160 260480 260680 260755 "COMMAAST" 260821 T COMMAAST (NIL) -8 NIL NIL) (-159 260063 260231 260318 "COMM" 260413 T COMM (NIL) -8 NIL NIL) (-158 259312 259506 259534 "COMBOPC" 259872 T COMBOPC (NIL) -9 NIL 260047) (-157 258208 258418 258660 "COMBINAT" 259102 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 254406 254979 255619 "COMBF" 257630 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253192 253522 253757 "COLOR" 254191 T COLOR (NIL) -8 NIL NIL) (-154 252695 252913 253005 "COLONAST" 253120 T COLONAST (NIL) -8 NIL NIL) (-153 252335 252382 252507 "CMPLXRT" 252642 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 251810 252035 252134 "CLLCTAST" 252256 T CLLCTAST (NIL) -8 NIL NIL) (-151 247312 248340 249420 "CLIP" 250750 T CLIP (NIL) -7 NIL NIL) (-150 245694 246418 246657 "CLIF" 247139 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 241916 243840 243881 "CLAGG" 244810 NIL CLAGG (NIL T) -9 NIL 245346) (-148 240338 240795 241378 "CLAGG-" 241383 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 239882 239967 240107 "CINTSLPE" 240247 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237383 237854 238402 "CHVAR" 239410 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 236646 237166 237194 "CHARZ" 237199 T CHARZ (NIL) -9 NIL 237214) (-144 236400 236440 236518 "CHARPOL" 236600 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235547 236100 236128 "CHARNZ" 236175 T CHARNZ (NIL) -9 NIL 236231) (-142 233572 234237 234572 "CHAR" 235232 T CHAR (NIL) -8 NIL NIL) (-141 233298 233359 233387 "CFCAT" 233498 T CFCAT (NIL) -9 NIL NIL) (-140 232543 232654 232836 "CDEN" 233182 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228535 231696 231976 "CCLASS" 232283 T CCLASS (NIL) -8 NIL NIL) (-138 228454 228480 228515 "CATEGORY" 228520 T -10 (NIL) -8 NIL NIL) (-137 227928 228154 228253 "CATAST" 228375 T CATAST (NIL) -8 NIL NIL) (-136 227431 227649 227741 "CASEAST" 227856 T CASEAST (NIL) -8 NIL NIL) (-135 226539 226687 226908 "CARTEN2" 227278 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-134 221591 222568 223321 "CARTEN" 225842 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 219933 220741 220998 "CARD" 221354 T CARD (NIL) -8 NIL NIL) (-132 219536 219737 219812 "CAPSLAST" 219878 T CAPSLAST (NIL) -8 NIL NIL) (-131 218908 219236 219264 "CACHSET" 219396 T CACHSET (NIL) -9 NIL 219473) (-130 218404 218700 218728 "CABMON" 218778 T CABMON (NIL) -9 NIL 218834) (-129 214352 218351 218385 "BYTEARY" 218390 T BYTEARY (NIL) -8 NIL NIL) (-128 213521 213899 214042 "BYTE" 214229 T BYTE (NIL) -8 NIL NIL) (-127 211080 213213 213320 "BTREE" 213447 NIL BTREE (NIL T) -8 NIL NIL) (-126 208580 210728 210850 "BTOURN" 210990 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206000 208051 208092 "BTCAT" 208160 NIL BTCAT (NIL T) -9 NIL 208237) (-124 205667 205747 205896 "BTCAT-" 205901 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200959 204810 204838 "BTAGG" 205060 T BTAGG (NIL) -9 NIL 205221) (-122 200449 200574 200780 "BTAGG-" 200785 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197495 199727 199942 "BSTREE" 200266 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196633 196759 196943 "BRILL" 197351 NIL BRILL (NIL T) -7 NIL NIL) (-119 193335 195361 195402 "BRAGG" 196051 NIL BRAGG (NIL T) -9 NIL 196308) (-118 191867 192272 192826 "BRAGG-" 192831 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185154 191213 191397 "BPADICRT" 191715 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183506 185091 185136 "BPADIC" 185141 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183204 183234 183348 "BOUNDZRO" 183470 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 180825 181269 181789 "BOP1" 182717 NIL BOP1 (NIL T) -7 NIL NIL) (-113 176340 177431 178298 "BOP" 179978 T BOP (NIL) -8 NIL NIL) (-112 175078 175764 175957 "BOOLEAN" 176167 T BOOLEAN (NIL) -8 NIL NIL) (-111 174440 174818 174872 "BMODULE" 174877 NIL BMODULE (NIL T T) -9 NIL 174942) (-110 170270 174238 174311 "BITS" 174387 T BITS (NIL) -8 NIL NIL) (-109 169367 169802 169954 "BINFILE" 170138 T BINFILE (NIL) -8 NIL NIL) (-108 168779 168901 169043 "BINDING" 169245 T BINDING (NIL) -8 NIL NIL) (-107 162692 168223 168388 "BINARY" 168634 T BINARY (NIL) -8 NIL NIL) (-106 160519 161947 161988 "BGAGG" 162248 NIL BGAGG (NIL T) -9 NIL 162385) (-105 160350 160382 160473 "BGAGG-" 160478 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159448 159734 159939 "BFUNCT" 160165 T BFUNCT (NIL) -8 NIL NIL) (-103 158132 158313 158601 "BEZOUT" 159272 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 154651 156984 157314 "BBTREE" 157835 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154385 154438 154466 "BASTYPE" 154585 T BASTYPE (NIL) -9 NIL NIL) (-100 154237 154266 154339 "BASTYPE-" 154344 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 153675 153751 153901 "BALFACT" 154148 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152558 153090 153276 "AUTOMOR" 153520 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152284 152289 152315 "ATTREG" 152320 T ATTREG (NIL) -9 NIL NIL) (-96 150563 150981 151333 "ATTRBUT" 151950 T ATTRBUT (NIL) -8 NIL NIL) (-95 150198 150391 150457 "ATTRAST" 150515 T ATTRAST (NIL) -8 NIL NIL) (-94 149734 149847 149873 "ATRIG" 150074 T ATRIG (NIL) -9 NIL NIL) (-93 149543 149584 149671 "ATRIG-" 149676 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149165 149325 149351 "ASTCAT" 149409 T ASTCAT (NIL) -9 NIL 149472) (-91 148892 148951 149070 "ASTCAT-" 149075 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147089 148668 148756 "ASTACK" 148835 NIL ASTACK (NIL T) -8 NIL NIL) (-89 145594 145891 146256 "ASSOCEQ" 146771 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 144648 145253 145377 "ASP9" 145501 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 143539 144253 144395 "ASP80" 144537 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143303 143487 143526 "ASP8" 143531 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 142279 142980 143098 "ASP78" 143216 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141270 141959 142076 "ASP77" 142193 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 140204 140908 141039 "ASP74" 141170 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 139126 139839 139971 "ASP73" 140103 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138047 138761 138893 "ASP7" 139025 NIL ASP7 (NIL NIL) -8 NIL NIL) (-80 137024 137724 137842 "ASP6" 137960 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 135994 136701 136819 "ASP55" 136937 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 134966 135668 135787 "ASP50" 135906 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134076 134667 134777 "ASP49" 134887 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132883 133615 133783 "ASP42" 133965 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131682 132416 132586 "ASP41" 132770 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130792 131383 131493 "ASP4" 131603 NIL ASP4 (NIL NIL) -8 NIL NIL) (-73 129764 130469 130587 "ASP35" 130705 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129529 129712 129751 "ASP34" 129756 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129266 129333 129409 "ASP33" 129484 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128183 128901 129033 "ASP31" 129165 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 127948 128131 128170 "ASP30" 128175 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127683 127752 127828 "ASP29" 127903 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127448 127631 127670 "ASP28" 127675 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127213 127396 127435 "ASP27" 127440 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126319 126911 127022 "ASP24" 127133 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125257 125960 126090 "ASP20" 126220 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124223 124931 125050 "ASP19" 125169 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123960 124027 124103 "ASP12" 124178 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122834 123559 123703 "ASP10" 123847 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 121944 122535 122645 "ASP1" 122755 NIL ASP1 (NIL NIL) -8 NIL NIL) (-59 119843 121788 121879 "ARRAY2" 121884 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 118875 119048 119269 "ARRAY12" 119666 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 114691 118523 118637 "ARRAY1" 118792 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 109050 110921 110996 "ARR2CAT" 113626 NIL ARR2CAT (NIL T T T) -9 NIL 114384) (-55 106484 107228 108182 "ARR2CAT-" 108187 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105232 105384 105690 "APPRULE" 106320 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104883 104931 105050 "APPLYORE" 105178 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104161 104284 104441 "ANY1" 104757 NIL ANY1 (NIL T) -7 NIL NIL) (-51 103135 103426 103621 "ANY" 103984 T ANY (NIL) -8 NIL NIL) (-50 100700 101572 101899 "ANTISYM" 102859 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100215 100404 100501 "ANON" 100621 T ANON (NIL) -8 NIL NIL) (-48 94358 98756 99209 "AN" 99780 T AN (NIL) -8 NIL NIL) (-47 90739 92093 92144 "AMR" 92892 NIL AMR (NIL T T) -9 NIL 93492) (-46 89851 90072 90435 "AMR-" 90440 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74407 89768 89829 "ALIST" 89834 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71276 74001 74170 "ALGSC" 74325 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67832 68386 68993 "ALGPKG" 70716 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67109 67210 67394 "ALGMFACT" 67718 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62848 63533 64188 "ALGMANIP" 66632 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54265 62474 62624 "ALGFF" 62781 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53461 53592 53771 "ALGFACT" 54123 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52491 53057 53095 "ALGEBRA" 53155 NIL ALGEBRA (NIL T) -9 NIL 53214) (-37 52209 52268 52400 "ALGEBRA-" 52405 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34475 50212 50264 "ALAGG" 50400 NIL ALAGG (NIL T T) -9 NIL 50561) (-35 34011 34124 34150 "AHYP" 34351 T AHYP (NIL) -9 NIL NIL) (-34 32942 33190 33216 "AGG" 33715 T AGG (NIL) -9 NIL 33994) (-33 32376 32538 32752 "AGG-" 32757 NIL AGG- (NIL T) -8 NIL NIL) (-32 30053 30475 30893 "AF" 32018 NIL AF (NIL T T) -7 NIL NIL) (-31 29560 29778 29868 "ADDAST" 29981 T ADDAST (NIL) -8 NIL NIL) (-30 28829 29087 29243 "ACPLOT" 29422 T ACPLOT (NIL) -8 NIL NIL) (-29 18356 26221 26272 "ACFS" 26983 NIL ACFS (NIL T) -9 NIL 27222) (-28 16370 16860 17635 "ACFS-" 17640 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +((-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-515)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-212)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-654))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-654)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1237))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1237)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-137)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-132)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1083)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-95)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-659))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-659)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-508)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1035))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1035)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1238))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1238)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-516)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-152)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-649))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-649)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-304))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-304)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1009)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-178)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-943))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-943)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1042))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1042)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1058)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1064)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-606)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1134)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-154)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-136)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-470)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-575)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-497)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1126)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-550))))) +(-13 (-1051) (-1222) (-10 -8 (-15 -2615 ((-112) $ (|[\|\|]| (-515)))) (-15 -1771 ((-515) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-212)))) (-15 -1771 ((-212) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-654)))) (-15 -1771 ((-654) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1237)))) (-15 -1771 ((-1237) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-137)))) (-15 -1771 ((-137) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-132)))) (-15 -1771 ((-132) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1083)))) (-15 -1771 ((-1083) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-95)))) (-15 -1771 ((-95) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-659)))) (-15 -1771 ((-659) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-508)))) (-15 -1771 ((-508) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1035)))) (-15 -1771 ((-1035) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1238)))) (-15 -1771 ((-1238) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-516)))) (-15 -1771 ((-516) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-152)))) (-15 -1771 ((-152) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-649)))) (-15 -1771 ((-649) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-304)))) (-15 -1771 ((-304) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1009)))) (-15 -1771 ((-1009) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-178)))) (-15 -1771 ((-178) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-943)))) (-15 -1771 ((-943) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1042)))) (-15 -1771 ((-1042) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1058)))) (-15 -1771 ((-1058) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1064)))) (-15 -1771 ((-1064) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-606)))) (-15 -1771 ((-606) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1134)))) (-15 -1771 ((-1134) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-154)))) (-15 -1771 ((-154) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-136)))) (-15 -1771 ((-136) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-470)))) (-15 -1771 ((-470) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-575)))) (-15 -1771 ((-575) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-497)))) (-15 -1771 ((-497) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-1126)))) (-15 -1771 ((-1126) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-550)))) (-15 -1771 ((-550) $)))) +(((-92) . T) ((-101) . T) ((-595 (-836)) . T) ((-595 (-1149)) . T) ((-1068) . T) ((-1051) . T) ((-1222) . T)) +((-1512 (((-1232) (-623 (-836))) 23) (((-1232) (-836)) 22)) (-2588 (((-1232) (-623 (-836))) 21) (((-1232) (-836)) 20)) (-3397 (((-1232) (-623 (-836))) 19) (((-1232) (-836)) 11) (((-1232) (-1126) (-836)) 17))) +(((-1106) (-10 -7 (-15 -3397 ((-1232) (-1126) (-836))) (-15 -3397 ((-1232) (-836))) (-15 -2588 ((-1232) (-836))) (-15 -1512 ((-1232) (-836))) (-15 -3397 ((-1232) (-623 (-836)))) (-15 -2588 ((-1232) (-623 (-836)))) (-15 -1512 ((-1232) (-623 (-836)))))) (T -1106)) +((-1512 (*1 *2 *3) (-12 (-5 *3 (-623 (-836))) (-5 *2 (-1232)) (-5 *1 (-1106)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-623 (-836))) (-5 *2 (-1232)) (-5 *1 (-1106)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-623 (-836))) (-5 *2 (-1232)) (-5 *1 (-1106)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-1106)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-1106)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-1106)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1126)) (-5 *4 (-836)) (-5 *2 (-1232)) (-5 *1 (-1106))))) +(-10 -7 (-15 -3397 ((-1232) (-1126) (-836))) (-15 -3397 ((-1232) (-836))) (-15 -2588 ((-1232) (-836))) (-15 -1512 ((-1232) (-836))) (-15 -3397 ((-1232) (-623 (-836)))) (-15 -2588 ((-1232) (-623 (-836)))) (-15 -1512 ((-1232) (-623 (-836))))) +((-2003 (($ $ $) 10)) (-1885 (($ $) 9)) (-4061 (($ $ $) 13)) (-4293 (($ $ $) 15)) (-3950 (($ $ $) 12)) (-4165 (($ $ $) 14)) (-3290 (($ $) 17)) (-1355 (($ $) 16)) (-1635 (($ $) 6)) (-3851 (($ $ $) 11) (($ $) 7)) (-1763 (($ $ $) 8))) +(((-1107) (-138)) (T -1107)) +((-3290 (*1 *1 *1) (-4 *1 (-1107))) (-1355 (*1 *1 *1) (-4 *1 (-1107))) (-4293 (*1 *1 *1 *1) (-4 *1 (-1107))) (-4165 (*1 *1 *1 *1) (-4 *1 (-1107))) (-4061 (*1 *1 *1 *1) (-4 *1 (-1107))) (-3950 (*1 *1 *1 *1) (-4 *1 (-1107))) (-3851 (*1 *1 *1 *1) (-4 *1 (-1107))) (-2003 (*1 *1 *1 *1) (-4 *1 (-1107))) (-1885 (*1 *1 *1) (-4 *1 (-1107))) (-1763 (*1 *1 *1 *1) (-4 *1 (-1107))) (-3851 (*1 *1 *1) (-4 *1 (-1107))) (-1635 (*1 *1 *1) (-4 *1 (-1107)))) +(-13 (-10 -8 (-15 -1635 ($ $)) (-15 -3851 ($ $)) (-15 -1763 ($ $ $)) (-15 -1885 ($ $)) (-15 -2003 ($ $ $)) (-15 -3851 ($ $ $)) (-15 -3950 ($ $ $)) (-15 -4061 ($ $ $)) (-15 -4165 ($ $ $)) (-15 -4293 ($ $ $)) (-15 -1355 ($ $)) (-15 -3290 ($ $)))) +((-1504 (((-112) $ $) 41)) (-3625 ((|#1| $) 15)) (-3402 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-2418 (((-112) $) 17)) (-2784 (($ $ |#1|) 28)) (-3750 (($ $ (-112)) 30)) (-3630 (($ $) 31)) (-2687 (($ $ |#2|) 29)) (-1825 (((-1126) $) NIL)) (-3508 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3337 (((-1088) $) NIL)) (-2902 (((-112) $) 14)) (-3498 (($) 10)) (-1731 (($ $) 27)) (-1532 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3223 |#2|))) 21) (((-623 $) (-623 (-2 (|:| |val| |#1|) (|:| -3223 |#2|)))) 24) (((-623 $) |#1| (-623 |#2|)) 26)) (-2817 ((|#2| $) 16)) (-1518 (((-836) $) 50)) (-2316 (((-112) $ $) 39))) +(((-1108 |#1| |#2|) (-13 (-1068) (-10 -8 (-15 -3498 ($)) (-15 -2902 ((-112) $)) (-15 -3625 (|#1| $)) (-15 -2817 (|#2| $)) (-15 -2418 ((-112) $)) (-15 -1532 ($ |#1| |#2| (-112))) (-15 -1532 ($ |#1| |#2|)) (-15 -1532 ($ (-2 (|:| |val| |#1|) (|:| -3223 |#2|)))) (-15 -1532 ((-623 $) (-623 (-2 (|:| |val| |#1|) (|:| -3223 |#2|))))) (-15 -1532 ((-623 $) |#1| (-623 |#2|))) (-15 -1731 ($ $)) (-15 -2784 ($ $ |#1|)) (-15 -2687 ($ $ |#2|)) (-15 -3750 ($ $ (-112))) (-15 -3630 ($ $)) (-15 -3508 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3402 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1068) (-34)) (-13 (-1068) (-34))) (T -1108)) +((-3498 (*1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))))) (-3625 (*1 *2 *1) (-12 (-4 *2 (-13 (-1068) (-34))) (-5 *1 (-1108 *2 *3)) (-4 *3 (-13 (-1068) (-34))))) (-2817 (*1 *2 *1) (-12 (-4 *2 (-13 (-1068) (-34))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-13 (-1068) (-34))))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))))) (-1532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-1532 (*1 *1 *2 *3) (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3223 *4))) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1108 *3 *4)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-623 (-2 (|:| |val| *4) (|:| -3223 *5)))) (-4 *4 (-13 (-1068) (-34))) (-4 *5 (-13 (-1068) (-34))) (-5 *2 (-623 (-1108 *4 *5))) (-5 *1 (-1108 *4 *5)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *5)) (-4 *5 (-13 (-1068) (-34))) (-5 *2 (-623 (-1108 *3 *5))) (-5 *1 (-1108 *3 *5)) (-4 *3 (-13 (-1068) (-34))))) (-1731 (*1 *1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-2784 (*1 *1 *1 *2) (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-2687 (*1 *1 *1 *2) (-12 (-5 *1 (-1108 *3 *2)) (-4 *3 (-13 (-1068) (-34))) (-4 *2 (-13 (-1068) (-34))))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))))) (-3630 (*1 *1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-3508 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1068) (-34))) (-4 *6 (-13 (-1068) (-34))) (-5 *2 (-112)) (-5 *1 (-1108 *5 *6)))) (-3402 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1068) (-34))) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-13 (-1068) (-34)))))) +(-13 (-1068) (-10 -8 (-15 -3498 ($)) (-15 -2902 ((-112) $)) (-15 -3625 (|#1| $)) (-15 -2817 (|#2| $)) (-15 -2418 ((-112) $)) (-15 -1532 ($ |#1| |#2| (-112))) (-15 -1532 ($ |#1| |#2|)) (-15 -1532 ($ (-2 (|:| |val| |#1|) (|:| -3223 |#2|)))) (-15 -1532 ((-623 $) (-623 (-2 (|:| |val| |#1|) (|:| -3223 |#2|))))) (-15 -1532 ((-623 $) |#1| (-623 |#2|))) (-15 -1731 ($ $)) (-15 -2784 ($ $ |#1|)) (-15 -2687 ($ $ |#2|)) (-15 -3750 ($ $ (-112))) (-15 -3630 ($ $)) (-15 -3508 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3402 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-1504 (((-112) $ $) NIL (|has| (-1108 |#1| |#2|) (-1068)))) (-3625 (((-1108 |#1| |#2|) $) 25)) (-2324 (($ $) 76)) (-2126 (((-112) (-1108 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3014 (($ $ $ (-623 (-1108 |#1| |#2|))) 90) (($ $ $ (-623 (-1108 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-4047 (((-112) $ (-749)) NIL)) (-2190 (((-1108 |#1| |#2|) $ (-1108 |#1| |#2|)) 43 (|has| $ (-6 -4343)))) (-1705 (((-1108 |#1| |#2|) $ "value" (-1108 |#1| |#2|)) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-4150 (((-623 (-2 (|:| |val| |#1|) (|:| -3223 |#2|))) $) 80)) (-3112 (($ (-1108 |#1| |#2|) $) 39)) (-3137 (($ (-1108 |#1| |#2|) $) 31)) (-3450 (((-623 (-1108 |#1| |#2|)) $) NIL (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 51)) (-2227 (((-112) (-1108 |#1| |#2|) $) 82)) (-2333 (((-112) $ $) NIL (|has| (-1108 |#1| |#2|) (-1068)))) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 (-1108 |#1| |#2|)) $) 55 (|has| $ (-6 -4342)))) (-1921 (((-112) (-1108 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-1108 |#1| |#2|) (-1068))))) (-3234 (($ (-1 (-1108 |#1| |#2|) (-1108 |#1| |#2|)) $) 47 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-1108 |#1| |#2|) (-1108 |#1| |#2|)) $) 46)) (-1573 (((-112) $ (-749)) NIL)) (-2513 (((-623 (-1108 |#1| |#2|)) $) 53)) (-3312 (((-112) $) 42)) (-1825 (((-1126) $) NIL (|has| (-1108 |#1| |#2|) (-1068)))) (-3337 (((-1088) $) NIL (|has| (-1108 |#1| |#2|) (-1068)))) (-2430 (((-3 $ "failed") $) 75)) (-1543 (((-112) (-1 (-112) (-1108 |#1| |#2|)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-1108 |#1| |#2|)))) NIL (-12 (|has| (-1108 |#1| |#2|) (-302 (-1108 |#1| |#2|))) (|has| (-1108 |#1| |#2|) (-1068)))) (($ $ (-287 (-1108 |#1| |#2|))) NIL (-12 (|has| (-1108 |#1| |#2|) (-302 (-1108 |#1| |#2|))) (|has| (-1108 |#1| |#2|) (-1068)))) (($ $ (-1108 |#1| |#2|) (-1108 |#1| |#2|)) NIL (-12 (|has| (-1108 |#1| |#2|) (-302 (-1108 |#1| |#2|))) (|has| (-1108 |#1| |#2|) (-1068)))) (($ $ (-623 (-1108 |#1| |#2|)) (-623 (-1108 |#1| |#2|))) NIL (-12 (|has| (-1108 |#1| |#2|) (-302 (-1108 |#1| |#2|))) (|has| (-1108 |#1| |#2|) (-1068))))) (-4140 (((-112) $ $) 50)) (-2902 (((-112) $) 22)) (-3498 (($) 24)) (-2680 (((-1108 |#1| |#2|) $ "value") NIL)) (-2487 (((-550) $ $) NIL)) (-2136 (((-112) $) 44)) (-3350 (((-749) (-1 (-112) (-1108 |#1| |#2|)) $) NIL (|has| $ (-6 -4342))) (((-749) (-1108 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-1108 |#1| |#2|) (-1068))))) (-1731 (($ $) 49)) (-1532 (($ (-1108 |#1| |#2|)) 9) (($ |#1| |#2| (-623 $)) 12) (($ |#1| |#2| (-623 (-1108 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-623 |#2|)) 17)) (-3648 (((-623 |#2|) $) 81)) (-1518 (((-836) $) 73 (|has| (-1108 |#1| |#2|) (-595 (-836))))) (-3997 (((-623 $) $) 28)) (-2413 (((-112) $ $) NIL (|has| (-1108 |#1| |#2|) (-1068)))) (-1675 (((-112) (-1 (-112) (-1108 |#1| |#2|)) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 64 (|has| (-1108 |#1| |#2|) (-1068)))) (-3191 (((-749) $) 58 (|has| $ (-6 -4342))))) +(((-1109 |#1| |#2|) (-13 (-983 (-1108 |#1| |#2|)) (-10 -8 (-6 -4343) (-6 -4342) (-15 -2430 ((-3 $ "failed") $)) (-15 -2324 ($ $)) (-15 -1532 ($ (-1108 |#1| |#2|))) (-15 -1532 ($ |#1| |#2| (-623 $))) (-15 -1532 ($ |#1| |#2| (-623 (-1108 |#1| |#2|)))) (-15 -1532 ($ |#1| |#2| |#1| (-623 |#2|))) (-15 -3648 ((-623 |#2|) $)) (-15 -4150 ((-623 (-2 (|:| |val| |#1|) (|:| -3223 |#2|))) $)) (-15 -2227 ((-112) (-1108 |#1| |#2|) $)) (-15 -2126 ((-112) (-1108 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3137 ($ (-1108 |#1| |#2|) $)) (-15 -3112 ($ (-1108 |#1| |#2|) $)) (-15 -3014 ($ $ $ (-623 (-1108 |#1| |#2|)))) (-15 -3014 ($ $ $ (-623 (-1108 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1068) (-34)) (-13 (-1068) (-34))) (T -1109)) +((-2430 (*1 *1 *1) (|partial| -12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1109 *3 *4)))) (-1532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-623 (-1109 *2 *3))) (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) (-1532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-623 (-1108 *2 *3))) (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))) (-5 *1 (-1109 *2 *3)))) (-1532 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-1068) (-34))) (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1068) (-34))))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))))) (-2227 (*1 *2 *3 *1) (-12 (-5 *3 (-1108 *4 *5)) (-4 *4 (-13 (-1068) (-34))) (-4 *5 (-13 (-1068) (-34))) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5)))) (-2126 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1108 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1068) (-34))) (-4 *6 (-13 (-1068) (-34))) (-5 *2 (-112)) (-5 *1 (-1109 *5 *6)))) (-3137 (*1 *1 *2 *1) (-12 (-5 *2 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1109 *3 *4)))) (-3112 (*1 *1 *2 *1) (-12 (-5 *2 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1109 *3 *4)))) (-3014 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-623 (-1108 *3 *4))) (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1109 *3 *4)))) (-3014 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-1108 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1068) (-34))) (-4 *5 (-13 (-1068) (-34))) (-5 *1 (-1109 *4 *5))))) +(-13 (-983 (-1108 |#1| |#2|)) (-10 -8 (-6 -4343) (-6 -4342) (-15 -2430 ((-3 $ "failed") $)) (-15 -2324 ($ $)) (-15 -1532 ($ (-1108 |#1| |#2|))) (-15 -1532 ($ |#1| |#2| (-623 $))) (-15 -1532 ($ |#1| |#2| (-623 (-1108 |#1| |#2|)))) (-15 -1532 ($ |#1| |#2| |#1| (-623 |#2|))) (-15 -3648 ((-623 |#2|) $)) (-15 -4150 ((-623 (-2 (|:| |val| |#1|) (|:| -3223 |#2|))) $)) (-15 -2227 ((-112) (-1108 |#1| |#2|) $)) (-15 -2126 ((-112) (-1108 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3137 ($ (-1108 |#1| |#2|) $)) (-15 -3112 ($ (-1108 |#1| |#2|) $)) (-15 -3014 ($ $ $ (-623 (-1108 |#1| |#2|)))) (-15 -3014 ($ $ $ (-623 (-1108 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-2633 (($ $) NIL)) (-2252 ((|#2| $) NIL)) (-1294 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-2531 (($ (-667 |#2|)) 50)) (-3483 (((-112) $) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-1333 (($ |#2|) 10)) (-3513 (($) NIL T CONST)) (-3707 (($ $) 63 (|has| |#2| (-300)))) (-3719 (((-234 |#1| |#2|) $ (-550)) 36)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-3 |#2| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#2| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-400 (-550))))) ((|#2| $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) 77)) (-2122 (((-749) $) 65 (|has| |#2| (-542)))) (-3181 ((|#2| $ (-550) (-550)) NIL)) (-3450 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-3102 (((-112) $) NIL)) (-3613 (((-749) $) 67 (|has| |#2| (-542)))) (-3525 (((-623 (-234 |#1| |#2|)) $) 71 (|has| |#2| (-542)))) (-2115 (((-749) $) NIL)) (-2578 (($ |#2|) 20)) (-2124 (((-749) $) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3928 ((|#2| $) 61 (|has| |#2| (-6 (-4344 "*"))))) (-2938 (((-550) $) NIL)) (-3895 (((-550) $) NIL)) (-2689 (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2828 (((-550) $) NIL)) (-3816 (((-550) $) NIL)) (-2458 (($ (-623 (-623 |#2|))) 31)) (-3234 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4048 (((-623 (-623 |#2|)) $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-2031 (((-3 $ "failed") $) 74 (|has| |#2| (-356)))) (-3337 (((-1088) $) NIL)) (-1495 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-1543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ (-550) (-550) |#2|) NIL) ((|#2| $ (-550) (-550)) NIL)) (-2393 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-4105 ((|#2| $) NIL)) (-4296 (($ (-623 |#2|)) 44)) (-1829 (((-112) $) NIL)) (-4195 (((-234 |#1| |#2|) $) NIL)) (-4017 ((|#2| $) 59 (|has| |#2| (-6 (-4344 "*"))))) (-3350 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-1731 (($ $) NIL)) (-4028 (((-526) $) 86 (|has| |#2| (-596 (-526))))) (-3615 (((-234 |#1| |#2|) $ (-550)) 38)) (-1518 (((-836) $) 41) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#2| (-1011 (-400 (-550))))) (($ |#2|) NIL) (((-667 |#2|) $) 46)) (-2390 (((-749)) 18)) (-1675 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1295 (((-112) $) NIL)) (-2626 (($) 12 T CONST)) (-2636 (($) 15 T CONST)) (-4183 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) 57) (($ $ (-550)) 76 (|has| |#2| (-356)))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-234 |#1| |#2|) $ (-234 |#1| |#2|)) 53) (((-234 |#1| |#2|) (-234 |#1| |#2|) $) 55)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1110 |#1| |#2|) (-13 (-1091 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-595 (-667 |#2|)) (-10 -8 (-15 -2578 ($ |#2|)) (-15 -2633 ($ $)) (-15 -2531 ($ (-667 |#2|))) (IF (|has| |#2| (-6 (-4344 "*"))) (-6 -4331) |%noBranch|) (IF (|has| |#2| (-6 (-4344 "*"))) (IF (|has| |#2| (-6 -4339)) (-6 -4339) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) (-749) (-1020)) (T -1110)) +((-2578 (*1 *1 *2) (-12 (-5 *1 (-1110 *3 *2)) (-14 *3 (-749)) (-4 *2 (-1020)))) (-2633 (*1 *1 *1) (-12 (-5 *1 (-1110 *2 *3)) (-14 *2 (-749)) (-4 *3 (-1020)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-667 *4)) (-4 *4 (-1020)) (-5 *1 (-1110 *3 *4)) (-14 *3 (-749))))) +(-13 (-1091 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-595 (-667 |#2|)) (-10 -8 (-15 -2578 ($ |#2|)) (-15 -2633 ($ $)) (-15 -2531 ($ (-667 |#2|))) (IF (|has| |#2| (-6 (-4344 "*"))) (-6 -4331) |%noBranch|) (IF (|has| |#2| (-6 (-4344 "*"))) (IF (|has| |#2| (-6 -4339)) (-6 -4339) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-596 (-526))) (-6 (-596 (-526))) |%noBranch|))) +((-2009 (($ $) 19)) (-1583 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3764 (((-112) $ $) 24)) (-3966 (($ $) 17)) (-2680 (((-142) $ (-550) (-142)) NIL) (((-142) $ (-550)) NIL) (($ $ (-1194 (-550))) NIL) (($ $ $) 29)) (-1518 (($ (-142)) 27) (((-836) $) NIL))) +(((-1111 |#1|) (-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -2680 (|#1| |#1| |#1|)) (-15 -1583 (|#1| |#1| (-139))) (-15 -1583 (|#1| |#1| (-142))) (-15 -1518 (|#1| (-142))) (-15 -3764 ((-112) |#1| |#1|)) (-15 -2009 (|#1| |#1|)) (-15 -3966 (|#1| |#1|)) (-15 -2680 (|#1| |#1| (-1194 (-550)))) (-15 -2680 ((-142) |#1| (-550))) (-15 -2680 ((-142) |#1| (-550) (-142)))) (-1112)) (T -1111)) +NIL +(-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -2680 (|#1| |#1| |#1|)) (-15 -1583 (|#1| |#1| (-139))) (-15 -1583 (|#1| |#1| (-142))) (-15 -1518 (|#1| (-142))) (-15 -3764 ((-112) |#1| |#1|)) (-15 -2009 (|#1| |#1|)) (-15 -3966 (|#1| |#1|)) (-15 -2680 (|#1| |#1| (-1194 (-550)))) (-15 -2680 ((-142) |#1| (-550))) (-15 -2680 ((-142) |#1| (-550) (-142)))) +((-1504 (((-112) $ $) 19 (|has| (-142) (-1068)))) (-1869 (($ $) 120)) (-2009 (($ $) 121)) (-1583 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-3745 (((-112) $ $) 118)) (-3725 (((-112) $ $ (-550)) 117)) (-1716 (((-623 $) $ (-142)) 110) (((-623 $) $ (-139)) 109)) (-3654 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-825)))) (-3491 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4343))) (($ $) 88 (-12 (|has| (-142) (-825)) (|has| $ (-6 -4343))))) (-1674 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-825)))) (-4047 (((-112) $ (-749)) 8)) (-1705 (((-142) $ (-550) (-142)) 52 (|has| $ (-6 -4343))) (((-142) $ (-1194 (-550)) (-142)) 58 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-2999 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2342 (($ $) 90 (|has| $ (-6 -4343)))) (-3243 (($ $) 100)) (-1727 (($ $ (-1194 (-550)) $) 114)) (-1328 (($ $) 78 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ (-142) $) 77 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4342)))) (-2419 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4342))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4342)))) (-3245 (((-142) $ (-550) (-142)) 53 (|has| $ (-6 -4343)))) (-3181 (((-142) $ (-550)) 51)) (-3764 (((-112) $ $) 119)) (-2302 (((-550) (-1 (-112) (-142)) $) 97) (((-550) (-142) $) 96 (|has| (-142) (-1068))) (((-550) (-142) $ (-550)) 95 (|has| (-142) (-1068))) (((-550) $ $ (-550)) 113) (((-550) (-139) $ (-550)) 112)) (-3450 (((-623 (-142)) $) 30 (|has| $ (-6 -4342)))) (-2578 (($ (-749) (-142)) 69)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-2707 (($ $ $) 87 (|has| (-142) (-825)))) (-1832 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-825)))) (-2689 (((-623 (-142)) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-4164 (($ $ $) 86 (|has| (-142) (-825)))) (-1764 (((-112) $ $ (-142)) 115)) (-3658 (((-749) $ $ (-142)) 116)) (-3234 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3865 (($ $) 122)) (-3966 (($ $) 123)) (-1573 (((-112) $ (-749)) 10)) (-3010 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1825 (((-1126) $) 22 (|has| (-142) (-1068)))) (-2055 (($ (-142) $ (-550)) 60) (($ $ $ (-550)) 59)) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-3337 (((-1088) $) 21 (|has| (-142) (-1068)))) (-1293 (((-142) $) 42 (|has| (-550) (-825)))) (-3321 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-3111 (($ $ (-142)) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-287 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-623 (-142)) (-623 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-2477 (((-623 (-142)) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 (((-142) $ (-550) (-142)) 50) (((-142) $ (-550)) 49) (($ $ (-1194 (-550))) 63) (($ $ $) 102)) (-1529 (($ $ (-550)) 62) (($ $ (-1194 (-550))) 61)) (-3350 (((-749) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4342))) (((-749) (-142) $) 28 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342))))) (-3593 (($ $ $ (-550)) 91 (|has| $ (-6 -4343)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 79 (|has| (-142) (-596 (-526))))) (-1532 (($ (-623 (-142))) 70)) (-3227 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-1518 (($ (-142)) 111) (((-836) $) 18 (|has| (-142) (-595 (-836))))) (-1675 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) 84 (|has| (-142) (-825)))) (-2345 (((-112) $ $) 83 (|has| (-142) (-825)))) (-2316 (((-112) $ $) 20 (|has| (-142) (-1068)))) (-2354 (((-112) $ $) 85 (|has| (-142) (-825)))) (-2335 (((-112) $ $) 82 (|has| (-142) (-825)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-1112) (-138)) (T -1112)) +((-3966 (*1 *1 *1) (-4 *1 (-1112))) (-3865 (*1 *1 *1) (-4 *1 (-1112))) (-2009 (*1 *1 *1) (-4 *1 (-1112))) (-1869 (*1 *1 *1) (-4 *1 (-1112))) (-3764 (*1 *2 *1 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-112)))) (-3745 (*1 *2 *1 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-112)))) (-3725 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1112)) (-5 *3 (-550)) (-5 *2 (-112)))) (-3658 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1112)) (-5 *3 (-142)) (-5 *2 (-749)))) (-1764 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1112)) (-5 *3 (-142)) (-5 *2 (-112)))) (-1727 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1194 (-550))))) (-2302 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-550)))) (-2302 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-550)) (-5 *3 (-139)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1112)))) (-1716 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-623 *1)) (-4 *1 (-1112)))) (-1716 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-623 *1)) (-4 *1 (-1112)))) (-1583 (*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-142)))) (-1583 (*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-139)))) (-3010 (*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-142)))) (-3010 (*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-139)))) (-2999 (*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-142)))) (-2999 (*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-139)))) (-2680 (*1 *1 *1 *1) (-4 *1 (-1112)))) +(-13 (-19 (-142)) (-10 -8 (-15 -3966 ($ $)) (-15 -3865 ($ $)) (-15 -2009 ($ $)) (-15 -1869 ($ $)) (-15 -3764 ((-112) $ $)) (-15 -3745 ((-112) $ $)) (-15 -3725 ((-112) $ $ (-550))) (-15 -3658 ((-749) $ $ (-142))) (-15 -1764 ((-112) $ $ (-142))) (-15 -1727 ($ $ (-1194 (-550)) $)) (-15 -2302 ((-550) $ $ (-550))) (-15 -2302 ((-550) (-139) $ (-550))) (-15 -1518 ($ (-142))) (-15 -1716 ((-623 $) $ (-142))) (-15 -1716 ((-623 $) $ (-139))) (-15 -1583 ($ $ (-142))) (-15 -1583 ($ $ (-139))) (-15 -3010 ($ $ (-142))) (-15 -3010 ($ $ (-139))) (-15 -2999 ($ $ (-142))) (-15 -2999 ($ $ (-139))) (-15 -2680 ($ $ $)))) +(((-34) . T) ((-101) -1561 (|has| (-142) (-1068)) (|has| (-142) (-825))) ((-595 (-836)) -1561 (|has| (-142) (-1068)) (|has| (-142) (-825)) (|has| (-142) (-595 (-836)))) ((-149 #0=(-142)) . T) ((-596 (-526)) |has| (-142) (-596 (-526))) ((-279 #1=(-550) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))) ((-366 #0#) . T) ((-481 #0#) . T) ((-586 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))) ((-629 #0#) . T) ((-19 #0#) . T) ((-825) |has| (-142) (-825)) ((-1068) -1561 (|has| (-142) (-1068)) (|has| (-142) (-825))) ((-1181) . T)) +((-3492 (((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-749)) 94)) (-1372 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749)) 54)) (-3842 (((-1232) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-749)) 85)) (-4187 (((-749) (-623 |#4|) (-623 |#5|)) 27)) (-3314 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749)) 56) (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749) (-112)) 58)) (-3417 (((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112)) 77)) (-4028 (((-1126) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) 80)) (-4300 (((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|) 53)) (-4076 (((-749) (-623 |#4|) (-623 |#5|)) 19))) +(((-1113 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4076 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4187 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4300 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -1372 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749))) (-15 -1372 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749))) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -3417 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -3417 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3492 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-749))) (-15 -4028 ((-1126) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) (-15 -3842 ((-1232) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-749)))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1113)) +((-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -3223 *9)))) (-5 *4 (-749)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1232)) (-5 *1 (-1113 *5 *6 *7 *8 *9)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -3223 *8))) (-4 *7 (-1034 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1126)) (-5 *1 (-1113 *4 *5 *6 *7 *8)))) (-3492 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-623 *11)) (|:| |todo| (-623 (-2 (|:| |val| *3) (|:| -3223 *11)))))) (-5 *6 (-749)) (-5 *2 (-623 (-2 (|:| |val| (-623 *10)) (|:| -3223 *11)))) (-5 *3 (-623 *10)) (-5 *4 (-623 *11)) (-4 *10 (-1034 *7 *8 *9)) (-4 *11 (-1077 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-5 *1 (-1113 *7 *8 *9 *10 *11)))) (-3417 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1113 *5 *6 *7 *8 *9)))) (-3417 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1113 *5 *6 *7 *8 *9)))) (-3314 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1113 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3314 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1034 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1113 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-3314 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-4 *3 (-1034 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1113 *7 *8 *9 *3 *4)) (-4 *4 (-1077 *7 *8 *9 *3)))) (-1372 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1113 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1372 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1034 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1113 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-4300 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-623 *4)) (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) (-5 *1 (-1113 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1113 *5 *6 *7 *8 *9)))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1113 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4076 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4187 ((-749) (-623 |#4|) (-623 |#5|))) (-15 -4300 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -1372 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749))) (-15 -1372 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5| (-749))) (-15 -3314 ((-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) |#4| |#5|)) (-15 -3417 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112))) (-15 -3417 ((-623 |#5|) (-623 |#4|) (-623 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3492 ((-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-623 |#4|) (-623 |#5|) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-2 (|:| |done| (-623 |#5|)) (|:| |todo| (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))))) (-749))) (-15 -4028 ((-1126) (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|)))) (-15 -3842 ((-1232) (-623 (-2 (|:| |val| (-623 |#4|)) (|:| -3223 |#5|))) (-749)))) +((-1504 (((-112) $ $) NIL)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) NIL)) (-1779 (((-623 $) (-623 |#4|)) 110) (((-623 $) (-623 |#4|) (-112)) 111) (((-623 $) (-623 |#4|) (-112) (-112)) 109) (((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3141 (((-623 |#3|) $) NIL)) (-2238 (((-112) $) NIL)) (-3670 (((-112) $) NIL (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4074 ((|#4| |#4| $) NIL)) (-1505 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| $) 84)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4253 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) 62)) (-3513 (($) NIL T CONST)) (-2976 (((-112) $) 26 (|has| |#1| (-542)))) (-3156 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3059 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3253 (((-112) $) NIL (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3774 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) NIL)) (-2726 (($ (-623 |#4|)) NIL)) (-1308 (((-3 $ "failed") $) 39)) (-2067 ((|#4| |#4| $) 65)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3137 (($ |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1878 ((|#4| |#4| $) NIL)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) NIL)) (-3113 (((-112) |#4| $) NIL)) (-2933 (((-112) |#4| $) NIL)) (-3208 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3580 (((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112)) 124)) (-3450 (((-623 |#4|) $) 16 (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3952 ((|#3| $) 33)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#4|) $) 17 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3234 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 21)) (-2650 (((-623 |#3|) $) NIL)) (-2568 (((-112) |#3| $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-3735 (((-3 |#4| (-623 $)) |#4| |#4| $) NIL)) (-3632 (((-623 (-2 (|:| |val| |#4|) (|:| -3223 $))) |#4| |#4| $) 103)) (-3159 (((-3 |#4| "failed") $) 37)) (-3830 (((-623 $) |#4| $) 88)) (-2845 (((-3 (-112) (-623 $)) |#4| $) NIL)) (-2743 (((-623 (-2 (|:| |val| (-112)) (|:| -3223 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-1623 (((-623 $) |#4| $) 107) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) 108) (((-623 $) |#4| (-623 $)) NIL)) (-3665 (((-623 $) (-623 |#4|) (-112) (-112) (-112)) 119)) (-3757 (($ |#4| $) 75) (($ (-623 |#4|) $) 76) (((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-3671 (((-623 |#4|) $) NIL)) (-1296 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3900 ((|#4| |#4| $) NIL)) (-3831 (((-112) $ $) NIL)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3984 ((|#4| |#4| $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-3 |#4| "failed") $) 35)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2654 (((-3 $ "failed") $ |#4|) 48)) (-2272 (($ $ |#4|) NIL) (((-623 $) |#4| $) 90) (((-623 $) |#4| (-623 $)) NIL) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) 86)) (-1543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 15)) (-3498 (($) 13)) (-2970 (((-749) $) NIL)) (-3350 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) 12)) (-4028 (((-526) $) NIL (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 20)) (-2315 (($ $ |#3|) 42)) (-2486 (($ $ |#3|) 44)) (-1969 (($ $) NIL)) (-2401 (($ $ |#3|) NIL)) (-1518 (((-836) $) 31) (((-623 |#4|) $) 40)) (-2580 (((-749) $) NIL (|has| |#3| (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) NIL)) (-3532 (((-623 $) |#4| $) 54) (((-623 $) |#4| (-623 $)) NIL) (((-623 $) (-623 |#4|) $) NIL) (((-623 $) (-623 |#4|) (-623 $)) NIL)) (-1675 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) NIL)) (-3024 (((-112) |#4| $) NIL)) (-1288 (((-112) |#3| $) 61)) (-2316 (((-112) $ $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1114 |#1| |#2| |#3| |#4|) (-13 (-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3757 ((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1779 ((-623 $) (-623 |#4|) (-112) (-112))) (-15 -1779 ((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112))) (-15 -3665 ((-623 $) (-623 |#4|) (-112) (-112) (-112))) (-15 -3580 ((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112))))) (-444) (-771) (-825) (-1034 |#1| |#2| |#3|)) (T -1114)) +((-3757 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1114 *5 *6 *7 *3))) (-5 *1 (-1114 *5 *6 *7 *3)) (-4 *3 (-1034 *5 *6 *7)))) (-1779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1114 *5 *6 *7 *8))) (-5 *1 (-1114 *5 *6 *7 *8)))) (-1779 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1114 *5 *6 *7 *8))) (-5 *1 (-1114 *5 *6 *7 *8)))) (-3665 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 (-1114 *5 *6 *7 *8))) (-5 *1 (-1114 *5 *6 *7 *8)))) (-3580 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-623 *8)) (|:| |towers| (-623 (-1114 *5 *6 *7 *8))))) (-5 *1 (-1114 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) +(-13 (-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3757 ((-623 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1779 ((-623 $) (-623 |#4|) (-112) (-112))) (-15 -1779 ((-623 $) (-623 |#4|) (-112) (-112) (-112) (-112))) (-15 -3665 ((-623 $) (-623 |#4|) (-112) (-112) (-112))) (-15 -3580 ((-2 (|:| |val| (-623 |#4|)) (|:| |towers| (-623 $))) (-623 |#4|) (-112) (-112))))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2038 ((|#1| $) 34)) (-3505 (($ (-623 |#1|)) 39)) (-4047 (((-112) $ (-749)) NIL)) (-3513 (($) NIL T CONST)) (-2094 ((|#1| |#1| $) 36)) (-2006 ((|#1| $) 32)) (-3450 (((-623 |#1|) $) 18 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 22)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3638 ((|#1| $) 35)) (-1886 (($ |#1| $) 37)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-3760 ((|#1| $) 33)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 31)) (-3498 (($) 38)) (-2775 (((-749) $) 29)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) 27)) (-1518 (((-836) $) 14 (|has| |#1| (-595 (-836))))) (-3685 (($ (-623 |#1|)) NIL)) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 17 (|has| |#1| (-1068)))) (-3191 (((-749) $) 30 (|has| $ (-6 -4342))))) +(((-1115 |#1|) (-13 (-1089 |#1|) (-10 -8 (-15 -3505 ($ (-623 |#1|))))) (-1181)) (T -1115)) +((-3505 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-1115 *3))))) +(-13 (-1089 |#1|) (-10 -8 (-15 -3505 ($ (-623 |#1|))))) +((-1705 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1194 (-550)) |#2|) 44) ((|#2| $ (-550) |#2|) 41)) (-3815 (((-112) $) 12)) (-3234 (($ (-1 |#2| |#2|) $) 39)) (-1293 ((|#2| $) NIL) (($ $ (-749)) 17)) (-3111 (($ $ |#2|) 40)) (-2719 (((-112) $) 11)) (-2680 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1194 (-550))) 31) ((|#2| $ (-550)) 23) ((|#2| $ (-550) |#2|) NIL)) (-3547 (($ $ $) 47) (($ $ |#2|) NIL)) (-3227 (($ $ $) 33) (($ |#2| $) NIL) (($ (-623 $)) 36) (($ $ |#2|) NIL))) +(((-1116 |#1| |#2|) (-10 -8 (-15 -3815 ((-112) |#1|)) (-15 -2719 ((-112) |#1|)) (-15 -1705 (|#2| |#1| (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550))) (-15 -3111 (|#1| |#1| |#2|)) (-15 -3227 (|#1| |#1| |#2|)) (-15 -3227 (|#1| (-623 |#1|))) (-15 -2680 (|#1| |#1| (-1194 (-550)))) (-15 -1705 (|#2| |#1| (-1194 (-550)) |#2|)) (-15 -1705 (|#2| |#1| "last" |#2|)) (-15 -1705 (|#1| |#1| "rest" |#1|)) (-15 -1705 (|#2| |#1| "first" |#2|)) (-15 -3547 (|#1| |#1| |#2|)) (-15 -3547 (|#1| |#1| |#1|)) (-15 -2680 (|#2| |#1| "last")) (-15 -2680 (|#1| |#1| "rest")) (-15 -1293 (|#1| |#1| (-749))) (-15 -2680 (|#2| |#1| "first")) (-15 -1293 (|#2| |#1|)) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#1|)) (-15 -1705 (|#2| |#1| "value" |#2|)) (-15 -2680 (|#2| |#1| "value")) (-15 -3234 (|#1| (-1 |#2| |#2|) |#1|))) (-1117 |#2|) (-1181)) (T -1116)) +NIL +(-10 -8 (-15 -3815 ((-112) |#1|)) (-15 -2719 ((-112) |#1|)) (-15 -1705 (|#2| |#1| (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550) |#2|)) (-15 -2680 (|#2| |#1| (-550))) (-15 -3111 (|#1| |#1| |#2|)) (-15 -3227 (|#1| |#1| |#2|)) (-15 -3227 (|#1| (-623 |#1|))) (-15 -2680 (|#1| |#1| (-1194 (-550)))) (-15 -1705 (|#2| |#1| (-1194 (-550)) |#2|)) (-15 -1705 (|#2| |#1| "last" |#2|)) (-15 -1705 (|#1| |#1| "rest" |#1|)) (-15 -1705 (|#2| |#1| "first" |#2|)) (-15 -3547 (|#1| |#1| |#2|)) (-15 -3547 (|#1| |#1| |#1|)) (-15 -2680 (|#2| |#1| "last")) (-15 -2680 (|#1| |#1| "rest")) (-15 -1293 (|#1| |#1| (-749))) (-15 -2680 (|#2| |#1| "first")) (-15 -1293 (|#2| |#1|)) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#1|)) (-15 -1705 (|#2| |#1| "value" |#2|)) (-15 -2680 (|#2| |#1| "value")) (-15 -3234 (|#1| (-1 |#2| |#2|) |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3625 ((|#1| $) 48)) (-3996 ((|#1| $) 65)) (-4180 (($ $) 67)) (-3029 (((-1232) $ (-550) (-550)) 97 (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) 52 (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) 8)) (-2190 ((|#1| $ |#1|) 39 (|has| $ (-6 -4343)))) (-1431 (($ $ $) 56 (|has| $ (-6 -4343)))) (-1300 ((|#1| $ |#1|) 54 (|has| $ (-6 -4343)))) (-3373 ((|#1| $ |#1|) 58 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4343))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4343))) (($ $ "rest" $) 55 (|has| $ (-6 -4343))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 117 (|has| $ (-6 -4343))) ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4342)))) (-3985 ((|#1| $) 66)) (-3513 (($) 7 T CONST)) (-1308 (($ $) 73) (($ $ (-749)) 71)) (-1328 (($ $) 99 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4342))) (($ |#1| $) 100 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3245 ((|#1| $ (-550) |#1|) 85 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 87)) (-3815 (((-112) $) 83)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 50)) (-2333 (((-112) $ $) 42 (|has| |#1| (-1068)))) (-2578 (($ (-749) |#1|) 108)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 95 (|has| (-550) (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 94 (|has| (-550) (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1573 (((-112) $ (-749)) 10)) (-2513 (((-623 |#1|) $) 45)) (-3312 (((-112) $) 49)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3159 ((|#1| $) 70) (($ $ (-749)) 68)) (-2055 (($ $ $ (-550)) 116) (($ |#1| $ (-550)) 115)) (-2325 (((-623 (-550)) $) 92)) (-2400 (((-112) (-550) $) 91)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 76) (($ $ (-749)) 74)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3111 (($ $ |#1|) 96 (|has| $ (-6 -4343)))) (-2719 (((-112) $) 84)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 90)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1194 (-550))) 112) ((|#1| $ (-550)) 89) ((|#1| $ (-550) |#1|) 88)) (-2487 (((-550) $ $) 44)) (-1529 (($ $ (-1194 (-550))) 114) (($ $ (-550)) 113)) (-2136 (((-112) $) 46)) (-3635 (($ $) 62)) (-3472 (($ $) 59 (|has| $ (-6 -4343)))) (-3728 (((-749) $) 63)) (-3786 (($ $) 64)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-4028 (((-526) $) 98 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 107)) (-3547 (($ $ $) 61 (|has| $ (-6 -4343))) (($ $ |#1|) 60 (|has| $ (-6 -4343)))) (-3227 (($ $ $) 78) (($ |#1| $) 77) (($ (-623 $)) 110) (($ $ |#1|) 109)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 51)) (-2413 (((-112) $ $) 43 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-1117 |#1|) (-138) (-1181)) (T -1117)) +((-2719 (*1 *2 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1181)) (-5 *2 (-112)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1181)) (-5 *2 (-112))))) +(-13 (-1215 |t#1|) (-629 |t#1|) (-10 -8 (-15 -2719 ((-112) $)) (-15 -3815 ((-112) $)))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-629 |#1|) . T) ((-983 |#1|) . T) ((-1068) |has| |#1| (-1068)) ((-1181) . T) ((-1215 |#1|) . T)) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3029 (((-1232) $ |#1| |#1|) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#2| $ |#1| |#2|) NIL)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 |#2| "failed") |#1| $) NIL)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) NIL)) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) NIL)) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 ((|#1| $) NIL (|has| |#1| (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 ((|#1| $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3531 (((-623 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-2325 (((-623 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-1293 ((|#2| $) NIL (|has| |#1| (-825)))) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))) (|has| |#2| (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1118 |#1| |#2| |#3|) (-1157 |#1| |#2|) (-1068) (-1068) |#2|) (T -1118)) +NIL +(-1157 |#1| |#2|) +((-1504 (((-112) $ $) 7)) (-2826 (((-3 $ "failed") $) 13)) (-1825 (((-1126) $) 9)) (-3862 (($) 14 T CONST)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11)) (-2316 (((-112) $ $) 6))) +(((-1119) (-138)) (T -1119)) +((-3862 (*1 *1) (-4 *1 (-1119))) (-2826 (*1 *1 *1) (|partial| -4 *1 (-1119)))) +(-13 (-1068) (-10 -8 (-15 -3862 ($) -2258) (-15 -2826 ((-3 $ "failed") $)))) +(((-101) . T) ((-595 (-836)) . T) ((-1068) . T)) +((-2620 (((-1124 |#1|) (-1124 |#1|)) 17)) (-2793 (((-1124 |#1|) (-1124 |#1|)) 13)) (-4307 (((-1124 |#1|) (-1124 |#1|) (-550) (-550)) 20)) (-2909 (((-1124 |#1|) (-1124 |#1|)) 15))) +(((-1120 |#1|) (-10 -7 (-15 -2793 ((-1124 |#1|) (-1124 |#1|))) (-15 -2909 ((-1124 |#1|) (-1124 |#1|))) (-15 -2620 ((-1124 |#1|) (-1124 |#1|))) (-15 -4307 ((-1124 |#1|) (-1124 |#1|) (-550) (-550)))) (-13 (-542) (-145))) (T -1120)) +((-4307 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-550)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1120 *4)))) (-2620 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1120 *3)))) (-2909 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1120 *3)))) (-2793 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1120 *3))))) +(-10 -7 (-15 -2793 ((-1124 |#1|) (-1124 |#1|))) (-15 -2909 ((-1124 |#1|) (-1124 |#1|))) (-15 -2620 ((-1124 |#1|) (-1124 |#1|))) (-15 -4307 ((-1124 |#1|) (-1124 |#1|) (-550) (-550)))) +((-3227 (((-1124 |#1|) (-1124 (-1124 |#1|))) 15))) +(((-1121 |#1|) (-10 -7 (-15 -3227 ((-1124 |#1|) (-1124 (-1124 |#1|))))) (-1181)) (T -1121)) +((-3227 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-1181))))) +(-10 -7 (-15 -3227 ((-1124 |#1|) (-1124 (-1124 |#1|))))) +((-3572 (((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)) 25)) (-2419 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)) 26)) (-3972 (((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 16))) +(((-1122 |#1| |#2|) (-10 -7 (-15 -3972 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (-15 -3572 ((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|))) (-15 -2419 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)))) (-1181) (-1181)) (T -1122)) +((-2419 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1124 *5)) (-4 *5 (-1181)) (-4 *2 (-1181)) (-5 *1 (-1122 *5 *2)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1124 *6)) (-4 *6 (-1181)) (-4 *3 (-1181)) (-5 *2 (-1124 *3)) (-5 *1 (-1122 *6 *3)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1124 *6)) (-5 *1 (-1122 *5 *6))))) +(-10 -7 (-15 -3972 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (-15 -3572 ((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|))) (-15 -2419 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)))) +((-3972 (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)) 21))) +(((-1123 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)))) (-1181) (-1181) (-1181)) (T -1123)) +((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-1124 *7)) (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-1124 *8)) (-5 *1 (-1123 *6 *7 *8))))) +(-10 -7 (-15 -3972 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) NIL)) (-3996 ((|#1| $) NIL)) (-4180 (($ $) 52)) (-3029 (((-1232) $ (-550) (-550)) 77 (|has| $ (-6 -4343)))) (-4249 (($ $ (-550)) 111 (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-3428 (((-836) $) 41 (|has| |#1| (-1068)))) (-1379 (((-112)) 40 (|has| |#1| (-1068)))) (-2190 ((|#1| $ |#1|) NIL (|has| $ (-6 -4343)))) (-1431 (($ $ $) 99 (|has| $ (-6 -4343))) (($ $ (-550) $) 123)) (-1300 ((|#1| $ |#1|) 108 (|has| $ (-6 -4343)))) (-3373 ((|#1| $ |#1|) 103 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4343))) (($ $ "rest" $) 107 (|has| $ (-6 -4343))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 90 (|has| $ (-6 -4343))) ((|#1| $ (-550) |#1|) 56 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) 59)) (-3985 ((|#1| $) NIL)) (-3513 (($) NIL T CONST)) (-3696 (($ $) 14)) (-1308 (($ $) 29) (($ $ (-749)) 89)) (-1924 (((-112) (-623 |#1|) $) 117 (|has| |#1| (-1068)))) (-3672 (($ (-623 |#1|)) 113)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) 58)) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-3815 (((-112) $) NIL)) (-3450 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-4190 (((-1232) (-550) $) 122 (|has| |#1| (-1068)))) (-3604 (((-749) $) 119)) (-2560 (((-623 $) $) NIL)) (-2333 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2578 (($ (-749) |#1|) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-1573 (((-112) $ (-749)) NIL)) (-2513 (((-623 |#1|) $) NIL)) (-3312 (((-112) $) NIL)) (-3708 (($ $) 91)) (-3807 (((-112) $) 13)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3159 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-2055 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) 75)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-4176 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3606 ((|#1| $) 10)) (-1293 ((|#1| $) 28) (($ $ (-749)) 50)) (-4173 (((-2 (|:| |cycle?| (-112)) (|:| -1630 (-749)) (|:| |period| (-749))) (-749) $) 25)) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4228 (($ (-1 (-112) |#1|) $) 127)) (-4240 (($ (-1 (-112) |#1|) $) 128)) (-3111 (($ $ |#1|) 69 (|has| $ (-6 -4343)))) (-2272 (($ $ (-550)) 32)) (-2719 (((-112) $) 73)) (-3887 (((-112) $) 12)) (-2818 (((-112) $) 118)) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 20)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) 15)) (-3498 (($) 45)) (-2680 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1194 (-550))) NIL) ((|#1| $ (-550)) 55) ((|#1| $ (-550) |#1|) NIL)) (-2487 (((-550) $ $) 49)) (-1529 (($ $ (-1194 (-550))) NIL) (($ $ (-550)) NIL)) (-3557 (($ (-1 $)) 48)) (-2136 (((-112) $) 70)) (-3635 (($ $) 71)) (-3472 (($ $) 100 (|has| $ (-6 -4343)))) (-3728 (((-749) $) NIL)) (-3786 (($ $) NIL)) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) 44)) (-4028 (((-526) $) NIL (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 54)) (-1413 (($ |#1| $) 98)) (-3547 (($ $ $) 101 (|has| $ (-6 -4343))) (($ $ |#1|) 102 (|has| $ (-6 -4343)))) (-3227 (($ $ $) 79) (($ |#1| $) 46) (($ (-623 $)) 84) (($ $ |#1|) 78)) (-3380 (($ $) 51)) (-1518 (($ (-623 |#1|)) 112) (((-836) $) 42 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) NIL)) (-2413 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 115 (|has| |#1| (-1068)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1124 |#1|) (-13 (-652 |#1|) (-10 -8 (-6 -4343) (-15 -1518 ($ (-623 |#1|))) (-15 -3672 ($ (-623 |#1|))) (IF (|has| |#1| (-1068)) (-15 -1924 ((-112) (-623 |#1|) $)) |%noBranch|) (-15 -4173 ((-2 (|:| |cycle?| (-112)) (|:| -1630 (-749)) (|:| |period| (-749))) (-749) $)) (-15 -3557 ($ (-1 $))) (-15 -1413 ($ |#1| $)) (IF (|has| |#1| (-1068)) (PROGN (-15 -4190 ((-1232) (-550) $)) (-15 -3428 ((-836) $)) (-15 -1379 ((-112)))) |%noBranch|) (-15 -1431 ($ $ (-550) $)) (-15 -4176 ($ (-1 |#1|))) (-15 -4176 ($ (-1 |#1| |#1|) |#1|)) (-15 -4228 ($ (-1 (-112) |#1|) $)) (-15 -4240 ($ (-1 (-112) |#1|) $)))) (-1181)) (T -1124)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3)))) (-1924 (*1 *2 *3 *1) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1068)) (-4 *4 (-1181)) (-5 *2 (-112)) (-5 *1 (-1124 *4)))) (-4173 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1630 (-749)) (|:| |period| (-749)))) (-5 *1 (-1124 *4)) (-4 *4 (-1181)) (-5 *3 (-749)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1 (-1124 *3))) (-5 *1 (-1124 *3)) (-4 *3 (-1181)))) (-1413 (*1 *1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1181)))) (-4190 (*1 *2 *3 *1) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-1124 *4)) (-4 *4 (-1068)) (-4 *4 (-1181)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-1124 *3)) (-4 *3 (-1068)) (-4 *3 (-1181)))) (-1379 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3)) (-4 *3 (-1068)) (-4 *3 (-1181)))) (-1431 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1124 *3)) (-4 *3 (-1181)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3)))) (-4176 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3)))) (-4228 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3)))) (-4240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3))))) +(-13 (-652 |#1|) (-10 -8 (-6 -4343) (-15 -1518 ($ (-623 |#1|))) (-15 -3672 ($ (-623 |#1|))) (IF (|has| |#1| (-1068)) (-15 -1924 ((-112) (-623 |#1|) $)) |%noBranch|) (-15 -4173 ((-2 (|:| |cycle?| (-112)) (|:| -1630 (-749)) (|:| |period| (-749))) (-749) $)) (-15 -3557 ($ (-1 $))) (-15 -1413 ($ |#1| $)) (IF (|has| |#1| (-1068)) (PROGN (-15 -4190 ((-1232) (-550) $)) (-15 -3428 ((-836) $)) (-15 -1379 ((-112)))) |%noBranch|) (-15 -1431 ($ $ (-550) $)) (-15 -4176 ($ (-1 |#1|))) (-15 -4176 ($ (-1 |#1| |#1|) |#1|)) (-15 -4228 ($ (-1 (-112) |#1|) $)) (-15 -4240 ($ (-1 (-112) |#1|) $)))) +((-1504 (((-112) $ $) 19)) (-1869 (($ $) 120)) (-2009 (($ $) 121)) (-1583 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-3745 (((-112) $ $) 118)) (-3725 (((-112) $ $ (-550)) 117)) (-4038 (($ (-550)) 127)) (-1716 (((-623 $) $ (-142)) 110) (((-623 $) $ (-139)) 109)) (-3654 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-825)))) (-3491 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4343))) (($ $) 88 (-12 (|has| (-142) (-825)) (|has| $ (-6 -4343))))) (-1674 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-825)))) (-4047 (((-112) $ (-749)) 8)) (-1705 (((-142) $ (-550) (-142)) 52 (|has| $ (-6 -4343))) (((-142) $ (-1194 (-550)) (-142)) 58 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-2999 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2342 (($ $) 90 (|has| $ (-6 -4343)))) (-3243 (($ $) 100)) (-1727 (($ $ (-1194 (-550)) $) 114)) (-1328 (($ $) 78 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ (-142) $) 77 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4342)))) (-2419 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4342))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4342)))) (-3245 (((-142) $ (-550) (-142)) 53 (|has| $ (-6 -4343)))) (-3181 (((-142) $ (-550)) 51)) (-3764 (((-112) $ $) 119)) (-2302 (((-550) (-1 (-112) (-142)) $) 97) (((-550) (-142) $) 96 (|has| (-142) (-1068))) (((-550) (-142) $ (-550)) 95 (|has| (-142) (-1068))) (((-550) $ $ (-550)) 113) (((-550) (-139) $ (-550)) 112)) (-3450 (((-623 (-142)) $) 30 (|has| $ (-6 -4342)))) (-2578 (($ (-749) (-142)) 69)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-2707 (($ $ $) 87 (|has| (-142) (-825)))) (-1832 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-825)))) (-2689 (((-623 (-142)) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-4164 (($ $ $) 86 (|has| (-142) (-825)))) (-1764 (((-112) $ $ (-142)) 115)) (-3658 (((-749) $ $ (-142)) 116)) (-3234 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3865 (($ $) 122)) (-3966 (($ $) 123)) (-1573 (((-112) $ (-749)) 10)) (-3010 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1825 (((-1126) $) 22)) (-2055 (($ (-142) $ (-550)) 60) (($ $ $ (-550)) 59)) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-3337 (((-1088) $) 21)) (-1293 (((-142) $) 42 (|has| (-550) (-825)))) (-3321 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-3111 (($ $ (-142)) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-287 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-623 (-142)) (-623 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-2477 (((-623 (-142)) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 (((-142) $ (-550) (-142)) 50) (((-142) $ (-550)) 49) (($ $ (-1194 (-550))) 63) (($ $ $) 102)) (-1529 (($ $ (-550)) 62) (($ $ (-1194 (-550))) 61)) (-3350 (((-749) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4342))) (((-749) (-142) $) 28 (-12 (|has| (-142) (-1068)) (|has| $ (-6 -4342))))) (-3593 (($ $ $ (-550)) 91 (|has| $ (-6 -4343)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 79 (|has| (-142) (-596 (-526))))) (-1532 (($ (-623 (-142))) 70)) (-3227 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-1518 (($ (-142)) 111) (((-836) $) 18)) (-1675 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4342)))) (-3040 (((-1126) $) 131) (((-1126) $ (-112)) 130) (((-1232) (-800) $) 129) (((-1232) (-800) $ (-112)) 128)) (-2363 (((-112) $ $) 84 (|has| (-142) (-825)))) (-2345 (((-112) $ $) 83 (|has| (-142) (-825)))) (-2316 (((-112) $ $) 20)) (-2354 (((-112) $ $) 85 (|has| (-142) (-825)))) (-2335 (((-112) $ $) 82 (|has| (-142) (-825)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-1125) (-138)) (T -1125)) +((-4038 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1125))))) +(-13 (-1112) (-1068) (-806) (-10 -8 (-15 -4038 ($ (-550))))) +(((-34) . T) ((-101) . T) ((-595 (-836)) . T) ((-149 #0=(-142)) . T) ((-596 (-526)) |has| (-142) (-596 (-526))) ((-279 #1=(-550) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))) ((-366 #0#) . T) ((-481 #0#) . T) ((-586 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))) ((-629 #0#) . T) ((-19 #0#) . T) ((-806) . T) ((-825) |has| (-142) (-825)) ((-1068) . T) ((-1112) . T) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-1869 (($ $) NIL)) (-2009 (($ $) NIL)) (-1583 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3745 (((-112) $ $) NIL)) (-3725 (((-112) $ $ (-550)) NIL)) (-4038 (($ (-550)) 7)) (-1716 (((-623 $) $ (-142)) NIL) (((-623 $) $ (-139)) NIL)) (-3654 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-825)))) (-3491 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| (-142) (-825))))) (-1674 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 (((-142) $ (-550) (-142)) NIL (|has| $ (-6 -4343))) (((-142) $ (-1194 (-550)) (-142)) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2999 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1727 (($ $ (-1194 (-550)) $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-3137 (($ (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4342))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3245 (((-142) $ (-550) (-142)) NIL (|has| $ (-6 -4343)))) (-3181 (((-142) $ (-550)) NIL)) (-3764 (((-112) $ $) NIL)) (-2302 (((-550) (-1 (-112) (-142)) $) NIL) (((-550) (-142) $) NIL (|has| (-142) (-1068))) (((-550) (-142) $ (-550)) NIL (|has| (-142) (-1068))) (((-550) $ $ (-550)) NIL) (((-550) (-139) $ (-550)) NIL)) (-3450 (((-623 (-142)) $) NIL (|has| $ (-6 -4342)))) (-2578 (($ (-749) (-142)) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| (-142) (-825)))) (-1832 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-825)))) (-2689 (((-623 (-142)) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| (-142) (-825)))) (-1764 (((-112) $ $ (-142)) NIL)) (-3658 (((-749) $ $ (-142)) NIL)) (-3234 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3865 (($ $) NIL)) (-3966 (($ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-3010 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1825 (((-1126) $) NIL)) (-2055 (($ (-142) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-142) $) NIL (|has| (-550) (-825)))) (-3321 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3111 (($ $ (-142)) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068)))) (($ $ (-623 (-142)) (-623 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-2477 (((-623 (-142)) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 (((-142) $ (-550) (-142)) NIL) (((-142) $ (-550)) NIL) (($ $ (-1194 (-550))) NIL) (($ $ $) NIL)) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3350 (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342))) (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-142) (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-142) (-596 (-526))))) (-1532 (($ (-623 (-142))) NIL)) (-3227 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (($ (-142)) NIL) (((-836) $) NIL)) (-1675 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4342)))) (-3040 (((-1126) $) 18) (((-1126) $ (-112)) 20) (((-1232) (-800) $) 21) (((-1232) (-800) $ (-112)) 22)) (-2363 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2345 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2335 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1126) (-1125)) (T -1126)) +NIL +(-1125) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)) (|has| |#1| (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL)) (-3029 (((-1232) $ (-1126) (-1126)) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-1126) |#1|) NIL)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 |#1| "failed") (-1126) $) NIL)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068))))) (-3112 (($ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (((-3 |#1| "failed") (-1126) $) NIL)) (-3137 (($ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-1126) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-1126)) NIL)) (-3450 (((-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-1126) $) NIL (|has| (-1126) (-825)))) (-2689 (((-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-1126) $) NIL (|has| (-1126) (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4343))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)) (|has| |#1| (-1068))))) (-3531 (((-623 (-1126)) $) NIL)) (-2550 (((-112) (-1126) $) NIL)) (-3638 (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL)) (-2325 (((-623 (-1126)) $) NIL)) (-2400 (((-112) (-1126) $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)) (|has| |#1| (-1068))))) (-1293 ((|#1| $) NIL (|has| (-1126) (-825)))) (-3321 (((-3 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) "failed") (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (($ $ (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL (-12 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-302 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-1126)) NIL) ((|#1| $ (-1126) |#1|) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-595 (-836))) (|has| |#1| (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 (-1126)) (|:| -2119 |#1|)) (-1068)) (|has| |#1| (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1127 |#1|) (-13 (-1157 (-1126) |#1|) (-10 -7 (-6 -4342))) (-1068)) (T -1127)) +NIL +(-13 (-1157 (-1126) |#1|) (-10 -7 (-6 -4342))) +((-2888 (((-1124 |#1|) (-1124 |#1|)) 77)) (-1386 (((-3 (-1124 |#1|) "failed") (-1124 |#1|)) 37)) (-4178 (((-1124 |#1|) (-400 (-550)) (-1124 |#1|)) 121 (|has| |#1| (-38 (-400 (-550)))))) (-3363 (((-1124 |#1|) |#1| (-1124 |#1|)) 127 (|has| |#1| (-356)))) (-3140 (((-1124 |#1|) (-1124 |#1|)) 90)) (-1689 (((-1124 (-550)) (-550)) 57)) (-4050 (((-1124 |#1|) (-1124 (-1124 |#1|))) 109 (|has| |#1| (-38 (-400 (-550)))))) (-2779 (((-1124 |#1|) (-550) (-550) (-1124 |#1|)) 95)) (-1792 (((-1124 |#1|) |#1| (-550)) 45)) (-1469 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 60)) (-1267 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 124 (|has| |#1| (-356)))) (-3916 (((-1124 |#1|) |#1| (-1 (-1124 |#1|))) 108 (|has| |#1| (-38 (-400 (-550)))))) (-3237 (((-1124 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1124 |#1|))) 125 (|has| |#1| (-356)))) (-1320 (((-1124 |#1|) (-1124 |#1|)) 89)) (-3374 (((-1124 |#1|) (-1124 |#1|)) 76)) (-2692 (((-1124 |#1|) (-550) (-550) (-1124 |#1|)) 96)) (-1489 (((-1124 |#1|) |#1| (-1124 |#1|)) 105 (|has| |#1| (-38 (-400 (-550)))))) (-1546 (((-1124 (-550)) (-550)) 56)) (-1327 (((-1124 |#1|) |#1|) 59)) (-2960 (((-1124 |#1|) (-1124 |#1|) (-550) (-550)) 92)) (-1775 (((-1124 |#1|) (-1 |#1| (-550)) (-1124 |#1|)) 66)) (-1495 (((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|)) 35)) (-3046 (((-1124 |#1|) (-1124 |#1|)) 91)) (-3866 (((-1124 |#1|) (-1124 |#1|) |#1|) 71)) (-1621 (((-1124 |#1|) (-1124 |#1|)) 62)) (-1919 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 72)) (-1518 (((-1124 |#1|) |#1|) 67)) (-3798 (((-1124 |#1|) (-1124 (-1124 |#1|))) 82)) (-2414 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 36)) (-2403 (((-1124 |#1|) (-1124 |#1|)) 21) (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 23)) (-2391 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 17)) (* (((-1124 |#1|) (-1124 |#1|) |#1|) 29) (((-1124 |#1|) |#1| (-1124 |#1|)) 26) (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 27))) +(((-1128 |#1|) (-10 -7 (-15 -2391 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -2403 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -2403 ((-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -1495 ((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|))) (-15 -2414 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -1386 ((-3 (-1124 |#1|) "failed") (-1124 |#1|))) (-15 -1792 ((-1124 |#1|) |#1| (-550))) (-15 -1546 ((-1124 (-550)) (-550))) (-15 -1689 ((-1124 (-550)) (-550))) (-15 -1327 ((-1124 |#1|) |#1|)) (-15 -1469 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -1621 ((-1124 |#1|) (-1124 |#1|))) (-15 -1775 ((-1124 |#1|) (-1 |#1| (-550)) (-1124 |#1|))) (-15 -1518 ((-1124 |#1|) |#1|)) (-15 -3866 ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -1919 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3374 ((-1124 |#1|) (-1124 |#1|))) (-15 -2888 ((-1124 |#1|) (-1124 |#1|))) (-15 -3798 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -1320 ((-1124 |#1|) (-1124 |#1|))) (-15 -3140 ((-1124 |#1|) (-1124 |#1|))) (-15 -3046 ((-1124 |#1|) (-1124 |#1|))) (-15 -2960 ((-1124 |#1|) (-1124 |#1|) (-550) (-550))) (-15 -2779 ((-1124 |#1|) (-550) (-550) (-1124 |#1|))) (-15 -2692 ((-1124 |#1|) (-550) (-550) (-1124 |#1|))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 -3916 ((-1124 |#1|) |#1| (-1 (-1124 |#1|)))) (-15 -4050 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -4178 ((-1124 |#1|) (-400 (-550)) (-1124 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1267 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3237 ((-1124 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1124 |#1|)))) (-15 -3363 ((-1124 |#1|) |#1| (-1124 |#1|)))) |%noBranch|)) (-1020)) (T -1128)) +((-3363 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-3237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-550))) (-5 *5 (-1 (-1124 *4))) (-4 *4 (-356)) (-4 *4 (-1020)) (-5 *2 (-1124 *4)) (-5 *1 (-1128 *4)))) (-1267 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-4178 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1020)) (-5 *3 (-400 (-550))) (-5 *1 (-1128 *4)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1128 *4)) (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1020)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1124 *3))) (-5 *2 (-1124 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)))) (-1489 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-2692 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-550)) (-4 *4 (-1020)) (-5 *1 (-1128 *4)))) (-2779 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-550)) (-4 *4 (-1020)) (-5 *1 (-1128 *4)))) (-2960 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-550)) (-4 *4 (-1020)) (-5 *1 (-1128 *4)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-1320 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1128 *4)) (-4 *4 (-1020)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-1919 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-3866 (*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1020)))) (-1775 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-1 *4 (-550))) (-4 *4 (-1020)) (-5 *1 (-1128 *4)))) (-1621 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-1469 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-1327 (*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1020)))) (-1689 (*1 *2 *3) (-12 (-5 *2 (-1124 (-550))) (-5 *1 (-1128 *4)) (-4 *4 (-1020)) (-5 *3 (-550)))) (-1546 (*1 *2 *3) (-12 (-5 *2 (-1124 (-550))) (-5 *1 (-1128 *4)) (-4 *4 (-1020)) (-5 *3 (-550)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-1124 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1020)))) (-1386 (*1 *2 *2) (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-2414 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-1495 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-2403 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) (-2391 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3))))) +(-10 -7 (-15 -2391 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -2403 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -2403 ((-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -1495 ((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|))) (-15 -2414 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -1386 ((-3 (-1124 |#1|) "failed") (-1124 |#1|))) (-15 -1792 ((-1124 |#1|) |#1| (-550))) (-15 -1546 ((-1124 (-550)) (-550))) (-15 -1689 ((-1124 (-550)) (-550))) (-15 -1327 ((-1124 |#1|) |#1|)) (-15 -1469 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -1621 ((-1124 |#1|) (-1124 |#1|))) (-15 -1775 ((-1124 |#1|) (-1 |#1| (-550)) (-1124 |#1|))) (-15 -1518 ((-1124 |#1|) |#1|)) (-15 -3866 ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -1919 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3374 ((-1124 |#1|) (-1124 |#1|))) (-15 -2888 ((-1124 |#1|) (-1124 |#1|))) (-15 -3798 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -1320 ((-1124 |#1|) (-1124 |#1|))) (-15 -3140 ((-1124 |#1|) (-1124 |#1|))) (-15 -3046 ((-1124 |#1|) (-1124 |#1|))) (-15 -2960 ((-1124 |#1|) (-1124 |#1|) (-550) (-550))) (-15 -2779 ((-1124 |#1|) (-550) (-550) (-1124 |#1|))) (-15 -2692 ((-1124 |#1|) (-550) (-550) (-1124 |#1|))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 -3916 ((-1124 |#1|) |#1| (-1 (-1124 |#1|)))) (-15 -4050 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -4178 ((-1124 |#1|) (-400 (-550)) (-1124 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1267 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3237 ((-1124 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1124 |#1|)))) (-15 -3363 ((-1124 |#1|) |#1| (-1124 |#1|)))) |%noBranch|)) +((-3123 (((-1124 |#1|) (-1124 |#1|)) 57)) (-3005 (((-1124 |#1|) (-1124 |#1|)) 39)) (-3103 (((-1124 |#1|) (-1124 |#1|)) 53)) (-2984 (((-1124 |#1|) (-1124 |#1|)) 35)) (-3146 (((-1124 |#1|) (-1124 |#1|)) 60)) (-3025 (((-1124 |#1|) (-1124 |#1|)) 42)) (-2958 (((-1124 |#1|) (-1124 |#1|)) 31)) (-1812 (((-1124 |#1|) (-1124 |#1|)) 27)) (-3157 (((-1124 |#1|) (-1124 |#1|)) 61)) (-3033 (((-1124 |#1|) (-1124 |#1|)) 43)) (-3135 (((-1124 |#1|) (-1124 |#1|)) 58)) (-3016 (((-1124 |#1|) (-1124 |#1|)) 40)) (-3114 (((-1124 |#1|) (-1124 |#1|)) 55)) (-2995 (((-1124 |#1|) (-1124 |#1|)) 37)) (-3187 (((-1124 |#1|) (-1124 |#1|)) 65)) (-3060 (((-1124 |#1|) (-1124 |#1|)) 47)) (-3167 (((-1124 |#1|) (-1124 |#1|)) 63)) (-3043 (((-1124 |#1|) (-1124 |#1|)) 45)) (-3209 (((-1124 |#1|) (-1124 |#1|)) 68)) (-3081 (((-1124 |#1|) (-1124 |#1|)) 50)) (-3294 (((-1124 |#1|) (-1124 |#1|)) 69)) (-3094 (((-1124 |#1|) (-1124 |#1|)) 51)) (-3198 (((-1124 |#1|) (-1124 |#1|)) 67)) (-3072 (((-1124 |#1|) (-1124 |#1|)) 49)) (-3176 (((-1124 |#1|) (-1124 |#1|)) 66)) (-3052 (((-1124 |#1|) (-1124 |#1|)) 48)) (** (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 33))) +(((-1129 |#1|) (-10 -7 (-15 -1812 ((-1124 |#1|) (-1124 |#1|))) (-15 -2958 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -2984 ((-1124 |#1|) (-1124 |#1|))) (-15 -2995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3005 ((-1124 |#1|) (-1124 |#1|))) (-15 -3016 ((-1124 |#1|) (-1124 |#1|))) (-15 -3025 ((-1124 |#1|) (-1124 |#1|))) (-15 -3033 ((-1124 |#1|) (-1124 |#1|))) (-15 -3043 ((-1124 |#1|) (-1124 |#1|))) (-15 -3052 ((-1124 |#1|) (-1124 |#1|))) (-15 -3060 ((-1124 |#1|) (-1124 |#1|))) (-15 -3072 ((-1124 |#1|) (-1124 |#1|))) (-15 -3081 ((-1124 |#1|) (-1124 |#1|))) (-15 -3094 ((-1124 |#1|) (-1124 |#1|))) (-15 -3103 ((-1124 |#1|) (-1124 |#1|))) (-15 -3114 ((-1124 |#1|) (-1124 |#1|))) (-15 -3123 ((-1124 |#1|) (-1124 |#1|))) (-15 -3135 ((-1124 |#1|) (-1124 |#1|))) (-15 -3146 ((-1124 |#1|) (-1124 |#1|))) (-15 -3157 ((-1124 |#1|) (-1124 |#1|))) (-15 -3167 ((-1124 |#1|) (-1124 |#1|))) (-15 -3176 ((-1124 |#1|) (-1124 |#1|))) (-15 -3187 ((-1124 |#1|) (-1124 |#1|))) (-15 -3198 ((-1124 |#1|) (-1124 |#1|))) (-15 -3209 ((-1124 |#1|) (-1124 |#1|))) (-15 -3294 ((-1124 |#1|) (-1124 |#1|)))) (-38 (-400 (-550)))) (T -1129)) +((-3294 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3209 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3167 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3123 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3103 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3016 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-2995 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-2984 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3)))) (-1812 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1129 *3))))) +(-10 -7 (-15 -1812 ((-1124 |#1|) (-1124 |#1|))) (-15 -2958 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -2984 ((-1124 |#1|) (-1124 |#1|))) (-15 -2995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3005 ((-1124 |#1|) (-1124 |#1|))) (-15 -3016 ((-1124 |#1|) (-1124 |#1|))) (-15 -3025 ((-1124 |#1|) (-1124 |#1|))) (-15 -3033 ((-1124 |#1|) (-1124 |#1|))) (-15 -3043 ((-1124 |#1|) (-1124 |#1|))) (-15 -3052 ((-1124 |#1|) (-1124 |#1|))) (-15 -3060 ((-1124 |#1|) (-1124 |#1|))) (-15 -3072 ((-1124 |#1|) (-1124 |#1|))) (-15 -3081 ((-1124 |#1|) (-1124 |#1|))) (-15 -3094 ((-1124 |#1|) (-1124 |#1|))) (-15 -3103 ((-1124 |#1|) (-1124 |#1|))) (-15 -3114 ((-1124 |#1|) (-1124 |#1|))) (-15 -3123 ((-1124 |#1|) (-1124 |#1|))) (-15 -3135 ((-1124 |#1|) (-1124 |#1|))) (-15 -3146 ((-1124 |#1|) (-1124 |#1|))) (-15 -3157 ((-1124 |#1|) (-1124 |#1|))) (-15 -3167 ((-1124 |#1|) (-1124 |#1|))) (-15 -3176 ((-1124 |#1|) (-1124 |#1|))) (-15 -3187 ((-1124 |#1|) (-1124 |#1|))) (-15 -3198 ((-1124 |#1|) (-1124 |#1|))) (-15 -3209 ((-1124 |#1|) (-1124 |#1|))) (-15 -3294 ((-1124 |#1|) (-1124 |#1|)))) +((-3123 (((-1124 |#1|) (-1124 |#1|)) 100)) (-3005 (((-1124 |#1|) (-1124 |#1|)) 64)) (-3628 (((-2 (|:| -3103 (-1124 |#1|)) (|:| -3114 (-1124 |#1|))) (-1124 |#1|)) 96)) (-3103 (((-1124 |#1|) (-1124 |#1|)) 97)) (-3495 (((-2 (|:| -2984 (-1124 |#1|)) (|:| -2995 (-1124 |#1|))) (-1124 |#1|)) 53)) (-2984 (((-1124 |#1|) (-1124 |#1|)) 54)) (-3146 (((-1124 |#1|) (-1124 |#1|)) 102)) (-3025 (((-1124 |#1|) (-1124 |#1|)) 71)) (-2958 (((-1124 |#1|) (-1124 |#1|)) 39)) (-1812 (((-1124 |#1|) (-1124 |#1|)) 36)) (-3157 (((-1124 |#1|) (-1124 |#1|)) 103)) (-3033 (((-1124 |#1|) (-1124 |#1|)) 72)) (-3135 (((-1124 |#1|) (-1124 |#1|)) 101)) (-3016 (((-1124 |#1|) (-1124 |#1|)) 67)) (-3114 (((-1124 |#1|) (-1124 |#1|)) 98)) (-2995 (((-1124 |#1|) (-1124 |#1|)) 55)) (-3187 (((-1124 |#1|) (-1124 |#1|)) 111)) (-3060 (((-1124 |#1|) (-1124 |#1|)) 86)) (-3167 (((-1124 |#1|) (-1124 |#1|)) 105)) (-3043 (((-1124 |#1|) (-1124 |#1|)) 82)) (-3209 (((-1124 |#1|) (-1124 |#1|)) 115)) (-3081 (((-1124 |#1|) (-1124 |#1|)) 90)) (-3294 (((-1124 |#1|) (-1124 |#1|)) 117)) (-3094 (((-1124 |#1|) (-1124 |#1|)) 92)) (-3198 (((-1124 |#1|) (-1124 |#1|)) 113)) (-3072 (((-1124 |#1|) (-1124 |#1|)) 88)) (-3176 (((-1124 |#1|) (-1124 |#1|)) 107)) (-3052 (((-1124 |#1|) (-1124 |#1|)) 84)) (** (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 40))) +(((-1130 |#1|) (-10 -7 (-15 -1812 ((-1124 |#1|) (-1124 |#1|))) (-15 -2958 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3495 ((-2 (|:| -2984 (-1124 |#1|)) (|:| -2995 (-1124 |#1|))) (-1124 |#1|))) (-15 -2984 ((-1124 |#1|) (-1124 |#1|))) (-15 -2995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3005 ((-1124 |#1|) (-1124 |#1|))) (-15 -3016 ((-1124 |#1|) (-1124 |#1|))) (-15 -3025 ((-1124 |#1|) (-1124 |#1|))) (-15 -3033 ((-1124 |#1|) (-1124 |#1|))) (-15 -3043 ((-1124 |#1|) (-1124 |#1|))) (-15 -3052 ((-1124 |#1|) (-1124 |#1|))) (-15 -3060 ((-1124 |#1|) (-1124 |#1|))) (-15 -3072 ((-1124 |#1|) (-1124 |#1|))) (-15 -3081 ((-1124 |#1|) (-1124 |#1|))) (-15 -3094 ((-1124 |#1|) (-1124 |#1|))) (-15 -3628 ((-2 (|:| -3103 (-1124 |#1|)) (|:| -3114 (-1124 |#1|))) (-1124 |#1|))) (-15 -3103 ((-1124 |#1|) (-1124 |#1|))) (-15 -3114 ((-1124 |#1|) (-1124 |#1|))) (-15 -3123 ((-1124 |#1|) (-1124 |#1|))) (-15 -3135 ((-1124 |#1|) (-1124 |#1|))) (-15 -3146 ((-1124 |#1|) (-1124 |#1|))) (-15 -3157 ((-1124 |#1|) (-1124 |#1|))) (-15 -3167 ((-1124 |#1|) (-1124 |#1|))) (-15 -3176 ((-1124 |#1|) (-1124 |#1|))) (-15 -3187 ((-1124 |#1|) (-1124 |#1|))) (-15 -3198 ((-1124 |#1|) (-1124 |#1|))) (-15 -3209 ((-1124 |#1|) (-1124 |#1|))) (-15 -3294 ((-1124 |#1|) (-1124 |#1|)))) (-38 (-400 (-550)))) (T -1130)) +((-3294 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3209 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3167 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3123 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3103 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3628 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-2 (|:| -3103 (-1124 *4)) (|:| -3114 (-1124 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-1124 *4)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3016 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2995 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2984 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-2 (|:| -2984 (-1124 *4)) (|:| -2995 (-1124 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-1124 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3)))) (-1812 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1130 *3))))) +(-10 -7 (-15 -1812 ((-1124 |#1|) (-1124 |#1|))) (-15 -2958 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3495 ((-2 (|:| -2984 (-1124 |#1|)) (|:| -2995 (-1124 |#1|))) (-1124 |#1|))) (-15 -2984 ((-1124 |#1|) (-1124 |#1|))) (-15 -2995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3005 ((-1124 |#1|) (-1124 |#1|))) (-15 -3016 ((-1124 |#1|) (-1124 |#1|))) (-15 -3025 ((-1124 |#1|) (-1124 |#1|))) (-15 -3033 ((-1124 |#1|) (-1124 |#1|))) (-15 -3043 ((-1124 |#1|) (-1124 |#1|))) (-15 -3052 ((-1124 |#1|) (-1124 |#1|))) (-15 -3060 ((-1124 |#1|) (-1124 |#1|))) (-15 -3072 ((-1124 |#1|) (-1124 |#1|))) (-15 -3081 ((-1124 |#1|) (-1124 |#1|))) (-15 -3094 ((-1124 |#1|) (-1124 |#1|))) (-15 -3628 ((-2 (|:| -3103 (-1124 |#1|)) (|:| -3114 (-1124 |#1|))) (-1124 |#1|))) (-15 -3103 ((-1124 |#1|) (-1124 |#1|))) (-15 -3114 ((-1124 |#1|) (-1124 |#1|))) (-15 -3123 ((-1124 |#1|) (-1124 |#1|))) (-15 -3135 ((-1124 |#1|) (-1124 |#1|))) (-15 -3146 ((-1124 |#1|) (-1124 |#1|))) (-15 -3157 ((-1124 |#1|) (-1124 |#1|))) (-15 -3167 ((-1124 |#1|) (-1124 |#1|))) (-15 -3176 ((-1124 |#1|) (-1124 |#1|))) (-15 -3187 ((-1124 |#1|) (-1124 |#1|))) (-15 -3198 ((-1124 |#1|) (-1124 |#1|))) (-15 -3209 ((-1124 |#1|) (-1124 |#1|))) (-15 -3294 ((-1124 |#1|) (-1124 |#1|)))) +((-2582 (((-931 |#2|) |#2| |#2|) 35)) (-2674 ((|#2| |#2| |#1|) 19 (|has| |#1| (-300))))) +(((-1131 |#1| |#2|) (-10 -7 (-15 -2582 ((-931 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -2674 (|#2| |#2| |#1|)) |%noBranch|)) (-542) (-1203 |#1|)) (T -1131)) +((-2674 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-1203 *3)))) (-2582 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-931 *3)) (-5 *1 (-1131 *4 *3)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -2582 ((-931 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -2674 (|#2| |#2| |#1|)) |%noBranch|)) +((-1504 (((-112) $ $) NIL)) (-2278 (($ $ (-623 (-749))) 67)) (-2501 (($) 26)) (-3803 (($ $) 42)) (-4005 (((-623 $) $) 51)) (-3210 (((-112) $) 16)) (-2771 (((-623 (-916 |#2|)) $) 74)) (-2881 (($ $) 68)) (-3902 (((-749) $) 37)) (-2578 (($) 25)) (-2555 (($ $ (-623 (-749)) (-916 |#2|)) 60) (($ $ (-623 (-749)) (-749)) 61) (($ $ (-749) (-916 |#2|)) 63)) (-1832 (($ $ $) 48) (($ (-623 $)) 50)) (-2469 (((-749) $) 75)) (-3312 (((-112) $) 15)) (-1825 (((-1126) $) NIL)) (-1261 (((-112) $) 18)) (-3337 (((-1088) $) NIL)) (-2981 (((-169) $) 73)) (-2186 (((-916 |#2|) $) 69)) (-2096 (((-749) $) 70)) (-3078 (((-112) $) 72)) (-2368 (($ $ (-623 (-749)) (-169)) 66)) (-1946 (($ $) 43)) (-1518 (((-836) $) 86)) (-2464 (($ $ (-623 (-749)) (-112)) 65)) (-3997 (((-623 $) $) 11)) (-4106 (($ $ (-749)) 36)) (-4222 (($ $) 32)) (-1461 (($ $ $ (-916 |#2|) (-749)) 56)) (-1592 (($ $ (-916 |#2|)) 55)) (-1715 (($ $ (-623 (-749)) (-916 |#2|)) 54) (($ $ (-623 (-749)) (-749)) 58) (((-749) $ (-916 |#2|)) 59)) (-2316 (((-112) $ $) 80))) +(((-1132 |#1| |#2|) (-13 (-1068) (-10 -8 (-15 -3312 ((-112) $)) (-15 -3210 ((-112) $)) (-15 -1261 ((-112) $)) (-15 -2578 ($)) (-15 -2501 ($)) (-15 -4222 ($ $)) (-15 -4106 ($ $ (-749))) (-15 -3997 ((-623 $) $)) (-15 -3902 ((-749) $)) (-15 -3803 ($ $)) (-15 -1946 ($ $)) (-15 -1832 ($ $ $)) (-15 -1832 ($ (-623 $))) (-15 -4005 ((-623 $) $)) (-15 -1715 ($ $ (-623 (-749)) (-916 |#2|))) (-15 -1592 ($ $ (-916 |#2|))) (-15 -1461 ($ $ $ (-916 |#2|) (-749))) (-15 -2555 ($ $ (-623 (-749)) (-916 |#2|))) (-15 -1715 ($ $ (-623 (-749)) (-749))) (-15 -2555 ($ $ (-623 (-749)) (-749))) (-15 -1715 ((-749) $ (-916 |#2|))) (-15 -2555 ($ $ (-749) (-916 |#2|))) (-15 -2464 ($ $ (-623 (-749)) (-112))) (-15 -2368 ($ $ (-623 (-749)) (-169))) (-15 -2278 ($ $ (-623 (-749)))) (-15 -2186 ((-916 |#2|) $)) (-15 -2096 ((-749) $)) (-15 -3078 ((-112) $)) (-15 -2981 ((-169) $)) (-15 -2469 ((-749) $)) (-15 -2881 ($ $)) (-15 -2771 ((-623 (-916 |#2|)) $)))) (-894) (-1020)) (T -1132)) +((-3312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-1261 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-2578 (*1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) (-2501 (*1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) (-4222 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) (-4106 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-623 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-3803 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) (-1946 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) (-1832 (*1 *1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-623 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-623 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-1715 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-916 *5)) (-4 *5 (-1020)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1020)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)))) (-1461 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-916 *5)) (-5 *3 (-749)) (-4 *5 (-1020)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)))) (-2555 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-916 *5)) (-4 *5 (-1020)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)))) (-1715 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-749)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)) (-4 *5 (-1020)))) (-2555 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-749)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)) (-4 *5 (-1020)))) (-1715 (*1 *2 *1 *3) (-12 (-5 *3 (-916 *5)) (-4 *5 (-1020)) (-5 *2 (-749)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)))) (-2555 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-916 *5)) (-4 *5 (-1020)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)))) (-2464 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-112)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)) (-4 *5 (-1020)))) (-2368 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-623 (-749))) (-5 *3 (-169)) (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)) (-4 *5 (-1020)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-916 *4)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020)))) (-2881 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-623 (-916 *4))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) (-4 *4 (-1020))))) +(-13 (-1068) (-10 -8 (-15 -3312 ((-112) $)) (-15 -3210 ((-112) $)) (-15 -1261 ((-112) $)) (-15 -2578 ($)) (-15 -2501 ($)) (-15 -4222 ($ $)) (-15 -4106 ($ $ (-749))) (-15 -3997 ((-623 $) $)) (-15 -3902 ((-749) $)) (-15 -3803 ($ $)) (-15 -1946 ($ $)) (-15 -1832 ($ $ $)) (-15 -1832 ($ (-623 $))) (-15 -4005 ((-623 $) $)) (-15 -1715 ($ $ (-623 (-749)) (-916 |#2|))) (-15 -1592 ($ $ (-916 |#2|))) (-15 -1461 ($ $ $ (-916 |#2|) (-749))) (-15 -2555 ($ $ (-623 (-749)) (-916 |#2|))) (-15 -1715 ($ $ (-623 (-749)) (-749))) (-15 -2555 ($ $ (-623 (-749)) (-749))) (-15 -1715 ((-749) $ (-916 |#2|))) (-15 -2555 ($ $ (-749) (-916 |#2|))) (-15 -2464 ($ $ (-623 (-749)) (-112))) (-15 -2368 ($ $ (-623 (-749)) (-169))) (-15 -2278 ($ $ (-623 (-749)))) (-15 -2186 ((-916 |#2|) $)) (-15 -2096 ((-749) $)) (-15 -3078 ((-112) $)) (-15 -2981 ((-169) $)) (-15 -2469 ((-749) $)) (-15 -2881 ($ $)) (-15 -2771 ((-623 (-916 |#2|)) $)))) +((-1504 (((-112) $ $) NIL)) (-2874 ((|#2| $) 11)) (-2864 ((|#1| $) 10)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1532 (($ |#1| |#2|) 9)) (-1518 (((-836) $) 16)) (-2316 (((-112) $ $) NIL))) +(((-1133 |#1| |#2|) (-13 (-1068) (-10 -8 (-15 -1532 ($ |#1| |#2|)) (-15 -2864 (|#1| $)) (-15 -2874 (|#2| $)))) (-1068) (-1068)) (T -1133)) +((-1532 (*1 *1 *2 *3) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) (-2864 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-1133 *2 *3)) (-4 *3 (-1068)))) (-2874 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-1133 *3 *2)) (-4 *3 (-1068))))) +(-13 (-1068) (-10 -8 (-15 -1532 ($ |#1| |#2|)) (-15 -2864 (|#1| $)) (-15 -2874 (|#2| $)))) +((-1504 (((-112) $ $) NIL)) (-3561 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 17) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-1134) (-13 (-1051) (-10 -8 (-15 -3561 ((-1103) $))))) (T -1134)) +((-3561 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1134))))) +(-13 (-1051) (-10 -8 (-15 -3561 ((-1103) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 (((-1142 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 11)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-1447 (($ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-4291 (((-112) $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2370 (($ $ (-550)) NIL) (($ $ (-550) (-550)) 66)) (-2575 (((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) NIL)) (-4314 (((-1142 |#1| |#2| |#3|) $) 36)) (-4099 (((-3 (-1142 |#1| |#2| |#3|) "failed") $) 29)) (-3192 (((-1142 |#1| |#2| |#3|) $) 30)) (-3123 (($ $) 107 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 83 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3103 (($ $) 103 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 79 (|has| |#1| (-38 (-400 (-550)))))) (-3712 (((-550) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2672 (($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) NIL)) (-3146 (($ $) 111 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 87 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-1142 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1144) "failed") $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1011 (-1144))) (|has| |#1| (-356)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356)))) (((-3 (-550) "failed") $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356))))) (-2726 (((-1142 |#1| |#2| |#3|) $) 131) (((-1144) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1011 (-1144))) (|has| |#1| (-356)))) (((-400 (-550)) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356)))) (((-550) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356))))) (-4200 (($ $) 34) (($ (-550) $) 35)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-1142 |#1| |#2| |#3|)) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1340 (-667 (-1142 |#1| |#2| |#3|))) (|:| |vec| (-1227 (-1142 |#1| |#2| |#3|)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-619 (-550))) (|has| |#1| (-356)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-619 (-550))) (|has| |#1| (-356))))) (-1386 (((-3 $ "failed") $) 48)) (-4001 (((-400 (-925 |#1|)) $ (-550)) 65 (|has| |#1| (-542))) (((-400 (-925 |#1|)) $ (-550) (-550)) 67 (|has| |#1| (-542)))) (-1741 (($) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-1416 (((-112) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-3478 (((-112) $) 25)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-859 (-550))) (|has| |#1| (-356)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-859 (-372))) (|has| |#1| (-356))))) (-2475 (((-550) $) NIL) (((-550) $ (-550)) 24)) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL (|has| |#1| (-356)))) (-2705 (((-1142 |#1| |#2| |#3|) $) 38 (|has| |#1| (-356)))) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2826 (((-3 $ "failed") $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1119)) (|has| |#1| (-356))))) (-3329 (((-112) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-1784 (($ $ (-894)) NIL)) (-3315 (($ (-1 |#1| (-550)) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-550)) 18) (($ $ (-1050) (-550)) NIL) (($ $ (-623 (-1050)) (-623 (-550))) NIL)) (-2707 (($ $ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4164 (($ $ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-2958 (($ $) 72 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3203 (($ (-550) (-1142 |#1| |#2| |#3|)) 33)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-1489 (($ $) 70 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166))))) (($ $ (-1223 |#2|)) 71 (|has| |#1| (-38 (-400 (-550)))))) (-3862 (($) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1119)) (|has| |#1| (-356))) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3948 (($ $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-1608 (((-1142 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2272 (($ $ (-550)) 145)) (-1495 (((-3 $ "failed") $ $) 49 (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1812 (($ $) 73 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1144) (-1142 |#1| |#2| |#3|)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-505 (-1144) (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-1144)) (-623 (-1142 |#1| |#2| |#3|))) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-505 (-1144) (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-287 (-1142 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-302 (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-287 (-1142 |#1| |#2| |#3|))) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-302 (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-302 (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-1142 |#1| |#2| |#3|)) (-623 (-1142 |#1| |#2| |#3|))) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-302 (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ (-550)) NIL) (($ $ $) 54 (|has| (-550) (-1080))) (($ $ (-1142 |#1| |#2| |#3|)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-279 (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-2393 (($ $ (-1 (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1223 |#2|)) 51) (($ $ (-749)) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 50 (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144) (-749)) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-623 (-1144))) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))))) (-2639 (($ $) NIL (|has| |#1| (-356)))) (-2715 (((-1142 |#1| |#2| |#3|) $) 41 (|has| |#1| (-356)))) (-2970 (((-550) $) 37)) (-3157 (($ $) 113 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 89 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 109 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 85 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 105 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 81 (|has| |#1| (-38 (-400 (-550)))))) (-4028 (((-526) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-596 (-526))) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-995)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-995)) (|has| |#1| (-356)))) (((-865 (-372)) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-596 (-865 (-372)))) (|has| |#1| (-356)))) (((-865 (-550)) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-596 (-865 (-550)))) (|has| |#1| (-356))))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-3380 (($ $) NIL)) (-1518 (((-836) $) 149) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1142 |#1| |#2| |#3|)) 27) (($ (-1223 |#2|)) 23) (($ (-1144)) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-1011 (-1144))) (|has| |#1| (-356)))) (($ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542)))) (($ (-400 (-550))) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-550))))))) (-2510 ((|#1| $ (-550)) 68)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-3335 ((|#1| $) 12)) (-1754 (((-1142 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3187 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 95 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3167 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 91 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 99 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 101 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 97 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 93 (|has| |#1| (-38 (-400 (-550)))))) (-1635 (($ $) NIL (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2626 (($) 20 T CONST)) (-2636 (($) 16 T CONST)) (-4183 (($ $ (-1 (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144) (-749)) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-623 (-1144))) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))))) (-2363 (((-112) $ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2345 (((-112) $ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2335 (((-112) $ $) NIL (-1561 (-12 (|has| (-1142 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1142 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 44 (|has| |#1| (-356))) (($ (-1142 |#1| |#2| |#3|) (-1142 |#1| |#2| |#3|)) 45 (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 21)) (** (($ $ (-894)) NIL) (($ $ (-749)) 53) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) 74 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 128 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1142 |#1| |#2| |#3|)) 43 (|has| |#1| (-356))) (($ (-1142 |#1| |#2| |#3|) $) 42 (|has| |#1| (-356))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1135 |#1| |#2| |#3|) (-13 (-1189 |#1| (-1142 |#1| |#2| |#3|)) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) (-1020) (-1144) |#1|) (T -1135)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1135 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1135 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1135 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3)))) +(-13 (-1189 |#1| (-1142 |#1| |#2| |#3|)) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) +((-3601 ((|#2| |#2| (-1060 |#2|)) 26) ((|#2| |#2| (-1144)) 28))) +(((-1136 |#1| |#2|) (-10 -7 (-15 -3601 (|#2| |#2| (-1144))) (-15 -3601 (|#2| |#2| (-1060 |#2|)))) (-13 (-542) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-423 |#1|) (-158) (-27) (-1166))) (T -1136)) +((-3601 (*1 *2 *2 *3) (-12 (-5 *3 (-1060 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1166))) (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1136 *4 *2)))) (-3601 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1136 *4 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1166)))))) +(-10 -7 (-15 -3601 (|#2| |#2| (-1144))) (-15 -3601 (|#2| |#2| (-1060 |#2|)))) +((-3601 (((-3 (-400 (-925 |#1|)) (-309 |#1|)) (-400 (-925 |#1|)) (-1060 (-400 (-925 |#1|)))) 31) (((-400 (-925 |#1|)) (-925 |#1|) (-1060 (-925 |#1|))) 44) (((-3 (-400 (-925 |#1|)) (-309 |#1|)) (-400 (-925 |#1|)) (-1144)) 33) (((-400 (-925 |#1|)) (-925 |#1|) (-1144)) 36))) +(((-1137 |#1|) (-10 -7 (-15 -3601 ((-400 (-925 |#1|)) (-925 |#1|) (-1144))) (-15 -3601 ((-3 (-400 (-925 |#1|)) (-309 |#1|)) (-400 (-925 |#1|)) (-1144))) (-15 -3601 ((-400 (-925 |#1|)) (-925 |#1|) (-1060 (-925 |#1|)))) (-15 -3601 ((-3 (-400 (-925 |#1|)) (-309 |#1|)) (-400 (-925 |#1|)) (-1060 (-400 (-925 |#1|)))))) (-13 (-542) (-825) (-1011 (-550)))) (T -1137)) +((-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1060 (-400 (-925 *5)))) (-5 *3 (-400 (-925 *5))) (-4 *5 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-3 *3 (-309 *5))) (-5 *1 (-1137 *5)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1060 (-925 *5))) (-5 *3 (-925 *5)) (-4 *5 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-400 *3)) (-5 *1 (-1137 *5)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-3 (-400 (-925 *5)) (-309 *5))) (-5 *1 (-1137 *5)) (-5 *3 (-400 (-925 *5))))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-400 (-925 *5))) (-5 *1 (-1137 *5)) (-5 *3 (-925 *5))))) +(-10 -7 (-15 -3601 ((-400 (-925 |#1|)) (-925 |#1|) (-1144))) (-15 -3601 ((-3 (-400 (-925 |#1|)) (-309 |#1|)) (-400 (-925 |#1|)) (-1144))) (-15 -3601 ((-400 (-925 |#1|)) (-925 |#1|) (-1060 (-925 |#1|)))) (-15 -3601 ((-3 (-400 (-925 |#1|)) (-309 |#1|)) (-400 (-925 |#1|)) (-1060 (-400 (-925 |#1|)))))) +((-3972 (((-1140 |#2|) (-1 |#2| |#1|) (-1140 |#1|)) 13))) +(((-1138 |#1| |#2|) (-10 -7 (-15 -3972 ((-1140 |#2|) (-1 |#2| |#1|) (-1140 |#1|)))) (-1020) (-1020)) (T -1138)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1140 *6)) (-5 *1 (-1138 *5 *6))))) +(-10 -7 (-15 -3972 ((-1140 |#2|) (-1 |#2| |#1|) (-1140 |#1|)))) +((-3564 (((-411 (-1140 (-400 |#4|))) (-1140 (-400 |#4|))) 51)) (-3338 (((-411 (-1140 (-400 |#4|))) (-1140 (-400 |#4|))) 52))) +(((-1139 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3338 ((-411 (-1140 (-400 |#4|))) (-1140 (-400 |#4|)))) (-15 -3564 ((-411 (-1140 (-400 |#4|))) (-1140 (-400 |#4|))))) (-771) (-825) (-444) (-922 |#3| |#1| |#2|)) (T -1139)) +((-3564 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-411 (-1140 (-400 *7)))) (-5 *1 (-1139 *4 *5 *6 *7)) (-5 *3 (-1140 (-400 *7))))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-411 (-1140 (-400 *7)))) (-5 *1 (-1139 *4 *5 *6 *7)) (-5 *3 (-1140 (-400 *7)))))) +(-10 -7 (-15 -3338 ((-411 (-1140 (-400 |#4|))) (-1140 (-400 |#4|)))) (-15 -3564 ((-411 (-1140 (-400 |#4|))) (-1140 (-400 |#4|))))) +((-1504 (((-112) $ $) 137)) (-3433 (((-112) $) 27)) (-2170 (((-1227 |#1|) $ (-749)) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-3058 (($ (-1140 |#1|)) NIL)) (-3306 (((-1140 $) $ (-1050)) 58) (((-1140 |#1|) $) 47)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) 132 (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-1050))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3238 (($ $ $) 126 (|has| |#1| (-542)))) (-3688 (((-411 (-1140 $)) (-1140 $)) 71 (|has| |#1| (-882)))) (-1505 (($ $) NIL (|has| |#1| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 91 (|has| |#1| (-882)))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3810 (($ $ (-749)) 39)) (-3690 (($ $ (-749)) 40)) (-4005 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-1050) "failed") $) NIL)) (-2726 ((|#1| $) NIL) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-1050) $) NIL)) (-3340 (($ $ $ (-1050)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) 56)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3563 (($ $ $) 104)) (-4232 (($ $ $) NIL (|has| |#1| (-542)))) (-4113 (((-2 (|:| -2855 |#1|) (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-542)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-2674 (($ $) 133 (|has| |#1| (-444))) (($ $ (-1050)) NIL (|has| |#1| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#1| (-882)))) (-2613 (($ $ |#1| (-749) $) 45)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-1050) (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-1050) (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-3425 (((-836) $ (-836)) 117)) (-2475 (((-749) $ $) NIL (|has| |#1| (-542)))) (-3102 (((-112) $) 30)) (-2603 (((-749) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| |#1| (-1119)))) (-3129 (($ (-1140 |#1|) (-1050)) 49) (($ (-1140 $) (-1050)) 65)) (-1784 (($ $ (-749)) 32)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) 63) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-1050)) NIL) (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 121)) (-1667 (((-749) $) NIL) (((-749) $ (-1050)) NIL) (((-623 (-749)) $ (-623 (-1050))) NIL)) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-2688 (($ (-1 (-749) (-749)) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (((-1140 |#1|) $) NIL)) (-2558 (((-3 (-1050) "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) 52)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1825 (((-1126) $) NIL)) (-2731 (((-2 (|:| -3526 $) (|:| -2786 $)) $ (-749)) 38)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-1050)) (|:| -3521 (-749))) "failed") $) NIL)) (-1489 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3862 (($) NIL (|has| |#1| (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) 31)) (-3256 ((|#1| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 79 (|has| |#1| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-444))) (($ $ $) 135 (|has| |#1| (-444)))) (-3138 (($ $ (-749) |#1| $) 99)) (-3430 (((-411 (-1140 $)) (-1140 $)) 77 (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) 76 (|has| |#1| (-882)))) (-3338 (((-411 $) $) 84 (|has| |#1| (-882)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-1495 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1050) |#1|) NIL) (($ $ (-623 (-1050)) (-623 |#1|)) NIL) (($ $ (-1050) $) NIL) (($ $ (-623 (-1050)) (-623 $)) NIL)) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-2953 (((-3 $ "failed") $ (-749)) 35)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 138 (|has| |#1| (-356)))) (-3453 (($ $ (-1050)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-2393 (($ $ (-1050)) NIL) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2970 (((-749) $) 54) (((-749) $ (-1050)) NIL) (((-623 (-749)) $ (-623 (-1050))) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-1050) (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-1050) (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-1050) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) 130 (|has| |#1| (-444))) (($ $ (-1050)) NIL (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-882))))) (-1292 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-542)))) (-1518 (((-836) $) 118) (($ (-550)) NIL) (($ |#1|) 53) (($ (-1050)) NIL) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-749)) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) 25 (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) 15 T CONST)) (-2636 (($) 16 T CONST)) (-4183 (($ $ (-1050)) NIL) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1144)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) 96)) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2414 (($ $ |#1|) 139 (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 66)) (** (($ $ (-894)) 14) (($ $ (-749)) 12)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 24) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1140 |#1|) (-13 (-1203 |#1|) (-10 -8 (-15 -3425 ((-836) $ (-836))) (-15 -3138 ($ $ (-749) |#1| $)))) (-1020)) (T -1140)) +((-3425 (*1 *2 *1 *2) (-12 (-5 *2 (-836)) (-5 *1 (-1140 *3)) (-4 *3 (-1020)))) (-3138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1140 *3)) (-4 *3 (-1020))))) +(-13 (-1203 |#1|) (-10 -8 (-15 -3425 ((-836) $ (-836))) (-15 -3138 ($ $ (-749) |#1| $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 11)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-2370 (($ $ (-400 (-550))) NIL) (($ $ (-400 (-550)) (-400 (-550))) NIL)) (-2575 (((-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) NIL)) (-3123 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3103 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-1135 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1142 |#1| |#2| |#3|) "failed") $) 36)) (-2726 (((-1135 |#1| |#2| |#3|) $) NIL) (((-1142 |#1| |#2| |#3|) $) NIL)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3914 (((-400 (-550)) $) 55)) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3214 (($ (-400 (-550)) (-1135 |#1| |#2| |#3|)) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-3478 (((-112) $) NIL)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-400 (-550)) $) NIL) (((-400 (-550)) $ (-400 (-550))) NIL)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) NIL) (($ $ (-400 (-550))) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-400 (-550))) 20) (($ $ (-1050) (-400 (-550))) NIL) (($ $ (-623 (-1050)) (-623 (-400 (-550)))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2061 (((-1135 |#1| |#2| |#3|) $) 41)) (-1928 (((-3 (-1135 |#1| |#2| |#3|) "failed") $) NIL)) (-3203 (((-1135 |#1| |#2| |#3|) $) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-1489 (($ $) 39 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166))))) (($ $ (-1223 |#2|)) 40 (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2272 (($ $ (-400 (-550))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1812 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ (-400 (-550))) NIL) (($ $ $) NIL (|has| (-400 (-550)) (-1080)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $ (-1223 |#2|)) 38)) (-2970 (((-400 (-550)) $) NIL)) (-3157 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) NIL)) (-1518 (((-836) $) 58) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1135 |#1| |#2| |#3|)) 30) (($ (-1142 |#1| |#2| |#3|)) 31) (($ (-1223 |#2|)) 26) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-2510 ((|#1| $ (-400 (-550))) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-3335 ((|#1| $) 12)) (-3187 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-400 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 22 T CONST)) (-2636 (($) 16 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 24)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1141 |#1| |#2| |#3|) (-13 (-1210 |#1| (-1135 |#1| |#2| |#3|)) (-1011 (-1142 |#1| |#2| |#3|)) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) (-1020) (-1144) |#1|) (T -1141)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3)))) +(-13 (-1210 |#1| (-1135 |#1| |#2| |#3|)) (-1011 (-1142 |#1| |#2| |#3|)) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 125)) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 116)) (-3504 (((-1200 |#2| |#1|) $ (-749)) 63)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-2370 (($ $ (-749)) 79) (($ $ (-749) (-749)) 76)) (-2575 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 102)) (-3123 (($ $) 169 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 145 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3103 (($ $) 165 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 115) (($ (-1124 |#1|)) 110)) (-3146 (($ $) 173 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 149 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) 23)) (-2033 (($ $) 26)) (-1402 (((-925 |#1|) $ (-749)) 75) (((-925 |#1|) $ (-749) (-749)) 77)) (-3478 (((-112) $) 120)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-749) $) 122) (((-749) $ (-749)) 124)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) NIL)) (-3315 (($ (-1 |#1| (-550)) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) 13) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2958 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-1489 (($ $) 129 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166))))) (($ $ (-1223 |#2|)) 130 (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) NIL)) (-2272 (($ $ (-749)) 15)) (-1495 (((-3 $ "failed") $ $) 24 (|has| |#1| (-542)))) (-1812 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-2680 ((|#1| $ (-749)) 119) (($ $ $) 128 (|has| (-749) (-1080)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $ (-1223 |#2|)) 29)) (-2970 (((-749) $) NIL)) (-3157 (($ $) 175 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 151 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 171 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 147 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 167 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 143 (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) NIL)) (-1518 (((-836) $) 201) (($ (-550)) NIL) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1200 |#2| |#1|)) 51) (($ (-1223 |#2|)) 32)) (-3511 (((-1124 |#1|) $) 98)) (-2510 ((|#1| $ (-749)) 118)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-3335 ((|#1| $) 54)) (-3187 (($ $) 181 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 157 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) 177 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 153 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 185 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 161 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-749)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 187 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 163 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 183 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 159 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 179 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 155 (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 17 T CONST)) (-2636 (($) 19 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) 194)) (-2391 (($ $ $) 31)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ |#1|) 198 (|has| |#1| (-356))) (($ $ $) 134 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 137 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1142 |#1| |#2| |#3|) (-13 (-1218 |#1|) (-10 -8 (-15 -1518 ($ (-1200 |#2| |#1|))) (-15 -3504 ((-1200 |#2| |#1|) $ (-749))) (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) (-1020) (-1144) |#1|) (T -1142)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1020)) (-14 *4 (-1144)) (-14 *5 *3) (-5 *1 (-1142 *3 *4 *5)))) (-3504 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1142 *4 *5 *6)) (-4 *4 (-1020)) (-14 *5 (-1144)) (-14 *6 *4))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3)))) +(-13 (-1218 |#1|) (-10 -8 (-15 -1518 ($ (-1200 |#2| |#1|))) (-15 -3504 ((-1200 |#2| |#1|) $ (-749))) (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) +((-1518 (((-836) $) 27) (($ (-1144)) 29)) (-1561 (($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 40)) (-1547 (($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 33) (($ $) 34)) (-2827 (($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 35)) (-2816 (($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 37)) (-2804 (($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 36)) (-2792 (($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 38)) (-3856 (($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 39))) +(((-1143) (-13 (-595 (-836)) (-10 -8 (-15 -1518 ($ (-1144))) (-15 -2827 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2804 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2816 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2792 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1561 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3856 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1547 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1547 ($ $))))) (T -1143)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1143)))) (-2827 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) (-5 *1 (-1143)))) (-2804 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) (-5 *1 (-1143)))) (-2816 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) (-5 *1 (-1143)))) (-2792 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) (-5 *1 (-1143)))) (-1561 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) (-5 *1 (-1143)))) (-3856 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) (-5 *1 (-1143)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) (-5 *1 (-1143)))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) (-5 *1 (-1143)))) (-1547 (*1 *1 *1) (-5 *1 (-1143)))) +(-13 (-595 (-836)) (-10 -8 (-15 -1518 ($ (-1144))) (-15 -2827 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2804 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2816 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -2792 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1561 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3856 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1547 ($ (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1547 ($ $)))) +((-1504 (((-112) $ $) NIL)) (-3765 (($ $ (-623 (-836))) 59)) (-3097 (($ $ (-623 (-836))) 57)) (-4038 (((-1126) $) 84)) (-3782 (((-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) (|:| |args| (-623 (-836)))) $) 87)) (-3212 (((-112) $) 22)) (-2436 (($ $ (-623 (-623 (-836)))) 56) (($ $ (-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) (|:| |args| (-623 (-836))))) 82)) (-3513 (($) 124 T CONST)) (-2216 (((-1232)) 106)) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 66) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 73)) (-2578 (($) 95) (($ $) 101)) (-1916 (($ $) 83)) (-2707 (($ $ $) NIL)) (-4164 (($ $ $) NIL)) (-4218 (((-623 $) $) 107)) (-1825 (((-1126) $) 90)) (-3337 (((-1088) $) NIL)) (-2680 (($ $ (-623 (-836))) 58)) (-4028 (((-526) $) 46) (((-1144) $) 47) (((-865 (-550)) $) 77) (((-865 (-372)) $) 75)) (-1518 (((-836) $) 53) (($ (-1126)) 48)) (-3642 (($ $ (-623 (-836))) 60)) (-3040 (((-1126) $) 33) (((-1126) $ (-112)) 34) (((-1232) (-800) $) 35) (((-1232) (-800) $ (-112)) 36)) (-2363 (((-112) $ $) NIL)) (-2345 (((-112) $ $) NIL)) (-2316 (((-112) $ $) 49)) (-2354 (((-112) $ $) NIL)) (-2335 (((-112) $ $) 50))) +(((-1144) (-13 (-825) (-596 (-526)) (-806) (-596 (-1144)) (-596 (-865 (-550))) (-596 (-865 (-372))) (-859 (-550)) (-859 (-372)) (-10 -8 (-15 -2578 ($)) (-15 -2578 ($ $)) (-15 -2216 ((-1232))) (-15 -1518 ($ (-1126))) (-15 -1916 ($ $)) (-15 -3212 ((-112) $)) (-15 -3782 ((-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) (|:| |args| (-623 (-836)))) $)) (-15 -2436 ($ $ (-623 (-623 (-836))))) (-15 -2436 ($ $ (-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) (|:| |args| (-623 (-836)))))) (-15 -3097 ($ $ (-623 (-836)))) (-15 -3765 ($ $ (-623 (-836)))) (-15 -3642 ($ $ (-623 (-836)))) (-15 -2680 ($ $ (-623 (-836)))) (-15 -4038 ((-1126) $)) (-15 -4218 ((-623 $) $)) (-15 -3513 ($) -2258)))) (T -1144)) +((-2578 (*1 *1) (-5 *1 (-1144))) (-2578 (*1 *1 *1) (-5 *1 (-1144))) (-2216 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1144)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1144)))) (-1916 (*1 *1 *1) (-5 *1 (-1144))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1144)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) (|:| |args| (-623 (-836))))) (-5 *1 (-1144)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 (-836)))) (-5 *1 (-1144)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) (|:| |args| (-623 (-836))))) (-5 *1 (-1144)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-1144)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-1144)))) (-3642 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-1144)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-1144)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1144)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-1144)))) (-3513 (*1 *1) (-5 *1 (-1144)))) +(-13 (-825) (-596 (-526)) (-806) (-596 (-1144)) (-596 (-865 (-550))) (-596 (-865 (-372))) (-859 (-550)) (-859 (-372)) (-10 -8 (-15 -2578 ($)) (-15 -2578 ($ $)) (-15 -2216 ((-1232))) (-15 -1518 ($ (-1126))) (-15 -1916 ($ $)) (-15 -3212 ((-112) $)) (-15 -3782 ((-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) (|:| |args| (-623 (-836)))) $)) (-15 -2436 ($ $ (-623 (-623 (-836))))) (-15 -2436 ($ $ (-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) (|:| |args| (-623 (-836)))))) (-15 -3097 ($ $ (-623 (-836)))) (-15 -3765 ($ $ (-623 (-836)))) (-15 -3642 ($ $ (-623 (-836)))) (-15 -2680 ($ $ (-623 (-836)))) (-15 -4038 ((-1126) $)) (-15 -4218 ((-623 $) $)) (-15 -3513 ($) -2258))) +((-2285 (((-1227 |#1|) |#1| (-894)) 16) (((-1227 |#1|) (-623 |#1|)) 20))) +(((-1145 |#1|) (-10 -7 (-15 -2285 ((-1227 |#1|) (-623 |#1|))) (-15 -2285 ((-1227 |#1|) |#1| (-894)))) (-1020)) (T -1145)) +((-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-894)) (-5 *2 (-1227 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1020)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1020)) (-5 *2 (-1227 *4)) (-5 *1 (-1145 *4))))) +(-10 -7 (-15 -2285 ((-1227 |#1|) (-623 |#1|))) (-15 -2285 ((-1227 |#1|) |#1| (-894)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| |#1| (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#1| (-1011 (-400 (-550))))) (((-3 |#1| "failed") $) NIL)) (-2726 (((-550) $) NIL (|has| |#1| (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| |#1| (-1011 (-400 (-550))))) ((|#1| $) NIL)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2674 (($ $) NIL (|has| |#1| (-444)))) (-2613 (($ $ |#1| (-944) $) NIL)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-944)) NIL)) (-1667 (((-944) $) NIL)) (-2688 (($ (-1 (-944) (-944)) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#1| $) NIL)) (-3138 (($ $ (-944) |#1| $) NIL (-12 (|has| (-944) (-130)) (|has| |#1| (-542))))) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-2970 (((-944) $) NIL)) (-2503 ((|#1| $) NIL (|has| |#1| (-444)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) NIL) (($ (-400 (-550))) NIL (-1561 (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-1011 (-400 (-550))))))) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ (-944)) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2626 (($) 9 T CONST)) (-2636 (($) 14 T CONST)) (-2316 (((-112) $ $) 16)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 19)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1146 |#1|) (-13 (-319 |#1| (-944)) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| (-944) (-130)) (-15 -3138 ($ $ (-944) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|))) (-1020)) (T -1146)) +((-3138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-944)) (-4 *2 (-130)) (-5 *1 (-1146 *3)) (-4 *3 (-542)) (-4 *3 (-1020))))) +(-13 (-319 |#1| (-944)) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| (-944) (-130)) (-15 -3138 ($ $ (-944) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|))) +((-2375 (((-1148) (-1144) $) 25)) (-3920 (($) 29)) (-2544 (((-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-1144) $) 22)) (-1553 (((-1232) (-1144) (-3 (|:| |fst| (-427)) (|:| -3730 "void")) $) 41) (((-1232) (-1144) (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) 42) (((-1232) (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) 43)) (-4018 (((-1232) (-1144)) 58)) (-2629 (((-1232) (-1144) $) 55) (((-1232) (-1144)) 56) (((-1232)) 57)) (-1992 (((-1232) (-1144)) 37)) (-1778 (((-1144)) 36)) (-3498 (($) 34)) (-2556 (((-430) (-1144) (-430) (-1144) $) 45) (((-430) (-623 (-1144)) (-430) (-1144) $) 49) (((-430) (-1144) (-430)) 46) (((-430) (-1144) (-430) (-1144)) 50)) (-1888 (((-1144)) 35)) (-1518 (((-836) $) 28)) (-2085 (((-1232)) 30) (((-1232) (-1144)) 33)) (-2461 (((-623 (-1144)) (-1144) $) 24)) (-1660 (((-1232) (-1144) (-623 (-1144)) $) 38) (((-1232) (-1144) (-623 (-1144))) 39) (((-1232) (-623 (-1144))) 40))) +(((-1147) (-13 (-595 (-836)) (-10 -8 (-15 -3920 ($)) (-15 -2085 ((-1232))) (-15 -2085 ((-1232) (-1144))) (-15 -2556 ((-430) (-1144) (-430) (-1144) $)) (-15 -2556 ((-430) (-623 (-1144)) (-430) (-1144) $)) (-15 -2556 ((-430) (-1144) (-430))) (-15 -2556 ((-430) (-1144) (-430) (-1144))) (-15 -1992 ((-1232) (-1144))) (-15 -1888 ((-1144))) (-15 -1778 ((-1144))) (-15 -1660 ((-1232) (-1144) (-623 (-1144)) $)) (-15 -1660 ((-1232) (-1144) (-623 (-1144)))) (-15 -1660 ((-1232) (-623 (-1144)))) (-15 -1553 ((-1232) (-1144) (-3 (|:| |fst| (-427)) (|:| -3730 "void")) $)) (-15 -1553 ((-1232) (-1144) (-3 (|:| |fst| (-427)) (|:| -3730 "void")))) (-15 -1553 ((-1232) (-3 (|:| |fst| (-427)) (|:| -3730 "void")))) (-15 -2629 ((-1232) (-1144) $)) (-15 -2629 ((-1232) (-1144))) (-15 -2629 ((-1232))) (-15 -4018 ((-1232) (-1144))) (-15 -3498 ($)) (-15 -2544 ((-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-1144) $)) (-15 -2461 ((-623 (-1144)) (-1144) $)) (-15 -2375 ((-1148) (-1144) $))))) (T -1147)) +((-3920 (*1 *1) (-5 *1 (-1147))) (-2085 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1147)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-2556 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-430)) (-5 *3 (-1144)) (-5 *1 (-1147)))) (-2556 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-430)) (-5 *3 (-623 (-1144))) (-5 *4 (-1144)) (-5 *1 (-1147)))) (-2556 (*1 *2 *3 *2) (-12 (-5 *2 (-430)) (-5 *3 (-1144)) (-5 *1 (-1147)))) (-2556 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-430)) (-5 *3 (-1144)) (-5 *1 (-1147)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-1888 (*1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1147)))) (-1778 (*1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1147)))) (-1660 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-623 (-1144))) (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-1660 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-1144))) (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-623 (-1144))) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-1553 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1144)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-1553 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-1553 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-2629 (*1 *2 *3 *1) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-2629 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1147)))) (-4018 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) (-3498 (*1 *1) (-5 *1 (-1147))) (-2544 (*1 *2 *3 *1) (-12 (-5 *3 (-1144)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *1 (-1147)))) (-2461 (*1 *2 *3 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-1147)) (-5 *3 (-1144)))) (-2375 (*1 *2 *3 *1) (-12 (-5 *3 (-1144)) (-5 *2 (-1148)) (-5 *1 (-1147))))) +(-13 (-595 (-836)) (-10 -8 (-15 -3920 ($)) (-15 -2085 ((-1232))) (-15 -2085 ((-1232) (-1144))) (-15 -2556 ((-430) (-1144) (-430) (-1144) $)) (-15 -2556 ((-430) (-623 (-1144)) (-430) (-1144) $)) (-15 -2556 ((-430) (-1144) (-430))) (-15 -2556 ((-430) (-1144) (-430) (-1144))) (-15 -1992 ((-1232) (-1144))) (-15 -1888 ((-1144))) (-15 -1778 ((-1144))) (-15 -1660 ((-1232) (-1144) (-623 (-1144)) $)) (-15 -1660 ((-1232) (-1144) (-623 (-1144)))) (-15 -1660 ((-1232) (-623 (-1144)))) (-15 -1553 ((-1232) (-1144) (-3 (|:| |fst| (-427)) (|:| -3730 "void")) $)) (-15 -1553 ((-1232) (-1144) (-3 (|:| |fst| (-427)) (|:| -3730 "void")))) (-15 -1553 ((-1232) (-3 (|:| |fst| (-427)) (|:| -3730 "void")))) (-15 -2629 ((-1232) (-1144) $)) (-15 -2629 ((-1232) (-1144))) (-15 -2629 ((-1232))) (-15 -4018 ((-1232) (-1144))) (-15 -3498 ($)) (-15 -2544 ((-3 (|:| |fst| (-427)) (|:| -3730 "void")) (-1144) $)) (-15 -2461 ((-623 (-1144)) (-1144) $)) (-15 -2375 ((-1148) (-1144) $)))) +((-4220 (((-623 (-623 (-3 (|:| -1916 (-1144)) (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550))))))))) $) 59)) (-1381 (((-623 (-3 (|:| -1916 (-1144)) (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550)))))))) (-427) $) 43)) (-3347 (($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-430))))) 17)) (-4018 (((-1232) $) 67)) (-3300 (((-623 (-1144)) $) 22)) (-4115 (((-1072) $) 55)) (-3403 (((-430) (-1144) $) 27)) (-1271 (((-623 (-1144)) $) 30)) (-3498 (($) 19)) (-2556 (((-430) (-623 (-1144)) (-430) $) 25) (((-430) (-1144) (-430) $) 24)) (-1518 (((-836) $) 9) (((-1154 (-1144) (-430)) $) 13))) +(((-1148) (-13 (-595 (-836)) (-10 -8 (-15 -1518 ((-1154 (-1144) (-430)) $)) (-15 -3498 ($)) (-15 -2556 ((-430) (-623 (-1144)) (-430) $)) (-15 -2556 ((-430) (-1144) (-430) $)) (-15 -3403 ((-430) (-1144) $)) (-15 -3300 ((-623 (-1144)) $)) (-15 -1381 ((-623 (-3 (|:| -1916 (-1144)) (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550)))))))) (-427) $)) (-15 -1271 ((-623 (-1144)) $)) (-15 -4220 ((-623 (-623 (-3 (|:| -1916 (-1144)) (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550))))))))) $)) (-15 -4115 ((-1072) $)) (-15 -4018 ((-1232) $)) (-15 -3347 ($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-430))))))))) (T -1148)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-1154 (-1144) (-430))) (-5 *1 (-1148)))) (-3498 (*1 *1) (-5 *1 (-1148))) (-2556 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-430)) (-5 *3 (-623 (-1144))) (-5 *1 (-1148)))) (-2556 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-430)) (-5 *3 (-1144)) (-5 *1 (-1148)))) (-3403 (*1 *2 *3 *1) (-12 (-5 *3 (-1144)) (-5 *2 (-430)) (-5 *1 (-1148)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-1148)))) (-1381 (*1 *2 *3 *1) (-12 (-5 *3 (-427)) (-5 *2 (-623 (-3 (|:| -1916 (-1144)) (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550))))))))) (-5 *1 (-1148)))) (-1271 (*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-1148)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-3 (|:| -1916 (-1144)) (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550)))))))))) (-5 *1 (-1148)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1148)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1148)))) (-3347 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-430))))) (-5 *1 (-1148))))) +(-13 (-595 (-836)) (-10 -8 (-15 -1518 ((-1154 (-1144) (-430)) $)) (-15 -3498 ($)) (-15 -2556 ((-430) (-623 (-1144)) (-430) $)) (-15 -2556 ((-430) (-1144) (-430) $)) (-15 -3403 ((-430) (-1144) $)) (-15 -3300 ((-623 (-1144)) $)) (-15 -1381 ((-623 (-3 (|:| -1916 (-1144)) (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550)))))))) (-427) $)) (-15 -1271 ((-623 (-1144)) $)) (-15 -4220 ((-623 (-623 (-3 (|:| -1916 (-1144)) (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550))))))))) $)) (-15 -4115 ((-1072) $)) (-15 -4018 ((-1232) $)) (-15 -3347 ($ (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-430)))))))) +((-1504 (((-112) $ $) NIL)) (-2714 (((-112) $) 48)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3792 (((-3 (-550) (-219) (-1144) (-1126) $) $) 56)) (-3692 (((-623 $) $) 61)) (-4028 (((-1072) $) 30) (($ (-1072)) 31)) (-3602 (((-112) $) 58)) (-1518 (((-836) $) 29) (($ (-550)) 32) (((-550) $) 34) (($ (-219)) 35) (((-219) $) 37) (($ (-1144)) 38) (((-1144) $) 40) (($ (-1126)) 41) (((-1126) $) 43)) (-2615 (((-112) $ (|[\|\|]| (-550))) 13) (((-112) $ (|[\|\|]| (-219))) 17) (((-112) $ (|[\|\|]| (-1144))) 25) (((-112) $ (|[\|\|]| (-1126))) 21)) (-2811 (($ (-1144) (-623 $)) 45) (($ $ (-623 $)) 46)) (-1771 (((-550) $) 33) (((-219) $) 36) (((-1144) $) 39) (((-1126) $) 42)) (-2316 (((-112) $ $) 8))) +(((-1149) (-13 (-1222) (-1068) (-10 -8 (-15 -4028 ((-1072) $)) (-15 -4028 ($ (-1072))) (-15 -1518 ($ (-550))) (-15 -1518 ((-550) $)) (-15 -1771 ((-550) $)) (-15 -1518 ($ (-219))) (-15 -1518 ((-219) $)) (-15 -1771 ((-219) $)) (-15 -1518 ($ (-1144))) (-15 -1518 ((-1144) $)) (-15 -1771 ((-1144) $)) (-15 -1518 ($ (-1126))) (-15 -1518 ((-1126) $)) (-15 -1771 ((-1126) $)) (-15 -2811 ($ (-1144) (-623 $))) (-15 -2811 ($ $ (-623 $))) (-15 -2714 ((-112) $)) (-15 -3792 ((-3 (-550) (-219) (-1144) (-1126) $) $)) (-15 -3692 ((-623 $) $)) (-15 -3602 ((-112) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-550)))) (-15 -2615 ((-112) $ (|[\|\|]| (-219)))) (-15 -2615 ((-112) $ (|[\|\|]| (-1144)))) (-15 -2615 ((-112) $ (|[\|\|]| (-1126))))))) (T -1149)) +((-4028 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1149)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1149)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1149)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1149)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1149)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1149)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1149)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1149)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1149)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1149)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1149)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1149)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1149)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1149)))) (-2811 (*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-1149))) (-5 *1 (-1149)))) (-2811 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1149))) (-5 *1 (-1149)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-3 (-550) (-219) (-1144) (-1126) (-1149))) (-5 *1 (-1149)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-623 (-1149))) (-5 *1 (-1149)))) (-3602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149)))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)) (-5 *1 (-1149)))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1149)))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1144))) (-5 *2 (-112)) (-5 *1 (-1149)))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)) (-5 *1 (-1149))))) +(-13 (-1222) (-1068) (-10 -8 (-15 -4028 ((-1072) $)) (-15 -4028 ($ (-1072))) (-15 -1518 ($ (-550))) (-15 -1518 ((-550) $)) (-15 -1771 ((-550) $)) (-15 -1518 ($ (-219))) (-15 -1518 ((-219) $)) (-15 -1771 ((-219) $)) (-15 -1518 ($ (-1144))) (-15 -1518 ((-1144) $)) (-15 -1771 ((-1144) $)) (-15 -1518 ($ (-1126))) (-15 -1518 ((-1126) $)) (-15 -1771 ((-1126) $)) (-15 -2811 ($ (-1144) (-623 $))) (-15 -2811 ($ $ (-623 $))) (-15 -2714 ((-112) $)) (-15 -3792 ((-3 (-550) (-219) (-1144) (-1126) $) $)) (-15 -3692 ((-623 $) $)) (-15 -3602 ((-112) $)) (-15 -2615 ((-112) $ (|[\|\|]| (-550)))) (-15 -2615 ((-112) $ (|[\|\|]| (-219)))) (-15 -2615 ((-112) $ (|[\|\|]| (-1144)))) (-15 -2615 ((-112) $ (|[\|\|]| (-1126)))))) +((-2994 (((-623 (-623 (-925 |#1|))) (-623 (-400 (-925 |#1|))) (-623 (-1144))) 57)) (-2903 (((-623 (-287 (-400 (-925 |#1|)))) (-287 (-400 (-925 |#1|)))) 69) (((-623 (-287 (-400 (-925 |#1|)))) (-400 (-925 |#1|))) 65) (((-623 (-287 (-400 (-925 |#1|)))) (-287 (-400 (-925 |#1|))) (-1144)) 70) (((-623 (-287 (-400 (-925 |#1|)))) (-400 (-925 |#1|)) (-1144)) 64) (((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-287 (-400 (-925 |#1|))))) 93) (((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-400 (-925 |#1|)))) 92) (((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-287 (-400 (-925 |#1|)))) (-623 (-1144))) 94) (((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-400 (-925 |#1|))) (-623 (-1144))) 91))) +(((-1150 |#1|) (-10 -7 (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-400 (-925 |#1|))) (-623 (-1144)))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-287 (-400 (-925 |#1|)))) (-623 (-1144)))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-400 (-925 |#1|))))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-287 (-400 (-925 |#1|)))))) (-15 -2903 ((-623 (-287 (-400 (-925 |#1|)))) (-400 (-925 |#1|)) (-1144))) (-15 -2903 ((-623 (-287 (-400 (-925 |#1|)))) (-287 (-400 (-925 |#1|))) (-1144))) (-15 -2903 ((-623 (-287 (-400 (-925 |#1|)))) (-400 (-925 |#1|)))) (-15 -2903 ((-623 (-287 (-400 (-925 |#1|)))) (-287 (-400 (-925 |#1|))))) (-15 -2994 ((-623 (-623 (-925 |#1|))) (-623 (-400 (-925 |#1|))) (-623 (-1144))))) (-542)) (T -1150)) +((-2994 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-925 *5)))) (-5 *4 (-623 (-1144))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-925 *5)))) (-5 *1 (-1150 *5)))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 (-287 (-400 (-925 *4))))) (-5 *1 (-1150 *4)) (-5 *3 (-287 (-400 (-925 *4)))))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 (-287 (-400 (-925 *4))))) (-5 *1 (-1150 *4)) (-5 *3 (-400 (-925 *4))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-542)) (-5 *2 (-623 (-287 (-400 (-925 *5))))) (-5 *1 (-1150 *5)) (-5 *3 (-287 (-400 (-925 *5)))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-1144)) (-4 *5 (-542)) (-5 *2 (-623 (-287 (-400 (-925 *5))))) (-5 *1 (-1150 *5)) (-5 *3 (-400 (-925 *5))))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *4)))))) (-5 *1 (-1150 *4)) (-5 *3 (-623 (-287 (-400 (-925 *4))))))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-623 (-400 (-925 *4)))) (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *4)))))) (-5 *1 (-1150 *4)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-1144))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *5)))))) (-5 *1 (-1150 *5)) (-5 *3 (-623 (-287 (-400 (-925 *5))))))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-400 (-925 *5)))) (-5 *4 (-623 (-1144))) (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *5)))))) (-5 *1 (-1150 *5))))) +(-10 -7 (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-400 (-925 |#1|))) (-623 (-1144)))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-287 (-400 (-925 |#1|)))) (-623 (-1144)))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-400 (-925 |#1|))))) (-15 -2903 ((-623 (-623 (-287 (-400 (-925 |#1|))))) (-623 (-287 (-400 (-925 |#1|)))))) (-15 -2903 ((-623 (-287 (-400 (-925 |#1|)))) (-400 (-925 |#1|)) (-1144))) (-15 -2903 ((-623 (-287 (-400 (-925 |#1|)))) (-287 (-400 (-925 |#1|))) (-1144))) (-15 -2903 ((-623 (-287 (-400 (-925 |#1|)))) (-400 (-925 |#1|)))) (-15 -2903 ((-623 (-287 (-400 (-925 |#1|)))) (-287 (-400 (-925 |#1|))))) (-15 -2994 ((-623 (-623 (-925 |#1|))) (-623 (-400 (-925 |#1|))) (-623 (-1144))))) +((-3082 (((-1126)) 7)) (-3273 (((-1126)) 9)) (-2371 (((-1232) (-1126)) 11)) (-3177 (((-1126)) 8))) +(((-1151) (-10 -7 (-15 -3082 ((-1126))) (-15 -3177 ((-1126))) (-15 -3273 ((-1126))) (-15 -2371 ((-1232) (-1126))))) (T -1151)) +((-2371 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1151)))) (-3273 (*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1151)))) (-3177 (*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1151)))) (-3082 (*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1151))))) +(-10 -7 (-15 -3082 ((-1126))) (-15 -3177 ((-1126))) (-15 -3273 ((-1126))) (-15 -2371 ((-1232) (-1126)))) +((-2506 (((-623 (-623 |#1|)) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|)))) 38)) (-1607 (((-623 (-623 (-623 |#1|))) (-623 (-623 |#1|))) 24)) (-1719 (((-1153 (-623 |#1|)) (-623 |#1|)) 34)) (-1930 (((-623 (-623 |#1|)) (-623 |#1|)) 30)) (-2673 (((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 (-623 (-623 |#1|)))) 37)) (-2117 (((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 |#1|) (-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|)))) 36)) (-1836 (((-623 (-623 |#1|)) (-623 (-623 |#1|))) 28)) (-2031 (((-623 |#1|) (-623 |#1|)) 31)) (-2424 (((-623 (-623 (-623 |#1|))) (-623 |#1|) (-623 (-623 (-623 |#1|)))) 18)) (-2334 (((-623 (-623 (-623 |#1|))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 (-623 |#1|)))) 16)) (-2257 (((-2 (|:| |fs| (-112)) (|:| |sd| (-623 |#1|)) (|:| |td| (-623 (-623 |#1|)))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 |#1|))) 14)) (-2587 (((-623 (-623 |#1|)) (-623 (-623 (-623 |#1|)))) 39)) (-2669 (((-623 (-623 |#1|)) (-1153 (-623 |#1|))) 41))) +(((-1152 |#1|) (-10 -7 (-15 -2257 ((-2 (|:| |fs| (-112)) (|:| |sd| (-623 |#1|)) (|:| |td| (-623 (-623 |#1|)))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 |#1|)))) (-15 -2334 ((-623 (-623 (-623 |#1|))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 (-623 |#1|))))) (-15 -2424 ((-623 (-623 (-623 |#1|))) (-623 |#1|) (-623 (-623 (-623 |#1|))))) (-15 -2506 ((-623 (-623 |#1|)) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))))) (-15 -2587 ((-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))))) (-15 -2669 ((-623 (-623 |#1|)) (-1153 (-623 |#1|)))) (-15 -1607 ((-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)))) (-15 -1719 ((-1153 (-623 |#1|)) (-623 |#1|))) (-15 -1836 ((-623 (-623 |#1|)) (-623 (-623 |#1|)))) (-15 -1930 ((-623 (-623 |#1|)) (-623 |#1|))) (-15 -2031 ((-623 |#1|) (-623 |#1|))) (-15 -2117 ((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 |#1|) (-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))))) (-15 -2673 ((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 (-623 (-623 |#1|)))))) (-825)) (T -1152)) +((-2673 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-2 (|:| |f1| (-623 *4)) (|:| |f2| (-623 (-623 (-623 *4)))) (|:| |f3| (-623 (-623 *4))) (|:| |f4| (-623 (-623 (-623 *4)))))) (-5 *1 (-1152 *4)) (-5 *3 (-623 (-623 (-623 *4)))))) (-2117 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-825)) (-5 *3 (-623 *6)) (-5 *5 (-623 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-623 *5)) (|:| |f3| *5) (|:| |f4| (-623 *5)))) (-5 *1 (-1152 *6)) (-5 *4 (-623 *5)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-1152 *3)))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-623 (-623 *4))) (-5 *1 (-1152 *4)) (-5 *3 (-623 *4)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-825)) (-5 *1 (-1152 *3)))) (-1719 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-1152 *4)) (-5 *3 (-623 *4)))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-623 (-623 (-623 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-623 (-623 *4))))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-825)) (-5 *2 (-623 (-623 *4))) (-5 *1 (-1152 *4)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-623 *4)))) (-5 *2 (-623 (-623 *4))) (-5 *1 (-1152 *4)) (-4 *4 (-825)))) (-2506 (*1 *2 *2 *3) (-12 (-5 *3 (-623 (-623 (-623 *4)))) (-5 *2 (-623 (-623 *4))) (-4 *4 (-825)) (-5 *1 (-1152 *4)))) (-2424 (*1 *2 *3 *2) (-12 (-5 *2 (-623 (-623 (-623 *4)))) (-5 *3 (-623 *4)) (-4 *4 (-825)) (-5 *1 (-1152 *4)))) (-2334 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-623 (-623 (-623 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-623 *5)) (-4 *5 (-825)) (-5 *1 (-1152 *5)))) (-2257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-825)) (-5 *4 (-623 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-623 *4)))) (-5 *1 (-1152 *6)) (-5 *5 (-623 *4))))) +(-10 -7 (-15 -2257 ((-2 (|:| |fs| (-112)) (|:| |sd| (-623 |#1|)) (|:| |td| (-623 (-623 |#1|)))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 |#1|)))) (-15 -2334 ((-623 (-623 (-623 |#1|))) (-1 (-112) |#1| |#1|) (-623 |#1|) (-623 (-623 (-623 |#1|))))) (-15 -2424 ((-623 (-623 (-623 |#1|))) (-623 |#1|) (-623 (-623 (-623 |#1|))))) (-15 -2506 ((-623 (-623 |#1|)) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))))) (-15 -2587 ((-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))))) (-15 -2669 ((-623 (-623 |#1|)) (-1153 (-623 |#1|)))) (-15 -1607 ((-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)))) (-15 -1719 ((-1153 (-623 |#1|)) (-623 |#1|))) (-15 -1836 ((-623 (-623 |#1|)) (-623 (-623 |#1|)))) (-15 -1930 ((-623 (-623 |#1|)) (-623 |#1|))) (-15 -2031 ((-623 |#1|) (-623 |#1|))) (-15 -2117 ((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 |#1|) (-623 (-623 (-623 |#1|))) (-623 (-623 |#1|)) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))) (-623 (-623 (-623 |#1|))))) (-15 -2673 ((-2 (|:| |f1| (-623 |#1|)) (|:| |f2| (-623 (-623 (-623 |#1|)))) (|:| |f3| (-623 (-623 |#1|))) (|:| |f4| (-623 (-623 (-623 |#1|))))) (-623 (-623 (-623 |#1|)))))) +((-3957 (($ (-623 (-623 |#1|))) 10)) (-4048 (((-623 (-623 |#1|)) $) 11)) (-1518 (((-836) $) 26))) +(((-1153 |#1|) (-10 -8 (-15 -3957 ($ (-623 (-623 |#1|)))) (-15 -4048 ((-623 (-623 |#1|)) $)) (-15 -1518 ((-836) $))) (-1068)) (T -1153)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 *3))) (-5 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3957 (*1 *1 *2) (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-5 *1 (-1153 *3))))) +(-10 -8 (-15 -3957 ($ (-623 (-623 |#1|)))) (-15 -4048 ((-623 (-623 |#1|)) $)) (-15 -1518 ((-836) $))) +((-1504 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-2570 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3029 (((-1232) $ |#1| |#1|) NIL (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#2| $ |#1| |#2|) NIL)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2908 (((-3 |#2| "failed") |#1| $) NIL)) (-3513 (($) NIL T CONST)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) NIL)) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) NIL)) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) NIL)) (-3195 ((|#1| $) NIL (|has| |#1| (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-623 |#2|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-3283 ((|#1| $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3531 (((-623 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-2325 (((-623 |#1|) $) NIL)) (-2400 (((-112) |#1| $) NIL)) (-3337 (((-1088) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-1293 ((|#2| $) NIL (|has| |#1| (-825)))) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL)) (-3111 (($ $ |#2|) NIL (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2729 (($) NIL) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) NIL (-12 (|has| $ (-6 -4342)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1518 (((-836) $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836))) (|has| |#2| (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) NIL)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) NIL (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) NIL (-1561 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| |#2| (-1068))))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1154 |#1| |#2|) (-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342))) (-1068) (-1068)) (T -1154)) +NIL +(-13 (-1157 |#1| |#2|) (-10 -7 (-6 -4342))) +((-4152 ((|#1| (-623 |#1|)) 32)) (-1326 ((|#1| |#1| (-550)) 18)) (-4277 (((-1140 |#1|) |#1| (-894)) 15))) +(((-1155 |#1|) (-10 -7 (-15 -4152 (|#1| (-623 |#1|))) (-15 -4277 ((-1140 |#1|) |#1| (-894))) (-15 -1326 (|#1| |#1| (-550)))) (-356)) (T -1155)) +((-1326 (*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-1155 *2)) (-4 *2 (-356)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *4 (-894)) (-5 *2 (-1140 *3)) (-5 *1 (-1155 *3)) (-4 *3 (-356)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-1155 *2)) (-4 *2 (-356))))) +(-10 -7 (-15 -4152 (|#1| (-623 |#1|))) (-15 -4277 ((-1140 |#1|) |#1| (-894))) (-15 -1326 (|#1| |#1| (-550)))) +((-2570 (($) 10) (($ (-623 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)))) 14)) (-3112 (($ (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3450 (((-623 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) $) 39) (((-623 |#3|) $) 41)) (-3234 (($ (-1 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3972 (($ (-1 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3638 (((-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) $) 54)) (-1886 (($ (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) $) 16)) (-2325 (((-623 |#2|) $) 19)) (-2400 (((-112) |#2| $) 59)) (-3321 (((-3 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) "failed") (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) $) 58)) (-3760 (((-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) $) 63)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2477 (((-623 |#3|) $) 43)) (-2680 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) $) NIL) (((-749) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) $) NIL) (((-749) |#3| $) NIL) (((-749) (-1 (-112) |#3|) $) 68)) (-1518 (((-836) $) 27)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2316 (((-112) $ $) 49))) +(((-1156 |#1| |#2| |#3|) (-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -3972 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2570 (|#1| (-623 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))))) (-15 -2570 (|#1|)) (-15 -3972 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3234 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3350 ((-749) (-1 (-112) |#3|) |#1|)) (-15 -3450 ((-623 |#3|) |#1|)) (-15 -3350 ((-749) |#3| |#1|)) (-15 -2680 (|#3| |#1| |#2| |#3|)) (-15 -2680 (|#3| |#1| |#2|)) (-15 -2477 ((-623 |#3|) |#1|)) (-15 -2400 ((-112) |#2| |#1|)) (-15 -2325 ((-623 |#2|) |#1|)) (-15 -3112 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3112 (|#1| (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3112 (|#1| (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -3321 ((-3 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) "failed") (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3638 ((-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -1886 (|#1| (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -3760 ((-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -3350 ((-749) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -3450 ((-623 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3350 ((-749) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -1543 ((-112) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -1675 ((-112) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3234 (|#1| (-1 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3972 (|#1| (-1 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|))) (-1157 |#2| |#3|) (-1068) (-1068)) (T -1156)) +NIL +(-10 -8 (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -3972 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2570 (|#1| (-623 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))))) (-15 -2570 (|#1|)) (-15 -3972 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3234 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1675 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1543 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3350 ((-749) (-1 (-112) |#3|) |#1|)) (-15 -3450 ((-623 |#3|) |#1|)) (-15 -3350 ((-749) |#3| |#1|)) (-15 -2680 (|#3| |#1| |#2| |#3|)) (-15 -2680 (|#3| |#1| |#2|)) (-15 -2477 ((-623 |#3|) |#1|)) (-15 -2400 ((-112) |#2| |#1|)) (-15 -2325 ((-623 |#2|) |#1|)) (-15 -3112 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3112 (|#1| (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3112 (|#1| (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -3321 ((-3 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) "failed") (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3638 ((-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -1886 (|#1| (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -3760 ((-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -3350 ((-749) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) |#1|)) (-15 -3450 ((-623 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3350 ((-749) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -1543 ((-112) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -1675 ((-112) (-1 (-112) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3234 (|#1| (-1 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|)) (-15 -3972 (|#1| (-1 (-2 (|:| -2763 |#2|) (|:| -2119 |#3|)) (-2 (|:| -2763 |#2|) (|:| -2119 |#3|))) |#1|))) +((-1504 (((-112) $ $) 19 (-1561 (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-2570 (($) 72) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 71)) (-3029 (((-1232) $ |#1| |#1|) 99 (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#2| $ |#1| |#2|) 73)) (-3378 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 45 (|has| $ (-6 -4342)))) (-4253 (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 55 (|has| $ (-6 -4342)))) (-2908 (((-3 |#2| "failed") |#1| $) 61)) (-3513 (($) 7 T CONST)) (-1328 (($ $) 58 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342))))) (-3112 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 47 (|has| $ (-6 -4342))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 46 (|has| $ (-6 -4342))) (((-3 |#2| "failed") |#1| $) 62)) (-3137 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 54 (|has| $ (-6 -4342)))) (-2419 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 56 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 53 (|has| $ (-6 -4342))) (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 52 (|has| $ (-6 -4342)))) (-3245 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4343)))) (-3181 ((|#2| $ |#1|) 88)) (-3450 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 30 (|has| $ (-6 -4342))) (((-623 |#2|) $) 79 (|has| $ (-6 -4342)))) (-1859 (((-112) $ (-749)) 9)) (-3195 ((|#1| $) 96 (|has| |#1| (-825)))) (-2689 (((-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 29 (|has| $ (-6 -4342))) (((-623 |#2|) $) 80 (|has| $ (-6 -4342)))) (-1921 (((-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342))))) (-3283 ((|#1| $) 95 (|has| |#1| (-825)))) (-3234 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 34 (|has| $ (-6 -4343))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4343)))) (-3972 (($ (-1 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1573 (((-112) $ (-749)) 10)) (-1825 (((-1126) $) 22 (-1561 (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3531 (((-623 |#1|) $) 63)) (-2550 (((-112) |#1| $) 64)) (-3638 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 39)) (-1886 (($ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 40)) (-2325 (((-623 |#1|) $) 93)) (-2400 (((-112) |#1| $) 92)) (-3337 (((-1088) $) 21 (-1561 (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-1293 ((|#2| $) 97 (|has| |#1| (-825)))) (-3321 (((-3 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) "failed") (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 51)) (-3111 (($ $ |#2|) 98 (|has| $ (-6 -4343)))) (-3760 (((-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 41)) (-1543 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 32 (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))))) 26 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-287 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 25 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) 24 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 23 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)))) (($ $ (-623 |#2|) (-623 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-287 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068)))) (($ $ (-623 (-287 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4342)) (|has| |#2| (-1068))))) (-2477 (((-623 |#2|) $) 91)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2729 (($) 49) (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 48)) (-3350 (((-749) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 31 (|has| $ (-6 -4342))) (((-749) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| $ (-6 -4342)))) (((-749) |#2| $) 81 (-12 (|has| |#2| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4342)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 59 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))))) (-1532 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 50)) (-1518 (((-836) $) 18 (-1561 (|has| |#2| (-595 (-836))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836)))))) (-3685 (($ (-623 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) 42)) (-1675 (((-112) (-1 (-112) (-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) $) 33 (|has| $ (-6 -4342))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (-1561 (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-1157 |#1| |#2|) (-138) (-1068) (-1068)) (T -1157)) +((-1705 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068)))) (-2570 (*1 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-623 (-2 (|:| -2763 *3) (|:| -2119 *4)))) (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *1 (-1157 *3 *4)))) (-3972 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068))))) +(-13 (-592 |t#1| |t#2|) (-586 |t#1| |t#2|) (-10 -8 (-15 -1705 (|t#2| $ |t#1| |t#2|)) (-15 -2570 ($)) (-15 -2570 ($ (-623 (-2 (|:| -2763 |t#1|) (|:| -2119 |t#2|))))) (-15 -3972 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -2763 |#1|) (|:| -2119 |#2|))) . T) ((-101) -1561 (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) ((-595 (-836)) -1561 (|has| |#2| (-1068)) (|has| |#2| (-595 (-836))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-595 (-836)))) ((-149 #0#) . T) ((-596 (-526)) |has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-596 (-526))) ((-223 #0#) . T) ((-229 #0#) . T) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 #0#) -12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-481 #0#) . T) ((-481 |#2|) . T) ((-586 |#1| |#2|) . T) ((-505 #0# #0#) -12 (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-302 (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)))) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1068))) ((-592 |#1| |#2|) . T) ((-1068) -1561 (|has| |#2| (-1068)) (|has| (-2 (|:| -2763 |#1|) (|:| -2119 |#2|)) (-1068))) ((-1181) . T)) +((-3787 (((-112)) 24)) (-3494 (((-1232) (-1126)) 26)) (-1588 (((-112)) 36)) (-3583 (((-1232)) 34)) (-3387 (((-1232) (-1126) (-1126)) 25)) (-1684 (((-112)) 37)) (-1886 (((-1232) |#1| |#2|) 44)) (-1455 (((-1232)) 20)) (-1789 (((-3 |#2| "failed") |#1|) 42)) (-3687 (((-1232)) 35))) +(((-1158 |#1| |#2|) (-10 -7 (-15 -1455 ((-1232))) (-15 -3387 ((-1232) (-1126) (-1126))) (-15 -3494 ((-1232) (-1126))) (-15 -3583 ((-1232))) (-15 -3687 ((-1232))) (-15 -3787 ((-112))) (-15 -1588 ((-112))) (-15 -1684 ((-112))) (-15 -1789 ((-3 |#2| "failed") |#1|)) (-15 -1886 ((-1232) |#1| |#2|))) (-1068) (-1068)) (T -1158)) +((-1886 (*1 *2 *3 *4) (-12 (-5 *2 (-1232)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-1789 (*1 *2 *3) (|partial| -12 (-4 *2 (-1068)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1068)))) (-1684 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-1588 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-3787 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-3687 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-3583 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1158 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-1068)))) (-3387 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1158 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-1068)))) (-1455 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068))))) +(-10 -7 (-15 -1455 ((-1232))) (-15 -3387 ((-1232) (-1126) (-1126))) (-15 -3494 ((-1232) (-1126))) (-15 -3583 ((-1232))) (-15 -3687 ((-1232))) (-15 -3787 ((-112))) (-15 -1588 ((-112))) (-15 -1684 ((-112))) (-15 -1789 ((-3 |#2| "failed") |#1|)) (-15 -1886 ((-1232) |#1| |#2|))) +((-3829 (((-1126) (-1126)) 18)) (-1990 (((-52) (-1126)) 21))) +(((-1159) (-10 -7 (-15 -1990 ((-52) (-1126))) (-15 -3829 ((-1126) (-1126))))) (T -1159)) +((-3829 (*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1159)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-52)) (-5 *1 (-1159))))) +(-10 -7 (-15 -1990 ((-52) (-1126))) (-15 -3829 ((-1126) (-1126)))) +((-1518 (((-1161) |#1|) 11))) +(((-1160 |#1|) (-10 -7 (-15 -1518 ((-1161) |#1|))) (-1068)) (T -1160)) +((-1518 (*1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *1 (-1160 *3)) (-4 *3 (-1068))))) +(-10 -7 (-15 -1518 ((-1161) |#1|))) +((-1504 (((-112) $ $) NIL)) (-2462 (((-623 (-1126)) $) 34)) (-4016 (((-623 (-1126)) $ (-623 (-1126))) 37)) (-3918 (((-623 (-1126)) $ (-623 (-1126))) 36)) (-4112 (((-623 (-1126)) $ (-623 (-1126))) 38)) (-4231 (((-623 (-1126)) $) 33)) (-2578 (($) 22)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1291 (((-623 (-1126)) $) 35)) (-2048 (((-1232) $ (-550)) 29) (((-1232) $) 30)) (-4028 (($ (-836) (-550)) 26) (($ (-836) (-550) (-836)) NIL)) (-1518 (((-836) $) 40) (($ (-836)) 24)) (-2316 (((-112) $ $) NIL))) +(((-1161) (-13 (-1068) (-10 -8 (-15 -1518 ($ (-836))) (-15 -4028 ($ (-836) (-550))) (-15 -4028 ($ (-836) (-550) (-836))) (-15 -2048 ((-1232) $ (-550))) (-15 -2048 ((-1232) $)) (-15 -1291 ((-623 (-1126)) $)) (-15 -2462 ((-623 (-1126)) $)) (-15 -2578 ($)) (-15 -4231 ((-623 (-1126)) $)) (-15 -4112 ((-623 (-1126)) $ (-623 (-1126)))) (-15 -4016 ((-623 (-1126)) $ (-623 (-1126)))) (-15 -3918 ((-623 (-1126)) $ (-623 (-1126))))))) (T -1161)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-836)) (-5 *1 (-1161)))) (-4028 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-550)) (-5 *1 (-1161)))) (-4028 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-836)) (-5 *3 (-550)) (-5 *1 (-1161)))) (-2048 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-1161)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1161)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161)))) (-2578 (*1 *1) (-5 *1 (-1161))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161)))) (-4112 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161)))) (-4016 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161)))) (-3918 (*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161))))) +(-13 (-1068) (-10 -8 (-15 -1518 ($ (-836))) (-15 -4028 ($ (-836) (-550))) (-15 -4028 ($ (-836) (-550) (-836))) (-15 -2048 ((-1232) $ (-550))) (-15 -2048 ((-1232) $)) (-15 -1291 ((-623 (-1126)) $)) (-15 -2462 ((-623 (-1126)) $)) (-15 -2578 ($)) (-15 -4231 ((-623 (-1126)) $)) (-15 -4112 ((-623 (-1126)) $ (-623 (-1126)))) (-15 -4016 ((-623 (-1126)) $ (-623 (-1126)))) (-15 -3918 ((-623 (-1126)) $ (-623 (-1126)))))) +((-1504 (((-112) $ $) NIL)) (-3619 (((-1126) $ (-1126)) 17) (((-1126) $) 16)) (-1510 (((-1126) $ (-1126)) 15)) (-3826 (($ $ (-1126)) NIL)) (-3422 (((-3 (-1126) "failed") $) 11)) (-3520 (((-1126) $) 8)) (-3318 (((-3 (-1126) "failed") $) 12)) (-1656 (((-1126) $) 9)) (-3257 (($ (-381)) NIL) (($ (-381) (-1126)) NIL)) (-1916 (((-381) $) NIL)) (-1825 (((-1126) $) NIL)) (-1811 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3226 (((-112) $) 18)) (-1518 (((-836) $) NIL)) (-1951 (($ $) NIL)) (-2316 (((-112) $ $) NIL))) +(((-1162) (-13 (-357 (-381) (-1126)) (-10 -8 (-15 -3619 ((-1126) $ (-1126))) (-15 -3619 ((-1126) $)) (-15 -3520 ((-1126) $)) (-15 -3422 ((-3 (-1126) "failed") $)) (-15 -3318 ((-3 (-1126) "failed") $)) (-15 -3226 ((-112) $))))) (T -1162)) +((-3619 (*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1162)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1162)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1162)))) (-3422 (*1 *2 *1) (|partial| -12 (-5 *2 (-1126)) (-5 *1 (-1162)))) (-3318 (*1 *2 *1) (|partial| -12 (-5 *2 (-1126)) (-5 *1 (-1162)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1162))))) +(-13 (-357 (-381) (-1126)) (-10 -8 (-15 -3619 ((-1126) $ (-1126))) (-15 -3619 ((-1126) $)) (-15 -3520 ((-1126) $)) (-15 -3422 ((-3 (-1126) "failed") $)) (-15 -3318 ((-3 (-1126) "failed") $)) (-15 -3226 ((-112) $)))) +((-3712 (((-3 (-550) "failed") |#1|) 19)) (-3800 (((-3 (-550) "failed") |#1|) 14)) (-2712 (((-550) (-1126)) 28))) +(((-1163 |#1|) (-10 -7 (-15 -3712 ((-3 (-550) "failed") |#1|)) (-15 -3800 ((-3 (-550) "failed") |#1|)) (-15 -2712 ((-550) (-1126)))) (-1020)) (T -1163)) +((-2712 (*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-550)) (-5 *1 (-1163 *4)) (-4 *4 (-1020)))) (-3800 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1163 *3)) (-4 *3 (-1020)))) (-3712 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1163 *3)) (-4 *3 (-1020))))) +(-10 -7 (-15 -3712 ((-3 (-550) "failed") |#1|)) (-15 -3800 ((-3 (-550) "failed") |#1|)) (-15 -2712 ((-550) (-1126)))) +((-2797 (((-1101 (-219))) 9))) +(((-1164) (-10 -7 (-15 -2797 ((-1101 (-219)))))) (T -1164)) +((-2797 (*1 *2) (-12 (-5 *2 (-1101 (-219))) (-5 *1 (-1164))))) +(-10 -7 (-15 -2797 ((-1101 (-219))))) +((-2734 (($) 11)) (-3187 (($ $) 35)) (-3167 (($ $) 33)) (-3043 (($ $) 25)) (-3209 (($ $) 17)) (-3294 (($ $) 15)) (-3198 (($ $) 19)) (-3072 (($ $) 30)) (-3176 (($ $) 34)) (-3052 (($ $) 29))) +(((-1165 |#1|) (-10 -8 (-15 -2734 (|#1|)) (-15 -3187 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -3198 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3052 (|#1| |#1|))) (-1166)) (T -1165)) +NIL +(-10 -8 (-15 -2734 (|#1|)) (-15 -3187 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -3198 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3052 (|#1| |#1|))) +((-3123 (($ $) 26)) (-3005 (($ $) 11)) (-3103 (($ $) 27)) (-2984 (($ $) 10)) (-3146 (($ $) 28)) (-3025 (($ $) 9)) (-2734 (($) 16)) (-2958 (($ $) 19)) (-1812 (($ $) 18)) (-3157 (($ $) 29)) (-3033 (($ $) 8)) (-3135 (($ $) 30)) (-3016 (($ $) 7)) (-3114 (($ $) 31)) (-2995 (($ $) 6)) (-3187 (($ $) 20)) (-3060 (($ $) 32)) (-3167 (($ $) 21)) (-3043 (($ $) 33)) (-3209 (($ $) 22)) (-3081 (($ $) 34)) (-3294 (($ $) 23)) (-3094 (($ $) 35)) (-3198 (($ $) 24)) (-3072 (($ $) 36)) (-3176 (($ $) 25)) (-3052 (($ $) 37)) (** (($ $ $) 17))) +(((-1166) (-138)) (T -1166)) +((-2734 (*1 *1) (-4 *1 (-1166)))) +(-13 (-1169) (-94) (-484) (-35) (-277) (-10 -8 (-15 -2734 ($)))) +(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-1169) . T)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3625 ((|#1| $) 17)) (-1952 (($ |#1| (-623 $)) 23) (($ (-623 |#1|)) 27) (($ |#1|) 25)) (-4047 (((-112) $ (-749)) 48)) (-2190 ((|#1| $ |#1|) 14 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 13 (|has| $ (-6 -4343)))) (-3513 (($) NIL T CONST)) (-3450 (((-623 |#1|) $) 52 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 43)) (-2333 (((-112) $ $) 33 (|has| |#1| (-1068)))) (-1859 (((-112) $ (-749)) 41)) (-2689 (((-623 |#1|) $) 53 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3234 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 22)) (-1573 (((-112) $ (-749)) 40)) (-2513 (((-623 |#1|) $) 37)) (-3312 (((-112) $) 36)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1543 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 74)) (-2902 (((-112) $) 9)) (-3498 (($) 10)) (-2680 ((|#1| $ "value") NIL)) (-2487 (((-550) $ $) 32)) (-2883 (((-623 $) $) 59)) (-2964 (((-112) $ $) 77)) (-3050 (((-623 $) $) 72)) (-3145 (($ $) 73)) (-2136 (((-112) $) 56)) (-3350 (((-749) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4342))) (((-749) |#1| $) 16 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-1731 (($ $) 58)) (-1518 (((-836) $) 61 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 12)) (-2413 (((-112) $ $) 29 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 28 (|has| |#1| (-1068)))) (-3191 (((-749) $) 39 (|has| $ (-6 -4342))))) +(((-1167 |#1|) (-13 (-983 |#1|) (-10 -8 (-6 -4342) (-6 -4343) (-15 -1952 ($ |#1| (-623 $))) (-15 -1952 ($ (-623 |#1|))) (-15 -1952 ($ |#1|)) (-15 -2136 ((-112) $)) (-15 -3145 ($ $)) (-15 -3050 ((-623 $) $)) (-15 -2964 ((-112) $ $)) (-15 -2883 ((-623 $) $)))) (-1068)) (T -1167)) +((-2136 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-1068)))) (-1952 (*1 *1 *2 *3) (-12 (-5 *3 (-623 (-1167 *2))) (-5 *1 (-1167 *2)) (-4 *2 (-1068)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-1167 *3)))) (-1952 (*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1068)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1068)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-623 (-1167 *3))) (-5 *1 (-1167 *3)) (-4 *3 (-1068)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-1068)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-623 (-1167 *3))) (-5 *1 (-1167 *3)) (-4 *3 (-1068))))) +(-13 (-983 |#1|) (-10 -8 (-6 -4342) (-6 -4343) (-15 -1952 ($ |#1| (-623 $))) (-15 -1952 ($ (-623 |#1|))) (-15 -1952 ($ |#1|)) (-15 -2136 ((-112) $)) (-15 -3145 ($ $)) (-15 -3050 ((-623 $) $)) (-15 -2964 ((-112) $ $)) (-15 -2883 ((-623 $) $)))) +((-3005 (($ $) 15)) (-3025 (($ $) 12)) (-3033 (($ $) 10)) (-3016 (($ $) 17))) +(((-1168 |#1|) (-10 -8 (-15 -3016 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -3005 (|#1| |#1|))) (-1169)) (T -1168)) +NIL +(-10 -8 (-15 -3016 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -3005 (|#1| |#1|))) +((-3005 (($ $) 11)) (-2984 (($ $) 10)) (-3025 (($ $) 9)) (-3033 (($ $) 8)) (-3016 (($ $) 7)) (-2995 (($ $) 6))) +(((-1169) (-138)) (T -1169)) +((-3005 (*1 *1 *1) (-4 *1 (-1169))) (-2984 (*1 *1 *1) (-4 *1 (-1169))) (-3025 (*1 *1 *1) (-4 *1 (-1169))) (-3033 (*1 *1 *1) (-4 *1 (-1169))) (-3016 (*1 *1 *1) (-4 *1 (-1169))) (-2995 (*1 *1 *1) (-4 *1 (-1169)))) +(-13 (-10 -8 (-15 -2995 ($ $)) (-15 -3016 ($ $)) (-15 -3033 ($ $)) (-15 -3025 ($ $)) (-15 -2984 ($ $)) (-15 -3005 ($ $)))) +((-2369 ((|#2| |#2|) 88)) (-2447 (((-112) |#2|) 26)) (-3365 ((|#2| |#2|) 30)) (-3377 ((|#2| |#2|) 32)) (-2219 ((|#2| |#2| (-1144)) 83) ((|#2| |#2|) 84)) (-2523 (((-167 |#2|) |#2|) 28)) (-2296 ((|#2| |#2| (-1144)) 85) ((|#2| |#2|) 86))) +(((-1170 |#1| |#2|) (-10 -7 (-15 -2219 (|#2| |#2|)) (-15 -2219 (|#2| |#2| (-1144))) (-15 -2296 (|#2| |#2|)) (-15 -2296 (|#2| |#2| (-1144))) (-15 -2369 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -3377 (|#2| |#2|)) (-15 -2447 ((-112) |#2|)) (-15 -2523 ((-167 |#2|) |#2|))) (-13 (-444) (-825) (-1011 (-550)) (-619 (-550))) (-13 (-27) (-1166) (-423 |#1|))) (T -1170)) +((-2523 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-167 *3)) (-5 *1 (-1170 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *4))))) (-2447 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 (-112)) (-5 *1 (-1170 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *4))))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) (-3365 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) (-2296 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1170 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) (-2219 (*1 *2 *2 *3) (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1170 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3)))))) +(-10 -7 (-15 -2219 (|#2| |#2|)) (-15 -2219 (|#2| |#2| (-1144))) (-15 -2296 (|#2| |#2|)) (-15 -2296 (|#2| |#2| (-1144))) (-15 -2369 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -3377 (|#2| |#2|)) (-15 -2447 ((-112) |#2|)) (-15 -2523 ((-167 |#2|) |#2|))) +((-2593 ((|#4| |#4| |#1|) 27)) (-1491 ((|#4| |#4| |#1|) 28))) +(((-1171 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2593 (|#4| |#4| |#1|)) (-15 -1491 (|#4| |#4| |#1|))) (-542) (-366 |#1|) (-366 |#1|) (-665 |#1| |#2| |#3|)) (T -1171)) +((-1491 (*1 *2 *2 *3) (-12 (-4 *3 (-542)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1171 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) (-2593 (*1 *2 *2 *3) (-12 (-4 *3 (-542)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1171 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) +(-10 -7 (-15 -2593 (|#4| |#4| |#1|)) (-15 -1491 (|#4| |#4| |#1|))) +((-3644 ((|#2| |#2|) 133)) (-3806 ((|#2| |#2|) 130)) (-3581 ((|#2| |#2|) 121)) (-3727 ((|#2| |#2|) 118)) (-3482 ((|#2| |#2|) 126)) (-3396 ((|#2| |#2|) 114)) (-1891 ((|#2| |#2|) 43)) (-1796 ((|#2| |#2|) 94)) (-1594 ((|#2| |#2|) 74)) (-3304 ((|#2| |#2|) 128)) (-1385 ((|#2| |#2|) 116)) (-2277 ((|#2| |#2|) 138)) (-2948 ((|#2| |#2|) 136)) (-2205 ((|#2| |#2|) 137)) (-2858 ((|#2| |#2|) 135)) (-1692 ((|#2| |#2|) 148)) (-2348 ((|#2| |#2|) 30 (-12 (|has| |#2| (-596 (-865 |#1|))) (|has| |#2| (-859 |#1|)) (|has| |#1| (-596 (-865 |#1|))) (|has| |#1| (-859 |#1|))))) (-1984 ((|#2| |#2|) 75)) (-2070 ((|#2| |#2|) 139)) (-4214 ((|#2| |#2|) 140)) (-1286 ((|#2| |#2|) 127)) (-4248 ((|#2| |#2|) 115)) (-4160 ((|#2| |#2|) 134)) (-2768 ((|#2| |#2|) 132)) (-4077 ((|#2| |#2|) 122)) (-2709 ((|#2| |#2|) 120)) (-3977 ((|#2| |#2|) 124)) (-3894 ((|#2| |#2|) 112))) +(((-1172 |#1| |#2|) (-10 -7 (-15 -4214 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1796 (|#2| |#2|)) (-15 -1891 (|#2| |#2|)) (-15 -1984 (|#2| |#2|)) (-15 -2070 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (-15 -4248 (|#2| |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -2858 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -2205 (|#2| |#2|)) (-15 -2277 (|#2| |#2|)) (IF (|has| |#1| (-859 |#1|)) (IF (|has| |#1| (-596 (-865 |#1|))) (IF (|has| |#2| (-596 (-865 |#1|))) (IF (|has| |#2| (-859 |#1|)) (-15 -2348 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-825) (-444)) (-13 (-423 |#1|) (-1166))) (T -1172)) +((-2348 (*1 *2 *2) (-12 (-4 *3 (-596 (-865 *3))) (-4 *3 (-859 *3)) (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-596 (-865 *3))) (-4 *2 (-859 *3)) (-4 *2 (-13 (-423 *3) (-1166))))) (-2277 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-2205 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-2858 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-2768 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-2709 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3396 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-4248 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-2070 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-1984 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-1891 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-1796 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166))))) (-4214 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-13 (-423 *3) (-1166)))))) +(-10 -7 (-15 -4214 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1796 (|#2| |#2|)) (-15 -1891 (|#2| |#2|)) (-15 -1984 (|#2| |#2|)) (-15 -2070 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (-15 -4248 (|#2| |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -2858 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -2205 (|#2| |#2|)) (-15 -2277 (|#2| |#2|)) (IF (|has| |#1| (-859 |#1|)) (IF (|has| |#1| (-596 (-865 |#1|))) (IF (|has| |#2| (-596 (-865 |#1|))) (IF (|has| |#2| (-859 |#1|)) (-15 -2348 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-3301 (((-112) |#5| $) 60) (((-112) $) 102)) (-4074 ((|#5| |#5| $) 75)) (-4253 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4156 (((-623 |#5|) (-623 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-3880 (((-3 $ "failed") (-623 |#5|)) 126)) (-1308 (((-3 $ "failed") $) 112)) (-2067 ((|#5| |#5| $) 94)) (-3404 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-1878 ((|#5| |#5| $) 98)) (-2419 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-3589 (((-2 (|:| -2027 (-623 |#5|)) (|:| -3257 (-623 |#5|))) $) 55)) (-3499 (((-112) |#5| $) 58) (((-112) $) 103)) (-3952 ((|#4| $) 108)) (-3159 (((-3 |#5| "failed") $) 110)) (-3671 (((-623 |#5|) $) 49)) (-1296 (((-112) |#5| $) 67) (((-112) $) 107)) (-3900 ((|#5| |#5| $) 81)) (-3831 (((-112) $ $) 27)) (-1394 (((-112) |#5| $) 63) (((-112) $) 105)) (-3984 ((|#5| |#5| $) 78)) (-1293 (((-3 |#5| "failed") $) 109)) (-2272 (($ $ |#5|) 127)) (-2970 (((-749) $) 52)) (-1532 (($ (-623 |#5|)) 124)) (-2315 (($ $ |#4|) 122)) (-2486 (($ $ |#4|) 121)) (-1969 (($ $) 120)) (-1518 (((-836) $) NIL) (((-623 |#5|) $) 113)) (-2580 (((-749) $) 130)) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-4259 (((-112) $ (-1 (-112) |#5| (-623 |#5|))) 100)) (-1579 (((-623 |#4|) $) 115)) (-1288 (((-112) |#4| $) 118)) (-2316 (((-112) $ $) 19))) +(((-1173 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2580 ((-749) |#1|)) (-15 -2272 (|#1| |#1| |#5|)) (-15 -4253 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1288 ((-112) |#4| |#1|)) (-15 -1579 ((-623 |#4|) |#1|)) (-15 -1308 ((-3 |#1| "failed") |#1|)) (-15 -3159 ((-3 |#5| "failed") |#1|)) (-15 -1293 ((-3 |#5| "failed") |#1|)) (-15 -1878 (|#5| |#5| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -2067 (|#5| |#5| |#1|)) (-15 -3900 (|#5| |#5| |#1|)) (-15 -3984 (|#5| |#5| |#1|)) (-15 -4074 (|#5| |#5| |#1|)) (-15 -4156 ((-623 |#5|) (-623 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2419 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1296 ((-112) |#1|)) (-15 -1394 ((-112) |#1|)) (-15 -3301 ((-112) |#1|)) (-15 -4259 ((-112) |#1| (-1 (-112) |#5| (-623 |#5|)))) (-15 -1296 ((-112) |#5| |#1|)) (-15 -1394 ((-112) |#5| |#1|)) (-15 -3301 ((-112) |#5| |#1|)) (-15 -3404 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3499 ((-112) |#1|)) (-15 -3499 ((-112) |#5| |#1|)) (-15 -3589 ((-2 (|:| -2027 (-623 |#5|)) (|:| -3257 (-623 |#5|))) |#1|)) (-15 -2970 ((-749) |#1|)) (-15 -3671 ((-623 |#5|) |#1|)) (-15 -3753 ((-3 (-2 (|:| |bas| |#1|) (|:| -2038 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3753 ((-3 (-2 (|:| |bas| |#1|) (|:| -2038 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3831 ((-112) |#1| |#1|)) (-15 -2315 (|#1| |#1| |#4|)) (-15 -2486 (|#1| |#1| |#4|)) (-15 -3952 (|#4| |#1|)) (-15 -3880 ((-3 |#1| "failed") (-623 |#5|))) (-15 -1518 ((-623 |#5|) |#1|)) (-15 -1532 (|#1| (-623 |#5|))) (-15 -2419 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2419 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4253 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2419 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) (-1174 |#2| |#3| |#4| |#5|) (-542) (-771) (-825) (-1034 |#2| |#3| |#4|)) (T -1173)) +NIL +(-10 -8 (-15 -2580 ((-749) |#1|)) (-15 -2272 (|#1| |#1| |#5|)) (-15 -4253 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1288 ((-112) |#4| |#1|)) (-15 -1579 ((-623 |#4|) |#1|)) (-15 -1308 ((-3 |#1| "failed") |#1|)) (-15 -3159 ((-3 |#5| "failed") |#1|)) (-15 -1293 ((-3 |#5| "failed") |#1|)) (-15 -1878 (|#5| |#5| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -2067 (|#5| |#5| |#1|)) (-15 -3900 (|#5| |#5| |#1|)) (-15 -3984 (|#5| |#5| |#1|)) (-15 -4074 (|#5| |#5| |#1|)) (-15 -4156 ((-623 |#5|) (-623 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2419 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1296 ((-112) |#1|)) (-15 -1394 ((-112) |#1|)) (-15 -3301 ((-112) |#1|)) (-15 -4259 ((-112) |#1| (-1 (-112) |#5| (-623 |#5|)))) (-15 -1296 ((-112) |#5| |#1|)) (-15 -1394 ((-112) |#5| |#1|)) (-15 -3301 ((-112) |#5| |#1|)) (-15 -3404 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3499 ((-112) |#1|)) (-15 -3499 ((-112) |#5| |#1|)) (-15 -3589 ((-2 (|:| -2027 (-623 |#5|)) (|:| -3257 (-623 |#5|))) |#1|)) (-15 -2970 ((-749) |#1|)) (-15 -3671 ((-623 |#5|) |#1|)) (-15 -3753 ((-3 (-2 (|:| |bas| |#1|) (|:| -2038 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3753 ((-3 (-2 (|:| |bas| |#1|) (|:| -2038 (-623 |#5|))) "failed") (-623 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3831 ((-112) |#1| |#1|)) (-15 -2315 (|#1| |#1| |#4|)) (-15 -2486 (|#1| |#1| |#4|)) (-15 -3952 (|#4| |#1|)) (-15 -3880 ((-3 |#1| "failed") (-623 |#5|))) (-15 -1518 ((-623 |#5|) |#1|)) (-15 -1532 (|#1| (-623 |#5|))) (-15 -2419 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2419 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4253 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2419 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1518 ((-836) |#1|)) (-15 -2316 ((-112) |#1| |#1|))) +((-1504 (((-112) $ $) 7)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) 85)) (-1779 (((-623 $) (-623 |#4|)) 86)) (-3141 (((-623 |#3|) $) 33)) (-2238 (((-112) $) 26)) (-3670 (((-112) $) 17 (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) 27)) (-4047 (((-112) $ (-749)) 44)) (-4253 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) 79)) (-3513 (($) 45 T CONST)) (-2976 (((-112) $) 22 (|has| |#1| (-542)))) (-3156 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3059 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3253 (((-112) $) 25 (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3774 (((-623 |#4|) (-623 |#4|) $) 18 (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) 19 (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) 36)) (-2726 (($ (-623 |#4|)) 35)) (-1308 (((-3 $ "failed") $) 82)) (-2067 ((|#4| |#4| $) 89)) (-1328 (($ $) 68 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#4| $) 67 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1878 ((|#4| |#4| $) 87)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) 105)) (-3450 (((-623 |#4|) $) 52 (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) 104) (((-112) $) 103)) (-3952 ((|#3| $) 34)) (-1859 (((-112) $ (-749)) 43)) (-2689 (((-623 |#4|) $) 53 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) 47)) (-2650 (((-623 |#3|) $) 32)) (-2568 (((-112) |#3| $) 31)) (-1573 (((-112) $ (-749)) 42)) (-1825 (((-1126) $) 9)) (-3159 (((-3 |#4| "failed") $) 83)) (-3671 (((-623 |#4|) $) 107)) (-1296 (((-112) |#4| $) 99) (((-112) $) 95)) (-3900 ((|#4| |#4| $) 90)) (-3831 (((-112) $ $) 110)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) 100) (((-112) $) 96)) (-3984 ((|#4| |#4| $) 91)) (-3337 (((-1088) $) 10)) (-1293 (((-3 |#4| "failed") $) 84)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2654 (((-3 $ "failed") $ |#4|) 78)) (-2272 (($ $ |#4|) 77)) (-1543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) 38)) (-2902 (((-112) $) 41)) (-3498 (($) 40)) (-2970 (((-749) $) 106)) (-3350 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1068)) (|has| $ (-6 -4342)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4342)))) (-1731 (($ $) 39)) (-4028 (((-526) $) 69 (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) 60)) (-2315 (($ $ |#3|) 28)) (-2486 (($ $ |#3|) 30)) (-1969 (($ $) 88)) (-2401 (($ $ |#3|) 29)) (-1518 (((-836) $) 11) (((-623 |#4|) $) 37)) (-2580 (((-749) $) 76 (|has| |#3| (-361)))) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) 98)) (-1675 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) 81)) (-1288 (((-112) |#3| $) 80)) (-2316 (((-112) $ $) 6)) (-3191 (((-749) $) 46 (|has| $ (-6 -4342))))) +(((-1174 |#1| |#2| |#3| |#4|) (-138) (-542) (-771) (-825) (-1034 |t#1| |t#2| |t#3|)) (T -1174)) +((-3831 (*1 *2 *1 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) (-3753 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2038 (-623 *8)))) (-5 *3 (-623 *8)) (-4 *1 (-1174 *5 *6 *7 *8)))) (-3753 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1034 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2038 (-623 *9)))) (-5 *3 (-623 *9)) (-4 *1 (-1174 *6 *7 *8 *9)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-623 *6)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-749)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-2 (|:| -2027 (-623 *6)) (|:| -3257 (-623 *6)))))) (-3499 (*1 *2 *3 *1) (-12 (-4 *1 (-1174 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) (-3404 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1174 *5 *6 *7 *3)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-112)))) (-3301 (*1 *2 *3 *1) (-12 (-4 *1 (-1174 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-1394 (*1 *2 *3 *1) (-12 (-4 *1 (-1174 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-1296 (*1 *2 *3 *1) (-12 (-4 *1 (-1174 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-4259 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-623 *7))) (-4 *1 (-1174 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) (-2419 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1174 *5 *6 *7 *2)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *2 (-1034 *5 *6 *7)))) (-4156 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-623 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1174 *5 *6 *7 *8)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)))) (-4074 (*1 *2 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-3984 (*1 *2 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-3900 (*1 *2 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-2067 (*1 *2 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-1174 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1034 *2 *3 *4)))) (-1878 (*1 *2 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) (-4 *1 (-1174 *4 *5 *6 *7)))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-623 (-2 (|:| -2027 *1) (|:| -3257 (-623 *7))))) (-5 *3 (-623 *7)) (-4 *1 (-1174 *4 *5 *6 *7)))) (-1293 (*1 *2 *1) (|partial| -12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-3159 (*1 *2 *1) (|partial| -12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-1308 (*1 *1 *1) (|partial| -12 (-4 *1 (-1174 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1034 *2 *3 *4)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-623 *5)))) (-1288 (*1 *2 *3 *1) (-12 (-4 *1 (-1174 *4 *5 *3 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1034 *4 *5 *3)) (-5 *2 (-112)))) (-4253 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1174 *4 *5 *3 *2)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *2 (-1034 *4 *5 *3)))) (-2654 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-2272 (*1 *1 *1 *2) (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) (-2580 (*1 *2 *1) (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-749))))) +(-13 (-949 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4342) (-6 -4343) (-15 -3831 ((-112) $ $)) (-15 -3753 ((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |t#4|))) "failed") (-623 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3753 ((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |t#4|))) "failed") (-623 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3671 ((-623 |t#4|) $)) (-15 -2970 ((-749) $)) (-15 -3589 ((-2 (|:| -2027 (-623 |t#4|)) (|:| -3257 (-623 |t#4|))) $)) (-15 -3499 ((-112) |t#4| $)) (-15 -3499 ((-112) $)) (-15 -3404 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3301 ((-112) |t#4| $)) (-15 -1394 ((-112) |t#4| $)) (-15 -1296 ((-112) |t#4| $)) (-15 -4259 ((-112) $ (-1 (-112) |t#4| (-623 |t#4|)))) (-15 -3301 ((-112) $)) (-15 -1394 ((-112) $)) (-15 -1296 ((-112) $)) (-15 -2419 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4156 ((-623 |t#4|) (-623 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4074 (|t#4| |t#4| $)) (-15 -3984 (|t#4| |t#4| $)) (-15 -3900 (|t#4| |t#4| $)) (-15 -2067 (|t#4| |t#4| $)) (-15 -1969 ($ $)) (-15 -1878 (|t#4| |t#4| $)) (-15 -1779 ((-623 $) (-623 |t#4|))) (-15 -1672 ((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |t#4|)))) (-623 |t#4|))) (-15 -1293 ((-3 |t#4| "failed") $)) (-15 -3159 ((-3 |t#4| "failed") $)) (-15 -1308 ((-3 $ "failed") $)) (-15 -1579 ((-623 |t#3|) $)) (-15 -1288 ((-112) |t#3| $)) (-15 -4253 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2654 ((-3 $ "failed") $ |t#4|)) (-15 -2272 ($ $ |t#4|)) (IF (|has| |t#3| (-361)) (-15 -2580 ((-749) $)) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-595 (-623 |#4|)) . T) ((-595 (-836)) . T) ((-149 |#4|) . T) ((-596 (-526)) |has| |#4| (-596 (-526))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))) ((-949 |#1| |#2| |#3| |#4|) . T) ((-1068) . T) ((-1181) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-1144)) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-3123 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3146 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1402 (((-925 |#1|) $ (-749)) 17) (((-925 |#1|) $ (-749) (-749)) NIL)) (-3478 (((-112) $) NIL)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-749) $ (-1144)) NIL) (((-749) $ (-1144) (-749)) NIL)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3439 (((-112) $) NIL)) (-3118 (($ $ (-623 (-1144)) (-623 (-522 (-1144)))) NIL) (($ $ (-1144) (-522 (-1144))) NIL) (($ |#1| (-522 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-1489 (($ $ (-1144)) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144) |#1|) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) NIL)) (-2435 (($ (-1 $) (-1144) |#1|) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2272 (($ $ (-749)) NIL)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1812 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3866 (($ $ (-1144) $) NIL) (($ $ (-623 (-1144)) (-623 $)) NIL) (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL)) (-2393 (($ $ (-1144)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL)) (-2970 (((-522 (-1144)) $) NIL)) (-3157 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-1144)) NIL) (($ (-925 |#1|)) NIL)) (-2510 ((|#1| $ (-522 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (((-925 |#1|) $ (-749)) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-3187 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3294 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) NIL T CONST)) (-2636 (($) NIL T CONST)) (-4183 (($ $ (-1144)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1175 |#1|) (-13 (-719 |#1| (-1144)) (-10 -8 (-15 -2510 ((-925 |#1|) $ (-749))) (-15 -1518 ($ (-1144))) (-15 -1518 ($ (-925 |#1|))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $ (-1144) |#1|)) (-15 -2435 ($ (-1 $) (-1144) |#1|))) |%noBranch|))) (-1020)) (T -1175)) +((-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-925 *4)) (-5 *1 (-1175 *4)) (-4 *4 (-1020)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1175 *3)) (-4 *3 (-1020)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-1020)) (-5 *1 (-1175 *3)))) (-1489 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *1 (-1175 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1175 *4))) (-5 *3 (-1144)) (-5 *1 (-1175 *4)) (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1020))))) +(-13 (-719 |#1| (-1144)) (-10 -8 (-15 -2510 ((-925 |#1|) $ (-749))) (-15 -1518 ($ (-1144))) (-15 -1518 ($ (-925 |#1|))) (IF (|has| |#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $ (-1144) |#1|)) (-15 -2435 ($ (-1 $) (-1144) |#1|))) |%noBranch|))) +((-3147 (($ |#1| (-623 (-623 (-916 (-219)))) (-112)) 19)) (-3061 (((-112) $ (-112)) 18)) (-2985 (((-112) $) 17)) (-2823 (((-623 (-623 (-916 (-219)))) $) 13)) (-2733 ((|#1| $) 8)) (-2904 (((-112) $) 15))) +(((-1176 |#1|) (-10 -8 (-15 -2733 (|#1| $)) (-15 -2823 ((-623 (-623 (-916 (-219)))) $)) (-15 -2904 ((-112) $)) (-15 -2985 ((-112) $)) (-15 -3061 ((-112) $ (-112))) (-15 -3147 ($ |#1| (-623 (-623 (-916 (-219)))) (-112)))) (-947)) (T -1176)) +((-3147 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-112)) (-5 *1 (-1176 *2)) (-4 *2 (-947)))) (-3061 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-947)))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-947)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-947)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *1 (-1176 *3)) (-4 *3 (-947)))) (-2733 (*1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-947))))) +(-10 -8 (-15 -2733 (|#1| $)) (-15 -2823 ((-623 (-623 (-916 (-219)))) $)) (-15 -2904 ((-112) $)) (-15 -2985 ((-112) $)) (-15 -3061 ((-112) $ (-112))) (-15 -3147 ($ |#1| (-623 (-623 (-916 (-219)))) (-112)))) +((-3230 (((-916 (-219)) (-916 (-219))) 25)) (-2644 (((-916 (-219)) (-219) (-219) (-219) (-219)) 10)) (-2282 (((-623 (-916 (-219))) (-916 (-219)) (-916 (-219)) (-916 (-219)) (-219) (-623 (-623 (-219)))) 37)) (-3440 (((-219) (-916 (-219)) (-916 (-219))) 21)) (-3305 (((-916 (-219)) (-916 (-219)) (-916 (-219))) 22)) (-2210 (((-623 (-623 (-219))) (-550)) 31)) (-2403 (((-916 (-219)) (-916 (-219)) (-916 (-219))) 20)) (-2391 (((-916 (-219)) (-916 (-219)) (-916 (-219))) 19)) (* (((-916 (-219)) (-219) (-916 (-219))) 18))) +(((-1177) (-10 -7 (-15 -2644 ((-916 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-916 (-219)) (-219) (-916 (-219)))) (-15 -2391 ((-916 (-219)) (-916 (-219)) (-916 (-219)))) (-15 -2403 ((-916 (-219)) (-916 (-219)) (-916 (-219)))) (-15 -3440 ((-219) (-916 (-219)) (-916 (-219)))) (-15 -3305 ((-916 (-219)) (-916 (-219)) (-916 (-219)))) (-15 -3230 ((-916 (-219)) (-916 (-219)))) (-15 -2210 ((-623 (-623 (-219))) (-550))) (-15 -2282 ((-623 (-916 (-219))) (-916 (-219)) (-916 (-219)) (-916 (-219)) (-219) (-623 (-623 (-219))))))) (T -1177)) +((-2282 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-623 (-623 (-219)))) (-5 *4 (-219)) (-5 *2 (-623 (-916 *4))) (-5 *1 (-1177)) (-5 *3 (-916 *4)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-623 (-623 (-219)))) (-5 *1 (-1177)))) (-3230 (*1 *2 *2) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)))) (-3305 (*1 *2 *2 *2) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)))) (-3440 (*1 *2 *3 *3) (-12 (-5 *3 (-916 (-219))) (-5 *2 (-219)) (-5 *1 (-1177)))) (-2403 (*1 *2 *2 *2) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)))) (-2391 (*1 *2 *2 *2) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-916 (-219))) (-5 *3 (-219)) (-5 *1 (-1177)))) (-2644 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)) (-5 *3 (-219))))) +(-10 -7 (-15 -2644 ((-916 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-916 (-219)) (-219) (-916 (-219)))) (-15 -2391 ((-916 (-219)) (-916 (-219)) (-916 (-219)))) (-15 -2403 ((-916 (-219)) (-916 (-219)) (-916 (-219)))) (-15 -3440 ((-219) (-916 (-219)) (-916 (-219)))) (-15 -3305 ((-916 (-219)) (-916 (-219)) (-916 (-219)))) (-15 -3230 ((-916 (-219)) (-916 (-219)))) (-15 -2210 ((-623 (-623 (-219))) (-550))) (-15 -2282 ((-623 (-916 (-219))) (-916 (-219)) (-916 (-219)) (-916 (-219)) (-219) (-623 (-623 (-219)))))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-4253 ((|#1| $ (-749)) 13)) (-3772 (((-749) $) 12)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1518 (((-931 |#1|) $) 10) (($ (-931 |#1|)) 9) (((-836) $) 23 (|has| |#1| (-595 (-836))))) (-2316 (((-112) $ $) 16 (|has| |#1| (-1068))))) +(((-1178 |#1|) (-13 (-595 (-931 |#1|)) (-10 -8 (-15 -1518 ($ (-931 |#1|))) (-15 -4253 (|#1| $ (-749))) (-15 -3772 ((-749) $)) (IF (|has| |#1| (-595 (-836))) (-6 (-595 (-836))) |%noBranch|) (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|))) (-1181)) (T -1178)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-1181)) (-5 *1 (-1178 *3)))) (-4253 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-1178 *2)) (-4 *2 (-1181)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1178 *3)) (-4 *3 (-1181))))) +(-13 (-595 (-931 |#1|)) (-10 -8 (-15 -1518 ($ (-931 |#1|))) (-15 -4253 (|#1| $ (-749))) (-15 -3772 ((-749) $)) (IF (|has| |#1| (-595 (-836))) (-6 (-595 (-836))) |%noBranch|) (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|))) +((-2507 (((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|)) (-550)) 80)) (-2353 (((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|))) 74)) (-2432 (((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|))) 59))) +(((-1179 |#1|) (-10 -7 (-15 -2353 ((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|)))) (-15 -2432 ((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|)))) (-15 -2507 ((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|)) (-550)))) (-342)) (T -1179)) +((-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *5 (-342)) (-5 *2 (-411 (-1140 (-1140 *5)))) (-5 *1 (-1179 *5)) (-5 *3 (-1140 (-1140 *5))))) (-2432 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1140 (-1140 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-1140 (-1140 *4))))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1140 (-1140 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-1140 (-1140 *4)))))) +(-10 -7 (-15 -2353 ((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|)))) (-15 -2432 ((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|)))) (-15 -2507 ((-411 (-1140 (-1140 |#1|))) (-1140 (-1140 |#1|)) (-550)))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 9) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-1180) (-1051)) (T -1180)) +NIL +(-1051) +NIL +(((-1181) (-138)) (T -1181)) +NIL +(-13 (-10 -7 (-6 -1964))) +((-1654 (((-112)) 15)) (-2577 (((-1232) (-623 |#1|) (-623 |#1|)) 19) (((-1232) (-623 |#1|)) 20)) (-1859 (((-112) |#1| |#1|) 32 (|has| |#1| (-825)))) (-1573 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-1759 ((|#1| (-623 |#1|)) 33 (|has| |#1| (-825))) ((|#1| (-623 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-2651 (((-2 (|:| -1374 (-623 |#1|)) (|:| -3429 (-623 |#1|)))) 17))) +(((-1182 |#1|) (-10 -7 (-15 -2577 ((-1232) (-623 |#1|))) (-15 -2577 ((-1232) (-623 |#1|) (-623 |#1|))) (-15 -2651 ((-2 (|:| -1374 (-623 |#1|)) (|:| -3429 (-623 |#1|))))) (-15 -1573 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1573 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1759 (|#1| (-623 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1654 ((-112))) (IF (|has| |#1| (-825)) (PROGN (-15 -1759 (|#1| (-623 |#1|))) (-15 -1859 ((-112) |#1| |#1|))) |%noBranch|)) (-1068)) (T -1182)) +((-1859 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-825)) (-4 *3 (-1068)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-1068)) (-4 *2 (-825)) (-5 *1 (-1182 *2)))) (-1654 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-1068)))) (-1759 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-1068)))) (-1573 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1068)) (-5 *2 (-112)) (-5 *1 (-1182 *3)))) (-1573 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-1068)))) (-2651 (*1 *2) (-12 (-5 *2 (-2 (|:| -1374 (-623 *3)) (|:| -3429 (-623 *3)))) (-5 *1 (-1182 *3)) (-4 *3 (-1068)))) (-2577 (*1 *2 *3 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1068)) (-5 *2 (-1232)) (-5 *1 (-1182 *4)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-1068)) (-5 *2 (-1232)) (-5 *1 (-1182 *4))))) +(-10 -7 (-15 -2577 ((-1232) (-623 |#1|))) (-15 -2577 ((-1232) (-623 |#1|) (-623 |#1|))) (-15 -2651 ((-2 (|:| -1374 (-623 |#1|)) (|:| -3429 (-623 |#1|))))) (-15 -1573 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1573 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1759 (|#1| (-623 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1654 ((-112))) (IF (|has| |#1| (-825)) (PROGN (-15 -1759 (|#1| (-623 |#1|))) (-15 -1859 ((-112) |#1| |#1|))) |%noBranch|)) +((-1950 (((-1232) (-623 (-1144)) (-623 (-1144))) 13) (((-1232) (-623 (-1144))) 11)) (-2109 (((-1232)) 14)) (-2032 (((-2 (|:| -3429 (-623 (-1144))) (|:| -1374 (-623 (-1144))))) 18))) +(((-1183) (-10 -7 (-15 -1950 ((-1232) (-623 (-1144)))) (-15 -1950 ((-1232) (-623 (-1144)) (-623 (-1144)))) (-15 -2032 ((-2 (|:| -3429 (-623 (-1144))) (|:| -1374 (-623 (-1144)))))) (-15 -2109 ((-1232))))) (T -1183)) +((-2109 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1183)))) (-2032 (*1 *2) (-12 (-5 *2 (-2 (|:| -3429 (-623 (-1144))) (|:| -1374 (-623 (-1144))))) (-5 *1 (-1183)))) (-1950 (*1 *2 *3 *3) (-12 (-5 *3 (-623 (-1144))) (-5 *2 (-1232)) (-5 *1 (-1183)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-623 (-1144))) (-5 *2 (-1232)) (-5 *1 (-1183))))) +(-10 -7 (-15 -1950 ((-1232) (-623 (-1144)))) (-15 -1950 ((-1232) (-623 (-1144)) (-623 (-1144)))) (-15 -2032 ((-2 (|:| -3429 (-623 (-1144))) (|:| -1374 (-623 (-1144)))))) (-15 -2109 ((-1232)))) +((-1505 (($ $) 17)) (-3933 (((-112) $) 24))) +(((-1184 |#1|) (-10 -8 (-15 -1505 (|#1| |#1|)) (-15 -3933 ((-112) |#1|))) (-1185)) (T -1184)) +NIL +(-10 -8 (-15 -1505 (|#1| |#1|)) (-15 -3933 ((-112) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 49)) (-3564 (((-411 $) $) 50)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3933 (((-112) $) 51)) (-3102 (((-112) $) 30)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3338 (((-411 $) $) 48)) (-1495 (((-3 $ "failed") $ $) 40)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41)) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24))) +(((-1185) (-138)) (T -1185)) +((-3933 (*1 *2 *1) (-12 (-4 *1 (-1185)) (-5 *2 (-112)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1185)))) (-1505 (*1 *1 *1) (-4 *1 (-1185))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1185))))) +(-13 (-444) (-10 -8 (-15 -3933 ((-112) $)) (-15 -3564 ((-411 $) $)) (-15 -1505 ($ $)) (-15 -3338 ((-411 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-836)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-3972 (((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|)) 23))) +(((-1186 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3972 ((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|)))) (-1020) (-1020) (-1144) (-1144) |#1| |#2|) (T -1186)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5 *7 *9)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-14 *7 (-1144)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1191 *6 *8 *10)) (-5 *1 (-1186 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1144))))) +(-10 -7 (-15 -3972 ((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 (-1050)) $) 72)) (-1861 (((-1144) $) 101)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-2370 (($ $ (-550)) 96) (($ $ (-550) (-550)) 95)) (-2575 (((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 103)) (-3123 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 160 (|has| |#1| (-356)))) (-3564 (((-411 $) $) 161 (|has| |#1| (-356)))) (-3353 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-3631 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3103 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 171)) (-3146 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) 17 T CONST)) (-3349 (($ $ $) 155 (|has| |#1| (-356)))) (-3295 (($ $) 58)) (-1386 (((-3 $ "failed") $) 32)) (-4001 (((-400 (-925 |#1|)) $ (-550)) 169 (|has| |#1| (-542))) (((-400 (-925 |#1|)) $ (-550) (-550)) 168 (|has| |#1| (-542)))) (-1519 (($ $ $) 154 (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 149 (|has| |#1| (-356)))) (-3933 (((-112) $) 162 (|has| |#1| (-356)))) (-3478 (((-112) $) 71)) (-2734 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-550) $) 98) (((-550) $ (-550)) 97)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) 99)) (-3315 (($ (-1 |#1| (-550)) $) 170)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-356)))) (-3439 (((-112) $) 60)) (-3118 (($ |#1| (-550)) 59) (($ $ (-1050) (-550)) 74) (($ $ (-623 (-1050)) (-623 (-550))) 73)) (-3972 (($ (-1 |#1| |#1|) $) 61)) (-2958 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-3106 (($ (-623 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-1825 (((-1126) $) 9)) (-3235 (($ $) 163 (|has| |#1| (-356)))) (-1489 (($ $) 167 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 166 (-1561 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-932)) (|has| |#1| (-1166)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 148 (|has| |#1| (-356)))) (-3139 (($ (-623 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-3338 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 156 (|has| |#1| (-356)))) (-2272 (($ $ (-550)) 93)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-356)))) (-1812 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-550)))))) (-3542 (((-749) $) 152 (|has| |#1| (-356)))) (-2680 ((|#1| $ (-550)) 102) (($ $ $) 79 (|has| (-550) (-1080)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 153 (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) 87 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1144) (-749)) 86 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144))) 85 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1144)) 84 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-2970 (((-550) $) 62)) (-3157 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 70)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542)))) (-2510 ((|#1| $ (-550)) 57)) (-4242 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-3335 ((|#1| $) 100)) (-3187 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3167 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-550)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) 91 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1144) (-749)) 90 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144))) 89 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1144)) 88 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-1187 |#1|) (-138) (-1020)) (T -1187)) +((-2672 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-4 *3 (-1020)) (-4 *1 (-1187 *3)))) (-3315 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1187 *3)) (-4 *3 (-1020)))) (-4001 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1187 *4)) (-4 *4 (-1020)) (-4 *4 (-542)) (-5 *2 (-400 (-925 *4))))) (-4001 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1187 *4)) (-4 *4 (-1020)) (-4 *4 (-542)) (-5 *2 (-400 (-925 *4))))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-1020)) (-4 *2 (-38 (-400 (-550)))))) (-1489 (*1 *1 *1 *2) (-1561 (-12 (-5 *2 (-1144)) (-4 *1 (-1187 *3)) (-4 *3 (-1020)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-932)) (-4 *3 (-1166)) (-4 *3 (-38 (-400 (-550)))))) (-12 (-5 *2 (-1144)) (-4 *1 (-1187 *3)) (-4 *3 (-1020)) (-12 (|has| *3 (-15 -3141 ((-623 *2) *3))) (|has| *3 (-15 -1489 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550))))))))) +(-13 (-1205 |t#1| (-550)) (-10 -8 (-15 -2672 ($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |t#1|))))) (-15 -3315 ($ (-1 |t#1| (-550)) $)) (IF (|has| |t#1| (-542)) (PROGN (-15 -4001 ((-400 (-925 |t#1|)) $ (-550))) (-15 -4001 ((-400 (-925 |t#1|)) $ (-550) (-550)))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $)) (IF (|has| |t#1| (-15 -1489 (|t#1| |t#1| (-1144)))) (IF (|has| |t#1| (-15 -3141 ((-623 (-1144)) |t#1|))) (-15 -1489 ($ $ (-1144))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1166)) (IF (|has| |t#1| (-932)) (IF (|has| |t#1| (-29 (-550))) (-15 -1489 ($ $ (-1144))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-975)) (-6 (-1166))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-550)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-550) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 $ $) |has| (-550) (-1080)) ((-283) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-542) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-626 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-705) . T) ((-873 (-1144)) -12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))) ((-946 |#1| #0# (-1050)) . T) ((-893) |has| |#1| (-356)) ((-975) |has| |#1| (-38 (-400 (-550)))) ((-1026 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1166) |has| |#1| (-38 (-400 (-550)))) ((-1169) |has| |#1| (-38 (-400 (-550)))) ((-1185) |has| |#1| (-356)) ((-1205 |#1| #0#) . T)) +((-3433 (((-112) $) 12)) (-3880 (((-3 |#3| "failed") $) 17) (((-3 (-1144) "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL)) (-2726 ((|#3| $) 14) (((-1144) $) NIL) (((-400 (-550)) $) NIL) (((-550) $) NIL))) +(((-1188 |#1| |#2| |#3|) (-10 -8 (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-1144) |#1|)) (-15 -3880 ((-3 (-1144) "failed") |#1|)) (-15 -2726 (|#3| |#1|)) (-15 -3880 ((-3 |#3| "failed") |#1|)) (-15 -3433 ((-112) |#1|))) (-1189 |#2| |#3|) (-1020) (-1218 |#2|)) (T -1188)) +NIL +(-10 -8 (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -2726 ((-1144) |#1|)) (-15 -3880 ((-3 (-1144) "failed") |#1|)) (-15 -2726 (|#3| |#1|)) (-15 -3880 ((-3 |#3| "failed") |#1|)) (-15 -3433 ((-112) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1453 ((|#2| $) 228 (-1262 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3141 (((-623 (-1050)) $) 72)) (-1861 (((-1144) $) 101)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-2370 (($ $ (-550)) 96) (($ $ (-550) (-550)) 95)) (-2575 (((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 103)) (-4314 ((|#2| $) 264)) (-4099 (((-3 |#2| "failed") $) 260)) (-3192 ((|#2| $) 261)) (-3123 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) 19)) (-3688 (((-411 (-1140 $)) (-1140 $)) 237 (-1262 (|has| |#2| (-882)) (|has| |#1| (-356))))) (-1505 (($ $) 160 (|has| |#1| (-356)))) (-3564 (((-411 $) $) 161 (|has| |#1| (-356)))) (-3353 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 234 (-1262 (|has| |#2| (-882)) (|has| |#1| (-356))))) (-3631 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3103 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-3712 (((-550) $) 246 (-1262 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2672 (($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 171)) (-3146 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#2| "failed") $) 267) (((-3 (-550) "failed") $) 256 (-1262 (|has| |#2| (-1011 (-550))) (|has| |#1| (-356)))) (((-3 (-400 (-550)) "failed") $) 254 (-1262 (|has| |#2| (-1011 (-550))) (|has| |#1| (-356)))) (((-3 (-1144) "failed") $) 239 (-1262 (|has| |#2| (-1011 (-1144))) (|has| |#1| (-356))))) (-2726 ((|#2| $) 266) (((-550) $) 257 (-1262 (|has| |#2| (-1011 (-550))) (|has| |#1| (-356)))) (((-400 (-550)) $) 255 (-1262 (|has| |#2| (-1011 (-550))) (|has| |#1| (-356)))) (((-1144) $) 240 (-1262 (|has| |#2| (-1011 (-1144))) (|has| |#1| (-356))))) (-4200 (($ $) 263) (($ (-550) $) 262)) (-3349 (($ $ $) 155 (|has| |#1| (-356)))) (-3295 (($ $) 58)) (-3780 (((-667 |#2|) (-667 $)) 218 (|has| |#1| (-356))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) 217 (|has| |#1| (-356))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 216 (-1262 (|has| |#2| (-619 (-550))) (|has| |#1| (-356)))) (((-667 (-550)) (-667 $)) 215 (-1262 (|has| |#2| (-619 (-550))) (|has| |#1| (-356))))) (-1386 (((-3 $ "failed") $) 32)) (-4001 (((-400 (-925 |#1|)) $ (-550)) 169 (|has| |#1| (-542))) (((-400 (-925 |#1|)) $ (-550) (-550)) 168 (|has| |#1| (-542)))) (-1741 (($) 230 (-1262 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-1519 (($ $ $) 154 (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 149 (|has| |#1| (-356)))) (-3933 (((-112) $) 162 (|has| |#1| (-356)))) (-1416 (((-112) $) 244 (-1262 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-3478 (((-112) $) 71)) (-2734 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 222 (-1262 (|has| |#2| (-859 (-372))) (|has| |#1| (-356)))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 221 (-1262 (|has| |#2| (-859 (-550))) (|has| |#1| (-356))))) (-2475 (((-550) $) 98) (((-550) $ (-550)) 97)) (-3102 (((-112) $) 30)) (-1552 (($ $) 226 (|has| |#1| (-356)))) (-2705 ((|#2| $) 224 (|has| |#1| (-356)))) (-1460 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-2826 (((-3 $ "failed") $) 258 (-1262 (|has| |#2| (-1119)) (|has| |#1| (-356))))) (-3329 (((-112) $) 245 (-1262 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-1784 (($ $ (-894)) 99)) (-3315 (($ (-1 |#1| (-550)) $) 170)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-356)))) (-3439 (((-112) $) 60)) (-3118 (($ |#1| (-550)) 59) (($ $ (-1050) (-550)) 74) (($ $ (-623 (-1050)) (-623 (-550))) 73)) (-2707 (($ $ $) 248 (-1262 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-4164 (($ $ $) 249 (-1262 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-3972 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-356)))) (-2958 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-3106 (($ (-623 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3203 (($ (-550) |#2|) 265)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 163 (|has| |#1| (-356)))) (-1489 (($ $) 167 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 166 (-1561 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-932)) (|has| |#1| (-1166)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3862 (($) 259 (-1262 (|has| |#2| (-1119)) (|has| |#1| (-356))) CONST)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 148 (|has| |#1| (-356)))) (-3139 (($ (-623 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-3948 (($ $) 229 (-1262 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-1608 ((|#2| $) 232 (-1262 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3430 (((-411 (-1140 $)) (-1140 $)) 235 (-1262 (|has| |#2| (-882)) (|has| |#1| (-356))))) (-3562 (((-411 (-1140 $)) (-1140 $)) 236 (-1262 (|has| |#2| (-882)) (|has| |#1| (-356))))) (-3338 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 156 (|has| |#1| (-356)))) (-2272 (($ $ (-550)) 93)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-356)))) (-1812 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1144) |#2|) 209 (-1262 (|has| |#2| (-505 (-1144) |#2|)) (|has| |#1| (-356)))) (($ $ (-623 (-1144)) (-623 |#2|)) 208 (-1262 (|has| |#2| (-505 (-1144) |#2|)) (|has| |#1| (-356)))) (($ $ (-623 (-287 |#2|))) 207 (-1262 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-287 |#2|)) 206 (-1262 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) 205 (-1262 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-623 |#2|) (-623 |#2|)) 204 (-1262 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-3542 (((-749) $) 152 (|has| |#1| (-356)))) (-2680 ((|#1| $ (-550)) 102) (($ $ $) 79 (|has| (-550) (-1080))) (($ $ |#2|) 203 (-1262 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 153 (|has| |#1| (-356)))) (-2393 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) 213 (|has| |#1| (-356))) (($ $ (-749)) 82 (-1561 (-1262 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 80 (-1561 (-1262 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144)) (-623 (-749))) 87 (-1561 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1144) (-749)) 86 (-1561 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-623 (-1144))) 85 (-1561 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1144)) 84 (-1561 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-2639 (($ $) 227 (|has| |#1| (-356)))) (-2715 ((|#2| $) 225 (|has| |#1| (-356)))) (-2970 (((-550) $) 62)) (-3157 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-4028 (((-219) $) 243 (-1262 (|has| |#2| (-995)) (|has| |#1| (-356)))) (((-372) $) 242 (-1262 (|has| |#2| (-995)) (|has| |#1| (-356)))) (((-526) $) 241 (-1262 (|has| |#2| (-596 (-526))) (|has| |#1| (-356)))) (((-865 (-372)) $) 220 (-1262 (|has| |#2| (-596 (-865 (-372)))) (|has| |#1| (-356)))) (((-865 (-550)) $) 219 (-1262 (|has| |#2| (-596 (-865 (-550)))) (|has| |#1| (-356))))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 233 (-1262 (-1262 (|has| $ (-143)) (|has| |#2| (-882))) (|has| |#1| (-356))))) (-3380 (($ $) 70)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1144)) 238 (-1262 (|has| |#2| (-1011 (-1144))) (|has| |#1| (-356)))) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542)))) (-2510 ((|#1| $ (-550)) 57)) (-4242 (((-3 $ "failed") $) 46 (-1561 (-1262 (-1561 (|has| |#2| (-143)) (-1262 (|has| $ (-143)) (|has| |#2| (-882)))) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-2390 (((-749)) 28)) (-3335 ((|#1| $) 100)) (-1754 ((|#2| $) 231 (-1262 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3187 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3167 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-550)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-1635 (($ $) 247 (-1262 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) 211 (|has| |#1| (-356))) (($ $ (-749)) 83 (-1561 (-1262 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 81 (-1561 (-1262 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144)) (-623 (-749))) 91 (-1561 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1144) (-749)) 90 (-1561 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-623 (-1144))) 89 (-1561 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1144)) 88 (-1561 (-1262 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-2363 (((-112) $ $) 251 (-1262 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2345 (((-112) $ $) 252 (-1262 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 250 (-1262 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2335 (((-112) $ $) 253 (-1262 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356))) (($ |#2| |#2|) 223 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-356))) (($ |#2| $) 201 (|has| |#1| (-356))) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-1189 |#1| |#2|) (-138) (-1020) (-1218 |t#1|)) (T -1189)) +((-2970 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1218 *3)) (-5 *2 (-550)))) (-1518 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-4 *1 (-1189 *3 *2)) (-4 *2 (-1218 *3)))) (-3203 (*1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *4 (-1020)) (-4 *1 (-1189 *4 *3)) (-4 *3 (-1218 *4)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1218 *3)))) (-4200 (*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1218 *2)))) (-4200 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1218 *3)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1218 *3)))) (-4099 (*1 *2 *1) (|partial| -12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1218 *3))))) +(-13 (-1187 |t#1|) (-1011 |t#2|) (-10 -8 (-15 -3203 ($ (-550) |t#2|)) (-15 -2970 ((-550) $)) (-15 -4314 (|t#2| $)) (-15 -4200 ($ $)) (-15 -4200 ($ (-550) $)) (-15 -1518 ($ |t#2|)) (-15 -3192 (|t#2| $)) (-15 -4099 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-356)) (-6 (-965 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-550)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-356)) ((-38 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-356)) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) -1561 (-12 (|has| |#1| (-356)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1561 (-12 (|has| |#1| (-356)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-596 (-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-995))) ((-596 (-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-995))) ((-596 (-526)) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-526)))) ((-596 (-865 (-372))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-865 (-372))))) ((-596 (-865 (-550))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-865 (-550))))) ((-225 |#2|) |has| |#1| (-356)) ((-227) -1561 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 |#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) ((-279 $ $) |has| (-550) (-1080)) ((-283) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-356) |has| |#1| (-356)) ((-331 |#2|) |has| |#1| (-356)) ((-370 |#2|) |has| |#1| (-356)) ((-393 |#2|) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-505 (-1144) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1144) |#2|))) ((-505 |#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-542) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-626 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-626 |#1|) . T) ((-626 |#2|) |has| |#1| (-356)) ((-626 $) . T) ((-619 (-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-619 (-550)))) ((-619 |#2|) |has| |#1| (-356)) ((-696 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 |#2|) |has| |#1| (-356)) ((-696 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-705) . T) ((-769) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-770) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-772) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-773) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-798) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-823) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-825) -1561 (-12 (|has| |#1| (-356)) (|has| |#2| (-825))) (-12 (|has| |#1| (-356)) (|has| |#2| (-798)))) ((-873 (-1144)) -1561 (-12 (|has| |#1| (-356)) (|has| |#2| (-873 (-1144)))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))) ((-859 (-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-859 (-372)))) ((-859 (-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-859 (-550)))) ((-857 |#2|) |has| |#1| (-356)) ((-882) -12 (|has| |#1| (-356)) (|has| |#2| (-882))) ((-946 |#1| #0# (-1050)) . T) ((-893) |has| |#1| (-356)) ((-965 |#2|) |has| |#1| (-356)) ((-975) |has| |#1| (-38 (-400 (-550)))) ((-995) -12 (|has| |#1| (-356)) (|has| |#2| (-995))) ((-1011 (-400 (-550))) -12 (|has| |#1| (-356)) (|has| |#2| (-1011 (-550)))) ((-1011 (-550)) -12 (|has| |#1| (-356)) (|has| |#2| (-1011 (-550)))) ((-1011 (-1144)) -12 (|has| |#1| (-356)) (|has| |#2| (-1011 (-1144)))) ((-1011 |#2|) . T) ((-1026 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-1026 |#1|) . T) ((-1026 |#2|) |has| |#1| (-356)) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) -12 (|has| |#1| (-356)) (|has| |#2| (-1119))) ((-1166) |has| |#1| (-38 (-400 (-550)))) ((-1169) |has| |#1| (-38 (-400 (-550)))) ((-1181) |has| |#1| (-356)) ((-1185) |has| |#1| (-356)) ((-1187 |#1|) . T) ((-1205 |#1| #0#) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 70)) (-1453 ((|#2| $) NIL (-12 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 88)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-2370 (($ $ (-550)) 97) (($ $ (-550) (-550)) 99)) (-2575 (((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 47)) (-4314 ((|#2| $) 11)) (-4099 (((-3 |#2| "failed") $) 30)) (-3192 ((|#2| $) 31)) (-3123 (($ $) 192 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 168 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| |#2| (-882)) (|has| |#1| (-356))))) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (-12 (|has| |#2| (-882)) (|has| |#1| (-356))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3103 (($ $) 188 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 164 (|has| |#1| (-38 (-400 (-550)))))) (-3712 (((-550) $) NIL (-12 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2672 (($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 57)) (-3146 (($ $) 196 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 172 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) 144) (((-3 (-550) "failed") $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#1| (-356)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#1| (-356)))) (((-3 (-1144) "failed") $) NIL (-12 (|has| |#2| (-1011 (-1144))) (|has| |#1| (-356))))) (-2726 ((|#2| $) 143) (((-550) $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#1| (-356)))) (((-400 (-550)) $) NIL (-12 (|has| |#2| (-1011 (-550))) (|has| |#1| (-356)))) (((-1144) $) NIL (-12 (|has| |#2| (-1011 (-1144))) (|has| |#1| (-356))))) (-4200 (($ $) 61) (($ (-550) $) 24)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) NIL)) (-3780 (((-667 |#2|) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#1| (-356)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-550))) (|has| |#1| (-356))))) (-1386 (((-3 $ "failed") $) 77)) (-4001 (((-400 (-925 |#1|)) $ (-550)) 112 (|has| |#1| (-542))) (((-400 (-925 |#1|)) $ (-550) (-550)) 114 (|has| |#1| (-542)))) (-1741 (($) NIL (-12 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-1416 (((-112) $) NIL (-12 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-3478 (((-112) $) 64)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| |#2| (-859 (-372))) (|has| |#1| (-356)))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| |#2| (-859 (-550))) (|has| |#1| (-356))))) (-2475 (((-550) $) 93) (((-550) $ (-550)) 95)) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL (|has| |#1| (-356)))) (-2705 ((|#2| $) 151 (|has| |#1| (-356)))) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2826 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1119)) (|has| |#1| (-356))))) (-3329 (((-112) $) NIL (-12 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-1784 (($ $ (-894)) 136)) (-3315 (($ (-1 |#1| (-550)) $) 132)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-550)) 19) (($ $ (-1050) (-550)) NIL) (($ $ (-623 (-1050)) (-623 (-550))) NIL)) (-2707 (($ $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-4164 (($ $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-3972 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-356)))) (-2958 (($ $) 162 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3203 (($ (-550) |#2|) 10)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 145 (|has| |#1| (-356)))) (-1489 (($ $) 214 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 219 (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166)))))) (-3862 (($) NIL (-12 (|has| |#2| (-1119)) (|has| |#1| (-356))) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3948 (($ $) NIL (-12 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-1608 ((|#2| $) NIL (-12 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| |#2| (-882)) (|has| |#1| (-356))))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| |#2| (-882)) (|has| |#1| (-356))))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2272 (($ $ (-550)) 126)) (-1495 (((-3 $ "failed") $ $) 116 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1812 (($ $) 160 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1144) |#2|) NIL (-12 (|has| |#2| (-505 (-1144) |#2|)) (|has| |#1| (-356)))) (($ $ (-623 (-1144)) (-623 |#2|)) NIL (-12 (|has| |#2| (-505 (-1144) |#2|)) (|has| |#1| (-356)))) (($ $ (-623 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-623 |#2|) (-623 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ (-550)) 91) (($ $ $) 79 (|has| (-550) (-1080))) (($ $ |#2|) NIL (-12 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-2393 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-1561 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 137 (-1561 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-1561 (-12 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144) (-749)) NIL (-1561 (-12 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-623 (-1144))) NIL (-1561 (-12 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144)) 140 (-1561 (-12 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))))) (-2639 (($ $) NIL (|has| |#1| (-356)))) (-2715 ((|#2| $) 152 (|has| |#1| (-356)))) (-2970 (((-550) $) 12)) (-3157 (($ $) 198 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 174 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 194 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 170 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 190 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 166 (|has| |#1| (-38 (-400 (-550)))))) (-4028 (((-219) $) NIL (-12 (|has| |#2| (-995)) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| |#2| (-995)) (|has| |#1| (-356)))) (((-526) $) NIL (-12 (|has| |#2| (-596 (-526))) (|has| |#1| (-356)))) (((-865 (-372)) $) NIL (-12 (|has| |#2| (-596 (-865 (-372)))) (|has| |#1| (-356)))) (((-865 (-550)) $) NIL (-12 (|has| |#2| (-596 (-865 (-550)))) (|has| |#1| (-356))))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-882)) (|has| |#1| (-356))))) (-3380 (($ $) 124)) (-1518 (((-836) $) 245) (($ (-550)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1144)) NIL (-12 (|has| |#2| (-1011 (-1144))) (|has| |#1| (-356)))) (($ (-400 (-550))) 155 (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-2510 ((|#1| $ (-550)) 74)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#2| (-882)) (|has| |#1| (-356))) (-12 (|has| |#2| (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-2390 (((-749)) 142)) (-3335 ((|#1| $) 90)) (-1754 ((|#2| $) NIL (-12 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3187 (($ $) 204 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 180 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) 200 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 176 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 208 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 184 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-550)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 210 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 186 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 206 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 182 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 202 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 178 (|has| |#1| (-38 (-400 (-550)))))) (-1635 (($ $) NIL (-12 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2626 (($) 13 T CONST)) (-2636 (($) 17 T CONST)) (-4183 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-1561 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-1561 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-1561 (-12 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144) (-749)) NIL (-1561 (-12 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-623 (-1144))) NIL (-1561 (-12 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| |#2| (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))))) (-2363 (((-112) $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2345 (((-112) $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2316 (((-112) $ $) 63)) (-2354 (((-112) $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2335 (((-112) $ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 149 (|has| |#1| (-356))) (($ |#2| |#2|) 150 (|has| |#1| (-356)))) (-2403 (($ $) 213) (($ $ $) 68)) (-2391 (($ $ $) 66)) (** (($ $ (-894)) NIL) (($ $ (-749)) 73) (($ $ (-550)) 146 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 158 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-356))) (($ |#2| $) 147 (|has| |#1| (-356))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1190 |#1| |#2|) (-1189 |#1| |#2|) (-1020) (-1218 |#1|)) (T -1190)) +NIL +(-1189 |#1| |#2|) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1453 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 10)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-1447 (($ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-4291 (((-112) $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2370 (($ $ (-550)) NIL) (($ $ (-550) (-550)) NIL)) (-2575 (((-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) NIL)) (-4314 (((-1219 |#1| |#2| |#3|) $) NIL)) (-4099 (((-3 (-1219 |#1| |#2| |#3|) "failed") $) NIL)) (-3192 (((-1219 |#1| |#2| |#3|) $) NIL)) (-3123 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3103 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3712 (((-550) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2672 (($ (-1124 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-1219 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1144) "failed") $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1011 (-1144))) (|has| |#1| (-356)))) (((-3 (-400 (-550)) "failed") $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356)))) (((-3 (-550) "failed") $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356))))) (-2726 (((-1219 |#1| |#2| |#3|) $) NIL) (((-1144) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1011 (-1144))) (|has| |#1| (-356)))) (((-400 (-550)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356)))) (((-550) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356))))) (-4200 (($ $) NIL) (($ (-550) $) NIL)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-1219 |#1| |#2| |#3|)) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1340 (-667 (-1219 |#1| |#2| |#3|))) (|:| |vec| (-1227 (-1219 |#1| |#2| |#3|)))) (-667 $) (-1227 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-619 (-550))) (|has| |#1| (-356)))) (((-667 (-550)) (-667 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-619 (-550))) (|has| |#1| (-356))))) (-1386 (((-3 $ "failed") $) NIL)) (-4001 (((-400 (-925 |#1|)) $ (-550)) NIL (|has| |#1| (-542))) (((-400 (-925 |#1|)) $ (-550) (-550)) NIL (|has| |#1| (-542)))) (-1741 (($) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-1416 (((-112) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-3478 (((-112) $) NIL)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4312 (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-859 (-550))) (|has| |#1| (-356)))) (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-859 (-372))) (|has| |#1| (-356))))) (-2475 (((-550) $) NIL) (((-550) $ (-550)) NIL)) (-3102 (((-112) $) NIL)) (-1552 (($ $) NIL (|has| |#1| (-356)))) (-2705 (((-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2826 (((-3 $ "failed") $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1119)) (|has| |#1| (-356))))) (-3329 (((-112) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-1784 (($ $ (-894)) NIL)) (-3315 (($ (-1 |#1| (-550)) $) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-550)) 17) (($ $ (-1050) (-550)) NIL) (($ $ (-623 (-1050)) (-623 (-550))) NIL)) (-2707 (($ $ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4164 (($ $ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-2958 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3203 (($ (-550) (-1219 |#1| |#2| |#3|)) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-1489 (($ $) 25 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166))))) (($ $ (-1223 |#2|)) 26 (|has| |#1| (-38 (-400 (-550)))))) (-3862 (($) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1119)) (|has| |#1| (-356))) CONST)) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3948 (($ $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-1608 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2272 (($ $ (-550)) NIL)) (-1495 (((-3 $ "failed") $ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1812 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1144) (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-505 (-1144) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-1144)) (-623 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-505 (-1144) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-287 (-1219 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-287 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-623 (-1219 |#1| |#2| |#3|)) (-623 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ (-550)) NIL) (($ $ $) NIL (|has| (-550) (-1080))) (($ $ (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-279 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-2393 (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1223 |#2|)) 24) (($ $ (-749)) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 23 (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144) (-749)) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-623 (-1144))) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))))) (-2639 (($ $) NIL (|has| |#1| (-356)))) (-2715 (((-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-2970 (((-550) $) NIL)) (-3157 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-4028 (((-526) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-526))) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-995)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-995)) (|has| |#1| (-356)))) (((-865 (-372)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-865 (-372)))) (|has| |#1| (-356)))) (((-865 (-550)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-865 (-550)))) (|has| |#1| (-356))))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))))) (-3380 (($ $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1219 |#1| |#2| |#3|)) NIL) (($ (-1223 |#2|)) 22) (($ (-1144)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1011 (-1144))) (|has| |#1| (-356)))) (($ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542)))) (($ (-400 (-550))) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-1011 (-550))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-550))))))) (-2510 ((|#1| $ (-550)) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-2390 (((-749)) NIL)) (-3335 ((|#1| $) 11)) (-1754 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3187 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-882)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3167 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1635 (($ $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2626 (($) 19 T CONST)) (-2636 (($) 15 T CONST)) (-4183 (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144) (-749)) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-623 (-1144))) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144)))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-873 (-1144))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (|has| |#1| (-873 (-1144))))))) (-2363 (((-112) $ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2345 (((-112) $ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2335 (((-112) $ $) NIL (-1561 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356))) (($ (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 20)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1219 |#1| |#2| |#3|)) NIL (|has| |#1| (-356))) (($ (-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356))) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1191 |#1| |#2| |#3|) (-13 (-1189 |#1| (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) (-1020) (-1144) |#1|) (T -1191)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3)))) +(-13 (-1189 |#1| (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) +((-1433 (((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112)) 12)) (-1338 (((-411 |#1|) |#1|) 22)) (-3338 (((-411 |#1|) |#1|) 21))) +(((-1192 |#1|) (-10 -7 (-15 -3338 ((-411 |#1|) |#1|)) (-15 -1338 ((-411 |#1|) |#1|)) (-15 -1433 ((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112)))) (-1203 (-550))) (T -1192)) +((-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| *3) (|:| -4245 (-550))))))) (-5 *1 (-1192 *3)) (-4 *3 (-1203 (-550))))) (-1338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1192 *3)) (-4 *3 (-1203 (-550))))) (-3338 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1192 *3)) (-4 *3 (-1203 (-550)))))) +(-10 -7 (-15 -3338 ((-411 |#1|) |#1|)) (-15 -1338 ((-411 |#1|) |#1|)) (-15 -1433 ((-2 (|:| |contp| (-550)) (|:| -1877 (-623 (-2 (|:| |irr| |#1|) (|:| -4245 (-550)))))) |#1| (-112)))) +((-3972 (((-1124 |#2|) (-1 |#2| |#1|) (-1194 |#1|)) 23 (|has| |#1| (-823))) (((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|)) 17))) +(((-1193 |#1| |#2|) (-10 -7 (-15 -3972 ((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|))) (IF (|has| |#1| (-823)) (-15 -3972 ((-1124 |#2|) (-1 |#2| |#1|) (-1194 |#1|))) |%noBranch|)) (-1181) (-1181)) (T -1193)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1194 *5)) (-4 *5 (-823)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1124 *6)) (-5 *1 (-1193 *5 *6)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1194 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1194 *6)) (-5 *1 (-1193 *5 *6))))) +(-10 -7 (-15 -3972 ((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|))) (IF (|has| |#1| (-823)) (-15 -3972 ((-1124 |#2|) (-1 |#2| |#1|) (-1194 |#1|))) |%noBranch|)) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-3939 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3972 (((-1124 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-823)))) (-1374 ((|#1| $) 14)) (-4024 ((|#1| $) 10)) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-4036 (((-550) $) 18)) (-3429 ((|#1| $) 17)) (-4049 ((|#1| $) 11)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1414 (((-112) $) 16)) (-4214 (((-1124 |#1|) $) 38 (|has| |#1| (-823))) (((-1124 |#1|) (-623 $)) 37 (|has| |#1| (-823)))) (-4028 (($ |#1|) 25)) (-1518 (($ (-1062 |#1|)) 24) (((-836) $) 34 (|has| |#1| (-1068)))) (-1299 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2132 (($ $ (-550)) 13)) (-2316 (((-112) $ $) 27 (|has| |#1| (-1068))))) +(((-1194 |#1|) (-13 (-1061 |#1|) (-10 -8 (-15 -1299 ($ |#1|)) (-15 -3939 ($ |#1|)) (-15 -1518 ($ (-1062 |#1|))) (-15 -1414 ((-112) $)) (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1063 |#1| (-1124 |#1|))) |%noBranch|))) (-1181)) (T -1194)) +((-1299 (*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1181)))) (-3939 (*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1181)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1062 *3)) (-4 *3 (-1181)) (-5 *1 (-1194 *3)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1181))))) +(-13 (-1061 |#1|) (-10 -8 (-15 -1299 ($ |#1|)) (-15 -3939 ($ |#1|)) (-15 -1518 ($ (-1062 |#1|))) (-15 -1414 ((-112) $)) (IF (|has| |#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1063 |#1| (-1124 |#1|))) |%noBranch|))) +((-3972 (((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|)) 15))) +(((-1195 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|)))) (-1144) (-1020) (-1144) (-1020)) (T -1195)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1200 *5 *6)) (-14 *5 (-1144)) (-4 *6 (-1020)) (-4 *8 (-1020)) (-5 *2 (-1200 *7 *8)) (-5 *1 (-1195 *5 *6 *7 *8)) (-14 *7 (-1144))))) +(-10 -7 (-15 -3972 ((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|)))) +((-2346 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2156 ((|#1| |#3|) 13)) (-2249 ((|#3| |#3|) 19))) +(((-1196 |#1| |#2| |#3|) (-10 -7 (-15 -2156 (|#1| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2346 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-542) (-965 |#1|) (-1203 |#2|)) (T -1196)) +((-2346 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1196 *4 *5 *3)) (-4 *3 (-1203 *5)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *4 (-965 *3)) (-5 *1 (-1196 *3 *4 *2)) (-4 *2 (-1203 *4)))) (-2156 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-542)) (-5 *1 (-1196 *2 *4 *3)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -2156 (|#1| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2346 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2542 (((-3 |#2| "failed") |#2| (-749) |#1|) 29)) (-2450 (((-3 |#2| "failed") |#2| (-749)) 30)) (-1577 (((-3 (-2 (|:| -2671 |#2|) (|:| -2682 |#2|)) "failed") |#2|) 43)) (-1697 (((-623 |#2|) |#2|) 45)) (-1446 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1197 |#1| |#2|) (-10 -7 (-15 -2450 ((-3 |#2| "failed") |#2| (-749))) (-15 -2542 ((-3 |#2| "failed") |#2| (-749) |#1|)) (-15 -1446 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1577 ((-3 (-2 (|:| -2671 |#2|) (|:| -2682 |#2|)) "failed") |#2|)) (-15 -1697 ((-623 |#2|) |#2|))) (-13 (-542) (-145)) (-1203 |#1|)) (T -1197)) +((-1697 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-623 *3)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-1203 *4)))) (-1577 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-2 (|:| -2671 *3) (|:| -2682 *3))) (-5 *1 (-1197 *4 *3)) (-4 *3 (-1203 *4)))) (-1446 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-1203 *3)))) (-2542 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-1203 *4)))) (-2450 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-1203 *4))))) +(-10 -7 (-15 -2450 ((-3 |#2| "failed") |#2| (-749))) (-15 -2542 ((-3 |#2| "failed") |#2| (-749) |#1|)) (-15 -1446 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1577 ((-3 (-2 (|:| -2671 |#2|) (|:| -2682 |#2|)) "failed") |#2|)) (-15 -1697 ((-623 |#2|) |#2|))) +((-1826 (((-3 (-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) "failed") |#2| |#2|) 32))) +(((-1198 |#1| |#2|) (-10 -7 (-15 -1826 ((-3 (-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) "failed") |#2| |#2|))) (-542) (-1203 |#1|)) (T -1198)) +((-1826 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-1198 *4 *3)) (-4 *3 (-1203 *4))))) +(-10 -7 (-15 -1826 ((-3 (-2 (|:| -3526 |#2|) (|:| -2786 |#2|)) "failed") |#2| |#2|))) +((-1943 ((|#2| |#2| |#2|) 19)) (-2056 ((|#2| |#2| |#2|) 30)) (-3898 ((|#2| |#2| |#2| (-749) (-749)) 36))) +(((-1199 |#1| |#2|) (-10 -7 (-15 -1943 (|#2| |#2| |#2|)) (-15 -2056 (|#2| |#2| |#2|)) (-15 -3898 (|#2| |#2| |#2| (-749) (-749)))) (-1020) (-1203 |#1|)) (T -1199)) +((-3898 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1020)) (-5 *1 (-1199 *4 *2)) (-4 *2 (-1203 *4)))) (-2056 (*1 *2 *2 *2) (-12 (-4 *3 (-1020)) (-5 *1 (-1199 *3 *2)) (-4 *2 (-1203 *3)))) (-1943 (*1 *2 *2 *2) (-12 (-4 *3 (-1020)) (-5 *1 (-1199 *3 *2)) (-4 *2 (-1203 *3))))) +(-10 -7 (-15 -1943 (|#2| |#2| |#2|)) (-15 -2056 (|#2| |#2| |#2|)) (-15 -3898 (|#2| |#2| |#2| (-749) (-749)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-2170 (((-1227 |#2|) $ (-749)) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-3058 (($ (-1140 |#2|)) NIL)) (-3306 (((-1140 $) $ (-1050)) NIL) (((-1140 |#2|) $) NIL)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-1447 (($ $) NIL (|has| |#2| (-542)))) (-4291 (((-112) $) NIL (|has| |#2| (-542)))) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-1050))) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3238 (($ $ $) NIL (|has| |#2| (-542)))) (-3688 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-1505 (($ $) NIL (|has| |#2| (-444)))) (-3564 (((-411 $) $) NIL (|has| |#2| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3631 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3810 (($ $ (-749)) NIL)) (-3690 (($ $ (-749)) NIL)) (-4005 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-444)))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-550)) "failed") $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) NIL (|has| |#2| (-1011 (-550)))) (((-3 (-1050) "failed") $) NIL)) (-2726 ((|#2| $) NIL) (((-400 (-550)) $) NIL (|has| |#2| (-1011 (-400 (-550))))) (((-550) $) NIL (|has| |#2| (-1011 (-550)))) (((-1050) $) NIL)) (-3340 (($ $ $ (-1050)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-3349 (($ $ $) NIL (|has| |#2| (-356)))) (-3295 (($ $) NIL)) (-3780 (((-667 (-550)) (-667 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) NIL (|has| |#2| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#2|)) (|:| |vec| (-1227 |#2|))) (-667 $) (-1227 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-1519 (($ $ $) NIL (|has| |#2| (-356)))) (-3563 (($ $ $) NIL)) (-4232 (($ $ $) NIL (|has| |#2| (-542)))) (-4113 (((-2 (|:| -2855 |#2|) (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#2| (-542)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#2| (-356)))) (-2674 (($ $) NIL (|has| |#2| (-444))) (($ $ (-1050)) NIL (|has| |#2| (-444)))) (-3287 (((-623 $) $) NIL)) (-3933 (((-112) $) NIL (|has| |#2| (-882)))) (-2613 (($ $ |#2| (-749) $) NIL)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) NIL (-12 (|has| (-1050) (-859 (-372))) (|has| |#2| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) NIL (-12 (|has| (-1050) (-859 (-550))) (|has| |#2| (-859 (-550)))))) (-2475 (((-749) $ $) NIL (|has| |#2| (-542)))) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-2826 (((-3 $ "failed") $) NIL (|has| |#2| (-1119)))) (-3129 (($ (-1140 |#2|) (-1050)) NIL) (($ (-1140 $) (-1050)) NIL)) (-1784 (($ $ (-749)) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#2| (-356)))) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-3118 (($ |#2| (-749)) 17) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-1050)) NIL) (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL)) (-1667 (((-749) $) NIL) (((-749) $ (-1050)) NIL) (((-623 (-749)) $ (-623 (-1050))) NIL)) (-2707 (($ $ $) NIL (|has| |#2| (-825)))) (-4164 (($ $ $) NIL (|has| |#2| (-825)))) (-2688 (($ (-1 (-749) (-749)) $) NIL)) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-3165 (((-1140 |#2|) $) NIL)) (-2558 (((-3 (-1050) "failed") $) NIL)) (-3267 (($ $) NIL)) (-3277 ((|#2| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1825 (((-1126) $) NIL)) (-2731 (((-2 (|:| -3526 $) (|:| -2786 $)) $ (-749)) NIL)) (-1598 (((-3 (-623 $) "failed") $) NIL)) (-1444 (((-3 (-623 $) "failed") $) NIL)) (-1748 (((-3 (-2 (|:| |var| (-1050)) (|:| -3521 (-749))) "failed") $) NIL)) (-1489 (($ $) NIL (|has| |#2| (-38 (-400 (-550)))))) (-3862 (($) NIL (|has| |#2| (-1119)) CONST)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 ((|#2| $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#2| (-444)))) (-3139 (($ (-623 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3138 (($ $ (-749) |#2| $) NIL)) (-3430 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) NIL (|has| |#2| (-882)))) (-3338 (((-411 $) $) NIL (|has| |#2| (-882)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#2| (-356)))) (-1495 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#2| (-356)))) (-3866 (($ $ (-623 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1050) |#2|) NIL) (($ $ (-623 (-1050)) (-623 |#2|)) NIL) (($ $ (-1050) $) NIL) (($ $ (-623 (-1050)) (-623 $)) NIL)) (-3542 (((-749) $) NIL (|has| |#2| (-356)))) (-2680 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#2| (-542))) ((|#2| (-400 $) |#2|) NIL (|has| |#2| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#2| (-542)))) (-2953 (((-3 $ "failed") $ (-749)) NIL)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#2| (-356)))) (-3453 (($ $ (-1050)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-2393 (($ $ (-1050)) NIL) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2970 (((-749) $) NIL) (((-749) $ (-1050)) NIL) (((-623 (-749)) $ (-623 (-1050))) NIL)) (-4028 (((-865 (-372)) $) NIL (-12 (|has| (-1050) (-596 (-865 (-372)))) (|has| |#2| (-596 (-865 (-372)))))) (((-865 (-550)) $) NIL (-12 (|has| (-1050) (-596 (-865 (-550)))) (|has| |#2| (-596 (-865 (-550)))))) (((-526) $) NIL (-12 (|has| (-1050) (-596 (-526))) (|has| |#2| (-596 (-526)))))) (-2503 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-1050)) NIL (|has| |#2| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-882))))) (-1292 (((-3 $ "failed") $ $) NIL (|has| |#2| (-542))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#2| (-542)))) (-1518 (((-836) $) 13) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-1050)) NIL) (($ (-1223 |#1|)) 19) (($ (-400 (-550))) NIL (-1561 (|has| |#2| (-38 (-400 (-550)))) (|has| |#2| (-1011 (-400 (-550)))))) (($ $) NIL (|has| |#2| (-542)))) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ (-749)) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-1561 (-12 (|has| $ (-143)) (|has| |#2| (-882))) (|has| |#2| (-143))))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-1345 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2626 (($) NIL T CONST)) (-2636 (($) 14 T CONST)) (-4183 (($ $ (-1050)) NIL) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1144)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1144) (-749)) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) NIL (|has| |#2| (-873 (-1144)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2363 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2316 (((-112) $ $) NIL)) (-2354 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2414 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-400 (-550))) NIL (|has| |#2| (-38 (-400 (-550))))) (($ (-400 (-550)) $) NIL (|has| |#2| (-38 (-400 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1200 |#1| |#2|) (-13 (-1203 |#2|) (-10 -8 (-15 -1518 ($ (-1223 |#1|))) (-15 -3138 ($ $ (-749) |#2| $)))) (-1144) (-1020)) (T -1200)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *3)) (-14 *3 (-1144)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-1020)))) (-3138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1200 *4 *3)) (-14 *4 (-1144)) (-4 *3 (-1020))))) +(-13 (-1203 |#2|) (-10 -8 (-15 -1518 ($ (-1223 |#1|))) (-15 -3138 ($ $ (-749) |#2| $)))) +((-3972 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#4| (-1 |#3| |#1|) |#2|))) (-1020) (-1203 |#1|) (-1020) (-1203 |#3|)) (T -1201)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1203 *6)) (-5 *1 (-1201 *5 *4 *6 *2)) (-4 *4 (-1203 *5))))) +(-10 -7 (-15 -3972 (|#4| (-1 |#3| |#1|) |#2|))) +((-2170 (((-1227 |#2|) $ (-749)) 114)) (-3141 (((-623 (-1050)) $) 15)) (-3058 (($ (-1140 |#2|)) 67)) (-1520 (((-749) $) NIL) (((-749) $ (-623 (-1050))) 18)) (-3688 (((-411 (-1140 $)) (-1140 $)) 185)) (-1505 (($ $) 175)) (-3564 (((-411 $) $) 173)) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 82)) (-3810 (($ $ (-749)) 71)) (-3690 (($ $ (-749)) 73)) (-4005 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3880 (((-3 |#2| "failed") $) 117) (((-3 (-400 (-550)) "failed") $) NIL) (((-3 (-550) "failed") $) NIL) (((-3 (-1050) "failed") $) NIL)) (-2726 ((|#2| $) 115) (((-400 (-550)) $) NIL) (((-550) $) NIL) (((-1050) $) NIL)) (-4232 (($ $ $) 151)) (-4113 (((-2 (|:| -2855 |#2|) (|:| -3526 $) (|:| -2786 $)) $ $) 153)) (-2475 (((-749) $ $) 170)) (-2826 (((-3 $ "failed") $) 123)) (-3118 (($ |#2| (-749)) NIL) (($ $ (-1050) (-749)) 47) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-1667 (((-749) $) NIL) (((-749) $ (-1050)) 42) (((-623 (-749)) $ (-623 (-1050))) 43)) (-3165 (((-1140 |#2|) $) 59)) (-2558 (((-3 (-1050) "failed") $) 40)) (-2731 (((-2 (|:| -3526 $) (|:| -2786 $)) $ (-749)) 70)) (-1489 (($ $) 197)) (-3862 (($) 119)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 182)) (-3430 (((-411 (-1140 $)) (-1140 $)) 88)) (-3562 (((-411 (-1140 $)) (-1140 $)) 86)) (-3338 (((-411 $) $) 107)) (-3866 (($ $ (-623 (-287 $))) 39) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-623 $) (-623 $)) NIL) (($ $ (-1050) |#2|) 31) (($ $ (-623 (-1050)) (-623 |#2|)) 28) (($ $ (-1050) $) 25) (($ $ (-623 (-1050)) (-623 $)) 23)) (-3542 (((-749) $) 188)) (-2680 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) 147) ((|#2| (-400 $) |#2|) 187) (((-400 $) $ (-400 $)) 169)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 191)) (-2393 (($ $ (-1050)) 140) (($ $ (-623 (-1050))) NIL) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL) (($ $ (-749)) NIL) (($ $) 138) (($ $ (-1144)) NIL) (($ $ (-623 (-1144))) NIL) (($ $ (-1144) (-749)) NIL) (($ $ (-623 (-1144)) (-623 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2970 (((-749) $) NIL) (((-749) $ (-1050)) 16) (((-623 (-749)) $ (-623 (-1050))) 20)) (-2503 ((|#2| $) NIL) (($ $ (-1050)) 125)) (-1292 (((-3 $ "failed") $ $) 161) (((-3 (-400 $) "failed") (-400 $) $) 157)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-1050)) 51) (($ (-400 (-550))) NIL) (($ $) NIL))) +(((-1202 |#1| |#2|) (-10 -8 (-15 -1518 (|#1| |#1|)) (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|))) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3862 (|#1|)) (-15 -2826 ((-3 |#1| "failed") |#1|)) (-15 -2680 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -3542 ((-749) |#1|)) (-15 -1866 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -2680 (|#2| (-400 |#1|) |#2|)) (-15 -4005 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4113 ((-2 (|:| -2855 |#2|) (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -1292 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -1292 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2475 ((-749) |#1| |#1|)) (-15 -2680 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3690 (|#1| |#1| (-749))) (-15 -3810 (|#1| |#1| (-749))) (-15 -2731 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| (-749))) (-15 -3058 (|#1| (-1140 |#2|))) (-15 -3165 ((-1140 |#2|) |#1|)) (-15 -2170 ((-1227 |#2|) |#1| (-749))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2680 (|#1| |#1| |#1|)) (-15 -2680 (|#2| |#1| |#2|)) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3688 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3562 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3430 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3297 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|))) (-15 -2503 (|#1| |#1| (-1050))) (-15 -3141 ((-623 (-1050)) |#1|)) (-15 -1520 ((-749) |#1| (-623 (-1050)))) (-15 -1520 ((-749) |#1|)) (-15 -3118 (|#1| |#1| (-623 (-1050)) (-623 (-749)))) (-15 -3118 (|#1| |#1| (-1050) (-749))) (-15 -1667 ((-623 (-749)) |#1| (-623 (-1050)))) (-15 -1667 ((-749) |#1| (-1050))) (-15 -2558 ((-3 (-1050) "failed") |#1|)) (-15 -2970 ((-623 (-749)) |#1| (-623 (-1050)))) (-15 -2970 ((-749) |#1| (-1050))) (-15 -2726 ((-1050) |#1|)) (-15 -3880 ((-3 (-1050) "failed") |#1|)) (-15 -1518 (|#1| (-1050))) (-15 -3866 (|#1| |#1| (-623 (-1050)) (-623 |#1|))) (-15 -3866 (|#1| |#1| (-1050) |#1|)) (-15 -3866 (|#1| |#1| (-623 (-1050)) (-623 |#2|))) (-15 -3866 (|#1| |#1| (-1050) |#2|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -2970 ((-749) |#1|)) (-15 -3118 (|#1| |#2| (-749))) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -1667 ((-749) |#1|)) (-15 -2503 (|#2| |#1|)) (-15 -2393 (|#1| |#1| (-623 (-1050)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1050) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1050)))) (-15 -2393 (|#1| |#1| (-1050))) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) (-1203 |#2|) (-1020)) (T -1202)) +NIL +(-10 -8 (-15 -1518 (|#1| |#1|)) (-15 -2619 ((-1140 |#1|) (-1140 |#1|) (-1140 |#1|))) (-15 -3564 ((-411 |#1|) |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -3862 (|#1|)) (-15 -2826 ((-3 |#1| "failed") |#1|)) (-15 -2680 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -3542 ((-749) |#1|)) (-15 -1866 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -2680 (|#2| (-400 |#1|) |#2|)) (-15 -4005 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4113 ((-2 (|:| -2855 |#2|) (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -1292 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -1292 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2475 ((-749) |#1| |#1|)) (-15 -2680 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3690 (|#1| |#1| (-749))) (-15 -3810 (|#1| |#1| (-749))) (-15 -2731 ((-2 (|:| -3526 |#1|) (|:| -2786 |#1|)) |#1| (-749))) (-15 -3058 (|#1| (-1140 |#2|))) (-15 -3165 ((-1140 |#2|) |#1|)) (-15 -2170 ((-1227 |#2|) |#1| (-749))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2393 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1144) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1144)))) (-15 -2393 (|#1| |#1| (-1144))) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| (-749))) (-15 -2680 (|#1| |#1| |#1|)) (-15 -2680 (|#2| |#1| |#2|)) (-15 -3338 ((-411 |#1|) |#1|)) (-15 -3688 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3562 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3430 ((-411 (-1140 |#1|)) (-1140 |#1|))) (-15 -3297 ((-3 (-623 (-1140 |#1|)) "failed") (-623 (-1140 |#1|)) (-1140 |#1|))) (-15 -2503 (|#1| |#1| (-1050))) (-15 -3141 ((-623 (-1050)) |#1|)) (-15 -1520 ((-749) |#1| (-623 (-1050)))) (-15 -1520 ((-749) |#1|)) (-15 -3118 (|#1| |#1| (-623 (-1050)) (-623 (-749)))) (-15 -3118 (|#1| |#1| (-1050) (-749))) (-15 -1667 ((-623 (-749)) |#1| (-623 (-1050)))) (-15 -1667 ((-749) |#1| (-1050))) (-15 -2558 ((-3 (-1050) "failed") |#1|)) (-15 -2970 ((-623 (-749)) |#1| (-623 (-1050)))) (-15 -2970 ((-749) |#1| (-1050))) (-15 -2726 ((-1050) |#1|)) (-15 -3880 ((-3 (-1050) "failed") |#1|)) (-15 -1518 (|#1| (-1050))) (-15 -3866 (|#1| |#1| (-623 (-1050)) (-623 |#1|))) (-15 -3866 (|#1| |#1| (-1050) |#1|)) (-15 -3866 (|#1| |#1| (-623 (-1050)) (-623 |#2|))) (-15 -3866 (|#1| |#1| (-1050) |#2|)) (-15 -3866 (|#1| |#1| (-623 |#1|) (-623 |#1|))) (-15 -3866 (|#1| |#1| |#1| |#1|)) (-15 -3866 (|#1| |#1| (-287 |#1|))) (-15 -3866 (|#1| |#1| (-623 (-287 |#1|)))) (-15 -2970 ((-749) |#1|)) (-15 -3118 (|#1| |#2| (-749))) (-15 -2726 ((-550) |#1|)) (-15 -3880 ((-3 (-550) "failed") |#1|)) (-15 -2726 ((-400 (-550)) |#1|)) (-15 -3880 ((-3 (-400 (-550)) "failed") |#1|)) (-15 -1518 (|#1| |#2|)) (-15 -3880 ((-3 |#2| "failed") |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -1667 ((-749) |#1|)) (-15 -2503 (|#2| |#1|)) (-15 -2393 (|#1| |#1| (-623 (-1050)) (-623 (-749)))) (-15 -2393 (|#1| |#1| (-1050) (-749))) (-15 -2393 (|#1| |#1| (-623 (-1050)))) (-15 -2393 (|#1| |#1| (-1050))) (-15 -1518 (|#1| (-550))) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-2170 (((-1227 |#1|) $ (-749)) 236)) (-3141 (((-623 (-1050)) $) 108)) (-3058 (($ (-1140 |#1|)) 234)) (-3306 (((-1140 $) $ (-1050)) 123) (((-1140 |#1|) $) 122)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-1447 (($ $) 86 (|has| |#1| (-542)))) (-4291 (((-112) $) 88 (|has| |#1| (-542)))) (-1520 (((-749) $) 110) (((-749) $ (-623 (-1050))) 109)) (-3219 (((-3 $ "failed") $ $) 19)) (-3238 (($ $ $) 221 (|has| |#1| (-542)))) (-3688 (((-411 (-1140 $)) (-1140 $)) 98 (|has| |#1| (-882)))) (-1505 (($ $) 96 (|has| |#1| (-444)))) (-3564 (((-411 $) $) 95 (|has| |#1| (-444)))) (-3297 (((-3 (-623 (-1140 $)) "failed") (-623 (-1140 $)) (-1140 $)) 101 (|has| |#1| (-882)))) (-3631 (((-112) $ $) 206 (|has| |#1| (-356)))) (-3810 (($ $ (-749)) 229)) (-3690 (($ $ (-749)) 228)) (-4005 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-444)))) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-550)) "failed") $) 160 (|has| |#1| (-1011 (-400 (-550))))) (((-3 (-550) "failed") $) 158 (|has| |#1| (-1011 (-550)))) (((-3 (-1050) "failed") $) 134)) (-2726 ((|#1| $) 163) (((-400 (-550)) $) 159 (|has| |#1| (-1011 (-400 (-550))))) (((-550) $) 157 (|has| |#1| (-1011 (-550)))) (((-1050) $) 133)) (-3340 (($ $ $ (-1050)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-3349 (($ $ $) 210 (|has| |#1| (-356)))) (-3295 (($ $) 152)) (-3780 (((-667 (-550)) (-667 $)) 132 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 (-550))) (|:| |vec| (-1227 (-550)))) (-667 $) (-1227 $)) 131 (|has| |#1| (-619 (-550)))) (((-2 (|:| -1340 (-667 |#1|)) (|:| |vec| (-1227 |#1|))) (-667 $) (-1227 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 209 (|has| |#1| (-356)))) (-3563 (($ $ $) 227)) (-4232 (($ $ $) 218 (|has| |#1| (-542)))) (-4113 (((-2 (|:| -2855 |#1|) (|:| -3526 $) (|:| -2786 $)) $ $) 217 (|has| |#1| (-542)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 204 (|has| |#1| (-356)))) (-2674 (($ $) 174 (|has| |#1| (-444))) (($ $ (-1050)) 103 (|has| |#1| (-444)))) (-3287 (((-623 $) $) 107)) (-3933 (((-112) $) 94 (|has| |#1| (-882)))) (-2613 (($ $ |#1| (-749) $) 170)) (-4312 (((-862 (-372) $) $ (-865 (-372)) (-862 (-372) $)) 82 (-12 (|has| (-1050) (-859 (-372))) (|has| |#1| (-859 (-372))))) (((-862 (-550) $) $ (-865 (-550)) (-862 (-550) $)) 81 (-12 (|has| (-1050) (-859 (-550))) (|has| |#1| (-859 (-550)))))) (-2475 (((-749) $ $) 222 (|has| |#1| (-542)))) (-3102 (((-112) $) 30)) (-2603 (((-749) $) 167)) (-2826 (((-3 $ "failed") $) 202 (|has| |#1| (-1119)))) (-3129 (($ (-1140 |#1|) (-1050)) 115) (($ (-1140 $) (-1050)) 114)) (-1784 (($ $ (-749)) 233)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 213 (|has| |#1| (-356)))) (-1822 (((-623 $) $) 124)) (-3439 (((-112) $) 150)) (-3118 (($ |#1| (-749)) 151) (($ $ (-1050) (-749)) 117) (($ $ (-623 (-1050)) (-623 (-749))) 116)) (-2843 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $ (-1050)) 118) (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 231)) (-1667 (((-749) $) 168) (((-749) $ (-1050)) 120) (((-623 (-749)) $ (-623 (-1050))) 119)) (-2707 (($ $ $) 77 (|has| |#1| (-825)))) (-4164 (($ $ $) 76 (|has| |#1| (-825)))) (-2688 (($ (-1 (-749) (-749)) $) 169)) (-3972 (($ (-1 |#1| |#1|) $) 149)) (-3165 (((-1140 |#1|) $) 235)) (-2558 (((-3 (-1050) "failed") $) 121)) (-3267 (($ $) 147)) (-3277 ((|#1| $) 146)) (-3106 (($ (-623 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-1825 (((-1126) $) 9)) (-2731 (((-2 (|:| -3526 $) (|:| -2786 $)) $ (-749)) 230)) (-1598 (((-3 (-623 $) "failed") $) 112)) (-1444 (((-3 (-623 $) "failed") $) 113)) (-1748 (((-3 (-2 (|:| |var| (-1050)) (|:| -3521 (-749))) "failed") $) 111)) (-1489 (($ $) 214 (|has| |#1| (-38 (-400 (-550)))))) (-3862 (($) 201 (|has| |#1| (-1119)) CONST)) (-3337 (((-1088) $) 10)) (-3248 (((-112) $) 164)) (-3256 ((|#1| $) 165)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 93 (|has| |#1| (-444)))) (-3139 (($ (-623 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3430 (((-411 (-1140 $)) (-1140 $)) 100 (|has| |#1| (-882)))) (-3562 (((-411 (-1140 $)) (-1140 $)) 99 (|has| |#1| (-882)))) (-3338 (((-411 $) $) 97 (|has| |#1| (-882)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 211 (|has| |#1| (-356)))) (-1495 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 205 (|has| |#1| (-356)))) (-3866 (($ $ (-623 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-623 $) (-623 $)) 140) (($ $ (-1050) |#1|) 139) (($ $ (-623 (-1050)) (-623 |#1|)) 138) (($ $ (-1050) $) 137) (($ $ (-623 (-1050)) (-623 $)) 136)) (-3542 (((-749) $) 207 (|has| |#1| (-356)))) (-2680 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-400 $) (-400 $) (-400 $)) 223 (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) 215 (|has| |#1| (-356))) (((-400 $) $ (-400 $)) 203 (|has| |#1| (-542)))) (-2953 (((-3 $ "failed") $ (-749)) 232)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 208 (|has| |#1| (-356)))) (-3453 (($ $ (-1050)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-2393 (($ $ (-1050)) 40) (($ $ (-623 (-1050))) 39) (($ $ (-1050) (-749)) 38) (($ $ (-623 (-1050)) (-623 (-749))) 37) (($ $ (-749)) 251) (($ $) 249) (($ $ (-1144)) 248 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 247 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 246 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) 245 (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-2970 (((-749) $) 148) (((-749) $ (-1050)) 128) (((-623 (-749)) $ (-623 (-1050))) 127)) (-4028 (((-865 (-372)) $) 80 (-12 (|has| (-1050) (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372)))))) (((-865 (-550)) $) 79 (-12 (|has| (-1050) (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550)))))) (((-526) $) 78 (-12 (|has| (-1050) (-596 (-526))) (|has| |#1| (-596 (-526)))))) (-2503 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ (-1050)) 104 (|has| |#1| (-444)))) (-3172 (((-3 (-1227 $) "failed") (-667 $)) 102 (-1262 (|has| $ (-143)) (|has| |#1| (-882))))) (-1292 (((-3 $ "failed") $ $) 220 (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) 219 (|has| |#1| (-542)))) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 161) (($ (-1050)) 135) (($ (-400 (-550))) 70 (-1561 (|has| |#1| (-1011 (-400 (-550)))) (|has| |#1| (-38 (-400 (-550)))))) (($ $) 83 (|has| |#1| (-542)))) (-3511 (((-623 |#1|) $) 166)) (-2510 ((|#1| $ (-749)) 153) (($ $ (-1050) (-749)) 126) (($ $ (-623 (-1050)) (-623 (-749))) 125)) (-4242 (((-3 $ "failed") $) 71 (-1561 (-1262 (|has| $ (-143)) (|has| |#1| (-882))) (|has| |#1| (-143))))) (-2390 (((-749)) 28)) (-2540 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-1345 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-1050)) 36) (($ $ (-623 (-1050))) 35) (($ $ (-1050) (-749)) 34) (($ $ (-623 (-1050)) (-623 (-749))) 33) (($ $ (-749)) 252) (($ $) 250) (($ $ (-1144)) 244 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144))) 243 (|has| |#1| (-873 (-1144)))) (($ $ (-1144) (-749)) 242 (|has| |#1| (-873 (-1144)))) (($ $ (-623 (-1144)) (-623 (-749))) 241 (|has| |#1| (-873 (-1144)))) (($ $ (-1 |#1| |#1|) (-749)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2363 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 73 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 6)) (-2354 (((-112) $ $) 75 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 72 (|has| |#1| (-825)))) (-2414 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 156 (|has| |#1| (-38 (-400 (-550))))) (($ (-400 (-550)) $) 155 (|has| |#1| (-38 (-400 (-550))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1203 |#1|) (-138) (-1020)) (T -1203)) +((-2170 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1203 *4)) (-4 *4 (-1020)) (-5 *2 (-1227 *4)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-1203 *3)) (-4 *3 (-1020)) (-5 *2 (-1140 *3)))) (-3058 (*1 *1 *2) (-12 (-5 *2 (-1140 *3)) (-4 *3 (-1020)) (-4 *1 (-1203 *3)))) (-1784 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)))) (-2953 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-749)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)))) (-2843 (*1 *2 *1 *1) (-12 (-4 *3 (-1020)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-1203 *3)))) (-2731 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1020)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-1203 *4)))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)))) (-3563 (*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)))) (-2393 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-170)))) (-3340 (*1 *2 *1 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-170)))) (-2680 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)) (-4 *3 (-542)))) (-2475 (*1 *2 *1 *1) (-12 (-4 *1 (-1203 *3)) (-4 *3 (-1020)) (-4 *3 (-542)) (-5 *2 (-749)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-542)))) (-1292 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-542)))) (-1292 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)) (-4 *3 (-542)))) (-4232 (*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-542)))) (-4113 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| -2855 *3) (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-1203 *3)))) (-4005 (*1 *2 *1 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1020)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1203 *3)))) (-2680 (*1 *2 *3 *2) (-12 (-5 *3 (-400 *1)) (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-38 (-400 (-550))))))) +(-13 (-922 |t#1| (-749) (-1050)) (-279 |t#1| |t#1|) (-279 $ $) (-227) (-225 |t#1|) (-10 -8 (-15 -2170 ((-1227 |t#1|) $ (-749))) (-15 -3165 ((-1140 |t#1|) $)) (-15 -3058 ($ (-1140 |t#1|))) (-15 -1784 ($ $ (-749))) (-15 -2953 ((-3 $ "failed") $ (-749))) (-15 -2843 ((-2 (|:| -3526 $) (|:| -2786 $)) $ $)) (-15 -2731 ((-2 (|:| -3526 $) (|:| -2786 $)) $ (-749))) (-15 -3810 ($ $ (-749))) (-15 -3690 ($ $ (-749))) (-15 -3563 ($ $ $)) (-15 -2393 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3453 (|t#1| $)) (-15 -3340 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-279 (-400 $) (-400 $))) (-15 -2680 ((-400 $) (-400 $) (-400 $))) (-15 -2475 ((-749) $ $)) (-15 -3238 ($ $ $)) (-15 -1292 ((-3 $ "failed") $ $)) (-15 -1292 ((-3 (-400 $) "failed") (-400 $) $)) (-15 -4232 ($ $ $)) (-15 -4113 ((-2 (|:| -2855 |t#1|) (|:| -3526 $) (|:| -2786 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-15 -4005 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-300)) (-6 -4338) (-15 -2680 (|t#1| (-400 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-550)))) (-15 -1489 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-749)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-596 (-526)) -12 (|has| (-1050) (-596 (-526))) (|has| |#1| (-596 (-526)))) ((-596 (-865 (-372))) -12 (|has| (-1050) (-596 (-865 (-372)))) (|has| |#1| (-596 (-865 (-372))))) ((-596 (-865 (-550))) -12 (|has| (-1050) (-596 (-865 (-550)))) (|has| |#1| (-596 (-865 (-550))))) ((-225 |#1|) . T) ((-227) . T) ((-279 (-400 $) (-400 $)) |has| |#1| (-542)) ((-279 |#1| |#1|) . T) ((-279 $ $) . T) ((-283) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 $) . T) ((-319 |#1| #0#) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1561 (|has| |#1| (-882)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-505 #2=(-1050) |#1|) . T) ((-505 #2# $) . T) ((-505 $ $) . T) ((-542) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-626 #1#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-550)) |has| |#1| (-619 (-550))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-873 #2#) . T) ((-873 (-1144)) |has| |#1| (-873 (-1144))) ((-859 (-372)) -12 (|has| (-1050) (-859 (-372))) (|has| |#1| (-859 (-372)))) ((-859 (-550)) -12 (|has| (-1050) (-859 (-550))) (|has| |#1| (-859 (-550)))) ((-922 |#1| #0# #2#) . T) ((-882) |has| |#1| (-882)) ((-893) |has| |#1| (-356)) ((-1011 (-400 (-550))) |has| |#1| (-1011 (-400 (-550)))) ((-1011 (-550)) |has| |#1| (-1011 (-550))) ((-1011 #2#) . T) ((-1011 |#1|) . T) ((-1026 #1#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-882)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1119) |has| |#1| (-1119)) ((-1185) |has| |#1| (-882))) +((-3141 (((-623 (-1050)) $) 28)) (-3295 (($ $) 25)) (-3118 (($ |#2| |#3|) NIL) (($ $ (-1050) |#3|) 22) (($ $ (-623 (-1050)) (-623 |#3|)) 21)) (-3267 (($ $) 14)) (-3277 ((|#2| $) 12)) (-2970 ((|#3| $) 10))) +(((-1204 |#1| |#2| |#3|) (-10 -8 (-15 -3141 ((-623 (-1050)) |#1|)) (-15 -3118 (|#1| |#1| (-623 (-1050)) (-623 |#3|))) (-15 -3118 (|#1| |#1| (-1050) |#3|)) (-15 -3295 (|#1| |#1|)) (-15 -3118 (|#1| |#2| |#3|)) (-15 -2970 (|#3| |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -3277 (|#2| |#1|))) (-1205 |#2| |#3|) (-1020) (-770)) (T -1204)) +NIL +(-10 -8 (-15 -3141 ((-623 (-1050)) |#1|)) (-15 -3118 (|#1| |#1| (-623 (-1050)) (-623 |#3|))) (-15 -3118 (|#1| |#1| (-1050) |#3|)) (-15 -3295 (|#1| |#1|)) (-15 -3118 (|#1| |#2| |#3|)) (-15 -2970 (|#3| |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -3277 (|#2| |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 (-1050)) $) 72)) (-1861 (((-1144) $) 101)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-2370 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-2575 (((-1124 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-3295 (($ $) 58)) (-1386 (((-3 $ "failed") $) 32)) (-3478 (((-112) $) 71)) (-2475 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-3102 (((-112) $) 30)) (-1784 (($ $ (-894)) 99)) (-3439 (((-112) $) 60)) (-3118 (($ |#1| |#2|) 59) (($ $ (-1050) |#2|) 74) (($ $ (-623 (-1050)) (-623 |#2|)) 73)) (-3972 (($ (-1 |#1| |#1|) $) 61)) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2272 (($ $ |#2|) 93)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3866 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2680 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1080)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) 87 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1144) (-749)) 86 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-623 (-1144))) 85 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1144)) 84 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2970 ((|#2| $) 62)) (-3380 (($ $) 70)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2510 ((|#1| $ |#2|) 57)) (-4242 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-3335 ((|#1| $) 100)) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2001 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) 91 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1144) (-749)) 90 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-623 (-1144))) 89 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1144)) 88 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-1205 |#1| |#2|) (-138) (-1020) (-770)) (T -1205)) +((-2575 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) (-5 *2 (-1124 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2680 (*1 *2 *1 *3) (-12 (-4 *1 (-1205 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) (-5 *2 (-1144)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-1205 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) (-1784 (*1 *1 *1 *2) (-12 (-5 *2 (-894)) (-4 *1 (-1205 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) (-2475 (*1 *2 *1 *2) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) (-2370 (*1 *1 *1 *2) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) (-2370 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) (-2001 (*1 *2 *1 *3) (-12 (-4 *1 (-1205 *2 *3)) (-4 *3 (-770)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1518 (*2 (-1144)))) (-4 *2 (-1020)))) (-2272 (*1 *1 *1 *2) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) (-3866 (*1 *2 *1 *3) (-12 (-4 *1 (-1205 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1124 *3))))) +(-13 (-946 |t#1| |t#2| (-1050)) (-10 -8 (-15 -2575 ((-1124 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2680 (|t#1| $ |t#2|)) (-15 -1861 ((-1144) $)) (-15 -3335 (|t#1| $)) (-15 -1784 ($ $ (-894))) (-15 -2475 (|t#2| $)) (-15 -2475 (|t#2| $ |t#2|)) (-15 -2370 ($ $ |t#2|)) (-15 -2370 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1518 (|t#1| (-1144)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2001 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2272 ($ $ |t#2|)) (IF (|has| |t#2| (-1080)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-227)) (IF (|has| |t#1| (-873 (-1144))) (-6 (-873 (-1144))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3866 ((-1124 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-279 $ $) |has| |#2| (-1080)) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-626 #0#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-873 (-1144)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-873 (-1144)))) ((-946 |#1| |#2| (-1050)) . T) ((-1026 #0#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1505 ((|#2| |#2|) 12)) (-3564 (((-411 |#2|) |#2|) 14)) (-1641 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))) 30))) +(((-1206 |#1| |#2|) (-10 -7 (-15 -3564 ((-411 |#2|) |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -1641 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))))) (-542) (-13 (-1203 |#1|) (-542) (-10 -8 (-15 -3139 ($ $ $))))) (T -1206)) +((-1641 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-550)))) (-4 *4 (-13 (-1203 *3) (-542) (-10 -8 (-15 -3139 ($ $ $))))) (-4 *3 (-542)) (-5 *1 (-1206 *3 *4)))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-1203 *3) (-542) (-10 -8 (-15 -3139 ($ $ $))))))) (-3564 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-411 *3)) (-5 *1 (-1206 *4 *3)) (-4 *3 (-13 (-1203 *4) (-542) (-10 -8 (-15 -3139 ($ $ $)))))))) +(-10 -7 (-15 -3564 ((-411 |#2|) |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -1641 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))))) +((-3972 (((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|)) 24))) +(((-1207 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3972 ((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|)))) (-1020) (-1020) (-1144) (-1144) |#1| |#2|) (T -1207)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1212 *5 *7 *9)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-14 *7 (-1144)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1212 *6 *8 *10)) (-5 *1 (-1207 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1144))))) +(-10 -7 (-15 -3972 ((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 (-1050)) $) 72)) (-1861 (((-1144) $) 101)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-2370 (($ $ (-400 (-550))) 96) (($ $ (-400 (-550)) (-400 (-550))) 95)) (-2575 (((-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) 103)) (-3123 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 160 (|has| |#1| (-356)))) (-3564 (((-411 $) $) 161 (|has| |#1| (-356)))) (-3353 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-3631 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3103 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) 169)) (-3146 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) 17 T CONST)) (-3349 (($ $ $) 155 (|has| |#1| (-356)))) (-3295 (($ $) 58)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 154 (|has| |#1| (-356)))) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 149 (|has| |#1| (-356)))) (-3933 (((-112) $) 162 (|has| |#1| (-356)))) (-3478 (((-112) $) 71)) (-2734 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-400 (-550)) $) 98) (((-400 (-550)) $ (-400 (-550))) 97)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) 99) (($ $ (-400 (-550))) 168)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-356)))) (-3439 (((-112) $) 60)) (-3118 (($ |#1| (-400 (-550))) 59) (($ $ (-1050) (-400 (-550))) 74) (($ $ (-623 (-1050)) (-623 (-400 (-550)))) 73)) (-3972 (($ (-1 |#1| |#1|) $) 61)) (-2958 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-3106 (($ (-623 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-1825 (((-1126) $) 9)) (-3235 (($ $) 163 (|has| |#1| (-356)))) (-1489 (($ $) 167 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 166 (-1561 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-932)) (|has| |#1| (-1166)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 148 (|has| |#1| (-356)))) (-3139 (($ (-623 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-3338 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 156 (|has| |#1| (-356)))) (-2272 (($ $ (-400 (-550))) 93)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-356)))) (-1812 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-3542 (((-749) $) 152 (|has| |#1| (-356)))) (-2680 ((|#1| $ (-400 (-550))) 102) (($ $ $) 79 (|has| (-400 (-550)) (-1080)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 153 (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) 87 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1144) (-749)) 86 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-623 (-1144))) 85 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1144)) 84 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2970 (((-400 (-550)) $) 62)) (-3157 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 70)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542)))) (-2510 ((|#1| $ (-400 (-550))) 57)) (-4242 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-3335 ((|#1| $) 100)) (-3187 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3167 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-400 (-550))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) 91 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1144) (-749)) 90 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-623 (-1144))) 89 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1144)) 88 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-1208 |#1|) (-138) (-1020)) (T -1208)) +((-2672 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| *4)))) (-4 *4 (-1020)) (-4 *1 (-1208 *4)))) (-1784 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-4 *1 (-1208 *3)) (-4 *3 (-1020)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1020)) (-4 *2 (-38 (-400 (-550)))))) (-1489 (*1 *1 *1 *2) (-1561 (-12 (-5 *2 (-1144)) (-4 *1 (-1208 *3)) (-4 *3 (-1020)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-932)) (-4 *3 (-1166)) (-4 *3 (-38 (-400 (-550)))))) (-12 (-5 *2 (-1144)) (-4 *1 (-1208 *3)) (-4 *3 (-1020)) (-12 (|has| *3 (-15 -3141 ((-623 *2) *3))) (|has| *3 (-15 -1489 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550))))))))) +(-13 (-1205 |t#1| (-400 (-550))) (-10 -8 (-15 -2672 ($ (-749) (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |t#1|))))) (-15 -1784 ($ $ (-400 (-550)))) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $)) (IF (|has| |t#1| (-15 -1489 (|t#1| |t#1| (-1144)))) (IF (|has| |t#1| (-15 -3141 ((-623 (-1144)) |t#1|))) (-15 -1489 ($ $ (-1144))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1166)) (IF (|has| |t#1| (-932)) (IF (|has| |t#1| (-29 (-550))) (-15 -1489 ($ $ (-1144))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-975)) (-6 (-1166))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-400 (-550))) . T) ((-25) . T) ((-38 #1=(-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 $ $) |has| (-400 (-550)) (-1080)) ((-283) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-542) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-626 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-705) . T) ((-873 (-1144)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144)))) ((-946 |#1| #0# (-1050)) . T) ((-893) |has| |#1| (-356)) ((-975) |has| |#1| (-38 (-400 (-550)))) ((-1026 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1166) |has| |#1| (-38 (-400 (-550)))) ((-1169) |has| |#1| (-38 (-400 (-550)))) ((-1185) |has| |#1| (-356)) ((-1205 |#1| #0#) . T)) +((-3433 (((-112) $) 12)) (-3880 (((-3 |#3| "failed") $) 17)) (-2726 ((|#3| $) 14))) +(((-1209 |#1| |#2| |#3|) (-10 -8 (-15 -2726 (|#3| |#1|)) (-15 -3880 ((-3 |#3| "failed") |#1|)) (-15 -3433 ((-112) |#1|))) (-1210 |#2| |#3|) (-1020) (-1187 |#2|)) (T -1209)) +NIL +(-10 -8 (-15 -2726 (|#3| |#1|)) (-15 -3880 ((-3 |#3| "failed") |#1|)) (-15 -3433 ((-112) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 (-1050)) $) 72)) (-1861 (((-1144) $) 101)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-2370 (($ $ (-400 (-550))) 96) (($ $ (-400 (-550)) (-400 (-550))) 95)) (-2575 (((-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) 103)) (-3123 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 160 (|has| |#1| (-356)))) (-3564 (((-411 $) $) 161 (|has| |#1| (-356)))) (-3353 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-3631 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3103 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) 169)) (-3146 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#2| "failed") $) 180)) (-2726 ((|#2| $) 179)) (-3349 (($ $ $) 155 (|has| |#1| (-356)))) (-3295 (($ $) 58)) (-1386 (((-3 $ "failed") $) 32)) (-3914 (((-400 (-550)) $) 177)) (-1519 (($ $ $) 154 (|has| |#1| (-356)))) (-3214 (($ (-400 (-550)) |#2|) 178)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 149 (|has| |#1| (-356)))) (-3933 (((-112) $) 162 (|has| |#1| (-356)))) (-3478 (((-112) $) 71)) (-2734 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-400 (-550)) $) 98) (((-400 (-550)) $ (-400 (-550))) 97)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) 99) (($ $ (-400 (-550))) 168)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 158 (|has| |#1| (-356)))) (-3439 (((-112) $) 60)) (-3118 (($ |#1| (-400 (-550))) 59) (($ $ (-1050) (-400 (-550))) 74) (($ $ (-623 (-1050)) (-623 (-400 (-550)))) 73)) (-3972 (($ (-1 |#1| |#1|) $) 61)) (-2958 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-3106 (($ (-623 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-2061 ((|#2| $) 176)) (-1928 (((-3 |#2| "failed") $) 174)) (-3203 ((|#2| $) 175)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 163 (|has| |#1| (-356)))) (-1489 (($ $) 167 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 166 (-1561 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-932)) (|has| |#1| (-1166)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 148 (|has| |#1| (-356)))) (-3139 (($ (-623 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-3338 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 156 (|has| |#1| (-356)))) (-2272 (($ $ (-400 (-550))) 93)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 150 (|has| |#1| (-356)))) (-1812 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-3542 (((-749) $) 152 (|has| |#1| (-356)))) (-2680 ((|#1| $ (-400 (-550))) 102) (($ $ $) 79 (|has| (-400 (-550)) (-1080)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 153 (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) 87 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1144) (-749)) 86 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-623 (-1144))) 85 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1144)) 84 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2970 (((-400 (-550)) $) 62)) (-3157 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 70)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542)))) (-2510 ((|#1| $ (-400 (-550))) 57)) (-4242 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-3335 ((|#1| $) 100)) (-3187 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3167 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-400 (-550))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) 91 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1144) (-749)) 90 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-623 (-1144))) 89 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-1144)) 88 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-1210 |#1| |#2|) (-138) (-1020) (-1187 |t#1|)) (T -1210)) +((-2970 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1187 *3)) (-5 *2 (-400 (-550))))) (-1518 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-4 *1 (-1210 *3 *2)) (-4 *2 (-1187 *3)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-4 *4 (-1020)) (-4 *1 (-1210 *4 *3)) (-4 *3 (-1187 *4)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1187 *3)) (-5 *2 (-400 (-550))))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1187 *3)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1187 *3)))) (-1928 (*1 *2 *1) (|partial| -12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1187 *3))))) +(-13 (-1208 |t#1|) (-1011 |t#2|) (-10 -8 (-15 -3214 ($ (-400 (-550)) |t#2|)) (-15 -3914 ((-400 (-550)) $)) (-15 -2061 (|t#2| $)) (-15 -2970 ((-400 (-550)) $)) (-15 -1518 ($ |t#2|)) (-15 -3203 (|t#2| $)) (-15 -1928 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-400 (-550))) . T) ((-25) . T) ((-38 #1=(-400 (-550))) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 $ $) |has| (-400 (-550)) (-1080)) ((-283) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-542) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-626 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-705) . T) ((-873 (-1144)) -12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144)))) ((-946 |#1| #0# (-1050)) . T) ((-893) |has| |#1| (-356)) ((-975) |has| |#1| (-38 (-400 (-550)))) ((-1011 |#2|) . T) ((-1026 #1#) -1561 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-550))))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1166) |has| |#1| (-38 (-400 (-550)))) ((-1169) |has| |#1| (-38 (-400 (-550)))) ((-1185) |has| |#1| (-356)) ((-1205 |#1| #0#) . T) ((-1208 |#1|) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 96)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-2370 (($ $ (-400 (-550))) 106) (($ $ (-400 (-550)) (-400 (-550))) 108)) (-2575 (((-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) 51)) (-3123 (($ $) 180 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 156 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3103 (($ $) 176 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 152 (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) 61)) (-3146 (($ $) 184 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 160 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) NIL)) (-2726 ((|#2| $) NIL)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) 79)) (-3914 (((-400 (-550)) $) 13)) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3214 (($ (-400 (-550)) |#2|) 11)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-3478 (((-112) $) 68)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-400 (-550)) $) 103) (((-400 (-550)) $ (-400 (-550))) 104)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) 120) (($ $ (-400 (-550))) 118)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-400 (-550))) 31) (($ $ (-1050) (-400 (-550))) NIL) (($ $ (-623 (-1050)) (-623 (-400 (-550)))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) 115)) (-2958 (($ $) 150 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2061 ((|#2| $) 12)) (-1928 (((-3 |#2| "failed") $) 41)) (-3203 ((|#2| $) 42)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) 93 (|has| |#1| (-356)))) (-1489 (($ $) 135 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 140 (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166)))))) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2272 (($ $ (-400 (-550))) 112)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1812 (($ $) 148 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ (-400 (-550))) 100) (($ $ $) 86 (|has| (-400 (-550)) (-1080)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) 127 (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2970 (((-400 (-550)) $) 16)) (-3157 (($ $) 186 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 162 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 182 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 158 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 178 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 154 (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 110)) (-1518 (((-836) $) NIL) (($ (-550)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-400 (-550))) 128 (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-2510 ((|#1| $ (-400 (-550))) 99)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) 117)) (-3335 ((|#1| $) 98)) (-3187 (($ $) 192 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 168 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) 188 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 164 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 196 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 172 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-400 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 198 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 174 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 194 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 170 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 190 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 166 (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 21 T CONST)) (-2636 (($) 17 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2316 (((-112) $ $) 66)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 92 (|has| |#1| (-356)))) (-2403 (($ $) 131) (($ $ $) 72)) (-2391 (($ $ $) 70)) (** (($ $ (-894)) NIL) (($ $ (-749)) 76) (($ $ (-550)) 145 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 146 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1211 |#1| |#2|) (-1210 |#1| |#2|) (-1020) (-1187 |#1|)) (T -1211)) +NIL +(-1210 |#1| |#2|) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 11)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) NIL (|has| |#1| (-542)))) (-2370 (($ $ (-400 (-550))) NIL) (($ $ (-400 (-550)) (-400 (-550))) NIL)) (-2575 (((-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|))) $) NIL)) (-3123 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-1505 (($ $) NIL (|has| |#1| (-356)))) (-3564 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3631 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3103 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#1|)))) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-1191 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1219 |#1| |#2| |#3|) "failed") $) 22)) (-2726 (((-1191 |#1| |#2| |#3|) $) NIL) (((-1219 |#1| |#2| |#3|) $) NIL)) (-3349 (($ $ $) NIL (|has| |#1| (-356)))) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-3914 (((-400 (-550)) $) 57)) (-1519 (($ $ $) NIL (|has| |#1| (-356)))) (-3214 (($ (-400 (-550)) (-1191 |#1| |#2| |#3|)) NIL)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) NIL (|has| |#1| (-356)))) (-3933 (((-112) $) NIL (|has| |#1| (-356)))) (-3478 (((-112) $) NIL)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-400 (-550)) $) NIL) (((-400 (-550)) $ (-400 (-550))) NIL)) (-3102 (((-112) $) NIL)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) NIL) (($ $ (-400 (-550))) NIL)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-400 (-550))) 30) (($ $ (-1050) (-400 (-550))) NIL) (($ $ (-623 (-1050)) (-623 (-400 (-550)))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-3106 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2061 (((-1191 |#1| |#2| |#3|) $) 60)) (-1928 (((-3 (-1191 |#1| |#2| |#3|) "failed") $) NIL)) (-3203 (((-1191 |#1| |#2| |#3|) $) NIL)) (-1825 (((-1126) $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-356)))) (-1489 (($ $) 39 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) NIL (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166))))) (($ $ (-1223 |#2|)) 40 (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) NIL)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) NIL (|has| |#1| (-356)))) (-3139 (($ (-623 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3338 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3455 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) NIL (|has| |#1| (-356)))) (-2272 (($ $ (-400 (-550))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3188 (((-3 (-623 $) "failed") (-623 $) $) NIL (|has| |#1| (-356)))) (-1812 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))))) (-3542 (((-749) $) NIL (|has| |#1| (-356)))) (-2680 ((|#1| $ (-400 (-550))) NIL) (($ $ $) NIL (|has| (-400 (-550)) (-1080)))) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) NIL (|has| |#1| (-356)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $ (-1223 |#2|)) 38)) (-2970 (((-400 (-550)) $) NIL)) (-3157 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) NIL)) (-1518 (((-836) $) 89) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1191 |#1| |#2| |#3|)) 16) (($ (-1219 |#1| |#2| |#3|)) 17) (($ (-1223 |#2|)) 36) (($ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542)))) (-2510 ((|#1| $ (-400 (-550))) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-3335 ((|#1| $) 12)) (-3187 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-400 (-550))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-550))))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 32 T CONST)) (-2636 (($) 26 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-550)) |#1|))))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 34)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ (-550)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1212 |#1| |#2| |#3|) (-13 (-1210 |#1| (-1191 |#1| |#2| |#3|)) (-1011 (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) (-1020) (-1144) |#1|) (T -1212)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3)))) +(-13 (-1210 |#1| (-1191 |#1| |#2| |#3|)) (-1011 (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 34)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL)) (-1447 (($ $) NIL)) (-4291 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 (-550) "failed") $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1011 (-550)))) (((-3 (-400 (-550)) "failed") $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1011 (-400 (-550))))) (((-3 (-1212 |#2| |#3| |#4|) "failed") $) 20)) (-2726 (((-550) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1011 (-550)))) (((-400 (-550)) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1011 (-400 (-550))))) (((-1212 |#2| |#3| |#4|) $) NIL)) (-3295 (($ $) 35)) (-1386 (((-3 $ "failed") $) 25)) (-2674 (($ $) NIL (|has| (-1212 |#2| |#3| |#4|) (-444)))) (-2613 (($ $ (-1212 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|) $) NIL)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) 11)) (-3439 (((-112) $) NIL)) (-3118 (($ (-1212 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) 23)) (-1667 (((-312 |#2| |#3| |#4|) $) NIL)) (-2688 (($ (-1 (-312 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) $) NIL)) (-3972 (($ (-1 (-1212 |#2| |#3| |#4|) (-1212 |#2| |#3| |#4|)) $) NIL)) (-4129 (((-3 (-818 |#2|) "failed") $) 75)) (-3267 (($ $) NIL)) (-3277 (((-1212 |#2| |#3| |#4|) $) 18)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3248 (((-112) $) NIL)) (-3256 (((-1212 |#2| |#3| |#4|) $) NIL)) (-1495 (((-3 $ "failed") $ (-1212 |#2| |#3| |#4|)) NIL (|has| (-1212 |#2| |#3| |#4|) (-542))) (((-3 $ "failed") $ $) NIL)) (-4021 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1126))) "failed") $) 58)) (-2970 (((-312 |#2| |#3| |#4|) $) 14)) (-2503 (((-1212 |#2| |#3| |#4|) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-444)))) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ (-1212 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-400 (-550))) NIL (-1561 (|has| (-1212 |#2| |#3| |#4|) (-38 (-400 (-550)))) (|has| (-1212 |#2| |#3| |#4|) (-1011 (-400 (-550))))))) (-3511 (((-623 (-1212 |#2| |#3| |#4|)) $) NIL)) (-2510 (((-1212 |#2| |#3| |#4|) $ (-312 |#2| |#3| |#4|)) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| (-1212 |#2| |#3| |#4|) (-143)))) (-2390 (((-749)) NIL)) (-2540 (($ $ $ (-749)) NIL (|has| (-1212 |#2| |#3| |#4|) (-170)))) (-1345 (((-112) $ $) NIL)) (-2626 (($) 63 T CONST)) (-2636 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ (-1212 |#2| |#3| |#4|)) NIL (|has| (-1212 |#2| |#3| |#4|) (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-1212 |#2| |#3| |#4|)) NIL) (($ (-1212 |#2| |#3| |#4|) $) NIL) (($ (-400 (-550)) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| (-1212 |#2| |#3| |#4|) (-38 (-400 (-550))))))) +(((-1213 |#1| |#2| |#3| |#4|) (-13 (-319 (-1212 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-542) (-10 -8 (-15 -4129 ((-3 (-818 |#2|) "failed") $)) (-15 -4021 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1126))) "failed") $)))) (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444)) (-13 (-27) (-1166) (-423 |#1|)) (-1144) |#2|) (T -1213)) +((-4129 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444))) (-5 *2 (-818 *4)) (-5 *1 (-1213 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1166) (-423 *3))) (-14 *5 (-1144)) (-14 *6 *4))) (-4021 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) (|:| |%expTerms| (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| *4)))))) (|:| |%type| (-1126)))) (-5 *1 (-1213 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1166) (-423 *3))) (-14 *5 (-1144)) (-14 *6 *4)))) +(-13 (-319 (-1212 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-542) (-10 -8 (-15 -4129 ((-3 (-818 |#2|) "failed") $)) (-15 -4021 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1126))) "failed") $)))) +((-3625 ((|#2| $) 29)) (-3996 ((|#2| $) 18)) (-4180 (($ $) 36)) (-4249 (($ $ (-550)) 64)) (-4047 (((-112) $ (-749)) 33)) (-2190 ((|#2| $ |#2|) 61)) (-1300 ((|#2| $ |#2|) 59)) (-1705 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2266 (($ $ (-623 $)) 60)) (-3985 ((|#2| $) 17)) (-1308 (($ $) NIL) (($ $ (-749)) 42)) (-2560 (((-623 $) $) 26)) (-2333 (((-112) $ $) 50)) (-1859 (((-112) $ (-749)) 32)) (-1573 (((-112) $ (-749)) 31)) (-3312 (((-112) $) 28)) (-3159 ((|#2| $) 24) (($ $ (-749)) 46)) (-2680 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2136 (((-112) $) 22)) (-3635 (($ $) 39)) (-3472 (($ $) 65)) (-3728 (((-749) $) 41)) (-3786 (($ $) 40)) (-3227 (($ $ $) 58) (($ |#2| $) NIL)) (-3997 (((-623 $) $) 27)) (-2316 (((-112) $ $) 48)) (-3191 (((-749) $) 35))) +(((-1214 |#1| |#2|) (-10 -8 (-15 -4249 (|#1| |#1| (-550))) (-15 -1705 (|#2| |#1| "last" |#2|)) (-15 -1300 (|#2| |#1| |#2|)) (-15 -1705 (|#1| |#1| "rest" |#1|)) (-15 -1705 (|#2| |#1| "first" |#2|)) (-15 -3472 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3728 ((-749) |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3996 (|#2| |#1|)) (-15 -3985 (|#2| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -3159 (|#1| |#1| (-749))) (-15 -2680 (|#2| |#1| "last")) (-15 -3159 (|#2| |#1|)) (-15 -1308 (|#1| |#1| (-749))) (-15 -2680 (|#1| |#1| "rest")) (-15 -1308 (|#1| |#1|)) (-15 -2680 (|#2| |#1| "first")) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#1|)) (-15 -2190 (|#2| |#1| |#2|)) (-15 -1705 (|#2| |#1| "value" |#2|)) (-15 -2266 (|#1| |#1| (-623 |#1|))) (-15 -2333 ((-112) |#1| |#1|)) (-15 -2136 ((-112) |#1|)) (-15 -2680 (|#2| |#1| "value")) (-15 -3625 (|#2| |#1|)) (-15 -3312 ((-112) |#1|)) (-15 -2560 ((-623 |#1|) |#1|)) (-15 -3997 ((-623 |#1|) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -3191 ((-749) |#1|)) (-15 -4047 ((-112) |#1| (-749))) (-15 -1859 ((-112) |#1| (-749))) (-15 -1573 ((-112) |#1| (-749)))) (-1215 |#2|) (-1181)) (T -1214)) +NIL +(-10 -8 (-15 -4249 (|#1| |#1| (-550))) (-15 -1705 (|#2| |#1| "last" |#2|)) (-15 -1300 (|#2| |#1| |#2|)) (-15 -1705 (|#1| |#1| "rest" |#1|)) (-15 -1705 (|#2| |#1| "first" |#2|)) (-15 -3472 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3728 ((-749) |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3996 (|#2| |#1|)) (-15 -3985 (|#2| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -3159 (|#1| |#1| (-749))) (-15 -2680 (|#2| |#1| "last")) (-15 -3159 (|#2| |#1|)) (-15 -1308 (|#1| |#1| (-749))) (-15 -2680 (|#1| |#1| "rest")) (-15 -1308 (|#1| |#1|)) (-15 -2680 (|#2| |#1| "first")) (-15 -3227 (|#1| |#2| |#1|)) (-15 -3227 (|#1| |#1| |#1|)) (-15 -2190 (|#2| |#1| |#2|)) (-15 -1705 (|#2| |#1| "value" |#2|)) (-15 -2266 (|#1| |#1| (-623 |#1|))) (-15 -2333 ((-112) |#1| |#1|)) (-15 -2136 ((-112) |#1|)) (-15 -2680 (|#2| |#1| "value")) (-15 -3625 (|#2| |#1|)) (-15 -3312 ((-112) |#1|)) (-15 -2560 ((-623 |#1|) |#1|)) (-15 -3997 ((-623 |#1|) |#1|)) (-15 -2316 ((-112) |#1| |#1|)) (-15 -3191 ((-749) |#1|)) (-15 -4047 ((-112) |#1| (-749))) (-15 -1859 ((-112) |#1| (-749))) (-15 -1573 ((-112) |#1| (-749)))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-3625 ((|#1| $) 48)) (-3996 ((|#1| $) 65)) (-4180 (($ $) 67)) (-4249 (($ $ (-550)) 52 (|has| $ (-6 -4343)))) (-4047 (((-112) $ (-749)) 8)) (-2190 ((|#1| $ |#1|) 39 (|has| $ (-6 -4343)))) (-1431 (($ $ $) 56 (|has| $ (-6 -4343)))) (-1300 ((|#1| $ |#1|) 54 (|has| $ (-6 -4343)))) (-3373 ((|#1| $ |#1|) 58 (|has| $ (-6 -4343)))) (-1705 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4343))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4343))) (($ $ "rest" $) 55 (|has| $ (-6 -4343))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4343)))) (-2266 (($ $ (-623 $)) 41 (|has| $ (-6 -4343)))) (-3985 ((|#1| $) 66)) (-3513 (($) 7 T CONST)) (-1308 (($ $) 73) (($ $ (-749)) 71)) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2560 (((-623 $) $) 50)) (-2333 (((-112) $ $) 42 (|has| |#1| (-1068)))) (-1859 (((-112) $ (-749)) 9)) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35)) (-1573 (((-112) $ (-749)) 10)) (-2513 (((-623 |#1|) $) 45)) (-3312 (((-112) $) 49)) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-3159 ((|#1| $) 70) (($ $ (-749)) 68)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 76) (($ $ (-749)) 74)) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2487 (((-550) $ $) 44)) (-2136 (((-112) $) 46)) (-3635 (($ $) 62)) (-3472 (($ $) 59 (|has| $ (-6 -4343)))) (-3728 (((-749) $) 63)) (-3786 (($ $) 64)) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-1731 (($ $) 13)) (-3547 (($ $ $) 61 (|has| $ (-6 -4343))) (($ $ |#1|) 60 (|has| $ (-6 -4343)))) (-3227 (($ $ $) 78) (($ |#1| $) 77)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-3997 (((-623 $) $) 51)) (-2413 (((-112) $ $) 43 (|has| |#1| (-1068)))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-1215 |#1|) (-138) (-1181)) (T -1215)) +((-3227 (*1 *1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3227 (*1 *1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-1293 (*1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-1293 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) (-1308 (*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) (-1308 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-2680 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3159 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1215 *3)) (-4 *3 (-1181)) (-5 *2 (-749)))) (-3635 (*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3547 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3547 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3472 (*1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-3373 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-1705 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-1431 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-1705 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4343)) (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) (-1300 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-1705 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (|has| *1 (-6 -4343)) (-4 *1 (-1215 *3)) (-4 *3 (-1181))))) +(-13 (-983 |t#1|) (-10 -8 (-15 -3227 ($ $ $)) (-15 -3227 ($ |t#1| $)) (-15 -1293 (|t#1| $)) (-15 -2680 (|t#1| $ "first")) (-15 -1293 ($ $ (-749))) (-15 -1308 ($ $)) (-15 -2680 ($ $ "rest")) (-15 -1308 ($ $ (-749))) (-15 -3159 (|t#1| $)) (-15 -2680 (|t#1| $ "last")) (-15 -3159 ($ $ (-749))) (-15 -4180 ($ $)) (-15 -3985 (|t#1| $)) (-15 -3996 (|t#1| $)) (-15 -3786 ($ $)) (-15 -3728 ((-749) $)) (-15 -3635 ($ $)) (IF (|has| $ (-6 -4343)) (PROGN (-15 -3547 ($ $ $)) (-15 -3547 ($ $ |t#1|)) (-15 -3472 ($ $)) (-15 -3373 (|t#1| $ |t#1|)) (-15 -1705 (|t#1| $ "first" |t#1|)) (-15 -1431 ($ $ $)) (-15 -1705 ($ $ "rest" $)) (-15 -1300 (|t#1| $ |t#1|)) (-15 -1705 (|t#1| $ "last" |t#1|)) (-15 -4249 ($ $ (-550)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1068)) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-595 (-836)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-983 |#1|) . T) ((-1068) |has| |#1| (-1068)) ((-1181) . T)) +((-3972 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1216 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#4| (-1 |#2| |#1|) |#3|))) (-1020) (-1020) (-1218 |#1|) (-1218 |#2|)) (T -1216)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1218 *6)) (-5 *1 (-1216 *5 *6 *4 *2)) (-4 *4 (-1218 *5))))) +(-10 -7 (-15 -3972 (|#4| (-1 |#2| |#1|) |#3|))) +((-3433 (((-112) $) 15)) (-3123 (($ $) 92)) (-3005 (($ $) 68)) (-3103 (($ $) 88)) (-2984 (($ $) 64)) (-3146 (($ $) 96)) (-3025 (($ $) 72)) (-2958 (($ $) 62)) (-1812 (($ $) 60)) (-3157 (($ $) 98)) (-3033 (($ $) 74)) (-3135 (($ $) 94)) (-3016 (($ $) 70)) (-3114 (($ $) 90)) (-2995 (($ $) 66)) (-1518 (((-836) $) 48) (($ (-550)) NIL) (($ (-400 (-550))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3187 (($ $) 104)) (-3060 (($ $) 80)) (-3167 (($ $) 100)) (-3043 (($ $) 76)) (-3209 (($ $) 108)) (-3081 (($ $) 84)) (-3294 (($ $) 110)) (-3094 (($ $) 86)) (-3198 (($ $) 106)) (-3072 (($ $) 82)) (-3176 (($ $) 102)) (-3052 (($ $) 78)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-400 (-550))) 58))) +(((-1217 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -3005 (|#1| |#1|)) (-15 -2984 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3016 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3060 (|#1| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3198 (|#1| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3187 (|#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| (-550))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-894))) (-15 -3433 ((-112) |#1|)) (-15 -1518 ((-836) |#1|))) (-1218 |#2|) (-1020)) (T -1217)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-400 (-550)))) (-15 -3005 (|#1| |#1|)) (-15 -2984 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3016 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3060 (|#1| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3198 (|#1| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3187 (|#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1518 (|#1| |#2|)) (-15 -1518 (|#1| |#1|)) (-15 -1518 (|#1| (-400 (-550)))) (-15 -1518 (|#1| (-550))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-894))) (-15 -3433 ((-112) |#1|)) (-15 -1518 ((-836) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3141 (((-623 (-1050)) $) 72)) (-1861 (((-1144) $) 101)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-1447 (($ $) 50 (|has| |#1| (-542)))) (-4291 (((-112) $) 52 (|has| |#1| (-542)))) (-2370 (($ $ (-749)) 96) (($ $ (-749) (-749)) 95)) (-2575 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 103)) (-3123 (($ $) 133 (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) 116 (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) 19)) (-3353 (($ $) 115 (|has| |#1| (-38 (-400 (-550)))))) (-3103 (($ $) 132 (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) 117 (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 153) (($ (-1124 |#1|)) 151)) (-3146 (($ $) 131 (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) 118 (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) 17 T CONST)) (-3295 (($ $) 58)) (-1386 (((-3 $ "failed") $) 32)) (-2033 (($ $) 150)) (-1402 (((-925 |#1|) $ (-749)) 148) (((-925 |#1|) $ (-749) (-749)) 147)) (-3478 (((-112) $) 71)) (-2734 (($) 143 (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-749) $) 98) (((-749) $ (-749)) 97)) (-3102 (((-112) $) 30)) (-1460 (($ $ (-550)) 114 (|has| |#1| (-38 (-400 (-550)))))) (-1784 (($ $ (-894)) 99)) (-3315 (($ (-1 |#1| (-550)) $) 149)) (-3439 (((-112) $) 60)) (-3118 (($ |#1| (-749)) 59) (($ $ (-1050) (-749)) 74) (($ $ (-623 (-1050)) (-623 (-749))) 73)) (-3972 (($ (-1 |#1| |#1|) $) 61)) (-2958 (($ $) 140 (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) 63)) (-3277 ((|#1| $) 64)) (-1825 (((-1126) $) 9)) (-1489 (($ $) 145 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 144 (-1561 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-932)) (|has| |#1| (-1166)) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-38 (-400 (-550)))))))) (-3337 (((-1088) $) 10)) (-2272 (($ $ (-749)) 93)) (-1495 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-1812 (($ $) 141 (|has| |#1| (-38 (-400 (-550)))))) (-3866 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-2680 ((|#1| $ (-749)) 102) (($ $ $) 79 (|has| (-749) (-1080)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) 87 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1144) (-749)) 86 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-623 (-1144))) 85 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1144)) 84 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-2970 (((-749) $) 62)) (-3157 (($ $) 130 (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) 119 (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) 129 (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) 120 (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) 128 (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) 121 (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 70)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ (-400 (-550))) 55 (|has| |#1| (-38 (-400 (-550))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-3511 (((-1124 |#1|) $) 152)) (-2510 ((|#1| $ (-749)) 57)) (-4242 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2390 (((-749)) 28)) (-3335 ((|#1| $) 100)) (-3187 (($ $) 139 (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) 127 (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3167 (($ $) 138 (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) 126 (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) 137 (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) 125 (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-749)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) 136 (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) 124 (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) 135 (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) 123 (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) 134 (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) 122 (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) 91 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1144) (-749)) 90 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-623 (-1144))) 89 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1144)) 88 (-12 (|has| |#1| (-873 (-1144))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ |#1|) 146 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 113 (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-550)) $) 54 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) 53 (|has| |#1| (-38 (-400 (-550))))))) +(((-1218 |#1|) (-138) (-1020)) (T -1218)) +((-2672 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-749)) (|:| |c| *3)))) (-4 *3 (-1020)) (-4 *1 (-1218 *3)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-1020)) (-5 *2 (-1124 *3)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-4 *1 (-1218 *3)))) (-2033 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1020)))) (-3315 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1218 *3)) (-4 *3 (-1020)))) (-1402 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1218 *4)) (-4 *4 (-1020)) (-5 *2 (-925 *4)))) (-1402 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1218 *4)) (-4 *4 (-1020)) (-5 *2 (-925 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1020)) (-4 *2 (-38 (-400 (-550)))))) (-1489 (*1 *1 *1 *2) (-1561 (-12 (-5 *2 (-1144)) (-4 *1 (-1218 *3)) (-4 *3 (-1020)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-932)) (-4 *3 (-1166)) (-4 *3 (-38 (-400 (-550)))))) (-12 (-5 *2 (-1144)) (-4 *1 (-1218 *3)) (-4 *3 (-1020)) (-12 (|has| *3 (-15 -3141 ((-623 *2) *3))) (|has| *3 (-15 -1489 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550))))))))) +(-13 (-1205 |t#1| (-749)) (-10 -8 (-15 -2672 ($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |t#1|))))) (-15 -3511 ((-1124 |t#1|) $)) (-15 -2672 ($ (-1124 |t#1|))) (-15 -2033 ($ $)) (-15 -3315 ($ (-1 |t#1| (-550)) $)) (-15 -1402 ((-925 |t#1|) $ (-749))) (-15 -1402 ((-925 |t#1|) $ (-749) (-749))) (IF (|has| |t#1| (-356)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-550)))) (PROGN (-15 -1489 ($ $)) (IF (|has| |t#1| (-15 -1489 (|t#1| |t#1| (-1144)))) (IF (|has| |t#1| (-15 -3141 ((-623 (-1144)) |t#1|))) (-15 -1489 ($ $ (-1144))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1166)) (IF (|has| |t#1| (-932)) (IF (|has| |t#1| (-29 (-550))) (-15 -1489 ($ $ (-1144))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-975)) (-6 (-1166))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-749)) . T) ((-25) . T) ((-38 #1=(-400 (-550))) |has| |#1| (-38 (-400 (-550)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-35) |has| |#1| (-38 (-400 (-550)))) ((-94) |has| |#1| (-38 (-400 (-550)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-749) |#1|))) ((-277) |has| |#1| (-38 (-400 (-550)))) ((-279 $ $) |has| (-749) (-1080)) ((-283) |has| |#1| (-542)) ((-484) |has| |#1| (-38 (-400 (-550)))) ((-542) |has| |#1| (-542)) ((-626 #1#) |has| |#1| (-38 (-400 (-550)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-550)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-542)) ((-705) . T) ((-873 (-1144)) -12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144)))) ((-946 |#1| #0# (-1050)) . T) ((-975) |has| |#1| (-38 (-400 (-550)))) ((-1026 #1#) |has| |#1| (-38 (-400 (-550)))) ((-1026 |#1|) . T) ((-1026 $) -1561 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1166) |has| |#1| (-38 (-400 (-550)))) ((-1169) |has| |#1| (-38 (-400 (-550)))) ((-1205 |#1| #0#) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3141 (((-623 (-1050)) $) NIL)) (-1861 (((-1144) $) 87)) (-3504 (((-1200 |#2| |#1|) $ (-749)) 73)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-1447 (($ $) NIL (|has| |#1| (-542)))) (-4291 (((-112) $) 137 (|has| |#1| (-542)))) (-2370 (($ $ (-749)) 122) (($ $ (-749) (-749)) 124)) (-2575 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 42)) (-3123 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3005 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3219 (((-3 $ "failed") $ $) NIL)) (-3353 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2984 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2672 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 53) (($ (-1124 |#1|)) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3513 (($) NIL T CONST)) (-2888 (($ $) 128)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2033 (($ $) 135)) (-1402 (((-925 |#1|) $ (-749)) 63) (((-925 |#1|) $ (-749) (-749)) 65)) (-3478 (((-112) $) NIL)) (-2734 (($) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2475 (((-749) $) NIL) (((-749) $ (-749)) NIL)) (-3102 (((-112) $) NIL)) (-3140 (($ $) 112)) (-1460 (($ $ (-550)) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2779 (($ (-550) (-550) $) 130)) (-1784 (($ $ (-894)) 134)) (-3315 (($ (-1 |#1| (-550)) $) 106)) (-3439 (((-112) $) NIL)) (-3118 (($ |#1| (-749)) 15) (($ $ (-1050) (-749)) NIL) (($ $ (-623 (-1050)) (-623 (-749))) NIL)) (-3972 (($ (-1 |#1| |#1|) $) 94)) (-2958 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3267 (($ $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-1320 (($ $) 110)) (-3374 (($ $) 108)) (-2692 (($ (-550) (-550) $) 132)) (-1489 (($ $) 145 (|has| |#1| (-38 (-400 (-550))))) (($ $ (-1144)) 151 (-1561 (-12 (|has| |#1| (-15 -1489 (|#1| |#1| (-1144)))) (|has| |#1| (-15 -3141 ((-623 (-1144)) |#1|))) (|has| |#1| (-38 (-400 (-550))))) (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-38 (-400 (-550)))) (|has| |#1| (-932)) (|has| |#1| (-1166))))) (($ $ (-1223 |#2|)) 146 (|has| |#1| (-38 (-400 (-550)))))) (-3337 (((-1088) $) NIL)) (-2960 (($ $ (-550) (-550)) 116)) (-2272 (($ $ (-749)) 118)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-1812 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3046 (($ $) 114)) (-3866 (((-1124 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-2680 ((|#1| $ (-749)) 91) (($ $ $) 126 (|has| (-749) (-1080)))) (-2393 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) 103 (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $ (-1223 |#2|)) 99)) (-2970 (((-749) $) NIL)) (-3157 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3016 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3114 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3380 (($ $) 120)) (-1518 (((-836) $) NIL) (($ (-550)) 24) (($ (-400 (-550))) 143 (|has| |#1| (-38 (-400 (-550))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1200 |#2| |#1|)) 80) (($ (-1223 |#2|)) 20)) (-3511 (((-1124 |#1|) $) NIL)) (-2510 ((|#1| $ (-749)) 90)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2390 (((-749)) NIL)) (-3335 ((|#1| $) 88)) (-3187 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3060 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-1345 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3167 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3209 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2001 ((|#1| $ (-749)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -1518 (|#1| (-1144))))))) (-3294 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3094 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3198 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3072 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-3052 (($ $) NIL (|has| |#1| (-38 (-400 (-550)))))) (-2626 (($) 17 T CONST)) (-2636 (($) 13 T CONST)) (-4183 (($ $ (-623 (-1144)) (-623 (-749))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144) (-749)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-623 (-1144))) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-1144)) NIL (-12 (|has| |#1| (-15 * (|#1| (-749) |#1|))) (|has| |#1| (-873 (-1144))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-2316 (((-112) $ $) NIL)) (-2414 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) 102)) (-2391 (($ $ $) 18)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL) (($ $ |#1|) 140 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550)))))) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-400 (-550)) $) NIL (|has| |#1| (-38 (-400 (-550))))) (($ $ (-400 (-550))) NIL (|has| |#1| (-38 (-400 (-550))))))) +(((-1219 |#1| |#2| |#3|) (-13 (-1218 |#1|) (-10 -8 (-15 -1518 ($ (-1200 |#2| |#1|))) (-15 -3504 ((-1200 |#2| |#1|) $ (-749))) (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (-15 -3374 ($ $)) (-15 -1320 ($ $)) (-15 -3140 ($ $)) (-15 -3046 ($ $)) (-15 -2960 ($ $ (-550) (-550))) (-15 -2888 ($ $)) (-15 -2779 ($ (-550) (-550) $)) (-15 -2692 ($ (-550) (-550) $)) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) (-1020) (-1144) |#1|) (T -1219)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1020)) (-14 *4 (-1144)) (-14 *5 *3) (-5 *1 (-1219 *3 *4 *5)))) (-3504 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1219 *4 *5 *6)) (-4 *4 (-1020)) (-14 *5 (-1144)) (-14 *6 *4))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1020)) (-14 *5 *3))) (-3374 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) (-14 *4 *2))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) (-14 *4 *2))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) (-14 *4 *2))) (-3046 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) (-14 *4 *2))) (-2960 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1020)) (-14 *4 (-1144)) (-14 *5 *3))) (-2888 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) (-14 *4 *2))) (-2779 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1020)) (-14 *4 (-1144)) (-14 *5 *3))) (-2692 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1020)) (-14 *4 (-1144)) (-14 *5 *3))) (-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3)))) +(-13 (-1218 |#1|) (-10 -8 (-15 -1518 ($ (-1200 |#2| |#1|))) (-15 -3504 ((-1200 |#2| |#1|) $ (-749))) (-15 -1518 ($ (-1223 |#2|))) (-15 -2393 ($ $ (-1223 |#2|))) (-15 -3374 ($ $)) (-15 -1320 ($ $)) (-15 -3140 ($ $)) (-15 -3046 ($ $)) (-15 -2960 ($ $ (-550) (-550))) (-15 -2888 ($ $)) (-15 -2779 ($ (-550) (-550) $)) (-15 -2692 ($ (-550) (-550) $)) (IF (|has| |#1| (-38 (-400 (-550)))) (-15 -1489 ($ $ (-1223 |#2|))) |%noBranch|))) +((-1786 (((-1 (-1124 |#1|) (-623 (-1124 |#1|))) (-1 |#2| (-623 |#2|))) 24)) (-1632 (((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1480 (((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|)) 13)) (-1708 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1562 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1862 ((|#2| (-1 |#2| (-623 |#2|)) (-623 |#1|)) 54)) (-2002 (((-623 |#2|) (-623 |#1|) (-623 (-1 |#2| (-623 |#2|)))) 61)) (-1412 ((|#2| |#2| |#2|) 43))) +(((-1220 |#1| |#2|) (-10 -7 (-15 -1480 ((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|))) (-15 -1632 ((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1786 ((-1 (-1124 |#1|) (-623 (-1124 |#1|))) (-1 |#2| (-623 |#2|)))) (-15 -1412 (|#2| |#2| |#2|)) (-15 -1562 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1708 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1862 (|#2| (-1 |#2| (-623 |#2|)) (-623 |#1|))) (-15 -2002 ((-623 |#2|) (-623 |#1|) (-623 (-1 |#2| (-623 |#2|)))))) (-38 (-400 (-550))) (-1218 |#1|)) (T -1220)) +((-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 (-1 *6 (-623 *6)))) (-4 *5 (-38 (-400 (-550)))) (-4 *6 (-1218 *5)) (-5 *2 (-623 *6)) (-5 *1 (-1220 *5 *6)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-623 *2))) (-5 *4 (-623 *5)) (-4 *5 (-38 (-400 (-550)))) (-4 *2 (-1218 *5)) (-5 *1 (-1220 *5 *2)))) (-1708 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1218 *4)) (-5 *1 (-1220 *4 *2)) (-4 *4 (-38 (-400 (-550)))))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1218 *4)) (-5 *1 (-1220 *4 *2)) (-4 *4 (-38 (-400 (-550)))))) (-1412 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-1218 *3)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-623 *5))) (-4 *5 (-1218 *4)) (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-1 (-1124 *4) (-623 (-1124 *4)))) (-5 *1 (-1220 *4 *5)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1218 *4)) (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-1 (-1124 *4) (-1124 *4) (-1124 *4))) (-5 *1 (-1220 *4 *5)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1218 *4)) (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1220 *4 *5))))) +(-10 -7 (-15 -1480 ((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|))) (-15 -1632 ((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1786 ((-1 (-1124 |#1|) (-623 (-1124 |#1|))) (-1 |#2| (-623 |#2|)))) (-15 -1412 (|#2| |#2| |#2|)) (-15 -1562 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1708 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1862 (|#2| (-1 |#2| (-623 |#2|)) (-623 |#1|))) (-15 -2002 ((-623 |#2|) (-623 |#1|) (-623 (-1 |#2| (-623 |#2|)))))) +((-3991 ((|#2| |#4| (-749)) 30)) (-3868 ((|#4| |#2|) 25)) (-4267 ((|#4| (-400 |#2|)) 52 (|has| |#1| (-542)))) (-4121 (((-1 |#4| (-623 |#4|)) |#3|) 46))) +(((-1221 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 (|#4| |#2|)) (-15 -3991 (|#2| |#4| (-749))) (-15 -4121 ((-1 |#4| (-623 |#4|)) |#3|)) (IF (|has| |#1| (-542)) (-15 -4267 (|#4| (-400 |#2|))) |%noBranch|)) (-1020) (-1203 |#1|) (-634 |#2|) (-1218 |#1|)) (T -1221)) +((-4267 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1203 *4)) (-4 *4 (-542)) (-4 *4 (-1020)) (-4 *2 (-1218 *4)) (-5 *1 (-1221 *4 *5 *6 *2)) (-4 *6 (-634 *5)))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-1203 *4)) (-5 *2 (-1 *6 (-623 *6))) (-5 *1 (-1221 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-1218 *4)))) (-3991 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-1020)) (-4 *2 (-1203 *5)) (-5 *1 (-1221 *5 *2 *6 *3)) (-4 *6 (-634 *2)) (-4 *3 (-1218 *5)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *3 (-1203 *4)) (-4 *2 (-1218 *4)) (-5 *1 (-1221 *4 *3 *5 *2)) (-4 *5 (-634 *3))))) +(-10 -7 (-15 -3868 (|#4| |#2|)) (-15 -3991 (|#2| |#4| (-749))) (-15 -4121 ((-1 |#4| (-623 |#4|)) |#3|)) (IF (|has| |#1| (-542)) (-15 -4267 (|#4| (-400 |#2|))) |%noBranch|)) +NIL +(((-1222) (-138)) (T -1222)) +NIL +(-13 (-10 -7 (-6 -1964))) +((-1504 (((-112) $ $) NIL)) (-1861 (((-1144)) 12)) (-1825 (((-1126) $) 17)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 11) (((-1144) $) 8)) (-2316 (((-112) $ $) 14))) +(((-1223 |#1|) (-13 (-1068) (-595 (-1144)) (-10 -8 (-15 -1518 ((-1144) $)) (-15 -1861 ((-1144))))) (-1144)) (T -1223)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1223 *3)) (-14 *3 *2))) (-1861 (*1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1223 *3)) (-14 *3 *2)))) +(-13 (-1068) (-595 (-1144)) (-10 -8 (-15 -1518 ((-1144) $)) (-15 -1861 ((-1144))))) +((-2584 (($ (-749)) 18)) (-2012 (((-667 |#2|) $ $) 40)) (-3182 ((|#2| $) 48)) (-3772 ((|#2| $) 47)) (-3440 ((|#2| $ $) 35)) (-3305 (($ $ $) 44)) (-2403 (($ $) 22) (($ $ $) 28)) (-2391 (($ $ $) 15)) (* (($ (-550) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1224 |#1| |#2|) (-10 -8 (-15 -3182 (|#2| |#1|)) (-15 -3772 (|#2| |#1|)) (-15 -3305 (|#1| |#1| |#1|)) (-15 -2012 ((-667 |#2|) |#1| |#1|)) (-15 -3440 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2584 (|#1| (-749))) (-15 -2391 (|#1| |#1| |#1|))) (-1225 |#2|) (-1181)) (T -1224)) +NIL +(-10 -8 (-15 -3182 (|#2| |#1|)) (-15 -3772 (|#2| |#1|)) (-15 -3305 (|#1| |#1| |#1|)) (-15 -2012 ((-667 |#2|) |#1| |#1|)) (-15 -3440 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -2403 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2584 (|#1| (-749))) (-15 -2391 (|#1| |#1| |#1|))) +((-1504 (((-112) $ $) 19 (|has| |#1| (-1068)))) (-2584 (($ (-749)) 112 (|has| |#1| (-23)))) (-3029 (((-1232) $ (-550) (-550)) 40 (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4343))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4343))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) 8)) (-1705 ((|#1| $ (-550) |#1|) 52 (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) 58 (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4342)))) (-3513 (($) 7 T CONST)) (-2342 (($ $) 90 (|has| $ (-6 -4343)))) (-3243 (($ $) 100)) (-1328 (($ $) 78 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3137 (($ |#1| $) 77 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) 51)) (-2302 (((-550) (-1 (-112) |#1|) $) 97) (((-550) |#1| $) 96 (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) 95 (|has| |#1| (-1068)))) (-3450 (((-623 |#1|) $) 30 (|has| $ (-6 -4342)))) (-2012 (((-667 |#1|) $ $) 105 (|has| |#1| (-1020)))) (-2578 (($ (-749) |#1|) 69)) (-1859 (((-112) $ (-749)) 9)) (-3195 (((-550) $) 43 (|has| (-550) (-825)))) (-2707 (($ $ $) 87 (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3283 (((-550) $) 44 (|has| (-550) (-825)))) (-4164 (($ $ $) 86 (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3182 ((|#1| $) 102 (-12 (|has| |#1| (-1020)) (|has| |#1| (-975))))) (-1573 (((-112) $ (-749)) 10)) (-3772 ((|#1| $) 103 (-12 (|has| |#1| (-1020)) (|has| |#1| (-975))))) (-1825 (((-1126) $) 22 (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) 60) (($ $ $ (-550)) 59)) (-2325 (((-623 (-550)) $) 46)) (-2400 (((-112) (-550) $) 47)) (-3337 (((-1088) $) 21 (|has| |#1| (-1068)))) (-1293 ((|#1| $) 42 (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3111 (($ $ |#1|) 41 (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) 14)) (-2256 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) 48)) (-2902 (((-112) $) 11)) (-3498 (($) 12)) (-2680 ((|#1| $ (-550) |#1|) 50) ((|#1| $ (-550)) 49) (($ $ (-1194 (-550))) 63)) (-3440 ((|#1| $ $) 106 (|has| |#1| (-1020)))) (-1529 (($ $ (-550)) 62) (($ $ (-1194 (-550))) 61)) (-3305 (($ $ $) 104 (|has| |#1| (-1020)))) (-3350 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4342))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1068)) (|has| $ (-6 -4342))))) (-3593 (($ $ $ (-550)) 91 (|has| $ (-6 -4343)))) (-1731 (($ $) 13)) (-4028 (((-526) $) 79 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 70)) (-3227 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-623 $)) 65)) (-1518 (((-836) $) 18 (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2345 (((-112) $ $) 83 (|has| |#1| (-825)))) (-2316 (((-112) $ $) 20 (|has| |#1| (-1068)))) (-2354 (((-112) $ $) 85 (|has| |#1| (-825)))) (-2335 (((-112) $ $) 82 (|has| |#1| (-825)))) (-2403 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2391 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-550) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-705))) (($ $ |#1|) 107 (|has| |#1| (-705)))) (-3191 (((-749) $) 6 (|has| $ (-6 -4342))))) +(((-1225 |#1|) (-138) (-1181)) (T -1225)) +((-2391 (*1 *1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-25)))) (-2584 (*1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1225 *3)) (-4 *3 (-23)) (-4 *3 (-1181)))) (-2403 (*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-21)))) (-2403 (*1 *1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-1225 *3)) (-4 *3 (-1181)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-705)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-705)))) (-3440 (*1 *2 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-1020)))) (-2012 (*1 *2 *1 *1) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-1181)) (-4 *3 (-1020)) (-5 *2 (-667 *3)))) (-3305 (*1 *1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-1020)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-975)) (-4 *2 (-1020)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-975)) (-4 *2 (-1020))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2391 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2584 ($ (-749))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2403 ($ $)) (-15 -2403 ($ $ $)) (-15 * ($ (-550) $))) |%noBranch|) (IF (|has| |t#1| (-705)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1020)) (PROGN (-15 -3440 (|t#1| $ $)) (-15 -2012 ((-667 |t#1|) $ $)) (-15 -3305 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-975)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -3772 (|t#1| $)) (-15 -3182 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-101) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-595 (-836)) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825)) (|has| |#1| (-595 (-836)))) ((-149 |#1|) . T) ((-596 (-526)) |has| |#1| (-596 (-526))) ((-279 #0=(-550) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-586 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))) ((-629 |#1|) . T) ((-19 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1068) -1561 (|has| |#1| (-1068)) (|has| |#1| (-825))) ((-1181) . T)) +((-3572 (((-1227 |#2|) (-1 |#2| |#1| |#2|) (-1227 |#1|) |#2|) 13)) (-2419 ((|#2| (-1 |#2| |#1| |#2|) (-1227 |#1|) |#2|) 15)) (-3972 (((-3 (-1227 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1227 |#1|)) 28) (((-1227 |#2|) (-1 |#2| |#1|) (-1227 |#1|)) 18))) +(((-1226 |#1| |#2|) (-10 -7 (-15 -3572 ((-1227 |#2|) (-1 |#2| |#1| |#2|) (-1227 |#1|) |#2|)) (-15 -2419 (|#2| (-1 |#2| |#1| |#2|) (-1227 |#1|) |#2|)) (-15 -3972 ((-1227 |#2|) (-1 |#2| |#1|) (-1227 |#1|))) (-15 -3972 ((-3 (-1227 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1227 |#1|)))) (-1181) (-1181)) (T -1226)) +((-3972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1227 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1227 *6)) (-5 *1 (-1226 *5 *6)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1227 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1227 *6)) (-5 *1 (-1226 *5 *6)))) (-2419 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1227 *5)) (-4 *5 (-1181)) (-4 *2 (-1181)) (-5 *1 (-1226 *5 *2)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1227 *6)) (-4 *6 (-1181)) (-4 *5 (-1181)) (-5 *2 (-1227 *5)) (-5 *1 (-1226 *6 *5))))) +(-10 -7 (-15 -3572 ((-1227 |#2|) (-1 |#2| |#1| |#2|) (-1227 |#1|) |#2|)) (-15 -2419 (|#2| (-1 |#2| |#1| |#2|) (-1227 |#1|) |#2|)) (-15 -3972 ((-1227 |#2|) (-1 |#2| |#1|) (-1227 |#1|))) (-15 -3972 ((-3 (-1227 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1227 |#1|)))) +((-1504 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2584 (($ (-749)) NIL (|has| |#1| (-23)))) (-2382 (($ (-623 |#1|)) 9)) (-3029 (((-1232) $ (-550) (-550)) NIL (|has| $ (-6 -4343)))) (-3654 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-3491 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4343))) (($ $) NIL (-12 (|has| $ (-6 -4343)) (|has| |#1| (-825))))) (-1674 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-4047 (((-112) $ (-749)) NIL)) (-1705 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343))) ((|#1| $ (-1194 (-550)) |#1|) NIL (|has| $ (-6 -4343)))) (-4253 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3513 (($) NIL T CONST)) (-2342 (($ $) NIL (|has| $ (-6 -4343)))) (-3243 (($ $) NIL)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3137 (($ |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2419 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4342))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4342)))) (-3245 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4343)))) (-3181 ((|#1| $ (-550)) NIL)) (-2302 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1068))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1068)))) (-3450 (((-623 |#1|) $) 15 (|has| $ (-6 -4342)))) (-2012 (((-667 |#1|) $ $) NIL (|has| |#1| (-1020)))) (-2578 (($ (-749) |#1|) NIL)) (-1859 (((-112) $ (-749)) NIL)) (-3195 (((-550) $) NIL (|has| (-550) (-825)))) (-2707 (($ $ $) NIL (|has| |#1| (-825)))) (-1832 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2689 (((-623 |#1|) $) NIL (|has| $ (-6 -4342)))) (-1921 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3283 (((-550) $) NIL (|has| (-550) (-825)))) (-4164 (($ $ $) NIL (|has| |#1| (-825)))) (-3234 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3182 ((|#1| $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1020))))) (-1573 (((-112) $ (-749)) NIL)) (-3772 ((|#1| $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1020))))) (-1825 (((-1126) $) NIL (|has| |#1| (-1068)))) (-2055 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2325 (((-623 (-550)) $) NIL)) (-2400 (((-112) (-550) $) NIL)) (-3337 (((-1088) $) NIL (|has| |#1| (-1068)))) (-1293 ((|#1| $) NIL (|has| (-550) (-825)))) (-3321 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3111 (($ $ |#1|) NIL (|has| $ (-6 -4343)))) (-1543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068)))) (($ $ (-623 |#1|) (-623 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2256 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-2477 (((-623 |#1|) $) NIL)) (-2902 (((-112) $) NIL)) (-3498 (($) NIL)) (-2680 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3440 ((|#1| $ $) NIL (|has| |#1| (-1020)))) (-1529 (($ $ (-550)) NIL) (($ $ (-1194 (-550))) NIL)) (-3305 (($ $ $) NIL (|has| |#1| (-1020)))) (-3350 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#1| (-1068))))) (-3593 (($ $ $ (-550)) NIL (|has| $ (-6 -4343)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) 19 (|has| |#1| (-596 (-526))))) (-1532 (($ (-623 |#1|)) 8)) (-3227 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-623 $)) NIL)) (-1518 (((-836) $) NIL (|has| |#1| (-595 (-836))))) (-1675 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4342)))) (-2363 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2345 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2316 (((-112) $ $) NIL (|has| |#1| (-1068)))) (-2354 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2335 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2403 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2391 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1227 |#1|) (-13 (-1225 |#1|) (-10 -8 (-15 -2382 ($ (-623 |#1|))))) (-1181)) (T -1227)) +((-2382 (*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-1227 *3))))) +(-13 (-1225 |#1|) (-10 -8 (-15 -2382 ($ (-623 |#1|))))) +((-1504 (((-112) $ $) NIL)) (-2206 (((-1126) $ (-1126)) 90) (((-1126) $ (-1126) (-1126)) 88) (((-1126) $ (-1126) (-623 (-1126))) 87)) (-1405 (($) 59)) (-2251 (((-1232) $ (-460) (-894)) 45)) (-1476 (((-1232) $ (-894) (-1126)) 73) (((-1232) $ (-894) (-847)) 74)) (-3594 (((-1232) $ (-894) (-372) (-372)) 48)) (-4098 (((-1232) $ (-1126)) 69)) (-2233 (((-1232) $ (-894) (-1126)) 78)) (-2720 (((-1232) $ (-894) (-372) (-372)) 49)) (-2946 (((-1232) $ (-894) (-894)) 46)) (-2184 (((-1232) $) 70)) (-2930 (((-1232) $ (-894) (-1126)) 77)) (-2144 (((-1232) $ (-460) (-894)) 31)) (-3030 (((-1232) $ (-894) (-1126)) 76)) (-4003 (((-623 (-256)) $) 23) (($ $ (-623 (-256))) 24)) (-2329 (((-1232) $ (-749) (-749)) 43)) (-2512 (($ $) 60) (($ (-460) (-623 (-256))) 61)) (-1825 (((-1126) $) NIL)) (-2763 (((-550) $) 38)) (-3337 (((-1088) $) NIL)) (-2235 (((-1227 (-3 (-460) "undefined")) $) 37)) (-2322 (((-1227 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3030 (-550)) (|:| -2830 (-550)) (|:| |spline| (-550)) (|:| -3705 (-550)) (|:| |axesColor| (-847)) (|:| -1476 (-550)) (|:| |unitsColor| (-847)) (|:| |showing| (-550)))) $) 36)) (-2420 (((-1232) $ (-894) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-847) (-550) (-847) (-550)) 68)) (-1530 (((-623 (-916 (-219))) $) NIL)) (-3131 (((-460) $ (-894)) 33)) (-2846 (((-1232) $ (-749) (-749) (-894) (-894)) 40)) (-2643 (((-1232) $ (-1126)) 79)) (-2830 (((-1232) $ (-894) (-1126)) 75)) (-1518 (((-836) $) 85)) (-2027 (((-1232) $) 80)) (-3705 (((-1232) $ (-894) (-1126)) 71) (((-1232) $ (-894) (-847)) 72)) (-2316 (((-112) $ $) NIL))) +(((-1228) (-13 (-1068) (-10 -8 (-15 -1530 ((-623 (-916 (-219))) $)) (-15 -1405 ($)) (-15 -2512 ($ $)) (-15 -4003 ((-623 (-256)) $)) (-15 -4003 ($ $ (-623 (-256)))) (-15 -2512 ($ (-460) (-623 (-256)))) (-15 -2420 ((-1232) $ (-894) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-847) (-550) (-847) (-550))) (-15 -2322 ((-1227 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3030 (-550)) (|:| -2830 (-550)) (|:| |spline| (-550)) (|:| -3705 (-550)) (|:| |axesColor| (-847)) (|:| -1476 (-550)) (|:| |unitsColor| (-847)) (|:| |showing| (-550)))) $)) (-15 -2235 ((-1227 (-3 (-460) "undefined")) $)) (-15 -4098 ((-1232) $ (-1126))) (-15 -2144 ((-1232) $ (-460) (-894))) (-15 -3131 ((-460) $ (-894))) (-15 -3705 ((-1232) $ (-894) (-1126))) (-15 -3705 ((-1232) $ (-894) (-847))) (-15 -1476 ((-1232) $ (-894) (-1126))) (-15 -1476 ((-1232) $ (-894) (-847))) (-15 -3030 ((-1232) $ (-894) (-1126))) (-15 -2930 ((-1232) $ (-894) (-1126))) (-15 -2830 ((-1232) $ (-894) (-1126))) (-15 -2643 ((-1232) $ (-1126))) (-15 -2027 ((-1232) $)) (-15 -2846 ((-1232) $ (-749) (-749) (-894) (-894))) (-15 -2720 ((-1232) $ (-894) (-372) (-372))) (-15 -3594 ((-1232) $ (-894) (-372) (-372))) (-15 -2233 ((-1232) $ (-894) (-1126))) (-15 -2329 ((-1232) $ (-749) (-749))) (-15 -2251 ((-1232) $ (-460) (-894))) (-15 -2946 ((-1232) $ (-894) (-894))) (-15 -2206 ((-1126) $ (-1126))) (-15 -2206 ((-1126) $ (-1126) (-1126))) (-15 -2206 ((-1126) $ (-1126) (-623 (-1126)))) (-15 -2184 ((-1232) $)) (-15 -2763 ((-550) $)) (-15 -1518 ((-836) $))))) (T -1228)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-1228)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-623 (-916 (-219)))) (-5 *1 (-1228)))) (-1405 (*1 *1) (-5 *1 (-1228))) (-2512 (*1 *1 *1) (-5 *1 (-1228))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1228)))) (-4003 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1228)))) (-2512 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-623 (-256))) (-5 *1 (-1228)))) (-2420 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-894)) (-5 *4 (-219)) (-5 *5 (-550)) (-5 *6 (-847)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1227 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3030 (-550)) (|:| -2830 (-550)) (|:| |spline| (-550)) (|:| -3705 (-550)) (|:| |axesColor| (-847)) (|:| -1476 (-550)) (|:| |unitsColor| (-847)) (|:| |showing| (-550))))) (-5 *1 (-1228)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-1227 (-3 (-460) "undefined"))) (-5 *1 (-1228)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2144 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-894)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-3131 (*1 *2 *1 *3) (-12 (-5 *3 (-894)) (-5 *2 (-460)) (-5 *1 (-1228)))) (-3705 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-3705 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-847)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-1476 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-1476 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-847)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-3030 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2930 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2830 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2643 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2846 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-749)) (-5 *4 (-894)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2720 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-894)) (-5 *4 (-372)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-3594 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-894)) (-5 *4 (-372)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2233 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2329 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2251 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-894)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2946 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2206 (*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1228)))) (-2206 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1228)))) (-2206 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-1126)) (-5 *1 (-1228)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1228)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1228))))) +(-13 (-1068) (-10 -8 (-15 -1530 ((-623 (-916 (-219))) $)) (-15 -1405 ($)) (-15 -2512 ($ $)) (-15 -4003 ((-623 (-256)) $)) (-15 -4003 ($ $ (-623 (-256)))) (-15 -2512 ($ (-460) (-623 (-256)))) (-15 -2420 ((-1232) $ (-894) (-219) (-219) (-219) (-219) (-550) (-550) (-550) (-550) (-847) (-550) (-847) (-550))) (-15 -2322 ((-1227 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3030 (-550)) (|:| -2830 (-550)) (|:| |spline| (-550)) (|:| -3705 (-550)) (|:| |axesColor| (-847)) (|:| -1476 (-550)) (|:| |unitsColor| (-847)) (|:| |showing| (-550)))) $)) (-15 -2235 ((-1227 (-3 (-460) "undefined")) $)) (-15 -4098 ((-1232) $ (-1126))) (-15 -2144 ((-1232) $ (-460) (-894))) (-15 -3131 ((-460) $ (-894))) (-15 -3705 ((-1232) $ (-894) (-1126))) (-15 -3705 ((-1232) $ (-894) (-847))) (-15 -1476 ((-1232) $ (-894) (-1126))) (-15 -1476 ((-1232) $ (-894) (-847))) (-15 -3030 ((-1232) $ (-894) (-1126))) (-15 -2930 ((-1232) $ (-894) (-1126))) (-15 -2830 ((-1232) $ (-894) (-1126))) (-15 -2643 ((-1232) $ (-1126))) (-15 -2027 ((-1232) $)) (-15 -2846 ((-1232) $ (-749) (-749) (-894) (-894))) (-15 -2720 ((-1232) $ (-894) (-372) (-372))) (-15 -3594 ((-1232) $ (-894) (-372) (-372))) (-15 -2233 ((-1232) $ (-894) (-1126))) (-15 -2329 ((-1232) $ (-749) (-749))) (-15 -2251 ((-1232) $ (-460) (-894))) (-15 -2946 ((-1232) $ (-894) (-894))) (-15 -2206 ((-1126) $ (-1126))) (-15 -2206 ((-1126) $ (-1126) (-1126))) (-15 -2206 ((-1126) $ (-1126) (-623 (-1126)))) (-15 -2184 ((-1232) $)) (-15 -2763 ((-550) $)) (-15 -1518 ((-836) $)))) +((-1504 (((-112) $ $) NIL)) (-1322 (((-1232) $ (-372)) 140) (((-1232) $ (-372) (-372) (-372)) 141)) (-2206 (((-1126) $ (-1126)) 148) (((-1126) $ (-1126) (-1126)) 146) (((-1126) $ (-1126) (-623 (-1126))) 145)) (-2664 (($) 50)) (-2725 (((-1232) $ (-372) (-372) (-372) (-372) (-372)) 116) (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $) 114) (((-1232) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 115) (((-1232) $ (-550) (-550) (-372) (-372) (-372)) 117) (((-1232) $ (-372) (-372)) 118) (((-1232) $ (-372) (-372) (-372)) 125)) (-1828 (((-372)) 97) (((-372) (-372)) 98)) (-2037 (((-372)) 92) (((-372) (-372)) 94)) (-1935 (((-372)) 95) (((-372) (-372)) 96)) (-1602 (((-372)) 101) (((-372) (-372)) 102)) (-1712 (((-372)) 99) (((-372) (-372)) 100)) (-3594 (((-1232) $ (-372) (-372)) 142)) (-4098 (((-1232) $ (-1126)) 126)) (-2501 (((-1101 (-219)) $) 51) (($ $ (-1101 (-219))) 52)) (-3942 (((-1232) $ (-1126)) 154)) (-3854 (((-1232) $ (-1126)) 155)) (-3264 (((-1232) $ (-372) (-372)) 124) (((-1232) $ (-550) (-550)) 139)) (-2946 (((-1232) $ (-894) (-894)) 132)) (-2184 (((-1232) $) 112)) (-4285 (((-1232) $ (-1126)) 153)) (-3458 (((-1232) $ (-1126)) 109)) (-4003 (((-623 (-256)) $) 53) (($ $ (-623 (-256))) 54)) (-2329 (((-1232) $ (-749) (-749)) 131)) (-2417 (((-1232) $ (-749) (-916 (-219))) 160)) (-2581 (($ $) 56) (($ (-1101 (-219)) (-1126)) 57) (($ (-1101 (-219)) (-623 (-256))) 58)) (-1889 (((-1232) $ (-372) (-372) (-372)) 106)) (-1825 (((-1126) $) NIL)) (-2763 (((-550) $) 103)) (-1782 (((-1232) $ (-372)) 143)) (-4055 (((-1232) $ (-372)) 158)) (-3337 (((-1088) $) NIL)) (-4158 (((-1232) $ (-372)) 157)) (-3371 (((-1232) $ (-1126)) 111)) (-2846 (((-1232) $ (-749) (-749) (-894) (-894)) 130)) (-3579 (((-1232) $ (-1126)) 108)) (-2643 (((-1232) $ (-1126)) 110)) (-1651 (((-1232) $ (-155) (-155)) 129)) (-1518 (((-836) $) 137)) (-2027 (((-1232) $) 113)) (-2007 (((-1232) $ (-1126)) 156)) (-3705 (((-1232) $ (-1126)) 107)) (-2316 (((-112) $ $) NIL))) +(((-1229) (-13 (-1068) (-10 -8 (-15 -2037 ((-372))) (-15 -2037 ((-372) (-372))) (-15 -1935 ((-372))) (-15 -1935 ((-372) (-372))) (-15 -1828 ((-372))) (-15 -1828 ((-372) (-372))) (-15 -1712 ((-372))) (-15 -1712 ((-372) (-372))) (-15 -1602 ((-372))) (-15 -1602 ((-372) (-372))) (-15 -2664 ($)) (-15 -2581 ($ $)) (-15 -2581 ($ (-1101 (-219)) (-1126))) (-15 -2581 ($ (-1101 (-219)) (-623 (-256)))) (-15 -2501 ((-1101 (-219)) $)) (-15 -2501 ($ $ (-1101 (-219)))) (-15 -2417 ((-1232) $ (-749) (-916 (-219)))) (-15 -4003 ((-623 (-256)) $)) (-15 -4003 ($ $ (-623 (-256)))) (-15 -2329 ((-1232) $ (-749) (-749))) (-15 -2946 ((-1232) $ (-894) (-894))) (-15 -4098 ((-1232) $ (-1126))) (-15 -2846 ((-1232) $ (-749) (-749) (-894) (-894))) (-15 -2725 ((-1232) $ (-372) (-372) (-372) (-372) (-372))) (-15 -2725 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -2725 ((-1232) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -2725 ((-1232) $ (-550) (-550) (-372) (-372) (-372))) (-15 -2725 ((-1232) $ (-372) (-372))) (-15 -2725 ((-1232) $ (-372) (-372) (-372))) (-15 -2643 ((-1232) $ (-1126))) (-15 -3705 ((-1232) $ (-1126))) (-15 -3579 ((-1232) $ (-1126))) (-15 -3458 ((-1232) $ (-1126))) (-15 -3371 ((-1232) $ (-1126))) (-15 -3264 ((-1232) $ (-372) (-372))) (-15 -3264 ((-1232) $ (-550) (-550))) (-15 -1322 ((-1232) $ (-372))) (-15 -1322 ((-1232) $ (-372) (-372) (-372))) (-15 -3594 ((-1232) $ (-372) (-372))) (-15 -4285 ((-1232) $ (-1126))) (-15 -4158 ((-1232) $ (-372))) (-15 -4055 ((-1232) $ (-372))) (-15 -3942 ((-1232) $ (-1126))) (-15 -3854 ((-1232) $ (-1126))) (-15 -2007 ((-1232) $ (-1126))) (-15 -1889 ((-1232) $ (-372) (-372) (-372))) (-15 -1782 ((-1232) $ (-372))) (-15 -2184 ((-1232) $)) (-15 -1651 ((-1232) $ (-155) (-155))) (-15 -2206 ((-1126) $ (-1126))) (-15 -2206 ((-1126) $ (-1126) (-1126))) (-15 -2206 ((-1126) $ (-1126) (-623 (-1126)))) (-15 -2027 ((-1232) $)) (-15 -2763 ((-550) $))))) (T -1229)) +((-2037 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-2037 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-1935 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-1828 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-1712 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-1602 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-1602 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) (-2664 (*1 *1) (-5 *1 (-1229))) (-2581 (*1 *1 *1) (-5 *1 (-1229))) (-2581 (*1 *1 *2 *3) (-12 (-5 *2 (-1101 (-219))) (-5 *3 (-1126)) (-5 *1 (-1229)))) (-2581 (*1 *1 *2 *3) (-12 (-5 *2 (-1101 (-219))) (-5 *3 (-623 (-256))) (-5 *1 (-1229)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-1101 (-219))) (-5 *1 (-1229)))) (-2501 (*1 *1 *1 *2) (-12 (-5 *2 (-1101 (-219))) (-5 *1 (-1229)))) (-2417 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-916 (-219))) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1229)))) (-4003 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1229)))) (-2329 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2946 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2846 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-749)) (-5 *4 (-894)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2725 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-1229)))) (-2725 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2725 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-550)) (-5 *4 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2725 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2725 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2643 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3705 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3579 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3458 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3371 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3264 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3264 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-1322 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3594 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-4285 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-4055 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-1889 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-1782 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1229)))) (-1651 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2206 (*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1229)))) (-2206 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1229)))) (-2206 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-1126)) (-5 *1 (-1229)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1229)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1229))))) +(-13 (-1068) (-10 -8 (-15 -2037 ((-372))) (-15 -2037 ((-372) (-372))) (-15 -1935 ((-372))) (-15 -1935 ((-372) (-372))) (-15 -1828 ((-372))) (-15 -1828 ((-372) (-372))) (-15 -1712 ((-372))) (-15 -1712 ((-372) (-372))) (-15 -1602 ((-372))) (-15 -1602 ((-372) (-372))) (-15 -2664 ($)) (-15 -2581 ($ $)) (-15 -2581 ($ (-1101 (-219)) (-1126))) (-15 -2581 ($ (-1101 (-219)) (-623 (-256)))) (-15 -2501 ((-1101 (-219)) $)) (-15 -2501 ($ $ (-1101 (-219)))) (-15 -2417 ((-1232) $ (-749) (-916 (-219)))) (-15 -4003 ((-623 (-256)) $)) (-15 -4003 ($ $ (-623 (-256)))) (-15 -2329 ((-1232) $ (-749) (-749))) (-15 -2946 ((-1232) $ (-894) (-894))) (-15 -4098 ((-1232) $ (-1126))) (-15 -2846 ((-1232) $ (-749) (-749) (-894) (-894))) (-15 -2725 ((-1232) $ (-372) (-372) (-372) (-372) (-372))) (-15 -2725 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -2725 ((-1232) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -2725 ((-1232) $ (-550) (-550) (-372) (-372) (-372))) (-15 -2725 ((-1232) $ (-372) (-372))) (-15 -2725 ((-1232) $ (-372) (-372) (-372))) (-15 -2643 ((-1232) $ (-1126))) (-15 -3705 ((-1232) $ (-1126))) (-15 -3579 ((-1232) $ (-1126))) (-15 -3458 ((-1232) $ (-1126))) (-15 -3371 ((-1232) $ (-1126))) (-15 -3264 ((-1232) $ (-372) (-372))) (-15 -3264 ((-1232) $ (-550) (-550))) (-15 -1322 ((-1232) $ (-372))) (-15 -1322 ((-1232) $ (-372) (-372) (-372))) (-15 -3594 ((-1232) $ (-372) (-372))) (-15 -4285 ((-1232) $ (-1126))) (-15 -4158 ((-1232) $ (-372))) (-15 -4055 ((-1232) $ (-372))) (-15 -3942 ((-1232) $ (-1126))) (-15 -3854 ((-1232) $ (-1126))) (-15 -2007 ((-1232) $ (-1126))) (-15 -1889 ((-1232) $ (-372) (-372) (-372))) (-15 -1782 ((-1232) $ (-372))) (-15 -2184 ((-1232) $)) (-15 -1651 ((-1232) $ (-155) (-155))) (-15 -2206 ((-1126) $ (-1126))) (-15 -2206 ((-1126) $ (-1126) (-1126))) (-15 -2206 ((-1126) $ (-1126) (-623 (-1126)))) (-15 -2027 ((-1232) $)) (-15 -2763 ((-550) $)))) +((-3444 (((-623 (-1126)) (-623 (-1126))) 94) (((-623 (-1126))) 90)) (-3543 (((-623 (-1126))) 88)) (-1427 (((-623 (-894)) (-623 (-894))) 63) (((-623 (-894))) 60)) (-1321 (((-623 (-749)) (-623 (-749))) 57) (((-623 (-749))) 53)) (-3342 (((-1232)) 65)) (-3744 (((-894) (-894)) 81) (((-894)) 80)) (-3641 (((-894) (-894)) 79) (((-894)) 78)) (-4157 (((-847) (-847)) 75) (((-847)) 74)) (-2754 (((-219)) 85) (((-219) (-372)) 87)) (-3844 (((-894)) 82) (((-894) (-894)) 83)) (-4271 (((-894) (-894)) 77) (((-894)) 76)) (-2121 (((-847) (-847)) 69) (((-847)) 67)) (-3962 (((-847) (-847)) 71) (((-847)) 70)) (-4064 (((-847) (-847)) 73) (((-847)) 72))) +(((-1230) (-10 -7 (-15 -2121 ((-847))) (-15 -2121 ((-847) (-847))) (-15 -3962 ((-847))) (-15 -3962 ((-847) (-847))) (-15 -4064 ((-847))) (-15 -4064 ((-847) (-847))) (-15 -4157 ((-847))) (-15 -4157 ((-847) (-847))) (-15 -4271 ((-894))) (-15 -4271 ((-894) (-894))) (-15 -1321 ((-623 (-749)))) (-15 -1321 ((-623 (-749)) (-623 (-749)))) (-15 -1427 ((-623 (-894)))) (-15 -1427 ((-623 (-894)) (-623 (-894)))) (-15 -3342 ((-1232))) (-15 -3444 ((-623 (-1126)))) (-15 -3444 ((-623 (-1126)) (-623 (-1126)))) (-15 -3543 ((-623 (-1126)))) (-15 -3641 ((-894))) (-15 -3744 ((-894))) (-15 -3641 ((-894) (-894))) (-15 -3744 ((-894) (-894))) (-15 -3844 ((-894) (-894))) (-15 -3844 ((-894))) (-15 -2754 ((-219) (-372))) (-15 -2754 ((-219))))) (T -1230)) +((-2754 (*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1230)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-1230)))) (-3844 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) (-3744 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) (-3641 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) (-3543 (*1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1230)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1230)))) (-3444 (*1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1230)))) (-3342 (*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1230)))) (-1427 (*1 *2 *2) (-12 (-5 *2 (-623 (-894))) (-5 *1 (-1230)))) (-1427 (*1 *2) (-12 (-5 *2 (-623 (-894))) (-5 *1 (-1230)))) (-1321 (*1 *2 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1230)))) (-1321 (*1 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1230)))) (-4271 (*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) (-4271 (*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) (-4157 (*1 *2 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) (-4157 (*1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) (-4064 (*1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) (-3962 (*1 *2 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) (-3962 (*1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) (-2121 (*1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230))))) +(-10 -7 (-15 -2121 ((-847))) (-15 -2121 ((-847) (-847))) (-15 -3962 ((-847))) (-15 -3962 ((-847) (-847))) (-15 -4064 ((-847))) (-15 -4064 ((-847) (-847))) (-15 -4157 ((-847))) (-15 -4157 ((-847) (-847))) (-15 -4271 ((-894))) (-15 -4271 ((-894) (-894))) (-15 -1321 ((-623 (-749)))) (-15 -1321 ((-623 (-749)) (-623 (-749)))) (-15 -1427 ((-623 (-894)))) (-15 -1427 ((-623 (-894)) (-623 (-894)))) (-15 -3342 ((-1232))) (-15 -3444 ((-623 (-1126)))) (-15 -3444 ((-623 (-1126)) (-623 (-1126)))) (-15 -3543 ((-623 (-1126)))) (-15 -3641 ((-894))) (-15 -3744 ((-894))) (-15 -3641 ((-894) (-894))) (-15 -3744 ((-894) (-894))) (-15 -3844 ((-894) (-894))) (-15 -3844 ((-894))) (-15 -2754 ((-219) (-372))) (-15 -2754 ((-219)))) +((-3699 (((-460) (-623 (-623 (-916 (-219)))) (-623 (-256))) 21) (((-460) (-623 (-623 (-916 (-219))))) 20) (((-460) (-623 (-623 (-916 (-219)))) (-847) (-847) (-894) (-623 (-256))) 19)) (-2630 (((-1228) (-623 (-623 (-916 (-219)))) (-623 (-256))) 27) (((-1228) (-623 (-623 (-916 (-219)))) (-847) (-847) (-894) (-623 (-256))) 26)) (-1518 (((-1228) (-460)) 38))) +(((-1231) (-10 -7 (-15 -3699 ((-460) (-623 (-623 (-916 (-219)))) (-847) (-847) (-894) (-623 (-256)))) (-15 -3699 ((-460) (-623 (-623 (-916 (-219)))))) (-15 -3699 ((-460) (-623 (-623 (-916 (-219)))) (-623 (-256)))) (-15 -2630 ((-1228) (-623 (-623 (-916 (-219)))) (-847) (-847) (-894) (-623 (-256)))) (-15 -2630 ((-1228) (-623 (-623 (-916 (-219)))) (-623 (-256)))) (-15 -1518 ((-1228) (-460))))) (T -1231)) +((-1518 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1228)) (-5 *1 (-1231)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-1231)))) (-2630 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-847)) (-5 *5 (-894)) (-5 *6 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-1231)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-623 (-256))) (-5 *2 (-460)) (-5 *1 (-1231)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *2 (-460)) (-5 *1 (-1231)))) (-3699 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-847)) (-5 *5 (-894)) (-5 *6 (-623 (-256))) (-5 *2 (-460)) (-5 *1 (-1231))))) +(-10 -7 (-15 -3699 ((-460) (-623 (-623 (-916 (-219)))) (-847) (-847) (-894) (-623 (-256)))) (-15 -3699 ((-460) (-623 (-623 (-916 (-219)))))) (-15 -3699 ((-460) (-623 (-623 (-916 (-219)))) (-623 (-256)))) (-15 -2630 ((-1228) (-623 (-623 (-916 (-219)))) (-847) (-847) (-894) (-623 (-256)))) (-15 -2630 ((-1228) (-623 (-623 (-916 (-219)))) (-623 (-256)))) (-15 -1518 ((-1228) (-460)))) +((-3730 (($) 7)) (-1518 (((-836) $) 10))) +(((-1232) (-10 -8 (-15 -3730 ($)) (-15 -1518 ((-836) $)))) (T -1232)) +((-1518 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-1232)))) (-3730 (*1 *1) (-5 *1 (-1232)))) +(-10 -8 (-15 -3730 ($)) (-15 -1518 ((-836) $))) +((-2414 (($ $ |#2|) 10))) +(((-1233 |#1| |#2|) (-10 -8 (-15 -2414 (|#1| |#1| |#2|))) (-1234 |#2|) (-356)) (T -1233)) +NIL +(-10 -8 (-15 -2414 (|#1| |#1| |#2|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2854 (((-133)) 28)) (-1518 (((-836) $) 11)) (-2626 (($) 18 T CONST)) (-2316 (((-112) $ $) 6)) (-2414 (($ $ |#1|) 29)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1234 |#1|) (-138) (-356)) (T -1234)) +((-2414 (*1 *1 *1 *2) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-356)))) (-2854 (*1 *2) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) +(-13 (-696 |t#1|) (-10 -8 (-15 -2414 ($ $ |t#1|)) (-15 -2854 ((-133))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-1026 |#1|) . T) ((-1068) . T)) +((-2211 (((-623 (-1175 |#1|)) (-1144) (-1175 |#1|)) 74)) (-3124 (((-1124 (-1124 (-925 |#1|))) (-1144) (-1124 (-925 |#1|))) 53)) (-2290 (((-1 (-1124 (-1175 |#1|)) (-1124 (-1175 |#1|))) (-749) (-1175 |#1|) (-1124 (-1175 |#1|))) 64)) (-2945 (((-1 (-1124 (-925 |#1|)) (-1124 (-925 |#1|))) (-749)) 55)) (-3217 (((-1 (-1140 (-925 |#1|)) (-925 |#1|)) (-1144)) 29)) (-3034 (((-1 (-1124 (-925 |#1|)) (-1124 (-925 |#1|))) (-749)) 54))) +(((-1235 |#1|) (-10 -7 (-15 -2945 ((-1 (-1124 (-925 |#1|)) (-1124 (-925 |#1|))) (-749))) (-15 -3034 ((-1 (-1124 (-925 |#1|)) (-1124 (-925 |#1|))) (-749))) (-15 -3124 ((-1124 (-1124 (-925 |#1|))) (-1144) (-1124 (-925 |#1|)))) (-15 -3217 ((-1 (-1140 (-925 |#1|)) (-925 |#1|)) (-1144))) (-15 -2211 ((-623 (-1175 |#1|)) (-1144) (-1175 |#1|))) (-15 -2290 ((-1 (-1124 (-1175 |#1|)) (-1124 (-1175 |#1|))) (-749) (-1175 |#1|) (-1124 (-1175 |#1|))))) (-356)) (T -1235)) +((-2290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-749)) (-4 *6 (-356)) (-5 *4 (-1175 *6)) (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1235 *6)) (-5 *5 (-1124 *4)))) (-2211 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-4 *5 (-356)) (-5 *2 (-623 (-1175 *5))) (-5 *1 (-1235 *5)) (-5 *4 (-1175 *5)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1 (-1140 (-925 *4)) (-925 *4))) (-5 *1 (-1235 *4)) (-4 *4 (-356)))) (-3124 (*1 *2 *3 *4) (-12 (-5 *3 (-1144)) (-4 *5 (-356)) (-5 *2 (-1124 (-1124 (-925 *5)))) (-5 *1 (-1235 *5)) (-5 *4 (-1124 (-925 *5))))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-925 *4)) (-1124 (-925 *4)))) (-5 *1 (-1235 *4)) (-4 *4 (-356)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-925 *4)) (-1124 (-925 *4)))) (-5 *1 (-1235 *4)) (-4 *4 (-356))))) +(-10 -7 (-15 -2945 ((-1 (-1124 (-925 |#1|)) (-1124 (-925 |#1|))) (-749))) (-15 -3034 ((-1 (-1124 (-925 |#1|)) (-1124 (-925 |#1|))) (-749))) (-15 -3124 ((-1124 (-1124 (-925 |#1|))) (-1144) (-1124 (-925 |#1|)))) (-15 -3217 ((-1 (-1140 (-925 |#1|)) (-925 |#1|)) (-1144))) (-15 -2211 ((-623 (-1175 |#1|)) (-1144) (-1175 |#1|))) (-15 -2290 ((-1 (-1124 (-1175 |#1|)) (-1124 (-1175 |#1|))) (-749) (-1175 |#1|) (-1124 (-1175 |#1|))))) +((-2457 (((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|) 75)) (-2372 (((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) 74))) +(((-1236 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2372 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -2457 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|))) (-342) (-1203 |#1|) (-1203 |#2|) (-402 |#2| |#3|)) (T -1236)) +((-2457 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 *3)) (-5 *2 (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-1236 *4 *3 *5 *6)) (-4 *6 (-402 *3 *5)))) (-2372 (*1 *2) (-12 (-4 *3 (-342)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 *4)) (-5 *2 (-2 (|:| -2437 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) (-5 *1 (-1236 *3 *4 *5 *6)) (-4 *6 (-402 *4 *5))))) +(-10 -7 (-15 -2372 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -2457 ((-2 (|:| -2437 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|))) +((-1504 (((-112) $ $) NIL)) (-2541 (((-1103) $) 11)) (-2625 (((-1103) $) 9)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 19) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-1237) (-13 (-1051) (-10 -8 (-15 -2625 ((-1103) $)) (-15 -2541 ((-1103) $))))) (T -1237)) +((-2625 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1237)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1237))))) +(-13 (-1051) (-10 -8 (-15 -2625 ((-1103) $)) (-15 -2541 ((-1103) $)))) +((-1504 (((-112) $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2817 (((-1103) $) 9)) (-1518 (((-836) $) 17) (((-1149) $) NIL) (($ (-1149)) NIL)) (-2316 (((-112) $ $) NIL))) +(((-1238) (-13 (-1051) (-10 -8 (-15 -2817 ((-1103) $))))) (T -1238)) +((-2817 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1238))))) +(-13 (-1051) (-10 -8 (-15 -2817 ((-1103) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 43)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) NIL)) (-3102 (((-112) $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1518 (((-836) $) 64) (($ (-550)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-2390 (((-749)) NIL)) (-1545 (((-1232) (-749)) 16)) (-2626 (($) 27 T CONST)) (-2636 (($) 67 T CONST)) (-2316 (((-112) $ $) 69)) (-2414 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2403 (($ $) 71) (($ $ $) NIL)) (-2391 (($ $ $) 47)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-1239 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1020) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1518 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -2414 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1518 ($ |#4|)) (-15 -1545 ((-1232) (-749))))) (-1020) (-825) (-771) (-922 |#1| |#3| |#2|) (-623 |#2|) (-623 (-749)) (-749)) (T -1239)) +((-1518 (*1 *2 *1) (-12 (-4 *2 (-922 *3 *5 *4)) (-5 *1 (-1239 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-623 *4)) (-14 *7 (-623 (-749))) (-14 *8 (-749)))) (-2414 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1020)) (-4 *3 (-825)) (-4 *4 (-771)) (-14 *6 (-623 *3)) (-5 *1 (-1239 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-922 *2 *4 *3)) (-14 *7 (-623 (-749))) (-14 *8 (-749)))) (-1518 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-623 *4)) (-5 *1 (-1239 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-922 *3 *5 *4)) (-14 *7 (-623 (-749))) (-14 *8 (-749)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1020)) (-4 *5 (-825)) (-4 *6 (-771)) (-14 *8 (-623 *5)) (-5 *2 (-1232)) (-5 *1 (-1239 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-922 *4 *6 *5)) (-14 *9 (-623 *3)) (-14 *10 *3)))) +(-13 (-1020) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1518 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -2414 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1518 ($ |#4|)) (-15 -1545 ((-1232) (-749))))) +((-1504 (((-112) $ $) NIL)) (-1672 (((-623 (-2 (|:| -2027 $) (|:| -3257 (-623 |#4|)))) (-623 |#4|)) NIL)) (-1779 (((-623 $) (-623 |#4|)) 88)) (-3141 (((-623 |#3|) $) NIL)) (-2238 (((-112) $) NIL)) (-3670 (((-112) $) NIL (|has| |#1| (-542)))) (-3301 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4074 ((|#4| |#4| $) NIL)) (-1674 (((-2 (|:| |under| $) (|:| -1608 $) (|:| |upper| $)) $ |#3|) NIL)) (-4047 (((-112) $ (-749)) NIL)) (-4253 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3513 (($) NIL T CONST)) (-2976 (((-112) $) NIL (|has| |#1| (-542)))) (-3156 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3059 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3253 (((-112) $) NIL (|has| |#1| (-542)))) (-4156 (((-623 |#4|) (-623 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3774 (((-623 |#4|) (-623 |#4|) $) 25 (|has| |#1| (-542)))) (-3872 (((-623 |#4|) (-623 |#4|) $) NIL (|has| |#1| (-542)))) (-3880 (((-3 $ "failed") (-623 |#4|)) NIL)) (-2726 (($ (-623 |#4|)) NIL)) (-1308 (((-3 $ "failed") $) 70)) (-2067 ((|#4| |#4| $) 75)) (-1328 (($ $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-3137 (($ |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-2786 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-3404 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1878 ((|#4| |#4| $) NIL)) (-2419 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4342))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4342))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3589 (((-2 (|:| -2027 (-623 |#4|)) (|:| -3257 (-623 |#4|))) $) NIL)) (-3450 (((-623 |#4|) $) NIL (|has| $ (-6 -4342)))) (-3499 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3952 ((|#3| $) 76)) (-1859 (((-112) $ (-749)) NIL)) (-2689 (((-623 |#4|) $) 29 (|has| $ (-6 -4342)))) (-1921 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068))))) (-1883 (((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-623 |#4|)) 35)) (-3234 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4343)))) (-3972 (($ (-1 |#4| |#4|) $) NIL)) (-2650 (((-623 |#3|) $) NIL)) (-2568 (((-112) |#3| $) NIL)) (-1573 (((-112) $ (-749)) NIL)) (-1825 (((-1126) $) NIL)) (-3159 (((-3 |#4| "failed") $) NIL)) (-3671 (((-623 |#4|) $) 50)) (-1296 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3900 ((|#4| |#4| $) 74)) (-3831 (((-112) $ $) 85)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-1394 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3984 ((|#4| |#4| $) NIL)) (-3337 (((-1088) $) NIL)) (-1293 (((-3 |#4| "failed") $) 69)) (-3321 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2654 (((-3 $ "failed") $ |#4|) NIL)) (-2272 (($ $ |#4|) NIL)) (-1543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-3866 (($ $ (-623 |#4|) (-623 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068)))) (($ $ (-623 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1068))))) (-4140 (((-112) $ $) NIL)) (-2902 (((-112) $) 67)) (-3498 (($) 42)) (-2970 (((-749) $) NIL)) (-3350 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4342)) (|has| |#4| (-1068)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1731 (($ $) NIL)) (-4028 (((-526) $) NIL (|has| |#4| (-596 (-526))))) (-1532 (($ (-623 |#4|)) NIL)) (-2315 (($ $ |#3|) NIL)) (-2486 (($ $ |#3|) NIL)) (-1969 (($ $) NIL)) (-2401 (($ $ |#3|) NIL)) (-1518 (((-836) $) NIL) (((-623 |#4|) $) 57)) (-2580 (((-749) $) NIL (|has| |#3| (-361)))) (-1773 (((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-623 |#4|)) 41)) (-1655 (((-623 $) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-623 $) (-623 |#4|)) 66)) (-3753 (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2038 (-623 |#4|))) "failed") (-623 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4259 (((-112) $ (-1 (-112) |#4| (-623 |#4|))) NIL)) (-1675 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4342)))) (-1579 (((-623 |#3|) $) NIL)) (-1288 (((-112) |#3| $) NIL)) (-2316 (((-112) $ $) NIL)) (-3191 (((-749) $) NIL (|has| $ (-6 -4342))))) +(((-1240 |#1| |#2| |#3| |#4|) (-13 (-1174 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1883 ((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1883 ((-3 $ "failed") (-623 |#4|))) (-15 -1773 ((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1773 ((-3 $ "failed") (-623 |#4|))) (-15 -1655 ((-623 $) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1655 ((-623 $) (-623 |#4|))))) (-542) (-771) (-825) (-1034 |#1| |#2| |#3|)) (T -1240)) +((-1883 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1240 *5 *6 *7 *8)))) (-1883 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1240 *3 *4 *5 *6)))) (-1773 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1240 *5 *6 *7 *8)))) (-1773 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1240 *3 *4 *5 *6)))) (-1655 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1034 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-623 (-1240 *6 *7 *8 *9))) (-5 *1 (-1240 *6 *7 *8 *9)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-1240 *4 *5 *6 *7))) (-5 *1 (-1240 *4 *5 *6 *7))))) +(-13 (-1174 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1883 ((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1883 ((-3 $ "failed") (-623 |#4|))) (-15 -1773 ((-3 $ "failed") (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1773 ((-3 $ "failed") (-623 |#4|))) (-15 -1655 ((-623 $) (-623 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1655 ((-623 $) (-623 |#4|))))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3219 (((-3 $ "failed") $ $) 19)) (-3513 (($) 17 T CONST)) (-1386 (((-3 $ "failed") $) 32)) (-3102 (((-112) $) 30)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#1|) 36)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-1241 |#1|) (-138) (-1020)) (T -1241)) +((-1518 (*1 *1 *2) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1020))))) +(-13 (-1020) (-111 |t#1| |t#1|) (-10 -8 (-15 -1518 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1026 |#1|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T)) +((-1504 (((-112) $ $) 60)) (-3433 (((-112) $) NIL)) (-1540 (((-623 |#1|) $) 45)) (-2859 (($ $ (-749)) 39)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1400 (($ $ (-749)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3513 (($) NIL T CONST)) (-3527 (($ $ $) 63) (($ $ (-797 |#1|)) 49) (($ $ |#1|) 53)) (-3880 (((-3 (-797 |#1|) "failed") $) NIL)) (-2726 (((-797 |#1|) $) NIL)) (-3295 (($ $) 32)) (-1386 (((-3 $ "failed") $) NIL)) (-2036 (((-112) $) NIL)) (-1933 (($ $) NIL)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-1792 (($ (-797 |#1|) |#2|) 31)) (-1522 (($ $) 33)) (-3739 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 12)) (-3960 (((-797 |#1|) $) NIL)) (-4062 (((-797 |#1|) $) 34)) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-3636 (($ $ $) 62) (($ $ (-797 |#1|)) 51) (($ $ |#1|) 55)) (-1565 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3267 (((-797 |#1|) $) 28)) (-3277 ((|#2| $) 30)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-2970 (((-749) $) 36)) (-3870 (((-112) $) 40)) (-2258 ((|#2| $) NIL)) (-1518 (((-836) $) NIL) (($ (-797 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-550)) NIL)) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ (-797 |#1|)) NIL)) (-2855 ((|#2| $ $) 65) ((|#2| $ (-797 |#1|)) NIL)) (-2390 (((-749)) NIL)) (-2626 (($) 13 T CONST)) (-2636 (($) 15 T CONST)) (-4237 (((-623 (-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2316 (((-112) $ $) 38)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 22)) (** (($ $ (-749)) NIL) (($ $ (-894)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-797 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1242 |#1| |#2|) (-13 (-375 |#2| (-797 |#1|)) (-1248 |#1| |#2|)) (-825) (-1020)) (T -1242)) +NIL +(-13 (-375 |#2| (-797 |#1|)) (-1248 |#1| |#2|)) +((-2958 ((|#3| |#3| (-749)) 23)) (-1812 ((|#3| |#3| (-749)) 27)) (-1975 ((|#3| |#3| |#3| (-749)) 28))) +(((-1243 |#1| |#2| |#3|) (-10 -7 (-15 -1812 (|#3| |#3| (-749))) (-15 -2958 (|#3| |#3| (-749))) (-15 -1975 (|#3| |#3| |#3| (-749)))) (-13 (-1020) (-696 (-400 (-550)))) (-825) (-1248 |#2| |#1|)) (T -1243)) +((-1975 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1020) (-696 (-400 (-550))))) (-4 *5 (-825)) (-5 *1 (-1243 *4 *5 *2)) (-4 *2 (-1248 *5 *4)))) (-2958 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1020) (-696 (-400 (-550))))) (-4 *5 (-825)) (-5 *1 (-1243 *4 *5 *2)) (-4 *2 (-1248 *5 *4)))) (-1812 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1020) (-696 (-400 (-550))))) (-4 *5 (-825)) (-5 *1 (-1243 *4 *5 *2)) (-4 *2 (-1248 *5 *4))))) +(-10 -7 (-15 -1812 (|#3| |#3| (-749))) (-15 -2958 (|#3| |#3| (-749))) (-15 -1975 (|#3| |#3| |#3| (-749)))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1540 (((-623 |#1|) $) 38)) (-3219 (((-3 $ "failed") $ $) 19)) (-1400 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-749)) 40 (|has| |#2| (-170)))) (-3513 (($) 17 T CONST)) (-3527 (($ $ |#1|) 52) (($ $ (-797 |#1|)) 51) (($ $ $) 50)) (-3880 (((-3 (-797 |#1|) "failed") $) 62)) (-2726 (((-797 |#1|) $) 61)) (-1386 (((-3 $ "failed") $) 32)) (-2036 (((-112) $) 43)) (-1933 (($ $) 42)) (-3102 (((-112) $) 30)) (-3439 (((-112) $) 48)) (-1792 (($ (-797 |#1|) |#2|) 49)) (-1522 (($ $) 47)) (-3739 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 58)) (-3960 (((-797 |#1|) $) 59)) (-3972 (($ (-1 |#2| |#2|) $) 39)) (-3636 (($ $ |#1|) 55) (($ $ (-797 |#1|)) 54) (($ $ $) 53)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-3870 (((-112) $) 45)) (-2258 ((|#2| $) 44)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#2|) 66) (($ (-797 |#1|)) 63) (($ |#1|) 46)) (-2855 ((|#2| $ (-797 |#1|)) 57) ((|#2| $ $) 56)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1244 |#1| |#2|) (-138) (-825) (-1020)) (T -1244)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1020)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *2 (-797 *3)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *2 (-2 (|:| |k| (-797 *3)) (|:| |c| *4))))) (-2855 (*1 *2 *1 *3) (-12 (-5 *3 (-797 *4)) (-4 *1 (-1244 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1020)))) (-2855 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1020)))) (-3636 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) (-3636 (*1 *1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)))) (-3636 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) (-3527 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) (-3527 (*1 *1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)))) (-3527 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-797 *4)) (-4 *4 (-825)) (-4 *1 (-1244 *4 *3)) (-4 *3 (-1020)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *2 (-112)))) (-1522 (*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) (-1518 (*1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *2 (-112)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1020)))) (-2036 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *2 (-112)))) (-1933 (*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) (-1400 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)) (-4 *3 (-170)))) (-1400 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-4 *4 (-170)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *2 (-623 *3))))) +(-13 (-1020) (-1241 |t#2|) (-1011 (-797 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3960 ((-797 |t#1|) $)) (-15 -3739 ((-2 (|:| |k| (-797 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2855 (|t#2| $ (-797 |t#1|))) (-15 -2855 (|t#2| $ $)) (-15 -3636 ($ $ |t#1|)) (-15 -3636 ($ $ (-797 |t#1|))) (-15 -3636 ($ $ $)) (-15 -3527 ($ $ |t#1|)) (-15 -3527 ($ $ (-797 |t#1|))) (-15 -3527 ($ $ $)) (-15 -1792 ($ (-797 |t#1|) |t#2|)) (-15 -3439 ((-112) $)) (-15 -1522 ($ $)) (-15 -1518 ($ |t#1|)) (-15 -3870 ((-112) $)) (-15 -2258 (|t#2| $)) (-15 -2036 ((-112) $)) (-15 -1933 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -1400 ($ $ $)) (-15 -1400 ($ $ (-749)))) |%noBranch|) (-15 -3972 ($ (-1 |t#2| |t#2|) $)) (-15 -1540 ((-623 |t#1|) $)) (IF (|has| |t#2| (-6 -4335)) (-6 -4335) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#2|) . T) ((-626 $) . T) ((-696 |#2|) |has| |#2| (-170)) ((-705) . T) ((-1011 (-797 |#1|)) . T) ((-1026 |#2|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1241 |#2|) . T)) +((-4212 (((-112) $) 15)) (-1288 (((-112) $) 14)) (-2072 (($ $) 19) (($ $ (-749)) 20))) +(((-1245 |#1| |#2|) (-10 -8 (-15 -2072 (|#1| |#1| (-749))) (-15 -2072 (|#1| |#1|)) (-15 -4212 ((-112) |#1|)) (-15 -1288 ((-112) |#1|))) (-1246 |#2|) (-356)) (T -1245)) +NIL +(-10 -8 (-15 -2072 (|#1| |#1| (-749))) (-15 -2072 (|#1| |#1|)) (-15 -4212 ((-112) |#1|)) (-15 -1288 ((-112) |#1|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-3368 (((-2 (|:| -3090 $) (|:| -4329 $) (|:| |associate| $)) $) 39)) (-1447 (($ $) 38)) (-4291 (((-112) $) 36)) (-4212 (((-112) $) 91)) (-2155 (((-749)) 87)) (-3219 (((-3 $ "failed") $ $) 19)) (-1505 (($ $) 70)) (-3564 (((-411 $) $) 69)) (-3631 (((-112) $ $) 57)) (-3513 (($) 17 T CONST)) (-3880 (((-3 |#1| "failed") $) 98)) (-2726 ((|#1| $) 97)) (-3349 (($ $ $) 53)) (-1386 (((-3 $ "failed") $) 32)) (-1519 (($ $ $) 54)) (-3291 (((-2 (|:| -2855 (-623 $)) (|:| -3935 $)) (-623 $)) 49)) (-3714 (($ $ (-749)) 84 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3933 (((-112) $) 68)) (-2475 (((-811 (-894)) $) 81 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3102 (((-112) $) 30)) (-3356 (((-3 (-623 $) "failed") (-623 $) $) 50)) (-3106 (($ $ $) 44) (($ (-623 $)) 43)) (-1825 (((-1126) $) 9)) (-3235 (($ $) 67)) (-4100 (((-112) $) 90)) (-3337 (((-1088) $) 10)) (-2619 (((-1140 $) (-1140 $) (-1140 $)) 42)) (-3139 (($ $ $) 46) (($ (-623 $)) 45)) (-3338 (((-411 $) $) 71)) (-3990 (((-811 (-894))) 88)) (-3455 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3935 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1495 (((-3 $ "failed") $ $) 40)) (-3188 (((-3 (-623 $) "failed") (-623 $) $) 48)) (-3542 (((-749) $) 56)) (-1866 (((-2 (|:| -3526 $) (|:| -2786 $)) $ $) 55)) (-3811 (((-3 (-749) "failed") $ $) 82 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2854 (((-133)) 96)) (-2970 (((-811 (-894)) $) 89)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ $) 41) (($ (-400 (-550))) 63) (($ |#1|) 99)) (-4242 (((-3 $ "failed") $) 80 (-1561 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2390 (((-749)) 28)) (-1345 (((-112) $ $) 37)) (-1288 (((-112) $) 92)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2072 (($ $) 86 (|has| |#1| (-361))) (($ $ (-749)) 85 (|has| |#1| (-361)))) (-2316 (((-112) $ $) 6)) (-2414 (($ $ $) 62) (($ $ |#1|) 95)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31) (($ $ (-550)) 66)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ $ (-400 (-550))) 65) (($ (-400 (-550)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1246 |#1|) (-138) (-356)) (T -1246)) +((-1288 (*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-811 (-894))))) (-3990 (*1 *2) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-811 (-894))))) (-2155 (*1 *2) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-749)))) (-2072 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-356)) (-4 *2 (-361)))) (-2072 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-4 *3 (-361))))) +(-13 (-356) (-1011 |t#1|) (-1234 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-395)) |%noBranch|) (-15 -1288 ((-112) $)) (-15 -4212 ((-112) $)) (-15 -4100 ((-112) $)) (-15 -2970 ((-811 (-894)) $)) (-15 -3990 ((-811 (-894)))) (-15 -2155 ((-749))) (IF (|has| |t#1| (-361)) (PROGN (-6 (-395)) (-15 -2072 ($ $)) (-15 -2072 ($ $ (-749)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-550))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1561 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-836)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) -1561 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-444) . T) ((-542) . T) ((-626 #0#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #0#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-893) . T) ((-1011 |#1|) . T) ((-1026 #0#) . T) ((-1026 |#1|) . T) ((-1026 $) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1185) . T) ((-1234 |#1|) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1540 (((-623 |#1|) $) 86)) (-2859 (($ $ (-749)) 89)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1400 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-749)) NIL (|has| |#2| (-170)))) (-3513 (($) NIL T CONST)) (-3527 (($ $ |#1|) NIL) (($ $ (-797 |#1|)) NIL) (($ $ $) NIL)) (-3880 (((-3 (-797 |#1|) "failed") $) NIL) (((-3 (-866 |#1|) "failed") $) NIL)) (-2726 (((-797 |#1|) $) NIL) (((-866 |#1|) $) NIL)) (-3295 (($ $) 88)) (-1386 (((-3 $ "failed") $) NIL)) (-2036 (((-112) $) 77)) (-1933 (($ $) 81)) (-3838 (($ $ $ (-749)) 90)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-1792 (($ (-797 |#1|) |#2|) NIL) (($ (-866 |#1|) |#2|) 26)) (-1522 (($ $) 103)) (-3739 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3960 (((-797 |#1|) $) NIL)) (-4062 (((-797 |#1|) $) NIL)) (-3972 (($ (-1 |#2| |#2|) $) NIL)) (-3636 (($ $ |#1|) NIL) (($ $ (-797 |#1|)) NIL) (($ $ $) NIL)) (-2958 (($ $ (-749)) 97 (|has| |#2| (-696 (-400 (-550)))))) (-1565 (((-2 (|:| |k| (-866 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3267 (((-866 |#1|) $) 70)) (-3277 ((|#2| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-1812 (($ $ (-749)) 94 (|has| |#2| (-696 (-400 (-550)))))) (-2970 (((-749) $) 87)) (-3870 (((-112) $) 71)) (-2258 ((|#2| $) 75)) (-1518 (((-836) $) 57) (($ (-550)) NIL) (($ |#2|) 51) (($ (-797 |#1|)) NIL) (($ |#1|) 59) (($ (-866 |#1|)) NIL) (($ (-642 |#1| |#2|)) 43) (((-1242 |#1| |#2|) $) 64) (((-1251 |#1| |#2|) $) 69)) (-3511 (((-623 |#2|) $) NIL)) (-2510 ((|#2| $ (-866 |#1|)) NIL)) (-2855 ((|#2| $ (-797 |#1|)) NIL) ((|#2| $ $) NIL)) (-2390 (((-749)) NIL)) (-2626 (($) 21 T CONST)) (-2636 (($) 25 T CONST)) (-4237 (((-623 (-2 (|:| |k| (-866 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3915 (((-3 (-642 |#1| |#2|) "failed") $) 102)) (-2316 (((-112) $ $) 65)) (-2403 (($ $) 96) (($ $ $) 95)) (-2391 (($ $ $) 20)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-866 |#1|)) NIL))) +(((-1247 |#1| |#2|) (-13 (-1248 |#1| |#2|) (-375 |#2| (-866 |#1|)) (-10 -8 (-15 -1518 ($ (-642 |#1| |#2|))) (-15 -1518 ((-1242 |#1| |#2|) $)) (-15 -1518 ((-1251 |#1| |#2|) $)) (-15 -3915 ((-3 (-642 |#1| |#2|) "failed") $)) (-15 -3838 ($ $ $ (-749))) (IF (|has| |#2| (-696 (-400 (-550)))) (PROGN (-15 -1812 ($ $ (-749))) (-15 -2958 ($ $ (-749)))) |%noBranch|))) (-825) (-170)) (T -1247)) +((-1518 (*1 *1 *2) (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *1 (-1247 *3 *4)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-1247 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1251 *3 *4)) (-5 *1 (-1247 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-3915 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 *3 *4)) (-5 *1 (-1247 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-3838 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1247 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-1812 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1247 *3 *4)) (-4 *4 (-696 (-400 (-550)))) (-4 *3 (-825)) (-4 *4 (-170)))) (-2958 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1247 *3 *4)) (-4 *4 (-696 (-400 (-550)))) (-4 *3 (-825)) (-4 *4 (-170))))) +(-13 (-1248 |#1| |#2|) (-375 |#2| (-866 |#1|)) (-10 -8 (-15 -1518 ($ (-642 |#1| |#2|))) (-15 -1518 ((-1242 |#1| |#2|) $)) (-15 -1518 ((-1251 |#1| |#2|) $)) (-15 -3915 ((-3 (-642 |#1| |#2|) "failed") $)) (-15 -3838 ($ $ $ (-749))) (IF (|has| |#2| (-696 (-400 (-550)))) (PROGN (-15 -1812 ($ $ (-749))) (-15 -2958 ($ $ (-749)))) |%noBranch|))) +((-1504 (((-112) $ $) 7)) (-3433 (((-112) $) 16)) (-1540 (((-623 |#1|) $) 38)) (-2859 (($ $ (-749)) 71)) (-3219 (((-3 $ "failed") $ $) 19)) (-1400 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-749)) 40 (|has| |#2| (-170)))) (-3513 (($) 17 T CONST)) (-3527 (($ $ |#1|) 52) (($ $ (-797 |#1|)) 51) (($ $ $) 50)) (-3880 (((-3 (-797 |#1|) "failed") $) 62)) (-2726 (((-797 |#1|) $) 61)) (-1386 (((-3 $ "failed") $) 32)) (-2036 (((-112) $) 43)) (-1933 (($ $) 42)) (-3102 (((-112) $) 30)) (-3439 (((-112) $) 48)) (-1792 (($ (-797 |#1|) |#2|) 49)) (-1522 (($ $) 47)) (-3739 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 58)) (-3960 (((-797 |#1|) $) 59)) (-4062 (((-797 |#1|) $) 73)) (-3972 (($ (-1 |#2| |#2|) $) 39)) (-3636 (($ $ |#1|) 55) (($ $ (-797 |#1|)) 54) (($ $ $) 53)) (-1825 (((-1126) $) 9)) (-3337 (((-1088) $) 10)) (-2970 (((-749) $) 72)) (-3870 (((-112) $) 45)) (-2258 ((|#2| $) 44)) (-1518 (((-836) $) 11) (($ (-550)) 27) (($ |#2|) 66) (($ (-797 |#1|)) 63) (($ |#1|) 46)) (-2855 ((|#2| $ (-797 |#1|)) 57) ((|#2| $ $) 56)) (-2390 (((-749)) 28)) (-2626 (($) 18 T CONST)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 6)) (-2403 (($ $) 22) (($ $ $) 21)) (-2391 (($ $ $) 14)) (** (($ $ (-894)) 25) (($ $ (-749)) 31)) (* (($ (-894) $) 13) (($ (-749) $) 15) (($ (-550) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1248 |#1| |#2|) (-138) (-825) (-1020)) (T -1248)) +((-4062 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *2 (-797 *3)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *2 (-749)))) (-2859 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020))))) +(-13 (-1244 |t#1| |t#2|) (-10 -8 (-15 -4062 ((-797 |t#1|) $)) (-15 -2970 ((-749) $)) (-15 -2859 ($ $ (-749))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-836)) . T) ((-626 |#2|) . T) ((-626 $) . T) ((-696 |#2|) |has| |#2| (-170)) ((-705) . T) ((-1011 (-797 |#1|)) . T) ((-1026 |#2|) . T) ((-1020) . T) ((-1027) . T) ((-1080) . T) ((-1068) . T) ((-1241 |#2|) . T) ((-1244 |#1| |#2|) . T)) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-1540 (((-623 (-1144)) $) NIL)) (-4294 (($ (-1242 (-1144) |#1|)) NIL)) (-2859 (($ $ (-749)) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1400 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-749)) NIL (|has| |#1| (-170)))) (-3513 (($) NIL T CONST)) (-3527 (($ $ (-1144)) NIL) (($ $ (-797 (-1144))) NIL) (($ $ $) NIL)) (-3880 (((-3 (-797 (-1144)) "failed") $) NIL)) (-2726 (((-797 (-1144)) $) NIL)) (-1386 (((-3 $ "failed") $) NIL)) (-2036 (((-112) $) NIL)) (-1933 (($ $) NIL)) (-3102 (((-112) $) NIL)) (-3439 (((-112) $) NIL)) (-1792 (($ (-797 (-1144)) |#1|) NIL)) (-1522 (($ $) NIL)) (-3739 (((-2 (|:| |k| (-797 (-1144))) (|:| |c| |#1|)) $) NIL)) (-3960 (((-797 (-1144)) $) NIL)) (-4062 (((-797 (-1144)) $) NIL)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-3636 (($ $ (-1144)) NIL) (($ $ (-797 (-1144))) NIL) (($ $ $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-4214 (((-1242 (-1144) |#1|) $) NIL)) (-2970 (((-749) $) NIL)) (-3870 (((-112) $) NIL)) (-2258 ((|#1| $) NIL)) (-1518 (((-836) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-797 (-1144))) NIL) (($ (-1144)) NIL)) (-2855 ((|#1| $ (-797 (-1144))) NIL) ((|#1| $ $) NIL)) (-2390 (((-749)) NIL)) (-2626 (($) NIL T CONST)) (-4166 (((-623 (-2 (|:| |k| (-1144)) (|:| |c| $))) $) NIL)) (-2636 (($) NIL T CONST)) (-2316 (((-112) $ $) NIL)) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) NIL)) (** (($ $ (-894)) NIL) (($ $ (-749)) NIL)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1144) $) NIL))) +(((-1249 |#1|) (-13 (-1248 (-1144) |#1|) (-10 -8 (-15 -4214 ((-1242 (-1144) |#1|) $)) (-15 -4294 ($ (-1242 (-1144) |#1|))) (-15 -4166 ((-623 (-2 (|:| |k| (-1144)) (|:| |c| $))) $)))) (-1020)) (T -1249)) +((-4214 (*1 *2 *1) (-12 (-5 *2 (-1242 (-1144) *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1020)))) (-4294 (*1 *1 *2) (-12 (-5 *2 (-1242 (-1144) *3)) (-4 *3 (-1020)) (-5 *1 (-1249 *3)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |k| (-1144)) (|:| |c| (-1249 *3))))) (-5 *1 (-1249 *3)) (-4 *3 (-1020))))) +(-13 (-1248 (-1144) |#1|) (-10 -8 (-15 -4214 ((-1242 (-1144) |#1|) $)) (-15 -4294 ($ (-1242 (-1144) |#1|))) (-15 -4166 ((-623 (-2 (|:| |k| (-1144)) (|:| |c| $))) $)))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) NIL)) (-3219 (((-3 $ "failed") $ $) NIL)) (-3513 (($) NIL T CONST)) (-3880 (((-3 |#2| "failed") $) NIL)) (-2726 ((|#2| $) NIL)) (-3295 (($ $) NIL)) (-1386 (((-3 $ "failed") $) 36)) (-2036 (((-112) $) 30)) (-1933 (($ $) 32)) (-3102 (((-112) $) NIL)) (-2603 (((-749) $) NIL)) (-1822 (((-623 $) $) NIL)) (-3439 (((-112) $) NIL)) (-1792 (($ |#2| |#1|) NIL)) (-3960 ((|#2| $) 19)) (-4062 ((|#2| $) 16)) (-3972 (($ (-1 |#1| |#1|) $) NIL)) (-1565 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3267 ((|#2| $) NIL)) (-3277 ((|#1| $) NIL)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-3870 (((-112) $) 27)) (-2258 ((|#1| $) 28)) (-1518 (((-836) $) 55) (($ (-550)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3511 (((-623 |#1|) $) NIL)) (-2510 ((|#1| $ |#2|) NIL)) (-2855 ((|#1| $ |#2|) 24)) (-2390 (((-749)) 14)) (-2626 (($) 25 T CONST)) (-2636 (($) 11 T CONST)) (-4237 (((-623 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2316 (((-112) $ $) 26)) (-2414 (($ $ |#1|) 57 (|has| |#1| (-356)))) (-2403 (($ $) NIL) (($ $ $) NIL)) (-2391 (($ $ $) 44)) (** (($ $ (-894)) NIL) (($ $ (-749)) 46)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3191 (((-749) $) 15))) +(((-1250 |#1| |#2|) (-13 (-1020) (-1241 |#1|) (-375 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3191 ((-749) $)) (-15 -1518 ($ |#2|)) (-15 -4062 (|#2| $)) (-15 -3960 (|#2| $)) (-15 -3295 ($ $)) (-15 -2855 (|#1| $ |#2|)) (-15 -3870 ((-112) $)) (-15 -2258 (|#1| $)) (-15 -2036 ((-112) $)) (-15 -1933 ($ $)) (-15 -3972 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -2414 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|) (IF (|has| |#1| (-6 -4339)) (-6 -4339) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|))) (-1020) (-821)) (T -1250)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1250 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-821)))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-1250 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-821)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-821)))) (-1518 (*1 *1 *2) (-12 (-5 *1 (-1250 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-821)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-821)))) (-4062 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1250 *3 *2)) (-4 *3 (-1020)))) (-3960 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1250 *3 *2)) (-4 *3 (-1020)))) (-2855 (*1 *2 *1 *3) (-12 (-4 *2 (-1020)) (-5 *1 (-1250 *2 *3)) (-4 *3 (-821)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-821)))) (-2258 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-1250 *2 *3)) (-4 *3 (-821)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-821)))) (-1933 (*1 *1 *1) (-12 (-5 *1 (-1250 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-821)))) (-2414 (*1 *1 *1 *2) (-12 (-5 *1 (-1250 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1020)) (-4 *3 (-821))))) +(-13 (-1020) (-1241 |#1|) (-375 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3191 ((-749) $)) (-15 -1518 ($ |#2|)) (-15 -4062 (|#2| $)) (-15 -3960 (|#2| $)) (-15 -3295 ($ $)) (-15 -2855 (|#1| $ |#2|)) (-15 -3870 ((-112) $)) (-15 -2258 (|#1| $)) (-15 -2036 ((-112) $)) (-15 -1933 ($ $)) (-15 -3972 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -2414 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|) (IF (|has| |#1| (-6 -4339)) (-6 -4339) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|))) +((-1504 (((-112) $ $) 26)) (-3433 (((-112) $) NIL)) (-1540 (((-623 |#1|) $) 120)) (-4294 (($ (-1242 |#1| |#2|)) 44)) (-2859 (($ $ (-749)) 32)) (-3219 (((-3 $ "failed") $ $) NIL)) (-1400 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-749)) 46 (|has| |#2| (-170)))) (-3513 (($) NIL T CONST)) (-3527 (($ $ |#1|) 102) (($ $ (-797 |#1|)) 103) (($ $ $) 25)) (-3880 (((-3 (-797 |#1|) "failed") $) NIL)) (-2726 (((-797 |#1|) $) NIL)) (-1386 (((-3 $ "failed") $) 110)) (-2036 (((-112) $) 105)) (-1933 (($ $) 106)) (-3102 (((-112) $) NIL)) (-3439 (((-112) $) NIL)) (-1792 (($ (-797 |#1|) |#2|) 19)) (-1522 (($ $) NIL)) (-3739 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3960 (((-797 |#1|) $) 111)) (-4062 (((-797 |#1|) $) 114)) (-3972 (($ (-1 |#2| |#2|) $) 119)) (-3636 (($ $ |#1|) 100) (($ $ (-797 |#1|)) 101) (($ $ $) 56)) (-1825 (((-1126) $) NIL)) (-3337 (((-1088) $) NIL)) (-4214 (((-1242 |#1| |#2|) $) 84)) (-2970 (((-749) $) 117)) (-3870 (((-112) $) 70)) (-2258 ((|#2| $) 28)) (-1518 (((-836) $) 63) (($ (-550)) 77) (($ |#2|) 74) (($ (-797 |#1|)) 17) (($ |#1|) 73)) (-2855 ((|#2| $ (-797 |#1|)) 104) ((|#2| $ $) 27)) (-2390 (((-749)) 108)) (-2626 (($) 14 T CONST)) (-4166 (((-623 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2636 (($) 29 T CONST)) (-2316 (((-112) $ $) 13)) (-2403 (($ $) 88) (($ $ $) 91)) (-2391 (($ $ $) 55)) (** (($ $ (-894)) NIL) (($ $ (-749)) 49)) (* (($ (-894) $) NIL) (($ (-749) $) 47) (($ (-550) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1251 |#1| |#2|) (-13 (-1248 |#1| |#2|) (-10 -8 (-15 -4214 ((-1242 |#1| |#2|) $)) (-15 -4294 ($ (-1242 |#1| |#2|))) (-15 -4166 ((-623 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-825) (-1020)) (T -1251)) +((-4214 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-1251 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)))) (-4294 (*1 *1 *2) (-12 (-5 *2 (-1242 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) (-5 *1 (-1251 *3 *4)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-623 (-2 (|:| |k| *3) (|:| |c| (-1251 *3 *4))))) (-5 *1 (-1251 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020))))) +(-13 (-1248 |#1| |#2|) (-10 -8 (-15 -4214 ((-1242 |#1| |#2|) $)) (-15 -4294 ($ (-1242 |#1| |#2|))) (-15 -4166 ((-623 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2004 (((-623 (-1124 |#1|)) (-1 (-623 (-1124 |#1|)) (-623 (-1124 |#1|))) (-550)) 15) (((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|))) 11))) +(((-1252 |#1|) (-10 -7 (-15 -2004 ((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|)))) (-15 -2004 ((-623 (-1124 |#1|)) (-1 (-623 (-1124 |#1|)) (-623 (-1124 |#1|))) (-550)))) (-1181)) (T -1252)) +((-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-623 (-1124 *5)) (-623 (-1124 *5)))) (-5 *4 (-550)) (-5 *2 (-623 (-1124 *5))) (-5 *1 (-1252 *5)) (-4 *5 (-1181)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1 (-1124 *4) (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1252 *4)) (-4 *4 (-1181))))) +(-10 -7 (-15 -2004 ((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|)))) (-15 -2004 ((-623 (-1124 |#1|)) (-1 (-623 (-1124 |#1|)) (-623 (-1124 |#1|))) (-550)))) +((-3270 (((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|))) 148) (((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112)) 147) (((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112)) 146) (((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112) (-112)) 145) (((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-1017 |#1| |#2|)) 130)) (-1343 (((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|))) 72) (((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|)) (-112)) 71) (((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|)) (-112) (-112)) 70)) (-3564 (((-623 (-1114 |#1| (-522 (-838 |#3|)) (-838 |#3|) (-758 |#1| (-838 |#3|)))) (-1017 |#1| |#2|)) 61)) (-3367 (((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|))) 115) (((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112)) 114) (((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112)) 113) (((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112) (-112)) 112) (((-623 (-623 (-997 (-400 |#1|)))) (-1017 |#1| |#2|)) 107)) (-3466 (((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|))) 120) (((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112)) 119) (((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112)) 118) (((-623 (-623 (-997 (-400 |#1|)))) (-1017 |#1| |#2|)) 117)) (-4028 (((-623 (-758 |#1| (-838 |#3|))) (-1114 |#1| (-522 (-838 |#3|)) (-838 |#3|) (-758 |#1| (-838 |#3|)))) 98) (((-1140 (-997 (-400 |#1|))) (-1140 |#1|)) 89) (((-925 (-997 (-400 |#1|))) (-758 |#1| (-838 |#3|))) 96) (((-925 (-997 (-400 |#1|))) (-925 |#1|)) 94) (((-758 |#1| (-838 |#3|)) (-758 |#1| (-838 |#2|))) 33))) +(((-1253 |#1| |#2| |#3|) (-10 -7 (-15 -1343 ((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|)) (-112) (-112))) (-15 -1343 ((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|)) (-112))) (-15 -1343 ((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|)))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-1017 |#1| |#2|))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112) (-112))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-1017 |#1| |#2|))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112) (-112))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)))) (-15 -3466 ((-623 (-623 (-997 (-400 |#1|)))) (-1017 |#1| |#2|))) (-15 -3466 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112))) (-15 -3466 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112))) (-15 -3466 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)))) (-15 -3564 ((-623 (-1114 |#1| (-522 (-838 |#3|)) (-838 |#3|) (-758 |#1| (-838 |#3|)))) (-1017 |#1| |#2|))) (-15 -4028 ((-758 |#1| (-838 |#3|)) (-758 |#1| (-838 |#2|)))) (-15 -4028 ((-925 (-997 (-400 |#1|))) (-925 |#1|))) (-15 -4028 ((-925 (-997 (-400 |#1|))) (-758 |#1| (-838 |#3|)))) (-15 -4028 ((-1140 (-997 (-400 |#1|))) (-1140 |#1|))) (-15 -4028 ((-623 (-758 |#1| (-838 |#3|))) (-1114 |#1| (-522 (-838 |#3|)) (-838 |#3|) (-758 |#1| (-838 |#3|)))))) (-13 (-823) (-300) (-145) (-995)) (-623 (-1144)) (-623 (-1144))) (T -1253)) +((-4028 (*1 *2 *3) (-12 (-5 *3 (-1114 *4 (-522 (-838 *6)) (-838 *6) (-758 *4 (-838 *6)))) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-758 *4 (-838 *6)))) (-5 *1 (-1253 *4 *5 *6)) (-14 *5 (-623 (-1144))))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-1140 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-1140 (-997 (-400 *4)))) (-5 *1 (-1253 *4 *5 *6)) (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144))))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-758 *4 (-838 *6))) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *6 (-623 (-1144))) (-5 *2 (-925 (-997 (-400 *4)))) (-5 *1 (-1253 *4 *5 *6)) (-14 *5 (-623 (-1144))))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-925 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-925 (-997 (-400 *4)))) (-5 *1 (-1253 *4 *5 *6)) (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144))))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-758 *4 (-838 *5))) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *5 (-623 (-1144))) (-5 *2 (-758 *4 (-838 *6))) (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144))))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-1017 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *5 (-623 (-1144))) (-5 *2 (-623 (-1114 *4 (-522 (-838 *6)) (-838 *6) (-758 *4 (-838 *6))))) (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144))))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-623 (-997 (-400 *4))))) (-5 *1 (-1253 *4 *5 *6)) (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144))))) (-3466 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-3466 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-1017 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *5 (-623 (-1144))) (-5 *2 (-623 (-623 (-997 (-400 *4))))) (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-623 (-997 (-400 *4))))) (-5 *1 (-1253 *4 *5 *6)) (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144))))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-3367 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-3367 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-1017 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *5 (-623 (-1144))) (-5 *2 (-623 (-623 (-997 (-400 *4))))) (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144))))) (-3270 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-2 (|:| -2553 (-1140 *4)) (|:| -1373 (-623 (-925 *4)))))) (-5 *1 (-1253 *4 *5 *6)) (-5 *3 (-623 (-925 *4))) (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144))))) (-3270 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) (-5 *1 (-1253 *5 *6 *7)) (-5 *3 (-623 (-925 *5))) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-3270 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) (-5 *1 (-1253 *5 *6 *7)) (-5 *3 (-623 (-925 *5))) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-3270 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) (-5 *1 (-1253 *5 *6 *7)) (-5 *3 (-623 (-925 *5))) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-1017 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *5 (-623 (-1144))) (-5 *2 (-623 (-2 (|:| -2553 (-1140 *4)) (|:| -1373 (-623 (-925 *4)))))) (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144))))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-1017 *4 *5))) (-5 *1 (-1253 *4 *5 *6)) (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144))))) (-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-1017 *5 *6))) (-5 *1 (-1253 *5 *6 *7)) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) (-1343 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 (-623 (-1017 *5 *6))) (-5 *1 (-1253 *5 *6 *7)) (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144)))))) +(-10 -7 (-15 -1343 ((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|)) (-112) (-112))) (-15 -1343 ((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|)) (-112))) (-15 -1343 ((-623 (-1017 |#1| |#2|)) (-623 (-925 |#1|)))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-1017 |#1| |#2|))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112) (-112))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112) (-112))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)) (-112))) (-15 -3270 ((-623 (-2 (|:| -2553 (-1140 |#1|)) (|:| -1373 (-623 (-925 |#1|))))) (-623 (-925 |#1|)))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-1017 |#1| |#2|))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112) (-112))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112))) (-15 -3367 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)))) (-15 -3466 ((-623 (-623 (-997 (-400 |#1|)))) (-1017 |#1| |#2|))) (-15 -3466 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112) (-112))) (-15 -3466 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)) (-112))) (-15 -3466 ((-623 (-623 (-997 (-400 |#1|)))) (-623 (-925 |#1|)))) (-15 -3564 ((-623 (-1114 |#1| (-522 (-838 |#3|)) (-838 |#3|) (-758 |#1| (-838 |#3|)))) (-1017 |#1| |#2|))) (-15 -4028 ((-758 |#1| (-838 |#3|)) (-758 |#1| (-838 |#2|)))) (-15 -4028 ((-925 (-997 (-400 |#1|))) (-925 |#1|))) (-15 -4028 ((-925 (-997 (-400 |#1|))) (-758 |#1| (-838 |#3|)))) (-15 -4028 ((-1140 (-997 (-400 |#1|))) (-1140 |#1|))) (-15 -4028 ((-623 (-758 |#1| (-838 |#3|))) (-1114 |#1| (-522 (-838 |#3|)) (-838 |#3|) (-758 |#1| (-838 |#3|)))))) +((-2667 (((-3 (-1227 (-400 (-550))) "failed") (-1227 |#1|) |#1|) 21)) (-3660 (((-112) (-1227 |#1|)) 12)) (-3751 (((-3 (-1227 (-550)) "failed") (-1227 |#1|)) 16))) +(((-1254 |#1|) (-10 -7 (-15 -3660 ((-112) (-1227 |#1|))) (-15 -3751 ((-3 (-1227 (-550)) "failed") (-1227 |#1|))) (-15 -2667 ((-3 (-1227 (-400 (-550))) "failed") (-1227 |#1|) |#1|))) (-619 (-550))) (T -1254)) +((-2667 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1227 *4)) (-4 *4 (-619 (-550))) (-5 *2 (-1227 (-400 (-550)))) (-5 *1 (-1254 *4)))) (-3751 (*1 *2 *3) (|partial| -12 (-5 *3 (-1227 *4)) (-4 *4 (-619 (-550))) (-5 *2 (-1227 (-550))) (-5 *1 (-1254 *4)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-1227 *4)) (-4 *4 (-619 (-550))) (-5 *2 (-112)) (-5 *1 (-1254 *4))))) +(-10 -7 (-15 -3660 ((-112) (-1227 |#1|))) (-15 -3751 ((-3 (-1227 (-550)) "failed") (-1227 |#1|))) (-15 -2667 ((-3 (-1227 (-400 (-550))) "failed") (-1227 |#1|) |#1|))) +((-1504 (((-112) $ $) NIL)) (-3433 (((-112) $) 11)) (-3219 (((-3 $ "failed") $ $) NIL)) (-4319 (((-749)) 8)) (-3513 (($) NIL T CONST)) (-1386 (((-3 $ "failed") $) 43)) (-1741 (($) 36)) (-3102 (((-112) $) NIL)) (-2826 (((-3 $ "failed") $) 29)) (-2253 (((-894) $) 15)) (-1825 (((-1126) $) NIL)) (-3862 (($) 25 T CONST)) (-2922 (($ (-894)) 37)) (-3337 (((-1088) $) NIL)) (-4028 (((-550) $) 13)) (-1518 (((-836) $) 22) (($ (-550)) 19)) (-2390 (((-749)) 9)) (-2626 (($) 23 T CONST)) (-2636 (($) 24 T CONST)) (-2316 (((-112) $ $) 27)) (-2403 (($ $) 38) (($ $ $) 35)) (-2391 (($ $ $) 26)) (** (($ $ (-894)) NIL) (($ $ (-749)) 40)) (* (($ (-894) $) NIL) (($ (-749) $) NIL) (($ (-550) $) 32) (($ $ $) 31))) +(((-1255 |#1|) (-13 (-170) (-361) (-596 (-550)) (-1119)) (-894)) (T -1255)) +NIL +(-13 (-170) (-361) (-596 (-550)) (-1119)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3175143 3175148 3175153 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3175128 3175133 3175138 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3175113 3175118 3175123 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3175098 3175103 3175108 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1255 3174274 3174973 3175050 "ZMOD" 3175055 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1254 3173384 3173548 3173757 "ZLINDEP" 3174106 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1253 3162760 3164512 3166471 "ZDSOLVE" 3171526 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1252 3162006 3162147 3162336 "YSTREAM" 3162606 NIL YSTREAM (NIL T) -7 NIL NIL) (-1251 3159817 3161307 3161511 "XRPOLY" 3161849 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1250 3156309 3157592 3158176 "XPR" 3159280 NIL XPR (NIL T T) -8 NIL NIL) (-1249 3154065 3155640 3155844 "XPOLY" 3156140 NIL XPOLY (NIL T) -8 NIL NIL) (-1248 3151914 3153248 3153303 "XPOLYC" 3153591 NIL XPOLYC (NIL T T) -9 NIL 3153704) (-1247 3148332 3150431 3150819 "XPBWPOLY" 3151572 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1246 3144317 3146565 3146607 "XF" 3147228 NIL XF (NIL T) -9 NIL 3147628) (-1245 3143938 3144026 3144195 "XF-" 3144200 NIL XF- (NIL T T) -8 NIL NIL) (-1244 3139330 3140585 3140640 "XFALG" 3142812 NIL XFALG (NIL T T) -9 NIL 3143601) (-1243 3138463 3138567 3138772 "XEXPPKG" 3139222 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1242 3136607 3138313 3138409 "XDPOLY" 3138414 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1241 3135523 3136089 3136132 "XALG" 3136195 NIL XALG (NIL T) -9 NIL 3136315) (-1240 3128992 3133500 3133994 "WUTSET" 3135115 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1239 3126843 3127604 3127957 "WP" 3128773 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1238 3126472 3126665 3126735 "WHILEAST" 3126795 T WHILEAST (NIL) -8 NIL NIL) (-1237 3125971 3126189 3126283 "WHEREAST" 3126400 T WHEREAST (NIL) -8 NIL NIL) (-1236 3124857 3125055 3125350 "WFFINTBS" 3125768 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1235 3122761 3123188 3123650 "WEIER" 3124429 NIL WEIER (NIL T) -7 NIL NIL) (-1234 3121908 3122332 3122374 "VSPACE" 3122510 NIL VSPACE (NIL T) -9 NIL 3122584) (-1233 3121746 3121773 3121864 "VSPACE-" 3121869 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1232 3121492 3121535 3121606 "VOID" 3121697 T VOID (NIL) -8 NIL NIL) (-1231 3119628 3119987 3120393 "VIEW" 3121108 T VIEW (NIL) -7 NIL NIL) (-1230 3116053 3116691 3117428 "VIEWDEF" 3118913 T VIEWDEF (NIL) -7 NIL NIL) (-1229 3105391 3107601 3109774 "VIEW3D" 3113902 T VIEW3D (NIL) -8 NIL NIL) (-1228 3097673 3099302 3100881 "VIEW2D" 3103834 T VIEW2D (NIL) -8 NIL NIL) (-1227 3093077 3097443 3097535 "VECTOR" 3097616 NIL VECTOR (NIL T) -8 NIL NIL) (-1226 3091654 3091913 3092231 "VECTOR2" 3092807 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1225 3085181 3089438 3089481 "VECTCAT" 3090474 NIL VECTCAT (NIL T) -9 NIL 3091060) (-1224 3084195 3084449 3084839 "VECTCAT-" 3084844 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1223 3083676 3083846 3083966 "VARIABLE" 3084110 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1222 3083609 3083614 3083644 "UTYPE" 3083649 T UTYPE (NIL) -9 NIL NIL) (-1221 3082439 3082593 3082855 "UTSODETL" 3083435 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1220 3079879 3080339 3080863 "UTSODE" 3081980 NIL UTSODE (NIL T T) -7 NIL NIL) (-1219 3071755 3077505 3077994 "UTS" 3079448 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1218 3063128 3068447 3068490 "UTSCAT" 3069602 NIL UTSCAT (NIL T) -9 NIL 3070359) (-1217 3060482 3061198 3062187 "UTSCAT-" 3062192 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1216 3060109 3060152 3060285 "UTS2" 3060433 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1215 3054384 3056949 3056992 "URAGG" 3059062 NIL URAGG (NIL T) -9 NIL 3059784) (-1214 3051323 3052186 3053309 "URAGG-" 3053314 NIL URAGG- (NIL T T) -8 NIL NIL) (-1213 3047047 3049937 3050409 "UPXSSING" 3050987 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1212 3039017 3046162 3046444 "UPXS" 3046823 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1211 3032130 3038921 3038993 "UPXSCONS" 3038998 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1210 3022488 3029233 3029295 "UPXSCCA" 3029951 NIL UPXSCCA (NIL T T) -9 NIL 3030193) (-1209 3022126 3022211 3022385 "UPXSCCA-" 3022390 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1208 3012410 3018928 3018971 "UPXSCAT" 3019619 NIL UPXSCAT (NIL T) -9 NIL 3020227) (-1207 3011840 3011919 3012098 "UPXS2" 3012325 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1206 3010494 3010747 3011098 "UPSQFREE" 3011583 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1205 3004412 3007421 3007476 "UPSCAT" 3008637 NIL UPSCAT (NIL T T) -9 NIL 3009411) (-1204 3003616 3003823 3004150 "UPSCAT-" 3004155 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1203 2989707 2997703 2997746 "UPOLYC" 2999847 NIL UPOLYC (NIL T) -9 NIL 3001068) (-1202 2981036 2983461 2986608 "UPOLYC-" 2986613 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1201 2980663 2980706 2980839 "UPOLYC2" 2980987 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1200 2972120 2980229 2980367 "UP" 2980573 NIL UP (NIL NIL T) -8 NIL NIL) (-1199 2971459 2971566 2971730 "UPMP" 2972009 NIL UPMP (NIL T T) -7 NIL NIL) (-1198 2971012 2971093 2971232 "UPDIVP" 2971372 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1197 2969580 2969829 2970145 "UPDECOMP" 2970761 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1196 2968815 2968927 2969112 "UPCDEN" 2969464 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1195 2968334 2968403 2968552 "UP2" 2968740 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1194 2966851 2967538 2967815 "UNISEG" 2968092 NIL UNISEG (NIL T) -8 NIL NIL) (-1193 2966066 2966193 2966398 "UNISEG2" 2966694 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1192 2965126 2965306 2965532 "UNIFACT" 2965882 NIL UNIFACT (NIL T) -7 NIL NIL) (-1191 2949095 2964303 2964554 "ULS" 2964933 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1190 2937137 2948999 2949071 "ULSCONS" 2949076 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1189 2919941 2931876 2931938 "ULSCCAT" 2932658 NIL ULSCCAT (NIL T T) -9 NIL 2932955) (-1188 2918991 2919236 2919624 "ULSCCAT-" 2919629 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1187 2909052 2915484 2915527 "ULSCAT" 2916390 NIL ULSCAT (NIL T) -9 NIL 2917120) (-1186 2908482 2908561 2908740 "ULS2" 2908967 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1185 2906920 2907843 2907873 "UFD" 2908085 T UFD (NIL) -9 NIL 2908199) (-1184 2906714 2906760 2906855 "UFD-" 2906860 NIL UFD- (NIL T) -8 NIL NIL) (-1183 2905796 2905979 2906195 "UDVO" 2906520 T UDVO (NIL) -7 NIL NIL) (-1182 2903612 2904021 2904492 "UDPO" 2905360 NIL UDPO (NIL T) -7 NIL NIL) (-1181 2903545 2903550 2903580 "TYPE" 2903585 T TYPE (NIL) -9 NIL NIL) (-1180 2903332 2903500 2903531 "TYPEAST" 2903536 T TYPEAST (NIL) -8 NIL NIL) (-1179 2902303 2902505 2902745 "TWOFACT" 2903126 NIL TWOFACT (NIL T) -7 NIL NIL) (-1178 2901241 2901578 2901841 "TUPLE" 2902075 NIL TUPLE (NIL T) -8 NIL NIL) (-1177 2898932 2899451 2899990 "TUBETOOL" 2900724 T TUBETOOL (NIL) -7 NIL NIL) (-1176 2897781 2897986 2898227 "TUBE" 2898725 NIL TUBE (NIL T) -8 NIL NIL) (-1175 2892545 2896753 2897036 "TS" 2897533 NIL TS (NIL T) -8 NIL NIL) (-1174 2881212 2885304 2885401 "TSETCAT" 2890670 NIL TSETCAT (NIL T T T T) -9 NIL 2892201) (-1173 2875946 2877544 2879435 "TSETCAT-" 2879440 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1172 2870209 2871055 2871997 "TRMANIP" 2875082 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1171 2869650 2869713 2869876 "TRIMAT" 2870141 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1170 2867446 2867683 2868047 "TRIGMNIP" 2869399 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1169 2866966 2867079 2867109 "TRIGCAT" 2867322 T TRIGCAT (NIL) -9 NIL NIL) (-1168 2866635 2866714 2866855 "TRIGCAT-" 2866860 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1167 2863534 2865495 2865775 "TREE" 2866390 NIL TREE (NIL T) -8 NIL NIL) (-1166 2862808 2863336 2863366 "TRANFUN" 2863401 T TRANFUN (NIL) -9 NIL 2863467) (-1165 2862087 2862278 2862558 "TRANFUN-" 2862563 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1164 2861891 2861923 2861984 "TOPSP" 2862048 T TOPSP (NIL) -7 NIL NIL) (-1163 2861239 2861354 2861508 "TOOLSIGN" 2861772 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1162 2859900 2860416 2860655 "TEXTFILE" 2861022 T TEXTFILE (NIL) -8 NIL NIL) (-1161 2857765 2858279 2858717 "TEX" 2859484 T TEX (NIL) -8 NIL NIL) (-1160 2857546 2857577 2857649 "TEX1" 2857728 NIL TEX1 (NIL T) -7 NIL NIL) (-1159 2857194 2857257 2857347 "TEMUTL" 2857478 T TEMUTL (NIL) -7 NIL NIL) (-1158 2855348 2855628 2855953 "TBCMPPK" 2856917 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1157 2847236 2853508 2853564 "TBAGG" 2853964 NIL TBAGG (NIL T T) -9 NIL 2854175) (-1156 2842306 2843794 2845548 "TBAGG-" 2845553 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1155 2841690 2841797 2841942 "TANEXP" 2842195 NIL TANEXP (NIL T) -7 NIL NIL) (-1154 2835191 2841547 2841640 "TABLE" 2841645 NIL TABLE (NIL T T) -8 NIL NIL) (-1153 2834603 2834702 2834840 "TABLEAU" 2835088 NIL TABLEAU (NIL T) -8 NIL NIL) (-1152 2829211 2830431 2831679 "TABLBUMP" 2833389 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1151 2828639 2828739 2828867 "SYSTEM" 2829105 T SYSTEM (NIL) -7 NIL NIL) (-1150 2825102 2825797 2826580 "SYSSOLP" 2827890 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1149 2821394 2822101 2822835 "SYNTAX" 2824390 T SYNTAX (NIL) -8 NIL NIL) (-1148 2818552 2819154 2819786 "SYMTAB" 2820784 T SYMTAB (NIL) -8 NIL NIL) (-1147 2813801 2814703 2815686 "SYMS" 2817591 T SYMS (NIL) -8 NIL NIL) (-1146 2811073 2813259 2813489 "SYMPOLY" 2813606 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1145 2810590 2810665 2810788 "SYMFUNC" 2810985 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1144 2806567 2807827 2808649 "SYMBOL" 2809790 T SYMBOL (NIL) -8 NIL NIL) (-1143 2800106 2801795 2803515 "SWITCH" 2804869 T SWITCH (NIL) -8 NIL NIL) (-1142 2793376 2798927 2799230 "SUTS" 2799861 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1141 2785345 2792491 2792773 "SUPXS" 2793152 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1140 2776874 2784963 2785089 "SUP" 2785254 NIL SUP (NIL T) -8 NIL NIL) (-1139 2776033 2776160 2776377 "SUPFRACF" 2776742 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1138 2775654 2775713 2775826 "SUP2" 2775968 NIL SUP2 (NIL T T) -7 NIL NIL) (-1137 2774067 2774341 2774704 "SUMRF" 2775353 NIL SUMRF (NIL T) -7 NIL NIL) (-1136 2773381 2773447 2773646 "SUMFS" 2773988 NIL SUMFS (NIL T T) -7 NIL NIL) (-1135 2757390 2772558 2772809 "SULS" 2773188 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1134 2757019 2757212 2757282 "SUCHTAST" 2757342 T SUCHTAST (NIL) -8 NIL NIL) (-1133 2756341 2756544 2756684 "SUCH" 2756927 NIL SUCH (NIL T T) -8 NIL NIL) (-1132 2750235 2751247 2752206 "SUBSPACE" 2755429 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1131 2749665 2749755 2749919 "SUBRESP" 2750123 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1130 2743034 2744330 2745641 "STTF" 2748401 NIL STTF (NIL T) -7 NIL NIL) (-1129 2737207 2738327 2739474 "STTFNC" 2741934 NIL STTFNC (NIL T) -7 NIL NIL) (-1128 2728522 2730389 2732183 "STTAYLOR" 2735448 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1127 2721766 2728386 2728469 "STRTBL" 2728474 NIL STRTBL (NIL T) -8 NIL NIL) (-1126 2717157 2721721 2721752 "STRING" 2721757 T STRING (NIL) -8 NIL NIL) (-1125 2712045 2716530 2716560 "STRICAT" 2716619 T STRICAT (NIL) -9 NIL 2716681) (-1124 2704758 2709568 2710188 "STREAM" 2711460 NIL STREAM (NIL T) -8 NIL NIL) (-1123 2704268 2704345 2704489 "STREAM3" 2704675 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1122 2703250 2703433 2703668 "STREAM2" 2704081 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1121 2702938 2702990 2703083 "STREAM1" 2703192 NIL STREAM1 (NIL T) -7 NIL NIL) (-1120 2701954 2702135 2702366 "STINPROD" 2702754 NIL STINPROD (NIL T) -7 NIL NIL) (-1119 2701532 2701716 2701746 "STEP" 2701826 T STEP (NIL) -9 NIL 2701904) (-1118 2695075 2701431 2701508 "STBL" 2701513 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1117 2690250 2694297 2694340 "STAGG" 2694493 NIL STAGG (NIL T) -9 NIL 2694582) (-1116 2687952 2688554 2689426 "STAGG-" 2689431 NIL STAGG- (NIL T T) -8 NIL NIL) (-1115 2686147 2687722 2687814 "STACK" 2687895 NIL STACK (NIL T) -8 NIL NIL) (-1114 2678872 2684288 2684744 "SREGSET" 2685777 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1113 2671298 2672666 2674179 "SRDCMPK" 2677478 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1112 2664265 2668738 2668768 "SRAGG" 2670071 T SRAGG (NIL) -9 NIL 2670679) (-1111 2663282 2663537 2663916 "SRAGG-" 2663921 NIL SRAGG- (NIL T) -8 NIL NIL) (-1110 2657777 2662229 2662650 "SQMATRIX" 2662908 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1109 2651529 2654497 2655223 "SPLTREE" 2657123 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1108 2647519 2648185 2648831 "SPLNODE" 2650955 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1107 2646566 2646799 2646829 "SPFCAT" 2647273 T SPFCAT (NIL) -9 NIL NIL) (-1106 2645303 2645513 2645777 "SPECOUT" 2646324 T SPECOUT (NIL) -7 NIL NIL) (-1105 2636992 2638736 2638766 "SPADXPT" 2643158 T SPADXPT (NIL) -9 NIL 2645192) (-1104 2636753 2636793 2636862 "SPADPRSR" 2636945 T SPADPRSR (NIL) -7 NIL NIL) (-1103 2634936 2636708 2636739 "SPADAST" 2636744 T SPADAST (NIL) -8 NIL NIL) (-1102 2626907 2628654 2628697 "SPACEC" 2633070 NIL SPACEC (NIL T) -9 NIL 2634886) (-1101 2625078 2626839 2626888 "SPACE3" 2626893 NIL SPACE3 (NIL T) -8 NIL NIL) (-1100 2623830 2624001 2624292 "SORTPAK" 2624883 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1099 2621880 2622183 2622602 "SOLVETRA" 2623494 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1098 2620891 2621113 2621387 "SOLVESER" 2621653 NIL SOLVESER (NIL T) -7 NIL NIL) (-1097 2616111 2616992 2617994 "SOLVERAD" 2619943 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1096 2611926 2612535 2613264 "SOLVEFOR" 2615478 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1095 2606223 2611275 2611372 "SNTSCAT" 2611377 NIL SNTSCAT (NIL T T T T) -9 NIL 2611447) (-1094 2600366 2604546 2604937 "SMTS" 2605913 NIL SMTS (NIL T T T) -8 NIL NIL) (-1093 2594816 2600254 2600331 "SMP" 2600336 NIL SMP (NIL T T) -8 NIL NIL) (-1092 2592975 2593276 2593674 "SMITH" 2594513 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1091 2585958 2590113 2590216 "SMATCAT" 2591567 NIL SMATCAT (NIL NIL T T T) -9 NIL 2592117) (-1090 2582898 2583721 2584899 "SMATCAT-" 2584904 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1089 2580611 2582134 2582177 "SKAGG" 2582438 NIL SKAGG (NIL T) -9 NIL 2582573) (-1088 2576727 2579715 2579993 "SINT" 2580355 T SINT (NIL) -8 NIL NIL) (-1087 2576499 2576537 2576603 "SIMPAN" 2576683 T SIMPAN (NIL) -7 NIL NIL) (-1086 2575806 2576034 2576174 "SIG" 2576381 T SIG (NIL) -8 NIL NIL) (-1085 2574644 2574865 2575140 "SIGNRF" 2575565 NIL SIGNRF (NIL T) -7 NIL NIL) (-1084 2573449 2573600 2573891 "SIGNEF" 2574473 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1083 2572782 2573032 2573156 "SIGAST" 2573347 T SIGAST (NIL) -8 NIL NIL) (-1082 2570472 2570926 2571432 "SHP" 2572323 NIL SHP (NIL T NIL) -7 NIL NIL) (-1081 2564378 2570373 2570449 "SHDP" 2570454 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1080 2563977 2564143 2564173 "SGROUP" 2564266 T SGROUP (NIL) -9 NIL 2564328) (-1079 2563835 2563861 2563934 "SGROUP-" 2563939 NIL SGROUP- (NIL T) -8 NIL NIL) (-1078 2560671 2561368 2562091 "SGCF" 2563134 T SGCF (NIL) -7 NIL NIL) (-1077 2555066 2560118 2560215 "SFRTCAT" 2560220 NIL SFRTCAT (NIL T T T T) -9 NIL 2560259) (-1076 2548490 2549505 2550641 "SFRGCD" 2554049 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1075 2541618 2542689 2543875 "SFQCMPK" 2547423 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1074 2541240 2541329 2541439 "SFORT" 2541559 NIL SFORT (NIL T T) -8 NIL NIL) (-1073 2540385 2541080 2541201 "SEXOF" 2541206 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1072 2539519 2540266 2540334 "SEX" 2540339 T SEX (NIL) -8 NIL NIL) (-1071 2534295 2534984 2535079 "SEXCAT" 2538850 NIL SEXCAT (NIL T T T T T) -9 NIL 2539469) (-1070 2531475 2534229 2534277 "SET" 2534282 NIL SET (NIL T) -8 NIL NIL) (-1069 2529726 2530188 2530493 "SETMN" 2531216 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1068 2529332 2529458 2529488 "SETCAT" 2529605 T SETCAT (NIL) -9 NIL 2529690) (-1067 2529112 2529164 2529263 "SETCAT-" 2529268 NIL SETCAT- (NIL T) -8 NIL NIL) (-1066 2525499 2527573 2527616 "SETAGG" 2528486 NIL SETAGG (NIL T) -9 NIL 2528826) (-1065 2524957 2525073 2525310 "SETAGG-" 2525315 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1064 2524427 2524653 2524754 "SEQAST" 2524878 T SEQAST (NIL) -8 NIL NIL) (-1063 2523631 2523924 2523985 "SEGXCAT" 2524271 NIL SEGXCAT (NIL T T) -9 NIL 2524391) (-1062 2522687 2523297 2523479 "SEG" 2523484 NIL SEG (NIL T) -8 NIL NIL) (-1061 2521594 2521807 2521850 "SEGCAT" 2522432 NIL SEGCAT (NIL T) -9 NIL 2522670) (-1060 2520643 2520973 2521173 "SEGBIND" 2521429 NIL SEGBIND (NIL T) -8 NIL NIL) (-1059 2520264 2520323 2520436 "SEGBIND2" 2520578 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1058 2519865 2520065 2520142 "SEGAST" 2520209 T SEGAST (NIL) -8 NIL NIL) (-1057 2519084 2519210 2519414 "SEG2" 2519709 NIL SEG2 (NIL T T) -7 NIL NIL) (-1056 2518521 2519019 2519066 "SDVAR" 2519071 NIL SDVAR (NIL T) -8 NIL NIL) (-1055 2510811 2518291 2518421 "SDPOL" 2518426 NIL SDPOL (NIL T) -8 NIL NIL) (-1054 2509404 2509670 2509989 "SCPKG" 2510526 NIL SCPKG (NIL T) -7 NIL NIL) (-1053 2508540 2508720 2508920 "SCOPE" 2509226 T SCOPE (NIL) -8 NIL NIL) (-1052 2507761 2507894 2508073 "SCACHE" 2508395 NIL SCACHE (NIL T) -7 NIL NIL) (-1051 2507470 2507630 2507660 "SASTCAT" 2507665 T SASTCAT (NIL) -9 NIL 2507678) (-1050 2506909 2507230 2507315 "SAOS" 2507407 T SAOS (NIL) -8 NIL NIL) (-1049 2506474 2506509 2506682 "SAERFFC" 2506868 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1048 2500448 2506371 2506451 "SAE" 2506456 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1047 2500041 2500076 2500235 "SAEFACT" 2500407 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1046 2498362 2498676 2499077 "RURPK" 2499707 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1045 2496998 2497277 2497589 "RULESET" 2498196 NIL RULESET (NIL T T T) -8 NIL NIL) (-1044 2494185 2494688 2495153 "RULE" 2496679 NIL RULE (NIL T T T) -8 NIL NIL) (-1043 2493824 2493979 2494062 "RULECOLD" 2494137 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1042 2493322 2493541 2493635 "RSTRCAST" 2493752 T RSTRCAST (NIL) -8 NIL NIL) (-1041 2488171 2488965 2489885 "RSETGCD" 2492521 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1040 2477428 2482480 2482577 "RSETCAT" 2486696 NIL RSETCAT (NIL T T T T) -9 NIL 2487793) (-1039 2475355 2475894 2476718 "RSETCAT-" 2476723 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1038 2467742 2469117 2470637 "RSDCMPK" 2473954 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1037 2465747 2466188 2466262 "RRCC" 2467348 NIL RRCC (NIL T T) -9 NIL 2467692) (-1036 2465098 2465272 2465551 "RRCC-" 2465556 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1035 2464568 2464794 2464895 "RPTAST" 2465019 T RPTAST (NIL) -8 NIL NIL) (-1034 2438796 2448381 2448448 "RPOLCAT" 2459112 NIL RPOLCAT (NIL T T T) -9 NIL 2462271) (-1033 2430296 2432634 2435756 "RPOLCAT-" 2435761 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1032 2421343 2428507 2428989 "ROUTINE" 2429836 T ROUTINE (NIL) -8 NIL NIL) (-1031 2418101 2420894 2421043 "ROMAN" 2421216 T ROMAN (NIL) -8 NIL NIL) (-1030 2416376 2416961 2417221 "ROIRC" 2417906 NIL ROIRC (NIL T T) -8 NIL NIL) (-1029 2412827 2415066 2415096 "RNS" 2415400 T RNS (NIL) -9 NIL 2415672) (-1028 2411336 2411719 2412253 "RNS-" 2412328 NIL RNS- (NIL T) -8 NIL NIL) (-1027 2410785 2411167 2411197 "RNG" 2411202 T RNG (NIL) -9 NIL 2411223) (-1026 2410177 2410539 2410582 "RMODULE" 2410644 NIL RMODULE (NIL T) -9 NIL 2410686) (-1025 2409013 2409107 2409443 "RMCAT2" 2410078 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1024 2405718 2408187 2408512 "RMATRIX" 2408747 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1023 2398660 2400894 2401009 "RMATCAT" 2404368 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2405350) (-1022 2398035 2398182 2398489 "RMATCAT-" 2398494 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1021 2397602 2397677 2397805 "RINTERP" 2397954 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1020 2396690 2397210 2397240 "RING" 2397352 T RING (NIL) -9 NIL 2397447) (-1019 2396482 2396526 2396623 "RING-" 2396628 NIL RING- (NIL T) -8 NIL NIL) (-1018 2395323 2395560 2395818 "RIDIST" 2396246 T RIDIST (NIL) -7 NIL NIL) (-1017 2386639 2394791 2394997 "RGCHAIN" 2395171 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1016 2383633 2384247 2384917 "RF" 2386003 NIL RF (NIL T) -7 NIL NIL) (-1015 2383279 2383342 2383445 "RFFACTOR" 2383564 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1014 2383004 2383039 2383136 "RFFACT" 2383238 NIL RFFACT (NIL T) -7 NIL NIL) (-1013 2381121 2381485 2381867 "RFDIST" 2382644 T RFDIST (NIL) -7 NIL NIL) (-1012 2380574 2380666 2380829 "RETSOL" 2381023 NIL RETSOL (NIL T T) -7 NIL NIL) (-1011 2380162 2380242 2380285 "RETRACT" 2380478 NIL RETRACT (NIL T) -9 NIL NIL) (-1010 2380011 2380036 2380123 "RETRACT-" 2380128 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1009 2379640 2379833 2379903 "RETAST" 2379963 T RETAST (NIL) -8 NIL NIL) (-1008 2372494 2379293 2379420 "RESULT" 2379535 T RESULT (NIL) -8 NIL NIL) (-1007 2371120 2371763 2371962 "RESRING" 2372397 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1006 2370756 2370805 2370903 "RESLATC" 2371057 NIL RESLATC (NIL T) -7 NIL NIL) (-1005 2370462 2370496 2370603 "REPSQ" 2370715 NIL REPSQ (NIL T) -7 NIL NIL) (-1004 2367884 2368464 2369066 "REP" 2369882 T REP (NIL) -7 NIL NIL) (-1003 2367582 2367616 2367727 "REPDB" 2367843 NIL REPDB (NIL T) -7 NIL NIL) (-1002 2361492 2362871 2364094 "REP2" 2366394 NIL REP2 (NIL T) -7 NIL NIL) (-1001 2357869 2358550 2359358 "REP1" 2360719 NIL REP1 (NIL T) -7 NIL NIL) (-1000 2350595 2356010 2356466 "REGSET" 2357499 NIL REGSET (NIL T T T T) -8 NIL NIL) (-999 2349416 2349751 2349999 "REF" 2350380 NIL REF (NIL T) -8 NIL NIL) (-998 2348797 2348900 2349065 "REDORDER" 2349300 NIL REDORDER (NIL T T) -7 NIL NIL) (-997 2344817 2348025 2348248 "RECLOS" 2348626 NIL RECLOS (NIL T) -8 NIL NIL) (-996 2343874 2344055 2344268 "REALSOLV" 2344624 T REALSOLV (NIL) -7 NIL NIL) (-995 2343722 2343763 2343791 "REAL" 2343796 T REAL (NIL) -9 NIL 2343831) (-994 2340213 2341015 2341897 "REAL0Q" 2342887 NIL REAL0Q (NIL T) -7 NIL NIL) (-993 2335824 2336812 2337871 "REAL0" 2339194 NIL REAL0 (NIL T) -7 NIL NIL) (-992 2335326 2335545 2335637 "RDUCEAST" 2335752 T RDUCEAST (NIL) -8 NIL NIL) (-991 2334734 2334806 2335011 "RDIV" 2335248 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-990 2333807 2333981 2334192 "RDIST" 2334556 NIL RDIST (NIL T) -7 NIL NIL) (-989 2332408 2332695 2333065 "RDETRS" 2333515 NIL RDETRS (NIL T T) -7 NIL NIL) (-988 2330225 2330679 2331215 "RDETR" 2331950 NIL RDETR (NIL T T) -7 NIL NIL) (-987 2328839 2329117 2329519 "RDEEFS" 2329941 NIL RDEEFS (NIL T T) -7 NIL NIL) (-986 2327337 2327643 2328073 "RDEEF" 2328527 NIL RDEEF (NIL T T) -7 NIL NIL) (-985 2321674 2324545 2324573 "RCFIELD" 2325850 T RCFIELD (NIL) -9 NIL 2326580) (-984 2319743 2320247 2320940 "RCFIELD-" 2321013 NIL RCFIELD- (NIL T) -8 NIL NIL) (-983 2316074 2317859 2317900 "RCAGG" 2318971 NIL RCAGG (NIL T) -9 NIL 2319436) (-982 2315705 2315799 2315959 "RCAGG-" 2315964 NIL RCAGG- (NIL T T) -8 NIL NIL) (-981 2315045 2315157 2315320 "RATRET" 2315589 NIL RATRET (NIL T) -7 NIL NIL) (-980 2314602 2314669 2314788 "RATFACT" 2314973 NIL RATFACT (NIL T) -7 NIL NIL) (-979 2313917 2314037 2314187 "RANDSRC" 2314472 T RANDSRC (NIL) -7 NIL NIL) (-978 2313654 2313698 2313769 "RADUTIL" 2313866 T RADUTIL (NIL) -7 NIL NIL) (-977 2306719 2312397 2312714 "RADIX" 2313369 NIL RADIX (NIL NIL) -8 NIL NIL) (-976 2298375 2306563 2306691 "RADFF" 2306696 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-975 2298027 2298102 2298130 "RADCAT" 2298287 T RADCAT (NIL) -9 NIL NIL) (-974 2297812 2297860 2297957 "RADCAT-" 2297962 NIL RADCAT- (NIL T) -8 NIL NIL) (-973 2295963 2297587 2297676 "QUEUE" 2297756 NIL QUEUE (NIL T) -8 NIL NIL) (-972 2292539 2295900 2295945 "QUAT" 2295950 NIL QUAT (NIL T) -8 NIL NIL) (-971 2292177 2292220 2292347 "QUATCT2" 2292490 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-970 2286037 2289338 2289378 "QUATCAT" 2290158 NIL QUATCAT (NIL T) -9 NIL 2290924) (-969 2282181 2283218 2284605 "QUATCAT-" 2284699 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-968 2279701 2281265 2281306 "QUAGG" 2281681 NIL QUAGG (NIL T) -9 NIL 2281856) (-967 2279333 2279526 2279594 "QQUTAST" 2279653 T QQUTAST (NIL) -8 NIL NIL) (-966 2278258 2278731 2278903 "QFORM" 2279205 NIL QFORM (NIL NIL T) -8 NIL NIL) (-965 2269591 2274794 2274834 "QFCAT" 2275492 NIL QFCAT (NIL T) -9 NIL 2276491) (-964 2265163 2266364 2267955 "QFCAT-" 2268049 NIL QFCAT- (NIL T T) -8 NIL NIL) (-963 2264801 2264844 2264971 "QFCAT2" 2265114 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-962 2264261 2264371 2264501 "QEQUAT" 2264691 T QEQUAT (NIL) -8 NIL NIL) (-961 2257409 2258480 2259664 "QCMPACK" 2263194 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-960 2254985 2255406 2255834 "QALGSET" 2257064 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-959 2254230 2254404 2254636 "QALGSET2" 2254805 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-958 2252921 2253144 2253461 "PWFFINTB" 2254003 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-957 2251103 2251271 2251625 "PUSHVAR" 2252735 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-956 2247021 2248075 2248116 "PTRANFN" 2250000 NIL PTRANFN (NIL T) -9 NIL NIL) (-955 2245423 2245714 2246036 "PTPACK" 2246732 NIL PTPACK (NIL T) -7 NIL NIL) (-954 2245055 2245112 2245221 "PTFUNC2" 2245360 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-953 2239521 2243866 2243907 "PTCAT" 2244280 NIL PTCAT (NIL T) -9 NIL 2244442) (-952 2239179 2239214 2239338 "PSQFR" 2239480 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-951 2237774 2238072 2238406 "PSEUDLIN" 2238877 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-950 2224543 2226908 2229232 "PSETPK" 2235534 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-949 2217587 2220301 2220397 "PSETCAT" 2223418 NIL PSETCAT (NIL T T T T) -9 NIL 2224232) (-948 2215423 2216057 2216878 "PSETCAT-" 2216883 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-947 2214772 2214937 2214965 "PSCURVE" 2215233 T PSCURVE (NIL) -9 NIL 2215400) (-946 2211253 2212735 2212800 "PSCAT" 2213644 NIL PSCAT (NIL T T T) -9 NIL 2213884) (-945 2210316 2210532 2210932 "PSCAT-" 2210937 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-944 2208968 2209601 2209815 "PRTITION" 2210122 T PRTITION (NIL) -8 NIL NIL) (-943 2208470 2208689 2208781 "PRTDAST" 2208896 T PRTDAST (NIL) -8 NIL NIL) (-942 2197568 2199774 2201962 "PRS" 2206332 NIL PRS (NIL T T) -7 NIL NIL) (-941 2195426 2196918 2196958 "PRQAGG" 2197141 NIL PRQAGG (NIL T) -9 NIL 2197243) (-940 2194812 2195041 2195069 "PROPLOG" 2195254 T PROPLOG (NIL) -9 NIL 2195376) (-939 2191982 2192626 2193090 "PROPFRML" 2194380 NIL PROPFRML (NIL T) -8 NIL NIL) (-938 2191442 2191552 2191682 "PROPERTY" 2191872 T PROPERTY (NIL) -8 NIL NIL) (-937 2185527 2189608 2190428 "PRODUCT" 2190668 NIL PRODUCT (NIL T T) -8 NIL NIL) (-936 2182840 2184985 2185219 "PR" 2185338 NIL PR (NIL T T) -8 NIL NIL) (-935 2182636 2182668 2182727 "PRINT" 2182801 T PRINT (NIL) -7 NIL NIL) (-934 2181976 2182093 2182245 "PRIMES" 2182516 NIL PRIMES (NIL T) -7 NIL NIL) (-933 2180041 2180442 2180908 "PRIMELT" 2181555 NIL PRIMELT (NIL T) -7 NIL NIL) (-932 2179770 2179819 2179847 "PRIMCAT" 2179971 T PRIMCAT (NIL) -9 NIL NIL) (-931 2175931 2179708 2179753 "PRIMARR" 2179758 NIL PRIMARR (NIL T) -8 NIL NIL) (-930 2174938 2175116 2175344 "PRIMARR2" 2175749 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-929 2174581 2174637 2174748 "PREASSOC" 2174876 NIL PREASSOC (NIL T T) -7 NIL NIL) (-928 2174056 2174189 2174217 "PPCURVE" 2174422 T PPCURVE (NIL) -9 NIL 2174558) (-927 2173678 2173851 2173934 "PORTNUM" 2173993 T PORTNUM (NIL) -8 NIL NIL) (-926 2171037 2171436 2172028 "POLYROOT" 2173259 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-925 2164982 2170641 2170801 "POLY" 2170910 NIL POLY (NIL T) -8 NIL NIL) (-924 2164365 2164423 2164657 "POLYLIFT" 2164918 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-923 2160640 2161089 2161718 "POLYCATQ" 2163910 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-922 2147679 2153035 2153100 "POLYCAT" 2156614 NIL POLYCAT (NIL T T T) -9 NIL 2158542) (-921 2141129 2142990 2145374 "POLYCAT-" 2145379 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-920 2140716 2140784 2140904 "POLY2UP" 2141055 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-919 2140348 2140405 2140514 "POLY2" 2140653 NIL POLY2 (NIL T T) -7 NIL NIL) (-918 2139033 2139272 2139548 "POLUTIL" 2140122 NIL POLUTIL (NIL T T) -7 NIL NIL) (-917 2137388 2137665 2137996 "POLTOPOL" 2138755 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-916 2132906 2137324 2137370 "POINT" 2137375 NIL POINT (NIL T) -8 NIL NIL) (-915 2131093 2131450 2131825 "PNTHEORY" 2132551 T PNTHEORY (NIL) -7 NIL NIL) (-914 2129512 2129809 2130221 "PMTOOLS" 2130791 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-913 2129105 2129183 2129300 "PMSYM" 2129428 NIL PMSYM (NIL T) -7 NIL NIL) (-912 2128615 2128684 2128858 "PMQFCAT" 2129030 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-911 2127970 2128080 2128236 "PMPRED" 2128492 NIL PMPRED (NIL T) -7 NIL NIL) (-910 2127366 2127452 2127613 "PMPREDFS" 2127871 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-909 2126009 2126217 2126602 "PMPLCAT" 2127128 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-908 2125541 2125620 2125772 "PMLSAGG" 2125924 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-907 2125016 2125092 2125273 "PMKERNEL" 2125459 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-906 2124633 2124708 2124821 "PMINS" 2124935 NIL PMINS (NIL T) -7 NIL NIL) (-905 2124061 2124130 2124346 "PMFS" 2124558 NIL PMFS (NIL T T T) -7 NIL NIL) (-904 2123289 2123407 2123612 "PMDOWN" 2123938 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-903 2122452 2122611 2122793 "PMASS" 2123127 T PMASS (NIL) -7 NIL NIL) (-902 2121726 2121837 2122000 "PMASSFS" 2122338 NIL PMASSFS (NIL T T) -7 NIL NIL) (-901 2121381 2121449 2121543 "PLOTTOOL" 2121652 T PLOTTOOL (NIL) -7 NIL NIL) (-900 2116003 2117192 2118340 "PLOT" 2120253 T PLOT (NIL) -8 NIL NIL) (-899 2111817 2112851 2113772 "PLOT3D" 2115102 T PLOT3D (NIL) -8 NIL NIL) (-898 2110729 2110906 2111141 "PLOT1" 2111621 NIL PLOT1 (NIL T) -7 NIL NIL) (-897 2086123 2090795 2095646 "PLEQN" 2105995 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-896 2085441 2085563 2085743 "PINTERP" 2085988 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-895 2085134 2085181 2085284 "PINTERPA" 2085388 NIL PINTERPA (NIL T T) -7 NIL NIL) (-894 2084419 2084940 2085027 "PI" 2085067 T PI (NIL) -8 NIL NIL) (-893 2082851 2083792 2083820 "PID" 2084002 T PID (NIL) -9 NIL 2084136) (-892 2082576 2082613 2082701 "PICOERCE" 2082808 NIL PICOERCE (NIL T) -7 NIL NIL) (-891 2081896 2082035 2082211 "PGROEB" 2082432 NIL PGROEB (NIL T) -7 NIL NIL) (-890 2077483 2078297 2079202 "PGE" 2081011 T PGE (NIL) -7 NIL NIL) (-889 2075607 2075853 2076219 "PGCD" 2077200 NIL PGCD (NIL T T T T) -7 NIL NIL) (-888 2074945 2075048 2075209 "PFRPAC" 2075491 NIL PFRPAC (NIL T) -7 NIL NIL) (-887 2071625 2073493 2073846 "PFR" 2074624 NIL PFR (NIL T) -8 NIL NIL) (-886 2070014 2070258 2070583 "PFOTOOLS" 2071372 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-885 2068547 2068786 2069137 "PFOQ" 2069771 NIL PFOQ (NIL T T T) -7 NIL NIL) (-884 2067020 2067232 2067595 "PFO" 2068331 NIL PFO (NIL T T T T T) -7 NIL NIL) (-883 2063608 2066909 2066978 "PF" 2066983 NIL PF (NIL NIL) -8 NIL NIL) (-882 2061077 2062314 2062342 "PFECAT" 2062927 T PFECAT (NIL) -9 NIL 2063311) (-881 2060522 2060676 2060890 "PFECAT-" 2060895 NIL PFECAT- (NIL T) -8 NIL NIL) (-880 2059126 2059377 2059678 "PFBRU" 2060271 NIL PFBRU (NIL T T) -7 NIL NIL) (-879 2056993 2057344 2057776 "PFBR" 2058777 NIL PFBR (NIL T T T T) -7 NIL NIL) (-878 2052909 2054369 2055045 "PERM" 2056350 NIL PERM (NIL T) -8 NIL NIL) (-877 2048175 2049116 2049986 "PERMGRP" 2052072 NIL PERMGRP (NIL T) -8 NIL NIL) (-876 2046307 2047238 2047279 "PERMCAT" 2047725 NIL PERMCAT (NIL T) -9 NIL 2048030) (-875 2045960 2046001 2046125 "PERMAN" 2046260 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-874 2043400 2045529 2045660 "PENDTREE" 2045862 NIL PENDTREE (NIL T) -8 NIL NIL) (-873 2041513 2042247 2042288 "PDRING" 2042945 NIL PDRING (NIL T) -9 NIL 2043231) (-872 2040616 2040834 2041196 "PDRING-" 2041201 NIL PDRING- (NIL T T) -8 NIL NIL) (-871 2037757 2038508 2039199 "PDEPROB" 2039945 T PDEPROB (NIL) -8 NIL NIL) (-870 2035304 2035806 2036361 "PDEPACK" 2037222 T PDEPACK (NIL) -7 NIL NIL) (-869 2034216 2034406 2034657 "PDECOMP" 2035103 NIL PDECOMP (NIL T T) -7 NIL NIL) (-868 2031821 2032638 2032666 "PDECAT" 2033453 T PDECAT (NIL) -9 NIL 2034166) (-867 2031572 2031605 2031695 "PCOMP" 2031782 NIL PCOMP (NIL T T) -7 NIL NIL) (-866 2029777 2030373 2030670 "PBWLB" 2031301 NIL PBWLB (NIL T) -8 NIL NIL) (-865 2022281 2023850 2025188 "PATTERN" 2028460 NIL PATTERN (NIL T) -8 NIL NIL) (-864 2021913 2021970 2022079 "PATTERN2" 2022218 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-863 2019670 2020058 2020515 "PATTERN1" 2021502 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-862 2017065 2017619 2018100 "PATRES" 2019235 NIL PATRES (NIL T T) -8 NIL NIL) (-861 2016629 2016696 2016828 "PATRES2" 2016992 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-860 2014512 2014917 2015324 "PATMATCH" 2016296 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-859 2014048 2014231 2014272 "PATMAB" 2014379 NIL PATMAB (NIL T) -9 NIL 2014462) (-858 2012593 2012902 2013160 "PATLRES" 2013853 NIL PATLRES (NIL T T T) -8 NIL NIL) (-857 2012139 2012262 2012303 "PATAB" 2012308 NIL PATAB (NIL T) -9 NIL 2012480) (-856 2009620 2010152 2010725 "PARTPERM" 2011586 T PARTPERM (NIL) -7 NIL NIL) (-855 2009241 2009304 2009406 "PARSURF" 2009551 NIL PARSURF (NIL T) -8 NIL NIL) (-854 2008873 2008930 2009039 "PARSU2" 2009178 NIL PARSU2 (NIL T T) -7 NIL NIL) (-853 2008637 2008677 2008744 "PARSER" 2008826 T PARSER (NIL) -7 NIL NIL) (-852 2008258 2008321 2008423 "PARSCURV" 2008568 NIL PARSCURV (NIL T) -8 NIL NIL) (-851 2007890 2007947 2008056 "PARSC2" 2008195 NIL PARSC2 (NIL T T) -7 NIL NIL) (-850 2007529 2007587 2007684 "PARPCURV" 2007826 NIL PARPCURV (NIL T) -8 NIL NIL) (-849 2007161 2007218 2007327 "PARPC2" 2007466 NIL PARPC2 (NIL T T) -7 NIL NIL) (-848 2006681 2006767 2006886 "PAN2EXPR" 2007062 T PAN2EXPR (NIL) -7 NIL NIL) (-847 2005487 2005802 2006030 "PALETTE" 2006473 T PALETTE (NIL) -8 NIL NIL) (-846 2003955 2004492 2004852 "PAIR" 2005173 NIL PAIR (NIL T T) -8 NIL NIL) (-845 1997863 2003214 2003408 "PADICRC" 2003810 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-844 1991129 1997209 1997393 "PADICRAT" 1997711 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-843 1989479 1991066 1991111 "PADIC" 1991116 NIL PADIC (NIL NIL) -8 NIL NIL) (-842 1986724 1988254 1988294 "PADICCT" 1988875 NIL PADICCT (NIL NIL) -9 NIL 1989157) (-841 1985681 1985881 1986149 "PADEPAC" 1986511 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-840 1984893 1985026 1985232 "PADE" 1985543 NIL PADE (NIL T T T) -7 NIL NIL) (-839 1982943 1983729 1984046 "OWP" 1984660 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-838 1982052 1982548 1982720 "OVAR" 1982811 NIL OVAR (NIL NIL) -8 NIL NIL) (-837 1981316 1981437 1981598 "OUT" 1981911 T OUT (NIL) -7 NIL NIL) (-836 1970372 1972541 1974711 "OUTFORM" 1979166 T OUTFORM (NIL) -8 NIL NIL) (-835 1970009 1970092 1970120 "OUTBCON" 1970271 T OUTBCON (NIL) -9 NIL 1970356) (-834 1969849 1969884 1969960 "OUTBCON-" 1969965 NIL OUTBCON- (NIL T) -8 NIL NIL) (-833 1969257 1969578 1969667 "OSI" 1969780 T OSI (NIL) -8 NIL NIL) (-832 1968813 1969125 1969153 "OSGROUP" 1969158 T OSGROUP (NIL) -9 NIL 1969180) (-831 1967558 1967785 1968070 "ORTHPOL" 1968560 NIL ORTHPOL (NIL T) -7 NIL NIL) (-830 1964968 1967217 1967356 "OREUP" 1967501 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-829 1962406 1964659 1964786 "ORESUP" 1964910 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-828 1959934 1960434 1960995 "OREPCTO" 1961895 NIL OREPCTO (NIL T T) -7 NIL NIL) (-827 1953845 1956012 1956053 "OREPCAT" 1958401 NIL OREPCAT (NIL T) -9 NIL 1959505) (-826 1950992 1951774 1952832 "OREPCAT-" 1952837 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-825 1950169 1950441 1950469 "ORDSET" 1950778 T ORDSET (NIL) -9 NIL 1950942) (-824 1949688 1949810 1950003 "ORDSET-" 1950008 NIL ORDSET- (NIL T) -8 NIL NIL) (-823 1948342 1949099 1949127 "ORDRING" 1949329 T ORDRING (NIL) -9 NIL 1949454) (-822 1947987 1948081 1948225 "ORDRING-" 1948230 NIL ORDRING- (NIL T) -8 NIL NIL) (-821 1947393 1947830 1947858 "ORDMON" 1947863 T ORDMON (NIL) -9 NIL 1947884) (-820 1946555 1946702 1946897 "ORDFUNS" 1947242 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-819 1946066 1946425 1946453 "ORDFIN" 1946458 T ORDFIN (NIL) -9 NIL 1946479) (-818 1942658 1944652 1945061 "ORDCOMP" 1945690 NIL ORDCOMP (NIL T) -8 NIL NIL) (-817 1941924 1942051 1942237 "ORDCOMP2" 1942518 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-816 1938431 1939314 1940151 "OPTPROB" 1941107 T OPTPROB (NIL) -8 NIL NIL) (-815 1935233 1935872 1936576 "OPTPACK" 1937747 T OPTPACK (NIL) -7 NIL NIL) (-814 1932946 1933686 1933714 "OPTCAT" 1934533 T OPTCAT (NIL) -9 NIL 1935183) (-813 1932714 1932753 1932819 "OPQUERY" 1932900 T OPQUERY (NIL) -7 NIL NIL) (-812 1929880 1931025 1931529 "OP" 1932243 NIL OP (NIL T) -8 NIL NIL) (-811 1926725 1928677 1929046 "ONECOMP" 1929544 NIL ONECOMP (NIL T) -8 NIL NIL) (-810 1926030 1926145 1926319 "ONECOMP2" 1926597 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-809 1925449 1925555 1925685 "OMSERVER" 1925920 T OMSERVER (NIL) -7 NIL NIL) (-808 1922337 1924889 1924929 "OMSAGG" 1924990 NIL OMSAGG (NIL T) -9 NIL 1925054) (-807 1920960 1921223 1921505 "OMPKG" 1922075 T OMPKG (NIL) -7 NIL NIL) (-806 1920390 1920493 1920521 "OM" 1920820 T OM (NIL) -9 NIL NIL) (-805 1918972 1919939 1920108 "OMLO" 1920271 NIL OMLO (NIL T T) -8 NIL NIL) (-804 1917897 1918044 1918271 "OMEXPR" 1918798 NIL OMEXPR (NIL T) -7 NIL NIL) (-803 1917215 1917443 1917579 "OMERR" 1917781 T OMERR (NIL) -8 NIL NIL) (-802 1916393 1916636 1916796 "OMERRK" 1917075 T OMERRK (NIL) -8 NIL NIL) (-801 1915871 1916070 1916178 "OMENC" 1916305 T OMENC (NIL) -8 NIL NIL) (-800 1909766 1910951 1912122 "OMDEV" 1914720 T OMDEV (NIL) -8 NIL NIL) (-799 1908835 1909006 1909200 "OMCONN" 1909592 T OMCONN (NIL) -8 NIL NIL) (-798 1907491 1908433 1908461 "OINTDOM" 1908466 T OINTDOM (NIL) -9 NIL 1908487) (-797 1903297 1904481 1905197 "OFMONOID" 1906807 NIL OFMONOID (NIL T) -8 NIL NIL) (-796 1902735 1903234 1903279 "ODVAR" 1903284 NIL ODVAR (NIL T) -8 NIL NIL) (-795 1899945 1902232 1902417 "ODR" 1902610 NIL ODR (NIL T T NIL) -8 NIL NIL) (-794 1892289 1899721 1899847 "ODPOL" 1899852 NIL ODPOL (NIL T) -8 NIL NIL) (-793 1886165 1892161 1892266 "ODP" 1892271 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-792 1884931 1885146 1885421 "ODETOOLS" 1885939 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-791 1881900 1882556 1883272 "ODESYS" 1884264 NIL ODESYS (NIL T T) -7 NIL NIL) (-790 1876782 1877690 1878715 "ODERTRIC" 1880975 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-789 1876208 1876290 1876484 "ODERED" 1876694 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-788 1873096 1873644 1874321 "ODERAT" 1875631 NIL ODERAT (NIL T T) -7 NIL NIL) (-787 1870056 1870520 1871117 "ODEPRRIC" 1872625 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-786 1867925 1868494 1869003 "ODEPROB" 1869567 T ODEPROB (NIL) -8 NIL NIL) (-785 1864447 1864930 1865577 "ODEPRIM" 1867404 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-784 1863696 1863798 1864058 "ODEPAL" 1864339 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-783 1859858 1860649 1861513 "ODEPACK" 1862852 T ODEPACK (NIL) -7 NIL NIL) (-782 1858891 1858998 1859227 "ODEINT" 1859747 NIL ODEINT (NIL T T) -7 NIL NIL) (-781 1852992 1854417 1855864 "ODEIFTBL" 1857464 T ODEIFTBL (NIL) -8 NIL NIL) (-780 1848327 1849113 1850072 "ODEEF" 1852151 NIL ODEEF (NIL T T) -7 NIL NIL) (-779 1847662 1847751 1847981 "ODECONST" 1848232 NIL ODECONST (NIL T T T) -7 NIL NIL) (-778 1845813 1846448 1846476 "ODECAT" 1847081 T ODECAT (NIL) -9 NIL 1847612) (-777 1842720 1845525 1845644 "OCT" 1845726 NIL OCT (NIL T) -8 NIL NIL) (-776 1842358 1842401 1842528 "OCTCT2" 1842671 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-775 1837219 1839619 1839659 "OC" 1840756 NIL OC (NIL T) -9 NIL 1841614) (-774 1834446 1835194 1836184 "OC-" 1836278 NIL OC- (NIL T T) -8 NIL NIL) (-773 1833824 1834266 1834294 "OCAMON" 1834299 T OCAMON (NIL) -9 NIL 1834320) (-772 1833381 1833696 1833724 "OASGP" 1833729 T OASGP (NIL) -9 NIL 1833749) (-771 1832668 1833131 1833159 "OAMONS" 1833199 T OAMONS (NIL) -9 NIL 1833242) (-770 1832108 1832515 1832543 "OAMON" 1832548 T OAMON (NIL) -9 NIL 1832568) (-769 1831412 1831904 1831932 "OAGROUP" 1831937 T OAGROUP (NIL) -9 NIL 1831957) (-768 1831102 1831152 1831240 "NUMTUBE" 1831356 NIL NUMTUBE (NIL T) -7 NIL NIL) (-767 1824675 1826193 1827729 "NUMQUAD" 1829586 T NUMQUAD (NIL) -7 NIL NIL) (-766 1820431 1821419 1822444 "NUMODE" 1823670 T NUMODE (NIL) -7 NIL NIL) (-765 1817812 1818666 1818694 "NUMINT" 1819617 T NUMINT (NIL) -9 NIL 1820381) (-764 1816760 1816957 1817175 "NUMFMT" 1817614 T NUMFMT (NIL) -7 NIL NIL) (-763 1803119 1806064 1808596 "NUMERIC" 1814267 NIL NUMERIC (NIL T) -7 NIL NIL) (-762 1797516 1802568 1802663 "NTSCAT" 1802668 NIL NTSCAT (NIL T T T T) -9 NIL 1802707) (-761 1796710 1796875 1797068 "NTPOLFN" 1797355 NIL NTPOLFN (NIL T) -7 NIL NIL) (-760 1784550 1793535 1794347 "NSUP" 1795931 NIL NSUP (NIL T) -8 NIL NIL) (-759 1784182 1784239 1784348 "NSUP2" 1784487 NIL NSUP2 (NIL T T) -7 NIL NIL) (-758 1774179 1783956 1784089 "NSMP" 1784094 NIL NSMP (NIL T T) -8 NIL NIL) (-757 1772611 1772912 1773269 "NREP" 1773867 NIL NREP (NIL T) -7 NIL NIL) (-756 1771202 1771454 1771812 "NPCOEF" 1772354 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-755 1770268 1770383 1770599 "NORMRETR" 1771083 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-754 1768309 1768599 1769008 "NORMPK" 1769976 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-753 1767994 1768022 1768146 "NORMMA" 1768275 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-752 1767821 1767951 1767980 "NONE" 1767985 T NONE (NIL) -8 NIL NIL) (-751 1767610 1767639 1767708 "NONE1" 1767785 NIL NONE1 (NIL T) -7 NIL NIL) (-750 1767093 1767155 1767341 "NODE1" 1767542 NIL NODE1 (NIL T T) -7 NIL NIL) (-749 1765433 1766256 1766511 "NNI" 1766858 T NNI (NIL) -8 NIL NIL) (-748 1763853 1764166 1764530 "NLINSOL" 1765101 NIL NLINSOL (NIL T) -7 NIL NIL) (-747 1760020 1760988 1761910 "NIPROB" 1762951 T NIPROB (NIL) -8 NIL NIL) (-746 1758777 1759011 1759313 "NFINTBAS" 1759782 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-745 1757485 1757716 1757997 "NCODIV" 1758545 NIL NCODIV (NIL T T) -7 NIL NIL) (-744 1757247 1757284 1757359 "NCNTFRAC" 1757442 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-743 1755427 1755791 1756211 "NCEP" 1756872 NIL NCEP (NIL T) -7 NIL NIL) (-742 1754338 1755077 1755105 "NASRING" 1755215 T NASRING (NIL) -9 NIL 1755289) (-741 1754133 1754177 1754271 "NASRING-" 1754276 NIL NASRING- (NIL T) -8 NIL NIL) (-740 1753286 1753785 1753813 "NARNG" 1753930 T NARNG (NIL) -9 NIL 1754021) (-739 1752978 1753045 1753179 "NARNG-" 1753184 NIL NARNG- (NIL T) -8 NIL NIL) (-738 1751857 1752064 1752299 "NAGSP" 1752763 T NAGSP (NIL) -7 NIL NIL) (-737 1743129 1744813 1746486 "NAGS" 1750204 T NAGS (NIL) -7 NIL NIL) (-736 1741677 1741985 1742316 "NAGF07" 1742818 T NAGF07 (NIL) -7 NIL NIL) (-735 1736215 1737506 1738813 "NAGF04" 1740390 T NAGF04 (NIL) -7 NIL NIL) (-734 1729183 1730797 1732430 "NAGF02" 1734602 T NAGF02 (NIL) -7 NIL NIL) (-733 1724407 1725507 1726624 "NAGF01" 1728086 T NAGF01 (NIL) -7 NIL NIL) (-732 1718035 1719601 1721186 "NAGE04" 1722842 T NAGE04 (NIL) -7 NIL NIL) (-731 1709204 1711325 1713455 "NAGE02" 1715925 T NAGE02 (NIL) -7 NIL NIL) (-730 1705157 1706104 1707068 "NAGE01" 1708260 T NAGE01 (NIL) -7 NIL NIL) (-729 1702952 1703486 1704044 "NAGD03" 1704619 T NAGD03 (NIL) -7 NIL NIL) (-728 1694702 1696630 1698584 "NAGD02" 1701018 T NAGD02 (NIL) -7 NIL NIL) (-727 1688513 1689938 1691378 "NAGD01" 1693282 T NAGD01 (NIL) -7 NIL NIL) (-726 1684722 1685544 1686381 "NAGC06" 1687696 T NAGC06 (NIL) -7 NIL NIL) (-725 1683187 1683519 1683875 "NAGC05" 1684386 T NAGC05 (NIL) -7 NIL NIL) (-724 1682563 1682682 1682826 "NAGC02" 1683063 T NAGC02 (NIL) -7 NIL NIL) (-723 1681623 1682180 1682220 "NAALG" 1682299 NIL NAALG (NIL T) -9 NIL 1682360) (-722 1681458 1681487 1681577 "NAALG-" 1681582 NIL NAALG- (NIL T T) -8 NIL NIL) (-721 1675408 1676516 1677703 "MULTSQFR" 1680354 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-720 1674727 1674802 1674986 "MULTFACT" 1675320 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-719 1667950 1671815 1671868 "MTSCAT" 1672938 NIL MTSCAT (NIL T T) -9 NIL 1673452) (-718 1667662 1667716 1667808 "MTHING" 1667890 NIL MTHING (NIL T) -7 NIL NIL) (-717 1667454 1667487 1667547 "MSYSCMD" 1667622 T MSYSCMD (NIL) -7 NIL NIL) (-716 1663566 1666209 1666529 "MSET" 1667167 NIL MSET (NIL T) -8 NIL NIL) (-715 1660661 1663127 1663168 "MSETAGG" 1663173 NIL MSETAGG (NIL T) -9 NIL 1663207) (-714 1656544 1658040 1658785 "MRING" 1659961 NIL MRING (NIL T T) -8 NIL NIL) (-713 1656110 1656177 1656308 "MRF2" 1656471 NIL MRF2 (NIL T T T) -7 NIL NIL) (-712 1655728 1655763 1655907 "MRATFAC" 1656069 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-711 1653340 1653635 1654066 "MPRFF" 1655433 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-710 1647400 1653194 1653291 "MPOLY" 1653296 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-709 1646890 1646925 1647133 "MPCPF" 1647359 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-708 1646404 1646447 1646631 "MPC3" 1646841 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-707 1645599 1645680 1645901 "MPC2" 1646319 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-706 1643900 1644237 1644627 "MONOTOOL" 1645259 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-705 1643151 1643442 1643470 "MONOID" 1643689 T MONOID (NIL) -9 NIL 1643836) (-704 1642697 1642816 1642997 "MONOID-" 1643002 NIL MONOID- (NIL T) -8 NIL NIL) (-703 1633747 1639653 1639712 "MONOGEN" 1640386 NIL MONOGEN (NIL T T) -9 NIL 1640842) (-702 1630965 1631700 1632700 "MONOGEN-" 1632819 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-701 1629824 1630244 1630272 "MONADWU" 1630664 T MONADWU (NIL) -9 NIL 1630902) (-700 1629196 1629355 1629603 "MONADWU-" 1629608 NIL MONADWU- (NIL T) -8 NIL NIL) (-699 1628581 1628799 1628827 "MONAD" 1629034 T MONAD (NIL) -9 NIL 1629146) (-698 1628266 1628344 1628476 "MONAD-" 1628481 NIL MONAD- (NIL T) -8 NIL NIL) (-697 1626582 1627179 1627458 "MOEBIUS" 1628019 NIL MOEBIUS (NIL T) -8 NIL NIL) (-696 1625974 1626352 1626392 "MODULE" 1626397 NIL MODULE (NIL T) -9 NIL 1626423) (-695 1625542 1625638 1625828 "MODULE-" 1625833 NIL MODULE- (NIL T T) -8 NIL NIL) (-694 1623257 1623906 1624233 "MODRING" 1625366 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-693 1620243 1621362 1621883 "MODOP" 1622786 NIL MODOP (NIL T T) -8 NIL NIL) (-692 1618430 1618882 1619223 "MODMONOM" 1620042 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-691 1608138 1616622 1617045 "MODMON" 1618058 NIL MODMON (NIL T T) -8 NIL NIL) (-690 1605329 1606982 1607258 "MODFIELD" 1608013 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-689 1604333 1604610 1604800 "MMLFORM" 1605159 T MMLFORM (NIL) -8 NIL NIL) (-688 1603859 1603902 1604081 "MMAP" 1604284 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-687 1602128 1602861 1602902 "MLO" 1603325 NIL MLO (NIL T) -9 NIL 1603567) (-686 1599495 1600010 1600612 "MLIFT" 1601609 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-685 1598886 1598970 1599124 "MKUCFUNC" 1599406 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-684 1598485 1598555 1598678 "MKRECORD" 1598809 NIL MKRECORD (NIL T T) -7 NIL NIL) (-683 1597533 1597694 1597922 "MKFUNC" 1598296 NIL MKFUNC (NIL T) -7 NIL NIL) (-682 1596921 1597025 1597181 "MKFLCFN" 1597416 NIL MKFLCFN (NIL T) -7 NIL NIL) (-681 1596347 1596714 1596803 "MKCHSET" 1596865 NIL MKCHSET (NIL T) -8 NIL NIL) (-680 1595624 1595726 1595911 "MKBCFUNC" 1596240 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-679 1592366 1595178 1595314 "MINT" 1595508 T MINT (NIL) -8 NIL NIL) (-678 1591178 1591421 1591698 "MHROWRED" 1592121 NIL MHROWRED (NIL T) -7 NIL NIL) (-677 1586604 1589713 1590118 "MFLOAT" 1590793 T MFLOAT (NIL) -8 NIL NIL) (-676 1585961 1586037 1586208 "MFINFACT" 1586516 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-675 1582276 1583124 1584008 "MESH" 1585097 T MESH (NIL) -7 NIL NIL) (-674 1580666 1580978 1581331 "MDDFACT" 1581963 NIL MDDFACT (NIL T) -7 NIL NIL) (-673 1577508 1579825 1579866 "MDAGG" 1580121 NIL MDAGG (NIL T) -9 NIL 1580264) (-672 1567288 1576801 1577008 "MCMPLX" 1577321 T MCMPLX (NIL) -8 NIL NIL) (-671 1566429 1566575 1566775 "MCDEN" 1567137 NIL MCDEN (NIL T T) -7 NIL NIL) (-670 1564319 1564589 1564969 "MCALCFN" 1566159 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-669 1563230 1563403 1563644 "MAYBE" 1564117 NIL MAYBE (NIL T) -8 NIL NIL) (-668 1560842 1561365 1561927 "MATSTOR" 1562701 NIL MATSTOR (NIL T) -7 NIL NIL) (-667 1556848 1560214 1560462 "MATRIX" 1560627 NIL MATRIX (NIL T) -8 NIL NIL) (-666 1552617 1553321 1554057 "MATLIN" 1556205 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-665 1542771 1545909 1545986 "MATCAT" 1550866 NIL MATCAT (NIL T T T) -9 NIL 1552283) (-664 1539135 1540148 1541504 "MATCAT-" 1541509 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-663 1537729 1537882 1538215 "MATCAT2" 1538970 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-662 1535841 1536165 1536549 "MAPPKG3" 1537404 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-661 1534822 1534995 1535217 "MAPPKG2" 1535665 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-660 1533321 1533605 1533932 "MAPPKG1" 1534528 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-659 1532427 1532727 1532904 "MAPPAST" 1533164 T MAPPAST (NIL) -8 NIL NIL) (-658 1532038 1532096 1532219 "MAPHACK3" 1532363 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-657 1531630 1531691 1531805 "MAPHACK2" 1531970 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-656 1531068 1531171 1531313 "MAPHACK1" 1531521 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-655 1529174 1529768 1530072 "MAGMA" 1530796 NIL MAGMA (NIL T) -8 NIL NIL) (-654 1528680 1528898 1528989 "MACROAST" 1529103 T MACROAST (NIL) -8 NIL NIL) (-653 1525147 1526919 1527380 "M3D" 1528252 NIL M3D (NIL T) -8 NIL NIL) (-652 1519302 1523517 1523558 "LZSTAGG" 1524340 NIL LZSTAGG (NIL T) -9 NIL 1524635) (-651 1515275 1516433 1517890 "LZSTAGG-" 1517895 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-650 1512389 1513166 1513653 "LWORD" 1514820 NIL LWORD (NIL T) -8 NIL NIL) (-649 1511992 1512193 1512268 "LSTAST" 1512334 T LSTAST (NIL) -8 NIL NIL) (-648 1505193 1511763 1511897 "LSQM" 1511902 NIL LSQM (NIL NIL T) -8 NIL NIL) (-647 1504417 1504556 1504784 "LSPP" 1505048 NIL LSPP (NIL T T T T) -7 NIL NIL) (-646 1502229 1502530 1502986 "LSMP" 1504106 NIL LSMP (NIL T T T T) -7 NIL NIL) (-645 1499008 1499682 1500412 "LSMP1" 1501531 NIL LSMP1 (NIL T) -7 NIL NIL) (-644 1492934 1498176 1498217 "LSAGG" 1498279 NIL LSAGG (NIL T) -9 NIL 1498357) (-643 1489629 1490553 1491766 "LSAGG-" 1491771 NIL LSAGG- (NIL T T) -8 NIL NIL) (-642 1487255 1488773 1489022 "LPOLY" 1489424 NIL LPOLY (NIL T T) -8 NIL NIL) (-641 1486837 1486922 1487045 "LPEFRAC" 1487164 NIL LPEFRAC (NIL T) -7 NIL NIL) (-640 1485184 1485931 1486184 "LO" 1486669 NIL LO (NIL T T T) -8 NIL NIL) (-639 1484836 1484948 1484976 "LOGIC" 1485087 T LOGIC (NIL) -9 NIL 1485168) (-638 1484698 1484721 1484792 "LOGIC-" 1484797 NIL LOGIC- (NIL T) -8 NIL NIL) (-637 1483891 1484031 1484224 "LODOOPS" 1484554 NIL LODOOPS (NIL T T) -7 NIL NIL) (-636 1481349 1483807 1483873 "LODO" 1483878 NIL LODO (NIL T NIL) -8 NIL NIL) (-635 1479887 1480122 1480475 "LODOF" 1481096 NIL LODOF (NIL T T) -7 NIL NIL) (-634 1476330 1478727 1478768 "LODOCAT" 1479206 NIL LODOCAT (NIL T) -9 NIL 1479417) (-633 1476063 1476121 1476248 "LODOCAT-" 1476253 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-632 1473418 1475904 1476022 "LODO2" 1476027 NIL LODO2 (NIL T T) -8 NIL NIL) (-631 1470888 1473355 1473400 "LODO1" 1473405 NIL LODO1 (NIL T) -8 NIL NIL) (-630 1469748 1469913 1470225 "LODEEF" 1470711 NIL LODEEF (NIL T T T) -7 NIL NIL) (-629 1465034 1467878 1467919 "LNAGG" 1468866 NIL LNAGG (NIL T) -9 NIL 1469310) (-628 1464181 1464395 1464737 "LNAGG-" 1464742 NIL LNAGG- (NIL T T) -8 NIL NIL) (-627 1460344 1461106 1461745 "LMOPS" 1463596 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-626 1459739 1460101 1460142 "LMODULE" 1460203 NIL LMODULE (NIL T) -9 NIL 1460245) (-625 1456985 1459384 1459507 "LMDICT" 1459649 NIL LMDICT (NIL T) -8 NIL NIL) (-624 1456711 1456893 1456953 "LITERAL" 1456958 NIL LITERAL (NIL T) -8 NIL NIL) (-623 1449938 1455657 1455955 "LIST" 1456446 NIL LIST (NIL T) -8 NIL NIL) (-622 1449463 1449537 1449676 "LIST3" 1449858 NIL LIST3 (NIL T T T) -7 NIL NIL) (-621 1448470 1448648 1448876 "LIST2" 1449281 NIL LIST2 (NIL T T) -7 NIL NIL) (-620 1446604 1446916 1447315 "LIST2MAP" 1448117 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-619 1445354 1445990 1446031 "LINEXP" 1446286 NIL LINEXP (NIL T) -9 NIL 1446435) (-618 1444001 1444261 1444558 "LINDEP" 1445106 NIL LINDEP (NIL T T) -7 NIL NIL) (-617 1440768 1441487 1442264 "LIMITRF" 1443256 NIL LIMITRF (NIL T) -7 NIL NIL) (-616 1439044 1439339 1439755 "LIMITPS" 1440463 NIL LIMITPS (NIL T T) -7 NIL NIL) (-615 1433499 1438555 1438783 "LIE" 1438865 NIL LIE (NIL T T) -8 NIL NIL) (-614 1432548 1432991 1433031 "LIECAT" 1433171 NIL LIECAT (NIL T) -9 NIL 1433322) (-613 1432389 1432416 1432504 "LIECAT-" 1432509 NIL LIECAT- (NIL T T) -8 NIL NIL) (-612 1425001 1431838 1432003 "LIB" 1432244 T LIB (NIL) -8 NIL NIL) (-611 1420638 1421519 1422454 "LGROBP" 1424118 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-610 1418504 1418778 1419140 "LF" 1420359 NIL LF (NIL T T) -7 NIL NIL) (-609 1417344 1418036 1418064 "LFCAT" 1418271 T LFCAT (NIL) -9 NIL 1418410) (-608 1414248 1414876 1415564 "LEXTRIPK" 1416708 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-607 1411019 1411818 1412321 "LEXP" 1413828 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-606 1410522 1410740 1410832 "LETAST" 1410947 T LETAST (NIL) -8 NIL NIL) (-605 1408920 1409233 1409634 "LEADCDET" 1410204 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-604 1408110 1408184 1408413 "LAZM3PK" 1408841 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-603 1403066 1406187 1406725 "LAUPOL" 1407622 NIL LAUPOL (NIL T T) -8 NIL NIL) (-602 1402631 1402675 1402843 "LAPLACE" 1403016 NIL LAPLACE (NIL T T) -7 NIL NIL) (-601 1400605 1401732 1401983 "LA" 1402464 NIL LA (NIL T T T) -8 NIL NIL) (-600 1399706 1400256 1400297 "LALG" 1400359 NIL LALG (NIL T) -9 NIL 1400418) (-599 1399420 1399479 1399615 "LALG-" 1399620 NIL LALG- (NIL T T) -8 NIL NIL) (-598 1398220 1398637 1398866 "KTVLOGIC" 1399211 T KTVLOGIC (NIL) -8 NIL NIL) (-597 1397124 1397311 1397610 "KOVACIC" 1398020 NIL KOVACIC (NIL T T) -7 NIL NIL) (-596 1396959 1396983 1397024 "KONVERT" 1397086 NIL KONVERT (NIL T) -9 NIL NIL) (-595 1396794 1396818 1396859 "KOERCE" 1396921 NIL KOERCE (NIL T) -9 NIL NIL) (-594 1394528 1395288 1395681 "KERNEL" 1396433 NIL KERNEL (NIL T) -8 NIL NIL) (-593 1394030 1394111 1394241 "KERNEL2" 1394442 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-592 1387881 1392569 1392623 "KDAGG" 1393000 NIL KDAGG (NIL T T) -9 NIL 1393206) (-591 1387410 1387534 1387739 "KDAGG-" 1387744 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-590 1380585 1387071 1387226 "KAFILE" 1387288 NIL KAFILE (NIL T) -8 NIL NIL) (-589 1375040 1380096 1380324 "JORDAN" 1380406 NIL JORDAN (NIL T T) -8 NIL NIL) (-588 1374446 1374689 1374810 "JOINAST" 1374939 T JOINAST (NIL) -8 NIL NIL) (-587 1374175 1374234 1374321 "JAVACODE" 1374379 T JAVACODE (NIL) -8 NIL NIL) (-586 1370474 1372380 1372434 "IXAGG" 1373363 NIL IXAGG (NIL T T) -9 NIL 1373822) (-585 1369393 1369699 1370118 "IXAGG-" 1370123 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-584 1364973 1369315 1369374 "IVECTOR" 1369379 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-583 1363739 1363976 1364242 "ITUPLE" 1364740 NIL ITUPLE (NIL T) -8 NIL NIL) (-582 1362175 1362352 1362658 "ITRIGMNP" 1363561 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-581 1360920 1361124 1361407 "ITFUN3" 1361951 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-580 1360552 1360609 1360718 "ITFUN2" 1360857 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-579 1358389 1359414 1359713 "ITAYLOR" 1360286 NIL ITAYLOR (NIL T) -8 NIL NIL) (-578 1347383 1352535 1353695 "ISUPS" 1357262 NIL ISUPS (NIL T) -8 NIL NIL) (-577 1346487 1346627 1346863 "ISUMP" 1347230 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-576 1341751 1346288 1346367 "ISTRING" 1346440 NIL ISTRING (NIL NIL) -8 NIL NIL) (-575 1341254 1341472 1341564 "ISAST" 1341679 T ISAST (NIL) -8 NIL NIL) (-574 1340464 1340545 1340761 "IRURPK" 1341168 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-573 1339400 1339601 1339841 "IRSN" 1340244 T IRSN (NIL) -7 NIL NIL) (-572 1337429 1337784 1338220 "IRRF2F" 1339038 NIL IRRF2F (NIL T) -7 NIL NIL) (-571 1337176 1337214 1337290 "IRREDFFX" 1337385 NIL IRREDFFX (NIL T) -7 NIL NIL) (-570 1335791 1336050 1336349 "IROOT" 1336909 NIL IROOT (NIL T) -7 NIL NIL) (-569 1332423 1333475 1334167 "IR" 1335131 NIL IR (NIL T) -8 NIL NIL) (-568 1330036 1330531 1331097 "IR2" 1331901 NIL IR2 (NIL T T) -7 NIL NIL) (-567 1329108 1329221 1329442 "IR2F" 1329919 NIL IR2F (NIL T T) -7 NIL NIL) (-566 1328899 1328933 1328993 "IPRNTPK" 1329068 T IPRNTPK (NIL) -7 NIL NIL) (-565 1325518 1328788 1328857 "IPF" 1328862 NIL IPF (NIL NIL) -8 NIL NIL) (-564 1323881 1325443 1325500 "IPADIC" 1325505 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-563 1323381 1323585 1323695 "IOMODE" 1323791 T IOMODE (NIL) -8 NIL NIL) (-562 1323145 1323285 1323313 "IOBCON" 1323318 T IOBCON (NIL) -9 NIL 1323339) (-561 1322642 1322700 1322890 "INVLAPLA" 1323081 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-560 1312291 1314644 1317030 "INTTR" 1320306 NIL INTTR (NIL T T) -7 NIL NIL) (-559 1308635 1309377 1310241 "INTTOOLS" 1311476 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-558 1308221 1308312 1308429 "INTSLPE" 1308538 T INTSLPE (NIL) -7 NIL NIL) (-557 1306216 1308144 1308203 "INTRVL" 1308208 NIL INTRVL (NIL T) -8 NIL NIL) (-556 1303818 1304330 1304905 "INTRF" 1305701 NIL INTRF (NIL T) -7 NIL NIL) (-555 1303229 1303326 1303468 "INTRET" 1303716 NIL INTRET (NIL T) -7 NIL NIL) (-554 1301226 1301615 1302085 "INTRAT" 1302837 NIL INTRAT (NIL T T) -7 NIL NIL) (-553 1298454 1299037 1299663 "INTPM" 1300711 NIL INTPM (NIL T T) -7 NIL NIL) (-552 1295157 1295756 1296501 "INTPAF" 1297840 NIL INTPAF (NIL T T T) -7 NIL NIL) (-551 1290336 1291298 1292349 "INTPACK" 1294126 T INTPACK (NIL) -7 NIL NIL) (-550 1287248 1290065 1290192 "INT" 1290229 T INT (NIL) -8 NIL NIL) (-549 1286500 1286652 1286860 "INTHERTR" 1287090 NIL INTHERTR (NIL T T) -7 NIL NIL) (-548 1285939 1286019 1286207 "INTHERAL" 1286414 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-547 1283785 1284228 1284685 "INTHEORY" 1285502 T INTHEORY (NIL) -7 NIL NIL) (-546 1275093 1276714 1278493 "INTG0" 1282137 NIL INTG0 (NIL T T T) -7 NIL NIL) (-545 1255666 1260456 1265266 "INTFTBL" 1270303 T INTFTBL (NIL) -8 NIL NIL) (-544 1254915 1255053 1255226 "INTFACT" 1255525 NIL INTFACT (NIL T) -7 NIL NIL) (-543 1252300 1252746 1253310 "INTEF" 1254469 NIL INTEF (NIL T T) -7 NIL NIL) (-542 1250802 1251507 1251535 "INTDOM" 1251836 T INTDOM (NIL) -9 NIL 1252043) (-541 1250171 1250345 1250587 "INTDOM-" 1250592 NIL INTDOM- (NIL T) -8 NIL NIL) (-540 1246704 1248590 1248644 "INTCAT" 1249443 NIL INTCAT (NIL T) -9 NIL 1249763) (-539 1246177 1246279 1246407 "INTBIT" 1246596 T INTBIT (NIL) -7 NIL NIL) (-538 1244848 1245002 1245316 "INTALG" 1246022 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-537 1244305 1244395 1244565 "INTAF" 1244752 NIL INTAF (NIL T T) -7 NIL NIL) (-536 1237759 1244115 1244255 "INTABL" 1244260 NIL INTABL (NIL T T T) -8 NIL NIL) (-535 1232814 1235485 1235513 "INS" 1236447 T INS (NIL) -9 NIL 1237111) (-534 1230054 1230825 1231799 "INS-" 1231872 NIL INS- (NIL T) -8 NIL NIL) (-533 1228829 1229056 1229354 "INPSIGN" 1229807 NIL INPSIGN (NIL T T) -7 NIL NIL) (-532 1227947 1228064 1228261 "INPRODPF" 1228709 NIL INPRODPF (NIL T T) -7 NIL NIL) (-531 1226841 1226958 1227195 "INPRODFF" 1227827 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-530 1225841 1225993 1226253 "INNMFACT" 1226677 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-529 1225038 1225135 1225323 "INMODGCD" 1225740 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-528 1223547 1223791 1224115 "INFSP" 1224783 NIL INFSP (NIL T T T) -7 NIL NIL) (-527 1222731 1222848 1223031 "INFPROD0" 1223427 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-526 1219613 1220796 1221311 "INFORM" 1222224 T INFORM (NIL) -8 NIL NIL) (-525 1219223 1219283 1219381 "INFORM1" 1219548 NIL INFORM1 (NIL T) -7 NIL NIL) (-524 1218746 1218835 1218949 "INFINITY" 1219129 T INFINITY (NIL) -7 NIL NIL) (-523 1217363 1217612 1217933 "INEP" 1218494 NIL INEP (NIL T T T) -7 NIL NIL) (-522 1216639 1217260 1217325 "INDE" 1217330 NIL INDE (NIL T) -8 NIL NIL) (-521 1216203 1216271 1216388 "INCRMAPS" 1216566 NIL INCRMAPS (NIL T) -7 NIL NIL) (-520 1215506 1215699 1215849 "INBFILE" 1216073 T INBFILE (NIL) -8 NIL NIL) (-519 1210817 1211742 1212686 "INBFF" 1214594 NIL INBFF (NIL T) -7 NIL NIL) (-518 1210486 1210562 1210590 "INBCON" 1210723 T INBCON (NIL) -9 NIL 1210801) (-517 1210326 1210361 1210437 "INBCON-" 1210442 NIL INBCON- (NIL T) -8 NIL NIL) (-516 1209828 1210047 1210139 "INAST" 1210254 T INAST (NIL) -8 NIL NIL) (-515 1209282 1209507 1209613 "IMPTAST" 1209742 T IMPTAST (NIL) -8 NIL NIL) (-514 1205776 1209126 1209230 "IMATRIX" 1209235 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-513 1204488 1204611 1204926 "IMATQF" 1205632 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-512 1202708 1202935 1203272 "IMATLIN" 1204244 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-511 1197334 1202632 1202690 "ILIST" 1202695 NIL ILIST (NIL T NIL) -8 NIL NIL) (-510 1195287 1197194 1197307 "IIARRAY2" 1197312 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-509 1190720 1195198 1195262 "IFF" 1195267 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-508 1190094 1190337 1190453 "IFAST" 1190624 T IFAST (NIL) -8 NIL NIL) (-507 1185137 1189386 1189574 "IFARRAY" 1189951 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-506 1184344 1185041 1185114 "IFAMON" 1185119 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-505 1183928 1183993 1184047 "IEVALAB" 1184254 NIL IEVALAB (NIL T T) -9 NIL NIL) (-504 1183603 1183671 1183831 "IEVALAB-" 1183836 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-503 1183261 1183517 1183580 "IDPO" 1183585 NIL IDPO (NIL T T) -8 NIL NIL) (-502 1182538 1183150 1183225 "IDPOAMS" 1183230 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-501 1181872 1182427 1182502 "IDPOAM" 1182507 NIL IDPOAM (NIL T T) -8 NIL NIL) (-500 1180957 1181207 1181260 "IDPC" 1181673 NIL IDPC (NIL T T) -9 NIL 1181822) (-499 1180453 1180849 1180922 "IDPAM" 1180927 NIL IDPAM (NIL T T) -8 NIL NIL) (-498 1179856 1180345 1180418 "IDPAG" 1180423 NIL IDPAG (NIL T T) -8 NIL NIL) (-497 1179586 1179771 1179821 "IDENT" 1179826 T IDENT (NIL) -8 NIL NIL) (-496 1175841 1176689 1177584 "IDECOMP" 1178743 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-495 1168714 1169764 1170811 "IDEAL" 1174877 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-494 1167878 1167990 1168189 "ICDEN" 1168598 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-493 1166977 1167358 1167505 "ICARD" 1167751 T ICARD (NIL) -8 NIL NIL) (-492 1165037 1165350 1165755 "IBPTOOLS" 1166654 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-491 1160671 1164657 1164770 "IBITS" 1164956 NIL IBITS (NIL NIL) -8 NIL NIL) (-490 1157394 1157970 1158665 "IBATOOL" 1160088 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-489 1155174 1155635 1156168 "IBACHIN" 1156929 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-488 1153051 1155020 1155123 "IARRAY2" 1155128 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-487 1149204 1152977 1153034 "IARRAY1" 1153039 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-486 1143199 1147618 1148098 "IAN" 1148744 T IAN (NIL) -8 NIL NIL) (-485 1142710 1142767 1142940 "IALGFACT" 1143136 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-484 1142238 1142351 1142379 "HYPCAT" 1142586 T HYPCAT (NIL) -9 NIL NIL) (-483 1141776 1141893 1142079 "HYPCAT-" 1142084 NIL HYPCAT- (NIL T) -8 NIL NIL) (-482 1141398 1141571 1141654 "HOSTNAME" 1141713 T HOSTNAME (NIL) -8 NIL NIL) (-481 1138077 1139408 1139449 "HOAGG" 1140430 NIL HOAGG (NIL T) -9 NIL 1141109) (-480 1136671 1137070 1137596 "HOAGG-" 1137601 NIL HOAGG- (NIL T T) -8 NIL NIL) (-479 1130559 1136112 1136278 "HEXADEC" 1136525 T HEXADEC (NIL) -8 NIL NIL) (-478 1129307 1129529 1129792 "HEUGCD" 1130336 NIL HEUGCD (NIL T) -7 NIL NIL) (-477 1128410 1129144 1129274 "HELLFDIV" 1129279 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-476 1126638 1128187 1128275 "HEAP" 1128354 NIL HEAP (NIL T) -8 NIL NIL) (-475 1125929 1126190 1126324 "HEADAST" 1126524 T HEADAST (NIL) -8 NIL NIL) (-474 1119849 1125844 1125906 "HDP" 1125911 NIL HDP (NIL NIL T) -8 NIL NIL) (-473 1113600 1119484 1119636 "HDMP" 1119750 NIL HDMP (NIL NIL T) -8 NIL NIL) (-472 1112925 1113064 1113228 "HB" 1113456 T HB (NIL) -7 NIL NIL) (-471 1106422 1112771 1112875 "HASHTBL" 1112880 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-470 1105925 1106143 1106235 "HASAST" 1106350 T HASAST (NIL) -8 NIL NIL) (-469 1103739 1105549 1105730 "HACKPI" 1105764 T HACKPI (NIL) -8 NIL NIL) (-468 1099434 1103592 1103705 "GTSET" 1103710 NIL GTSET (NIL T T T T) -8 NIL NIL) (-467 1092960 1099312 1099410 "GSTBL" 1099415 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-466 1085273 1091991 1092256 "GSERIES" 1092751 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-465 1084440 1084831 1084859 "GROUP" 1085062 T GROUP (NIL) -9 NIL 1085196) (-464 1083806 1083965 1084216 "GROUP-" 1084221 NIL GROUP- (NIL T) -8 NIL NIL) (-463 1082175 1082494 1082881 "GROEBSOL" 1083483 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-462 1081115 1081377 1081428 "GRMOD" 1081957 NIL GRMOD (NIL T T) -9 NIL 1082125) (-461 1080883 1080919 1081047 "GRMOD-" 1081052 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-460 1076208 1077237 1078237 "GRIMAGE" 1079903 T GRIMAGE (NIL) -8 NIL NIL) (-459 1074675 1074935 1075259 "GRDEF" 1075904 T GRDEF (NIL) -7 NIL NIL) (-458 1074119 1074235 1074376 "GRAY" 1074554 T GRAY (NIL) -7 NIL NIL) (-457 1073350 1073730 1073781 "GRALG" 1073934 NIL GRALG (NIL T T) -9 NIL 1074027) (-456 1073011 1073084 1073247 "GRALG-" 1073252 NIL GRALG- (NIL T T T) -8 NIL NIL) (-455 1069815 1072596 1072774 "GPOLSET" 1072918 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-454 1069169 1069226 1069484 "GOSPER" 1069752 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-453 1064928 1065607 1066133 "GMODPOL" 1068868 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-452 1063933 1064117 1064355 "GHENSEL" 1064740 NIL GHENSEL (NIL T T) -7 NIL NIL) (-451 1057984 1058827 1059854 "GENUPS" 1063017 NIL GENUPS (NIL T T) -7 NIL NIL) (-450 1057681 1057732 1057821 "GENUFACT" 1057927 NIL GENUFACT (NIL T) -7 NIL NIL) (-449 1057093 1057170 1057335 "GENPGCD" 1057599 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-448 1056567 1056602 1056815 "GENMFACT" 1057052 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-447 1055135 1055390 1055697 "GENEEZ" 1056310 NIL GENEEZ (NIL T T) -7 NIL NIL) (-446 1049048 1054746 1054908 "GDMP" 1055058 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-445 1038425 1042819 1043925 "GCNAALG" 1048031 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-444 1036887 1037715 1037743 "GCDDOM" 1037998 T GCDDOM (NIL) -9 NIL 1038155) (-443 1036357 1036484 1036699 "GCDDOM-" 1036704 NIL GCDDOM- (NIL T) -8 NIL NIL) (-442 1035029 1035214 1035518 "GB" 1036136 NIL GB (NIL T T T T) -7 NIL NIL) (-441 1023649 1025975 1028367 "GBINTERN" 1032720 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-440 1021486 1021778 1022199 "GBF" 1023324 NIL GBF (NIL T T T T) -7 NIL NIL) (-439 1020267 1020432 1020699 "GBEUCLID" 1021302 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-438 1019616 1019741 1019890 "GAUSSFAC" 1020138 T GAUSSFAC (NIL) -7 NIL NIL) (-437 1017983 1018285 1018599 "GALUTIL" 1019335 NIL GALUTIL (NIL T) -7 NIL NIL) (-436 1016291 1016565 1016889 "GALPOLYU" 1017710 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-435 1013656 1013946 1014353 "GALFACTU" 1015988 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-434 1005462 1006961 1008569 "GALFACT" 1012088 NIL GALFACT (NIL T) -7 NIL NIL) (-433 1002850 1003508 1003536 "FVFUN" 1004692 T FVFUN (NIL) -9 NIL 1005412) (-432 1002116 1002298 1002326 "FVC" 1002617 T FVC (NIL) -9 NIL 1002800) (-431 1001758 1001913 1001994 "FUNCTION" 1002068 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-430 999428 999979 1000468 "FT" 1001289 T FT (NIL) -8 NIL NIL) (-429 998246 998729 998932 "FTEM" 999245 T FTEM (NIL) -8 NIL NIL) (-428 996502 996791 997195 "FSUPFACT" 997937 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-427 994899 995188 995520 "FST" 996190 T FST (NIL) -8 NIL NIL) (-426 994070 994176 994371 "FSRED" 994781 NIL FSRED (NIL T T) -7 NIL NIL) (-425 992749 993004 993358 "FSPRMELT" 993785 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-424 989834 990272 990771 "FSPECF" 992312 NIL FSPECF (NIL T T) -7 NIL NIL) (-423 972276 980718 980758 "FS" 984606 NIL FS (NIL T) -9 NIL 986895) (-422 960926 963916 967972 "FS-" 968269 NIL FS- (NIL T T) -8 NIL NIL) (-421 960440 960494 960671 "FSINT" 960867 NIL FSINT (NIL T T) -7 NIL NIL) (-420 958767 959433 959736 "FSERIES" 960219 NIL FSERIES (NIL T T) -8 NIL NIL) (-419 957781 957897 958128 "FSCINT" 958647 NIL FSCINT (NIL T T) -7 NIL NIL) (-418 954015 956725 956766 "FSAGG" 957136 NIL FSAGG (NIL T) -9 NIL 957395) (-417 951777 952378 953174 "FSAGG-" 953269 NIL FSAGG- (NIL T T) -8 NIL NIL) (-416 950819 950962 951189 "FSAGG2" 951630 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-415 948474 948753 949307 "FS2UPS" 950537 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-414 948056 948099 948254 "FS2" 948425 NIL FS2 (NIL T T T T) -7 NIL NIL) (-413 946913 947084 947393 "FS2EXPXP" 947881 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-412 946339 946454 946606 "FRUTIL" 946793 NIL FRUTIL (NIL T) -7 NIL NIL) (-411 937800 941838 943194 "FR" 945015 NIL FR (NIL T) -8 NIL NIL) (-410 932875 935518 935558 "FRNAALG" 936954 NIL FRNAALG (NIL T) -9 NIL 937561) (-409 928553 929624 930899 "FRNAALG-" 931649 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-408 928191 928234 928361 "FRNAAF2" 928504 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-407 926598 927045 927340 "FRMOD" 928003 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-406 924377 924981 925298 "FRIDEAL" 926389 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-405 923572 923659 923948 "FRIDEAL2" 924284 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-404 922814 923228 923269 "FRETRCT" 923274 NIL FRETRCT (NIL T) -9 NIL 923450) (-403 921926 922157 922508 "FRETRCT-" 922513 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-402 919176 920352 920411 "FRAMALG" 921293 NIL FRAMALG (NIL T T) -9 NIL 921585) (-401 917310 917765 918395 "FRAMALG-" 918618 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-400 911270 916785 917061 "FRAC" 917066 NIL FRAC (NIL T) -8 NIL NIL) (-399 910906 910963 911070 "FRAC2" 911207 NIL FRAC2 (NIL T T) -7 NIL NIL) (-398 910542 910599 910706 "FR2" 910843 NIL FR2 (NIL T T) -7 NIL NIL) (-397 905272 908120 908148 "FPS" 909267 T FPS (NIL) -9 NIL 909824) (-396 904721 904830 904994 "FPS-" 905140 NIL FPS- (NIL T) -8 NIL NIL) (-395 902227 903862 903890 "FPC" 904115 T FPC (NIL) -9 NIL 904257) (-394 902020 902060 902157 "FPC-" 902162 NIL FPC- (NIL T) -8 NIL NIL) (-393 900898 901508 901549 "FPATMAB" 901554 NIL FPATMAB (NIL T) -9 NIL 901706) (-392 898598 899074 899500 "FPARFRAC" 900535 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-391 893991 894490 895172 "FORTRAN" 898030 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-390 891707 892207 892746 "FORT" 893472 T FORT (NIL) -7 NIL NIL) (-389 889383 889945 889973 "FORTFN" 891033 T FORTFN (NIL) -9 NIL 891657) (-388 889147 889197 889225 "FORTCAT" 889284 T FORTCAT (NIL) -9 NIL 889346) (-387 887207 887690 888089 "FORMULA" 888768 T FORMULA (NIL) -8 NIL NIL) (-386 886995 887025 887094 "FORMULA1" 887171 NIL FORMULA1 (NIL T) -7 NIL NIL) (-385 886518 886570 886743 "FORDER" 886937 NIL FORDER (NIL T T T T) -7 NIL NIL) (-384 885614 885778 885971 "FOP" 886345 T FOP (NIL) -7 NIL NIL) (-383 884222 884894 885068 "FNLA" 885496 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-382 882890 883279 883307 "FNCAT" 883879 T FNCAT (NIL) -9 NIL 884172) (-381 882456 882849 882877 "FNAME" 882882 T FNAME (NIL) -8 NIL NIL) (-380 881154 882083 882111 "FMTC" 882116 T FMTC (NIL) -9 NIL 882152) (-379 877516 878677 879306 "FMONOID" 880558 NIL FMONOID (NIL T) -8 NIL NIL) (-378 876735 877258 877407 "FM" 877412 NIL FM (NIL T T) -8 NIL NIL) (-377 874159 874805 874833 "FMFUN" 875977 T FMFUN (NIL) -9 NIL 876685) (-376 873428 873609 873637 "FMC" 873927 T FMC (NIL) -9 NIL 874109) (-375 870640 871474 871528 "FMCAT" 872723 NIL FMCAT (NIL T T) -9 NIL 873218) (-374 869533 870406 870506 "FM1" 870585 NIL FM1 (NIL T T) -8 NIL NIL) (-373 867307 867723 868217 "FLOATRP" 869084 NIL FLOATRP (NIL T) -7 NIL NIL) (-372 860858 864963 865593 "FLOAT" 866697 T FLOAT (NIL) -8 NIL NIL) (-371 858296 858796 859374 "FLOATCP" 860325 NIL FLOATCP (NIL T) -7 NIL NIL) (-370 857125 857929 857970 "FLINEXP" 857975 NIL FLINEXP (NIL T) -9 NIL 858068) (-369 856279 856514 856842 "FLINEXP-" 856847 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-368 855355 855499 855723 "FLASORT" 856131 NIL FLASORT (NIL T T) -7 NIL NIL) (-367 852572 853414 853466 "FLALG" 854693 NIL FLALG (NIL T T) -9 NIL 855160) (-366 846356 850058 850099 "FLAGG" 851361 NIL FLAGG (NIL T) -9 NIL 852013) (-365 845082 845421 845911 "FLAGG-" 845916 NIL FLAGG- (NIL T T) -8 NIL NIL) (-364 844124 844267 844494 "FLAGG2" 844935 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-363 841137 842111 842170 "FINRALG" 843298 NIL FINRALG (NIL T T) -9 NIL 843806) (-362 840297 840526 840865 "FINRALG-" 840870 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-361 839703 839916 839944 "FINITE" 840140 T FINITE (NIL) -9 NIL 840247) (-360 832161 834322 834362 "FINAALG" 838029 NIL FINAALG (NIL T) -9 NIL 839482) (-359 827502 828543 829687 "FINAALG-" 831066 NIL FINAALG- (NIL T T) -8 NIL NIL) (-358 826897 827257 827360 "FILE" 827432 NIL FILE (NIL T) -8 NIL NIL) (-357 825581 825893 825947 "FILECAT" 826631 NIL FILECAT (NIL T T) -9 NIL 826847) (-356 823501 824995 825023 "FIELD" 825063 T FIELD (NIL) -9 NIL 825143) (-355 822121 822506 823017 "FIELD-" 823022 NIL FIELD- (NIL T) -8 NIL NIL) (-354 819999 820756 821103 "FGROUP" 821807 NIL FGROUP (NIL T) -8 NIL NIL) (-353 819089 819253 819473 "FGLMICPK" 819831 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-352 814956 819014 819071 "FFX" 819076 NIL FFX (NIL T NIL) -8 NIL NIL) (-351 814557 814618 814753 "FFSLPE" 814889 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-350 810550 811329 812125 "FFPOLY" 813793 NIL FFPOLY (NIL T) -7 NIL NIL) (-349 810054 810090 810299 "FFPOLY2" 810508 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-348 805940 809973 810036 "FFP" 810041 NIL FFP (NIL T NIL) -8 NIL NIL) (-347 801373 805851 805915 "FF" 805920 NIL FF (NIL NIL NIL) -8 NIL NIL) (-346 796534 800716 800906 "FFNBX" 801227 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-345 791508 795669 795927 "FFNBP" 796388 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-344 786176 790792 791003 "FFNB" 791341 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-343 785008 785206 785521 "FFINTBAS" 785973 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-342 781292 783467 783495 "FFIELDC" 784115 T FFIELDC (NIL) -9 NIL 784491) (-341 779955 780325 780822 "FFIELDC-" 780827 NIL FFIELDC- (NIL T) -8 NIL NIL) (-340 779525 779570 779694 "FFHOM" 779897 NIL FFHOM (NIL T T T) -7 NIL NIL) (-339 777223 777707 778224 "FFF" 779040 NIL FFF (NIL T) -7 NIL NIL) (-338 772876 776965 777066 "FFCGX" 777166 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-337 768543 772608 772715 "FFCGP" 772819 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-336 763761 768270 768378 "FFCG" 768479 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-335 745819 754855 754941 "FFCAT" 760106 NIL FFCAT (NIL T T T) -9 NIL 761557) (-334 741017 742064 743378 "FFCAT-" 744608 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-333 740428 740471 740706 "FFCAT2" 740968 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-332 729640 733400 734620 "FEXPR" 739280 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-331 728640 729075 729116 "FEVALAB" 729200 NIL FEVALAB (NIL T) -9 NIL 729461) (-330 727799 728009 728347 "FEVALAB-" 728352 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-329 726392 727182 727385 "FDIV" 727698 NIL FDIV (NIL T T T T) -8 NIL NIL) (-328 723458 724173 724288 "FDIVCAT" 725856 NIL FDIVCAT (NIL T T T T) -9 NIL 726293) (-327 723220 723247 723417 "FDIVCAT-" 723422 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-326 722440 722527 722804 "FDIV2" 723127 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-325 721126 721385 721674 "FCPAK1" 722171 T FCPAK1 (NIL) -7 NIL NIL) (-324 720254 720626 720767 "FCOMP" 721017 NIL FCOMP (NIL T) -8 NIL NIL) (-323 703889 707303 710864 "FC" 716713 T FC (NIL) -8 NIL NIL) (-322 696542 700523 700563 "FAXF" 702365 NIL FAXF (NIL T) -9 NIL 703057) (-321 693821 694476 695301 "FAXF-" 695766 NIL FAXF- (NIL T T) -8 NIL NIL) (-320 688921 693197 693373 "FARRAY" 693678 NIL FARRAY (NIL T) -8 NIL NIL) (-319 684328 686360 686413 "FAMR" 687436 NIL FAMR (NIL T T) -9 NIL 687896) (-318 683218 683520 683955 "FAMR-" 683960 NIL FAMR- (NIL T T T) -8 NIL NIL) (-317 682414 683140 683193 "FAMONOID" 683198 NIL FAMONOID (NIL T) -8 NIL NIL) (-316 680244 680928 680981 "FAMONC" 681922 NIL FAMONC (NIL T T) -9 NIL 682308) (-315 678936 679998 680135 "FAGROUP" 680140 NIL FAGROUP (NIL T) -8 NIL NIL) (-314 676731 677050 677453 "FACUTIL" 678617 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-313 675830 676015 676237 "FACTFUNC" 676541 NIL FACTFUNC (NIL T) -7 NIL NIL) (-312 668235 675081 675293 "EXPUPXS" 675686 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-311 665718 666258 666844 "EXPRTUBE" 667669 T EXPRTUBE (NIL) -7 NIL NIL) (-310 661912 662504 663241 "EXPRODE" 665057 NIL EXPRODE (NIL T T) -7 NIL NIL) (-309 647286 660567 660995 "EXPR" 661516 NIL EXPR (NIL T) -8 NIL NIL) (-308 641693 642280 643093 "EXPR2UPS" 646584 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-307 641329 641386 641493 "EXPR2" 641630 NIL EXPR2 (NIL T T) -7 NIL NIL) (-306 632736 640461 640758 "EXPEXPAN" 641166 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-305 632563 632693 632722 "EXIT" 632727 T EXIT (NIL) -8 NIL NIL) (-304 632070 632287 632378 "EXITAST" 632492 T EXITAST (NIL) -8 NIL NIL) (-303 631697 631759 631872 "EVALCYC" 632002 NIL EVALCYC (NIL T) -7 NIL NIL) (-302 631238 631356 631397 "EVALAB" 631567 NIL EVALAB (NIL T) -9 NIL 631671) (-301 630719 630841 631062 "EVALAB-" 631067 NIL EVALAB- (NIL T T) -8 NIL NIL) (-300 628222 629490 629518 "EUCDOM" 630073 T EUCDOM (NIL) -9 NIL 630423) (-299 626627 627069 627659 "EUCDOM-" 627664 NIL EUCDOM- (NIL T) -8 NIL NIL) (-298 614167 616925 619675 "ESTOOLS" 623897 T ESTOOLS (NIL) -7 NIL NIL) (-297 613799 613856 613965 "ESTOOLS2" 614104 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-296 613550 613592 613672 "ESTOOLS1" 613751 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-295 607475 609203 609231 "ES" 611999 T ES (NIL) -9 NIL 613408) (-294 602422 603709 605526 "ES-" 605690 NIL ES- (NIL T) -8 NIL NIL) (-293 598797 599557 600337 "ESCONT" 601662 T ESCONT (NIL) -7 NIL NIL) (-292 598542 598574 598656 "ESCONT1" 598759 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-291 598217 598267 598367 "ES2" 598486 NIL ES2 (NIL T T) -7 NIL NIL) (-290 597847 597905 598014 "ES1" 598153 NIL ES1 (NIL T T) -7 NIL NIL) (-289 597063 597192 597368 "ERROR" 597691 T ERROR (NIL) -7 NIL NIL) (-288 590566 596922 597013 "EQTBL" 597018 NIL EQTBL (NIL T T) -8 NIL NIL) (-287 583123 585880 587329 "EQ" 589150 NIL -3856 (NIL T) -8 NIL NIL) (-286 582755 582812 582921 "EQ2" 583060 NIL EQ2 (NIL T T) -7 NIL NIL) (-285 578047 579093 580186 "EP" 581694 NIL EP (NIL T) -7 NIL NIL) (-284 576629 576930 577247 "ENV" 577750 T ENV (NIL) -8 NIL NIL) (-283 575828 576348 576376 "ENTIRER" 576381 T ENTIRER (NIL) -9 NIL 576427) (-282 572330 573783 574153 "EMR" 575627 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-281 571474 571659 571713 "ELTAGG" 572093 NIL ELTAGG (NIL T T) -9 NIL 572304) (-280 571193 571255 571396 "ELTAGG-" 571401 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-279 570982 571011 571065 "ELTAB" 571149 NIL ELTAB (NIL T T) -9 NIL NIL) (-278 570108 570254 570453 "ELFUTS" 570833 NIL ELFUTS (NIL T T) -7 NIL NIL) (-277 569850 569906 569934 "ELEMFUN" 570039 T ELEMFUN (NIL) -9 NIL NIL) (-276 569720 569741 569809 "ELEMFUN-" 569814 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-275 564611 567820 567861 "ELAGG" 568801 NIL ELAGG (NIL T) -9 NIL 569264) (-274 562896 563330 563993 "ELAGG-" 563998 NIL ELAGG- (NIL T T) -8 NIL NIL) (-273 561553 561833 562128 "ELABEXPR" 562621 T ELABEXPR (NIL) -8 NIL NIL) (-272 554419 556220 557047 "EFUPXS" 560829 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-271 547869 549670 550480 "EFULS" 553695 NIL EFULS (NIL T T T) -8 NIL NIL) (-270 545291 545649 546128 "EFSTRUC" 547501 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-269 534363 535928 537488 "EF" 543806 NIL EF (NIL T T) -7 NIL NIL) (-268 533464 533848 533997 "EAB" 534234 T EAB (NIL) -8 NIL NIL) (-267 532673 533423 533451 "E04UCFA" 533456 T E04UCFA (NIL) -8 NIL NIL) (-266 531882 532632 532660 "E04NAFA" 532665 T E04NAFA (NIL) -8 NIL NIL) (-265 531091 531841 531869 "E04MBFA" 531874 T E04MBFA (NIL) -8 NIL NIL) (-264 530300 531050 531078 "E04JAFA" 531083 T E04JAFA (NIL) -8 NIL NIL) (-263 529511 530259 530287 "E04GCFA" 530292 T E04GCFA (NIL) -8 NIL NIL) (-262 528722 529470 529498 "E04FDFA" 529503 T E04FDFA (NIL) -8 NIL NIL) (-261 527931 528681 528709 "E04DGFA" 528714 T E04DGFA (NIL) -8 NIL NIL) (-260 522109 523456 524820 "E04AGNT" 526587 T E04AGNT (NIL) -7 NIL NIL) (-259 520833 521313 521353 "DVARCAT" 521828 NIL DVARCAT (NIL T) -9 NIL 522027) (-258 520037 520249 520563 "DVARCAT-" 520568 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-257 512937 519836 519965 "DSMP" 519970 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 507747 508882 509950 "DROPT" 511889 T DROPT (NIL) -8 NIL NIL) (-255 507412 507471 507569 "DROPT1" 507682 NIL DROPT1 (NIL T) -7 NIL NIL) (-254 502527 503653 504790 "DROPT0" 506295 T DROPT0 (NIL) -7 NIL NIL) (-253 500872 501197 501583 "DRAWPT" 502161 T DRAWPT (NIL) -7 NIL NIL) (-252 495459 496382 497461 "DRAW" 499846 NIL DRAW (NIL T) -7 NIL NIL) (-251 495092 495145 495263 "DRAWHACK" 495400 NIL DRAWHACK (NIL T) -7 NIL NIL) (-250 493823 494092 494383 "DRAWCX" 494821 T DRAWCX (NIL) -7 NIL NIL) (-249 493339 493407 493558 "DRAWCURV" 493749 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-248 483810 485769 487884 "DRAWCFUN" 491244 T DRAWCFUN (NIL) -7 NIL NIL) (-247 480623 482505 482546 "DQAGG" 483175 NIL DQAGG (NIL T) -9 NIL 483448) (-246 469142 475839 475922 "DPOLCAT" 477774 NIL DPOLCAT (NIL T T T T) -9 NIL 478319) (-245 463981 465327 467285 "DPOLCAT-" 467290 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 457136 463842 463940 "DPMO" 463945 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 450194 456916 457083 "DPMM" 457088 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 449614 449817 449931 "DOMAIN" 450100 T DOMAIN (NIL) -8 NIL NIL) (-241 443365 449249 449401 "DMP" 449515 NIL DMP (NIL NIL T) -8 NIL NIL) (-240 442965 443021 443165 "DLP" 443303 NIL DLP (NIL T) -7 NIL NIL) (-239 436609 442066 442293 "DLIST" 442770 NIL DLIST (NIL T) -8 NIL NIL) (-238 433455 435464 435505 "DLAGG" 436055 NIL DLAGG (NIL T) -9 NIL 436284) (-237 432305 432935 432963 "DIVRING" 433055 T DIVRING (NIL) -9 NIL 433138) (-236 431542 431732 432032 "DIVRING-" 432037 NIL DIVRING- (NIL T) -8 NIL NIL) (-235 429644 430001 430407 "DISPLAY" 431156 T DISPLAY (NIL) -7 NIL NIL) (-234 423586 429558 429621 "DIRPROD" 429626 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-233 422434 422637 422902 "DIRPROD2" 423379 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-232 411972 417924 417977 "DIRPCAT" 418387 NIL DIRPCAT (NIL NIL T) -9 NIL 419227) (-231 409298 409940 410821 "DIRPCAT-" 411158 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-230 408585 408745 408931 "DIOSP" 409132 T DIOSP (NIL) -7 NIL NIL) (-229 405287 407497 407538 "DIOPS" 407972 NIL DIOPS (NIL T) -9 NIL 408201) (-228 404836 404950 405141 "DIOPS-" 405146 NIL DIOPS- (NIL T T) -8 NIL NIL) (-227 403748 404342 404370 "DIFRING" 404557 T DIFRING (NIL) -9 NIL 404667) (-226 403394 403471 403623 "DIFRING-" 403628 NIL DIFRING- (NIL T) -8 NIL NIL) (-225 401219 402457 402498 "DIFEXT" 402861 NIL DIFEXT (NIL T) -9 NIL 403155) (-224 399504 399932 400598 "DIFEXT-" 400603 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-223 396826 399036 399077 "DIAGG" 399082 NIL DIAGG (NIL T) -9 NIL 399102) (-222 396210 396367 396619 "DIAGG-" 396624 NIL DIAGG- (NIL T T) -8 NIL NIL) (-221 391675 395169 395446 "DHMATRIX" 395979 NIL DHMATRIX (NIL T) -8 NIL NIL) (-220 387287 388196 389206 "DFSFUN" 390685 T DFSFUN (NIL) -7 NIL NIL) (-219 382255 386102 386444 "DFLOAT" 386965 T DFLOAT (NIL) -8 NIL NIL) (-218 380483 380764 381160 "DFINTTLS" 381963 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-217 377548 378504 378904 "DERHAM" 380149 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-216 375397 377323 377412 "DEQUEUE" 377492 NIL DEQUEUE (NIL T) -8 NIL NIL) (-215 374612 374745 374941 "DEGRED" 375259 NIL DEGRED (NIL T T) -7 NIL NIL) (-214 371007 371752 372605 "DEFINTRF" 373840 NIL DEFINTRF (NIL T) -7 NIL NIL) (-213 368534 369003 369602 "DEFINTEF" 370526 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-212 367911 368154 368269 "DEFAST" 368439 T DEFAST (NIL) -8 NIL NIL) (-211 361799 367352 367518 "DECIMAL" 367765 T DECIMAL (NIL) -8 NIL NIL) (-210 359311 359769 360275 "DDFACT" 361343 NIL DDFACT (NIL T T) -7 NIL NIL) (-209 358907 358950 359101 "DBLRESP" 359262 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-208 356617 356951 357320 "DBASE" 358665 NIL DBASE (NIL T) -8 NIL NIL) (-207 355886 356097 356243 "DATABUF" 356516 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-206 355019 355845 355873 "D03FAFA" 355878 T D03FAFA (NIL) -8 NIL NIL) (-205 354153 354978 355006 "D03EEFA" 355011 T D03EEFA (NIL) -8 NIL NIL) (-204 352103 352569 353058 "D03AGNT" 353684 T D03AGNT (NIL) -7 NIL NIL) (-203 351419 352062 352090 "D02EJFA" 352095 T D02EJFA (NIL) -8 NIL NIL) (-202 350735 351378 351406 "D02CJFA" 351411 T D02CJFA (NIL) -8 NIL NIL) (-201 350051 350694 350722 "D02BHFA" 350727 T D02BHFA (NIL) -8 NIL NIL) (-200 349367 350010 350038 "D02BBFA" 350043 T D02BBFA (NIL) -8 NIL NIL) (-199 342565 344153 345759 "D02AGNT" 347781 T D02AGNT (NIL) -7 NIL NIL) (-198 340334 340856 341402 "D01WGTS" 342039 T D01WGTS (NIL) -7 NIL NIL) (-197 339429 340293 340321 "D01TRNS" 340326 T D01TRNS (NIL) -8 NIL NIL) (-196 338524 339388 339416 "D01GBFA" 339421 T D01GBFA (NIL) -8 NIL NIL) (-195 337619 338483 338511 "D01FCFA" 338516 T D01FCFA (NIL) -8 NIL NIL) (-194 336714 337578 337606 "D01ASFA" 337611 T D01ASFA (NIL) -8 NIL NIL) (-193 335809 336673 336701 "D01AQFA" 336706 T D01AQFA (NIL) -8 NIL NIL) (-192 334904 335768 335796 "D01APFA" 335801 T D01APFA (NIL) -8 NIL NIL) (-191 333999 334863 334891 "D01ANFA" 334896 T D01ANFA (NIL) -8 NIL NIL) (-190 333094 333958 333986 "D01AMFA" 333991 T D01AMFA (NIL) -8 NIL NIL) (-189 332189 333053 333081 "D01ALFA" 333086 T D01ALFA (NIL) -8 NIL NIL) (-188 331284 332148 332176 "D01AKFA" 332181 T D01AKFA (NIL) -8 NIL NIL) (-187 330379 331243 331271 "D01AJFA" 331276 T D01AJFA (NIL) -8 NIL NIL) (-186 323676 325227 326788 "D01AGNT" 328838 T D01AGNT (NIL) -7 NIL NIL) (-185 323013 323141 323293 "CYCLOTOM" 323544 T CYCLOTOM (NIL) -7 NIL NIL) (-184 319748 320461 321188 "CYCLES" 322306 T CYCLES (NIL) -7 NIL NIL) (-183 319060 319194 319365 "CVMP" 319609 NIL CVMP (NIL T) -7 NIL NIL) (-182 316831 317089 317465 "CTRIGMNP" 318788 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-181 316342 316531 316630 "CTORCALL" 316752 T CTORCALL (NIL) -8 NIL NIL) (-180 315716 315815 315968 "CSTTOOLS" 316239 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311515 312172 312930 "CRFP" 315028 NIL CRFP (NIL T T) -7 NIL NIL) (-178 311017 311236 311328 "CRCEAST" 311443 T CRCEAST (NIL) -8 NIL NIL) (-177 310064 310249 310477 "CRAPACK" 310821 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309448 309549 309753 "CPMATCH" 309940 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 309173 309201 309307 "CPIMA" 309414 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305537 306209 306927 "COORDSYS" 308508 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304921 305050 305200 "CONTOUR" 305407 T CONTOUR (NIL) -8 NIL NIL) (-172 300847 302924 303416 "CONTFRAC" 304461 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300727 300748 300776 "CONDUIT" 300813 T CONDUIT (NIL) -9 NIL NIL) (-170 299920 300440 300468 "COMRING" 300473 T COMRING (NIL) -9 NIL 300525) (-169 299001 299278 299462 "COMPPROP" 299756 T COMPPROP (NIL) -8 NIL NIL) (-168 298662 298697 298825 "COMPLPAT" 298960 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 288721 298471 298580 "COMPLEX" 298585 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 288357 288414 288521 "COMPLEX2" 288658 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 288075 288110 288208 "COMPFACT" 288316 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272473 282689 282729 "COMPCAT" 283733 NIL COMPCAT (NIL T) -9 NIL 285128) (-163 261988 264912 268539 "COMPCAT-" 268895 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261717 261745 261848 "COMMUPC" 261954 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261512 261545 261604 "COMMONOP" 261678 T COMMONOP (NIL) -7 NIL NIL) (-160 261095 261263 261350 "COMM" 261445 T COMM (NIL) -8 NIL NIL) (-159 260699 260899 260974 "COMMAAST" 261040 T COMMAAST (NIL) -8 NIL NIL) (-158 259948 260142 260170 "COMBOPC" 260508 T COMBOPC (NIL) -9 NIL 260683) (-157 258844 259054 259296 "COMBINAT" 259738 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 255042 255615 256255 "COMBF" 258266 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253828 254158 254393 "COLOR" 254827 T COLOR (NIL) -8 NIL NIL) (-154 253331 253549 253641 "COLONAST" 253756 T COLONAST (NIL) -8 NIL NIL) (-153 252971 253018 253143 "CMPLXRT" 253278 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252446 252671 252770 "CLLCTAST" 252892 T CLLCTAST (NIL) -8 NIL NIL) (-151 247948 248976 250056 "CLIP" 251386 T CLIP (NIL) -7 NIL NIL) (-150 246330 247054 247293 "CLIF" 247775 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242552 244476 244517 "CLAGG" 245446 NIL CLAGG (NIL T) -9 NIL 245982) (-148 240974 241431 242014 "CLAGG-" 242019 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240518 240603 240743 "CINTSLPE" 240883 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 238019 238490 239038 "CHVAR" 240046 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237282 237802 237830 "CHARZ" 237835 T CHARZ (NIL) -9 NIL 237850) (-144 237036 237076 237154 "CHARPOL" 237236 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 236183 236736 236764 "CHARNZ" 236811 T CHARNZ (NIL) -9 NIL 236867) (-142 234208 234873 235208 "CHAR" 235868 T CHAR (NIL) -8 NIL NIL) (-141 233934 233995 234023 "CFCAT" 234134 T CFCAT (NIL) -9 NIL NIL) (-140 233179 233290 233472 "CDEN" 233818 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 229171 232332 232612 "CCLASS" 232919 T CCLASS (NIL) -8 NIL NIL) (-138 229090 229116 229151 "CATEGORY" 229156 T -10 (NIL) -8 NIL NIL) (-137 228564 228790 228889 "CATAST" 229011 T CATAST (NIL) -8 NIL NIL) (-136 228067 228285 228377 "CASEAST" 228492 T CASEAST (NIL) -8 NIL NIL) (-135 223119 224096 224849 "CARTEN" 227370 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222227 222375 222596 "CARTEN2" 222966 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220569 221377 221634 "CARD" 221990 T CARD (NIL) -8 NIL NIL) (-132 220172 220373 220448 "CAPSLAST" 220514 T CAPSLAST (NIL) -8 NIL NIL) (-131 219544 219872 219900 "CACHSET" 220032 T CACHSET (NIL) -9 NIL 220109) (-130 219040 219336 219364 "CABMON" 219414 T CABMON (NIL) -9 NIL 219470) (-129 218209 218587 218730 "BYTE" 218917 T BYTE (NIL) -8 NIL NIL) (-128 214157 218156 218190 "BYTEARY" 218195 T BYTEARY (NIL) -8 NIL NIL) (-127 211714 213849 213956 "BTREE" 214083 NIL BTREE (NIL T) -8 NIL NIL) (-126 209212 211362 211484 "BTOURN" 211624 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206630 208683 208724 "BTCAT" 208792 NIL BTCAT (NIL T) -9 NIL 208869) (-124 206297 206377 206526 "BTCAT-" 206531 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201589 205440 205468 "BTAGG" 205690 T BTAGG (NIL) -9 NIL 205851) (-122 201079 201204 201410 "BTAGG-" 201415 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 198123 200357 200572 "BSTREE" 200896 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197261 197387 197571 "BRILL" 197979 NIL BRILL (NIL T) -7 NIL NIL) (-119 193962 195989 196030 "BRAGG" 196679 NIL BRAGG (NIL T) -9 NIL 196936) (-118 192491 192897 193452 "BRAGG-" 193457 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185757 191837 192021 "BPADICRT" 192339 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 184107 185694 185739 "BPADIC" 185744 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183805 183835 183949 "BOUNDZRO" 184071 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179320 180411 181278 "BOP" 182958 T BOP (NIL) -8 NIL NIL) (-113 176941 177385 177905 "BOP1" 178833 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175679 176365 176558 "BOOLEAN" 176768 T BOOLEAN (NIL) -8 NIL NIL) (-111 175041 175419 175473 "BMODULE" 175478 NIL BMODULE (NIL T T) -9 NIL 175543) (-110 170871 174839 174912 "BITS" 174988 T BITS (NIL) -8 NIL NIL) (-109 169968 170403 170555 "BINFILE" 170739 T BINFILE (NIL) -8 NIL NIL) (-108 169380 169502 169644 "BINDING" 169846 T BINDING (NIL) -8 NIL NIL) (-107 163272 168824 168989 "BINARY" 169235 T BINARY (NIL) -8 NIL NIL) (-106 161099 162527 162568 "BGAGG" 162828 NIL BGAGG (NIL T) -9 NIL 162965) (-105 160930 160962 161053 "BGAGG-" 161058 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 160028 160314 160519 "BFUNCT" 160745 T BFUNCT (NIL) -8 NIL NIL) (-103 158718 158896 159184 "BEZOUT" 159852 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155235 157570 157900 "BBTREE" 158421 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154969 155022 155050 "BASTYPE" 155169 T BASTYPE (NIL) -9 NIL NIL) (-100 154821 154850 154923 "BASTYPE-" 154928 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154259 154335 154485 "BALFACT" 154732 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153142 153674 153860 "AUTOMOR" 154104 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152868 152873 152899 "ATTREG" 152904 T ATTREG (NIL) -9 NIL NIL) (-96 151147 151565 151917 "ATTRBUT" 152534 T ATTRBUT (NIL) -8 NIL NIL) (-95 150782 150975 151041 "ATTRAST" 151099 T ATTRAST (NIL) -8 NIL NIL) (-94 150318 150431 150457 "ATRIG" 150658 T ATRIG (NIL) -9 NIL NIL) (-93 150127 150168 150255 "ATRIG-" 150260 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149749 149909 149935 "ASTCAT" 149993 T ASTCAT (NIL) -9 NIL 150056) (-91 149476 149535 149654 "ASTCAT-" 149659 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147673 149252 149340 "ASTACK" 149419 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146178 146475 146840 "ASSOCEQ" 147355 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145210 145837 145961 "ASP9" 146085 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144974 145158 145197 "ASP8" 145202 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143843 144579 144721 "ASP80" 144863 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142742 143478 143610 "ASP7" 143742 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141696 142419 142537 "ASP78" 142655 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140665 141376 141493 "ASP77" 141610 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139577 140303 140434 "ASP74" 140565 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138477 139212 139344 "ASP73" 139476 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137432 138154 138272 "ASP6" 138390 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136380 137109 137227 "ASP55" 137345 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135330 136054 136173 "ASP50" 136292 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134418 135031 135141 "ASP4" 135251 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133506 134119 134229 "ASP49" 134339 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132291 133045 133213 "ASP42" 133395 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131068 131824 131994 "ASP41" 132178 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130018 130745 130863 "ASP35" 130981 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129783 129966 130005 "ASP34" 130010 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129520 129587 129663 "ASP33" 129738 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128415 129155 129287 "ASP31" 129419 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128180 128363 128402 "ASP30" 128407 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127915 127984 128060 "ASP29" 128135 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127680 127863 127902 "ASP28" 127907 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127445 127628 127667 "ASP27" 127672 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126529 127143 127254 "ASP24" 127365 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125445 126170 126300 "ASP20" 126430 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124533 125146 125256 "ASP1" 125366 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123477 124207 124326 "ASP19" 124445 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123214 123281 123357 "ASP12" 123432 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122066 122813 122957 "ASP10" 123101 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119965 121910 122001 "ARRAY2" 122006 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115781 119613 119727 "ARRAY1" 119882 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114813 114986 115207 "ARRAY12" 115604 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109172 111043 111118 "ARR2CAT" 113748 NIL ARR2CAT (NIL T T T) -9 NIL 114506) (-55 106606 107350 108304 "ARR2CAT-" 108309 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105354 105506 105812 "APPRULE" 106442 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105005 105053 105172 "APPLYORE" 105300 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103979 104270 104465 "ANY" 104828 T ANY (NIL) -8 NIL NIL) (-51 103257 103380 103537 "ANY1" 103853 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100822 101694 102021 "ANTISYM" 102981 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100337 100526 100623 "ANON" 100743 T ANON (NIL) -8 NIL NIL) (-48 94471 98878 99331 "AN" 99902 T AN (NIL) -8 NIL NIL) (-47 90852 92206 92257 "AMR" 93005 NIL AMR (NIL T T) -9 NIL 93605) (-46 89964 90185 90548 "AMR-" 90553 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74514 89881 89942 "ALIST" 89947 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71351 74108 74277 "ALGSC" 74432 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67907 68461 69068 "ALGPKG" 70791 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67184 67285 67469 "ALGMFACT" 67793 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62923 63608 64263 "ALGMANIP" 66707 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54329 62549 62699 "ALGFF" 62856 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53525 53656 53835 "ALGFACT" 54187 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52555 53121 53159 "ALGEBRA" 53219 NIL ALGEBRA (NIL T) -9 NIL 53278) (-37 52273 52332 52464 "ALGEBRA-" 52469 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34533 50276 50328 "ALAGG" 50464 NIL ALAGG (NIL T T) -9 NIL 50625) (-35 34069 34182 34208 "AHYP" 34409 T AHYP (NIL) -9 NIL NIL) (-34 33000 33248 33274 "AGG" 33773 T AGG (NIL) -9 NIL 34052) (-33 32434 32596 32810 "AGG-" 32815 NIL AGG- (NIL T) -8 NIL NIL) (-32 30111 30533 30951 "AF" 32076 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29836 29926 "ADDAST" 30039 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index a850dada..04bdef9f 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,12484 +1,12703 @@ -(729636 . 3431436955) +(737988 . 3431822562) +(((*1 *2 *3) + (-12 (-4 *4 (-342)) + (-5 *2 (-623 (-2 (|:| |deg| (-749)) (|:| -3393 *3)))) + (-5 *1 (-210 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-799))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1181)) (-5 *2 (-749)) + (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-130)) + (-5 *2 (-749)))) + ((*1 *2) + (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) + (-4 *3 (-322 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-354 *3)) (-4 *3 (-1068)))) + ((*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-379 *3)) (-4 *3 (-1068)))) + ((*1 *2) + (-12 (-4 *4 (-1068)) (-5 *2 (-749)) (-5 *1 (-417 *3 *4)) + (-4 *3 (-418 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-749)) + (-5 *1 (-702 *3 *4 *5)) (-4 *3 (-703 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-979)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) + (-4 *3 (-1203 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1) (-5 *1 (-612)))) +(((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-927))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-623 (-594 *6))) (-5 *4 (-1144)) (-5 *2 (-594 *6)) + (-4 *6 (-423 *5)) (-4 *5 (-825)) (-5 *1 (-559 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) + (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-749)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1203 (-400 *5)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1218 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1140 *9)) (-5 *4 (-623 *7)) (-4 *7 (-825)) + (-4 *9 (-922 *8 *6 *7)) (-4 *6 (-771)) (-4 *8 (-300)) + (-5 *2 (-623 (-749))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *5 (-749))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *3)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) + (-4 *3 (-164 *6)) (-4 (-925 *6) (-859 *5)) + (-4 *6 (-13 (-859 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-862 *4 *1)) (-5 *3 (-865 *4)) (-4 *1 (-859 *4)) + (-4 *4 (-1068)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *6)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) + (-4 *6 (-13 (-1068) (-1011 *3))) (-4 *3 (-859 *5)) + (-5 *1 (-904 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1068)) + (-4 *3 (-13 (-423 *6) (-596 *4) (-859 *5) (-1011 (-594 $)))) + (-5 *4 (-865 *5)) (-4 *6 (-13 (-542) (-825) (-859 *5))) + (-5 *1 (-905 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 (-550) *3)) (-5 *4 (-865 (-550))) (-4 *3 (-535)) + (-5 *1 (-906 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *6)) (-5 *3 (-594 *6)) (-4 *5 (-1068)) + (-4 *6 (-13 (-825) (-1011 (-594 $)) (-596 *4) (-859 *5))) + (-5 *4 (-865 *5)) (-5 *1 (-907 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 *5 *6 *3)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) + (-4 *6 (-859 *5)) (-4 *3 (-644 *6)) (-5 *1 (-908 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-862 *6 *3) *8 (-865 *6) (-862 *6 *3))) + (-4 *8 (-825)) (-5 *2 (-862 *6 *3)) (-5 *4 (-865 *6)) + (-4 *6 (-1068)) (-4 *3 (-13 (-922 *9 *7 *8) (-596 *4))) + (-4 *7 (-771)) (-4 *9 (-13 (-1020) (-825) (-859 *6))) + (-5 *1 (-909 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1068)) + (-4 *3 (-13 (-922 *8 *6 *7) (-596 *4))) (-5 *4 (-865 *5)) + (-4 *7 (-859 *5)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-13 (-1020) (-825) (-859 *5))) + (-5 *1 (-909 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1068)) (-4 *3 (-965 *6)) + (-4 *6 (-13 (-542) (-859 *5) (-596 *4))) (-5 *4 (-865 *5)) + (-5 *1 (-912 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-862 *5 (-1144))) (-5 *3 (-1144)) (-5 *4 (-865 *5)) + (-4 *5 (-1068)) (-5 *1 (-913 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-623 (-865 *7))) (-5 *5 (-1 *9 (-623 *9))) + (-5 *6 (-1 (-862 *7 *9) *9 (-865 *7) (-862 *7 *9))) (-4 *7 (-1068)) + (-4 *9 (-13 (-1020) (-596 (-865 *7)) (-1011 *8))) + (-5 *2 (-862 *7 *9)) (-5 *3 (-623 *9)) (-4 *8 (-13 (-1020) (-825))) + (-5 *1 (-914 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-598)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-335 *5 *6 *7)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) + (-5 *1 (-784 *5 *6 *7 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-419 *4 *2)) (-4 *2 (-13 (-1166) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) (-4 *5 (-145)) + (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) + (-5 *2 (-309 *5)) (-5 *1 (-572 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-944))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-527 *4 *2)) + (-4 *2 (-1218 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-13 (-356) (-361) (-596 *3))) + (-4 *5 (-1203 *4)) (-4 *6 (-703 *4 *5)) (-5 *1 (-531 *4 *5 *6 *2)) + (-4 *2 (-1218 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-13 (-356) (-361) (-596 *3))) + (-5 *1 (-532 *4 *2)) (-4 *2 (-1218 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-550)) (-4 *4 (-13 (-542) (-145))) + (-5 *1 (-1120 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) + (-5 *2 (-2 (|:| |num| (-1227 *4)) (|:| |den| *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-400 (-550))) (-5 *2 (-219)) (-5 *1 (-298))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) + (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) + (-5 *1 (-766)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) + (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) + (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))) +(((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) + ((*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) + ((*1 *2 *2) (-12 (-5 *2 (-894)) (|has| *1 (-6 -4333)) (-4 *1 (-397)))) + ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-894)))) + ((*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-5 *2 (-1124 (-550)))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1034 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1113 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-623 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-836)))) + ((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-935))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 *1)) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-1020)) (-5 *1 (-667 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *4)) (-4 *4 (-1020)) (-4 *1 (-1091 *3 *4 *5 *6)) + (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-623 *4)) (-5 *1 (-757 *4)) + (-4 *4 (-13 (-356) (-823)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1242 (-1144) *3)) (-4 *3 (-1020)) (-5 *1 (-1249 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1242 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *1 (-1251 *3 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1107)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-626 *5)) (-4 *5 (-1020)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-827 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-667 *3)) (-4 *1 (-410 *3)) (-4 *3 (-170)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1020)) + (-5 *1 (-828 *2 *3)) (-4 *3 (-827 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) + (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) + ((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6))))) +(((*1 *1) (-4 *1 (-342)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 *4)) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-738))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *3) + (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-1020)) + (-5 *2 (-925 *5)) (-5 *1 (-917 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-623 (-112))) (-5 *5 (-667 (-219))) + (-5 *6 (-667 (-550))) (-5 *7 (-219)) (-5 *3 (-550)) (-5 *2 (-1008)) + (-5 *1 (-733))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-623 *2)) (-4 *2 (-1068)) (-4 *2 (-1181))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-818 (-219)))) (-5 *4 (-219)) (-5 *2 (-623 *4)) + (-5 *1 (-260))))) +(((*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-219))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-894)) (-5 *2 (-1140 *3)) (-5 *1 (-1155 *3)) + (-4 *3 (-356))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-594 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1144))) + (-4 *2 (-13 (-423 *5) (-27) (-1166))) + (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *1 (-552 *5 *2 *6)) (-4 *6 (-1068))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *6 (-219)) + (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-730))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-749)) + (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230))))) +(((*1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) + (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-726))))) +(((*1 *2 *3) + (-12 (-5 *3 (-400 *5)) (-4 *5 (-1203 *4)) (-4 *4 (-542)) + (-4 *4 (-1020)) (-4 *2 (-1218 *4)) (-5 *1 (-1221 *4 *5 *6 *2)) + (-4 *6 (-634 *5))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-623 *2)) (-4 *2 (-1068)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-922 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-623 *7))) (-4 *1 (-1174 *4 *5 *6 *7)) + (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-925 (-550))) (-5 *2 (-623 *1)) (-4 *1 (-985)))) + ((*1 *2 *3) + (-12 (-5 *3 (-925 (-400 (-550)))) (-5 *2 (-623 *1)) (-4 *1 (-985)))) + ((*1 *2 *3) (-12 (-5 *3 (-925 *1)) (-4 *1 (-985)) (-5 *2 (-623 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1140 (-550))) (-5 *2 (-623 *1)) (-4 *1 (-985)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1140 (-400 (-550)))) (-5 *2 (-623 *1)) (-4 *1 (-985)))) + ((*1 *2 *3) (-12 (-5 *3 (-1140 *1)) (-4 *1 (-985)) (-5 *2 (-623 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1203 *4)) (-5 *2 (-623 *1)) + (-4 *1 (-1037 *4 *3))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-623 *2)) (-4 *2 (-1068)) (-4 *2 (-1181))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-916 (-219))) (-5 *4 (-847)) (-5 *5 (-894)) + (-5 *2 (-1232)) (-5 *1 (-460)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-916 (-219))) (-5 *2 (-1232)) (-5 *1 (-460)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-623 (-916 (-219)))) (-5 *4 (-847)) (-5 *5 (-894)) + (-5 *2 (-1232)) (-5 *1 (-460))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1032)) (-5 *3 (-1126))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-1232)) + (-5 *1 (-426 *3 *4)) (-4 *4 (-423 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *3)) + (-4 *3 (-1181)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1174 *4 *5 *3 *2)) (-4 *4 (-542)) + (-4 *5 (-771)) (-4 *3 (-825)) (-4 *2 (-1034 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-5 *1 (-1178 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-372)) (-5 *1 (-199))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) + (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4344 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) + (-4 *2 (-1020)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1203 *2)) + (-4 *4 (-665 *2 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-550)) (|has| *1 (-6 -4343)) (-4 *1 (-1215 *3)) + (-4 *3 (-1181))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-2 (|:| |deg| (-749)) (|:| -3393 *5)))) + (-4 *5 (-1203 *4)) (-4 *4 (-342)) (-5 *2 (-623 *5)) + (-5 *1 (-210 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-2 (|:| -3338 *5) (|:| -2970 (-550))))) + (-5 *4 (-550)) (-4 *5 (-1203 *4)) (-5 *2 (-623 *5)) + (-5 *1 (-674 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-1126)) (-5 *1 (-186)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836))))) +(((*1 *2) + (-12 (-4 *3 (-1020)) (-5 *2 (-931 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1203 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *2 (-1068)) (-4 *3 (-1068)) + (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) +(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-342))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-882))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1140 *1)) (-5 *4 (-1144)) (-4 *1 (-27)) + (-5 *2 (-623 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1140 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-925 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-623 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-916 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-916 *3))) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-916 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1166))) + (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 (-569 *3)) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) + (-5 *2 (-623 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |k| (-866 *3)) (|:| |c| *4)))) + (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-650 *3))) (-5 *1 (-866 *3)) (-4 *3 (-825))))) +(((*1 *2 *3) + (-12 (-4 *1 (-814)) + (-5 *3 + (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) + (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) + (|:| |ub| (-623 (-818 (-219)))))) + (-5 *2 (-1008)))) + ((*1 *2 *3) + (-12 (-4 *1 (-814)) + (-5 *3 + (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) + (-5 *2 (-1008))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1140 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) + (-4 *3 (-356))))) +(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1144)) (-5 *1 (-653 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-542))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *2 (-1068)) (-4 *3 (-1068)) + (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3))))) +(((*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-384))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-736))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-372)) (-5 *1 (-186))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1018)) + (-5 *3 (-550))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-623 + (-623 + (-3 (|:| -1916 (-1144)) + (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550)))))))))) + (-5 *1 (-1148))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-578 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1020))))) +(((*1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-1144))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-444)) + (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-950 *3 *4 *5 *6))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-865 *4)) (-4 *4 (-1068)) (-5 *1 (-862 *4 *3)) + (-4 *3 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) + (-5 *2 (-1140 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-894)) (-4 *6 (-13 (-542) (-825))) + (-5 *2 (-623 (-309 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-309 *6)) + (-4 *5 (-1020)))) + ((*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542)))) + ((*1 *2 *3) + (-12 (-5 *3 (-569 *5)) (-4 *5 (-13 (-29 *4) (-1166))) + (-4 *4 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) + (-5 *2 (-623 *5)) (-5 *1 (-567 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-569 (-400 (-925 *4)))) + (-4 *4 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) + (-5 *2 (-623 (-309 *4))) (-5 *1 (-572 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1117 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 *1)) (-4 *1 (-1063 *4 *2)) (-4 *4 (-823)) + (-4 *2 (-1117 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1242 (-1144) *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1020)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-1251 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-1020))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) + (-4 *4 (-342))))) +(((*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-411 *3)) (-4 *3 (-542)) (-5 *1 (-412 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *7)) (-4 *7 (-825)) + (-4 *8 (-922 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1227 (-400 *8)) "failed")) + (|:| -2437 (-623 (-1227 (-400 *8)))))) + (-5 *1 (-647 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-29 *4) (-1166))) + (-5 *1 (-567 *4 *2)) + (-4 *4 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-569 (-400 (-925 *4)))) + (-4 *4 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) + (-5 *2 (-309 *4)) (-5 *1 (-572 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-782 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1166) (-932)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-797 *3)) (-4 *3 (-825))))) +(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-309 (-372))) (-5 *1 (-298))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-667 *4)) (-5 *3 (-894)) (|has| *4 (-6 (-4344 "*"))) + (-4 *4 (-1020)) (-5 *1 (-1001 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-623 (-667 *4))) (-5 *3 (-894)) + (|has| *4 (-6 (-4344 "*"))) (-4 *4 (-1020)) (-5 *1 (-1001 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1126)) (|:| -1916 (-1126)))) + (-5 *1 (-800))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-542)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-550)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-844 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-844 *2)) (-14 *2 (-550)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-550)) (-14 *3 *2) (-5 *1 (-845 *3 *4)) + (-4 *4 (-842 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-550)) (-5 *1 (-845 *2 *3)) (-4 *3 (-842 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-550)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-1218 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1218 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-173))) (-5 *1 (-1053))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-894)) + (-5 *2 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) + (-5 *1 (-339 *4)) (-4 *4 (-342))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3340 *4))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1091 *3 *4 *2 *5)) (-4 *4 (-1020)) (-4 *5 (-232 *3 *4)) + (-4 *2 (-232 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3340 *4))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-444)) + (-5 *2 (-473 *4 *5)) (-5 *1 (-611 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-594 *5))) (-4 *4 (-825)) (-5 *2 (-594 *5)) + (-5 *1 (-559 *4 *5)) (-4 *5 (-423 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96))))) +(((*1 *1) (-5 *1 (-563))) + ((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-837)))) + ((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-837)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1126)) (-5 *4 (-836)) (-5 *2 (-1232)) (-5 *1 (-837)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-1124 *4)) + (-4 *4 (-1068)) (-4 *4 (-1181))))) +(((*1 *2 *1) + (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1203 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1203 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1020)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-550)) (-5 *4 (-411 *2)) (-4 *2 (-922 *7 *5 *6)) + (-5 *1 (-721 *5 *6 *7 *2)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-300))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1038 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1113 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1140 *5)) (-4 *5 (-444)) (-5 *2 (-623 *6)) + (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-925 *5)) (-4 *5 (-444)) (-5 *2 (-623 *6)) + (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-623 (-1044 *4 *5 *2))) (-4 *4 (-1068)) + (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) + (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-623 (-1044 *5 *6 *2))) (-5 *4 (-894)) (-4 *5 (-1068)) + (-4 *6 (-13 (-1020) (-859 *5) (-825) (-596 (-865 *5)))) + (-4 *2 (-13 (-423 *6) (-859 *5) (-596 (-865 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) + (-4 *4 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) + ((*1 *1 *1) (-4 *1 (-227))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) + (-4 *4 (-1203 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) + (-4 *3 (-1203 *2)))) + ((*1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 (-749))) (-4 *1 (-873 *4)) + (-4 *4 (-1068)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-873 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *1 (-873 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-873 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-667 (-550))) (-5 *5 (-112)) (-5 *7 (-667 (-219))) + (-5 *3 (-550)) (-5 *6 (-219)) (-5 *2 (-1008)) (-5 *1 (-733))))) +(((*1 *1 *2) + (-12 (-5 *2 (-400 (-550))) (-4 *1 (-540 *3)) + (-4 *3 (-13 (-397) (-1166))))) + ((*1 *1 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166)))))) +(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)))) + ((*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-1203 *4)) (-4 *4 (-1185)) + (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1203 (-400 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1020)) + (-5 *3 (-400 (-550))) (-5 *1 (-1128 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-400 (-550))) + (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1227 (-623 (-550)))) (-5 *1 (-472)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) + (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -1630 (-749)) (|:| |period| (-749)))) + (-5 *1 (-1124 *4)) (-4 *4 (-1181)) (-5 *3 (-749))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1068) (-1011 *5))) + (-4 *5 (-859 *4)) (-4 *4 (-1068)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-904 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-922 *4 *3 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-227)) (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-259 *4)) + (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1020)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) + (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-259 *2)) (-4 *2 (-825))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |k| (-1144)) (|:| |c| (-1249 *3))))) + (-5 *1 (-1249 *3)) (-4 *3 (-1020)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |k| *3) (|:| |c| (-1251 *3 *4))))) + (-5 *1 (-1251 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1107)))) +(((*1 *1) + (-12 (-4 *1 (-397)) (-3462 (|has| *1 (-6 -4333))) + (-3462 (|has| *1 (-6 -4325))))) + ((*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1068)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-4 *1 (-825))) + ((*1 *2 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-825)))) + ((*1 *1) (-5 *1 (-1088)))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-765)) (-5 *2 (-1008)) + (-5 *3 + (-2 (|:| |fn| (-309 (-219))) + (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-765)) (-5 *2 (-1008)) + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219))))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) + (-4 *3 (-13 (-423 *6) (-27) (-1166))) + (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-552 *6 *3 *7)) (-4 *7 (-1068))))) +(((*1 *2) + (-12 (-4 *1 (-342)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-925 (-550)))) (-5 *1 (-430)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1144)) (-5 *4 (-667 (-219))) (-5 *2 (-1072)) + (-5 *1 (-738)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1144)) (-5 *4 (-667 (-550))) (-5 *2 (-1072)) + (-5 *1 (-738))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-623 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1174 *5 *6 *7 *8)) (-4 *5 (-542)) + (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-894)) (-5 *1 (-1069 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) - (-5 *2 (-1224 (-400 (-535)))) (-5 *1 (-1252 *4))))) + (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) + (-4 *3 (-922 *7 *5 *6)) + (-5 *2 + (-2 (|:| -3521 (-749)) (|:| -2855 *3) (|:| |radicand| (-623 *3)))) + (-5 *1 (-926 *5 *6 *7 *3 *8)) (-5 *4 (-749)) + (-4 *8 + (-13 (-356) + (-10 -8 (-15 -2705 (*3 $)) (-15 -2715 (*3 $)) (-15 -1518 ($ *3)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-5 *1 (-1155 *2)) (-4 *2 (-356))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1109 *3 *4)) (-4 *3 (-13 (-1068) (-34))) + (-4 *4 (-13 (-1068) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1126)) (-5 *2 (-208 (-493))) (-5 *1 (-813))))) +(((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-667 *2)) (-5 *4 (-550)) + (-4 *2 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *5 (-1203 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1140 *1)) (-5 *3 (-1144)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-925 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1144)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-542))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-542))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1140 *2)) (-5 *4 (-1144)) (-4 *2 (-423 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-825) (-542))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1140 *1)) (-5 *3 (-894)) (-4 *1 (-985)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1140 *1)) (-5 *3 (-894)) (-5 *4 (-836)) + (-4 *1 (-985)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-894)) (-4 *4 (-13 (-823) (-356))) + (-4 *1 (-1037 *4 *2)) (-4 *2 (-1203 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-726))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-508))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542))))) +(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170))))) +(((*1 *2) + (-12 (-4 *3 (-1020)) (-5 *2 (-931 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1203 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-916 (-219))) (-5 *2 (-1232)) (-5 *1 (-460))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) - (-5 *2 (-1224 (-535))) (-5 *1 (-1252 *4))))) + (-12 (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-400 (-550))) + (-5 *1 (-426 *4 *3)) (-4 *3 (-423 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-594 *3)) (-4 *3 (-423 *5)) + (-4 *5 (-13 (-825) (-542) (-1011 (-550)))) + (-5 *2 (-1140 (-400 (-550)))) (-5 *1 (-426 *5 *3))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-925 *6)) (-5 *4 (-1144)) + (-5 *5 (-818 *7)) + (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-4 *7 (-13 (-1166) (-29 *6))) (-5 *1 (-218 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1140 *6)) (-5 *4 (-818 *6)) + (-4 *6 (-13 (-1166) (-29 *5))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-218 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-1 (-112) *8))) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) + (-5 *1 (-950 *5 *6 *7 *8)) (-5 *4 (-623 *8))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444))) + (-5 *2 (-818 *4)) (-5 *1 (-306 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1166) (-423 *3))) (-14 *5 (-1144)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444))) + (-5 *2 (-818 *4)) (-5 *1 (-1213 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1166) (-423 *3))) (-14 *5 (-1144)) + (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) (-5 *2 (-112)) - (-5 *1 (-1252 *4))))) + (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-571 *4)) + (-4 *4 (-342))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-550)) (-5 *2 (-623 (-2 (|:| -3338 *3) (|:| -2970 *4)))) + (-5 *1 (-674 *3)) (-4 *3 (-1203 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-894)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-356)) (-14 *5 (-966 *3 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2) (-12 (-5 *2 (-1115 (-1126))) (-5 *1 (-384))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1140 *1)) (-5 *3 (-1144)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-925 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1144)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-542))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-542)))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-594 *2) (-170))) (-5 *2 (-861 *4)) (-5 *1 (-168 *4 *5 *3)) - (-4 *4 (-1067)) (-4 *3 (-164 *5)))) + (-12 (-4 *4 (-1020)) (-4 *5 (-1203 *4)) (-5 *2 (-1 *6 (-623 *6))) + (-5 *1 (-1221 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-1218 *4))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-735))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) + (-4 *7 (-1203 (-400 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -1557 *3))) + (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) + (-5 *2 + (-2 (|:| |answer| (-400 *6)) (|:| -1557 (-400 *6)) + (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) + (-5 *1 (-549 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) + (-14 *4 (-623 (-1144))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1181)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) + (-14 *4 (-623 (-1144))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-825))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1144)) + (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-186)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1144)) + (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-293))))) +(((*1 *2 *1) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) + (-5 *2 (-1140 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1148))))) +(((*1 *2 *3) (-12 (-5 *3 (-925 (-219))) (-5 *2 (-219)) (-5 *1 (-298))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) + (-5 *2 (-2 (|:| -2855 *4) (|:| -3526 *3) (|:| -2786 *3))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-1034 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-542)) (-4 *3 (-1020)) + (-5 *2 (-2 (|:| -2855 *3) (|:| -3526 *1) (|:| -2786 *1))) + (-4 *1 (-1203 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-825)) (-4 *5 (-882)) (-4 *6 (-771)) + (-4 *8 (-922 *5 *6 *7)) (-5 *2 (-411 (-1140 *8))) + (-5 *1 (-879 *5 *6 *7 *8)) (-5 *4 (-1140 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-1055 (-815 (-371))))) - (-5 *2 (-618 (-1055 (-815 (-219))))) (-5 *1 (-296)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-371)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-386)))) + (-12 (-4 *4 (-882)) (-4 *5 (-1203 *4)) (-5 *2 (-411 (-1140 *5))) + (-5 *1 (-880 *4 *5)) (-5 *3 (-1140 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-1203 *4)) (-4 *4 (-1185)) + (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1203 (-400 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1227 *4)) (-5 *3 (-1227 *1)) (-4 *4 (-170)) + (-4 *1 (-360 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1227 *4)) (-5 *3 (-1227 *1)) (-4 *4 (-170)) + (-4 *1 (-363 *4 *5)) (-4 *5 (-1203 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) - (-4 *4 (-1200 *3)))) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) + (-4 *4 (-1203 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-186))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070 *4)) (-4 *4 (-1068)) (-5 *2 (-1 *4)) + (-5 *1 (-990 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1013)) (-5 *3 (-372)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1062 (-550))) (-5 *2 (-1 (-550))) (-5 *1 (-1018))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 *2)) (-4 *4 (-1203 *2)) + (-4 *2 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-402 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) + (-4 *5 (-232 *3 *2)) (-4 *2 (-1020))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-444)) + (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-950 *3 *4 *5 *6))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-865 *4)) (-4 *4 (-1068)) (-5 *1 (-862 *4 *3)) + (-4 *3 (-1068))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1032))))) +(((*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-1020)) + (-4 *2 (-1218 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1126)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-256)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-730))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1166) (-932)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *5)) (-5 *4 (-1227 *5)) (-4 *5 (-356)) + (-5 *2 (-112)) (-5 *1 (-645 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4343)))) + (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-5 *2 (-112)) + (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3340 *4))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-623 (-112))) (-5 *7 (-667 (-219))) + (-5 *8 (-667 (-550))) (-5 *3 (-550)) (-5 *4 (-219)) (-5 *5 (-112)) + (-5 *2 (-1008)) (-5 *1 (-733))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 (-400 (-925 (-550))))) + (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1004))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-800))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1144)) (-5 *2 (-108)) (-5 *1 (-173)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1144)) (-5 *2 (-108)) (-5 *1 (-1053))))) +(((*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) + (-4 *4 (-342)) (-5 *2 (-667 *4)) (-5 *1 (-339 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3340 *4))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-771)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) + (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) + (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-623 (-594 *5))) (-5 *3 (-1144)) (-4 *5 (-423 *4)) + (-4 *4 (-825)) (-5 *1 (-559 *4 *5))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1140 *9)) (-5 *4 (-623 *7)) (-5 *5 (-623 (-623 *8))) + (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-922 *8 *6 *7)) (-4 *6 (-771)) + (-5 *2 + (-2 (|:| |upol| (-1140 *8)) (|:| |Lval| (-623 *8)) + (|:| |Lfact| + (-623 (-2 (|:| -3338 (-1140 *8)) (|:| -3521 (-550))))) + (|:| |ctpol| *8))) + (-5 *1 (-721 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1038 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 *9)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1113 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) (-5 *2 (-526)) (-5 *1 (-525 *4)) + (-4 *4 (-1181))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1020)) (-4 *3 (-825)) + (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1185)) + (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) + (-5 *2 (-2 (|:| |num| (-667 *5)) (|:| |den| *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))) + (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-270 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-542)))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-594 *3)) + (-4 *3 (-13 (-423 *5) (-27) (-1166))) + (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) + (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1068))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) + (-14 *4 (-749)) (-4 *5 (-170))))) +(((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-170)) (-4 *2 (-1020)) (-5 *1 (-693 *2 *3)) + (-4 *3 (-626 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-170)) (-4 *2 (-1020)) (-5 *1 (-693 *2 *3)) + (-4 *3 (-626 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1020)))) + ((*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1020))))) +(((*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-738))))) +(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) +(((*1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *2 (-797 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) - (-5 *2 (-1224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 *3)))) + (-12 (-4 *2 (-821)) (-5 *1 (-1250 *3 *2)) (-4 *3 (-1020))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1107)))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894)) + (-5 *2 + (-3 (-1140 *4) + (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088))))))) + (-5 *1 (-339 *4)) (-4 *4 (-342))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-623 (-916 (-219))))) + (-5 *2 (-623 (-1062 (-219)))) (-5 *1 (-901))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-997 *3)) + (-4 *3 (-13 (-823) (-356) (-995))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) + (-4 *3 (-1203 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1037 *2 *3)) (-4 *2 (-13 (-823) (-356))) + (-4 *3 (-1203 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-894)) (-5 *1 (-1069 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1128 *4)) + (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1020))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) + (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-623 (-623 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-623 (-623 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-623 *3))) (-5 *1 (-1153 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *1 (-570 *2)) (-4 *2 (-535))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-667 *2)) (-5 *4 (-749)) + (-4 *2 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *5 (-1203 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-894))) (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-52))))) +(((*1 *1 *1) + (-12 (-4 *2 (-342)) (-4 *2 (-1020)) (-5 *1 (-691 *2 *3)) + (-4 *3 (-1203 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *6 *5)) + (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-897 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-112)) + (-5 *1 (-897 *4 *5 *6 *7)) (-4 *7 (-922 *4 *6 *5))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-726))))) +(((*1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *1) + (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1125)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1144))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-542)) + (-4 *8 (-922 *7 *5 *6)) + (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *3) (|:| |radicand| *3))) + (-5 *1 (-926 *5 *6 *7 *8 *3)) (-5 *4 (-749)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -2705 (*8 $)) (-15 -2715 (*8 $)) (-15 -1518 ($ *8)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1181)) (-5 *2 (-550))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-916 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-916 *3))) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-916 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-112)) (-5 *1 (-293))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542))))) +(((*1 *2) (-12 (-5 *2 (-1115 (-1126))) (-5 *1 (-384))))) +(((*1 *2 *3) + (-12 (-5 *3 (-925 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-596 *2) (-170))) (-5 *2 (-865 *4)) + (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1068)) (-4 *3 (-164 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-1062 (-818 (-372))))) + (-5 *2 (-623 (-1062 (-818 (-219))))) (-5 *1 (-298)))) + ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-372)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-550)) (-5 *1 (-387)))) ((*1 *1 *2) - (-12 (-5 *2 (-398 *1)) (-4 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-823)))) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) + (-4 *4 (-1203 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) + (-5 *2 (-1227 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1227 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-411 *1)) (-4 *1 (-423 *3)) (-4 *3 (-542)) + (-4 *3 (-825)))) ((*1 *1 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-455 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1069)) (-5 *1 (-524)))) - ((*1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-455 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-526)))) + ((*1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) - (-4 *5 (-594 (-1142))) (-4 *4 (-769)) (-4 *5 (-823)))) + (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1203 *3)))) ((*1 *1 *2) - (-3874 - (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) - (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) - (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) - (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823))))) + (-12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1020)) (-4 *1 (-953 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1031)))) ((*1 *1 *2) - (-12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) - (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124)) - (-5 *1 (-1036 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1048)))) - ((*1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) + (-12 (-5 *2 (-925 *3)) (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) + (-4 *5 (-596 (-1144))) (-4 *4 (-771)) (-4 *5 (-825)))) ((*1 *1 *2) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) + (-1561 + (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) + (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) + (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))))) ((*1 *1 *2) - (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *2 (-1067)) (-4 *6 (-1067)))) + (-12 (-5 *2 (-925 (-400 (-550)))) (-4 *1 (-1034 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144))) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -3223 *8))) + (-4 *7 (-1034 *4 *5 *6)) (-4 *8 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1126)) + (-5 *1 (-1038 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1050)))) + ((*1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) ((*1 *1 *2) - (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *2 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *2)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068)))) ((*1 *1 *2) - (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *2 (-1067)) - (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) + (-12 (-4 *1 (-1071 *3 *4 *5 *2 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *2 (-1068)) (-4 *6 (-1068)))) ((*1 *1 *2) - (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) - (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) + (-12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *2 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)))) ((*1 *1 *2) - (-12 (-5 *2 (-618 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) - (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) - (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124)) - (-5 *1 (-1111 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1069)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-1147)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-1158)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-1158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-756 *4 (-836 *5))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-14 *5 (-618 (-1142))) (-5 *2 (-756 *4 (-836 *6))) (-5 *1 (-1251 *4 *5 *6)) - (-14 *6 (-618 (-1142))))) - ((*1 *2 *3) - (-12 (-5 *3 (-917 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-917 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) - (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) - ((*1 *2 *3) - (-12 (-5 *3 (-756 *4 (-836 *6))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-14 *6 (-618 (-1142))) (-5 *2 (-917 (-995 (-400 *4)))) - (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1136 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-1136 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) - (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6)))) - (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *6 (-618 (-1142))) - (-5 *2 (-618 (-756 *4 (-836 *6)))) (-5 *1 (-1251 *4 *5 *6)) - (-14 *5 (-618 (-1142)))))) -(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534)))) - ((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) - (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-921 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-4 *7 (-921 *6 *4 *5)) - (-5 *2 (-398 (-1136 *7))) (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-398 *1)) (-4 *1 (-921 *3 *4 *5)))) + (-12 (-4 *1 (-1071 *3 *2 *4 *5 *6)) (-4 *3 (-1068)) (-4 *2 (-1068)) + (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *2 (-1068)) (-4 *3 (-1068)) + (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *1)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) + (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)))) ((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-444)) (-5 *2 (-398 *3)) - (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4)))) + (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -3223 *8))) + (-4 *7 (-1034 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1126)) + (-5 *1 (-1113 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1149)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-836)) (-5 *3 (-550)) (-5 *1 (-1161)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-550)) (-5 *1 (-1161)))) ((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-921 *6 *4 *5)) - (-5 *2 (-398 (-1136 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7)) - (-5 *3 (-1136 (-400 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1183)))) + (-12 (-5 *3 (-758 *4 (-838 *5))) + (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *5 (-623 (-1144))) + (-5 *2 (-758 *4 (-838 *6))) (-5 *1 (-1253 *4 *5 *6)) + (-14 *6 (-623 (-1144))))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-1204 *4 *3)) - (-4 *3 (-13 (-1200 *4) (-542) (-10 -8 (-15 -3478 ($ $ $))))))) + (-12 (-5 *3 (-925 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-925 (-997 (-400 *4)))) (-5 *1 (-1253 *4 *5 *6)) + (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144))))) ((*1 *2 *3) - (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-14 *5 (-618 (-1142))) - (-5 *2 (-618 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6))))) - (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) - (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) - (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) - (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) - (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-618 (-1142))) - (-5 *2 (-618 (-618 (-371)))) (-5 *1 (-994)) (-5 *5 (-371)))) + (-12 (-5 *3 (-758 *4 (-838 *6))) + (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *6 (-623 (-1144))) + (-5 *2 (-925 (-997 (-400 *4)))) (-5 *1 (-1253 *4 *5 *6)) + (-14 *5 (-623 (-1144))))) ((*1 *2 *3) - (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) - (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) - (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) - (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) - (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) - (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-14 *5 (-618 (-1142))) - (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) - (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) - (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) - (-14 *7 (-618 (-1142))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) - (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) - (-14 *7 (-618 (-1142))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) - (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) - (-14 *7 (-618 (-1142))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) - (-5 *1 (-1251 *4 *5 *6)) (-5 *3 (-618 (-917 *4))) (-14 *5 (-618 (-1142))) - (-14 *6 (-618 (-1142)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *5 *6))) - (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *5 *6))) - (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) + (-12 (-5 *3 (-1140 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-1140 (-997 (-400 *4)))) (-5 *1 (-1253 *4 *5 *6)) + (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144))))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) - (-5 *2 (-618 (-1015 *4 *5))) (-5 *1 (-1251 *4 *5 *6)) - (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142)))))) + (-12 + (-5 *3 (-1114 *4 (-522 (-838 *6)) (-838 *6) (-758 *4 (-838 *6)))) + (-4 *4 (-13 (-823) (-300) (-145) (-995))) (-14 *6 (-623 (-1144))) + (-5 *2 (-623 (-758 *4 (-838 *6)))) (-5 *1 (-1253 *4 *5 *6)) + (-14 *5 (-623 (-1144)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *3 (-623 (-847))) + (-5 *1 (-460))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1119 *4) (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1250 *4)) - (-4 *4 (-1178)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-618 (-1119 *5)) (-618 (-1119 *5)))) (-5 *4 (-535)) - (-5 *2 (-618 (-1119 *5))) (-5 *1 (-1250 *5)) (-4 *5 (-1178))))) + (|partial| -12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-764))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-4 *6 (-13 (-542) (-823))) (-5 *2 (-618 (-307 *6))) - (-5 *1 (-215 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1018)))) - ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))) - ((*1 *2 *3) - (-12 (-5 *3 (-565 *5)) (-4 *5 (-13 (-29 *4) (-1164))) - (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-618 *5)) - (-5 *1 (-567 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-565 (-400 (-917 *4)))) - (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) - (-5 *2 (-618 (-307 *4))) (-5 *1 (-570 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1115 *3)))) + (-12 (-5 *3 (-623 (-1 (-112) *8))) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) + (-5 *1 (-950 *5 *6 *7 *8)) (-5 *4 (-623 *8))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) + (-5 *2 (-1008)) (-5 *1 (-735))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1212 *4 *5 *6)) + (|:| |%expon| (-312 *4 *5 *6)) + (|:| |%expTerms| + (-623 (-2 (|:| |k| (-400 (-550))) (|:| |c| *4)))))) + (|:| |%type| (-1126)))) + (-5 *1 (-1213 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1166) (-423 *3))) + (-14 *5 (-1144)) (-14 *6 *4)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1203 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1148))))) +(((*1 *2 *3) + (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-356)) + (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) + (|has| *2 (-6 (-4344 "*"))) (-4 *2 (-1020)))) ((*1 *2 *3) - (-12 (-5 *3 (-618 *1)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821)) - (-4 *2 (-1115 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164))))) + (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) + (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-1240 (-1142) *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) + (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4344 "*"))) (-4 *2 (-1020))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1166) (-975)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-508))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-749)) (-5 *1 (-547))))) +(((*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) + ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) + ((*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-865 *4)) (-4 *4 (-1068)) (-5 *2 (-623 *5)) + (-5 *1 (-863 *4 *5)) (-4 *5 (-1181))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *2 (-1008)) (-5 *1 (-730))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-323))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) + (-5 *2 (-1140 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) - (-4 *4 (-1018))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1240 (-1142) *3)) (-4 *3 (-1018)) (-5 *1 (-1246 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) - (-5 *1 (-1249 *3 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |k| (-1142)) (|:| |c| (-1246 *3))))) - (-5 *1 (-1246 *3)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) + (-5 *2 (-1140 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-732))))) +(((*1 *2 *3) + (-12 (-4 *4 (-356)) (-4 *4 (-542)) (-4 *5 (-1203 *4)) + (-5 *2 (-2 (|:| -3509 (-603 *4 *5)) (|:| -3413 (-400 *5)))) + (-5 *1 (-603 *4 *5)) (-5 *3 (-400 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |k| *3) (|:| |c| (-1249 *3 *4))))) - (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-535)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-747)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-155)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164))) (-5 *1 (-221 *3)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1078)) (-4 *2 (-1178)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1078)) (-4 *2 (-1178)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-4299 *3) (-747))) - (-14 *7 - (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) - (-2 (|:| -2483 *5) (|:| -2484 *6)))) - (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-823)) - (-4 *2 (-921 *4 *6 (-836 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-524))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-4 *7 (-1067)) (-5 *2 (-1 *7 *5)) (-5 *1 (-660 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-662 *3 *2 *4)) (-4 *3 (-1018)) (-4 *2 (-365 *3)) - (-4 *4 (-365 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-662 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *2 (-365 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-697))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-542)) - (-5 *1 (-940 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *1) (-4 *1 (-1078))) + (-12 (-5 *2 (-623 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) + (-14 *3 (-894)) (-4 *4 (-1020)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-444)) (-4 *3 (-1020)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1203 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-800))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1228)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1228)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1229)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-256))) (-5 *1 (-1229))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-818 *4)) (-5 *3 (-594 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1166) (-29 *6))) + (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-218 *6 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-1187 *4)) (-4 *4 (-1020)) (-4 *4 (-542)) + (-5 *2 (-400 (-925 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-1187 *4)) (-4 *4 (-1020)) (-4 *4 (-542)) + (-5 *2 (-400 (-925 *4)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-186))))) +(((*1 *2 *3) + (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-300)) + (-5 *2 (-400 (-411 (-925 *4)))) (-5 *1 (-1015 *4))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *1) (-12 (-4 *3 (-1181)) (-5 *2 (-623 *1)) (-4 *1 (-983 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) + (-14 *3 (-894)) (-4 *4 (-1020))))) +(((*1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-542)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1203 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-623 *7)) (-5 *3 (-550)) (-4 *7 (-922 *4 *5 *6)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-441 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-444)) + (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-950 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-623 *7)) (-5 *3 (-112)) (-4 *7 (-1034 *4 *5 *6)) + (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-950 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1068)) (-4 *6 (-859 *5)) (-5 *2 (-858 *5 *6 (-623 *6))) + (-5 *1 (-860 *5 *6 *4)) (-5 *3 (-623 *6)) (-4 *4 (-596 (-865 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1068)) (-5 *2 (-623 (-287 *3))) (-5 *1 (-860 *5 *3 *4)) + (-4 *3 (-1011 (-1144))) (-4 *3 (-859 *5)) (-4 *4 (-596 (-865 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1068)) (-5 *2 (-623 (-287 (-925 *3)))) + (-5 *1 (-860 *5 *3 *4)) (-4 *3 (-1020)) + (-3462 (-4 *3 (-1011 (-1144)))) (-4 *3 (-859 *5)) + (-4 *4 (-596 (-865 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1068)) (-5 *2 (-862 *5 *3)) (-5 *1 (-860 *5 *3 *4)) + (-3462 (-4 *3 (-1011 (-1144)))) (-3462 (-4 *3 (-1020))) + (-4 *3 (-859 *5)) (-4 *4 (-596 (-865 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-1020)) (-4 *2 (-1203 *5)) + (-5 *1 (-1221 *5 *2 *6 *3)) (-4 *6 (-634 *2)) (-4 *3 (-1218 *5))))) +(((*1 *2) + (-12 (-4 *4 (-356)) (-5 *2 (-894)) (-5 *1 (-321 *3 *4)) + (-4 *3 (-322 *4)))) + ((*1 *2) + (-12 (-4 *4 (-356)) (-5 *2 (-811 (-894))) (-5 *1 (-321 *3 *4)) + (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-894)))) + ((*1 *2) + (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-811 (-894)))))) +(((*1 *1 *1) (-4 *1 (-842 *2)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-623 (-1140 *4))) (-5 *3 (-1140 *4)) + (-4 *4 (-882)) (-5 *1 (-641 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 + (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) + (|:| |expense| (-372)) (|:| |accuracy| (-372)) + (|:| |intermediateResults| (-372)))) + (-5 *1 (-781))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1181)) (-5 *1 (-846 *3 *2)) (-4 *3 (-1181)))) + ((*1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *2 (-232 *3 *4)) - (-4 *5 (-232 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) - (-4 *2 (-232 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2)) - (-4 *2 (-921 *3 (-521 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-914 (-219))) (-5 *3 (-219)) (-5 *1 (-1175)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-535)) (-4 *1 (-1223 *3)) (-4 *3 (-1178)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142))))) - ((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) - (-14 *3 (-618 (-1142))))) - ((*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067)))) - ((*1 *1 *1) - (-12 (-14 *2 (-618 (-1142))) (-4 *3 (-170)) (-4 *5 (-232 (-4299 *2) (-747))) - (-14 *6 - (-1 (-112) (-2 (|:| -2483 *4) (|:| -2484 *5)) - (-2 (|:| -2483 *4) (|:| -2484 *5)))) - (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-823)) - (-4 *7 (-921 *3 *5 (-836 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823)))) - ((*1 *1 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1) - (-12 (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1018)) (-4 *3 (-703)))) - ((*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) - ((*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819))))) + (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166)))))) +(((*1 *2 *2) (-12 (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1004))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1144)) + (-4 *5 (-13 (-542) (-1011 (-550)) (-145))) + (-5 *2 + (-2 (|:| -1653 (-400 (-925 *5))) (|:| |coeff| (-400 (-925 *5))))) + (-5 *1 (-556 *5)) (-5 *3 (-400 (-925 *5)))))) +(((*1 *2) + (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-882)) + (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-922 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-882)) + (-5 *1 (-879 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-882)) (-5 *1 (-880 *2 *3)) (-4 *3 (-1203 *2))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1053))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) + (-5 *2 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) + (-5 *1 (-339 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3340 *4))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-835)) (-5 *3 (-129)) (-5 *2 (-1088))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-372)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-770)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-618 (-1142))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-623 (-1144))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-535)) - (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) - (-5 *1 (-135 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) + (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) - (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) + (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1018) (-823))) - (-5 *1 (-217 *3 *4)) (-14 *4 (-618 (-1142))))) + (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1020) (-825))) + (-5 *1 (-217 *3 *4)) (-14 *4 (-623 (-1144))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1178)) - (-4 *7 (-1178)) (-5 *2 (-233 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-286 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-234 *5 *6)) (-14 *5 (-749)) + (-4 *6 (-1181)) (-4 *7 (-1181)) (-5 *2 (-234 *5 *7)) + (-5 *1 (-233 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-286 *6)) (-5 *1 (-287 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-591 *1)) (-4 *1 (-291)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-287 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-287 *6)) (-5 *1 (-286 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1181)) (-5 *1 (-287 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1124)) (-5 *5 (-591 *6)) (-4 *6 (-291)) - (-4 *2 (-1178)) (-5 *1 (-292 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1126)) (-5 *5 (-594 *6)) + (-4 *6 (-295)) (-4 *2 (-1181)) (-5 *1 (-290 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-591 *5)) (-4 *5 (-291)) (-4 *2 (-291)) - (-5 *1 (-293 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-594 *5)) (-4 *5 (-295)) + (-4 *2 (-295)) (-5 *1 (-291 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-594 *1)) (-4 *1 (-295)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-5 *2 (-665 *6)) (-5 *1 (-298 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5)) (-4 *5 (-1020)) + (-4 *6 (-1020)) (-5 *2 (-667 *6)) (-5 *1 (-297 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-823)) (-4 *6 (-823)) - (-5 *2 (-307 *6)) (-5 *1 (-308 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-825)) + (-4 *6 (-825)) (-5 *2 (-309 *6)) (-5 *1 (-307 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-326 *5 *6 *7 *8)) (-4 *5 (-356)) - (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *9 (-356)) (-4 *10 (-1200 *9)) (-4 *11 (-1200 (-400 *10))) - (-5 *2 (-326 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-329 *5 *6 *7 *8)) (-4 *5 (-356)) + (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) + (-4 *9 (-356)) (-4 *10 (-1203 *9)) (-4 *11 (-1203 (-400 *10))) + (-5 *2 (-329 *9 *10 *11 *12)) + (-5 *1 (-326 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1067)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1068)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1183)) (-4 *8 (-1183)) (-4 *6 (-1200 *5)) - (-4 *7 (-1200 (-400 *6))) (-4 *9 (-1200 *8)) (-4 *2 (-335 *8 *9 *10)) - (-5 *1 (-336 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) - (-4 *10 (-1200 (-400 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1185)) (-4 *8 (-1185)) + (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) (-4 *9 (-1203 *8)) + (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-333 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1203 (-400 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *2 (-365 *6)) - (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-365 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1181)) (-4 *6 (-1181)) + (-4 *2 (-366 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-366 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1067)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-542)) (-5 *1 (-398 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-1068)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-542)) (-4 *6 (-542)) - (-5 *2 (-398 *6)) (-5 *1 (-399 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-542)) + (-4 *6 (-542)) (-5 *2 (-411 *6)) (-5 *1 (-398 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-542)) (-4 *6 (-542)) - (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-542)) + (-4 *6 (-542)) (-5 *2 (-400 *6)) (-5 *1 (-399 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) - (-4 *6 (-962 *5)) (-4 *7 (-1200 *6)) (-4 *8 (-13 (-403 *6 *7) (-1009 *6))) - (-4 *9 (-300)) (-4 *10 (-962 *9)) (-4 *11 (-1200 *10)) - (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-403 *10 *11) (-1009 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-411 *6)) - (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5)))) + (-4 *6 (-965 *5)) (-4 *7 (-1203 *6)) + (-4 *8 (-13 (-402 *6 *7) (-1011 *6))) (-4 *9 (-300)) + (-4 *10 (-965 *9)) (-4 *11 (-1203 *10)) + (-5 *2 (-406 *9 *10 *11 *12)) + (-5 *1 (-405 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-402 *10 *11) (-1011 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) + (-4 *2 (-410 *6)) (-5 *1 (-408 *4 *5 *2 *6)) (-4 *4 (-410 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-542)) (-5 *1 (-411 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1018) (-823))) - (-4 *6 (-13 (-1018) (-823))) (-4 *2 (-414 *6)) (-5 *1 (-415 *5 *4 *6 *2)) - (-4 *4 (-414 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1020) (-825))) + (-4 *6 (-13 (-1020) (-825))) (-4 *2 (-423 *6)) + (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-423 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-419 *6)) - (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-419 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1178)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) + (-4 *2 (-418 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-418 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1181)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-823)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-825)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-565 *5)) (-4 *5 (-356)) (-4 *6 (-356)) - (-5 *2 (-565 *6)) (-5 *1 (-566 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-569 *5)) (-4 *5 (-356)) + (-4 *6 (-356)) (-5 *2 (-569 *6)) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2242 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) - (-4 *6 (-356)) (-5 *2 (-2 (|:| -2242 *6) (|:| |coeff| *6))) - (-5 *1 (-566 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -1653 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-356)) (-4 *6 (-356)) + (-5 *2 (-2 (|:| -1653 *6) (|:| |coeff| *6))) + (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) - (-4 *2 (-356)) (-5 *1 (-566 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-568 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-356)) (-4 *6 (-356)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-566 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-581 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-581 *6)) (-5 *1 (-578 *5 *6)))) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-356)) (-4 *6 (-356)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-568 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-583 *6)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-581 *7)) - (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-581 *8)) - (-5 *1 (-579 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) + (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-583 *8)) + (-5 *1 (-581 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1119 *6)) (-5 *5 (-581 *7)) - (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) - (-5 *1 (-579 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-583 *7)) + (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-1124 *8)) + (-5 *1 (-581 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-1119 *7)) - (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) - (-5 *1 (-579 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-1124 *7)) + (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-1124 *8)) + (-5 *1 (-581 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1181)) (-5 *1 (-583 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-618 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-618 *6)) (-5 *1 (-619 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-623 *6)) (-5 *1 (-621 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-618 *6)) (-5 *5 (-618 *7)) - (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-618 *8)) - (-5 *1 (-621 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-623 *6)) (-5 *5 (-623 *7)) + (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-623 *8)) + (-5 *1 (-622 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-365 *5)) - (-4 *7 (-365 *5)) (-4 *2 (-662 *8 *9 *10)) - (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-662 *5 *6 *7)) - (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1018)) - (-4 *8 (-1018)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-662 *8 *9 *10)) - (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-662 *5 *6 *7)) - (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-542)) (-4 *7 (-542)) (-4 *6 (-1200 *5)) - (-4 *2 (-1200 (-400 *8))) (-5 *1 (-686 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1200 (-400 *6))) (-4 *8 (-1200 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1018)) (-4 *9 (-1018)) (-4 *5 (-823)) - (-4 *6 (-769)) (-4 *2 (-921 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-769)) (-4 *4 (-921 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-4 *7 (-769)) - (-4 *9 (-1018)) (-4 *2 (-921 *9 *8 *6)) (-5 *1 (-706 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-769)) (-4 *4 (-921 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-712 *5 *7)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-4 *7 (-703)) (-5 *2 (-712 *6 *7)) (-5 *1 (-711 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1020)) (-4 *8 (-1020)) + (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-665 *8 *9 *10)) + (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-665 *5 *6 *7)) + (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1020)) + (-4 *8 (-1020)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) + (-4 *2 (-665 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-665 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-542)) (-4 *7 (-542)) + (-4 *6 (-1203 *5)) (-4 *2 (-1203 (-400 *8))) + (-5 *1 (-688 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1203 (-400 *6))) + (-4 *8 (-1203 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1020)) (-4 *9 (-1020)) + (-4 *5 (-825)) (-4 *6 (-771)) (-4 *2 (-922 *9 *7 *5)) + (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) + (-4 *4 (-922 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-4 *7 (-771)) + (-4 *9 (-1020)) (-4 *2 (-922 *9 *8 *6)) + (-5 *1 (-708 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-771)) + (-4 *4 (-922 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5 *7)) (-4 *5 (-1020)) + (-4 *6 (-1020)) (-4 *7 (-705)) (-5 *2 (-714 *6 *7)) + (-5 *1 (-713 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-712 *3 *4)) (-4 *4 (-703)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-714 *3 *4)) + (-4 *4 (-705)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-5 *2 (-757 *6)) (-5 *1 (-758 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-760 *5)) (-4 *5 (-1020)) + (-4 *6 (-1020)) (-5 *2 (-760 *6)) (-5 *1 (-759 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-772 *6)) - (-5 *1 (-775 *4 *5 *2 *6)) (-4 *4 (-772 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) + (-4 *2 (-775 *6)) (-5 *1 (-776 *4 *5 *2 *6)) (-4 *4 (-775 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-5 *2 (-808 *6)) (-5 *1 (-809 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-808 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-5 *1 (-809 *5 *6)))) + (-12 (-5 *2 (-811 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *1 (-810 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-5 *2 (-815 *6)) (-5 *1 (-816 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-815 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-5 *1 (-816 *5 *6)))) + (-12 (-5 *2 (-818 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *1 (-817 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-852 *6)) (-5 *1 (-851 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-859 *5 *6)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-4 *7 (-1067)) (-5 *2 (-859 *5 *7)) (-5 *1 (-860 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-862 *5 *6)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-862 *5 *7)) + (-5 *1 (-861 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-5 *2 (-861 *6)) (-5 *1 (-863 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-5 *2 (-865 *6)) (-5 *1 (-864 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-5 *2 (-917 *6)) (-5 *1 (-918 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-925 *5)) (-4 *5 (-1020)) + (-4 *6 (-1020)) (-5 *2 (-925 *6)) (-5 *1 (-919 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) - (-4 *6 (-769)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-825)) + (-4 *8 (-1020)) (-4 *6 (-771)) (-4 *2 - (-13 (-1067) - (-10 -8 (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) - (-5 *1 (-923 *6 *7 *8 *5 *2)) (-4 *5 (-921 *8 *6 *7)))) + (-13 (-1068) + (-10 -8 (-15 -2391 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) + (-5 *1 (-924 *6 *7 *8 *5 *2)) (-4 *5 (-922 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-929 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-929 *6)) (-5 *1 (-930 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-931 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-931 *6)) (-5 *1 (-930 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-5 *2 (-914 *6)) (-5 *1 (-952 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-916 *5)) (-4 *5 (-1020)) + (-4 *6 (-1020)) (-5 *2 (-916 *6)) (-5 *1 (-954 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-917 *4))) (-4 *4 (-1018)) (-4 *2 (-921 (-917 *4) *5 *6)) - (-4 *5 (-769)) + (-12 (-5 *3 (-1 *2 (-925 *4))) (-4 *4 (-1020)) + (-4 *2 (-922 (-925 *4) *5 *6)) (-4 *5 (-771)) (-4 *6 - (-13 (-823) - (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142)))))) - (-5 *1 (-955 *4 *5 *6 *2)))) + (-13 (-825) + (-10 -8 (-15 -4028 ((-1144) $)) + (-15 -1861 ((-3 $ "failed") (-1144)))))) + (-5 *1 (-957 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-4 *2 (-962 *6)) - (-5 *1 (-963 *5 *6 *4 *2)) (-4 *4 (-962 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-542)) (-4 *6 (-542)) + (-4 *2 (-965 *6)) (-5 *1 (-963 *5 *6 *4 *2)) (-4 *4 (-965 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-969 *6)) - (-5 *1 (-970 *4 *5 *2 *6)) (-4 *4 (-969 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) + (-4 *2 (-970 *6)) (-5 *1 (-971 *4 *5 *2 *6)) (-4 *4 (-970 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) + (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1018)) (-4 *10 (-1018)) (-14 *5 (-747)) - (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) - (-4 *2 (-1021 *5 *6 *10 *11 *12)) - (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) + (-4 *5 (-1020)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1020)) (-4 *10 (-1020)) + (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) + (-4 *9 (-232 *5 *7)) (-4 *2 (-1023 *5 *6 *10 *11 *12)) + (-5 *1 (-1025 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1023 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-1055 *6)) (-5 *1 (-1056 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-1062 *6)) (-5 *1 (-1057 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-821)) (-4 *5 (-1178)) - (-4 *6 (-1178)) (-5 *2 (-618 *6)) (-5 *1 (-1056 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-823)) + (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-623 *6)) + (-5 *1 (-1057 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-1058 *6)) (-5 *1 (-1059 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-1060 *6)) (-5 *1 (-1059 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821)) - (-4 *2 (-1115 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1063 *4 *2)) (-4 *4 (-823)) + (-4 *2 (-1117 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-1119 *6)) (-5 *1 (-1121 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-1124 *6)) (-5 *1 (-1122 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1119 *6)) (-5 *5 (-1119 *7)) - (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) - (-5 *1 (-1122 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-1124 *7)) + (-4 *6 (-1181)) (-4 *7 (-1181)) (-4 *8 (-1181)) (-5 *2 (-1124 *8)) + (-5 *1 (-1123 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-5 *2 (-1136 *6)) (-5 *1 (-1137 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5)) (-4 *5 (-1020)) + (-4 *6 (-1020)) (-5 *2 (-1140 *6)) (-5 *1 (-1138 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1155 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-1067)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5 *7 *9)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1184 *6 *8 *10)) (-5 *1 (-1185 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1142)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5 *7 *9)) (-4 *5 (-1020)) + (-4 *6 (-1020)) (-14 *7 (-1144)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1191 *6 *8 *10)) (-5 *1 (-1186 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1144)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-1191 *6)) (-5 *1 (-1192 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1194 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-1194 *6)) (-5 *1 (-1193 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-821)) (-4 *5 (-1178)) - (-4 *6 (-1178)) (-5 *2 (-1119 *6)) (-5 *1 (-1192 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1194 *5)) (-4 *5 (-823)) + (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1124 *6)) + (-5 *1 (-1193 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1193 *5 *6)) (-14 *5 (-1142)) - (-4 *6 (-1018)) (-4 *8 (-1018)) (-5 *2 (-1193 *7 *8)) - (-5 *1 (-1194 *5 *6 *7 *8)) (-14 *7 (-1142)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1200 *5 *6)) (-14 *5 (-1144)) + (-4 *6 (-1020)) (-4 *8 (-1020)) (-5 *2 (-1200 *7 *8)) + (-5 *1 (-1195 *5 *6 *7 *8)) (-14 *7 (-1144)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1200 *6)) - (-5 *1 (-1201 *5 *4 *6 *2)) (-4 *4 (-1200 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) + (-4 *2 (-1203 *6)) (-5 *1 (-1201 *5 *4 *6 *2)) (-4 *4 (-1203 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5 *7 *9)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1205 *6 *8 *10)) (-5 *1 (-1206 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1142)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1212 *5 *7 *9)) (-4 *5 (-1020)) + (-4 *6 (-1020)) (-14 *7 (-1144)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1212 *6 *8 *10)) (-5 *1 (-1207 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1144)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1217 *6)) - (-5 *1 (-1215 *5 *6 *4 *2)) (-4 *4 (-1217 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) + (-4 *2 (-1218 *6)) (-5 *1 (-1216 *5 *6 *4 *2)) (-4 *4 (-1218 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) - (-5 *2 (-1224 *6)) (-5 *1 (-1225 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1227 *5)) (-4 *5 (-1181)) + (-4 *6 (-1181)) (-5 *2 (-1227 *6)) (-5 *1 (-1226 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1224 *5)) - (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1224 *6)) (-5 *1 (-1225 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1227 *5)) + (-4 *5 (-1181)) (-4 *6 (-1181)) (-5 *2 (-1227 *6)) + (-5 *1 (-1226 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) - (-4 *4 (-1018)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-1020)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-1248 *3 *4)) - (-4 *4 (-819))))) -(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *3)) (-4 *3 (-356)) (-14 *6 (-1224 (-665 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))))) - ((*1 *1 *2) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1178)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3867 'X) (-3867) (-675))) (-5 *1 (-60 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867 'JINT 'X 'ELAM) (-3867) (-675)))) - (-5 *1 (-61 *3)) (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'XC) (-675)))) (-5 *1 (-63 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-332 (-3867) (-3867 'X 'HESS) (-675)))) (-5 *1 (-64 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3867) (-3867 'XC) (-675))) (-5 *1 (-65 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867 'X) (-3867 '-4307) (-675)))) (-5 *1 (-70 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'X) (-675)))) (-5 *1 (-73 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3867) (-3867 'X) (-675))) (-5 *1 (-74 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867 'X 'EPS) (-3867 '-4307) (-675)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867 'EPS) (-3867 'YA 'YB) (-675)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3867) (-3867 'X) (-675))) (-5 *1 (-77 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'XC) (-675)))) (-5 *1 (-78 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'X) (-675)))) (-5 *1 (-79 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'X) (-675)))) (-5 *1 (-80 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867 'X) (-3867 '-4307) (-675)))) (-5 *1 (-81 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867 'X '-4307) (-3867) (-675)))) (-5 *1 (-82 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-332 (-3867 'X '-4307) (-3867) (-675)))) (-5 *1 (-83 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-332 (-3867 'X) (-3867) (-675)))) (-5 *1 (-84 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-332 (-3867 'X) (-3867) (-675)))) (-5 *1 (-85 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-332 (-3867 'XL 'XR 'ELAM) (-3867) (-675)))) - (-5 *1 (-87 *3)) (-14 *3 (-1142)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3867 'X) (-3867 '-4307) (-675))) (-5 *1 (-88 *3)) - (-14 *3 (-1142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-92)))) - ((*1 *2 *1) (-12 (-5 *2 (-975 2)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107)))) - ((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-128)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) - (-14 *4 (-747)) (-4 *5 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) - (-14 *4 (-747)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1108 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)))) - ((*1 *1 *2) - (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1224 (-665 *4))) (-4 *4 (-170)) - (-5 *2 (-1224 (-665 (-400 (-917 *4))))) (-5 *1 (-183 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 *3)) - (-4 *3 - (-13 (-823) - (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) - (-15 -2082 ((-1230) $))))) - (-5 *1 (-208 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-975 10)) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-239 *3)) (-4 *3 (-823)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-307 *4))) (-4 *4 (-13 (-823) (-542) (-594 (-371)))) - (-5 *2 (-1058 (-371))) (-5 *1 (-252 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-268)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1200 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) - (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1205 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) - (-14 *5 (-1142)) (-14 *6 *4) - (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) - (-5 *1 (-306 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-323)))) - ((*1 *2 *1) - (-12 (-5 *2 (-307 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) - (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) - ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *3 *4 *2)) - (-4 *3 (-322 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *2 *4 *3)) - (-4 *3 (-322 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) - (-5 *2 (-1249 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) - (-5 *2 (-1240 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) - (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-675))) (-4 *1 (-376)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) - (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-378)))) - ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-386)))) - ((*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-387 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) - (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-166 (-371))))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) - (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-535)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-307 (-371))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-307 (-535))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-670)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-675)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-307 (-670))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-307 (-675))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-307 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) - (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) - (-14 *6 (-1146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-400 (-917 (-400 *3)))) (-4 *3 (-542)) (-4 *3 (-823)) - (-4 *1 (-414 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-917 (-400 *3))) (-4 *3 (-542)) (-4 *3 (-823)) - (-4 *1 (-414 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-400 *3)) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1091 *3 (-591 *1))) (-4 *3 (-1018)) (-4 *3 (-823)) - (-4 *1 (-414 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-823) (-21))) (-5 *1 (-422 *3 *4)) - (-4 *3 (-13 (-170) (-38 (-400 (-535))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-535))))) - (-4 *3 (-13 (-823) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-427)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-429)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-429)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) - (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 (-675))) (-4 *1 (-432)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) - (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-433)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-400 (-917 *3)))) (-4 *3 (-170)) - (-14 *6 (-1224 (-665 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-890)) - (-14 *5 (-618 (-1142))))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-460)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1205 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) - (-5 *1 (-466 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-975 16)) (-5 *1 (-479)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479)))) - ((*1 *1 *2) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-493)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-515)))) - ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-585)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-586)))) - ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-587 *3 *2)) (-4 *2 (-721 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1018)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) - (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-1250 *3 *4)) + (-4 *4 (-821))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-623 (-473 *4 *5))) (-5 *3 (-838 *4)) + (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5))))) +(((*1 *1) (-5 *1 (-1032)))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-623 (-594 *2))) (-5 *4 (-1144)) + (-4 *2 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-270 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-623 *7)) (-5 *5 (-623 (-623 *8))) (-4 *7 (-825)) + (-4 *8 (-300)) (-4 *6 (-771)) (-4 *9 (-922 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-623 (-2 (|:| -3338 (-1140 *9)) (|:| -3521 (-550))))))) + (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1140 *9))))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-623 (-594 *4))) (-4 *4 (-423 *3)) (-4 *3 (-825)) + (-5 *1 (-559 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068))))) +(((*1 *2 *2) + (-12 (-4 *2 (-170)) (-4 *2 (-1020)) (-5 *1 (-693 *2 *3)) + (-4 *3 (-626 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1020))))) +(((*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-526))) (-5 *1 (-526))))) +(((*1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *2 (-797 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) - (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) - ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-611 *3 *2)) (-4 *2 (-721 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) + (-12 (-4 *2 (-821)) (-5 *1 (-1250 *3 *2)) (-4 *3 (-1020))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1166) (-975))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1185)) (-4 *5 (-1203 (-400 *2))) + (-4 *2 (-1203 *4)) (-5 *1 (-334 *3 *4 *2 *5)) + (-4 *3 (-335 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1185)) + (-4 *4 (-1203 (-400 *2))) (-4 *2 (-1203 *3))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-5 *1 (-1153 *3))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) + (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) + (-5 *2 (-1008)) (-5 *1 (-735))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-738))))) +(((*1 *2 *1) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1029)) (-4 *3 (-1166)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-1034 *3 *4 *2)) (-4 *2 (-825)))) ((*1 *2 *1) - (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-5 *1 (-651 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) - (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-657)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *2)) (-4 *4 (-365 *3)) - (-4 *2 (-365 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) - ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) - ((*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-670)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-677))) (-5 *1 (-670)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-670)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-535))) (-5 *1 (-670)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-670)))) - ((*1 *1 *2) (-12 (-5 *2 (-677)) (-5 *1 (-675)))) - ((*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-675)))) - ((*1 *2 *3) (-12 (-5 *3 (-307 (-535))) (-5 *2 (-307 (-677))) (-5 *1 (-677)))) - ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1067)))) - ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) + (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1107)))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-649)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))) + (-12 (-5 *2 (-623 (-894))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-894)) + (-14 *4 (-894))))) +(((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479)))) + ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2483 *3) (|:| -2484 *4))) (-5 *1 (-690 *3 *4 *5)) - (-4 *3 (-823)) (-4 *4 (-1067)) (-14 *5 (-1 (-112) *2 *2)))) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) + ((*1 *1 *1) (-4 *1 (-1029)))) +(((*1 *1) + (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3) (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) + ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) + ((*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-916 (-219)) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-899)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-916 (-219)) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-899)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-916 (-219)) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-916 (-219)) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-535))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1126)) (-5 *1 (-689))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) + (|:| |expense| (-372)) (|:| |accuracy| (-372)) + (|:| |intermediateResults| (-372)))) + (-5 *2 (-1008)) (-5 *1 (-298))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1062 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-1181)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-726))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-749) *2)) (-5 *4 (-749)) (-4 *2 (-1068)) + (-5 *1 (-656 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-749) *3)) (-4 *3 (-1068)) (-5 *1 (-660 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) + (-14 *4 (-623 (-1144))))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -2483 *3) (|:| -2484 *4))) (-4 *3 (-823)) - (-4 *4 (-1067)) (-5 *1 (-690 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) + (-12 (-5 *2 (-749)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) + (-14 *4 (-623 (-1144))))) + ((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 (-2 (|:| -4296 *3) (|:| -4281 *4)))) (-4 *3 (-1018)) - (-4 *4 (-703)) (-5 *1 (-712 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-740)))) + (|partial| -12 (-4 *1 (-328 *3 *4 *5 *2)) (-4 *3 (-356)) + (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) + (-4 *2 (-335 *3 *4 *5)))) ((*1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-170)))) + ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-703 *2 *3)) (-4 *3 (-1203 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-542)))))) +(((*1 *2 *3) (-12 (-5 *3 (-167 (-550))) (-5 *2 (-112)) (-5 *1 (-438)))) + ((*1 *2 *3) (-12 + (-5 *3 + (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) + (-241 *4 (-400 (-550))))) + (-14 *4 (-623 (-1144))) (-14 *5 (-749)) (-5 *2 (-112)) + (-5 *1 (-496 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-934 *3)) (-4 *3 (-535)))) + ((*1 *2 *1) (-12 (-4 *1 (-1185)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) + (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |goodPols| (-623 *8)) (|:| |badPols| (-623 *8)))) + (-5 *1 (-950 *5 *6 *7 *8)) (-5 *4 (-623 *8))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-342)) (-4 *6 (-1203 *5)) (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| |mdnia| - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) - (-5 *1 (-745)))) - ((*1 *1 *2) + (-623 + (-2 (|:| -2437 (-667 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-667 *6))))) + (-5 *1 (-489 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2437 (-667 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-667 *6)))) + (-4 *7 (-1203 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) (-4 *1 (-295)))) +(((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *2 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) + (|has| *2 (-6 (-4344 "*"))) (-4 *2 (-1020)))) + ((*1 *2 *3) + (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) + (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-665 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) + (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4344 "*"))) (-4 *2 (-1020))))) +(((*1 *2 *1) + (-12 (-5 *2 (-836)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) + (-14 *4 (-749)) (-4 *5 (-170))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1144)))) + (-4 *5 (-771)) (-5 *1 (-897 *3 *4 *5 *2)) (-4 *2 (-922 *3 *5 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-96))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1034 *6 *7 *8)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1076 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -3223 *9)))) + (-5 *5 (-112)) (-4 *8 (-1034 *6 *7 *4)) (-4 *9 (-1040 *6 *7 *4 *8)) + (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) + (-5 *2 (-623 (-2 (|:| |val| *8) (|:| -3223 *9)))) + (-5 *1 (-1076 *6 *7 *4 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-410 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542))))) +(((*1 *1) (-5 *1 (-1147)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) + (-5 *7 (-667 (-550))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) + (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-732))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *2 (-623 (-219))) + (-5 *1 (-460))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1124 *3))) (-5 *2 (-1124 *3)) (-5 *1 (-1128 *3)) + (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1242 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *1 (-642 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-642 *3 *4)) (-5 *1 (-1247 *3 *4)) + (-4 *3 (-825)) (-4 *4 (-170))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1187 *3)) + (-5 *2 (-400 (-550)))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-730))))) +(((*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)) (-4 *2 (-1068)))) + ((*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *1 (-745)))) - ((*1 *1 *2) + (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) + (-5 *1 (-379 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *1 (-745)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-745)))) - ((*1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-750 *3)) (-4 *3 (-1178)))) - ((*1 *1 *2) + (-2 (|:| |lm| (-797 *3)) (|:| |mm| (-797 *3)) (|:| |rm| (-797 *3)))) + (-5 *1 (-797 *3)) (-4 *3 (-825))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-800))))) +(((*1 *2 *3) (-12 - (-5 *2 + (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *1 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-784)))) + (-5 *2 (-372)) (-5 *1 (-199))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-550))) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-542)) (-4 *8 (-922 *7 *5 *6)) + (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *9) (|:| |radicand| *9))) + (-5 *1 (-926 *5 *6 *7 *8 *9)) (-5 *4 (-749)) + (-4 *9 + (-13 (-356) + (-10 -8 (-15 -2705 (*8 $)) (-15 -2715 (*8 $)) (-15 -1518 ($ *8)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1166) (-975)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-865 *4)) (-4 *4 (-1068)) (-5 *1 (-863 *4 *3)) + (-4 *3 (-1181)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-5 *1 (-805 *2 *3)) (-4 *2 (-687 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) (-4 *2 (-1203 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-1020)) (-5 *1 (-1199 *4 *2)) + (-4 *2 (-1203 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *2 (-623 *3)) (-5 *1 (-950 *4 *5 *6 *3)) + (-4 *3 (-1034 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-372)) (-5 *1 (-764))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-4 *2 (-871 *3)) (-5 *1 (-793 *3 *2 *4)) (-4 *3 (-1067)) (-14 *4 *3))) - ((*1 *1 *2) - (-12 (-4 *3 (-1067)) (-14 *4 *3) (-5 *1 (-793 *3 *2 *4)) (-4 *2 (-871 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-802)))) - ((*1 *1 *2) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) - (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) - (|:| |ub| (-618 (-815 (-219)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) - (-5 *1 (-814)))) + (-623 + (-2 + (|:| -2763 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) + (|:| |yinit| (-623 (-219))) (|:| |intvals| (-623 (-219))) + (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| -2119 + (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) + (|:| |expense| (-372)) (|:| |accuracy| (-372)) + (|:| |intermediateResults| (-372))))))) + (-5 *1 (-781))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-137))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-112)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1144)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1144)) (-5 *2 (-112)) (-5 *1 (-594 *4)) (-4 *4 (-825)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-594 *4)) (-4 *4 (-825)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-860 *5 *3 *4)) + (-4 *3 (-859 *5)) (-4 *4 (-596 (-865 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *6)) (-4 *6 (-859 *5)) (-4 *5 (-1068)) + (-5 *2 (-112)) (-5 *1 (-860 *5 *6 *4)) (-4 *4 (-596 (-865 *5)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-623 (-400 (-925 *6)))) + (-5 *3 (-400 (-925 *6))) + (-4 *6 (-13 (-542) (-1011 (-550)) (-145))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-556 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-320 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) - (-5 *1 (-814)))) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-507 *3 *4)) + (-14 *4 (-550))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1181)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-623 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1068)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-623 *4))) (-4 *4 (-1068)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1068)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-623 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1020)) + (-5 *1 (-693 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-812 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-637 *4 *2)) + (-4 *2 (-634 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)) (-4 *2 (-825)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-542) (-825))) + (-4 *2 (-13 (-423 *4) (-975) (-1166))) (-5 *1 (-582 *4 *2 *3)) + (-4 *3 (-13 (-423 (-167 *4)) (-975) (-1166)))))) +(((*1 *2 *2) (-12 (-5 *2 (-667 (-309 (-550)))) (-5 *1 (-1004))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1181)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) - (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) - (|:| |ub| (-618 (-815 (-219)))))) - (-5 *1 (-814)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-814)))) + (|partial| -12 (-5 *2 (-925 (-372))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-828 *3 *4 *5 *6)) - (-4 *4 (-1018)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-831)))) + (|partial| -12 (-5 *2 (-400 (-925 (-372)))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-5 *1 (-837 *3 *4 *5 *6)) - (-14 *4 (-618 (-1142))) (-14 *5 (-618 (-747))) (-14 *6 (-747)))) - ((*1 *2 *1) - (-12 (-5 *2 (-917 *3)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *3 (-1018)) - (-14 *4 (-618 (-1142))) (-14 *5 (-618 (-747))) (-14 *6 (-747)))) - ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 (-48))) (-5 *2 (-307 (-535))) (-5 *1 (-846)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-917 (-48)))) (-5 *2 (-307 (-535))) (-5 *1 (-846)))) - ((*1 *1 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) + (|partial| -12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |pde| (-618 (-307 (-219)))) - (|:| |constraints| - (-618 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) - (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) - (|:| |dFinish| (-665 (-219)))))) - (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) - (|:| |tol| (-219)))) - (-5 *1 (-869)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-869)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-873 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-398 *3))) (-4 *3 (-300)) (-5 *1 (-885 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) - ((*1 *2 *3) - (-12 (-5 *3 (-469)) (-5 *2 (-307 *4)) (-5 *1 (-891 *4)) - (-4 *4 (-13 (-823) (-542))))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) - ((*1 *1 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-942)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) - ((*1 *2 *3) (-12 (-5 *2 (-1230)) (-5 *1 (-1004 *3)) (-4 *3 (-1178)))) - ((*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1004 *2)) (-4 *2 (-1178)))) + (|partial| -12 (-5 *2 (-925 (-550))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-921 *3 *4 *5)) (-14 *6 (-618 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1178)))) - ((*1 *2 *3) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-1011 *3)) (-4 *3 (-542)))) - ((*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1018)))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 *5)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) - (-14 *4 (-747)) (-4 *5 (-1018)))) + (|partial| -12 (-5 *2 (-400 (-925 (-550)))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2)) - (-4 *2 (-921 *3 (-521 *4) *4)))) + (|partial| -12 (-5 *2 (-309 (-550))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1092 *3 *2 *4)) - (-4 *4 (-921 *3 (-521 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-835)))) - ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1110)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) + (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-332 *3 *4 *5)) + (-14 *3 (-623 *2)) (-14 *4 (-623 *2)) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) + (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-380)) + (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))))) ((*1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) + (|partial| -12 (-5 *2 (-667 (-400 (-925 (-550))))) (-4 *1 (-377)))) ((*1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) + (|partial| -12 (-5 *2 (-667 (-400 (-925 (-372))))) (-4 *1 (-377)))) ((*1 *1 *2) - (-12 (-5 *2 (-1193 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) - (-5 *1 (-1140 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))) - ((*1 *2 *1) (-12 (-5 *2 (-1151 (-1142) (-429))) (-5 *1 (-1146)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))) - ((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-1158)))) - ((*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-1159 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-5 *1 (-1171 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1171 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2) (-12 (-5 *2 (-929 *3)) (-4 *3 (-1178)) (-5 *1 (-1176 *3)))) + (|partial| -12 (-5 *2 (-667 (-925 (-550)))) (-4 *1 (-377)))) ((*1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1188 *3 *2)) (-4 *2 (-1217 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-1178)) (-5 *1 (-1191 *3)))) + (|partial| -12 (-5 *2 (-667 (-925 (-372)))) (-4 *1 (-377)))) ((*1 *1 *2) - (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-1193 *3 *4)) - (-4 *4 (-1018)))) + (|partial| -12 (-5 *2 (-667 (-309 (-550)))) (-4 *1 (-377)))) ((*1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1209 *3 *2)) (-4 *2 (-1186 *3)))) + (|partial| -12 (-5 *2 (-667 (-309 (-372)))) (-4 *1 (-377)))) ((*1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) + (|partial| -12 (-5 *2 (-400 (-925 (-550)))) (-4 *1 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-1193 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) - (-5 *1 (-1214 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1227)) (-5 *1 (-1226)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1227)))) - ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1230)))) + (|partial| -12 (-5 *2 (-400 (-925 (-372)))) (-4 *1 (-389)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-925 (-550))) (-4 *1 (-389)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-925 (-372))) (-4 *1 (-389)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-550))) (-4 *1 (-389)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) ((*1 *1 *2) - (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-618 *4)) - (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-921 *3 *5 *4)) - (-14 *7 (-618 (-747))) (-14 *8 (-747)))) - ((*1 *2 *1) - (-12 (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-618 *4)) - (-14 *7 (-618 (-747))) (-14 *8 (-747)))) - ((*1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) - (-4 *4 (-170)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) - (-4 *4 (-170)))) + (|partial| -12 (-5 *2 (-1227 (-400 (-925 (-550))))) (-4 *1 (-433)))) ((*1 *1 *2) - (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) - (-5 *1 (-1245 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-819))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-34)) (-5 *2 (-747)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-535)))) - ((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1249 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-823)) - (-4 *2 (-170)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-795 *4)) (-4 *1 (-1244 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1018)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819))))) + (|partial| -12 (-5 *2 (-1227 (-400 (-925 (-372))))) (-4 *1 (-433)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1227 (-925 (-550)))) (-4 *1 (-433)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1227 (-925 (-372)))) (-4 *1 (-433)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1227 (-309 (-550)))) (-4 *1 (-433)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1227 (-309 (-372)))) (-4 *1 (-433)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1203 *5)) + (-5 *2 (-1140 (-1140 *4))) (-5 *1 (-755 *4 *5 *6 *3 *7)) + (-4 *3 (-1203 *6)) (-14 *7 (-894)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) + (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *1 (-949 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1011 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2) + (|partial| -1561 + (-12 (-5 *2 (-925 *3)) + (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) + (-3462 (-4 *3 (-38 (-550)))) (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825))) + (-12 (-5 *2 (-925 *3)) + (-12 (-3462 (-4 *3 (-535))) (-3462 (-4 *3 (-38 (-400 (-550))))) + (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825))) + (-12 (-5 *2 (-925 *3)) + (-12 (-3462 (-4 *3 (-965 (-550)))) (-4 *3 (-38 (-400 (-550)))) + (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825))))) + ((*1 *1 *2) + (|partial| -1561 + (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) + (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) + (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-925 (-400 (-550)))) (-4 *1 (-1034 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144))) + (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1126)) + (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1166) (-29 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-350 *3)) (-4 *3 (-342))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) (-5 *2 (-931 (-1088))) + (-5 *1 (-339 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-526))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-623 *6)) (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) + (-4 *3 (-542))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-287 *6)) (-5 *4 (-114)) (-4 *6 (-423 *5)) + (-4 *5 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) + (-5 *1 (-310 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-623 *7)) + (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) + (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-623 (-287 *7))) (-5 *4 (-623 (-114))) (-5 *5 (-287 *7)) + (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) + (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-623 (-287 *8))) (-5 *4 (-623 (-114))) (-5 *5 (-287 *8)) + (-5 *6 (-623 *8)) (-4 *8 (-423 *7)) + (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) + (-5 *1 (-310 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-623 *7)) (-5 *4 (-623 (-114))) (-5 *5 (-287 *7)) + (-4 *7 (-423 *6)) (-4 *6 (-13 (-825) (-542) (-596 (-526)))) + (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-114))) (-5 *6 (-623 (-287 *8))) + (-4 *8 (-423 *7)) (-5 *5 (-287 *8)) + (-4 *7 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) + (-5 *1 (-310 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-287 *5)) (-5 *4 (-114)) (-4 *5 (-423 *6)) + (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) + (-5 *1 (-310 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) + (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) + (-5 *1 (-310 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) + (-4 *6 (-13 (-825) (-542) (-596 (-526)))) (-5 *2 (-52)) + (-5 *1 (-310 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-5 *6 (-623 *3)) + (-4 *3 (-423 *7)) (-4 *7 (-13 (-825) (-542) (-596 (-526)))) + (-5 *2 (-52)) (-5 *1 (-310 *7 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) ((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)) - (-4 *4 (-1067)))) - ((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) - ((*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) - ((*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819))))) -(((*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) - ((*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-219)))) - ((*1 *1 *1 *1) - (-3874 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1178))) - (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1178))))) - ((*1 *1 *1 *1) (-4 *1 (-356))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-371)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1091 *3 (-591 *1))) (-4 *3 (-542)) (-4 *3 (-823)) - (-4 *1 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-465))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-524))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-703) *4)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-821))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-241 *5 *6))) (-4 *6 (-444)) + (-5 *2 (-241 *5 *6)) (-14 *5 (-623 (-1144))) (-5 *1 (-611 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1020)) (-4 *3 (-1203 *4)) (-4 *2 (-1218 *4)) + (-5 *1 (-1221 *4 *3 *5 *2)) (-4 *5 (-634 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-1020)) + (-5 *2 (-473 *4 *5)) (-5 *1 (-917 *4 *5))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-400 *5)) (-4 *4 (-1185)) (-4 *5 (-1203 *4)) + (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1203 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1146 (-400 (-550)))) (-5 *2 (-400 (-550))) + (-5 *1 (-184)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-667 (-309 (-219)))) (-5 *3 (-623 (-1144))) + (-5 *4 (-1227 (-309 (-219)))) (-5 *1 (-199)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-170)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-703) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-170)) (-4 *2 (-356)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-628 *2 *4 *3)) (-4 *2 (-694 *4)) - (-4 *3 (|SubsetCategory| (-703) *4)))) + (-12 (-5 *2 (-623 (-287 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1068)) + (-4 *3 (-1181)) (-5 *1 (-287 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-302 *2)) (-4 *2 (-1068)) (-4 *2 (-1181)) + (-5 *1 (-287 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-623 *1))) (-4 *1 (-295)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 (-1 *1 (-623 *1)))) + (-4 *1 (-295)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 (-1 *1 *1))) (-4 *1 (-295)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1 *1 (-623 *1))) (-4 *1 (-295)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-623 (-1 *1 (-623 *1)))) + (-4 *1 (-295)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-623 (-1 *1 *1))) (-4 *1 (-295)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-170)) (-5 *1 (-628 *3 *4 *2)) (-4 *3 (-694 *4)) - (-4 *2 (|SubsetCategory| (-703) *4)))) + (-12 (-5 *2 (-623 (-287 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1068)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-837 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1018)) - (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-747))) (-14 *5 (-747)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) + (-12 (-5 *2 (-287 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1068)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-550))) (-5 *4 (-1146 (-400 (-550)))) + (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-550)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 *1)) (-4 *1 (-367 *4 *5)) + (-4 *4 (-825)) (-4 *5 (-170)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1144)) (-5 *3 (-749)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1020)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1144)) (-5 *3 (-749)) (-5 *4 (-1 *1 (-623 *1))) + (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-1020)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-623 (-749))) + (-5 *4 (-623 (-1 *1 (-623 *1)))) (-4 *1 (-423 *5)) (-4 *5 (-825)) + (-4 *5 (-1020)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-623 (-749))) + (-5 *4 (-623 (-1 *1 *1))) (-4 *1 (-423 *5)) (-4 *5 (-825)) + (-4 *5 (-1020)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-623 (-114))) (-5 *3 (-623 *1)) (-5 *4 (-1144)) + (-4 *1 (-423 *5)) (-4 *5 (-825)) (-4 *5 (-596 (-526))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1144)) (-4 *1 (-423 *4)) (-4 *4 (-825)) + (-4 *4 (-596 (-526))))) + ((*1 *1 *1) + (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-596 (-526))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) - (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-769)) - (-14 *6 (-618 *3)) (-5 *1 (-1237 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-921 *2 *4 *3)) (-14 *7 (-618 (-747))) (-14 *8 (-747)))) + (-12 (-5 *2 (-623 (-1144))) (-4 *1 (-423 *3)) (-4 *3 (-825)) + (-4 *3 (-596 (-526))))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-819))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) - ((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *1) - (-12 (-5 *2 (-535)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) - (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-268)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1136 *8)) (-5 *4 (-618 *6)) (-4 *6 (-823)) - (-4 *8 (-921 *7 *5 *6)) (-4 *5 (-769)) (-4 *7 (-1018)) (-5 *2 (-618 (-747))) - (-5 *1 (-314 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-890)))) - ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-542)) (-5 *2 (-535)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-618 (-747))))) + (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)) + (-4 *3 (-596 (-526))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1181)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 *5)) (-4 *1 (-505 *4 *5)) + (-4 *4 (-1068)) (-4 *5 (-1181)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-811 *3)) (-4 *3 (-356)) (-5 *1 (-697 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1068)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-400 (-925 *4))) (-5 *3 (-1144)) (-4 *4 (-542)) + (-5 *1 (-1016 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-623 (-1144))) (-5 *4 (-623 (-400 (-925 *5)))) + (-5 *2 (-400 (-925 *5))) (-4 *5 (-542)) (-5 *1 (-1016 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-287 (-400 (-925 *4)))) (-5 *2 (-400 (-925 *4))) + (-4 *4 (-542)) (-5 *1 (-1016 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-623 (-287 (-400 (-925 *4))))) (-5 *2 (-400 (-925 *4))) + (-4 *4 (-542)) (-5 *1 (-1016 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) - (-5 *2 (-747)))) - ((*1 *2 *1) - (-12 (-4 *1 (-944 *3 *2 *4)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *2 (-768)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-747)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3)) - (-5 *2 (-535)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3)) - (-5 *2 (-400 (-535))))) - ((*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-808 (-890))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-747))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))))) + (-12 (-4 *1 (-1205 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1124 *3))))) +(((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) +(((*1 *1 *1 *1) (-5 *1 (-160))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-160))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)))) + ((*1 *1) (-4 *1 (-1119)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 + (-2 (|:| |solns| (-623 *5)) + (|:| |maps| (-623 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1096 *3 *5)) (-4 *3 (-1203 *5))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1144)) (-5 *6 (-623 (-594 *3))) + (-5 *5 (-594 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *7))) + (-4 *7 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) + (-5 *1 (-543 *7 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) - (-5 *1 (-640 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-640 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) - (-4 *4 (-170))))) + (-12 (-5 *2 (-623 (-894))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-894)) + (-14 *4 (-894))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1185)) (-4 *5 (-1203 (-400 *2))) + (-4 *2 (-1203 *4)) (-5 *1 (-334 *3 *4 *2 *5)) + (-4 *3 (-335 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1185)) + (-4 *4 (-1203 (-400 *2))) (-4 *2 (-1203 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-882)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-411 (-1140 *7))) + (-5 *1 (-879 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-882)) (-4 *5 (-1203 *4)) (-5 *2 (-411 (-1140 *5))) + (-5 *1 (-880 *4 *5)) (-5 *3 (-1140 *5))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) + (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) + (-5 *1 (-1143))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-922 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-922 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260))))) +(((*1 *1 *1) (-5 *1 (-219))) + ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1) (-4 *1 (-1107))) ((*1 *1 *1 *1) (-4 *1 (-1107)))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-726))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1126)) (-5 *3 (-550)) (-5 *1 (-1032))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) + (-5 *1 (-199))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1062 (-219))) + (-5 *5 (-112)) (-5 *2 (-1229)) (-5 *1 (-250))))) +(((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) + ((*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-441 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -3223 *9)))) + (-5 *4 (-749)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1040 *5 *6 *7 *8)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1232)) + (-5 *1 (-1038 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -3223 *9)))) + (-5 *4 (-749)) (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1232)) + (-5 *1 (-1113 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))) + (-4 *2 (-13 (-825) (-21)))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) + (-4 *4 (-170)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-414 *4)))) + (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-423 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1058 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) + (-12 (-5 *3 (-1060 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 *1)) (-4 *1 (-158)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1144)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 (-535))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) - ((*1 *1 *1) (-4 *1 (-277))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) - (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-5 *1 (-605 *3 *4 *5)) - (-14 *5 (-890)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) + (-12 (-5 *2 (-749)) (-5 *1 (-1247 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1078))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-142))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3139 (-760 *3)) (|:| |coef1| (-760 *3)) + (|:| |coef2| (-760 *3)))) + (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1034 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-535)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-400 (-550))) (-4 *4 (-1011 (-550))) + (-4 *4 (-13 (-825) (-542))) (-5 *1 (-32 *4 *2)) (-4 *2 (-423 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-133))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-219))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-550)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-400 (-550))) (-4 *4 (-356)) (-4 *4 (-38 *3)) + (-4 *5 (-1218 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1189 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) - (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))) + (-12 (-5 *3 (-400 (-550))) (-4 *4 (-356)) (-4 *4 (-38 *3)) + (-4 *5 (-1187 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1210 *4 *5)) + (-4 *6 (-956 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-277))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-354 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *1) (-5 *1 (-372))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-379 *2)) (-4 *2 (-1068)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-535)))) - (-4 *3 (-823)) (-4 *4 (-170))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) - ((*1 *1 *1) (-4 *1 (-277))) - ((*1 *2 *3) - (-12 (-5 *3 (-398 *4)) (-4 *4 (-542)) - (-5 *2 (-618 (-2 (|:| -4296 (-747)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) - (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) + (-12 (-5 *2 (-749)) (-4 *1 (-423 *3)) (-4 *3 (-825)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-550)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1227 *4)) (-5 *3 (-550)) (-4 *4 (-342)) + (-5 *1 (-519 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-526)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-526)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) - (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *4 (-1068)) + (-5 *1 (-660 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-535)))) - (-4 *3 (-823)) (-4 *4 (-170))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) - (-5 *2 (-2 (|:| |k| (-795 *3)) (|:| |c| *4)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) - (-4 *4 (-170)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) + (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-356)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-795 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) - (-4 *4 (-170)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) + (-12 (-5 *2 (-749)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1020)) + (-5 *1 (-668 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-795 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-535)) (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) + (-12 (-5 *2 (-550)) (-4 *3 (-1020)) (-5 *1 (-693 *3 *4)) + (-4 *4 (-626 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-550)) (-4 *4 (-1020)) + (-5 *1 (-693 *4 *5)) (-4 *5 (-626 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-894)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-749)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-812 *3)) (-4 *3 (-1020)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-795 *4)) (-4 *4 (-823)) (-4 *1 (-1244 *4 *3)) (-4 *3 (-1018))))) + (-12 (-5 *2 (-114)) (-5 *3 (-550)) (-5 *1 (-812 *4)) (-4 *4 (-1020)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-400 (-550))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1080)) (-5 *2 (-894)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 *1)) + (-4 *1 (-1040 *4 *5 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1159))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-623 (-550))) + (|:| |cols| (-623 (-550))))) + (-5 *4 (-667 *12)) (-5 *5 (-623 (-400 (-925 *9)))) + (-5 *6 (-623 (-623 *12))) (-5 *7 (-749)) (-5 *8 (-550)) + (-4 *9 (-13 (-300) (-145))) (-4 *12 (-922 *9 *11 *10)) + (-4 *10 (-13 (-825) (-596 (-1144)))) (-4 *11 (-771)) + (-5 *2 + (-2 (|:| |eqzro| (-623 *12)) (|:| |neqzro| (-623 *12)) + (|:| |wcond| (-623 (-925 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *9)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *9))))))))) + (-5 *1 (-897 *9 *10 *11 *12))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) + ((*1 *1 *1 *1) (-4 *1 (-535))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-749))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1126)) (-4 *1 (-357 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-731))))) +(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-550))) (-5 *1 (-298))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *3 (-542)) (-5 *2 (-112)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) + (-12 (-4 *1 (-673 *3)) (-4 *3 (-1068)) + (-5 *2 (-623 (-2 (|:| -2119 *3) (|:| -3350 (-749)))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-526))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) + ((*1 *1 *1) (|partial| -4 *1 (-701)))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-542)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) - ((*1 *1 *1) - (-12 (-5 *1 (-605 *2 *3 *4)) (-4 *2 (-823)) - (-4 *3 (-13 (-170) (-694 (-400 (-535))))) (-14 *4 (-890)))) - ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550))))) +(((*1 *2 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1181)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-368 *4 *2)) + (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4343))))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550))))) +(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-749)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-749))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) - (-4 *4 (-170)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)) (-4 *3 (-170))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-747)) (-5 *2 (-618 (-1142))) (-5 *1 (-204)) (-5 *3 (-1142)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-747)) (-5 *2 (-618 (-1142))) - (-5 *1 (-260)))) - ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-618 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 *3)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) - (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-618 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1173 *4 *5 *3 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *3 (-823)) - (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-890)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-808 (-890))) (-5 *1 (-321 *3 *4)) - (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-890)))) - ((*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-808 (-890)))))) -(((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-747))))) + (-12 (-5 *2 (-749)) (-4 *1 (-1203 *3)) (-4 *3 (-1020))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-4 *5 (-423 *4)) + (-5 *2 + (-3 (|:| |overq| (-1140 (-400 (-550)))) + (|:| |overan| (-1140 (-48))) (|:| -3517 (-112)))) + (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1203 *5))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-96))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1181)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-322 *3)) (-4 *5 (-1200 *4)) - (-5 *1 (-753 *3 *4 *5 *2 *6)) (-4 *2 (-1200 *5)) (-14 *6 (-890)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-356)) (-4 *2 (-361))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) - (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) - (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) - (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8))))) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1126)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *4 (-1034 *6 *7 *8)) (-5 *2 (-1232)) + (-5 *1 (-754 *6 *7 *8 *4 *5)) (-4 *5 (-1040 *6 *7 *8 *4))))) +(((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-1052 *3)) (-4 *3 (-131))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-618 (-1238 *4 *5 *6 *7))) - (-5 *1 (-1238 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823)) - (-5 *2 (-618 (-1238 *6 *7 *8 *9))) (-5 *1 (-1238 *6 *7 *8 *9))))) + (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-423 *4) (-975) (-1166))) + (-4 *4 (-13 (-542) (-825))) + (-4 *2 (-13 (-423 (-167 *4)) (-975) (-1166))) + (-5 *1 (-582 *4 *5 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) (((*1 *2 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-837 *4 *5 *6 *7)) - (-4 *4 (-1018)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 *3)) (-14 *7 *3))) + (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1163 *3)) (-4 *3 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1128 *4)) + (-4 *4 (-1020))))) +(((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-350 *3)) (-4 *3 (-342))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *3 (-1020)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3935 *1))) + (-4 *1 (-827 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-1020)) (-5 *2 (-550)) + (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1203 *5)) + (-4 *6 (-13 (-397) (-1011 *5) (-356) (-1166) (-277))))) ((*1 *2 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) - (-14 *8 (-618 *5)) (-5 *2 (-1230)) (-5 *1 (-1237 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-921 *4 *6 *5)) (-14 *9 (-618 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))) + (-12 (-4 *4 (-1020)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) + (-4 *3 (-1203 *4)) + (-4 *5 (-13 (-397) (-1011 *4) (-356) (-1166) (-277)))))) +(((*1 *2 *1) (-12 (-5 *2 (-752)) (-5 *1 (-52))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-781))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-273)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1106 *3 *2)) - (-4 *3 (-13 (-1067) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) - (-4 *4 (-1200 *3)) + (-12 (-5 *2 (-3 (-550) (-219) (-1144) (-1126) (-1149))) + (-5 *1 (-1149))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-542)) (-4 *3 (-825))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-667 *5))) (-4 *5 (-300)) (-4 *5 (-1020)) + (-5 *2 (-1227 (-1227 *5))) (-5 *1 (-1002 *5)) (-5 *4 (-1227 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-542)) + (-4 *7 (-922 *3 *5 *6)) + (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *8) (|:| |radicand| *8))) + (-5 *1 (-926 *5 *6 *3 *7 *8)) (-5 *4 (-749)) + (-4 *8 + (-13 (-356) + (-10 -8 (-15 -2705 (*7 $)) (-15 -2715 (*7 $)) (-15 -1518 ($ *7)))))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) +(((*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 - (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) - (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-942 *5 *3)) (-4 *3 (-1203 *5))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1227 *4)) (-5 *3 (-667 *4)) (-4 *4 (-356)) + (-5 *1 (-645 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-356)) + (-4 *5 (-13 (-366 *4) (-10 -7 (-6 -4343)))) + (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4343)))) + (-5 *1 (-646 *4 *5 *2 *3)) (-4 *3 (-665 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-623 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) + (-5 *1 (-792 *2 *3)) (-4 *3 (-634 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-535)) (-4 *4 (-1200 *3)) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-801)) (-5 *1 (-800))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) - (-5 *1 (-744 *4 *5)) (-4 *5 (-403 *3 *4)))) + (-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) + (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) + (|:| |args| (-623 (-836))))) + (-5 *1 (-1144))))) +(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-803))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *1)) (-5 *4 (-1227 *1)) (-4 *1 (-619 *5)) + (-4 *5 (-1020)) + (-5 *2 (-2 (|:| -1340 (-667 *5)) (|:| |vec| (-1227 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 *3)) - (-5 *2 - (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) - (-5 *1 (-956 *4 *3 *5 *6)) (-4 *6 (-701 *3 *5)))) + (-12 (-5 *3 (-667 *1)) (-4 *1 (-619 *4)) (-4 *4 (-1020)) + (-5 *2 (-667 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-894)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1011 (-550))) (-4 *1 (-295)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-1144))) (-4 *6 (-356)) + (-5 *2 (-623 (-287 (-925 *6)))) (-5 *1 (-528 *5 *6 *7)) + (-4 *5 (-444)) (-4 *7 (-13 (-356) (-823)))))) +(((*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-323)))) + ((*1 *1) (-5 *1 (-323)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-623 *6)) (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) + (-4 *3 (-542))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1020)) + (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4)))) + ((*1 *1 *1) (-4 *1 (-535))) + ((*1 *2 *1) (-12 (-5 *2 (-894)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-894)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-866 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1181)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1178 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-975)) + (-4 *2 (-1020))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-623 *6) "failed") (-550) *6 *6)) (-4 *6 (-356)) + (-4 *7 (-1203 *6)) + (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) + (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-320 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1181)) + (-14 *4 (-550))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 *3)) - (-5 *2 - (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) - (-5 *1 (-1234 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) - (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) - (-4 *4 (-1200 *3)) - (-5 *2 - (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) - (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1200 (-535))) - (-5 *2 - (-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) - (|:| |basisInv| (-665 (-535))))) - (-5 *1 (-744 *3 *4)) (-4 *4 (-403 (-535) *3)))) - ((*1 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 *4)) - (-5 *2 - (-2 (|:| -2123 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) - (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-701 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 *4)) + (-12 (-5 *2 (-1140 (-400 (-550)))) (-5 *1 (-915)) (-5 *3 (-550))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1062 (-818 (-372)))) (-5 *2 (-1062 (-818 (-219)))) + (-5 *1 (-298))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-916 (-219)) (-219) (-219))) + (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-248))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-1144))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) + (-4 *5 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-569 *3)) (-5 *1 (-543 *5 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *5)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 - (-2 (|:| -2123 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) - (-5 *1 (-1234 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-747)) (-4 *6 (-356)) (-5 *4 (-1171 *6)) - (-5 *2 (-1 (-1119 *4) (-1119 *4))) (-5 *1 (-1233 *6)) (-5 *5 (-1119 *4))))) + (-623 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-771)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) + (-5 *1 (-441 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-618 (-1171 *5))) - (-5 *1 (-1233 *5)) (-5 *4 (-1171 *5))))) + (-12 (-4 *4 (-356)) (-5 *2 (-623 (-1124 *4))) (-5 *1 (-278 *4 *5)) + (-5 *3 (-1124 *4)) (-4 *5 (-1218 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1020)) (-14 *3 (-623 (-1144))))) + ((*1 *1 *1) + (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1020) (-825))) + (-14 *3 (-623 (-1144)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-5 *2 (-1 (-1136 (-917 *4)) (-917 *4))) - (-5 *1 (-1233 *4)) (-4 *4 (-356))))) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *5 *6)) (-4 *6 (-596 (-1144))) + (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *2 (-1133 (-623 (-925 *4)) (-623 (-287 (-925 *4))))) + (-5 *1 (-495 *4 *5 *6 *7))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-623 (-1000 *5 *6 *7 *3))) (-5 *1 (-1000 *5 *6 *7 *3)) + (-4 *3 (-1034 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-623 *6)) (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1040 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-623 (-1114 *5 *6 *7 *3))) (-5 *1 (-1114 *5 *6 *7 *3)) + (-4 *3 (-1034 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-623 (-667 (-550)))) + (-5 *1 (-1078))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-1119 (-1119 (-917 *5)))) - (-5 *1 (-1233 *5)) (-5 *4 (-1119 (-917 *5)))))) + (-12 (-5 *4 (-1 (-623 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) + (-5 *2 (-623 (-2 (|:| -2258 *5) (|:| -1721 *3)))) + (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-634 *6)) + (-4 *7 (-634 (-400 *6)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-749)) (-5 *1 (-1069 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1034 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) + (-4 *8 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2038 (-623 *9)))) + (-5 *3 (-623 *9)) (-4 *1 (-1174 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2038 (-623 *8)))) + (-5 *3 (-623 *8)) (-4 *1 (-1174 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-623 (-309 (-219)))) (-5 *1 (-260))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1227 *4)) (-4 *4 (-619 (-550))) + (-5 *2 (-1227 (-550))) (-5 *1 (-1254 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) + (-4 *4 (-13 (-1068) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1119 (-917 *4)) (-1119 (-917 *4)))) - (-5 *1 (-1233 *4)) (-4 *4 (-356))))) + (-12 (-5 *3 (-667 (-309 (-219)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) + (-5 *1 (-199))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *1 *1) (-5 *1 (-372))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1140 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *2) (-12 (-5 *1 (-934 *2)) (-4 *2 (-535))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *2 (-2 (|:| |k| (-797 *3)) (|:| |c| *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1119 (-917 *4)) (-1119 (-917 *4)))) - (-5 *1 (-1233 *4)) (-4 *4 (-356))))) -(((*1 *2) - (-12 (-14 *4 (-747)) (-4 *5 (-1178)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) - (-4 *3 (-232 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-170)))) - ((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-535)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) - (-5 *2 (-535)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1018)) (-5 *2 (-890)))) - ((*1 *2) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) -(((*1 *1) (-5 *1 (-1230)))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-1229)))) - ((*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1229))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) - ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))) -(((*1 *1) (-5 *1 (-1228)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-618 (-254))) (-5 *1 (-1228)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1124)) (-5 *1 (-1228)))) - ((*1 *1 *1) (-5 *1 (-1228)))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-1130 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1228)))) - ((*1 *2 *1) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1228))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-747)) (-5 *3 (-914 *4)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1227)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1227)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1228)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1228))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1228))))) + (-12 (-4 *4 (-1020)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) + (-4 *3 (-1203 *4)) + (-4 *5 (-13 (-397) (-1011 *4) (-356) (-1166) (-277)))))) (((*1 *1 *2) - (-12 + (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-4 *1 (-367 *3 *4)) + (-4 *4 (-170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1126)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *1 (-254)))) - ((*1 *2 *3 *2) - (-12 + (-623 + (-2 (|:| |eqzro| (-623 *7)) (|:| |neqzro| (-623 *7)) + (|:| |wcond| (-623 (-925 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *4)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *4)))))))))) + (-5 *1 (-897 *4 *5 *6 *7)) (-4 *7 (-922 *4 *6 *5))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-3 *3 (-623 *1))) + (-4 *1 (-1040 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1124 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1008)) + (-5 *1 (-727))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *3 (-618 (-254))) (-5 *1 (-255)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-535)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) +(((*1 *1) (-5 *1 (-1232)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-4 *1 (-1215 *3)) (-4 *3 (-1181)) (-5 *2 (-749))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2437 (-623 *1)))) + (-4 *1 (-360 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-445 *3 *4 *5 *6)) + (|:| -2437 (-623 (-445 *3 *4 *5 *6))))) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1112)) (-5 *3 (-550)) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-999 (-818 (-550)))) + (-5 *3 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *4)))) (-4 *4 (-1020)) + (-5 *1 (-578 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-623 (-473 *4 *5))) (-5 *3 (-623 (-838 *4))) + (-14 *4 (-623 (-1144))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) + (-4 *6 (-444))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) + (-4 *5 (-423 *4)) (-5 *2 (-411 (-1140 (-400 (-550))))) + (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1203 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1088))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1181)) + (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *2 (-1230)) (-5 *1 (-1228)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *1 (-1228)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1228)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1227)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1228)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1228)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1228))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1228))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1227)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1228))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-914 (-219)))) (-5 *1 (-1227))))) -(((*1 *1) (-5 *1 (-1227)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-618 (-254))) (-5 *1 (-1227)))) - ((*1 *1 *1) (-5 *1 (-1227)))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-890)) (-5 *4 (-219)) (-5 *5 (-535)) (-5 *6 (-845)) - (-5 *2 (-1230)) (-5 *1 (-1227))))) + (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *6 *2 *7)) (-4 *6 (-1020)) + (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-1224 - (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) - (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) - (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) - (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535))))) - (-5 *1 (-1227))))) -(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) - ((*1 *2 *1) (-12 (-5 *2 (-1224 (-3 (-460) "undefined"))) (-5 *1 (-1227))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-460)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-460)) (-5 *1 (-1227))))) + (-12 (-4 *1 (-1011 (-550))) (-4 *1 (-295)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1068))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-295)))) + ((*1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-749)))) + ((*1 *1 *1) (-4 *1 (-395)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-550)) (-5 *1 (-309 *3)) (-4 *3 (-542)) (-4 *3 (-825))))) +(((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1037 *4 *3)) (-4 *4 (-13 (-823) (-356))) + (-4 *3 (-1203 *4)) (-5 *2 (-550)))) + ((*1 *2 *3) + (|partial| -12 + (-4 *4 (-13 (-542) (-825) (-1011 *2) (-619 *2) (-444))) + (-5 *2 (-550)) (-5 *1 (-1084 *4 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-818 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-542) (-825) (-1011 *2) (-619 *2) (-444))) + (-5 *2 (-550)) (-5 *1 (-1084 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-1126)) + (-4 *6 (-13 (-542) (-825) (-1011 *2) (-619 *2) (-444))) + (-5 *2 (-550)) (-5 *1 (-1084 *6 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-444)) (-5 *2 (-550)) + (-5 *1 (-1085 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-818 (-400 (-925 *6)))) + (-5 *3 (-400 (-925 *6))) (-4 *6 (-444)) (-5 *2 (-550)) + (-5 *1 (-1085 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-400 (-925 *6))) (-5 *4 (-1144)) + (-5 *5 (-1126)) (-4 *6 (-444)) (-5 *2 (-550)) (-5 *1 (-1085 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1163 *3)) (-4 *3 (-1020))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-618 (-371))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-460)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) - ((*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1227))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227))))) + (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1203 (-167 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1203 (-167 *2)))))) +(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) + (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) + (-4 *7 (-965 *4)) (-4 *2 (-665 *7 *8 *9)) + (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-665 *4 *5 *6)) + (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)) (-4 *2 (-300)))) + ((*1 *2 *2) + (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) + (-4 *2 (-665 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-542)) (-5 *1 (-942 *4 *2)) + (-4 *2 (-1203 *4))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-460)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227))))) + (-12 (-5 *3 (-894)) (-5 *4 (-847)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-121 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 (-1124 *7))) (-4 *6 (-825)) + (-4 *7 (-922 *5 (-522 *6) *6)) (-4 *5 (-1020)) + (-5 *2 (-1 (-1124 *7) *7)) (-5 *1 (-1094 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-749)) (-5 *2 (-1232))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-356)) + (-5 *2 (-623 (-2 (|:| C (-667 *5)) (|:| |g| (-1227 *5))))) + (-5 *1 (-951 *5)) (-5 *3 (-667 *5)) (-5 *4 (-1227 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-1011 (-400 *2)))) (-5 *2 (-550)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1203 *4))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-890)) - (-5 *6 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-1226)))) + (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-847)) + (-5 *5 (-894)) (-5 *6 (-623 (-256))) (-5 *2 (-460)) (-5 *1 (-1231)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *2 (-460)) + (-5 *1 (-1231)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-618 (-254))) - (-5 *2 (-1227)) (-5 *1 (-1226))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-890)) - (-5 *6 (-618 (-254))) (-5 *2 (-460)) (-5 *1 (-1226)))) + (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-623 (-256))) + (-5 *2 (-460)) (-5 *1 (-1231))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-219)) + (-5 *2 + (-2 (|:| |brans| (-623 (-623 (-916 *4)))) + (|:| |xValues| (-1062 *4)) (|:| |yValues| (-1062 *4)))) + (-5 *1 (-151)) (-5 *3 (-623 (-623 (-916 *4))))))) +(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-460)) (-5 *1 (-1226)))) + (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) (-5 *2 (-112)) + (-5 *1 (-350 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-623 (-925 *6))) (-5 *4 (-623 (-1144))) (-4 *6 (-444)) + (-5 *2 (-623 (-623 *7))) (-5 *1 (-528 *6 *7 *5)) (-4 *7 (-356)) + (-4 *5 (-13 (-356) (-823)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-550)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1181)) + (-4 *5 (-366 *4)) (-4 *3 (-366 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-623 (-273))) (-5 *1 (-273)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1149))) (-5 *1 (-1149))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-167 (-219)))) + (-5 *2 (-1008)) (-5 *1 (-733))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1203 *3)) (-4 *3 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-803))))) +(((*1 *2 *3) + (-12 (-5 *2 (-411 (-1140 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1140 *1)) + (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-825)))) + ((*1 *2 *3) + (-12 (-4 *1 (-882)) (-5 *2 (-411 (-1140 *1))) (-5 *3 (-1140 *1))))) +(((*1 *2) + (-12 (-5 *2 (-1232)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-216 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-4 *1 (-247 *3)))) + ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-4 *1 (-106 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-749)) (-5 *1 (-114))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-801)) (-5 *1 (-800))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-771)) (-4 *2 (-922 *4 *5 *6)) (-5 *1 (-441 *4 *5 *6 *2)) + (-4 *4 (-444)) (-4 *6 (-825))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 (-52))) (-5 *2 (-1232)) (-5 *1 (-837))))) +(((*1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068))))) +(((*1 *1 *1) (-5 *1 (-1032)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2682 *6) (|:| |sol?| (-112))) (-550) + *6)) + (-4 *6 (-356)) (-4 *7 (-1203 *6)) + (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-623 (-550))) (-5 *3 (-667 (-550))) (-5 *1 (-1078))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *1) (-4 *1 (-940)))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) + (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -2110 *6))) + (-5 *1 (-989 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-818 (-372))) (-5 *2 (-818 (-219))) (-5 *1 (-298))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-623 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-623 (-667 *4))) (-5 *2 (-667 *4)) (-4 *4 (-1020)) + (-5 *1 (-1002 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1218 *3))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-550)) (-4 *3 (-170)) (-4 *5 (-366 *3)) + (-4 *6 (-366 *3)) (-5 *1 (-666 *3 *5 *6 *2)) + (-4 *2 (-665 *3 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-623 (-1000 *5 *6 *7 *8))) (-5 *1 (-1000 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-623 (-1114 *5 *6 *7 *8))) (-5 *1 (-1114 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-623 (-287 *4))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-836)))) + ((*1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1144)) + (-4 *4 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-543 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1227 *4)) (-4 *4 (-619 (-550))) (-5 *2 (-112)) + (-5 *1 (-1254 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1227 *4)) (-4 *4 (-619 *5)) (-4 *5 (-356)) + (-4 *5 (-542)) (-5 *2 (-1227 *5)) (-5 *1 (-618 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-618 (-254))) (-5 *2 (-460)) - (-5 *1 (-1226))))) -(((*1 *1 *1) (-5 *1 (-48))) + (|partial| -12 (-5 *3 (-1227 *4)) (-4 *4 (-619 *5)) + (-3462 (-4 *5 (-356))) (-4 *5 (-542)) (-5 *2 (-1227 (-400 *5))) + (-5 *1 (-618 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *6)) (-4 *5 (-1068)) + (-4 *6 (-1181)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-4 *5 (-1068)) + (-4 *2 (-1181)) (-5 *1 (-620 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 *6)) (-5 *4 (-623 *5)) (-4 *6 (-1068)) + (-4 *5 (-1181)) (-5 *2 (-1 *5 *6)) (-5 *1 (-620 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-4 *5 (-1068)) + (-4 *2 (-1181)) (-5 *1 (-620 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) - (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (|has| *1 (-6 -4336)) - (-4 *1 (-149 *2)) (-4 *2 (-1178)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) - (-4 *2 (-1178)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-623 *5)) (-5 *4 (-623 *6)) + (-4 *5 (-1068)) (-4 *6 (-1181)) (-5 *1 (-620 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1068)) (-4 *2 (-1181)) (-5 *1 (-620 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1112)) (-5 *3 (-142)) (-5 *2 (-749))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1232)) (-5 *1 (-208 *4)) + (-4 *4 + (-13 (-825) + (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 (*2 $)) + (-15 -3656 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1232)) (-5 *1 (-208 *3)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 (*2 $)) + (-15 -3656 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-493))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *2 (-1034 *4 *5 *6)) (-5 *1 (-754 *4 *5 *6 *2 *3)) + (-4 *3 (-1040 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3)) (-4 *3 (-1181)) (-4 *3 (-825)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) - (-4 *2 (-1178)))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-366 *4)) (-4 *4 (-1181)) + (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-5 *1 (-323))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550))))) +(((*1 *2 *2) (-12 (-5 *2 (-623 (-309 (-219)))) (-5 *1 (-260))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 *4)) (-5 *1 (-1109 *3 *4)) + (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-497))) (-5 *1 (-475))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-199))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1020)) + (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-894)) (-4 *5 (-1020)) + (-4 *2 (-13 (-397) (-1011 *5) (-356) (-1166) (-277))) + (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1203 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-1144))))) +(((*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-1230))))) +(((*1 *2 *1) + (-12 (-5 *2 (-999 (-818 (-550)))) (-5 *1 (-578 *3)) (-4 *3 (-1020))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) + (-5 *2 (-1008)) (-5 *1 (-727))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-102 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1251 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-797 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020))))) +(((*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1227 *5)) (-4 *5 (-770)) (-5 *2 (-112)) + (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-4 *5 (-1203 *4)) + (-5 *2 (-623 (-2 (|:| |deg| (-749)) (|:| -1721 *5)))) + (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-634 *5)) + (-4 *6 (-634 (-400 *5)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-542)) (-4 *2 (-1020)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) (-4 *2 (-1203 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *1)))) + (-4 *1 (-1040 *4 *5 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-4 *5 (-423 *4)) + (-5 *2 (-411 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1203 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-400 (-550)))) + (-5 *2 (-2 (|:| -3103 (-1124 *4)) (|:| -3114 (-1124 *4)))) + (-5 *1 (-1130 *4)) (-5 *3 (-1124 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-657 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-833)))) + ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-938)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-962)))) + ((*1 *2 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1068) (-34))) (-5 *1 (-1108 *2 *3)) + (-4 *3 (-13 (-1068) (-34)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-361)) + (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-925 (-550))) (-5 *3 (-1144)) + (-5 *4 (-1062 (-400 (-550)))) (-5 *1 (-30))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-300)) (-4 *6 (-366 *5)) (-4 *4 (-366 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) + (-5 *1 (-1092 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1203 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1162)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1162))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-167 (-219))) (-5 *6 (-1126)) + (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *2) (-12 (-5 *1 (-934 *2)) (-4 *2 (-535))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-657 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1181)) + (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *6 *7 *2)) (-4 *6 (-1020)) + (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1078))))) +(((*1 *2 *3) + (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) + (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-749)))) ((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-5 *2 (-2 (|:| -2115 (-1136 *4)) (|:| |deg| (-890)))) - (-5 *1 (-215 *4 *5)) (-5 *3 (-1136 *4)) (-4 *5 (-13 (-542) (-823))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-747)) - (-4 *6 (-1178)) (-4 *2 (-1178)) (-5 *1 (-234 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1200 *4)) - (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-542)) (-4 *2 (-823)))) - ((*1 *1 *1) - (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1200 *2)) - (-4 *4 (-1200 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1178)) (-4 *2 (-1178)) - (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067)) - (-5 *1 (-420 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) - ((*1 *1 *1) (-5 *1 (-486))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-618 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) - (-5 *1 (-619 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018)) (-4 *6 (-365 *5)) - (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) - (-5 *1 (-663 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-662 *5 *6 *7)) - (-4 *10 (-662 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))) + (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) + (-4 *3 (-665 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) + (-5 *2 (-749))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-623 + (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) + (|:| |wcond| (-623 (-925 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *5)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *5)))))))))) + (-5 *4 (-1126)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-922 *5 *7 *6)) + (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-550)) + (-5 *1 (-897 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-167 (-219)))) + (-5 *2 (-1008)) (-5 *1 (-733))))) +(((*1 *1 *2) + (-12 (-5 *2 (-400 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-13 (-356) (-145))) + (-5 *1 (-392 *3 *4))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-894)) (-5 *1 (-677)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-667 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-356)) (-5 *1 (-951 *5))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-5 *2 + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1181)) (-5 *2 (-749))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1227 (-1144))) (-5 *3 (-1227 (-445 *4 *5 *6 *7))) + (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-894)) + (-14 *6 (-623 (-1144))) (-14 *7 (-1227 (-667 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-445 *4 *5 *6 *7))) + (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-894)) + (-14 *6 (-623 *2)) (-14 *7 (-1227 (-667 *4))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-356)) - (-4 *3 (-170)) (-4 *1 (-701 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-929 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) - (-5 *1 (-930 *5 *2)))) + (-12 (-5 *2 (-1227 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) + (-14 *6 (-1227 (-667 *3))))) ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-921 *3 *4 *5)) (-14 *6 (-618 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1018)) (-4 *2 (-1018)) (-14 *5 (-747)) - (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) - (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) - (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *12 (-1021 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1119 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) - (-5 *1 (-1121 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1173 *5 *6 *7 *2)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *2 (-1032 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) - (-5 *1 (-1225 *5 *2))))) + (-12 (-5 *2 (-1227 (-1144))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-170)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))) + (-14 *6 (-1227 (-667 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1144)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-894)) (-14 *5 (-623 *2)) (-14 *6 (-1227 (-667 *3))))) + ((*1 *1) + (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-894)) + (-14 *4 (-623 (-1144))) (-14 *5 (-1227 (-667 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1062 *3)) (-4 *3 (-922 *7 *6 *4)) (-4 *6 (-771)) + (-4 *4 (-825)) (-4 *7 (-542)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) + (-5 *1 (-577 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-542)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) + (-5 *1 (-577 *5 *4 *6 *3)) (-4 *3 (-922 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-836))) ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1136 *4 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1166))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1060 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1166))) + (-4 *4 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1136 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-542) (-825) (-1011 (-550)))) + (-5 *2 (-400 (-925 *5))) (-5 *1 (-1137 *5)) (-5 *3 (-925 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-542) (-825) (-1011 (-550)))) + (-5 *2 (-3 (-400 (-925 *5)) (-309 *5))) (-5 *1 (-1137 *5)) + (-5 *3 (-400 (-925 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1060 (-925 *5))) (-5 *3 (-925 *5)) + (-4 *5 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-400 *3)) + (-5 *1 (-1137 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1060 (-400 (-925 *5)))) (-5 *3 (-400 (-925 *5))) + (-4 *5 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-3 *3 (-309 *5))) + (-5 *1 (-1137 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-802)) (-5 *3 (-623 (-1144))) (-5 *1 (-803))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-838 *5))) (-14 *5 (-623 (-1144))) (-4 *6 (-444)) + (-5 *2 (-623 (-623 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) + (-5 *3 (-623 (-241 *5 *6))) (-4 *7 (-444))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-128)) (-5 *2 (-1088))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-623 (-2 (|:| |totdeg| (-749)) (|:| -2739 *3)))) + (-5 *4 (-749)) (-4 *3 (-922 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *1 (-441 *5 *6 *7 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) +(((*1 *2) + (-12 + (-5 *2 + (-1227 (-623 (-2 (|:| -3625 (-883 *3)) (|:| -2922 (-1088)))))) + (-5 *1 (-344 *3 *4)) (-14 *3 (-894)) (-14 *4 (-894)))) + ((*1 *2) + (-12 (-5 *2 (-1227 (-623 (-2 (|:| -3625 *3) (|:| -2922 (-1088)))))) + (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1140 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1227 (-623 (-2 (|:| -3625 *3) (|:| -2922 (-1088)))))) + (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-894))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-372)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-550)) (|has| *1 (-6 -4343)) (-4 *1 (-366 *3)) + (-4 *3 (-1181))))) +(((*1 *2 *3) + (-12 (-5 *3 (-309 (-372))) (-5 *2 (-309 (-219))) (-5 *1 (-298))))) +(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) + (-5 *2 (-2 (|:| -2027 (-623 *6)) (|:| -3257 (-623 *6))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-112)) (-5 *1 (-799))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1653 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-356)) (-4 *7 (-1203 *6)) + (-5 *2 (-2 (|:| |answer| (-569 (-400 *7))) (|:| |a0| *6))) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) + (-4 *2 (-1203 (-167 *3)))))) +(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-752)) (-5 *1 (-52))))) +(((*1 *2) + (-12 (-5 *2 (-1232)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) + (|:| |c2| (-400 *5)) (|:| |deg| (-749)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1203 (-400 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-1034 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-623 *8)) + (|:| |towers| (-623 (-1000 *5 *6 *7 *8))))) + (-5 *1 (-1000 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-1034 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-623 *8)) + (|:| |towers| (-623 (-1114 *5 *6 *7 *8))))) + (-5 *1 (-1114 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-4 *1 (-1066 *3)))) + ((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-938))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1126) (-752))) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-928)) (-5 *2 (-623 (-623 (-916 (-219))))))) + ((*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-623 (-623 (-916 (-219)))))))) +(((*1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1218 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1068)) (-4 *2 (-825)) + (-5 *1 (-113 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) - (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1181)) + (-4 *5 (-1181)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-747)) - (-4 *7 (-1178)) (-4 *5 (-1178)) (-5 *2 (-233 *6 *5)) - (-5 *1 (-234 *6 *7 *5)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-234 *6 *7)) (-14 *6 (-749)) + (-4 *7 (-1181)) (-4 *5 (-1181)) (-5 *2 (-234 *6 *5)) + (-5 *1 (-233 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-4 *2 (-365 *5)) - (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1181)) (-4 *5 (-1181)) + (-4 *2 (-366 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1067)) (-4 *5 (-1067)) (-4 *2 (-419 *5)) - (-5 *1 (-420 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1068)) (-4 *5 (-1068)) + (-4 *2 (-418 *5)) (-5 *1 (-416 *6 *4 *5 *2)) (-4 *4 (-418 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-618 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) - (-5 *2 (-618 *5)) (-5 *1 (-619 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-623 *6)) (-4 *6 (-1181)) + (-4 *5 (-1181)) (-5 *2 (-623 *5)) (-5 *1 (-621 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-929 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) - (-5 *2 (-929 *5)) (-5 *1 (-930 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-931 *6)) (-4 *6 (-1181)) + (-4 *5 (-1181)) (-5 *2 (-931 *5)) (-5 *1 (-930 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1119 *6)) (-4 *6 (-1178)) (-4 *3 (-1178)) - (-5 *2 (-1119 *3)) (-5 *1 (-1121 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1124 *6)) (-4 *6 (-1181)) + (-4 *3 (-1181)) (-5 *2 (-1124 *3)) (-5 *1 (-1122 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1224 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) - (-5 *2 (-1224 *5)) (-5 *1 (-1225 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1224 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-208 *2)) - (-4 *2 - (-13 (-823) - (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) - (-15 -2082 ((-1230) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1178)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1178)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-524))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-25))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-1223 *3)) (-4 *3 (-23)) (-4 *3 (-1178))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-208 *2)) - (-4 *2 - (-13 (-823) - (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) - (-15 -2082 ((-1230) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) - ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-219)) (-5 *1 (-1175)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-1018))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1178)) (-4 *3 (-1018)) (-5 *2 (-665 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1018)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-1018))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) - ((*1 *1 *1) (-4 *1 (-534))) - ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1176 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-973)) (-4 *2 (-1018))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1227 *6)) (-4 *6 (-1181)) + (-4 *5 (-1181)) (-5 *2 (-1227 *5)) (-5 *1 (-1226 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-52))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1227 *5)) (-4 *5 (-770)) (-5 *2 (-112)) + (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-167 (-400 (-550))))) + (-5 *2 + (-623 + (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-550)) + (|:| |outvect| (-623 (-667 (-167 *4))))))) + (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890))))) (((*1 *2 *1) - (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-973)) (-4 *2 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-836 *3)) (-14 *3 (-618 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-960)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1058 *3)) (-4 *3 (-1178)))) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-623 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-543 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) + (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-922 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) + (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-411 (-1140 *7))) + (-5 *1 (-721 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1142)))) - ((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2)))) + (-12 (-4 *3 (-444)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-411 *1)) (-4 *1 (-922 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-444)) (-5 *2 (-411 *3)) + (-5 *1 (-952 *4 *5 *6 *3)) (-4 *3 (-922 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) + (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-411 (-1140 (-400 *7)))) + (-5 *1 (-1139 *4 *5 *6 *7)) (-5 *3 (-1140 (-400 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1185)))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-411 *3)) (-5 *1 (-1206 *4 *3)) + (-4 *3 (-13 (-1203 *4) (-542) (-10 -8 (-15 -3139 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1017 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-14 *5 (-623 (-1144))) + (-5 *2 + (-623 (-1114 *4 (-522 (-838 *6)) (-838 *6) (-758 *4 (-838 *6))))) + (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020))))) (((*1 *2 *3) - (-12 (-5 *3 (-400 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-542)) (-4 *4 (-1018)) - (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *5 *6 *2)) (-4 *6 (-634 *5))))) + (-12 (-5 *2 (-411 (-1140 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1140 *1)) + (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-825)))) + ((*1 *2 *3) + (-12 (-4 *1 (-882)) (-5 *2 (-411 (-1140 *1))) (-5 *3 (-1140 *1))))) (((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *5 (-1200 *4)) (-5 *2 (-1 *6 (-618 *6))) - (-5 *1 (-1219 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-1217 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-4 *2 (-1200 *5)) - (-5 *1 (-1219 *5 *2 *6 *3)) (-4 *6 (-634 *2)) (-4 *3 (-1217 *5))))) + (-12 (-5 *3 (-865 *4)) (-4 *4 (-1068)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-863 *4 *5)) (-4 *5 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1134))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-916 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *3 (-1200 *4)) (-4 *2 (-1217 *4)) - (-5 *1 (-1219 *4 *3 *5 *2)) (-4 *5 (-634 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 (-1 *6 (-618 *6)))) - (-4 *5 (-38 (-400 (-535)))) (-4 *6 (-1217 *5)) (-5 *2 (-618 *6)) - (-5 *1 (-1218 *5 *6))))) + (-12 (-5 *3 (-1140 (-550))) (-5 *2 (-550)) (-5 *1 (-915))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1124 *3))) (-5 *1 (-1124 *3)) (-4 *3 (-1181))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1020)) (-5 *2 (-550)) (-5 *1 (-435 *4 *3 *5)) + (-4 *3 (-1203 *4)) + (-4 *5 (-13 (-397) (-1011 *4) (-356) (-1166) (-277)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *3)))) + (-5 *1 (-578 *3)) (-4 *3 (-1020))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-618 *2))) (-5 *4 (-618 *5)) (-4 *5 (-38 (-400 (-535)))) - (-4 *2 (-1217 *5)) (-5 *1 (-1218 *5 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1218 *4 *2)) - (-4 *4 (-38 (-400 (-535))))))) + (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *4 (-749)) + (-5 *2 (-667 (-219))) (-5 *1 (-260))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-52))) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1) (-5 *1 (-1032)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3340 *3) (|:| |coef1| (-760 *3)))) + (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1218 *4 *2)) - (-4 *4 (-38 (-400 (-535))))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1217 *3))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1020)) (-4 *7 (-1020)) + (-4 *6 (-1203 *5)) (-5 *2 (-1140 (-1140 *7))) + (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1203 *6))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-238 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1203 *6)) + (-4 *6 (-13 (-356) (-145) (-1011 *4))) (-5 *4 (-550)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -1721 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-988 *6 *3))))) +(((*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-836)))))) +(((*1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1230))))) +(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-749))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-618 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) - (-5 *2 (-1 (-1119 *4) (-618 (-1119 *4)))) (-5 *1 (-1218 *4 *5))))) + (-12 (-5 *3 (-1227 (-1227 *4))) (-4 *4 (-1020)) (-5 *2 (-667 *4)) + (-5 *1 (-1002 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) (-5 *3 (-219)) + (-5 *2 (-1008)) (-5 *1 (-727))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-170)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4)) (-5 *1 (-666 *4 *5 *6 *2)) + (-4 *2 (-665 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) - (-5 *2 (-1 (-1119 *4) (-1119 *4) (-1119 *4))) (-5 *1 (-1218 *4 *5))))) + (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-918 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-199)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-623 (-372))) (-5 *2 (-372)) (-5 *1 (-199))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-878 *3))))) +(((*1 *1) (-5 *1 (-563)))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1877 (-623 (-2 (|:| |irr| *10) (|:| -4245 (-550))))))) + (-5 *6 (-623 *3)) (-5 *7 (-623 *8)) (-4 *8 (-825)) (-4 *3 (-300)) + (-4 *10 (-922 *3 *9 *8)) (-4 *9 (-771)) + (-5 *2 + (-2 (|:| |polfac| (-623 *10)) (|:| |correct| *3) + (|:| |corrfact| (-623 (-1140 *3))))) + (-5 *1 (-605 *8 *9 *3 *10)) (-5 *4 (-623 (-1140 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1092 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1040 *4 *5 *6 *7)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 *1)) + (-4 *1 (-1040 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-623 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219))))) + (-5 *1 (-545)))) + ((*1 *2 *1) + (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-5 *2 (-623 *3)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-623 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219))))) + (-5 *1 (-781))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) - (-5 *2 (-1 (-1119 *4) (-1119 *4))) (-5 *1 (-1218 *4 *5))))) + (|partial| -12 (-5 *3 (-1227 *5)) (-4 *5 (-619 *4)) (-4 *4 (-542)) + (-5 *2 (-1227 *4)) (-5 *1 (-618 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1251 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-797 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-922 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) + (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) + (-12 (|has| *6 (-6 -4343)) (-4 *4 (-356)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4)) (-5 *2 (-623 *6)) (-5 *1 (-512 *4 *5 *6 *3)) + (-4 *3 (-665 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-535))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-535))) - (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-535))) (-5 *4 (-286 *6)) - (-4 *6 (-13 (-27) (-1164) (-414 *5))) - (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-535))) - (-4 *7 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-535))) - (-4 *3 (-13 (-27) (-1164) (-414 *7))) - (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-400 (-535)))) (-5 *4 (-286 *8)) - (-5 *5 (-1191 (-400 (-535)))) (-5 *6 (-400 (-535))) - (-4 *8 (-13 (-27) (-1164) (-414 *7))) - (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-400 (-535)))) - (-5 *7 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *8))) - (-4 *8 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-4 *3 (-1018)) - (-5 *1 (-576 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-577 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-4 *3 (-1018)) - (-4 *1 (-1186 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-747)) (-5 *3 (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| *4)))) - (-4 *4 (-1018)) (-4 *1 (-1207 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-4 *1 (-1217 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1119 (-2 (|:| |k| (-747)) (|:| |c| *3)))) (-4 *3 (-1018)) - (-4 *1 (-1217 *3))))) + (-12 (|has| *9 (-6 -4343)) (-4 *4 (-542)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4)) (-4 *7 (-965 *4)) (-4 *8 (-366 *7)) + (-4 *9 (-366 *7)) (-5 *2 (-623 *6)) + (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-665 *4 *5 *6)) + (-4 *10 (-665 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-623 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4)) (-5 *2 (-623 *6)) (-5 *1 (-666 *4 *5 *6 *3)) + (-4 *3 (-665 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) + (-5 *2 (-623 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-323))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-167 (-219)))) (-5 *2 (-1008)) + (-5 *1 (-733))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1212 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) + (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1144)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1068)) (-5 *1 (-692 *3 *2 *4)) (-4 *3 (-825)) + (-14 *4 + (-1 (-112) (-2 (|:| -2922 *3) (|:| -3521 *2)) + (-2 (|:| -2922 *3) (|:| -3521 *2))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1162))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(((*1 *1) + (-12 (-4 *3 (-1068)) (-5 *1 (-858 *2 *3 *4)) (-4 *2 (-1068)) + (-4 *4 (-644 *3)))) + ((*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-623 (-309 (-219)))) + (|:| |constraints| + (-623 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) + (|:| |grid| (-749)) (|:| |boundaryType| (-550)) + (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) + (|:| |tol| (-219)))) + (-5 *2 (-112)) (-5 *1 (-204))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-112)) + (-5 *1 (-650 *4))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) + (-4 *4 (-170)))) + ((*1 *1) (-4 *1 (-705))) ((*1 *1) (-5 *1 (-1144)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-618 *3)))) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) + (-5 *2 (-623 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) + (-5 *2 (-623 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-618 *3)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-618 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-5 *2 (-1119 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-535))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-535))) (-4 *1 (-1186 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-535))) (-4 *1 (-1217 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) - (-5 *2 (-917 *4)))) + (-12 (-5 *2 (-1124 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 *3)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1020)) (-5 *2 (-623 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1218 *3)) (-4 *3 (-1020)) (-5 *2 (-1124 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-922 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1203 *3)) (-5 *1 (-392 *3 *2)) + (-4 *3 (-13 (-356) (-145)))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1068) (-34))) (-4 *6 (-13 (-1068) (-34))) + (-5 *2 (-112)) (-5 *1 (-1108 *5 *6))))) +(((*1 *1) (-5 *1 (-801)))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-102 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) - (-5 *2 (-917 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-917 *4)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1068))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-1115 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1142 *4 *5 *6)) + (-4 *4 (-1020)) (-14 *5 (-1144)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-917 *4))))) + (-12 (-5 *3 (-749)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1219 *4 *5 *6)) + (-4 *4 (-1020)) (-14 *5 (-1144)) (-14 *6 *4)))) +(((*1 *2) + (-12 (-5 *2 (-667 (-883 *3))) (-5 *1 (-344 *3 *4)) (-14 *3 (-894)) + (-14 *4 (-894)))) + ((*1 *2) + (-12 (-5 *2 (-667 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) + (-14 *4 + (-3 (-1140 *3) + (-1227 (-623 (-2 (|:| -3625 *3) (|:| -2922 (-1088))))))))) + ((*1 *2) + (-12 (-5 *2 (-667 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) + (-14 *4 (-894))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) (-5 *3 (-550)) + (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1203 *4)) (-5 *1 (-787 *4 *2 *3 *5)) + (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *3 (-634 *2)) + (-4 *5 (-634 (-400 *2)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *1)) (-4 *1 (-1034 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1174 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-284))) + ((*1 *1) (-5 *1 (-836))) + ((*1 *1) + (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) + (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-922 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1053))) + ((*1 *1) + (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34))))) + ((*1 *1) (-5 *1 (-1147))) ((*1 *1) (-5 *1 (-1148)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-535))) (-4 *4 (-1009 (-535))) (-4 *4 (-13 (-823) (-542))) - (-5 *1 (-32 *4 *2)) (-4 *2 (-414 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-133))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-219))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-535)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-535))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1217 *4)) - (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1188 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-535))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1186 *4)) - (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1209 *4 *5)) (-4 *6 (-954 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-277))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-354 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *1) (-5 *1 (-371))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-379 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-1078)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-535)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1224 *4)) (-5 *3 (-535)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-524)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-524)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *4 (-1067)) (-5 *1 (-658 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-356)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-535)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)) (-4 *4 (-624 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *5)) - (-4 *5 (-624 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-747)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-810 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-535)) (-5 *1 (-810 *4)) (-4 *4 (-1018)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-400 (-535))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1078)) (-5 *2 (-890)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-535)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *4 (-1018)) - (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1058 (-815 *3))) (-4 *3 (-13 (-1164) (-931) (-29 *5))) - (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 - (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) - (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-213 *5 *3)))) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *4 *5 *6)) (-4 *4 (-356)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-442 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1058 (-815 *3))) (-5 *5 (-1124)) - (-4 *3 (-13 (-1164) (-931) (-29 *6))) - (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 - (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| #1#) - (|:| |pole| #2#))) - (-5 *1 (-213 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1058 (-815 (-307 *5)))) - (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) + (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 - (-3 (|:| |f1| (-815 (-307 *5))) (|:| |f2| (-618 (-815 (-307 *5)))) - (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-214 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-400 (-917 *6))) (-5 *4 (-1058 (-815 (-307 *6)))) - (-5 *5 (-1124)) - (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) + (-2 (|:| R (-667 *6)) (|:| A (-667 *6)) (|:| |Ainv| (-667 *6)))) + (-5 *1 (-951 *6)) (-5 *3 (-667 *6))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1126)) (-5 *4 (-167 (-219))) (-5 *5 (-550)) + (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-400 (-550)))) + (-5 *2 (-2 (|:| -2984 (-1124 *4)) (|:| -2995 (-1124 *4)))) + (-5 *1 (-1130 *4)) (-5 *3 (-1124 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1158 *4 *5)) + (-4 *4 (-1068)) (-4 *5 (-1068))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-877 *4)) + (-4 *4 (-1068)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-623 *11)) + (|:| |todo| (-623 (-2 (|:| |val| *3) (|:| -3223 *11)))))) + (-5 *6 (-749)) + (-5 *2 (-623 (-2 (|:| |val| (-623 *10)) (|:| -3223 *11)))) + (-5 *3 (-623 *10)) (-5 *4 (-623 *11)) (-4 *10 (-1034 *7 *8 *9)) + (-4 *11 (-1040 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) + (-4 *9 (-825)) (-5 *1 (-1038 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-623 *11)) + (|:| |todo| (-623 (-2 (|:| |val| *3) (|:| -3223 *11)))))) + (-5 *6 (-749)) + (-5 *2 (-623 (-2 (|:| |val| (-623 *10)) (|:| -3223 *11)))) + (-5 *3 (-623 *10)) (-5 *4 (-623 *11)) (-4 *10 (-1034 *7 *8 *9)) + (-4 *11 (-1077 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) + (-4 *9 (-825)) (-5 *1 (-1113 *7 *8 *9 *10 *11))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-366 *2)) (-4 *2 (-1181)) + (-4 *2 (-825)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4343)) + (-4 *1 (-366 *3)) (-4 *3 (-1181))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *8)) (-4 *8 (-922 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) + (-4 *7 (-771)) (-5 *2 - (-3 (|:| |f1| (-815 (-307 *6))) (|:| |f2| (-618 (-815 (-307 *6)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-214 *6)))) + (-623 + (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) + (|:| |wcond| (-623 (-925 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *5)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *5)))))))))) + (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-623 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1058 (-815 (-400 (-917 *5))))) (-5 *3 (-400 (-917 *5))) - (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) + (-12 (-5 *3 (-667 *8)) (-5 *4 (-623 (-1144))) (-4 *8 (-922 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) + (-4 *7 (-771)) (-5 *2 - (-3 (|:| |f1| (-815 (-307 *5))) (|:| |f2| (-618 (-815 (-307 *5)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-214 *5)))) + (-623 + (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) + (|:| |wcond| (-623 (-925 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *5)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *5)))))))))) + (-5 *1 (-897 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 *7)) (-4 *7 (-922 *4 *6 *5)) + (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) + (-5 *2 + (-623 + (-2 (|:| |eqzro| (-623 *7)) (|:| |neqzro| (-623 *7)) + (|:| |wcond| (-623 (-925 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *4)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *4)))))))))) + (-5 *1 (-897 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1058 (-815 (-400 (-917 *6))))) (-5 *5 (-1124)) - (-5 *3 (-400 (-917 *6))) - (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) + (-12 (-5 *3 (-667 *9)) (-5 *5 (-894)) (-4 *9 (-922 *6 *8 *7)) + (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1144)))) + (-4 *8 (-771)) (-5 *2 - (-3 (|:| |f1| (-815 (-307 *6))) (|:| |f2| (-618 (-815 (-307 *6)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-214 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) - (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-3 *3 (-618 *3))) (-5 *1 (-423 *5 *3)) - (-4 *3 (-13 (-1164) (-931) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) - (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))) - ((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1006)) (-5 *1 (-550)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) - (-5 *2 (-1006)) (-5 *1 (-550)))) + (-623 + (-2 (|:| |eqzro| (-623 *9)) (|:| |neqzro| (-623 *9)) + (|:| |wcond| (-623 (-925 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *6)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *6)))))))))) + (-5 *1 (-897 *6 *7 *8 *9)) (-5 *4 (-623 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) - (-5 *2 (-1006)) (-5 *1 (-550)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *2 (-1006)) - (-5 *1 (-550)))) + (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 (-1144))) (-5 *5 (-894)) + (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) + (-5 *2 + (-623 + (-2 (|:| |eqzro| (-623 *9)) (|:| |neqzro| (-623 *9)) + (|:| |wcond| (-623 (-925 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *6)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *6)))))))))) + (-5 *1 (-897 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) - (-5 *2 (-1006)) (-5 *1 (-550)))) + (-12 (-5 *3 (-667 *8)) (-5 *4 (-894)) (-4 *8 (-922 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) + (-4 *7 (-771)) + (-5 *2 + (-623 + (-2 (|:| |eqzro| (-623 *8)) (|:| |neqzro| (-623 *8)) + (|:| |wcond| (-623 (-925 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *5)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *5)))))))))) + (-5 *1 (-897 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) - (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) - (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) - (-5 *5 (-371)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))) + (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 *9)) (-5 *5 (-1126)) + (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) (-5 *2 (-550)) + (-5 *1 (-897 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1058 (-815 (-371)))) - (-5 *5 (-1124)) (-5 *2 (-1006)) (-5 *1 (-550)))) + (-12 (-5 *3 (-667 *9)) (-5 *4 (-623 (-1144))) (-5 *5 (-1126)) + (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) (-5 *2 (-550)) + (-5 *1 (-897 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *8)) (-5 *4 (-1126)) (-4 *8 (-922 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) + (-4 *7 (-771)) (-5 *2 (-550)) (-5 *1 (-897 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-667 *10)) (-5 *4 (-623 *10)) (-5 *5 (-894)) + (-5 *6 (-1126)) (-4 *10 (-922 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) + (-4 *8 (-13 (-825) (-596 (-1144)))) (-4 *9 (-771)) (-5 *2 (-550)) + (-5 *1 (-897 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-667 *10)) (-5 *4 (-623 (-1144))) (-5 *5 (-894)) + (-5 *6 (-1126)) (-4 *10 (-922 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) + (-4 *8 (-13 (-825) (-596 (-1144)))) (-4 *9 (-771)) (-5 *2 (-550)) + (-5 *1 (-897 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1058 (-815 (-371)))) - (-5 *5 (-1142)) (-5 *2 (-1006)) (-5 *1 (-550)))) + (-12 (-5 *3 (-667 *9)) (-5 *4 (-894)) (-5 *5 (-1126)) + (-4 *9 (-922 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-13 (-825) (-596 (-1144)))) (-4 *8 (-771)) (-5 *2 (-550)) + (-5 *1 (-897 *6 *7 *8 *9))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1126)) (-5 *4 (-1088)) (-5 *2 (-112)) (-5 *1 (-799))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-569 *3) *3 (-1144))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1144))) + (-4 *3 (-277)) (-4 *3 (-609)) (-4 *3 (-1011 *4)) (-4 *3 (-423 *7)) + (-5 *4 (-1144)) (-4 *7 (-596 (-865 (-550)))) (-4 *7 (-444)) + (-4 *7 (-859 (-550))) (-4 *7 (-825)) (-5 *2 (-569 *3)) + (-5 *1 (-559 *7 *3))))) +(((*1 *1) (-4 *1 (-342))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) - (-5 *2 (-565 (-400 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))) + (-12 (-5 *3 (-623 *5)) (-4 *5 (-423 *4)) + (-4 *4 (-13 (-542) (-825) (-145))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-623 (-1140 *5))) + (|:| |prim| (-1140 *5)))) + (-5 *1 (-425 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-542) (-825) (-145))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1140 *3)) + (|:| |pol2| (-1140 *3)) (|:| |prim| (-1140 *3)))) + (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-423 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-925 *5)) (-5 *4 (-1144)) (-4 *5 (-13 (-356) (-145))) + (-5 *2 + (-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) + (|:| |prim| (-1140 *5)))) + (-5 *1 (-933 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-145)) - (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) - (-5 *2 (-3 (-307 *5) (-618 (-307 *5)))) (-5 *1 (-570 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-717 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)) - (-4 *3 (-38 (-400 (-535)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1142)) (-5 *1 (-917 *3)) (-4 *3 (-38 (-400 (-535)))) - (-4 *3 (-1018)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-4 *2 (-823)) - (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-921 *3 (-521 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) - (-5 *1 (-1126 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *1 (-1171 *3)) (-4 *3 (-38 (-400 (-535)))) - (-4 *3 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3874 - (-12 (-5 *2 (-1142)) (-4 *1 (-1186 *3)) (-4 *3 (-1018)) - (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) - (-4 *3 (-38 (-400 (-535)))))) - (-12 (-5 *2 (-1142)) (-4 *1 (-1186 *3)) (-4 *3 (-1018)) - (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) - (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1186 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3874 - (-12 (-5 *2 (-1142)) (-4 *1 (-1207 *3)) (-4 *3 (-1018)) - (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) - (-4 *3 (-38 (-400 (-535)))))) - (-12 (-5 *2 (-1142)) (-4 *1 (-1207 *3)) (-4 *3 (-1018)) - (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) - (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3874 - (-12 (-5 *2 (-1142)) (-4 *1 (-1217 *3)) (-4 *3 (-1018)) - (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) - (-4 *3 (-38 (-400 (-535)))))) - (-12 (-5 *2 (-1142)) (-4 *1 (-1217 *3)) (-4 *3 (-1018)) - (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) - (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-1193 *5 *4)) (-5 *1 (-1140 *4 *5 *6)) - (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-1193 *5 *4)) (-5 *1 (-1214 *4 *5 *6)) - (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))) - ((*1 *1 *1) (-4 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-259 *3)) (-4 *3 (-823)))) - ((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) - (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) - (-4 *4 (-1200 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1200 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-356)) (-4 *2 (-871 *3)) (-5 *1 (-565 *2)) (-5 *3 (-1142)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-565 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 (-747))) (-4 *1 (-871 *4)) - (-4 *4 (-1067)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) - (-4 *3 (-1018)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) - (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) - (-14 *5 *3)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) - (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-296)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-1006))) (-5 *2 (-1006)) (-5 *1 (-296)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *1) (-5 *1 (-1030))) - ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1120 *4)) - (-4 *4 (-1178)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-623 (-1144))) + (-4 *5 (-13 (-356) (-145))) + (-5 *2 + (-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 *5))) + (|:| |prim| (-1140 *5)))) + (-5 *1 (-933 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 (-925 *6))) (-5 *4 (-623 (-1144))) (-5 *5 (-1144)) + (-4 *6 (-13 (-356) (-145))) + (-5 *2 + (-2 (|:| -2855 (-623 (-550))) (|:| |poly| (-623 (-1140 *6))) + (|:| |prim| (-1140 *6)))) + (-5 *1 (-933 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) (((*1 *2 *1) - (-12 (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *3 (-823)) (-4 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) - ((*1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *2 *1) (-12 (-4 *2 (-1178)) (-5 *1 (-844 *2 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-648 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-618 (-535))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 (-535)) (-14 *5 (-747)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-747)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-747)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-747)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-747)))) + (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-535)) (-14 *4 (-747)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-4 *2 (-1067)) (-5 *1 (-207 *4 *2)) (-14 *4 (-890)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1142)) (-5 *2 (-239 (-1124))) (-5 *1 (-208 *4)) - (-4 *4 - (-13 (-823) - (-10 -8 (-15 -4142 ((-1124) $ *3)) (-15 -3963 ((-1230) $)) - (-15 -2082 ((-1230) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-960)) (-5 *1 (-208 *3)) - (-4 *3 - (-13 (-823) - (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) - (-15 -2082 ((-1230) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-747)) (-5 *1 (-239 *4)) (-4 *4 (-823)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-823)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-823)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1200 *3)) - (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 *1)) (-4 *1 (-291)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1200 *2)) - (-4 *4 (-1200 (-400 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-411 *2)) (-4 *2 (-170)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1124)) (-5 *1 (-493)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-51)) (-5 *1 (-610)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-618 (-535))) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-618 (-861 *4))) (-5 *1 (-861 *4)) - (-4 *4 (-1067)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-873 *4)) (-5 *1 (-876 *4)) (-4 *4 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-890)) (-4 *2 (-356)) - (-5 *1 (-964 *4 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-981 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *2 (-1018)) - (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) - (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-890)) (-4 *4 (-1067)) - (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) - (-5 *1 (-1041 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-890)) (-4 *4 (-1067)) - (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) - (-5 *1 (-1043 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-535))) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) - (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-535)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) - (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) - ((*1 *1 *1 *1) (-4 *1 (-1110))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-400 *1)) (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-400 *1)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-769)) - (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1062)))) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *2 (-623 (-167 *4))) + (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1140 (-925 *4))) (-5 *1 (-409 *3 *4)) + (-4 *3 (-410 *4)))) + ((*1 *2) + (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) + (-5 *2 (-1140 (-925 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1140 (-400 (-925 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) - ((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *2 (-1178)) (-5 *1 (-844 *3 *2)) (-4 *3 (-1178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1178)) (-5 *2 (-747))))) -(((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) - (-4 *3 (-1178)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-747)) (-5 *1 (-207 *4 *2)) (-14 *4 (-890)) (-4 *2 (-1067)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) - (-4 *2 (-1178)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1142)) (-5 *1 (-610)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1191 (-535))) (|has| *1 (-6 -4337)) (-4 *1 (-627 *2)) - (-4 *2 (-1178)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-618 (-535))) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) - (-4 *2 (-1178)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) - (-4 *2 (-1178)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3)) - (-4 *3 (-1178)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) - (-4 *2 (-1178))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1119 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178))))) + (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-770)) + (-4 *5 (-825)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-460)))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-535)) (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3)) - (-4 *3 (-1178))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) - (-5 *2 (-815 *4)) (-5 *1 (-306 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) - (-5 *2 (-815 *4)) (-5 *1 (-1211 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1205 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) - (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| *4)))))) - (|:| |%type| (-1124)))) - (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) - (-14 *5 (-1142)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-535))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-535))) - (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-400 (-535)))) (-5 *4 (-286 *8)) - (-5 *5 (-1191 (-400 (-535)))) (-5 *6 (-400 (-535))) - (-4 *8 (-13 (-27) (-1164) (-414 *7))) - (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-400 (-535)))) - (-5 *7 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *8))) - (-4 *8 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-400 (-535))) (-4 *4 (-1018)) (-4 *1 (-1209 *4 *3)) - (-4 *3 (-1186 *4))))) + (-12 (-5 *2 (-1194 (-550))) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-275 *3)) (-4 *3 (-1181))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) + (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) + (-5 *1 (-766))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1140 (-400 (-550)))) (-5 *1 (-915)) (-5 *3 (-550))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1144)) (-5 *4 (-925 (-550))) (-5 *2 (-323)) + (-5 *1 (-325)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1144)) (-5 *4 (-1060 (-925 (-550)))) (-5 *2 (-323)) + (-5 *1 (-325)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1020)) + (-4 *3 (-1068))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1227 *5)) (-4 *5 (-770)) (-5 *2 (-112)) + (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) +(((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-323))))) (((*1 *2 *1) - (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3)) - (-5 *2 (-400 (-535)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3))))) + (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1020))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1144)) + (-4 *5 (-13 (-444) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) (-5 *1 (-543 *5 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1017 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-14 *5 (-623 (-1144))) (-5 *2 (-623 (-623 (-997 (-400 *4))))) + (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-925 *4))) + (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-623 (-997 (-400 *4))))) (-5 *1 (-1253 *4 *5 *6)) + (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-516))))) +(((*1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1) (-4 *1 (-940))) ((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-667 (-1140 *8))) (-4 *5 (-1020)) (-4 *8 (-1020)) + (-4 *6 (-1203 *5)) (-5 *2 (-667 *6)) (-5 *1 (-492 *5 *6 *7 *8)) + (-4 *7 (-1203 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) (((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) + (-12 (-5 *3 (-747)) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008)))) + (-5 *1 (-551)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-747)) (-5 *4 (-1032)) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008)))) + (-5 *1 (-551)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-765)) (-5 *3 (-1032)) + (-5 *4 + (-2 (|:| |fn| (-309 (-219))) + (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) + (|:| |extra| (-1008)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-765)) (-5 *3 (-1032)) + (-5 *4 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)) + (|:| |extra| (-1008)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-778)) (-5 *3 (-1032)) + (-5 *4 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) + (-12 (-5 *3 (-786)) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))))) + (-5 *1 (-783)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-535)) (-4 *5 (-13 (-444) (-823) (-1009 *4) (-617 *4))) - (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) + (-12 (-5 *3 (-786)) (-5 *4 (-1032)) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))))) + (-5 *1 (-783)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-444) (-823) (-1009 *5) (-617 *5))) (-5 *5 (-535)) - (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-535))) - (-4 *7 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-535))) - (-4 *3 (-13 (-27) (-1164) (-414 *7))) - (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-535)) (-4 *4 (-1018)) (-4 *1 (-1188 *4 *3)) - (-4 *3 (-1217 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-890)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-1207 *3)) (-4 *3 (-1018))))) -(((*1 *2 *2) - (-12 + (-12 (-4 *1 (-814)) (-5 *3 (-1032)) + (-5 *4 + (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) + (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-814)) (-5 *3 (-1032)) + (-5 *4 + (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) + (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) + (|:| |ub| (-623 (-818 (-219)))))) + (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-816)) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-535)))) - (-4 *4 (-13 (-1200 *3) (-542) (-10 -8 (-15 -3478 ($ $ $))))) (-4 *3 (-542)) - (-5 *1 (-1204 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-921 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-444)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *1)))) - (-4 *1 (-1038 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1183))) - ((*1 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-1204 *3 *2)) - (-4 *2 (-13 (-1200 *3) (-542) (-10 -8 (-15 -3478 ($ $ $)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) - (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| -4296 *3) (|:| -4281 *4)))) (-5 *1 (-712 *3 *4)) - (-4 *3 (-1018)) (-4 *4 (-703)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) - (-5 *2 (-1119 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-235)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-618 (-1124))) (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *1 (-235)))) - ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) - ((*1 *2 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))) -(((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) - (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) - (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-890)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) - (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) - (-5 *2 (-747)) (-5 *1 (-385 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-808 (-890))))) - ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *3 (-542)) (-5 *2 (-535)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) - (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-747)) - (-5 *1 (-882 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) - (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4))) - (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-747)) (-5 *1 (-883 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) - (-4 *7 (-1200 *6)) (-4 *4 (-1200 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) - (-4 *9 (-13 (-361) (-356))) (-5 *2 (-747)) (-5 *1 (-989 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)) (-5 *2 (-747)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))) -(((*1 *1 *1) (-4 *1 (-1027))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-400 (-535))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-535)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-400 (-535))) (-5 *1 (-842 *4)) (-14 *4 *3) (-5 *3 (-535)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-400 (-535))) (-5 *1 (-843 *4 *5)) (-5 *3 (-535)) - (-4 *5 (-841 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-983)) (-5 *2 (-400 (-535))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1200 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4300 (*2 (-1142)))) (-4 *2 (-1018))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-717 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-823)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-951 *3)) (-4 *3 (-1018)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *2 (-1032 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-400 *5)) (-4 *4 (-1183)) (-4 *5 (-1200 *4)) - (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1200 *3)))) + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-816)) (-5 *4 (-1032)) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-868)) (-5 *3 (-1032)) + (-5 *4 + (-2 (|:| |pde| (-623 (-309 (-219)))) + (|:| |constraints| + (-623 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) + (|:| |grid| (-749)) (|:| |boundaryType| (-550)) + (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) + (|:| |tol| (-219)))) + (-5 *2 (-2 (|:| -3459 (-372)) (|:| |explanations| (-1126)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1144 (-400 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-184)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-665 (-307 (-219)))) (-5 *3 (-618 (-1142))) - (-5 *4 (-1224 (-307 (-219)))) (-5 *1 (-199)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-286 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1067)) - (-4 *3 (-1178)) (-5 *1 (-286 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-302 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)) (-5 *1 (-286 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-618 *1))) (-4 *1 (-291)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-291)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 (-1 *1 *1))) (-4 *1 (-291)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 (-618 *1))) (-4 *1 (-291)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-291)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-1 *1 *1))) (-4 *1 (-291)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-286 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1067)))) + (-12 (-5 *3 (-871)) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))))) + (-5 *1 (-870)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-535))) (-5 *4 (-1144 (-400 (-535)))) (-5 *1 (-303 *2)) - (-4 *2 (-38 (-400 (-535)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-823)) - (-4 *5 (-170)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) - (-4 *5 (-823)) (-4 *5 (-1018)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 (-618 *1))) - (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-747))) - (-5 *4 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-823)) - (-4 *5 (-1018)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-747))) (-5 *4 (-618 (-1 *1 *1))) - (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 *1)) (-5 *4 (-1142)) - (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-594 (-524))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1142)) (-4 *1 (-414 *4)) (-4 *4 (-823)) - (-4 *4 (-594 (-524))))) - ((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-594 (-524))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-1142))) (-4 *1 (-414 *3)) (-4 *3 (-823)) - (-4 *3 (-594 (-524))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-524))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1178)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1067)) - (-4 *5 (-1178)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-808 *3)) (-4 *3 (-356)) (-5 *1 (-695 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1067)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-400 (-917 *4))) (-5 *3 (-1142)) (-4 *4 (-542)) - (-5 *1 (-1011 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-618 (-1142))) (-5 *4 (-618 (-400 (-917 *5)))) - (-5 *2 (-400 (-917 *5))) (-4 *5 (-542)) (-5 *1 (-1011 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-286 (-400 (-917 *4)))) (-5 *2 (-400 (-917 *4))) (-4 *4 (-542)) - (-5 *1 (-1011 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-618 (-286 (-400 (-917 *4))))) (-5 *2 (-400 (-917 *4))) - (-4 *4 (-542)) (-5 *1 (-1011 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1119 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-1200 *4)) (-4 *4 (-1018)) (-5 *2 (-1224 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-5 *2 (-1136 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-1018)) (-4 *1 (-1200 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-921 *4 *5 *3)))) + (-12 (-5 *3 (-871)) (-5 *4 (-1032)) + (-5 *2 + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))))) + (-5 *1 (-870))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) + (-4 *4 (-342))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-323))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-300)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) - (-4 *1 (-1200 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-1018)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1200 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018))))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3935 *1))) + (-4 *1 (-300))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260))))) (((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1200 *2)) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1203 *2)) (-4 *2 (-170)))) ((*1 *2) - (-12 (-4 *4 (-1200 *2)) (-4 *2 (-170)) (-5 *1 (-402 *3 *2 *4)) - (-4 *3 (-403 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) + (-12 (-4 *4 (-1203 *2)) (-4 *2 (-170)) (-5 *1 (-401 *3 *2 *4)) + (-4 *3 (-402 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-402 *2 *3)) (-4 *3 (-1203 *2)) (-4 *2 (-170)))) ((*1 *2) - (-12 (-4 *3 (-1200 *2)) (-5 *2 (-535)) (-5 *1 (-744 *3 *4)) - (-4 *4 (-403 *2 *3)))) + (-12 (-4 *3 (-1203 *2)) (-5 *2 (-550)) (-5 *1 (-746 *3 *4)) + (-4 *4 (-402 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) - (-4 *3 (-170)))) - ((*1 *2 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-170))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) - (-4 *3 (-170)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-170))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)) - (-4 *3 (-542)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542))))) + (-12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *2 *3) + (-12 (-4 *2 (-542)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1203 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-170))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-623 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4342)) (-4 *1 (-481 *3)) (-4 *3 (-1181)) + (-5 *2 (-623 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-550)) (-5 *1 (-198))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1200 *4 *5)) (-5 *3 (-623 *5)) (-14 *4 (-1144)) + (-4 *5 (-356)) (-5 *1 (-896 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *5)) (-4 *5 (-356)) (-5 *2 (-1140 *5)) + (-5 *1 (-896 *4 *5)) (-14 *4 (-1144)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-623 *6)) (-5 *4 (-749)) (-4 *6 (-356)) + (-5 *2 (-400 (-925 *6))) (-5 *1 (-1021 *5 *6)) (-14 *5 (-1144))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -4296 *4) (|:| -2091 *3) (|:| -3223 *3))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1032 *3 *4 *5)))) + (-12 (-4 *4 (-1203 *2)) (-4 *2 (-1185)) (-5 *1 (-146 *2 *4 *3)) + (-4 *3 (-1203 (-400 *4)))))) +(((*1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1230))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) + (-4 *3 (-1068))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) + (-5 *2 (-1008)) (-5 *1 (-727))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1181)) (-4 *2 (-1020)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-836)))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-916 (-219))) (-5 *2 (-219)) (-5 *1 (-1177)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1018)) - (-5 *2 (-2 (|:| -4296 *3) (|:| -2091 *1) (|:| -3223 *1))) - (-4 *1 (-1200 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *4 (-542)) (-4 *5 (-1200 *4)) - (-5 *2 (-2 (|:| -1879 (-601 *4 *5)) (|:| -1878 (-400 *5)))) - (-5 *1 (-601 *4 *5)) (-5 *3 (-400 *5)))) + (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-1020))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1018)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-444)) (-4 *3 (-1018)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1200 *3))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-1198 *4 *2)) - (-4 *2 (-1200 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) - (-5 *1 (-1197 *4 *3)) (-4 *3 (-1200 *4))))) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1020)))) + ((*1 *2 *1) + (-12 (-4 *3 (-542)) (-5 *2 (-112)) (-5 *1 (-603 *3 *4)) + (-4 *4 (-1203 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-705)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-52))))) +(((*1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-323))))) +(((*1 *2 *2) + (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) + (-5 *1 (-1092 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1037 *4 *3)) (-4 *4 (-13 (-823) (-356))) + (-4 *3 (-1203 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-878 (-550))) (-5 *4 (-550)) (-5 *2 (-667 *4)) + (-5 *1 (-1001 *5)) (-4 *5 (-1020)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-667 (-550))) (-5 *1 (-1001 *4)) + (-4 *4 (-1020)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-878 (-550)))) (-5 *4 (-550)) + (-5 *2 (-623 (-667 *4))) (-5 *1 (-1001 *5)) (-4 *5 (-1020)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-623 (-550)))) (-5 *2 (-623 (-667 (-550)))) + (-5 *1 (-1001 *4)) (-4 *4 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-618 *3)) (-5 *1 (-1196 *4 *3)) - (-4 *3 (-1200 *4))))) + (-12 (-4 *1 (-882)) (-5 *2 (-411 (-1140 *1))) (-5 *3 (-1140 *1))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) + (-12 (-5 *2 (-836)) (-5 *1 (-1124 *3)) (-4 *3 (-1068)) + (-4 *3 (-1181))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 *4)) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-925 (-400 (-550)))) (-5 *4 (-1144)) + (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-623 (-219))) (-5 *1 (-293))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-836) (-836) (-836))) (-5 *4 (-550)) (-5 *2 (-836)) + (-5 *1 (-627 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-836)) (-5 *1 (-829 *3 *4 *5)) (-4 *3 (-1020)) + (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-836)) (-5 *1 (-1140 *3)) (-4 *3 (-1020))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-733))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1020)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1203 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1126)) (-5 *1 (-1162))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-542) (-145))) - (-5 *2 (-2 (|:| -3456 *3) (|:| -3455 *3))) (-5 *1 (-1196 *4 *3)) - (-4 *3 (-1200 *4))))) + (-12 (-5 *3 (-1227 *5)) (-4 *5 (-619 *4)) (-4 *4 (-542)) + (-5 *2 (-112)) (-5 *1 (-618 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-372)) (-5 *1 (-1032))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3340 *3) (|:| |coef2| (-760 *3)))) + (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-112)) + (-5 *2 (-1008)) (-5 *1 (-724))))) +(((*1 *2 *1) + (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) + (-5 *2 + (-2 (|:| -2551 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -2005 (-400 *6)) + (|:| |special| (-400 *6)))) + (-5 *1 (-706 *5 *6)) (-5 *3 (-400 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-869 *3 *4)) + (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-749)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| -2671 *3) (|:| -2682 *3))) (-5 *1 (-869 *3 *5)) + (-4 *3 (-1203 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) + (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1038 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) + (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1038 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) + (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1113 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-623 *9)) (-5 *3 (-623 *8)) (-5 *4 (-112)) + (-4 *8 (-1034 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1113 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1203 *4)) (-5 *1 (-785 *4 *2 *3 *5)) + (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *3 (-634 *2)) + (-4 *5 (-634 (-400 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1203 *4)) (-5 *1 (-785 *4 *2 *5 *3)) + (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *5 (-634 *2)) + (-4 *3 (-634 (-400 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-922 *5 *6 *7)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-441 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-356) (-145))) + (-5 *2 (-623 (-2 (|:| -3521 (-749)) (|:| -3335 *4) (|:| |num| *4)))) + (-5 *1 (-392 *3 *4)) (-4 *4 (-1203 *3))))) +(((*1 *1) (-5 *1 (-801)))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-356)) (-5 *2 (-623 *3)) (-5 *1 (-918 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-142))) (-5 *1 (-139)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-139))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550))))) +(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1227 *1)) (-4 *1 (-360 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-356)) (-4 *2 (-1203 *4)) + (-5 *1 (-895 *4 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *1)) (-4 *1 (-1034 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1174 *5 *6 *7 *3)) + (-4 *5 (-542)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1144)) (-5 *2 (-430)) (-5 *1 (-1148))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1068) (-34))) + (-5 *2 (-112)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-13 (-1068) (-34)))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-1200 *3))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-542) (-145))) - (-5 *1 (-1196 *4 *2)) (-4 *2 (-1200 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-542) (-145))) - (-5 *1 (-1196 *4 *2)) (-4 *2 (-1200 *4))))) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-950 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-5 *2 + (-2 (|:| |mval| (-667 *4)) (|:| |invmval| (-667 *4)) + (|:| |genIdeal| (-495 *4 *5 *6 *7)))) + (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-922 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) - (-4 *3 (-365 *5)))) + (-12 (-5 *3 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) + (-4 *4 (-342)) (-5 *2 (-749)) (-5 *1 (-339 *4)))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-344 *3 *4)) (-14 *3 (-894)) + (-14 *4 (-894)))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) + (-14 *4 + (-3 (-1140 *3) + (-1227 (-623 (-2 (|:| -3625 *3) (|:| -2922 (-1088))))))))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) + (-14 *4 (-894))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-61 *3)) (-14 *3 (-1144)))) + ((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-68 *3)) (-14 *3 (-1144)))) + ((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-71 *3)) (-14 *3 (-1144)))) + ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1232)))) + ((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1232)) (-5 *1 (-390)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1126)) (-5 *4 (-836)) (-5 *2 (-1232)) (-5 *1 (-1106)))) + ((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-1106)))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) - (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) + (-12 (-5 *3 (-623 (-836))) (-5 *2 (-1232)) (-5 *1 (-1106))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-740)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1140 (-400 (-925 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-836))) ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-799))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1126)) (-5 *4 (-167 (-219))) (-5 *5 (-550)) + (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) (-4 *4 (-444)) (-4 *4 (-825)) + (-5 *1 (-559 *4 *2)) (-4 *2 (-277)) (-4 *2 (-423 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1227 *4)) (-4 *4 (-1181)) (-4 *1 (-232 *3 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1158 *4 *5)) + (-4 *4 (-1068)) (-4 *5 (-1068))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-623 (-309 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) + (-5 *1 (-204))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-1068))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-667 *3)))) + (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-384))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550))))) +(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 *5)) (-4 *5 (-962 *4)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |num| (-665 *4)) (|:| |den| *4))) (-5 *1 (-669 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) - (-5 *2 (-2 (|:| -3600 *7) (|:| |rh| (-618 (-400 *6))))) - (-5 *1 (-783 *5 *6 *7 *3)) (-5 *4 (-618 (-400 *6))) (-4 *7 (-634 *6)) - (-4 *3 (-634 (-400 *6))))) + (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) + ((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1) (-4 *1 (-842 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-770)) + (-4 *4 (-825))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4342)) (-4 *1 (-229 *3)) + (-4 *3 (-1068)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1181))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1195 *4 *5 *3)) - (-4 *3 (-1200 *5))))) + (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-309 *4)) + (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 (-167 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-623 *2) *2 *2 *2)) (-4 *2 (-1068)) + (-5 *1 (-102 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1068)) (-5 *1 (-102 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) (((*1 *2 *2) - (-12 (-4 *3 (-542)) (-4 *4 (-962 *3)) (-5 *1 (-140 *3 *4 *2)) - (-4 *2 (-365 *4)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) + (-14 *4 *2)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1232)) (-5 *1 (-384)))) + ((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-384))))) +(((*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1020))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3090 *1) (|:| -4329 *1) (|:| |associate| *1))) + (-4 *1 (-542))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-623 (-1144))) + (-5 *2 (-623 (-623 (-372)))) (-5 *1 (-996)) (-5 *5 (-372)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1017 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-14 *5 (-623 (-1144))) (-5 *2 (-623 (-623 (-997 (-400 *4))))) + (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-623 (-997 (-400 *5))))) (-5 *1 (-1253 *5 *6 *7)) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-4 *2 (-365 *4)) - (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) + (-12 (-5 *3 (-623 (-925 *4))) + (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-623 (-997 (-400 *4))))) (-5 *1 (-1253 *4 *5 *6)) + (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144)))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *3 (-623 (-847))) + (-5 *4 (-623 (-894))) (-5 *5 (-623 (-256))) (-5 *1 (-460)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *3 (-623 (-847))) + (-5 *4 (-623 (-894))) (-5 *1 (-460)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *1 (-460)))) + ((*1 *1 *1) (-5 *1 (-460)))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 *5)) (-4 *5 (-962 *4)) (-4 *4 (-542)) (-5 *2 (-665 *4)) - (-5 *1 (-669 *4 *5)))) + (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-309 *4)) + (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 (-167 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) ((*1 *2 *2) - (-12 (-4 *3 (-542)) (-4 *4 (-962 *3)) (-5 *1 (-1195 *3 *4 *2)) - (-4 *2 (-1200 *4))))) + (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3)))))) +(((*1 *1 *1) (-4 *1 (-1029)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1020)) + (-5 *1 (-1128 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-140 *2 *4 *3)) - (-4 *3 (-365 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-494 *2 *4 *5 *3)) - (-4 *5 (-365 *2)) (-4 *3 (-365 *4)))) + (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-185)) (-5 *3 (-550)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-962 *2)) (-4 *2 (-542)) - (-5 *1 (-669 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-1195 *2 *4 *3)) - (-4 *3 (-1200 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-757 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-927 *3 *2)) (-4 *2 (-130)) (-4 *3 (-542)) (-4 *3 (-1018)) - (-4 *2 (-768)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1136 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-942)) (-4 *2 (-130)) (-5 *1 (-1144 *3)) (-4 *3 (-542)) - (-4 *3 (-1018)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-1193 *4 *3)) (-14 *4 (-1142)) (-4 *3 (-1018))))) -(((*1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-1178)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1178))))) + (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-4 *1 (-876 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-5 *1 (-869 *2 *4)) + (-4 *2 (-1203 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-535)) - (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) - (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-535)) - (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) - (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535)))))) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *8 (-1034 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-574 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-677))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-300))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-260))))) +(((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550)))) + ((*1 *1 *1) (-4 *1 (-975))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-985)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-4 *1 (-985)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-985)) (-5 *2 (-894)))) + ((*1 *1 *1) (-4 *1 (-985)))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-550)) + (-5 *6 + (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372)))) + (-5 *7 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) + (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) + (-5 *1 (-766)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-550)) + (-5 *6 + (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -1902 (-372)))) + (-5 *7 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) + (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) + (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) - (-4 *3 (-1200 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-660 *2)) (-4 *2 (-1068)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-747))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535))))) - ((*1 *2 *3) - (-12 (-5 *2 (-398 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1200 (-400 (-535)))))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535)))))) + (-12 (-5 *3 (-1 (-623 *5) (-623 *5))) (-5 *4 (-550)) + (-5 *2 (-623 *5)) (-5 *1 (-660 *5)) (-4 *5 (-1068))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4342)) (-4 *1 (-481 *3)) (-4 *3 (-1181)) + (-4 *3 (-1068)) (-5 *2 (-749)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4342)) (-4 *1 (-481 *4)) + (-4 *4 (-1181)) (-5 *2 (-749))))) +(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-749))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1140 *7)) + (-4 *5 (-1020)) (-4 *7 (-1020)) (-4 *2 (-1203 *5)) + (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1203 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 (-430))))) + (-5 *1 (-1148))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1018))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2855 *3) (|:| |gap| (-749)) (|:| -3526 (-760 *3)) + (|:| -2786 (-760 *3)))) + (-5 *1 (-760 *3)) (-4 *3 (-1020)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) + (-5 *2 + (-2 (|:| -2855 *1) (|:| |gap| (-749)) (|:| -3526 *1) + (|:| -2786 *1))) + (-4 *1 (-1034 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 + (-2 (|:| -2855 *1) (|:| |gap| (-749)) (|:| -3526 *1) + (|:| -2786 *1))) + (-4 *1 (-1034 *3 *4 *5))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) + (-4 *2 (-1203 (-167 *3)))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1230))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-542)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1203 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-170))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) + (-5 *2 (-1008)) (-5 *1 (-727))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-48))) (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1200 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))) + (-12 (-5 *4 (-623 (-48))) (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1203 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1203 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-398 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-921 (-48) *6 *5)))) + (-12 (-5 *4 (-623 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) + (-5 *2 (-411 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-922 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) - (-4 *7 (-921 (-48) *6 *5)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1136 *7)))) + (-12 (-5 *4 (-623 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) + (-4 *7 (-922 (-48) *6 *5)) (-5 *2 (-411 (-1140 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1140 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-165 *4 *3)) - (-4 *3 (-1200 (-166 *4))))) + (-12 (-4 *4 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-165 *4 *3)) + (-4 *3 (-1203 (-167 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-1200 (-166 *4))))) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-411 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-1200 (-166 *4))))) + (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) + (-4 *3 (-1203 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) - (-4 *3 (-1200 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535))))) + (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1203 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-747))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535))))) + (-12 (-5 *4 (-623 (-749))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1203 (-550))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535))))) + (-12 (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *2 (-411 *3)) + (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535))))) + (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1203 (-550))))) ((*1 *2 *3) - (-12 (-5 *2 (-398 (-166 (-535)))) (-5 *1 (-438)) (-5 *3 (-166 (-535))))) + (-12 (-5 *2 (-411 (-167 (-550)))) (-5 *1 (-438)) + (-5 *3 (-167 (-550))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-823) - (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142)))))) - (-4 *5 (-769)) (-4 *7 (-542)) (-5 *2 (-398 *3)) - (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-542)) (-4 *3 (-921 *7 *5 *4)))) + (-13 (-825) + (-10 -8 (-15 -4028 ((-1144) $)) + (-15 -1861 ((-3 $ "failed") (-1144)))))) + (-4 *5 (-771)) (-4 *7 (-542)) (-5 *2 (-411 *3)) + (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-542)) + (-4 *3 (-922 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-300)) (-5 *2 (-398 (-1136 *4))) (-5 *1 (-450 *4)) - (-5 *3 (-1136 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) - (-4 *7 (-13 (-356) (-145) (-701 *5 *6))) (-5 *2 (-398 *3)) - (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1200 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-398 (-1136 *7)) (-1136 *7))) (-4 *7 (-13 (-300) (-145))) - (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-398 *3)) (-5 *1 (-529 *5 *6 *7 *3)) - (-4 *3 (-921 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-398 (-1136 *7)) (-1136 *7))) (-4 *7 (-13 (-300) (-145))) - (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-921 *7 *6 *5)) - (-5 *2 (-398 (-1136 *8))) (-5 *1 (-529 *5 *6 *7 *8)) (-5 *3 (-1136 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-618 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *6 (-1200 *5)) (-5 *2 (-618 (-631 (-400 *6)))) (-5 *1 (-635 *5 *6)) - (-5 *3 (-631 (-400 *6))))) + (-12 (-4 *4 (-300)) (-5 *2 (-411 (-1140 *4))) (-5 *1 (-450 *4)) + (-5 *3 (-1140 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) + (-4 *7 (-13 (-356) (-145) (-703 *5 *6))) (-5 *2 (-411 *3)) + (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1203 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-411 (-1140 *7)) (-1140 *7))) + (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) + (-5 *2 (-411 *3)) (-5 *1 (-530 *5 *6 *7 *3)) + (-4 *3 (-922 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-411 (-1140 *7)) (-1140 *7))) + (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) + (-4 *8 (-922 *7 *6 *5)) (-5 *2 (-411 (-1140 *8))) + (-5 *1 (-530 *5 *6 *7 *8)) (-5 *3 (-1140 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-623 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *6 (-1203 *5)) (-5 *2 (-623 (-631 (-400 *6)))) + (-5 *1 (-635 *5 *6)) (-5 *3 (-631 (-400 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *5 (-1200 *4)) (-5 *2 (-618 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) - (-5 *3 (-631 (-400 *5))))) + (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *5 (-1203 *4)) (-5 *2 (-623 (-631 (-400 *5)))) + (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-618 (-648 *4))) - (-5 *1 (-648 *4)))) + (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-623 (-650 *4))) + (-5 *1 (-650 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-535)) (-5 *2 (-618 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1200 *4)))) + (-12 (-5 *4 (-550)) (-5 *2 (-623 *3)) (-5 *1 (-674 *3)) + (-4 *3 (-1203 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-343)) (-5 *2 (-398 *3)) - (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4)))) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-342)) (-5 *2 (-411 *3)) + (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-922 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-343)) (-4 *7 (-921 *6 *5 *4)) - (-5 *2 (-398 (-1136 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-342)) + (-4 *7 (-922 *6 *5 *4)) (-5 *2 (-411 (-1140 *7))) + (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-769)) + (-12 (-4 *4 (-771)) (-4 *5 - (-13 (-823) - (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142)))))) - (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-707 *4 *5 *6 *3)) - (-4 *3 (-921 (-917 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) - (-4 *6 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-709 *4 *5 *6 *3)) - (-4 *3 (-921 (-400 (-917 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-13 (-300) (-145))) - (-5 *2 (-398 *3)) (-5 *1 (-710 *4 *5 *6 *3)) - (-4 *3 (-921 (-400 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) - (-5 *2 (-398 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-921 *6 *5 *4)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-718 *4 *5 *6 *7)) - (-5 *3 (-1136 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-398 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1200 (-400 (-535)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-398 *3)) (-5 *1 (-1013 *3)) - (-4 *3 (-1200 (-400 (-917 (-535))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1200 (-400 (-535)))) - (-4 *5 (-13 (-356) (-145) (-701 (-400 (-535)) *4))) (-5 *2 (-398 *3)) - (-5 *1 (-1046 *4 *5 *3)) (-4 *3 (-1200 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1200 (-400 (-917 (-535))))) - (-4 *5 (-13 (-356) (-145) (-701 (-400 (-917 (-535))) *4))) (-5 *2 (-398 *3)) - (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1200 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-921 *6 *4 *5)) - (-5 *2 (-398 (-1136 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7)) - (-5 *3 (-1136 (-400 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1183)))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-535)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-842 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-14 *2 (-535)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-535)) (-14 *3 *2) (-5 *1 (-843 *3 *4)) (-4 *4 (-841 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-535)) (-5 *1 (-843 *2 *3)) (-4 *3 (-841 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-535)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1217 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1217 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) + (-13 (-825) + (-10 -8 (-15 -4028 ((-1144) $)) + (-15 -1861 ((-3 $ "failed") (-1144)))))) + (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-709 *4 *5 *6 *3)) + (-4 *3 (-922 (-925 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-747)) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-747)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-535))) (-5 *4 (-286 *6)) - (-4 *6 (-13 (-27) (-1164) (-414 *5))) - (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-747))) - (-4 *7 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-747))) - (-4 *3 (-13 (-27) (-1164) (-414 *7))) - (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-542)) - (-5 *2 (-400 (-917 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-542)) - (-5 *2 (-400 (-917 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-166 (-535))) (-5 *2 (-112)) (-5 *1 (-438)))) + (-12 (-4 *4 (-771)) + (-4 *5 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *6 (-542)) + (-5 *2 (-411 *3)) (-5 *1 (-711 *4 *5 *6 *3)) + (-4 *3 (-922 (-400 (-925 *6)) *4 *5)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) - (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-534)))) - ((*1 *2 *1) (-12 (-4 *1 (-1183)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1181))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142))))) - (-5 *1 (-1181))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-823)) (-4 *3 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1180 *2)) - (-4 *2 (-1067)))) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-13 (-300) (-145))) + (-5 *2 (-411 *3)) (-5 *1 (-712 *4 *5 *6 *3)) + (-4 *3 (-922 (-400 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-823)) (-5 *1 (-1180 *2))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1067)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1067)) (-5 *2 (-112)) - (-5 *1 (-1180 *3))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3563 (-618 *3)) (|:| -3562 (-618 *3)))) - (-5 *1 (-1180 *3)) (-4 *3 (-1067))))) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) + (-5 *2 (-411 *3)) (-5 *1 (-720 *4 *5 *6 *3)) + (-4 *3 (-922 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) + (-4 *7 (-922 *6 *5 *4)) (-5 *2 (-411 (-1140 *7))) + (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-980 *3)) + (-4 *3 (-1203 (-400 (-550)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-1014 *3)) + (-4 *3 (-1203 (-400 (-925 (-550))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1203 (-400 (-550)))) + (-4 *5 (-13 (-356) (-145) (-703 (-400 (-550)) *4))) + (-5 *2 (-411 *3)) (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1203 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1203 (-400 (-925 (-550))))) + (-4 *5 (-13 (-356) (-145) (-703 (-400 (-925 (-550))) *4))) + (-5 *2 (-411 *3)) (-5 *1 (-1049 *4 *5 *3)) (-4 *3 (-1203 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) + (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-411 (-1140 (-400 *7)))) + (-5 *1 (-1139 *4 *5 *6 *7)) (-5 *3 (-1140 (-400 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1185)))) + ((*1 *2 *3) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-1192 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-576 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1088))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1144)) (-5 *1 (-569 *2)) (-4 *2 (-1011 *3)) + (-4 *2 (-356)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-569 *2)) (-4 *2 (-356)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-610 *4 *2)) + (-4 *2 (-13 (-423 *4) (-975) (-1166))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1060 *2)) (-4 *2 (-13 (-423 *4) (-975) (-1166))) + (-4 *4 (-13 (-825) (-542))) (-5 *1 (-610 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-932)) (-5 *2 (-1144)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 *1)) (-4 *1 (-932))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1126)) (-5 *3 (-550)) (-5 *1 (-235)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-623 (-1126))) (-5 *3 (-550)) (-5 *4 (-1126)) + (-5 *1 (-235)))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1205 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-5 *2 (-1230)) (-5 *1 (-1180 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-5 *2 (-1230)) (-5 *1 (-1180 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-535)) (-4 *5 (-343)) (-5 *2 (-398 (-1136 (-1136 *5)))) - (-5 *1 (-1177 *5)) (-5 *3 (-1136 (-1136 *5)))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-623 (-219))) (-5 *1 (-198))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1136 (-1136 *4)))) (-5 *1 (-1177 *4)) - (-5 *3 (-1136 (-1136 *4)))))) + (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-4 *5 (-1203 *4)) (-5 *2 (-1232)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1203 (-400 *5))) (-14 *7 *6)))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) + (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) + (-5 *5 (-1062 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1101 (-219))) + (-5 *1 (-675))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1136 (-1136 *4)))) (-5 *1 (-1177 *4)) - (-5 *3 (-1136 (-1136 *4)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3)) - (-4 *3 (-1178)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1173 *4 *5 *3 *2)) (-4 *4 (-542)) (-4 *5 (-769)) - (-4 *3 (-823)) (-4 *2 (-1032 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-1176 *2)) (-4 *2 (-1178))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-618 (-618 (-219)))) (-5 *4 (-219)) (-5 *2 (-618 (-914 *4))) - (-5 *1 (-1175)) (-5 *3 (-914 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *2 (-618 (-618 (-219)))) (-5 *1 (-1175))))) -(((*1 *1 *2) - (-12 (-5 *2 (-890)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1018)) (-4 *4 (-1178)))) - ((*1 *1 *2) - (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-4299 *3) (-747))) - (-14 *6 - (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *5)) - (-2 (|:| -2483 *2) (|:| -2484 *5)))) - (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-823)) - (-4 *7 (-921 *4 *5 (-836 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-460)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-914 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)) (-5 *3 (-219))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-219)) (-5 *5 (-535)) (-5 *2 (-1174 *3)) (-5 *1 (-766 *3)) - (-4 *3 (-945)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-112)) (-5 *1 (-1174 *2)) - (-4 *2 (-945))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945))))) + (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1092 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-1174 *3)) (-4 *3 (-945))))) -(((*1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-945))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3666 (-618 *9)))) (-5 *3 (-618 *9)) - (-4 *1 (-1173 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1032 *5 *6 *7)) - (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3666 (-618 *8)))) (-5 *3 (-618 *8)) - (-4 *1 (-1173 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) - (-5 *2 (-2 (|:| -4204 (-618 *6)) (|:| -1813 (-618 *6))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1166))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1173 *5 *6 *7 *3)) (-4 *5 (-542)) - (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1037 *4 *3)) (-4 *4 (-13 (-823) (-356))) + (-4 *3 (-1203 *4)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-112)))) + (-12 (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-858 *3 *4 *5)) + (-4 *3 (-1068)) (-4 *5 (-644 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-618 *7))) (-4 *1 (-1173 *4 *5 *6 *7)) - (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-618 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) - (-4 *1 (-1173 *5 *6 *7 *8)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *8 (-1032 *5 *6 *7))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *2 (-1032 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *2 (-1032 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *2 (-1032 *3 *4 *5))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *2 (-1032 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *5 (-1032 *2 *3 *4))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *2 (-1032 *3 *4 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-516))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 *10)) - (-5 *1 (-602 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1038 *5 *6 *7 *8)) - (-4 *10 (-1075 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-618 (-1142))) - (-5 *2 (-618 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) - (-5 *1 (-606 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) - (-5 *1 (-998 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) - (-5 *1 (-998 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-1015 *5 *6)))) + (-12 (-5 *4 (-112)) (-4 *5 (-342)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -1877 (-623 (-2 (|:| |irr| *3) (|:| -4245 (-550))))))) + (-5 *1 (-210 *5 *3)) (-4 *3 (-1203 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 *1)) - (-4 *1 (-1038 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) - (-5 *1 (-1112 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) - (-5 *1 (-1112 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1173 *4 *5 *6 *7))))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-618 (-2 (|:| -4204 *1) (|:| -1813 (-618 *7))))) (-5 *3 (-618 *7)) - (-4 *1 (-1173 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-1124 (-219))) (-5 *1 (-186)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-309 (-219))) (-5 *4 (-623 (-1144))) + (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-293)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *4 (-623 (-1144))) + (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-293))))) +(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-323))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) + (-4 *2 (-1181))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-733))))) (((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-747))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-618 (-1142))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-618 (-890))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) - (-14 *4 (-890)) (-14 *5 (-964 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-542)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1200 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-703)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *5)) (-5 *3 (-618 (-747))) (-4 *1 (-717 *4 *5)) - (-4 *4 (-1018)) (-4 *5 (-823)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 (-747))) (-4 *1 (-921 *4 *5 *6)) - (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-921 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) - (-4 *2 (-823)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-4 *2 (-921 *4 (-521 *5) *5)) (-5 *1 (-1092 *4 *5 *2)) - (-4 *4 (-1018)) (-4 *5 (-823)))) + (-12 (-4 *3 (-1020)) (-5 *2 (-1227 *3)) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1203 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-109)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1126)) (-5 *1 (-1162))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-1001 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-623 (-667 *3))) (-4 *3 (-1020)) (-5 *1 (-1001 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-1001 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-623 (-667 *3))) (-4 *3 (-1020)) (-5 *1 (-1001 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-550))) (-4 *3 (-1020)) (-5 *1 (-578 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1187 *3)) (-4 *3 (-1020)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1218 *3)) (-4 *3 (-1020))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) + (-4 *9 (-825)) (-4 *3 (-1034 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1038 *7 *8 *9 *3 *4)) (-4 *4 (-1040 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1034 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) + (-4 *9 (-825)) (-4 *3 (-1034 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1113 *7 *8 *9 *3 *4)) (-4 *4 (-1077 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1034 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1113 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1113 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-731))))) +(((*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-623 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-749)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-771)) (-4 *6 (-922 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-825)) + (-5 *1 (-441 *4 *3 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-390))))) +(((*1 *1) (-5 *1 (-801)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-287 (-818 *3))) (-4 *3 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-3 (-818 *3) + (-2 (|:| |leftHandLimit| (-3 (-818 *3) "failed")) + (|:| |rightHandLimit| (-3 (-818 *3) "failed"))) + "failed")) + (-5 *1 (-616 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-287 *3)) (-5 *5 (-1126)) + (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-818 *3)) (-5 *1 (-616 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-287 (-818 (-925 *5)))) (-4 *5 (-444)) + (-5 *2 + (-3 (-818 (-400 (-925 *5))) + (-2 (|:| |leftHandLimit| (-3 (-818 (-400 (-925 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-818 (-400 (-925 *5))) "failed"))) + "failed")) + (-5 *1 (-617 *5)) (-5 *3 (-400 (-925 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-287 (-400 (-925 *5)))) (-5 *3 (-400 (-925 *5))) + (-4 *5 (-444)) + (-5 *2 + (-3 (-818 *3) + (-2 (|:| |leftHandLimit| (-3 (-818 *3) "failed")) + (|:| |rightHandLimit| (-3 (-818 *3) "failed"))) + "failed")) + (-5 *1 (-617 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-287 (-400 (-925 *6)))) (-5 *5 (-1126)) + (-5 *3 (-400 (-925 *6))) (-4 *6 (-444)) (-5 *2 (-818 *3)) + (-5 *1 (-617 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-594 *1)) (-4 *1 (-423 *4)) (-4 *4 (-825)) + (-4 *4 (-542)) (-5 *2 (-400 (-1140 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1166))) + (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 (-1140 (-400 (-1140 *3)))) (-5 *1 (-546 *6 *3 *7)) + (-5 *5 (-1140 *3)) (-4 *7 (-1068)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1223 *5)) (-14 *5 (-1144)) (-4 *6 (-1020)) + (-5 *2 (-1200 *5 (-925 *6))) (-5 *1 (-920 *5 *6)) (-5 *3 (-925 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-922 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-1140 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-917 *4)) (-5 *1 (-1171 *4)) (-4 *4 (-1018))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1092 *4 *3 *5))) (-4 *4 (-38 (-400 (-535)))) - (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *1 (-1092 *4 *3 *5)) - (-4 *5 (-921 *4 (-521 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1171 *4))) (-5 *3 (-1142)) (-5 *1 (-1171 *4)) - (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018))))) -(((*1 *2 *2) - (-12 (-4 *3 (-594 (-861 *3))) (-4 *3 (-857 *3)) (-4 *3 (-13 (-823) (-444))) - (-5 *1 (-1170 *3 *2)) (-4 *2 (-594 (-861 *3))) (-4 *2 (-857 *3)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) + (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-1140 *1)) + (-4 *1 (-922 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1020)) + (-4 *7 (-922 *6 *5 *4)) (-5 *2 (-400 (-1140 *3))) + (-5 *1 (-923 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1140 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))) + (-4 *7 (-922 *6 *5 *4)) (-4 *5 (-771)) (-4 *4 (-825)) + (-4 *6 (-1020)) (-5 *1 (-923 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) (-4 *5 (-542)) + (-5 *2 (-400 (-1140 (-400 (-925 *5))))) (-5 *1 (-1016 *5)) + (-5 *3 (-400 (-925 *5)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1020)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-1020))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-823)) - (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) (-4 *5 (-921 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-535))) (-5 *1 (-1085)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1164)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-542)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-542)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-166 (-307 *4))) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-547)) (-5 *3 (-550)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-166 *3)) (-5 *1 (-1168 *4 *3)) - (-4 *3 (-13 (-27) (-1164) (-414 *4)))))) + (-12 (-5 *2 (-1140 (-400 (-550)))) (-5 *1 (-915)) (-5 *3 (-550))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-112)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-112)) - (-5 *1 (-1168 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-307 *4)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-4 *5 (-1203 *4)) (-5 *2 (-623 (-2 (|:| -3335 *5) (|:| -3065 *5)))) + (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-634 *5)) + (-4 *6 (-634 (-400 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-4 *4 (-1203 *5)) (-5 *2 (-623 (-2 (|:| -3335 *4) (|:| -3065 *4)))) + (-5 *1 (-785 *5 *4 *3 *6)) (-4 *3 (-634 *4)) + (-4 *6 (-634 (-400 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-307 *4)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))) + (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-4 *5 (-1203 *4)) (-5 *2 (-623 (-2 (|:| -3335 *5) (|:| -3065 *5)))) + (-5 *1 (-785 *4 *5 *6 *3)) (-4 *6 (-634 *5)) + (-4 *3 (-634 (-400 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-4 *4 (-1203 *5)) (-5 *2 (-623 (-2 (|:| -3335 *4) (|:| -3065 *4)))) + (-5 *1 (-785 *5 *4 *6 *3)) (-4 *6 (-634 *4)) + (-4 *3 (-634 (-400 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1174 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-1148))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3)))))) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-950 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-623 (-1140 *5))) (-5 *3 (-1140 *5)) + (-4 *5 (-164 *4)) (-4 *4 (-535)) (-5 *1 (-147 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) - (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) + (|partial| -12 (-5 *2 (-623 *3)) (-4 *3 (-1203 *5)) + (-4 *5 (-1203 *4)) (-4 *4 (-342)) (-5 *1 (-351 *4 *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3)))))) + (|partial| -12 (-5 *2 (-623 (-1140 (-550)))) (-5 *3 (-1140 (-550))) + (-5 *1 (-558)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) - (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (|partial| -12 (-5 *2 (-623 (-1140 *1))) (-5 *3 (-1140 *1)) + (-4 *1 (-882))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-594 *1))) (-4 *1 (-295))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) - ((*1 *1 *1) (-4 *1 (-1167)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1020)) (-14 *3 (-623 (-1144))))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) - ((*1 *1 *1) (-4 *1 (-1167)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) - ((*1 *1 *1) (-4 *1 (-1167)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) - ((*1 *1 *1) (-4 *1 (-1167)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1020) (-825))) + (-14 *3 (-623 (-1144))))) + ((*1 *1 *1) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1068)))) + ((*1 *1 *1) + (-12 (-14 *2 (-623 (-1144))) (-4 *3 (-170)) + (-4 *5 (-232 (-3191 *2) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2922 *4) (|:| -3521 *5)) + (-2 (|:| -2922 *4) (|:| -3521 *5)))) + (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-825)) + (-4 *7 (-922 *3 *5 (-838 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-825)))) + ((*1 *1 *1) + (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1203 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1020)))) + ((*1 *1 *1) + (-12 (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1020)) + (-4 *3 (-705)))) + ((*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1250 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-821))))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) - ((*1 *1 *1) (-4 *1 (-1167)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *1 *1 *1) (-4 *1 (-740)))) +(((*1 *2 *3) + (-12 (-4 *1 (-893)) (-5 *2 (-2 (|:| -2855 (-623 *1)) (|:| -3935 *1))) + (-5 *3 (-623 *1))))) +(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) - ((*1 *1 *1) (-4 *1 (-1167)))) -(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-1165 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-618 (-1165 *2))) (-5 *1 (-1165 *2)) (-4 *2 (-1067))))) -(((*1 *1 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1067))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) (-4 *4 (-542)) (-4 *4 (-825)) + (-5 *1 (-559 *4 *2)) (-4 *2 (-423 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-372)) (-5 *1 (-1032))))) (((*1 *2 *1) - (-12 (-5 *2 (-618 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1067))))) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-922 *3 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) + (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-618 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1067))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-823) (-542))))) - ((*1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-1164)))) -(((*1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1162))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1124)) (-5 *2 (-535)) (-5 *1 (-1161 *4)) (-4 *4 (-1018))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-1161 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-535)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) - (-5 *2 (-535)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) - (-5 *2 (-535)) (-5 *1 (-1083 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-815 *3)) - (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535)) - (-5 *1 (-1083 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-1124)) - (-4 *6 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535)) - (-5 *1 (-1083 *6 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-444)) (-5 *2 (-535)) - (-5 *1 (-1084 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-815 (-400 (-917 *6)))) - (-5 *3 (-400 (-917 *6))) (-4 *6 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-400 (-917 *6))) (-5 *4 (-1142)) (-5 *5 (-1124)) - (-4 *6 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-1161 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-109)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1067)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1160))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-835) (-835))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-835) (-618 (-835)))) (-5 *1 (-113)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-835) (-618 (-835)))) (-5 *1 (-113)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3)) - (-4 *3 - (-13 (-823) - (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) - (-15 -2082 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-386)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))) - ((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-687)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1158)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1158))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-747)) (-4 *3 (-1178)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) - ((*1 *1) (-5 *1 (-169))) - ((*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1067)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))) - ((*1 *1) (-5 *1 (-386))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) - ((*1 *1) - (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067)) - (-4 *4 (-642 *3)))) - ((*1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) - ((*1 *1 *2) (-12 (-5 *1 (-1108 *3 *2)) (-14 *3 (-747)) (-4 *2 (-1018)))) - ((*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) - ((*1 *1 *1) (-5 *1 (-1142))) ((*1 *1) (-5 *1 (-1142))) - ((*1 *1) (-5 *1 (-1158)))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158))))) -(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1157))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-1157))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-275 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4203 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -2184 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1119 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1556 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-545)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-671 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4203 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (|:| -2184 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))))) - (-5 *1 (-779)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1067)) (-5 *1 (-1156 *3 *2)) (-4 *3 (-1067))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *2) - (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *2) - (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1067)) - (-4 *5 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1067)) - (-4 *5 (-1067))))) -(((*1 *2) - (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 (-2 (|:| -4203 *3) (|:| -2184 *4)))) (-4 *3 (-1067)) - (-4 *4 (-1067)) (-4 *1 (-1155 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1155 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-1153 *2)) (-4 *2 (-356))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-5 *2 (-1136 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-356))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-1153 *2)) (-4 *2 (-356))))) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-618 (-618 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-618 (-618 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-618 *3))) (-5 *1 (-1152 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-1152 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-823)) - (-5 *2 - (-2 (|:| |f1| (-618 *4)) (|:| |f2| (-618 (-618 (-618 *4)))) - (|:| |f3| (-618 (-618 *4))) (|:| |f4| (-618 (-618 (-618 *4)))))) - (-5 *1 (-1150 *4)) (-5 *3 (-618 (-618 (-618 *4))))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-823)) (-5 *3 (-618 *6)) (-5 *5 (-618 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-618 *5)) (|:| |f3| *5) (|:| |f4| (-618 *5)))) - (-5 *1 (-1150 *6)) (-5 *4 (-618 *5))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-4 *7 (-962 *4)) (-4 *2 (-662 *7 *8 *9)) - (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-662 *4 *5 *6)) - (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-356)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-665 *2)) (-4 *2 (-356)) (-4 *2 (-1018)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1089 *2 *3 *4 *5)) (-4 *3 (-1018)) - (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) - ((*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-1150 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-823)) (-5 *2 (-618 (-618 *4))) (-5 *1 (-1150 *4)) - (-5 *3 (-618 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-823)) (-5 *1 (-1150 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-823)) (-5 *2 (-1152 (-618 *4))) (-5 *1 (-1150 *4)) - (-5 *3 (-618 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-823)) (-5 *2 (-618 (-618 (-618 *4)))) (-5 *1 (-1150 *4)) - (-5 *3 (-618 (-618 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152 (-618 *4))) (-4 *4 (-823)) (-5 *2 (-618 (-618 *4))) - (-5 *1 (-1150 *4))))) + (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1181)) (-4 *2 (-1068)) + (-4 *2 (-825))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1126)) + (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-273))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 (-618 (-618 *4)))) (-5 *2 (-618 (-618 *4))) - (-5 *1 (-1150 *4)) (-4 *4 (-823))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-618 (-618 (-618 *4)))) (-5 *2 (-618 (-618 *4))) (-4 *4 (-823)) - (-5 *1 (-1150 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-618 (-618 (-618 *4)))) (-5 *3 (-618 *4)) (-4 *4 (-823)) - (-5 *1 (-1150 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-618 (-618 (-618 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-618 *5)) (-4 *5 (-823)) (-5 *1 (-1150 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-823)) (-5 *4 (-618 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-618 *4)))) - (-5 *1 (-1150 *6)) (-5 *5 (-618 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1149))))) -(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149))))) -(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149))))) -(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) - (-5 *2 (-618 (-618 (-917 *5)))) (-5 *1 (-1148 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-400 (-917 (-535))))) - (-5 *2 (-618 (-618 (-286 (-917 *4))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-821) (-356))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-286 (-400 (-917 (-535)))))) - (-5 *2 (-618 (-618 (-286 (-917 *4))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-821) (-356))))) + (-12 (-5 *2 (-167 (-372))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-372))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 (-535)))) (-5 *2 (-618 (-286 (-917 *4)))) - (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) + (-12 (-5 *4 (-894)) (-5 *2 (-167 (-372))) (-5 *1 (-763 *3)) + (-4 *3 (-596 (-372))))) + ((*1 *2 *3) + (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-596 (-372))) + (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-400 (-917 (-535))))) (-5 *2 (-618 (-286 (-917 *4)))) - (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1142)) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-4 *4 (-13 (-29 *6) (-1164) (-931))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-618 *4)))) - (-5 *1 (-629 *6 *4 *3)) (-4 *3 (-634 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 *2)) - (-4 *2 (-13 (-29 *6) (-1164) (-931))) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *1 (-629 *6 *2 *3)) (-4 *3 (-634 *2)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) - (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) - (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4337)))) - (-5 *2 (-618 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2123 (-618 *7))))) - (-5 *1 (-643 *5 *6 *7 *3)) (-5 *4 (-618 *7)) (-4 *3 (-662 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1224 *5) #2="failed")) - (|:| -2123 (-618 (-1224 *5))))) - (-5 *1 (-644 *5)) (-5 *4 (-1224 *5)))) + (-12 (-5 *3 (-167 *5)) (-5 *4 (-894)) (-4 *5 (-170)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-925 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-372))) + (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-618 *5))) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1224 *5) #2#)) (|:| -2123 (-618 (-1224 *5))))) - (-5 *1 (-644 *5)) (-5 *4 (-1224 *5)))) + (-12 (-5 *3 (-925 (-167 *5))) (-5 *4 (-894)) (-4 *5 (-170)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-925 *4)) (-4 *4 (-1020)) (-4 *4 (-596 (-372))) + (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) - (-5 *2 - (-618 - (-2 (|:| |particular| (-3 (-1224 *5) #2#)) - (|:| -2123 (-618 (-1224 *5)))))) - (-5 *1 (-644 *5)) (-5 *4 (-618 (-1224 *5))))) + (-12 (-5 *3 (-925 *5)) (-5 *4 (-894)) (-4 *5 (-1020)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-4 *4 (-596 (-372))) + (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-618 *5))) (-4 *5 (-356)) - (-5 *2 - (-618 - (-2 (|:| |particular| (-3 (-1224 *5) #2#)) - (|:| -2123 (-618 (-1224 *5)))))) - (-5 *1 (-644 *5)) (-5 *4 (-618 (-1224 *5))))) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-400 (-925 (-167 *4)))) (-4 *4 (-542)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) - (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-746 *5)))) + (-12 (-5 *3 (-400 (-925 (-167 *5)))) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-542)) - (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-746 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1142)) - (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *1 (-748 *5 *2)) (-4 *2 (-13 (-29 *5) (-1164) (-931))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-665 *7)) (-5 *5 (-1142)) - (-4 *7 (-13 (-29 *6) (-1164) (-931))) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) - (-5 *1 (-778 *6 *7)) (-5 *4 (-1224 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-665 *6)) (-5 *4 (-1142)) - (-4 *6 (-13 (-29 *5) (-1164) (-931))) - (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-618 (-1224 *6))) (-5 *1 (-778 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-618 (-286 *7))) (-5 *4 (-618 (-113))) (-5 *5 (-1142)) - (-4 *7 (-13 (-29 *6) (-1164) (-931))) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) - (-5 *1 (-778 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-618 *7)) (-5 *4 (-618 (-113))) (-5 *5 (-1142)) - (-4 *7 (-13 (-29 *6) (-1164) (-931))) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) - (-5 *1 (-778 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-1142)) - (-4 *7 (-13 (-29 *6) (-1164) (-931))) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2123 (-618 *7))) *7 #3="failed")) - (-5 *1 (-778 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-1142)) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2123 (-618 *3))) *3 #3#)) - (-5 *1 (-778 *6 *3)) (-4 *3 (-13 (-29 *6) (-1164) (-931))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-113)) (-5 *5 (-618 *2)) - (-4 *2 (-13 (-29 *6) (-1164) (-931))) (-5 *1 (-778 *6 *2)) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-286 *2)) (-5 *5 (-618 *2)) - (-4 *2 (-13 (-29 *6) (-1164) (-931))) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *1 (-778 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1006)) (-5 *1 (-781)))) + (-12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-781)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) - (-5 *2 (-1006)) (-5 *1 (-781)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) - (-5 *2 (-1006)) (-5 *1 (-781)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) - (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) - (-5 *2 (-1006)) (-5 *1 (-781)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) - (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) - (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2123 (-618 *6))) "failed") *7 *6)) - (-4 *6 (-356)) (-4 *7 (-634 *6)) - (-5 *2 (-2 (|:| |particular| (-1224 *6)) (|:| -2123 (-665 *6)))) - (-5 *1 (-789 *6 *7)) (-5 *3 (-665 *6)) (-5 *4 (-1224 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-1006)) (-5 *1 (-868)))) + (-12 (-5 *3 (-309 *5)) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-825)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-542)) (-4 *4 (-825)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-868)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-747)) (-5 *6 (-618 (-618 (-307 *3)))) (-5 *7 (-1124)) - (-5 *8 (-219)) (-5 *5 (-618 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1006)) - (-5 *1 (-868)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-747)) (-5 *6 (-618 (-618 (-307 *3)))) (-5 *7 (-1124)) - (-5 *5 (-618 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1006)) (-5 *1 (-868)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *2 (-618 (-371))) (-5 *1 (-994)) - (-5 *4 (-371)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-917 (-535))) (-5 *2 (-618 (-371))) (-5 *1 (-994)) - (-5 *4 (-371)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-307 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1097 *4)) - (-5 *3 (-286 (-307 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) - (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1097 *5)) - (-5 *3 (-286 (-307 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) - (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1097 *5)) (-5 *3 (-307 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-1142))) - (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-618 (-618 (-286 (-307 *5))))) (-5 *1 (-1097 *5)) - (-5 *3 (-618 (-286 (-307 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) - (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-1148 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-1142))) (-4 *5 (-542)) - (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-1148 *5)) - (-5 *3 (-618 (-286 (-400 (-917 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-400 (-917 *4)))) (-4 *4 (-542)) - (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-1148 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) - (-5 *1 (-1148 *4)) (-5 *3 (-618 (-286 (-400 (-917 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *5))))) - (-5 *1 (-1148 *5)) (-5 *3 (-400 (-917 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *5))))) - (-5 *1 (-1148 *5)) (-5 *3 (-286 (-400 (-917 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *4))))) (-5 *1 (-1148 *4)) - (-5 *3 (-400 (-917 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *4))))) (-5 *1 (-1148 *4)) - (-5 *3 (-286 (-400 (-917 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-535)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1124)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-497)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-573)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-470)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1132)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-604)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1062)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1057)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1040)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-941)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1007)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-305)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-647)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-152)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-516)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1236)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1033)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-508)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-657)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-95)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1082)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-132)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1235)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-652)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-212)))) - ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-515)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1147))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1147)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-1147))) (-5 *1 (-1147))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))) + (-12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) + (-5 *1 (-763 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-535) (-219) (-1142) (-1124) (-1147))) (-5 *1 (-1147))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-273))) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1147))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2313)) (-5 *2 (-112)) (-5 *1 (-596)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2314)) (-5 *2 (-112)) (-5 *1 (-596)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2315)) (-5 *2 (-112)) (-5 *1 (-596)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2437)) (-5 *2 (-112)) (-5 *1 (-667 *4)) - (-4 *4 (-593 (-835))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-593 (-835))) (-5 *2 (-112)) - (-5 *1 (-667 *4)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-647))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1236))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1235))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-652))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)) (-5 *1 (-1147)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-112)) (-5 *1 (-1147)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1147)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)) (-5 *1 (-1147))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-284))) ((*1 *1) (-5 *1 (-835))) - ((*1 *1) - (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1051))) - ((*1 *1) - (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34))))) - ((*1 *1) (-5 *1 (-1145))) ((*1 *1) (-5 *1 (-1146)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-429)) (-5 *3 (-618 (-1142))) (-5 *4 (-1142)) (-5 *1 (-1145)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1146)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-618 (-1142))) (-5 *1 (-1146))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-429)) (-5 *1 (-1146))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1146))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-427)) - (-5 *2 - (-618 - (-3 (|:| -3888 (-1142)) - (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) - (-5 *1 (-1146))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1146))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-618 - (-618 - (-3 (|:| -3888 (-1142)) - (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))))) - (-5 *1 (-1146))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-1146))))) -(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1146))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429))))) - (-5 *1 (-1146))))) -(((*1 *1) (-5 *1 (-1145)))) -(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) - ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145))))) -(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))) -(((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145))))) -(((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1145)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) (-5 *2 (-1230)) - (-5 *1 (-1145)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) - (-5 *2 (-1230)) (-5 *1 (-1145)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) - (-5 *2 (-1230)) (-5 *1 (-1145))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))) - ((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1142)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 "void"))) - (-5 *1 (-1145))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1145)) (-5 *3 (-1142))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1146)) (-5 *1 (-1145))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-1018)) (-5 *2 (-1224 *4)) - (-5 *1 (-1143 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-5 *2 (-1224 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1018))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1142))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-95)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-431 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-936)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1042 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1082)))) ((*1 *1 *1) (-5 *1 (-1142)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) + (-12 (-4 *2 (-1020)) (-5 *1 (-50 *2 *3)) (-14 *3 (-623 (-1144))))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) - (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) - (|:| |args| (-618 (-835))))) - (-5 *1 (-1142))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) - (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) - (|:| |args| (-618 (-835))))) - (-5 *1 (-1142)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 (-835)))) (-5 *1 (-1142))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142))))) -(((*1 *1 *1) (-5 *1 (-835))) + (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) + (-4 *3 (-13 (-1020) (-825))) (-14 *4 (-623 (-1144))))) ((*1 *2 *1) - (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) - ((*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1123)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1142))))) -(((*1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1142))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) - ((*1 *1) (-4 *1 (-703))) ((*1 *1) (-5 *1 (-1142)))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) - (-5 *1 (-1141))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) - (-5 *1 (-1141))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) - (-5 *1 (-1141))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) - (-5 *1 (-1141))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) - (-5 *1 (-1141))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1068)) (-4 *2 (-1020)))) + ((*1 *2 *1) + (-12 (-14 *3 (-623 (-1144))) (-4 *5 (-232 (-3191 *3) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2922 *4) (|:| -3521 *5)) + (-2 (|:| -2922 *4) (|:| -3521 *5)))) + (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-825)) + (-4 *7 (-922 *2 *5 (-838 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1203 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1020)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1020)) (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) + (-4 *3 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)))) + ((*1 *2 *1) + (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *3 (-770)) (-4 *4 (-825)) + (-4 *2 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-550))) (-5 *4 (-878 (-550))) + (-5 *2 (-667 (-550))) (-5 *1 (-573)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-623 (-667 (-550)))) + (-5 *1 (-573)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-550))) (-5 *4 (-623 (-878 (-550)))) + (-5 *2 (-623 (-667 (-550)))) (-5 *1 (-573))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1151))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-1044 *3 *4 *5))) (-4 *3 (-1068)) + (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))) + (-4 *5 (-13 (-423 *4) (-859 *3) (-596 (-865 *3)))) + (-5 *1 (-1045 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1140 *7)) (-5 *3 (-550)) (-4 *7 (-922 *6 *4 *5)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) + (-5 *1 (-314 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1017 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-14 *5 (-623 (-1144))) (-5 *2 - (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) - (-5 *1 (-1141))))) -(((*1 *1 *2 *2) - (-12 + (-623 (-2 (|:| -2553 (-1140 *4)) (|:| -1373 (-623 (-925 *4)))))) + (-5 *1 (-1253 *4 *5 *6)) (-14 *6 (-623 (-1144))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 - (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) - (-5 *1 (-1141))))) -(((*1 *1 *1) (-5 *1 (-1141))) - ((*1 *1 *2) - (-12 + (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) + (-5 *1 (-1253 *5 *6 *7)) (-5 *3 (-623 (-925 *5))) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) (-5 *2 - (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) - (-5 *1 (-1141))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-835) (-835) (-835))) (-5 *4 (-535)) (-5 *2 (-835)) - (-5 *1 (-625 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-835)) (-5 *1 (-827 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-98 *3)) - (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-835)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-835)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-835)))) - ((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-1136 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1055 *3)) (-4 *3 (-921 *7 *6 *4)) (-4 *6 (-769)) (-4 *4 (-823)) - (-4 *7 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-535)))) - (-5 *1 (-575 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-542)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-535)))) (-5 *1 (-575 *5 *4 *6 *3)) - (-4 *3 (-921 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1164))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1164))) - (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-1134 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) - (-5 *2 (-400 (-917 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-917 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) - (-5 *2 (-3 (-400 (-917 *5)) (-307 *5))) (-5 *1 (-1135 *5)) - (-5 *3 (-400 (-917 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1058 (-917 *5))) (-5 *3 (-917 *5)) - (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-400 *3)) - (-5 *1 (-1135 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1058 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) - (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-3 *3 (-307 *5))) - (-5 *1 (-1135 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-862 *4 *5)) (-4 *5 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1132))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-149 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 (-2 (|:| -2484 (-747)) (|:| -4115 *4) (|:| |num| *4)))) - (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) - (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-112)) (-5 *1 (-429)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *3 (-618 (-1142))) - (-5 *4 (-112)) (-5 *1 (-429)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-170)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 (-618 (-618 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-690 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-1067)) - (-14 *4 - (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *3)) - (-2 (|:| -2483 *2) (|:| -2484 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1178)) (-4 *3 (-1178)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 *4)))) (-4 *4 (-1067)) - (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)))) + (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) + (-5 *1 (-1253 *5 *6 *7)) (-5 *3 (-623 (-925 *5))) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 *5)) (-4 *5 (-13 (-1067) (-34))) - (-5 *2 (-618 (-1106 *3 *5))) (-5 *1 (-1106 *3 *5)) - (-4 *3 (-13 (-1067) (-34))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 + (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) + (-5 *1 (-1253 *5 *6 *7)) (-5 *3 (-623 (-925 *5))) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| |val| *4) (|:| -1655 *5)))) - (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) - (-5 *2 (-618 (-1106 *4 *5))) (-5 *1 (-1106 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1655 *4))) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1106 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3)) - (-4 *2 (-13 (-1067) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-618 (-1106 *2 *3))) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-618 (-1107 *2 *3))) (-5 *1 (-1107 *2 *3)) - (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604)))) + (-12 (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 + (-623 (-2 (|:| -2553 (-1140 *4)) (|:| -1373 (-623 (-925 *4)))))) + (-5 *1 (-1253 *4 *5 *6)) (-5 *3 (-623 (-925 *4))) + (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144)))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-623 (-1227 *4))) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) + (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) + (-5 *2 (-623 (-1227 *3)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)))) ((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) - (-5 *1 (-1041 *3 *4 *2)) - (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1131 *2 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604)))) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1068)))) ((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) - (-5 *1 (-1041 *3 *4 *2)) - (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) + (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) + (-4 *6 (-232 (-3191 *3) (-749))) + (-14 *7 + (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *6)) + (-2 (|:| -2922 *5) (|:| -3521 *6)))) + (-5 *2 (-692 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-825)) (-4 *8 (-922 *4 *6 (-838 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(((*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(((*1 *2 *1) (-12 (-4 *3 (-1178)) (-5 *2 (-618 *1)) (-4 *1 (-981 *3)))) + (-12 (-4 *2 (-705)) (-4 *2 (-825)) (-5 *1 (-714 *3 *2)) + (-4 *3 (-1020)))) + ((*1 *1 *1) + (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-770)) + (-4 *4 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-588))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-1229)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) ((*1 *2 *1) - (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1018))))) -(((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(((*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018))))) -(((*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *1 (-460))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1126)) (-4 *1 (-357 *2 *4)) (-4 *2 (-1068)) + (-4 *4 (-1068)))) ((*1 *1 *2) - (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1018)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *2 (-747)) (-5 *1 (-1130 *4 *5)) - (-14 *4 (-890)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5)) - (-14 *4 (-890)) (-4 *5 (-1018)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) - (-5 *1 (-1130 *4 *5)) (-14 *4 (-890))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-914 *4)) (-4 *4 (-1018)) (-5 *1 (-1130 *3 *4)) - (-14 *3 (-890))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-914 *5)) (-5 *3 (-747)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) - (-14 *4 (-890))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-747)) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) - (-14 *4 (-890)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5)) - (-14 *4 (-890)) (-4 *5 (-1018)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) - (-5 *1 (-1130 *4 *5)) (-14 *4 (-890))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-747))) (-5 *3 (-112)) (-5 *1 (-1130 *4 *5)) - (-14 *4 (-890)) (-4 *5 (-1018))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-747))) (-5 *3 (-169)) (-5 *1 (-1130 *4 *5)) - (-14 *4 (-890)) (-4 *5 (-1018))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1018))))) -(((*1 *2 *1) - (-12 (-5 *2 (-914 *4)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1018))))) -(((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) + (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) + ((*1 *2 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-535)) (-5 *1 (-157 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890))))) (((*1 *2 *1) - (-12 (-5 *2 (-169)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-305)))) - ((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018))))) -(((*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018))))) + (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-726))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-823))) + (-5 *2 (-623 (-2 (|:| -1877 (-623 *3)) (|:| -2478 *5)))) + (-5 *1 (-179 *5 *3)) (-4 *3 (-1203 (-167 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-356) (-823))) + (-5 *2 (-623 (-2 (|:| -1877 (-623 *3)) (|:| -2478 *4)))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-411 *3)) + (-5 *1 (-99 *4 *3)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-13 (-444) (-145))) + (-5 *2 (-411 *3)) (-5 *1 (-99 *5 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-618 (-914 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1018))))) -(((*1 *1 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-444)))) - ((*1 *1 *1) - (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1200 *2)) - (-4 *4 (-1200 (-400 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) - (-4 *3 (-444)))) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-825)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1126)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) + (-5 *7 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *1) (-5 *1 (-219))) ((*1 *1) (-5 *1 (-372)))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1181)) + (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1068)) + (-4 *2 (-1181))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1020)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) +(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1181)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1020)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1203 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-921 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-444)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1200 *3))))) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-594 *3)) (-5 *5 (-1140 *3)) + (-4 *3 (-13 (-423 *6) (-27) (-1166))) + (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 (-569 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1068)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-594 *3)) (-5 *5 (-400 (-1140 *3))) + (-4 *3 (-13 (-423 *6) (-27) (-1166))) + (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 (-569 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1068))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-929 *3)) (-5 *1 (-1129 *4 *3)) - (-4 *3 (-1200 *4))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-771)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) + (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 *1)) (-4 *1 (-423 *4)) + (-4 *4 (-825)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1144)) (-4 *1 (-423 *3)) (-4 *3 (-825))))) +(((*1 *1 *1) (-4 *1 (-639))) ((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) (-4 *2 (-1203 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-542))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-550))) (-5 *5 (-1 (-1124 *4))) (-4 *4 (-356)) + (-4 *4 (-1020)) (-5 *2 (-1124 *4)) (-5 *1 (-1128 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(((*1 *1 *1) (-4 *1 (-237))) + ((*1 *1 *1) + (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1203 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-1561 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1181))) + (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1181))))) + ((*1 *1 *1) (-4 *1 (-465))) + ((*1 *2 *2) (-12 (-5 *2 (-1227 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4343)) (-4 *1 (-481 *3)) + (-4 *3 (-1181))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-411 *6)) (-4 *6 (-1203 *5)) + (-4 *5 (-1020)) (-5 *2 (-623 *6)) (-5 *1 (-436 *5 *6))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-109))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) + (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) + (-5 *5 (-1062 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1101 (-219))) + (-5 *1 (-675)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-219))) + (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-675)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1101 (-219))) (-5 *3 (-1 (-916 (-219)) (-219) (-219))) + (-5 *4 (-1062 (-219))) (-5 *5 (-623 (-256))) (-5 *1 (-675))))) +(((*1 *1 *2) + (-12 (-5 *2 (-894)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1020)) + (-4 *4 (-1181)))) + ((*1 *1 *2) + (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) + (-4 *5 (-232 (-3191 *3) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2922 *2) (|:| -3521 *5)) + (-2 (|:| -2922 *2) (|:| -3521 *5)))) + (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-825)) + (-4 *7 (-922 *4 *5 (-838 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177))))) +(((*1 *2 *2) + (-12 (-4 *3 (-825)) (-5 *1 (-902 *3 *2)) (-4 *2 (-423 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1144)) (-5 *2 (-309 (-550))) (-5 *1 (-903))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-423 *3) (-975))) (-5 *1 (-269 *3 *2)) + (-4 *3 (-13 (-825) (-542)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-298)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-1008))) (-5 *2 (-1008)) (-5 *1 (-298)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *1) (-5 *1 (-1032))) + ((*1 *2 *3) + (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1121 *4)) + (-4 *4 (-1181)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1162))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1232) (-1227 *5) (-1227 *5) (-372))) + (-5 *3 (-1227 (-372))) (-5 *5 (-372)) (-5 *2 (-1232)) + (-5 *1 (-766))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-865 *4)) (-4 *4 (-1068)) (-4 *2 (-1068)) + (-5 *1 (-862 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-594 *1))) (-4 *1 (-295))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-235)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-1232)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1062 (-219)))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) + (-4 *4 (-170))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(((*1 *2 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-323))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) (-5 *2 (-1 (-1140 (-925 *4)) (-925 *4))) + (-5 *1 (-1235 *4)) (-4 *4 (-356))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-894)) (-4 *5 (-542)) (-5 *2 (-667 *5)) + (-5 *1 (-929 *5 *3)) (-4 *3 (-634 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) + (-4 *5 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-400 (-550))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-550))) + (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-400 (-550)))) (-5 *4 (-287 *8)) + (-5 *5 (-1194 (-400 (-550)))) (-5 *6 (-400 (-550))) + (-4 *8 (-13 (-27) (-1166) (-423 *7))) + (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-400 (-550)))) + (-5 *7 (-400 (-550))) (-4 *3 (-13 (-27) (-1166) (-423 *8))) + (-4 *8 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-400 (-550))) (-4 *4 (-1020)) (-4 *1 (-1210 *4 *3)) + (-4 *3 (-1187 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-928)) (-5 *2 (-1062 (-219))))) + ((*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1062 (-219)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1144))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1203 *2)) (-4 *2 (-1203 *4)) (-5 *1 (-958 *4 *2 *3 *5)) + (-4 *4 (-342)) (-4 *5 (-703 *2 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-550))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-411 *3)) (-4 *3 (-535)) + (-4 *3 (-542)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-535)) (-5 *2 (-400 (-550))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-550))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-811 *3)) (-4 *3 (-535)) + (-4 *3 (-1068)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-818 *3)) (-4 *3 (-535)) + (-4 *3 (-1068)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-970 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-550))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-400 (-550))) (-5 *1 (-981 *3)) + (-4 *3 (-1011 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-847)))) + ((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-515))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) + (-4 *5 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-550)) (-4 *5 (-13 (-444) (-825) (-1011 *4) (-619 *4))) + (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-444) (-825) (-1011 *5) (-619 *5))) (-5 *5 (-550)) + (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1194 (-550))) + (-4 *7 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-550))) + (-4 *3 (-13 (-27) (-1166) (-423 *7))) + (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-550)) (-4 *4 (-1020)) (-4 *1 (-1189 *4 *3)) + (-4 *3 (-1218 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1187 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-928)) (-5 *2 (-1062 (-219))))) + ((*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1062 (-219)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) + (-5 *1 (-788 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-400 *6))) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 (-2 (|:| -2437 (-623 (-400 *6))) (|:| -1340 (-667 *5)))) + (-5 *1 (-788 *5 *6)) (-5 *4 (-623 (-400 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) + (-5 *1 (-788 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *6 (-400 *6))) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 (-2 (|:| -2437 (-623 (-400 *6))) (|:| -1340 (-667 *5)))) + (-5 *1 (-788 *5 *6)) (-5 *4 (-623 (-400 *6)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1203 *5)) + (-5 *1 (-785 *5 *2 *3 *6)) + (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-4 *3 (-634 *2)) (-4 *6 (-634 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-400 *2))) (-4 *2 (-1203 *5)) + (-5 *1 (-785 *5 *2 *3 *6)) + (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *3 (-634 *2)) + (-4 *6 (-634 (-400 *2)))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| -2005 (-411 *3)) (|:| |special| (-411 *3)))) + (-5 *1 (-706 *5 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *1) + (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1181)) (-4 *2 (-1068)) + (-4 *2 (-825))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1653 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-356)) (-5 *1 (-560 *4 *2)) (-4 *2 (-1203 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) + (-4 *5 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-287 *3)) (-5 *5 (-749)) + (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-287 *6)) + (-4 *6 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1194 (-749))) + (-4 *7 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-749))) + (-4 *3 (-13 (-27) (-1166) (-423 *7))) + (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1218 *3))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4342)) (-4 *1 (-34)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-550)))) + ((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-821))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3139 *3))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1062 (-818 (-219)))) (-5 *1 (-298))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-893))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-550)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-411 *2)) (-4 *2 (-542))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-476 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140 *6)) (-4 *6 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-1140 *7)) (-5 *1 (-314 *4 *5 *6 *7)) + (-4 *7 (-922 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 (-400 (-925 *4)))) (-4 *4 (-444)) + (-5 *2 (-623 (-3 (-400 (-925 *4)) (-1133 (-1144) (-925 *4))))) + (-5 *1 (-285 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-975)) + (-4 *2 (-1020))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) + (-4 *5 (-366 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *2 *6 *7)) + (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1020))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1227 (-550))) (-5 *3 (-550)) (-5 *1 (-1078)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1227 (-550))) (-5 *3 (-623 (-550))) (-5 *4 (-550)) + (-5 *1 (-1078))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-4 *2 (-1068)) (-5 *1 (-658 *5 *6 *2))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1151))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1181)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-342)) (-5 *2 (-1227 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-143)) (-4 *1 (-882)) + (-5 *2 (-1227 *1))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-731))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-1062 (-400 (-550))))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-256))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-894)) (-4 *5 (-300)) (-4 *3 (-1203 *5)) + (-5 *2 (-2 (|:| |plist| (-623 *3)) (|:| |modulo| *5))) + (-5 *1 (-452 *5 *3)) (-5 *4 (-623 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-5 *2 (-2 (|:| -2763 *3) (|:| -2119 *4)))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1203 *3)) (-4 *3 (-1020)) (-5 *2 (-1140 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1008)) (-5 *1 (-727))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-372)) (-5 *1 (-1032))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-894)) (-5 *1 (-434 *2)) + (-4 *2 (-1203 (-550))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-894)) (-5 *4 (-749)) (-5 *1 (-434 *2)) + (-4 *2 (-1203 (-550))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-894)) (-5 *4 (-623 (-749))) (-5 *1 (-434 *2)) + (-4 *2 (-1203 (-550))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-894)) (-5 *4 (-623 (-749))) (-5 *5 (-749)) + (-5 *1 (-434 *2)) (-4 *2 (-1203 (-550))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-894)) (-5 *4 (-623 (-749))) (-5 *5 (-749)) + (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1203 (-550))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-411 *2)) (-4 *2 (-1203 *5)) + (-5 *1 (-436 *5 *2)) (-4 *5 (-1020))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1064)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) + (-5 *1 (-174 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) (-4 *1 (-484))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-52))) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *2 (-1232)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-922 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-430)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-598)))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) + (-4 *4 (-170))))) +(((*1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-825)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-219)) (-5 *5 (-550)) (-5 *2 (-1176 *3)) + (-5 *1 (-768 *3)) (-4 *3 (-947)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-112)) + (-5 *1 (-1176 *2)) (-4 *2 (-947))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) (-4 *1 (-484))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-1227 *5))) (-5 *4 (-550)) (-5 *2 (-1227 *5)) + (-5 *1 (-1002 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1020))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-623 + (-2 + (|:| -2763 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| -2119 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3170 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-545))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1181)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-749)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1020)) + (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-836))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) + (-5 *2 (-623 (-1144))) (-5 *1 (-260)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1140 *7)) (-4 *7 (-922 *6 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1020)) (-5 *2 (-623 *5)) + (-5 *1 (-314 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-380)))) + ((*1 *2 *1) + (-12 (-4 *1 (-423 *3)) (-4 *3 (-825)) (-5 *2 (-623 (-1144))))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *1 (-922 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-623 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) + (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-623 *5)) + (-5 *1 (-923 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1070 (-1144))) (-5 *1 (-939 *3)) (-4 *3 (-940)))) + ((*1 *2 *1) + (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-770)) + (-4 *5 (-825)) (-5 *2 (-623 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-623 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-5 *2 (-623 (-1144))) + (-5 *1 (-1016 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) + (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-444)))) + ((*1 *1 *1 *1) (-4 *1 (-444))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1203 (-550))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1203 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-749))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) + (-5 *1 (-889 *3 *4 *5 *2)) (-4 *2 (-922 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *6 *4 *5)) + (-5 *1 (-889 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-300)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1140 *6)) (-4 *6 (-922 *5 *3 *4)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-889 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-1140 *7))) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-300)) (-5 *2 (-1140 *7)) (-5 *1 (-889 *4 *5 *6 *7)) + (-4 *7 (-922 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-894))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-444)) (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) + (-4 *2 (-1203 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-444))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-760 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-936 *3 *2)) (-4 *2 (-130)) (-4 *3 (-542)) + (-4 *3 (-1020)) (-4 *2 (-770)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1140 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-944)) (-4 *2 (-130)) (-5 *1 (-1146 *3)) (-4 *3 (-542)) + (-4 *3 (-1020)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1200 *4 *3)) (-14 *4 (-1144)) + (-4 *3 (-1020))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) (-4 *2 (-1181)) + (-4 *2 (-1068)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *3)) + (-4 *3 (-1181)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1181)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1068)) + (-5 *1 (-716 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-5 *1 (-716 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) + (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1109 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) (-4 *1 (-484))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) + (-5 *4 (-309 (-167 (-372)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) + (-5 *4 (-309 (-372))) (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) + (-5 *4 (-309 (-550))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-167 (-372))))) + (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-372)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-550)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-167 (-372))))) + (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-372)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-550)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-167 (-372)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-372))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-550))) (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) + (-5 *4 (-309 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) + (-5 *4 (-309 (-677))) (-5 *1 (-323)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-925 (-550)))) + (-5 *4 (-309 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-672)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-677)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-309 (-679)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-672)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-677)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-309 (-679)))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-677))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1227 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-677))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-667 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-672))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-677))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-309 (-679))) (-5 *1 (-323)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1126)) (-5 *1 (-323)))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) + (-12 (-4 *2 (-687 *3)) (-5 *1 (-805 *2 *3)) (-4 *3 (-1020))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-894)) (-5 *2 (-460)) (-5 *1 (-1228))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-423 *3) (-975))) (-5 *1 (-269 *3 *2)) + (-4 *3 (-13 (-825) (-542)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1140 (-400 (-1140 *2)))) (-5 *4 (-594 *2)) + (-4 *2 (-13 (-423 *5) (-27) (-1166))) + (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *1 (-546 *5 *2 *6)) (-4 *6 (-1068)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1140 *1)) (-4 *1 (-922 *4 *5 *3)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *3 (-825)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1140 *4)) (-4 *4 (-1020)) (-4 *1 (-922 *4 *5 *3)) + (-4 *5 (-771)) (-4 *3 (-825)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-1140 *2))) (-4 *5 (-771)) (-4 *4 (-825)) + (-4 *6 (-1020)) + (-4 *2 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) (-15 -2715 (*7 $))))) + (-5 *1 (-923 *5 *4 *6 *7 *2)) (-4 *7 (-922 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-1140 (-400 (-925 *5))))) (-5 *4 (-1144)) + (-5 *2 (-400 (-925 *5))) (-5 *1 (-1016 *5)) (-4 *5 (-542))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1110 *4 *2)) (-14 *4 (-894)) + (-4 *2 (-13 (-1020) (-10 -7 (-6 (-4344 "*"))))) + (-5 *1 (-875 *4 *2))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1181))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-372)))) + ((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-372))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1144)) (-4 *5 (-356)) (-5 *2 (-1124 (-1124 (-925 *5)))) + (-5 *1 (-1235 *5)) (-5 *4 (-1124 (-925 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) ((*1 *1 *1) (-4 *1 (-484))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-411 *3)) (-4 *3 (-535)) (-4 *3 (-542)))) + ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-811 *3)) (-4 *3 (-535)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-818 *3)) (-4 *3 (-535)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *1 (-970 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-981 *3)) (-4 *3 (-1011 (-400 (-550))))))) +(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-155)))) + ((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) + (-4 *4 (-1203 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-886 *4 *5)) + (-4 *5 (-1203 (-400 *4)))))) +(((*1 *2) + (-12 (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) + (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-623 (-894))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-894)) + (-4 *2 (-356)) (-14 *5 (-966 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-692 *5 *6 *7)) (-4 *5 (-825)) + (-4 *6 (-232 (-3191 *4) (-749))) + (-14 *7 + (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *6)) + (-2 (|:| -2922 *5) (|:| -3521 *6)))) + (-14 *4 (-623 (-1144))) (-4 *2 (-170)) + (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-922 *2 *6 (-838 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-825)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-550)) (-4 *2 (-542)) (-5 *1 (-603 *2 *4)) + (-4 *4 (-1203 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1020)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-714 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-705)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 *5)) (-5 *3 (-623 (-749))) (-4 *1 (-719 *4 *5)) + (-4 *4 (-1020)) (-4 *5 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1020)) + (-4 *2 (-825)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1020)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 (-749))) (-4 *1 (-922 *4 *5 *6)) + (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-922 *4 *5 *2)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *2 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 *5)) (-4 *1 (-946 *4 *5 *6)) + (-4 *4 (-1020)) (-4 *5 (-770)) (-4 *6 (-825)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-946 *4 *3 *2)) (-4 *4 (-1020)) (-4 *3 (-770)) + (-4 *2 (-825))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-771)) + (-4 *3 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *5 (-542)) + (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-922 (-400 (-925 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1020)) (-4 *5 (-771)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -4028 ((-1144) $)) + (-15 -1861 ((-3 $ "failed") (-1144)))))) + (-5 *1 (-957 *4 *5 *3 *2)) (-4 *2 (-922 (-925 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *6)) + (-4 *6 + (-13 (-825) + (-10 -8 (-15 -4028 ((-1144) $)) + (-15 -1861 ((-3 $ "failed") (-1144)))))) + (-4 *4 (-1020)) (-4 *5 (-771)) (-5 *1 (-957 *4 *5 *6 *2)) + (-4 *2 (-922 (-925 *4) *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-938))) (-5 *1 (-108))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) + (-5 *2 (-623 (-400 (-550)))) (-5 *1 (-993 *4)) + (-4 *4 (-1203 (-550)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) ((*1 *1 *1) (-4 *1 (-484))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4342)) (-4 *1 (-229 *3)) + (-4 *3 (-1068)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4342)) (-4 *1 (-229 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-275 *2)) (-4 *2 (-1181)) (-4 *2 (-1068)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1068)) + (-5 *1 (-716 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-5 *1 (-716 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) + (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1109 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1181)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-586 *3 *2)) (-4 *3 (-1068)) + (-4 *2 (-1181))))) +(((*1 *1 *1) (-5 *1 (-1032)))) +(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-836))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-623 (-400 *7))) + (-4 *7 (-1203 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-560 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-444)))) + ((*1 *1 *1 *1) (-4 *1 (-444)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-1017 *5 *6))) + (-5 *1 (-608 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-129))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) ((*1 *1 *1) (-4 *1 (-484))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140 *7)) (-4 *7 (-922 *6 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1020)) (-5 *2 (-1140 *6)) + (-5 *1 (-314 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1053))) (-5 *1 (-284))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-1144))))) +(((*1 *2 *3) + (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-400 (-550)))) + (-5 *1 (-298))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-825))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1052 *3)) (-4 *3 (-131))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1126)) + (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-256)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-298)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-865 *3)) (|:| |den| (-865 *3)))) + (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-623 (-550))) (-5 *3 (-112)) (-5 *1 (-1078))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-4 *3 (-1203 *4)) (-5 *1 (-787 *4 *3 *2 *5)) (-4 *2 (-634 *3)) + (-4 *5 (-634 (-400 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-400 *5)) + (-4 *4 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *5 (-1203 *4)) + (-5 *1 (-787 *4 *5 *2 *6)) (-4 *2 (-634 *5)) (-4 *6 (-634 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-623 (-916 *4))) (-4 *1 (-1102 *4)) (-4 *4 (-1020)) + (-5 *2 (-749))))) +(((*1 *1 *1) + (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1020)) (-4 *3 (-825)) + (-4 *4 (-259 *3)) (-4 *5 (-771))))) +(((*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1151))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-623 (-497))) (-5 *2 (-497)) (-5 *1 (-475))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 *4)))) + (-5 *1 (-862 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) + (-4 *7 (-1068)) (-5 *2 (-623 *1)) (-4 *1 (-1071 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-167 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) + (-5 *1 (-737))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) + (-5 *1 (-727))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1232)) + (-5 *1 (-441 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 *2))) + (-5 *2 (-865 *3)) (-5 *1 (-1044 *3 *4 *5)) + (-4 *5 (-13 (-423 *4) (-859 *3) (-596 *2)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-5 *2 + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1181)) (-5 *2 (-749)) (-5 *1 (-180 *4 *3)) + (-4 *3 (-652 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1126)) (-5 *1 (-962)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-1062 *4)) (-4 *4 (-1181)) + (-5 *1 (-1060 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-4 *7 (-922 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-623 *7)) (|:| |n0| (-623 *7)))) + (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-2 (|:| -3338 *4) (|:| -2970 (-550))))) + (-4 *4 (-1203 (-550))) (-5 *2 (-716 (-749))) (-5 *1 (-434 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-411 *5)) (-4 *5 (-1203 *4)) (-4 *4 (-1020)) + (-5 *2 (-716 (-749))) (-5 *1 (-436 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-947))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-219))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *1 *1 *1) (-5 *1 (-371))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *1 *1 *1) (-5 *1 (-372))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1140 *3)) (-4 *3 (-1020)) (-4 *1 (-1203 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-846 (-939 *3) (-939 *3))) (-5 *1 (-939 *3)) + (-4 *3 (-940))))) +(((*1 *1) (-5 *1 (-430)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-256))) (-5 *4 (-1144)) (-5 *2 (-112)) + (-5 *1 (-256))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-550)) (-14 *4 (-749))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-623 *5)) (-4 *5 (-1203 *3)) (-4 *3 (-300)) + (-5 *2 (-112)) (-5 *1 (-447 *3 *5))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-1167 *3))) (-5 *1 (-1167 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-52))) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-545))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1227 *4)) (-5 *3 (-749)) (-4 *4 (-342)) + (-5 *1 (-519 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) + (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-126 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-108))) (-5 *1 (-173))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1188 *3 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-550))))) + ((*1 *2 *1) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-411 *3)) (-4 *3 (-535)) + (-4 *3 (-542)))) + ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-400 (-550))))) + ((*1 *2 *1) + (-12 (-4 *1 (-775 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-550))))) + ((*1 *2 *1) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-811 *3)) (-4 *3 (-535)) + (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-818 *3)) (-4 *3 (-535)) + (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *1 (-970 *3)) (-4 *3 (-170)) (-4 *3 (-535)) + (-5 *2 (-400 (-550))))) + ((*1 *2 *3) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-981 *3)) (-4 *3 (-1011 *2))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-550)) (-4 *6 (-356)) (-4 *6 (-361)) + (-4 *6 (-1020)) (-5 *2 (-623 (-623 (-667 *6)))) (-5 *1 (-1002 *6)) + (-5 *3 (-623 (-667 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1020)) + (-5 *2 (-623 (-623 (-667 *4)))) (-5 *1 (-1002 *4)) + (-5 *3 (-623 (-667 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1020)) + (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1002 *5)) + (-5 *3 (-623 (-667 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-894)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1020)) + (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1002 *5)) + (-5 *3 (-623 (-667 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-806) (-825) (-1020))) + (-5 *2 (-1126)) (-5 *1 (-804 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) + (-4 *5 (-13 (-806) (-825) (-1020))) (-5 *2 (-1126)) + (-5 *1 (-804 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-800)) (-5 *4 (-309 *5)) + (-4 *5 (-13 (-806) (-825) (-1020))) (-5 *2 (-1232)) + (-5 *1 (-804 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-800)) (-5 *4 (-309 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-806) (-825) (-1020))) (-5 *2 (-1232)) + (-5 *1 (-804 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-806)) (-5 *2 (-1126)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-806)) (-5 *3 (-112)) (-5 *2 (-1126)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-806)) (-5 *3 (-800)) (-5 *2 (-1232)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-806)) (-5 *3 (-800)) (-5 *4 (-112)) (-5 *2 (-1232))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-268))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1126)) (-5 *3 (-550)) (-5 *1 (-235))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-623 *3)) (|:| |image| (-623 *3)))) + (-5 *1 (-878 *3)) (-4 *3 (-1068))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-623 (-1 *4 (-623 *4)))) (-4 *4 (-1068)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1068)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-623 (-1 *4 (-623 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1068))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-400 (-535)))) - (-5 *2 (-2 (|:| -3827 (-1119 *4)) (|:| -3828 (-1119 *4)))) - (-5 *1 (-1127 *4)) (-5 *3 (-1119 *4))))) + (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-925 *4)) (-1124 (-925 *4)))) + (-5 *1 (-1235 *4)) (-4 *4 (-356))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-586 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1181)) (-5 *2 (-1232))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-771)) + (-4 *3 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *5 (-542)) + (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-922 (-400 (-925 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1020)) (-4 *5 (-771)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -4028 ((-1144) $)) + (-15 -1861 ((-3 $ "failed") (-1144)))))) + (-5 *1 (-957 *4 *5 *3 *2)) (-4 *2 (-922 (-925 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *6)) + (-4 *6 + (-13 (-825) + (-10 -8 (-15 -4028 ((-1144) $)) + (-15 -1861 ((-3 $ "failed") (-1144)))))) + (-4 *4 (-1020)) (-4 *5 (-771)) (-5 *1 (-957 *4 *5 *6 *2)) + (-4 *2 (-922 (-925 *4) *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) + (-5 *2 (-400 (-550))) (-5 *1 (-993 *4)) (-4 *4 (-1203 (-550)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| -1653 (-400 *6)) (|:| |coeff| (-400 *6)))) + (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-400 (-535)))) - (-5 *2 (-2 (|:| -3984 (-1119 *4)) (|:| -3980 (-1119 *4)))) - (-5 *1 (-1127 *4)) (-5 *3 (-1119 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))) + (-12 (-4 *3 (-1203 (-400 (-550)))) + (-5 *2 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))) + (-5 *1 (-886 *3 *4)) (-4 *4 (-1203 (-400 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1203 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1203 (-400 *4)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-535))) (-5 *5 (-1 (-1119 *4))) (-4 *4 (-356)) - (-4 *4 (-1018)) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4))))) + (-12 (-5 *3 (-1140 *9)) (-5 *4 (-623 *7)) (-5 *5 (-623 *8)) + (-4 *7 (-825)) (-4 *8 (-1020)) (-4 *9 (-922 *8 *6 *7)) + (-4 *6 (-771)) (-5 *2 (-1140 *8)) (-5 *1 (-314 *6 *7 *8 *9))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-372)))) + ((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-372))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 (-925 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) + (-14 *4 (-623 (-1144))))) + ((*1 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-623 *7)) (-5 *3 (-1126)) (-4 *7 (-922 *4 *5 *6)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-442 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-623 *7)) (-5 *3 (-1126)) (-4 *7 (-922 *4 *5 *6)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-442 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) + (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-623 (-758 *3 (-838 *4)))) (-4 *3 (-444)) + (-14 *4 (-623 (-1144))) (-5 *1 (-608 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1119 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1018)) - (-5 *3 (-400 (-535))) (-5 *1 (-1126 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)) - (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018))))) + (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *1 (-1096 *3 *2)) (-4 *3 (-1203 *2))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-1108 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1068) (-34))) (-4 *5 (-13 (-1068) (-34))) + (-5 *1 (-1109 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-623 (-1108 *3 *4))) (-4 *3 (-13 (-1068) (-34))) + (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1109 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1119 *3))) (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) - (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018))))) + (-12 (-5 *3 (-1227 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) + (-4 *1 (-703 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1203 *5)) + (-5 *2 (-667 *5))))) +(((*1 *1 *1) (-5 *1 (-1032)))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1144)) (-5 *2 (-1072)) (-5 *1 (-284))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-142))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1060 (-925 (-550)))) (-5 *3 (-925 (-550))) + (-5 *1 (-323)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1060 (-925 (-550)))) (-5 *1 (-323))))) (((*1 *2 *3) - (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)) - (-4 *4 (-1018))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1200 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1119 *4)) (-5 *3 (-1 *4 (-535))) (-4 *4 (-1018)) - (-5 *1 (-1126 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) - (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-931))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-1126 *4)) (-4 *4 (-1018)) - (-5 *3 (-535))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-1126 *4)) (-4 *4 (-1018)) - (-5 *3 (-535))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-356)) - (-14 *4 (-964 *2 *3)))) + (-12 (-5 *3 (-1227 (-309 (-219)))) + (-5 *2 + (-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) + (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550)))) + (-5 *1 (-298))))) +(((*1 *1) (-5 *1 (-598)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1126)) + (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *1 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-542))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-142))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-667 (-550))) (-5 *3 (-623 (-550))) (-5 *1 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) - ((*1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) - ((*1 *1 *1) (|partial| -4 *1 (-699))) ((*1 *1 *1) (|partial| -4 *1 (-703))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-752 *5 *6 *7 *3 *4)) - (-4 *4 (-1038 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) - (-4 *2 (-1200 *3)))) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-400 (-925 *5)))) (-5 *4 (-623 (-1144))) + (-4 *5 (-542)) (-5 *2 (-623 (-623 (-925 *5)))) (-5 *1 (-1150 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-550)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-771)) (-4 *4 (-922 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) + (-5 *1 (-441 *5 *6 *7 *4))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-1144)) (-5 *1 (-526)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1144)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1144)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1144)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-526))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-623 (-1144))) (-5 *2 (-1144)) (-5 *1 (-683 *3)) + (-4 *3 (-596 (-526)))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-736))))) +(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-250))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-947))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1008)) (-5 *1 (-727))))) +(((*1 *2 *1) + (-12 (-5 *2 (-169)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-241 *3 *4)) + (-14 *3 (-623 (-1144))) (-4 *4 (-1020)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) - (-4 *2 (-542)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-542))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-542)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-747))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-542)) - (-5 *1 (-940 *3 *4)))) + (-12 (-5 *2 (-623 (-550))) (-14 *3 (-623 (-1144))) + (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1020)) + (-4 *5 (-232 (-3191 *3) (-749))))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) - (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-542)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-4 *4 (-1178)) (-5 *2 (-112)) - (-5 *1 (-1119 *4))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747)))) - (-5 *1 (-1119 *4)) (-4 *4 (-1178)) (-5 *3 (-747))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1119 *3))) (-5 *1 (-1119 *3)) (-4 *3 (-1178))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1119 *2)) (-4 *2 (-1178))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-832)))) - ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-832)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1124)) (-5 *4 (-835)) (-5 *2 (-1230)) (-5 *1 (-832)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1119 *4)) (-4 *4 (-1067)) - (-4 *4 (-1178))))) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-473 *3 *4)) + (-14 *3 (-623 (-1144))) (-4 *4 (-1020))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1020)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1203 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-925 *4)) (-4 *4 (-13 (-300) (-145))) + (-4 *2 (-922 *4 *6 *5)) (-5 *1 (-897 *4 *5 *6 *2)) + (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771))))) (((*1 *2 *1) - (-12 (-5 *2 (-835)) (-5 *1 (-1119 *3)) (-4 *3 (-1067)) (-4 *3 (-1178))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1119 *3)) (-4 *3 (-1067)) (-4 *3 (-1178))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-1224 (-618 (-535)))) (-5 *1 (-472)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3))))) + (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *1 *1) (-4 *1 (-609))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975) (-1166)))))) +(((*1 *1) (-5 *1 (-430)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-5 *2 + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1181)) (-5 *1 (-180 *3 *2)) + (-4 *2 (-652 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) + ((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) + (-14 *4 (-623 (-1144))))) + ((*1 *2 *1) + (-12 (-5 *2 (-550)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) + (-14 *4 (-623 (-1144))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1020)) (-4 *3 (-825)) + (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-268)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1140 *8)) (-5 *4 (-623 *6)) (-4 *6 (-825)) + (-4 *8 (-922 *7 *5 *6)) (-4 *5 (-771)) (-4 *7 (-1020)) + (-5 *2 (-623 (-749))) (-5 *1 (-314 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-894)))) + ((*1 *2 *1) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-542)) (-5 *2 (-550)) (-5 *1 (-603 *3 *4)) + (-4 *4 (-1203 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *6)) (-4 *1 (-922 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-749))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-922 *4 *5 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) + (-4 *3 (-825)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-946 *3 *2 *4)) (-4 *3 (-1020)) (-4 *4 (-825)) + (-4 *2 (-770)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1218 *3)) + (-5 *2 (-550)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1187 *3)) + (-5 *2 (-400 (-550))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-811 (-894))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *2 (-749))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-677))))) +(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-133))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1227 (-623 *3))) (-4 *4 (-300)) + (-5 *2 (-623 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-979))))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-1068))))) +(((*1 *2 *2) + (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) + (-15 -2715 ((-1093 *3 (-594 $)) $)) + (-15 -1518 ($ (-1093 *3 (-594 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) + (-15 -2715 ((-1093 *3 (-594 $)) $)) + (-15 -1518 ($ (-1093 *3 (-594 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *2)) + (-4 *2 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *4 (-594 $)) $)) + (-15 -2715 ((-1093 *4 (-594 $)) $)) + (-15 -1518 ($ (-1093 *4 (-594 $))))))) + (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-623 (-594 *2))) + (-4 *2 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *4 (-594 $)) $)) + (-15 -2715 ((-1093 *4 (-594 $)) $)) + (-15 -1518 ($ (-1093 *4 (-594 $))))))) + (-4 *4 (-542)) (-5 *1 (-41 *4 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-937 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-142))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-535)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-526 *4 *2)) - (-4 *2 (-1217 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-535)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-4 *5 (-1200 *4)) - (-4 *6 (-701 *4 *5)) (-5 *1 (-530 *4 *5 *6 *2)) (-4 *2 (-1217 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-535)) (-4 *4 (-13 (-356) (-361) (-594 *3))) - (-5 *1 (-531 *4 *2)) (-4 *2 (-1217 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-13 (-542) (-145))) - (-5 *1 (-1118 *4))))) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-550)) (-4 *4 (-1020)) + (-5 *1 (-1128 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-550)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1020)) + (-14 *4 (-1144)) (-14 *5 *3)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-526))) (-5 *1 (-526))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) - (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) + ((*1 *1 *1) (-4 *1 (-277))) + ((*1 *2 *3) + (-12 (-5 *3 (-411 *4)) (-4 *4 (-542)) + (-5 *2 (-623 (-2 (|:| -2855 (-749)) (|:| |logand| *4)))) + (-5 *1 (-313 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *2 *1) + (-12 (-5 *2 (-642 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) - (-4 *2 (-1217 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1020) (-696 (-400 (-550))))) + (-4 *5 (-825)) (-5 *1 (-1243 *4 *5 *2)) (-4 *2 (-1248 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-1247 *3 *4)) + (-4 *4 (-696 (-400 (-550)))) (-4 *3 (-825)) (-4 *4 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-372)))) + ((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-372))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-623 (-594 *2))) (-5 *4 (-623 (-1144))) + (-4 *2 (-13 (-423 (-167 *5)) (-975) (-1166))) + (-4 *5 (-13 (-542) (-825))) (-5 *1 (-582 *5 *6 *2)) + (-4 *6 (-13 (-423 *5) (-975) (-1166)))))) +(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-268))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-749)) (-4 *1 (-1203 *3)) (-4 *3 (-1020))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-846 *2 *3)) (-4 *2 (-1181)) (-4 *3 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1227 *5)) (-5 *3 (-749)) (-5 *4 (-1088)) (-4 *5 (-342)) + (-5 *1 (-519 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-5 *1 (-878 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-925 *4)) (-1124 (-925 *4)))) + (-5 *1 (-1235 *4)) (-4 *4 (-356))))) +(((*1 *1 *1) (-4 *1 (-609))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) - (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975) (-1166)))))) +(((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-112)) (-5 *1 (-865 *4)) + (-4 *4 (-1068))))) +(((*1 *2 *1) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-312 *3 *4 *5)) + (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1144)) (-14 *5 *3)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-623 (-256))) (-5 *4 (-1144)) + (-5 *1 (-255 *2)) (-4 *2 (-1181)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-623 (-256))) (-5 *4 (-1144)) (-5 *2 (-52)) + (-5 *1 (-256))))) +(((*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-235))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-550)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-623 (-925 *4))) (-5 *3 (-623 (-1144))) (-4 *4 (-444)) + (-5 *1 (-891 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *3)) (-5 *1 (-1096 *4 *3)) (-4 *4 (-1203 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-550)) (-4 *5 (-356)) + (-4 *5 (-1020)) (-5 *2 (-112)) (-5 *1 (-1002 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-667 *4))) (-4 *4 (-356)) (-4 *4 (-1020)) + (-5 *2 (-112)) (-5 *1 (-1002 *4))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -2682 *7) (|:| |sol?| (-112))) + (-550) *7)) + (-5 *6 (-623 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1203 *7)) + (-5 *3 (-400 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-560 *7 *8))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1227 (-749))) (-5 *1 (-653 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-542)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-942 *5 *3)) (-4 *3 (-1203 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-423 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-749)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-114)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) - (-4 *2 (-1217 *3)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *4)) + (-4 *4 (-423 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-114)) (-5 *1 (-161)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *4)) + (-4 *4 (-13 (-423 *3) (-975))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-294 *3)) (-4 *3 (-295)))) + ((*1 *2 *2) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) - (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) + (-12 (-5 *2 (-114)) (-4 *4 (-825)) (-5 *1 (-422 *3 *4)) + (-4 *3 (-423 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) - (-4 *2 (-1217 *3)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *4)) + (-4 *4 (-423 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) ((*1 *2 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) - ((*1 *1) (-4 *1 (-1117)))) -(((*1 *1 *1) (|partial| -4 *1 (-1117)))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1178)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1178)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1113 *3))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-618 (-998 *5 *6 *7 *3))) (-5 *1 (-998 *5 *6 *7 *3)) - (-4 *3 (-1032 *5 *6 *7)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *4)) + (-4 *4 (-13 (-423 *3) (-975) (-1166))))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-992))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-894)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749))))) +(((*1 *1 *2) (-12 (-5 *2 (-894)) (-4 *1 (-361)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1227 *4)) (-5 *1 (-519 *4)) + (-4 *4 (-342)))) + ((*1 *2 *1) + (-12 (-4 *2 (-825)) (-5 *1 (-692 *2 *3 *4)) (-4 *3 (-1068)) + (-14 *4 + (-1 (-112) (-2 (|:| -2922 *2) (|:| -3521 *3)) + (-2 (|:| -2922 *2) (|:| -3521 *3))))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-550) (-550))) (-5 *1 (-354 *3)) (-4 *3 (-1068)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-618 *6)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)))) + (-12 (-5 *2 (-1 (-749) (-749))) (-5 *1 (-379 *3)) (-4 *3 (-1068)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *2 (-1032 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-618 (-1112 *5 *6 *7 *3))) (-5 *1 (-1112 *5 *6 *7 *3)) - (-4 *3 (-1032 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) - (-5 *1 (-998 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) - (-5 *1 (-1112 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *8 (-1032 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-618 *8)) (|:| |towers| (-618 (-998 *5 *6 *7 *8))))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *3 (-618 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *8 (-1032 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-618 *8)) (|:| |towers| (-618 (-1112 *5 *6 *7 *8))))) - (-5 *1 (-1112 *5 *6 *7 *8)) (-5 *3 (-618 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *4 (-747)) - (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230)) - (-5 *1 (-1036 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *4 (-747)) - (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230)) - (-5 *1 (-1111 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-618 *11)) - (|:| |todo| (-618 (-2 (|:| |val| *3) (|:| -1655 *11)))))) - (-5 *6 (-747)) (-5 *2 (-618 (-2 (|:| |val| (-618 *10)) (|:| -1655 *11)))) - (-5 *3 (-618 *10)) (-5 *4 (-618 *11)) (-4 *10 (-1032 *7 *8 *9)) - (-4 *11 (-1038 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) - (-5 *1 (-1036 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-1203 (-400 *3))) (-5 *2 (-894)) + (-5 *1 (-886 *4 *5)) (-4 *5 (-1203 (-400 *4)))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1144)) (-5 *3 (-1072)) (-5 *1 (-284))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) + (-4 *4 (-342))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-550) "failed") *5)) (-4 *5 (-1020)) + (-5 *2 (-550)) (-5 *1 (-533 *5 *3)) (-4 *3 (-1203 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-550) "failed") *4)) (-4 *4 (-1020)) + (-5 *2 (-550)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-550) "failed") *4)) (-4 *4 (-1020)) + (-5 *2 (-550)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *3) (-12 - (-5 *5 - (-2 (|:| |done| (-618 *11)) - (|:| |todo| (-618 (-2 (|:| |val| *3) (|:| -1655 *11)))))) - (-5 *6 (-747)) (-5 *2 (-618 (-2 (|:| |val| (-618 *10)) (|:| -1655 *11)))) - (-5 *3 (-618 *10)) (-5 *4 (-618 *11)) (-4 *10 (-1032 *7 *8 *9)) - (-4 *11 (-1075 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) - (-5 *1 (-1111 *7 *8 *9 *10 *11))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2408 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3413 (-400 *6)) (|:| |special| (-400 *6)))) - (-5 *1 (-704 *5 *6)) (-5 *3 (-400 *6)))) + (-5 *3 + (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) + (-5 *2 (-372)) (-5 *1 (-260)))) ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-867 *3 *4)) - (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-747)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -3456 *3) (|:| -3455 *3))) (-5 *1 (-867 *3 *5)) - (-4 *3 (-1200 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) - (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) - (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) - (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) - (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) - (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1036 *7 *8 *9 *3 *4)) (-4 *4 (-1038 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *3 (-1032 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) + (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-298))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-623 (-925 *3))) (-4 *3 (-444)) + (-5 *1 (-353 *3 *4)) (-14 *4 (-623 (-1144))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-623 (-758 *3 (-838 *4)))) (-4 *3 (-444)) + (-14 *4 (-623 (-1144))) (-5 *1 (-608 *3 *4))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-550)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-771)) (-4 *4 (-922 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) + (-5 *1 (-441 *5 *6 *7 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-894)) (|has| *1 (-6 -4333)) (-4 *1 (-397)))) + ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-894))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 *7)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) + (-5 *1 (-961 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-623 *7)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) + (-5 *1 (-1075 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-1203 *4)) + (-4 *5 (-1203 (-400 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-1032)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) + (-4 *2 (-1218 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1203 *3)) + (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1218 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) + (-4 *2 (-1218 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-542) (-145))) + (-5 *1 (-1120 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-250))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-323))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-947))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-400 (-925 (-550))))) + (-5 *2 (-623 (-623 (-287 (-925 *4))))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-823) (-356))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) - (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1111 *7 *8 *9 *3 *4)) (-4 *4 (-1075 *7 *8 *9 *3)))) + (-12 (-5 *3 (-623 (-287 (-400 (-925 (-550)))))) + (-5 *2 (-623 (-623 (-287 (-925 *4))))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-823) (-356))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-925 (-550)))) (-5 *2 (-623 (-287 (-925 *4)))) + (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-287 (-400 (-925 (-550))))) + (-5 *2 (-623 (-287 (-925 *4)))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-823) (-356))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *3 (-1032 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) + (|partial| -12 (-5 *5 (-1144)) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-4 *4 (-13 (-29 *6) (-1166) (-932))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2437 (-623 *4)))) + (-5 *1 (-630 *6 *4 *3)) (-4 *3 (-634 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1144)) (-5 *5 (-623 *2)) + (-4 *2 (-13 (-29 *6) (-1166) (-932))) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *1 (-630 *6 *2 *3)) (-4 *3 (-634 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) + (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *3 (-1032 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) + (-2 (|:| |particular| (-3 (-1227 *5) "failed")) + (|:| -2437 (-623 (-1227 *5))))) + (-5 *1 (-645 *5)) (-5 *4 (-1227 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *3 (-1032 *6 *7 *8)) + (-12 (-5 *3 (-623 (-623 *5))) (-4 *5 (-356)) (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) + (-2 (|:| |particular| (-3 (-1227 *5) "failed")) + (|:| -2437 (-623 (-1227 *5))))) + (-5 *1 (-645 *5)) (-5 *4 (-1227 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) + (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *3 (-1032 *6 *7 *8)) + (-623 + (-2 (|:| |particular| (-3 (-1227 *5) "failed")) + (|:| -2437 (-623 (-1227 *5)))))) + (-5 *1 (-645 *5)) (-5 *4 (-623 (-1227 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-623 *5))) (-4 *5 (-356)) (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) + (-623 + (-2 (|:| |particular| (-3 (-1227 *5) "failed")) + (|:| -2437 (-623 (-1227 *5)))))) + (-5 *1 (-645 *5)) (-5 *4 (-623 (-1227 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) + (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4343)))) + (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-5 *2 - (-2 (|:| |done| (-618 *4)) - (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) - (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) + (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) - (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) - (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) + (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4343)))) + (-4 *7 (-13 (-366 *5) (-10 -7 (-6 -4343)))) + (-5 *2 + (-623 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2437 (-623 *7))))) + (-5 *1 (-646 *5 *6 *7 *3)) (-5 *4 (-623 *7)) + (-4 *3 (-665 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) - (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9))))) -(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1110)))) -(((*1 *1 *1) (-4 *1 (-1110)))) -(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1110)))) -(((*1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-535)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *6)) (-4 *5 (-1067)) (-4 *6 (-1178)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *6)))) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-623 (-1144))) (-4 *5 (-542)) + (-5 *2 (-623 (-623 (-287 (-400 (-925 *5)))))) (-5 *1 (-748 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-542)) + (-5 *2 (-623 (-623 (-287 (-400 (-925 *4)))))) (-5 *1 (-748 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1144)) + (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *1 (-750 *5 *2)) (-4 *2 (-13 (-29 *5) (-1166) (-932))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-4 *5 (-1067)) (-4 *2 (-1178)) - (-5 *1 (-620 *5 *2)))) + (|partial| -12 (-5 *3 (-667 *7)) (-5 *5 (-1144)) + (-4 *7 (-13 (-29 *6) (-1166) (-932))) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 + (-2 (|:| |particular| (-1227 *7)) (|:| -2437 (-623 (-1227 *7))))) + (-5 *1 (-780 *6 *7)) (-5 *4 (-1227 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-667 *6)) (-5 *4 (-1144)) + (-4 *6 (-13 (-29 *5) (-1166) (-932))) + (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 (-623 (-1227 *6))) (-5 *1 (-780 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 *5)) (-4 *6 (-1067)) (-4 *5 (-1178)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-620 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-4 *5 (-1067)) (-4 *2 (-1178)) - (-5 *1 (-620 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-618 *5)) (-5 *4 (-618 *6)) (-4 *5 (-1067)) - (-4 *6 (-1178)) (-5 *1 (-620 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1067)) - (-4 *2 (-1178)) (-5 *1 (-620 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-747))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1191 (-535)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-747)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-535)) (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-535)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1178)) - (-5 *2 (-535)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-535)) (-5 *3 (-139)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-823)))) - ((*1 *2 *2) - (-12 (-5 *2 (-565 *4)) (-4 *4 (-13 (-29 *3) (-1164))) - (-4 *3 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) - (-5 *1 (-567 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-565 (-400 (-917 *3)))) - (-4 *3 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *1 (-570 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -3413 *3) (|:| |special| *3))) (-5 *1 (-704 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) - (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) - (-5 *3 (-618 (-665 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1224 (-1224 *5))) (-4 *5 (-356)) (-4 *5 (-1018)) - (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) - (-5 *3 (-618 (-665 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-618 *1)) (-4 *1 (-1110)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-618 *1)) (-4 *1 (-1110))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) - (-4 *5 (-170)))) - ((*1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) - ((*1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1018)) (-4 *1 (-662 *3 *2 *4)) (-4 *2 (-365 *3)) - (-4 *4 (-365 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-14 *2 (-747)) (-4 *3 (-1018))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1108 *3 *4)) - (-14 *3 (-747))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1107 *3 *4)) - (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1106 *4 *5)) (-4 *4 (-13 (-1067) (-34))) - (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1106 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112)) - (-5 *1 (-1107 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)) - (-4 *2 (-1067)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3)) - (-4 *3 (-1178)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-535)) (-4 *4 (-1067)) - (-5 *1 (-713 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-713 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3)) - (-4 *3 (-1067)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-229 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-535)) (-4 *4 (-1067)) - (-5 *1 (-713 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-713 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-1106 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) - (-5 *1 (-1107 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-618 (-1106 *3 *4))) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) - (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-831)))) - ((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-936)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-960)))) - ((*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1106 *2 *3)) - (-4 *3 (-13 (-1067) (-34)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) - (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34)))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) - ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-534))) - ((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1067) (-34))) - (-4 *2 (-13 (-1067) (-34)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) - (-4 *4 (-13 (-1067) (-34)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) - (-4 *3 (-13 (-1067) (-34)))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112)) - (-5 *1 (-1106 *5 *6))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5)) (-4 *4 (-13 (-1067) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1105)))) -(((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1105)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1105)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1105)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1105)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1105)))) -(((*1 *1 *1) (-5 *1 (-219))) ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1105))) ((*1 *1 *1 *1) (-4 *1 (-1105)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-747)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-166 (-219))) (-5 *3 (-747)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1105)))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1105)))) -(((*1 *1 *1 *1) (-5 *1 (-219))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) - ((*1 *1 *1 *1) (-4 *1 (-1105)))) -(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) - ((*1 *1 *1) (-4 *1 (-821))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) - ((*1 *1 *1) (-4 *1 (-1027))) ((*1 *1 *1) (-4 *1 (-1105)))) -(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-62 *3)) (-14 *3 (-1142)))) - ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-68 *3)) (-14 *3 (-1142)))) - ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-71 *3)) (-14 *3 (-1142)))) - ((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1230)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1124)) (-5 *4 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) - ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-618 (-1147))) (-5 *1 (-1102))))) -(((*1 *1 *2) (-12 (-5 *2 (-1130 3 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) - ((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018))))) -(((*1 *2) - (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) - (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))) -(((*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-618 *1)) (-4 *1 (-1100 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-618 *1)) (-4 *1 (-1100 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-618 (-914 *4))) (-4 *1 (-1100 *4)) (-4 *4 (-1018)) - (-5 *2 (-747))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-914 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-618 (-618 (-914 *4)))) (-5 *3 (-112)) (-4 *4 (-1018)) - (-4 *1 (-1100 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 (-618 (-914 *3)))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-618 (-618 (-618 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4)) - (-4 *4 (-1018)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-618 (-618 (-914 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4)) - (-4 *4 (-1018)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-618 (-618 (-618 *5)))) (-5 *3 (-618 (-169))) (-5 *4 (-169)) - (-4 *1 (-1100 *5)) (-4 *5 (-1018)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-618 (-618 (-914 *5)))) (-5 *3 (-618 (-169))) (-5 *4 (-169)) - (-4 *1 (-1100 *5)) (-4 *5 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-618 (-747)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) - (-5 *2 (-618 (-618 (-618 (-914 *3)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-169))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-169)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) + (|partial| -12 (-5 *3 (-623 (-287 *7))) (-5 *4 (-623 (-114))) + (-5 *5 (-1144)) (-4 *7 (-13 (-29 *6) (-1166) (-932))) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 + (-2 (|:| |particular| (-1227 *7)) (|:| -2437 (-623 (-1227 *7))))) + (-5 *1 (-780 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-623 *7)) (-5 *4 (-623 (-114))) + (-5 *5 (-1144)) (-4 *7 (-13 (-29 *6) (-1166) (-932))) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 + (-2 (|:| |particular| (-1227 *7)) (|:| -2437 (-623 (-1227 *7))))) + (-5 *1 (-780 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-1144)) + (-4 *7 (-13 (-29 *6) (-1166) (-932))) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) (-5 *2 - (-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) - (|:| |constructs| (-747))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 (-2 (|:| -4075 (-1136 *6)) (|:| -2484 (-535))))) - (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) - (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-1098 *4 *2)) - (-4 *2 (-13 (-584 (-535) *4) (-10 -7 (-6 -4336) (-6 -4337)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-823)) (-4 *3 (-1178)) (-5 *1 (-1098 *3 *2)) - (-4 *2 (-13 (-584 (-535) *3) (-10 -7 (-6 -4336) (-6 -4337))))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-1098 *4 *2)) - (-4 *2 (-13 (-584 (-535) *4) (-10 -7 (-6 -4336) (-6 -4337)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-823)) (-4 *3 (-1178)) (-5 *1 (-1098 *3 *2)) - (-4 *2 (-13 (-584 (-535) *3) (-10 -7 (-6 -4336) (-6 -4337))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1224 *4)) (-4 *4 (-1018)) (-4 *2 (-1200 *4)) - (-5 *1 (-436 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-400 (-1136 (-307 *5)))) (-5 *3 (-1224 (-307 *5))) - (-5 *4 (-535)) (-4 *5 (-13 (-542) (-823))) (-5 *1 (-1096 *5))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-400 (-1136 (-307 *3)))) (-4 *3 (-13 (-542) (-823))) - (-5 *1 (-1096 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-400 (-917 *5)))) (-5 *4 (-1142)) - (-4 *5 (-13 (-300) (-823) (-145))) - (-5 *2 (-1131 (-618 (-307 *5)) (-618 (-286 (-307 *5))))) - (-5 *1 (-1095 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) - (-4 *5 (-13 (-300) (-823) (-145))) - (-5 *2 (-1131 (-618 (-307 *5)) (-618 (-286 (-307 *5))))) - (-5 *1 (-1095 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) - (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-307 *5))) - (-5 *1 (-1095 *5)))) + (-3 (-2 (|:| |particular| *7) (|:| -2437 (-623 *7))) *7 "failed")) + (-5 *1 (-780 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-1144)) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2437 (-623 *3))) *3 "failed")) + (-5 *1 (-780 *6 *3)) (-4 *3 (-13 (-29 *6) (-1166) (-932))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-287 *2)) (-5 *4 (-114)) (-5 *5 (-623 *2)) + (-4 *2 (-13 (-29 *6) (-1166) (-932))) (-5 *1 (-780 *6 *2)) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-287 *2)) (-5 *5 (-623 *2)) + (-4 *2 (-13 (-29 *6) (-1166) (-932))) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *1 (-780 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1008)) (-5 *1 (-783)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) - (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-307 *5)))) - (-5 *1 (-1095 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) - (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) - (-5 *1 (-1095 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-13 (-300) (-823) (-145))) - (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1095 *4)))) + (-12 (-5 *3 (-786)) (-5 *4 (-1032)) (-5 *2 (-1008)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1227 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) + (-5 *2 (-1008)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1227 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) + (-5 *2 (-1008)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1227 (-309 *4))) (-5 *5 (-623 (-372))) + (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1008)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1227 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-623 *4)) + (-5 *2 (-1008)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1227 (-309 *4))) (-5 *5 (-623 (-372))) + (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1008)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1227 (-309 *4))) (-5 *5 (-623 (-372))) + (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1008)) (-5 *1 (-783)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2437 (-623 *6))) "failed") + *7 *6)) + (-4 *6 (-356)) (-4 *7 (-634 *6)) + (-5 *2 (-2 (|:| |particular| (-1227 *6)) (|:| -2437 (-667 *6)))) + (-5 *1 (-791 *6 *7)) (-5 *3 (-667 *6)) (-5 *4 (-1227 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1008)) (-5 *1 (-870)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-871)) (-5 *4 (-1032)) (-5 *2 (-1008)) (-5 *1 (-870)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-749)) (-5 *6 (-623 (-623 (-309 *3)))) (-5 *7 (-1126)) + (-5 *8 (-219)) (-5 *5 (-623 (-309 (-372)))) (-5 *3 (-372)) + (-5 *2 (-1008)) (-5 *1 (-870)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-749)) (-5 *6 (-623 (-623 (-309 *3)))) (-5 *7 (-1126)) + (-5 *5 (-623 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1008)) + (-5 *1 (-870)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-400 (-917 *5)))) (-5 *4 (-1142)) - (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) - (-5 *1 (-1095 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-286 (-400 (-917 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) - (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1095 *4)))) + (-12 (-5 *3 (-925 (-400 (-550)))) (-5 *2 (-623 (-372))) + (-5 *1 (-996)) (-5 *4 (-372)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) - (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5))))) - (-5 *1 (-1095 *5)))) + (-12 (-5 *3 (-925 (-550))) (-5 *2 (-623 (-372))) (-5 *1 (-996)) + (-5 *4 (-372)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1099 *4)) + (-5 *3 (-309 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1099 *4)) + (-5 *3 (-287 (-309 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) + (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1099 *5)) + (-5 *3 (-287 (-309 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) + (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 (-623 (-287 (-309 *5)))) (-5 *1 (-1099 *5)) + (-5 *3 (-309 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-1144))) + (-4 *5 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1099 *5)) + (-5 *3 (-623 (-287 (-309 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-400 (-925 *5)))) (-5 *4 (-623 (-1144))) + (-4 *5 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *5)))))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-1144))) (-4 *5 (-542)) + (-5 *2 (-623 (-623 (-287 (-400 (-925 *5)))))) (-5 *1 (-1150 *5)) + (-5 *3 (-623 (-287 (-400 (-925 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-400 (-917 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) - (-5 *2 (-618 (-618 (-286 (-307 *4))))) (-5 *1 (-1095 *4)))) + (-12 (-5 *3 (-623 (-400 (-925 *4)))) (-4 *4 (-542)) + (-5 *2 (-623 (-623 (-287 (-400 (-925 *4)))))) (-5 *1 (-1150 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-623 (-623 (-287 (-400 (-925 *4)))))) + (-5 *1 (-1150 *4)) (-5 *3 (-623 (-287 (-400 (-925 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) (-4 *5 (-542)) + (-5 *2 (-623 (-287 (-400 (-925 *5))))) (-5 *1 (-1150 *5)) + (-5 *3 (-400 (-925 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-286 (-400 (-917 *5))))) (-5 *4 (-618 (-1142))) - (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5))))) - (-5 *1 (-1095 *5)))) + (-12 (-5 *4 (-1144)) (-4 *5 (-542)) + (-5 *2 (-623 (-287 (-400 (-925 *5))))) (-5 *1 (-1150 *5)) + (-5 *3 (-287 (-400 (-925 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-286 (-400 (-917 *4))))) - (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *4))))) - (-5 *1 (-1095 *4))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2))))) + (-12 (-4 *4 (-542)) (-5 *2 (-623 (-287 (-400 (-925 *4))))) + (-5 *1 (-1150 *4)) (-5 *3 (-400 (-925 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-623 (-287 (-400 (-925 *4))))) + (-5 *1 (-1150 *4)) (-5 *3 (-287 (-400 (-925 *4))))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-922 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) + (-4 *4 (-13 (-1068) (-34)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-727))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3))))) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1149))) (-5 *1 (-181))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *2 - (-2 (|:| |solns| (-618 *5)) - (|:| |maps| (-618 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1094 *3 *5)) (-4 *3 (-1200 *5))))) -(((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4337)))) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))) (-5 *1 (-643 *4 *5 *2 *3)) - (-4 *3 (-662 *4 *5 *2)))) - ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1224 *4)) (-5 *3 (-665 *4)) (-4 *4 (-356)) - (-5 *1 (-644 *4)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-618 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) - (-5 *1 (-790 *2 *3)) (-4 *3 (-634 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) - (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-1119 *7))) (-4 *6 (-823)) - (-4 *7 (-921 *5 (-521 *6) *6)) (-4 *5 (-1018)) (-5 *2 (-1 (-1119 *7) *7)) - (-5 *1 (-1092 *5 *6 *7))))) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) + (-5 *2 (-623 (-749))) (-5 *1 (-756 *3 *4 *5 *6 *7)) + (-4 *3 (-1203 *6)) (-4 *7 (-922 *6 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1020)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1203 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-916 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-916 *3))) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-916 *3))) (-4 *1 (-1102 *3)) (-4 *3 (-1020))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-300)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4)))) - (-5 *1 (-1090 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *1) (-5 *1 (-430)))) +(((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6))))) + (-12 (-5 *3 (-925 *5)) (-4 *5 (-1020)) (-5 *2 (-473 *4 *5)) + (-5 *1 (-917 *4 *5)) (-14 *4 (-623 (-1144)))))) (((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1090 *4 *5 *6 *3)) - (-4 *3 (-662 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) - ((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1018)) (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) - (-4 *5 (-232 *3 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 *1)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1018)) (-5 *1 (-665 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 *4)) (-4 *4 (-1018)) (-4 *1 (-1089 *3 *4 *5 *6)) - (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) + (-14 *4 *2)))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1034 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-736))))) +(((*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-979))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-949 *4 *5 *6 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-4 *4 (-542)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) - (-4 *2 (-232 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-890)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) - ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1224 *4)) (-5 *3 (-890)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) + (-12 (-5 *2 (-623 (-1167 *3))) (-5 *1 (-1167 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1144)) (-5 *5 (-1062 (-219))) (-5 *2 (-900)) + (-5 *1 (-898 *3)) (-4 *3 (-596 (-526))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) (-5 *2 (-900)) (-5 *1 (-898 *3)) + (-4 *3 (-596 (-526))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-900)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-356)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-5 *1 (-878 *3))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) + (-5 *4 (-1 (-219) (-219) (-219) (-219))) + (-5 *2 (-1 (-916 (-219)) (-219) (-219))) (-5 *1 (-675))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-1144))) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) + (-5 *2 (-623 (-400 (-925 *4)))) (-5 *1 (-897 *4 *5 *6 *7)) + (-4 *7 (-922 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-542) (-825))) (-5 *2 (-167 *5)) + (-5 *1 (-582 *4 *5 *3)) (-4 *5 (-13 (-423 *4) (-975) (-1166))) + (-4 *3 (-13 (-423 (-167 *4)) (-975) (-1166)))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-544 *2)) (-4 *2 (-535))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-606)))) ((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) - (-4 *2 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *4 (-1200 *2)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) - (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-403 *2 *4)))) + (-12 (-4 *3 (-1068)) + (-4 *2 (-13 (-423 *4) (-859 *3) (-596 (-865 *3)))) + (-5 *1 (-1044 *3 *4 *2)) + (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) - (-4 *2 (-1018))))) + (-12 (-4 *2 (-1068)) (-5 *1 (-1133 *3 *2)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-5 *2 + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-472))))) (((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-356)) - (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-372)) (-5 *1 (-199))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-372))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-749)) (-4 *4 (-300)) (-4 *6 (-1203 *4)) + (-5 *2 (-1227 (-623 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-623 *6))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) + (-5 *5 (-1062 (-219))) (-5 *6 (-550)) (-5 *2 (-1176 (-899))) + (-5 *1 (-311)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) + (-5 *5 (-1062 (-219))) (-5 *6 (-550)) (-5 *7 (-1126)) + (-5 *2 (-1176 (-899))) (-5 *1 (-311)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) + (-5 *5 (-1062 (-219))) (-5 *6 (-219)) (-5 *7 (-550)) + (-5 *2 (-1176 (-899))) (-5 *1 (-311)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) + (-5 *5 (-1062 (-219))) (-5 *6 (-219)) (-5 *7 (-550)) (-5 *8 (-1126)) + (-5 *2 (-1176 (-899))) (-5 *1 (-311))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) + (|:| |lb| (-623 (-818 (-219)))) + (|:| |cf| (-623 (-309 (-219)))) + (|:| |ub| (-623 (-818 (-219)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-623 (-309 (-219)))) + (|:| -3862 (-623 (-219))))))) + (-5 *2 (-623 (-1126))) (-5 *1 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-606)))) ((*1 *2 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) - (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))) - ((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) - (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5)))) + (-12 (-4 *3 (-1068)) + (-4 *2 (-13 (-423 *4) (-859 *3) (-596 (-865 *3)))) + (-5 *1 (-1044 *3 *4 *2)) + (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) - (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018))))) + (-12 (-4 *2 (-1068)) (-5 *1 (-1133 *2 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) (((*1 *2 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) - (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))) - ((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) - (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) - (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1178)) (-5 *2 (-747))))) -(((*1 *1 *1 *1) (-4 *1 (-638))) ((*1 *1 *1 *1) (-5 *1 (-1086)))) -(((*1 *1 *1 *1) (-4 *1 (-638))) ((*1 *1 *1 *1) (-5 *1 (-1086)))) -(((*1 *1 *1) (-4 *1 (-638))) ((*1 *1 *1) (-5 *1 (-1086)))) -(((*1 *1) - (-12 (-4 *1 (-397)) (-3659 (|has| *1 (-6 -4327))) - (-3659 (|has| *1 (-6 -4319))))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) (-4 *1 (-823))) - ((*1 *2 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) ((*1 *1) (-5 *1 (-1086)))) -(((*1 *1) - (-12 (-4 *1 (-397)) (-3659 (|has| *1 (-6 -4327))) - (-3659 (|has| *1 (-6 -4319))))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-823)))) - ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) (-4 *1 (-823))) ((*1 *1) (-5 *1 (-1086)))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1) (-4 *1 (-938))) ((*1 *1 *1) (-5 *1 (-1086)))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1086)))) -(((*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535)))) - ((*1 *1 *1) (-5 *1 (-1086)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535)))) - ((*1 *1 *1 *1) (-5 *1 (-1086)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535)))) - ((*1 *1 *1 *1) (-5 *1 (-1086)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1081)) (-5 *1 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-212)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1147))) (-5 *3 (-1147)) (-5 *1 (-1081)))) - ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-657)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1040)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1081))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-657)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1081))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142)) - (-5 *2 (-535)) (-5 *1 (-1080 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142)) - (-5 *2 (-535)) (-5 *1 (-1080 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) - (-5 *1 (-1080 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) - (-5 *1 (-1080 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 *4)) - (-5 *1 (-1080 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 (-1193 *5 *4))) - (-5 *1 (-1080 *4 *5)) (-5 *3 (-1193 *5 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 (-1193 *5 *4))) - (-5 *1 (-1080 *4 *5)) (-5 *3 (-1193 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1076))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1224 (-535))) (-5 *3 (-535)) (-5 *1 (-1076)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1224 (-535))) (-5 *3 (-618 (-535))) (-5 *4 (-535)) - (-5 *1 (-1076))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *3 (-112)) (-5 *1 (-1076))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-665 (-535))) (-5 *3 (-618 (-535))) (-5 *1 (-1076))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1076))))) + (-12 (-4 *2 (-1068)) (-5 *1 (-937 *2 *3)) (-4 *3 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 (-535))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-1076))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-618 (-535))) (-5 *3 (-665 (-535))) (-5 *1 (-1076))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1076))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) - (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) - (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) - (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) - (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) - (-4 *7 (-769)) (-4 *4 (-823)) - (-5 *2 (-618 (-2 (|:| |val| *8) (|:| -1655 *9)))) - (-5 *1 (-1074 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) + (-12 (-4 *4 (-13 (-356) (-823))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1877 (-411 *3)))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-525 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-526))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-1020))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1251 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-825)) + (-4 *2 (-170)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1020)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-797 *4)) (-4 *1 (-1244 *4 *2)) (-4 *4 (-825)) + (-4 *2 (-1020)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1020)) (-5 *1 (-1250 *2 *3)) (-4 *3 (-821))))) (((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) + (-12 (-14 *4 (-749)) (-4 *5 (-1181)) (-5 *2 (-133)) + (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) + (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) + (-4 *3 (-322 *4)))) ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *9 (-1032 *6 *7 *8)) - (-5 *2 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *4) (|:| |ineq| (-618 *9)))) - (-5 *1 (-959 *6 *7 *8 *9 *4)) (-5 *3 (-618 *9)) - (-4 *4 (-1038 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *9 (-1032 *6 *7 *8)) - (-5 *2 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *4) (|:| |ineq| (-618 *9)))) - (-5 *1 (-1073 *6 *7 *8 *9 *4)) (-5 *3 (-618 *9)) - (-4 *4 (-1038 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-618 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) - (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) + (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-170)))) + ((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-550)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-5 *2 (-550)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-922 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-953 *3)) (-4 *3 (-1020)) (-5 *2 (-894)))) + ((*1 *2) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *3)) (-5 *1 (-1096 *4 *3)) (-4 *4 (-1203 *3))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1653 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-623 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1203 *7)) + (-5 *3 (-400 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-560 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) + (-15 -2715 ((-1093 *3 (-594 $)) $)) + (-15 -1518 ($ (-1093 *3 (-594 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1140 *4)) (-5 *1 (-519 *4)) + (-4 *4 (-342))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-219)) (-5 *1 (-298))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-894)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-894)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-3 (-112) (-623 *1))) + (-4 *1 (-1040 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-922 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1020)) (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) + (-4 *1 (-1203 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1144)) (-5 *2 (-623 (-938))) (-5 *1 (-284))))) +(((*1 *2 *3) + (-12 (-5 *3 (-287 (-925 (-550)))) (-5 *2 - (-618 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *10) (|:| |ineq| (-618 *9))))) - (-5 *1 (-959 *6 *7 *8 *9 *10)) (-5 *3 (-618 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-618 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) - (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) + (-2 (|:| |varOrder| (-623 (-1144))) + (|:| |inhom| (-3 (-623 (-1227 (-749))) "failed")) + (|:| |hom| (-623 (-1227 (-749)))))) + (-5 *1 (-230))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-542)) (-5 *2 - (-618 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *10) (|:| |ineq| (-618 *9))))) - (-5 *1 (-1073 *6 *7 *8 *9 *10)) (-5 *3 (-618 *9))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 (-2 (|:| |val| (-618 *6)) (|:| -1655 *7)))) - (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-618 (-2 (|:| |val| (-618 *6)) (|:| -1655 *7)))) - (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1073 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) - (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) - (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) - (-5 *1 (-1073 *4 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *1 (-959 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *1 (-1073 *3 *4 *5 *6 *7))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-942 *5 *3)) (-4 *3 (-1203 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1083)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-623 (-1149))) (-5 *3 (-1149)) (-5 *1 (-1086))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-623 (-925 *4))) (-5 *3 (-623 (-1144))) (-4 *4 (-444)) + (-5 *1 (-891 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) + (-12 (|has| *2 (-6 (-4344 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) + (-4 *2 (-1020)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1203 *2)) + (-4 *4 (-665 *2 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-852 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-959 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) + (-12 (-5 *3 (-852 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-916 (-219)) (-219))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1073 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) - (-4 *3 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) - (-4 *3 (-1038 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *1 (-959 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *1 (-1073 *3 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-916 (-219)) (-219))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-855 (-1 (-219) (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-855 (-1 (-219) (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1101 (-219))) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-852 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) + (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1101 (-219))) + (-5 *1 (-252 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-852 *5)) (-5 *4 (-1060 (-372))) + (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1101 (-219))) + (-5 *1 (-252 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) + (-5 *2 (-1101 (-219))) (-5 *1 (-252 *3)) + (-4 *3 (-13 (-596 (-526)) (-1068))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1060 (-372))) (-5 *2 (-1101 (-219))) (-5 *1 (-252 *3)) + (-4 *3 (-13 (-596 (-526)) (-1068))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-855 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) + (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1101 (-219))) + (-5 *1 (-252 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-855 *5)) (-5 *4 (-1060 (-372))) + (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1101 (-219))) + (-5 *1 (-252 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-894)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749))))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1232)) + (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *2 (-1230)) (-5 *1 (-959 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *2 (-1230)) (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-959 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) - (-4 *8 (-1038 *4 *5 *6 *7))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-427)) (-4 *5 (-823)) (-5 *1 (-1072 *5 *4)) - (-4 *4 (-414 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-554 *3)) (-4 *3 (-1009 (-535))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 *4)))) - (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-4 *7 (-1067)) (-5 *2 (-618 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7))))) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-52)) (-5 *1 (-865 *4)) + (-4 *4 (-1068))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) (((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067))))) -(((*1 *2 *3) (-12 (-5 *2 (-535)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-890)) (-4 *1 (-397)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-397)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067))))) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-550))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) + (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) + (-5 *1 (-1143))))) +(((*1 *1 *1) (|partial| -4 *1 (-1119)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1227 *6)) (-5 *4 (-1227 (-550))) (-5 *5 (-550)) + (-4 *6 (-1068)) (-5 *2 (-1 *6)) (-5 *1 (-990 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1203 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1203 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-749))) + (-5 *1 (-529 *3 *2 *4 *5)) (-4 *2 (-1203 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) - (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) - (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-647)))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890))))) -(((*1 *2) - (-12 (-5 *2 (-1224 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) - (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-876 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-747)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-574 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1086))))) -(((*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1124))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) - ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3)))) - ((*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3)))) - ((*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-618 (-591 *4))) (-4 *4 (-414 *3)) (-4 *3 (-823)) - (-5 *1 (-558 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-160)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-652)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1033)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1062))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1060 *3)) (-4 *3 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1178)) (-5 *2 (-535))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-960)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1055 *4)) (-4 *4 (-1178)) (-5 *1 (-1058 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1057))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-254)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1224 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1224 *4)))) + (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *1 (-1176 *3)) + (-4 *3 (-947))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (|has| *1 (-6 -4333)) (-4 *1 (-397)) + (-5 *2 (-894))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-623 (-667 *6))) (-5 *4 (-112)) (-5 *5 (-550)) + (-5 *2 (-667 *6)) (-5 *1 (-1002 *6)) (-4 *6 (-356)) (-4 *6 (-1020)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1200 *4)) (-5 *2 (-1224 *4)))) + (-12 (-5 *3 (-623 (-667 *4))) (-5 *2 (-667 *4)) (-5 *1 (-1002 *4)) + (-4 *4 (-356)) (-4 *4 (-1020)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-550)) (-5 *2 (-667 *5)) + (-5 *1 (-1002 *5)) (-4 *5 (-356)) (-4 *5 (-1020))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1008)) + (-5 *1 (-727))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) + (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) + (-4 *8 (-335 *5 *6 *7)) + (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) + (-5 *2 (-2 (|:| -2475 (-749)) (|:| -2988 *8))) + (-5 *1 (-884 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) + (|partial| -12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) + (-4 *4 (-1203 (-400 (-550)))) (-4 *5 (-1203 (-400 *4))) + (-4 *6 (-335 (-400 (-550)) *4 *5)) + (-5 *2 (-2 (|:| -2475 (-749)) (|:| -2988 *6))) + (-5 *1 (-885 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1181)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-508)))) ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) - (-5 *2 (-1224 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-411 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-665 *5))) (-5 *3 (-665 *5)) (-4 *5 (-356)) - (-5 *2 (-1224 *5)) (-5 *1 (-1052 *5))))) + (-12 (-4 *2 (-13 (-1068) (-34))) (-5 *1 (-1108 *3 *2)) + (-4 *3 (-13 (-1068) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1238))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) + (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) + (-5 *1 (-1143))))) +(((*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-555 *3)) (-4 *3 (-1011 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-1224 (-665 *4))))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 (-665 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-1142))) (-4 *5 (-356)) - (-5 *2 (-1224 (-665 (-400 (-917 *5))))) (-5 *1 (-1052 *5)) - (-5 *4 (-665 (-400 (-917 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-1142))) (-4 *5 (-356)) (-5 *2 (-1224 (-665 (-917 *5)))) - (-5 *1 (-1052 *5)) (-5 *4 (-665 (-917 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-665 *4))) (-4 *4 (-356)) (-5 *2 (-1224 (-665 *4))) - (-5 *1 (-1052 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-173))) (-5 *1 (-1051))))) -(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-173)))) - ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-1051))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1051))))) -(((*1 *1) (-5 *1 (-1051)))) -(((*1 *1) (-5 *1 (-1051)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-535) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2))))) -(((*1 *2) (-12 (-5 *2 (-618 *3)) (-5 *1 (-1050 *3)) (-4 *3 (-131))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1050 *3)) (-4 *3 (-131))))) -(((*1 *1) (-5 *1 (-1048)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-618 *3)) (-5 *1 (-572 *5 *6 *7 *8 *3)) - (-4 *3 (-1075 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) - (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) - (-5 *1 (-1044 *5 *6)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))))) + (-12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1203 *5)) + (-5 *2 (-623 *3)) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1203 *6)) + (-14 *7 (-894))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-444)) (-5 *2 (-112)) + (-5 *1 (-353 *4 *5)) (-14 *5 (-623 (-1144))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) - (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) - (-5 *1 (-1044 *4 *5)) (-5 *3 (-618 (-917 *4))) (-14 *5 (-618 (-1142))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) - (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) - (-5 *1 (-1044 *5 *6)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 (-1041 *3 *4 *5))) (-4 *3 (-1067)) - (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) - (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) - (-5 *1 (-1043 *3 *4 *5))))) + (-12 (-5 *3 (-623 (-758 *4 (-838 *5)))) (-4 *4 (-444)) + (-14 *5 (-623 (-1144))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-250))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-1149))) (-5 *1 (-1149)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-1149))) (-5 *1 (-1149))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1126)) (-5 *2 (-623 (-1149))) (-5 *1 (-1104))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-354 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-379 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-627 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *1) (-5 *1 (-1032)))) +(((*1 *1) (-5 *1 (-430)))) +(((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-350 *3)) (-4 *3 (-342))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) + (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) + (-5 *1 (-1143))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| -2855 *1) (|:| |gap| (-749)) (|:| -2786 *1))) + (-4 *1 (-1034 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -2855 *1) (|:| |gap| (-749)) (|:| -2786 *1))) + (-4 *1 (-1034 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-304)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-943)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-967)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1009)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1042))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-323))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 (-667 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-979)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-979))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-801)) (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2) (-12 (-5 *2 (-1101 (-219))) (-5 *1 (-1164))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) + (-4 *2 (-665 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) + (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) + (-4 *2 (-1218 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1203 *3)) + (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1218 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) + (-4 *2 (-1218 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-542) (-145))) + (-5 *1 (-1120 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) + (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) + (-5 *1 (-1143))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-309 (-550))) (-5 *4 (-1 (-219) (-219))) + (-5 *5 (-1062 (-219))) (-5 *6 (-623 (-256))) (-5 *2 (-1101 (-219))) + (-5 *1 (-675))))) (((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) - (-5 *2 (-618 (-1041 *3 *4 *5))) (-5 *1 (-1043 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3))))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-1067)) - (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) - (-5 *1 (-1041 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) - (-5 *1 (-1041 *3 *4 *2)) - (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1067)) (-4 *5 (-1178)) - (-5 *1 (-862 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-861 *4)) (-5 *3 (-618 (-1 (-112) *5))) (-4 *4 (-1067)) - (-4 *5 (-1178)) (-5 *1 (-862 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-861 *5)) (-5 *3 (-618 (-1142))) (-5 *4 (-1 (-112) (-618 *6))) - (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *1 (-862 *5 *6)))) + (-12 (-4 *1 (-1071 *3 *2 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1020)) + (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-248)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1178)) - (-5 *2 (-307 (-535))) (-5 *1 (-908 *5)))) + (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1228)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1228)) (-5 *1 (-248)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-618 (-1 (-112) *5))) (-4 *5 (-1178)) - (-5 *2 (-307 (-535))) (-5 *1 (-908 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1178)) (-4 *4 (-823)) - (-5 *1 (-909 *4 *2 *5)) (-4 *2 (-414 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-618 (-1 (-112) *5))) (-4 *5 (-1178)) (-4 *4 (-823)) - (-5 *1 (-909 *4 *2 *5)) (-4 *2 (-414 *4)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-1 (-112) (-618 *6))) - (-4 *6 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))) (-4 *4 (-1067)) - (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) - (-5 *1 (-1041 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 *2))) - (-5 *2 (-861 *3)) (-5 *1 (-1041 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-857 *3) (-594 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) - (-5 *2 (-618 (-1142))) (-5 *1 (-1041 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-305)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-965)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1040))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 *4)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) - (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) + (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1228)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-852 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) + (-12 (-5 *3 (-852 (-1 (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1229)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) - (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) - (-4 *7 (-769)) (-4 *4 (-823)) - (-5 *2 (-618 (-2 (|:| |val| *8) (|:| -1655 *9)))) - (-5 *1 (-1039 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))) - (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-3 (-112) (-618 *1))) (-4 *1 (-1038 *4 *5 *6 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *1)))) - (-4 *1 (-1038 *4 *5 *6 *3))))) + (-12 (-5 *3 (-1 (-916 (-219)) (-219))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-916 (-219)) (-219))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1229)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1229)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-916 (-219)) (-219) (-219))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1229)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-855 (-1 (-219) (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *5 (-623 (-256))) (-5 *2 (-1229)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-855 (-1 (-219) (-219) (-219)))) (-5 *4 (-1062 (-372))) + (-5 *2 (-1229)) (-5 *1 (-248)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-287 *7)) (-5 *4 (-1144)) (-5 *5 (-623 (-256))) + (-4 *7 (-423 *6)) (-4 *6 (-13 (-542) (-825) (-1011 (-550)))) + (-5 *2 (-1228)) (-5 *1 (-249 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1228)) + (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1068))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1060 (-372))) (-5 *2 (-1228)) (-5 *1 (-252 *3)) + (-4 *3 (-13 (-596 (-526)) (-1068))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-850 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) + (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1228)) + (-5 *1 (-252 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-850 *5)) (-5 *4 (-1060 (-372))) + (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1228)) + (-5 *1 (-252 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-852 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) + (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1229)) + (-5 *1 (-252 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-852 *5)) (-5 *4 (-1060 (-372))) + (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1229)) + (-5 *1 (-252 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) (-5 *2 (-1229)) + (-5 *1 (-252 *3)) (-4 *3 (-13 (-596 (-526)) (-1068))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1060 (-372))) (-5 *2 (-1229)) (-5 *1 (-252 *3)) + (-4 *3 (-13 (-596 (-526)) (-1068))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-855 *6)) (-5 *4 (-1060 (-372))) (-5 *5 (-623 (-256))) + (-4 *6 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1229)) + (-5 *1 (-252 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-855 *5)) (-5 *4 (-1060 (-372))) + (-4 *5 (-13 (-596 (-526)) (-1068))) (-5 *2 (-1229)) + (-5 *1 (-252 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1228)) (-5 *1 (-253)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-623 (-219))) (-5 *4 (-623 (-256))) (-5 *2 (-1228)) + (-5 *1 (-253)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-916 (-219)))) (-5 *2 (-1228)) (-5 *1 (-253)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-916 (-219)))) (-5 *4 (-623 (-256))) + (-5 *2 (-1228)) (-5 *1 (-253)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1229)) (-5 *1 (-253)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-623 (-219))) (-5 *4 (-623 (-256))) (-5 *2 (-1229)) + (-5 *1 (-253))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-3 *3 (-618 *1))) (-4 *1 (-1038 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-542)) (-4 *2 (-1018)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *1)))) - (-4 *1 (-1038 *4 *5 *6 *3))))) + (-12 (-4 *1 (-949 *4 *5 *6 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-4 *4 (-542)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-542) (-825))) + (-4 *2 (-13 (-423 (-167 *4)) (-975) (-1166))) + (-5 *1 (-582 *4 *3 *2)) (-4 *3 (-13 (-423 *4) (-975) (-1166)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1126)) (-4 *1 (-382))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1203 *9)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-300)) + (-4 *10 (-922 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-623 (-1140 *10))) + (|:| |dterm| + (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-623 *6)) (|:| |nlead| (-623 *10)))) + (-5 *1 (-756 *6 *7 *8 *9 *10)) (-5 *3 (-1140 *10)) (-5 *4 (-623 *6)) + (-5 *5 (-623 *10))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-550)) (-4 *4 (-1020)) + (-5 *1 (-1128 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-550)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1020)) + (-14 *4 (-1144)) (-14 *5 *3)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) - (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) - (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-368 *4 *2)) + (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4343))))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1126)) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-550))) + (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-736))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 *1)) (-4 *1 (-295)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-114)) (-5 *3 (-623 *5)) (-5 *4 (-749)) (-4 *5 (-825)) + (-5 *1 (-594 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-865 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1181)) (-5 *2 (-749))))) +(((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-544 *3)) (-4 *3 (-535))))) +(((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) (((*1 *2 *1) - (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-623 (-916 *4))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-1020)) + (-5 *2 (-241 *4 *5)) (-5 *1 (-917 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-1009 (-535))) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-32 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1136 *4)) (-5 *1 (-163 *3 *4)) - (-4 *3 (-164 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1018)) (-4 *1 (-291)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1136 *3)))) - ((*1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1200 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 (-535))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) - ((*1 *2 *3) - (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-983)) (-5 *2 (-618 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1136 (-535))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-878 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *2 (-400 (-925 *4))) (-5 *1 (-897 *4 *5 *6 *3)) + (-4 *3 (-922 *4 *6 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1136 (-400 (-535)))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) - ((*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-983)) (-5 *2 (-618 *1)))) + (-12 (-5 *3 (-667 *7)) (-4 *7 (-922 *4 *6 *5)) + (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *2 (-667 (-400 (-925 *4)))) + (-5 *1 (-897 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-618 *1)) - (-4 *1 (-1035 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-5 *3 (-1142)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-917 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-542))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-542))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1136 *2)) (-5 *4 (-1142)) (-4 *2 (-414 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-13 (-823) (-542))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1136 *1)) (-5 *3 (-890)) (-4 *1 (-983)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1136 *1)) (-5 *3 (-890)) (-5 *4 (-835)) - (-4 *1 (-983)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-821) (-356))) - (-4 *1 (-1035 *4 *2)) (-4 *2 (-1200 *4))))) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *6 *5)) + (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *2 (-623 (-400 (-925 *4)))) + (-5 *1 (-897 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *3)) (-5 *1 (-1096 *4 *3)) (-4 *4 (-1203 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1008)) (-5 *3 (-1144)) (-5 *1 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1228)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1229))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-5 *2 + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2682 *6) (|:| |sol?| (-112))) (-550) + *6)) + (-4 *6 (-356)) (-4 *7 (-1203 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) + (-2 (|:| -1653 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-535))) (-5 *1 (-995 *3)) - (-4 *3 (-13 (-821) (-356) (-991))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1200 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1033))))) -(((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) - (-4 *5 (-1032 *3 *4 *2)) (-4 *2 (-823)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))))) + (-12 + (-5 *2 + (-2 (|:| -3340 *3) (|:| |coef1| (-760 *3)) (|:| |coef2| (-760 *3)))) + (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020))))) (((*1 *2 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-747))))) -(((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) - ((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-652)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-300)) + (-5 *2 (-749)) (-5 *1 (-447 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-1230)))) + ((*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1230))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-472))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1144)) (-5 *3 (-623 (-938))) (-5 *1 (-284))))) (((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) - (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) - ((*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-618 (-1142))))) - ((*1 *2 *1) - (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018)))) - ((*1 *2 *1) - (-12 (-14 *3 (-618 (-1142))) (-4 *5 (-232 (-4299 *3) (-747))) - (-14 *6 - (-1 (-112) (-2 (|:| -2483 *4) (|:| -2484 *5)) - (-2 (|:| -2483 *4) (|:| -2484 *5)))) - (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-823)) - (-4 *7 (-921 *2 *5 (-836 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1067)))) - ((*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *3 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *3 (-768)) (-4 *4 (-823)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))))) + (-12 (-4 *2 (-1068)) (-5 *1 (-937 *3 *2)) (-4 *3 (-1068))))) (((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1200 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-112))))) + (-12 (-4 *2 (-356)) (-4 *2 (-823)) (-5 *1 (-918 *2 *3)) + (-4 *3 (-1203 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-372)) (-5 *1 (-199))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-542)) (-5 *1 (-942 *4 *2)) + (-4 *2 (-1203 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2) (-12 (-5 *2 (-811 (-550))) (-5 *1 (-524)))) + ((*1 *1) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) + (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *1)))) + (-4 *1 (-1040 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-550)) + (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) + (-5 *1 (-961 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) + (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1203 (-167 *2)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1227 *4)) (-4 *4 (-342)) (-5 *2 (-1140 *4)) + (-5 *1 (-519 *4))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-1203 *4)) (-5 *1 (-529 *4 *2 *5 *6)) + (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-309 (-219))) (-5 *2 (-400 (-550))) (-5 *1 (-298))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-550)) (-4 *2 (-423 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1011 *4)) (-4 *3 (-13 (-825) (-542)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-423 *3) (-975))) (-5 *1 (-269 *3 *2)) + (-4 *3 (-13 (-825) (-542))))) + ((*1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-1166)))) +(((*1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-947))))) (((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) - (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) - (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) - (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -3223 *1))) - (-4 *1 (-1032 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -3223 *1))) - (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -4296 *3) (|:| |gap| (-747)) (|:| -2091 (-757 *3)) - (|:| -3223 (-757 *3)))) - (-5 *1 (-757 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) - (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -2091 *1) (|:| -3223 *1))) - (-4 *1 (-1032 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -2091 *1) (|:| -3223 *1))) - (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| |polnum| (-757 *3)) (|:| |polden| *3) (|:| -3818 (-747)))) - (-5 *1 (-757 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3818 (-747)))) - (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-917 (-371))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) - (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 (-917 (-371)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) - (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) - (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-917 (-535))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) - (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 (-917 (-535)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) - (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-307 (-535))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) - (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 *2)) - (-14 *4 (-618 *2)) (-4 *5 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) - (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-665 (-400 (-917 (-535))))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-665 (-400 (-917 (-371))))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-917 (-535)))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-917 (-371)))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-307 (-535)))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-307 (-371)))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-535)))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-371)))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-535))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-371))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-535))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1224 (-400 (-917 (-535))))) (-4 *1 (-433)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1224 (-400 (-917 (-371))))) (-4 *1 (-433)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-917 (-535)))) (-4 *1 (-433)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-917 (-371)))) (-4 *1 (-433)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-307 (-535)))) (-4 *1 (-433)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-307 (-371)))) (-4 *1 (-433)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1200 *5)) - (-5 *2 (-1136 (-1136 *4))) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1200 *6)) - (-14 *7 (-890)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *2)) (-4 *2 (-1178)))) - ((*1 *1 *2) - (|partial| -3874 - (-12 (-5 *2 (-917 *3)) - (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-3659 (-4 *3 (-38 (-535)))) - (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) - (-12 (-5 *2 (-917 *3)) - (-12 (-3659 (-4 *3 (-534))) (-3659 (-4 *3 (-38 (-400 (-535))))) - (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) - (-12 (-5 *2 (-917 *3)) - (-12 (-3659 (-4 *3 (-962 (-535)))) (-4 *3 (-38 (-400 (-535)))) - (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) - ((*1 *1 *2) - (|partial| -3874 - (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) - (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) - (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) - (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1178)))) + (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) + ((*1 *1 *1) (|partial| -4 *1 (-701)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-1020)) + (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-1203 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1008)) + (-5 *1 (-727))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-4 *1 (-229 *3)))) + ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1062 (-219))) + (-5 *2 (-1229)) (-5 *1 (-250))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1020)) (-4 *2 (-665 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1203 *4)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-917 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) - (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) + (-12 (-5 *2 (-925 (-372))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-400 (-917 (-371)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) - (-4 *5 (-380)))) + (-12 (-5 *2 (-400 (-925 (-372)))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) - (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) + (-12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-372))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-917 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) - (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) + (-12 (-5 *2 (-925 (-550))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-400 (-917 (-535)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) - (-4 *5 (-380)))) + (-12 (-5 *2 (-400 (-925 (-550)))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) - (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) + (-12 (-5 *2 (-309 (-550))) (-5 *1 (-332 *3 *4 *5)) + (-4 *5 (-1011 (-550))) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 *2)) - (-14 *4 (-618 *2)) (-4 *5 (-380)))) + (-12 (-5 *2 (-1144)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 *2)) + (-14 *4 (-623 *2)) (-4 *5 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) - (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-917 (-535))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-917 (-371))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-917 (-535)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-917 (-371)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-307 (-535)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-307 (-371)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-535)))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-371)))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-917 (-371))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 (-535))))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 (-371))))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 (-917 (-535)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 (-917 (-371)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 (-307 (-535)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 (-307 (-371)))) (-4 *1 (-433)))) + (-12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) + (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-925 (-550))))) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-925 (-372))))) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-925 (-550)))) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-925 (-372)))) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-309 (-550)))) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-309 (-372)))) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 (-925 (-550)))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 (-925 (-372)))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-925 (-550))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-925 (-372))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-550))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 (-400 (-925 (-550))))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 (-400 (-925 (-372))))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 (-925 (-550)))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 (-925 (-372)))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 (-309 (-550)))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 (-309 (-372)))) (-4 *1 (-433)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) + (-2 (|:| |fn| (-309 (-219))) + (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) - (-5 *1 (-745)))) + (-5 *1 (-747)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *1 (-784)))) + (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) - (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) - (|:| |ub| (-618 (-815 (-219)))))) + (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) + (|:| |lb| (-623 (-818 (-219)))) + (|:| |cf| (-623 (-309 (-219)))) + (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| - (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) - (-5 *1 (-814)))) + (-2 (|:| |lfn| (-623 (-309 (-219)))) + (|:| -3862 (-623 (-219))))))) + (-5 *1 (-816)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-618 (-307 (-219)))) + (-2 (|:| |pde| (-623 (-309 (-219)))) (|:| |constraints| - (-618 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) - (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) - (|:| |dFinish| (-665 (-219)))))) - (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) + (-623 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) + (|:| |grid| (-749)) (|:| |boundaryType| (-550)) + (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) (|:| |tol| (-219)))) - (-5 *1 (-869)))) + (-5 *1 (-871)))) ((*1 *1 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1178)))) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-949 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1181)))) ((*1 *1 *2) - (-3874 - (-12 (-5 *2 (-917 *3)) - (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-3659 (-4 *3 (-38 (-535)))) - (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) - (-12 (-5 *2 (-917 *3)) - (-12 (-3659 (-4 *3 (-534))) (-3659 (-4 *3 (-38 (-400 (-535))))) - (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) - (-12 (-5 *2 (-917 *3)) - (-12 (-3659 (-4 *3 (-962 (-535)))) (-4 *3 (-38 (-400 (-535)))) - (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) + (-1561 + (-12 (-5 *2 (-925 *3)) + (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) + (-3462 (-4 *3 (-38 (-550)))) (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825))) + (-12 (-5 *2 (-925 *3)) + (-12 (-3462 (-4 *3 (-535))) (-3462 (-4 *3 (-38 (-400 (-550))))) + (-4 *3 (-38 (-550))) (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825))) + (-12 (-5 *2 (-925 *3)) + (-12 (-3462 (-4 *3 (-965 (-550)))) (-4 *3 (-38 (-400 (-550)))) + (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *1 (-1034 *3 *4 *5)) (-4 *4 (-771)) + (-4 *5 (-825))))) ((*1 *1 *2) - (-3874 - (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) - (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) - (-4 *5 (-594 (-1142)))) - (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) - (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823))))) + (-1561 + (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) + (-12 (-3462 (-4 *3 (-38 (-400 (-550))))) (-4 *3 (-38 (-550))) + (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))) + (-12 (-5 *2 (-925 (-550))) (-4 *1 (-1034 *3 *4 *5)) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144)))) + (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825))))) ((*1 *1 *2) - (-12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) - (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542))))) -(((*1 *2 *1 *1) + (-12 (-5 *2 (-925 (-400 (-550)))) (-4 *1 (-1034 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *5 (-596 (-1144))) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| -3478 (-757 *3)) (|:| |coef1| (-757 *3)) (|:| |coef2| (-757 *3)))) - (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-2 (|:| -3478 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef1| (-757 *3)))) - (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-2 (|:| -3478 *1) (|:| |coef1| *1))) (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef2| (-757 *3)))) - (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-2 (|:| -3478 *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) - (-4 *5 (-823)) (-4 *3 (-542))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) - (-4 *5 (-823)) (-4 *3 (-542))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-542))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-444)))) - ((*1 *1 *1 *1) (-4 *1 (-444))) - ((*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1200 (-535))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-747))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) - (-4 *2 (-921 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-1136 *7))) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) - (-5 *2 (-1136 *7)) (-5 *1 (-887 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-890))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-444))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-444))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-444))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-444))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *2 (-444))))) -(((*1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1) (-5 *1 (-1030)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-371)) (-5 *1 (-1030))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-371)) (-5 *1 (-1030))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-371)) (-5 *1 (-1030))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1030)) (-5 *3 (-1124))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1030))))) -(((*1 *1) (-5 *1 (-1030)))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-1030))))) -(((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1029)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) - ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1178)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) - (-4 *3 (-232 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) (-5 *2 (-747)))) - ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) - ((*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) - ((*1 *2) - (-12 (-4 *4 (-1067)) (-5 *2 (-747)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) - (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-747)) (-5 *1 (-700 *3 *4 *5)) - (-4 *3 (-701 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) - ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))) + (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) + (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) + (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) + (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) + (-5 *1 (-256)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-550)) (-5 *4 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) + (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) + (-5 *2 (-1232)) (-5 *1 (-1229)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2))))) + (-12 + (-5 *2 + (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2720 (-219)) + (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) + (-5 *1 (-1229)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (|has| *1 (-6 -4333)) (-4 *1 (-397)) + (-5 *2 (-894))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-542)) (-5 *2 (-398 *4)) - (-5 *1 (-412 *4)))) - ((*1 *1 *1) (-5 *1 (-896))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *1 *1) (-5 *1 (-898))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) - (-5 *4 (-400 (-535))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) - (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) - (-5 *4 (-400 (-535))) (-5 *1 (-993 *3)) (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) - (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-821) (-356))) (-5 *2 (-112)) (-5 *1 (-1028 *4 *3)) - (-4 *3 (-1200 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1136 (-48))) (-5 *3 (-618 (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-48))) (-5 *3 (-591 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1200 (-166 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-890)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) - ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1200 *2)) (-4 *2 (-962 *3)) (-5 *1 (-406 *3 *2 *4 *5)) - (-4 *3 (-300)) (-4 *5 (-13 (-403 *2 *4) (-1009 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1200 *2)) (-4 *2 (-962 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) - (-4 *3 (-300)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1224 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-4 *5 (-1018)) - (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))) - (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1200 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-591 (-486)))) (-5 *1 (-486)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-486))) (-5 *1 (-486)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1136 (-486))) (-5 *3 (-618 (-591 (-486)))) (-5 *1 (-486)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1136 (-486))) (-5 *3 (-591 (-486))) (-5 *1 (-486)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1224 *4)) (-5 *3 (-890)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-701 *4 *2)) (-4 *2 (-1200 *4)) - (-5 *1 (-751 *4 *2 *5 *3)) (-4 *3 (-1200 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) - ((*1 *1 *1) (-4 *1 (-1027)))) -(((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-534)))) - ((*1 *1 *1) (-4 *1 (-1027)))) -(((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-534)))) - ((*1 *1 *1) (-4 *1 (-1027)))) -(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-535))))) -(((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479)))) - ((*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) - ((*1 *1 *1) (-4 *1 (-1027)))) -(((*1 *1 *1) (-4 *1 (-1027)))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1178)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) - (-4 *3 (-232 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-823)) (-5 *2 (-747)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) - ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-533 *3)) (-4 *3 (-534)))) - ((*1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-747)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-771 *3 *4)) (-4 *3 (-772 *4)))) - ((*1 *2) - (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-961 *3 *4)) (-4 *3 (-962 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-968 *3 *4)) (-4 *3 (-969 *4)))) - ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-982 *3)) (-4 *3 (-983)))) - ((*1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-747)))) - ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1026 *3)) (-4 *3 (-1027))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *5)) (-4 *5 (-1018)) (-5 *1 (-1022 *3 *4 *5)) - (-14 *3 (-747)) (-14 *4 (-747))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-835)))) (-5 *1 (-835)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1108 *3 *4)) (-5 *1 (-964 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-356)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 (-618 *5))) (-4 *5 (-1018)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))) + (-12 (-5 *2 (-2 (|:| |var| (-623 (-1144))) (|:| |pred| (-52)))) + (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1011 (-48))) + (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-4 *5 (-423 *4)) + (-5 *2 (-411 (-1140 (-48)))) (-5 *1 (-428 *4 *5 *3)) + (-4 *3 (-1203 *5))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-372)) (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *2 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1181)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-368 *4 *2)) + (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4343))))))) (((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *3 (-1068)) + (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))) + (-5 *2 (-623 (-1044 *3 *4 *5))) (-5 *1 (-1045 *3 *4 *5)) + (-4 *5 (-13 (-423 *4) (-859 *3) (-596 (-865 *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *2 *1) (-12 (-5 *2 (-1093 (-550) (-594 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *3 (-965 *2)) (-4 *4 (-1203 *3)) (-4 *2 (-300)) + (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1011 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *3 (-542)) (-4 *3 (-825)) (-5 *2 (-1093 *3 (-594 *1))) + (-4 *1 (-423 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093 (-550) (-594 (-486)))) (-5 *1 (-486)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) + (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-535)))) + (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) + (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-696 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-550))) (-5 *4 (-550)) (-5 *2 (-52)) + (-5 *1 (-978))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1126)) (-5 *2 (-550)) (-5 *1 (-1163 *4)) + (-4 *4 (-1020))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-667 *5))) (-5 *4 (-1227 *5)) (-4 *5 (-300)) + (-4 *5 (-1020)) (-5 *2 (-667 *5)) (-5 *1 (-1002 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1203 *5)) + (-4 *7 (-1203 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) + (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-112)) + (-5 *1 (-884 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) + (-4 *4 (-1203 (-400 (-550)))) (-4 *5 (-1203 (-400 *4))) + (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-885 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-894)) (-4 *1 (-397)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-397)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-535))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-535)))) + (-12 (-4 *1 (-1071 *3 *4 *5 *2 *6)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068))))) +(((*1 *1) + (-12 (-4 *1 (-397)) (-3462 (|has| *1 (-6 -4333))) + (-3462 (|has| *1 (-6 -4325))))) + ((*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1068)) (-4 *2 (-825)))) + ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-4 *1 (-825))) ((*1 *1) (-5 *1 (-1088)))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-2 (|:| -3625 *4) (|:| -4073 (-550))))) + (-4 *4 (-1068)) (-5 *2 (-1 *4)) (-5 *1 (-990 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1093 (-550) (-594 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-535))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-535)))) + (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) + (-5 *2 (-1227 *6)) (-5 *1 (-406 *3 *4 *5 *6)) + (-4 *6 (-13 (-402 *4 *5) (-1011 *4))))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-535))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-535)))) + (-12 (-4 *3 (-1020)) (-4 *3 (-825)) (-5 *2 (-1093 *3 (-594 *1))) + (-4 *1 (-423 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093 (-550) (-594 (-486)))) (-5 *1 (-486)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-535))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-747)))) + (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-601 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-705) *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-747))))) + (-12 (-4 *3 (-170)) (-4 *2 (-696 *3)) (-5 *1 (-640 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-705) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) + (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1) (-5 *1 (-1032)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1020)) + (-4 *2 (-13 (-397) (-1011 *4) (-356) (-1166) (-277))) + (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1203 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-825)) (-5 *2 (-623 (-642 *4 *5))) + (-5 *1 (-607 *4 *5 *6)) (-4 *5 (-13 (-170) (-696 (-400 (-550))))) + (-14 *6 (-894))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1166)))) + ((*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-594 *3)) (-4 *3 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) + (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) + (-4 *2 (-665 *3 *4 *5))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-550)) (-4 *4 (-1020)) + (-5 *1 (-1128 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-550)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1020)) + (-14 *4 (-1144)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *5 (-542)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-942 *5 *3)) (-4 *3 (-1203 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-323))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-747)))) + (-12 (|has| *1 (-6 -4342)) (-4 *1 (-481 *3)) (-4 *3 (-1181)) + (-5 *2 (-623 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-716 *3)) (-4 *3 (-1068))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-770))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1108 *3 *2)) (-4 *3 (-13 (-1068) (-34))) + (-4 *2 (-13 (-1068) (-34)))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1653 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-356)) (-4 *7 (-1203 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) + (-2 (|:| -1653 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) + (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-1203 *4)) (-5 *1 (-529 *4 *2 *5 *6)) + (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-747))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) + (-4 *3 (-1203 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-825) (-542))) + (-5 *2 (-836)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1181)) + (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) - (-4 *7 (-232 *4 *2)) (-4 *2 (-1018))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) - (-4 *2 (-365 *4)))) + (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) + (-4 *5 (-366 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1181)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *6 *2 *7)) (-4 *6 (-1018)) - (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) - (-4 *2 (-365 *4)))) + (-12 (-5 *3 (-623 (-550))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 (-550)) (-14 *5 (-749)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-749)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-749)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-749)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *6 *7 *2)) (-4 *6 (-1018)) - (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-962 *4)) - (-4 *2 (-662 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-662 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-300)))) - ((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) - (-4 *6 (-232 *2 *4)) (-4 *4 (-300))))) -(((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 *2) - (-4 *5 (-170)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-890)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-890)))) - ((*1 *2) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-890)))) - ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) - (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-747)) - (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-5 *2 (-747)) - (-5 *1 (-644 *5)))) + (-12 (-5 *3 (-550)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-749)))) ((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-747)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) + (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-550)) + (-14 *4 (-749)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *2 (-1068)) (-5 *1 (-207 *4 *2)) + (-14 *4 (-894)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1144)) (-5 *2 (-239 (-1126))) (-5 *1 (-208 *4)) + (-4 *4 + (-13 (-825) + (-10 -8 (-15 -2680 ((-1126) $ *3)) (-15 -2048 ((-1232) $)) + (-15 -3656 ((-1232) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-962)) (-5 *1 (-208 *3)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) + (-15 -3656 ((-1232) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-749)) (-5 *1 (-239 *4)) (-4 *4 (-825)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-825)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-825)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1181)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1203 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-623 *1)) (-4 *1 (-295)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1185)) (-4 *3 (-1203 *2)) + (-4 *4 (-1203 (-400 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-410 *2)) (-4 *2 (-170)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1126)) (-5 *1 (-493)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-52)) (-5 *1 (-612)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1194 (-550))) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-623 (-550))) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-623 (-865 *4))) (-5 *1 (-865 *4)) + (-4 *4 (-1068)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-878 *4)) (-5 *1 (-877 *4)) + (-4 *4 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-234 *4 *2)) (-14 *4 (-894)) (-4 *2 (-356)) + (-5 *1 (-966 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-983 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *2 *6 *7)) (-4 *2 (-1020)) + (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-1023 *4 *5 *2 *6 *7)) + (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1020)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-894)) (-4 *4 (-1068)) + (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) + (-5 *1 (-1044 *4 *5 *2)) + (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-894)) (-4 *4 (-1068)) + (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) + (-5 *1 (-1045 *4 *5 *2)) + (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-550))) (-4 *1 (-1071 *3 *4 *5 *6 *7)) + (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) + (-4 *7 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) + (-4 *4 (-1068)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)))) + ((*1 *1 *1 *1) (-4 *1 (-1112))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-1144)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-400 *1)) (-4 *1 (-1203 *2)) (-4 *2 (-1020)) + (-4 *2 (-356)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-400 *1)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)) + (-4 *3 (-542)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1205 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1215 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-1100 *4 *2)) + (-4 *2 (-13 (-586 (-550) *4) (-10 -7 (-6 -4342) (-6 -4343)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-825)) (-4 *3 (-1181)) (-5 *1 (-1100 *3 *2)) + (-4 *2 (-13 (-586 (-550) *3) (-10 -7 (-6 -4342) (-6 -4343))))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-747))))) + (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) + (-5 *2 (-667 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *1) (-5 *1 (-284)))) +(((*1 *1 *1) + (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)) + (-4 *2 (-444)))) + ((*1 *1 *1) + (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1185)) (-4 *3 (-1203 *2)) + (-4 *4 (-1203 (-400 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-444)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)) (-4 *3 (-444)))) + ((*1 *1 *1) + (-12 (-4 *1 (-922 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-444)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-1131 *3 *2)) + (-4 *2 (-1203 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) - (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-747)))) + (-12 (-4 *4 (-825)) + (-5 *2 + (-2 (|:| |f1| (-623 *4)) (|:| |f2| (-623 (-623 (-623 *4)))) + (|:| |f3| (-623 (-623 *4))) (|:| |f4| (-623 (-623 (-623 *4)))))) + (-5 *1 (-1152 *4)) (-5 *3 (-623 (-623 (-623 *4))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) + (-4 *5 (-13 (-27) (-1166) (-423 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) + (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-400 (-550))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-550))) + (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-287 *6)) + (-4 *6 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-287 *7)) (-5 *5 (-1194 (-550))) + (-4 *7 (-13 (-27) (-1166) (-423 *6))) + (-4 *6 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-550))) + (-4 *3 (-13 (-27) (-1166) (-423 *7))) + (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-400 (-550)))) (-5 *4 (-287 *8)) + (-5 *5 (-1194 (-400 (-550)))) (-5 *6 (-400 (-550))) + (-4 *8 (-13 (-27) (-1166) (-423 *7))) + (-4 *7 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1144)) (-5 *5 (-287 *3)) (-5 *6 (-1194 (-400 (-550)))) + (-5 *7 (-400 (-550))) (-4 *3 (-13 (-27) (-1166) (-423 *8))) + (-4 *8 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *3)))) + (-4 *3 (-1020)) (-5 *1 (-578 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-579 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *3)))) + (-4 *3 (-1020)) (-4 *1 (-1187 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-749)) + (-5 *3 (-1124 (-2 (|:| |k| (-400 (-550))) (|:| |c| *4)))) + (-4 *4 (-1020)) (-4 *1 (-1208 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-4 *1 (-1218 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1124 (-2 (|:| |k| (-749)) (|:| |c| *3)))) + (-4 *3 (-1020)) (-4 *1 (-1218 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-747))))) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) + (-4 *3 (-1203 *2))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-667 *11)) (-5 *4 (-623 (-400 (-925 *8)))) + (-5 *5 (-749)) (-5 *6 (-1126)) (-4 *8 (-13 (-300) (-145))) + (-4 *11 (-922 *8 *10 *9)) (-4 *9 (-13 (-825) (-596 (-1144)))) + (-4 *10 (-771)) + (-5 *2 + (-2 + (|:| |rgl| + (-623 + (-2 (|:| |eqzro| (-623 *11)) (|:| |neqzro| (-623 *11)) + (|:| |wcond| (-623 (-925 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1227 (-400 (-925 *8)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *8)))))))))) + (|:| |rgsz| (-550)))) + (-5 *1 (-897 *8 *9 *10 *11)) (-5 *7 (-550))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4337)) (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-618 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4337)) (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-4 *7 (-962 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-618 *6)) - (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-662 *4 *5 *6)) - (-4 *10 (-662 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-618 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-618 *6)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-618 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1193 *4 *5)) (-5 *3 (-618 *5)) (-14 *4 (-1142)) (-4 *5 (-356)) - (-5 *1 (-893 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *5)) (-4 *5 (-356)) (-5 *2 (-1136 *5)) (-5 *1 (-893 *4 *5)) - (-14 *4 (-1142)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-618 *6)) (-5 *4 (-747)) (-4 *6 (-356)) (-5 *2 (-400 (-917 *6))) - (-5 *1 (-1019 *5 *6)) (-14 *5 (-1142))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1016))))) + (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-825)) + (-5 *2 (-623 (-623 *4))) (-5 *1 (-1152 *4))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-167 (-219)))) (-5 *2 (-1008)) + (-5 *1 (-735))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1227 *4)) (-4 *4 (-619 (-550))) + (-5 *2 (-1227 (-400 (-550)))) (-5 *1 (-1254 *4))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-459)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-900))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-5 *2 + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) +(((*1 *1) (-5 *1 (-1229)))) +(((*1 *2 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1020)))) + ((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1020))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2437 (-623 *1)))) + (-4 *1 (-360 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-445 *3 *4 *5 *6)) + (|:| -2437 (-623 (-445 *3 *4 *5 *6))))) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-181))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *1 *1 *1) (-4 *1 (-940)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) + (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) + (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-838 *5))) (-14 *5 (-623 (-1144))) (-4 *6 (-444)) + (-5 *2 + (-2 (|:| |dpolys| (-623 (-241 *5 *6))) + (|:| |coords| (-623 (-550))))) + (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-623 (-241 *5 *6))) (-4 *7 (-444))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-623 *3)) (-5 *1 (-934 *3)) (-4 *3 (-535))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -1374 (-623 *3)) (|:| -3429 (-623 *3)))) + (-5 *1 (-1182 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-623 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1008)) + (-5 *1 (-727))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016))))) + (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) + (-4 *4 (-13 (-356) (-823))) (-4 *3 (-1203 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1227 (-623 (-2 (|:| -3625 *4) (|:| -2922 (-1088)))))) + (-4 *4 (-342)) (-5 *2 (-1232)) (-5 *1 (-519 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-542)) (-4 *3 (-1020)) + (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-827 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1020)) + (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-828 *5 *3)) + (-4 *3 (-827 *5))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016))))) -(((*1 *1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)) - (-5 *3 (-535))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1063 *4)) (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))) - ((*1 *2 *3) (-12 (-5 *3 (-1055 (-535))) (-5 *2 (-1 (-535))) (-5 *1 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-398 (-917 *4)))) - (-5 *1 (-1014 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012))))) -(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1205 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) - (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-371)) (-5 *1 (-1012))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1136 (-400 (-1136 *2)))) (-5 *4 (-591 *2)) - (-4 *2 (-13 (-414 *5) (-27) (-1164))) - (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *1 (-546 *5 *2 *6)) (-4 *6 (-1067)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1136 *1)) (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) - (-4 *5 (-769)) (-4 *3 (-823)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1136 *4)) (-4 *4 (-1018)) (-4 *1 (-921 *4 *5 *3)) - (-4 *5 (-769)) (-4 *3 (-823)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-1136 *2))) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) - (-4 *2 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))) - (-5 *1 (-922 *5 *4 *6 *7 *2)) (-4 *7 (-921 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-1136 (-400 (-917 *5))))) (-5 *4 (-1142)) - (-5 *2 (-400 (-917 *5))) (-5 *1 (-1011 *5)) (-4 *5 (-542))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-414 *4)) (-4 *4 (-823)) (-4 *4 (-542)) - (-5 *2 (-400 (-1136 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) - (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-1136 (-400 (-1136 *3)))) (-5 *1 (-546 *6 *3 *7)) (-5 *5 (-1136 *3)) - (-4 *7 (-1067)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1221 *5)) (-14 *5 (-1142)) (-4 *6 (-1018)) - (-5 *2 (-1193 *5 (-917 *6))) (-5 *1 (-919 *5 *6)) (-5 *3 (-917 *6)))) + (-12 (-5 *3 (-1144)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)) + (-4 *4 (-596 (-526))) (-4 *5 (-1181)) (-4 *6 (-1181))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916 (-219))) (-5 *4 (-847)) (-5 *2 (-1232)) + (-5 *1 (-460)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1020)) (-4 *1 (-953 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-1136 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-1136 *1)) - (-4 *1 (-921 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *5 *4)) - (-5 *2 (-400 (-1136 *3))) (-5 *1 (-922 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1136 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))) - (-4 *7 (-921 *6 *5 *4)) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) - (-5 *1 (-922 *5 *4 *6 *7 *3)))) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-916 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-916 *3)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)) (-5 *3 (-219))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836))))) +(((*1 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-547)) (-5 *3 (-550))))) +(((*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1166)))))) +(((*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-542)))) + ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 (-400 (-925 (-550))))) (-5 *4 (-623 (-1144))) + (-5 *2 (-623 (-623 *5))) (-5 *1 (-373 *5)) + (-4 *5 (-13 (-823) (-356))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-400 (-1136 (-400 (-917 *5))))) - (-5 *1 (-1011 *5)) (-5 *3 (-400 (-917 *5)))))) + (-12 (-5 *3 (-400 (-925 (-550)))) (-5 *2 (-623 *4)) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-823) (-356)))))) +(((*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890))))) +(((*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-526))) ((*1 *1) (-4 *1 (-701))) + ((*1 *1) (-4 *1 (-705))) + ((*1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) + ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-825))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-985)) (-5 *2 (-836))))) +(((*1 *1 *1) (-4 *1 (-609))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975) (-1166)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-749)) (-4 *5 (-170)))) + ((*1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) + (-4 *4 (-170)))) + ((*1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-4 *1 (-665 *3 *2 *4)) (-4 *2 (-366 *3)) + (-4 *4 (-366 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1110 *2 *3)) (-14 *2 (-749)) (-4 *3 (-1020))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-705)) (-4 *2 (-1181))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-847)) + (-5 *5 (-894)) (-5 *6 (-623 (-256))) (-5 *2 (-1228)) + (-5 *1 (-1231)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-623 (-916 (-219))))) (-5 *4 (-623 (-256))) + (-5 *2 (-1228)) (-5 *1 (-1231))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1147)))) + ((*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1011 (-550)))) + (-4 *5 (-1203 *4)) (-5 *2 (-623 (-400 *5))) (-5 *1 (-989 *4 *5)) + (-5 *3 (-400 *5))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-526))) + ((*1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1237))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) - (-4 *2 (-823)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-769)) (-4 *5 (-1018)) (-4 *6 (-921 *5 *4 *2)) - (-4 *2 (-823)) (-5 *1 (-922 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *6)) (-15 -3319 (*6 $)) (-15 -3318 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-1142)) - (-5 *1 (-1011 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) - (-5 *2 (-618 (-1142))) (-5 *1 (-260)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1136 *7)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1018)) (-5 *2 (-618 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-380)))) - ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-823)) (-5 *2 (-618 (-1142))))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-618 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) - (-5 *2 (-618 *5)) (-5 *1 (-922 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1063 (-1142))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) - ((*1 *2 *1) - (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) - (-5 *2 (-618 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-618 (-1142))) - (-5 *1 (-1011 *4))))) + (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-594 *3)) (-4 *3 (-825))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 (-2 (|:| |val| (-623 *6)) (|:| -3223 *7)))) + (-4 *6 (-1034 *3 *4 *5)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-961 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-623 (-2 (|:| |val| (-623 *6)) (|:| -3223 *7)))) + (-4 *6 (-1034 *3 *4 *5)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1075 *3 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) + ((*1 *1 *1) (-5 *1 (-1088)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) - (-4 *6 (-13 (-542) (-1009 *5))) (-4 *5 (-542)) - (-5 *2 (-618 (-618 (-286 (-400 (-917 *6)))))) (-5 *1 (-1010 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-527 *3 *2)) + (-4 *2 (-1218 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-4 *4 (-1203 *3)) + (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1218 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-356) (-361) (-596 (-550)))) (-5 *1 (-532 *3 *2)) + (-4 *2 (-1218 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-542) (-145))) + (-5 *1 (-1120 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-444)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1140 *6)) (-4 *6 (-922 *5 *3 *4)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *5 (-882)) (-5 *1 (-449 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1140 *1)) (-4 *1 (-882))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1164))) - (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-1136 (-400 (-1136 *6)))) (-5 *1 (-546 *5 *6 *7)) (-5 *3 (-1136 *6)) - (-4 *7 (-1067)))) - ((*1 *2 *1) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) - ((*1 *2 *1) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1136 *11)) (-5 *6 (-618 *10)) (-5 *7 (-618 (-747))) - (-5 *8 (-618 *11)) (-4 *10 (-823)) (-4 *11 (-300)) (-4 *9 (-769)) - (-4 *5 (-921 *11 *9 *10)) (-5 *2 (-618 (-1136 *5))) - (-5 *1 (-719 *9 *10 *11 *5)) (-5 *3 (-1136 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-921 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *3 (-356)) - (-4 *4 (-769)) (-4 *5 (-823)) (-14 *6 (-618 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-890)) (-5 *1 (-1003 *2)) - (-4 *2 (-13 (-1067) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-890)) (-5 *1 (-1002 *2)) - (-4 *2 (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $)))))))) + (-12 (-4 *5 (-356)) + (-5 *2 + (-2 (|:| A (-667 *5)) + (|:| |eqs| + (-623 + (-2 (|:| C (-667 *5)) (|:| |g| (-1227 *5)) (|:| -1721 *6) + (|:| |rh| *5)))))) + (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *5)) (-5 *4 (-1227 *5)) + (-4 *6 (-634 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-356)) (-4 *6 (-634 *5)) + (-5 *2 (-2 (|:| -1340 (-667 *6)) (|:| |vec| (-1227 *5)))) + (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *6)) (-5 *4 (-1227 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1126)) (-5 *1 (-298))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |k| (-650 *3)) (|:| |c| *4)))) + (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -4311)) (-5 *2 (-112)) (-5 *1 (-598)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3006)) (-5 *2 (-112)) (-5 *1 (-598)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3150)) (-5 *2 (-112)) (-5 *1 (-598)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3544)) (-5 *2 (-112)) (-5 *1 (-669 *4)) + (-4 *4 (-595 (-836))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-595 (-836))) (-5 *2 (-112)) + (-5 *1 (-669 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1042))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-943))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-304))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-649))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1238))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1035))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-659))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-1237))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-654))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1105)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)) (-5 *1 (-1149)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1144))) (-5 *2 (-112)) (-5 *1 (-1149)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1149)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)) (-5 *1 (-1149))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-1224 *5))) (-5 *4 (-535)) (-5 *2 (-1224 *5)) - (-5 *1 (-1001 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-535)) (-4 *6 (-356)) (-4 *6 (-361)) - (-4 *6 (-1018)) (-5 *2 (-618 (-618 (-665 *6)))) (-5 *1 (-1001 *6)) - (-5 *3 (-618 (-665 *6))))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 *4)) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) + ((*1 *1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) + (-5 *2 (-1008)) (-5 *1 (-728)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) + (-5 *8 (-381)) (-5 *2 (-1008)) (-5 *1 (-728))))) +(((*1 *1 *1) (-5 *1 (-1032)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-667 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1018)) - (-5 *2 (-618 (-618 (-665 *4)))) (-5 *1 (-1001 *4)) - (-5 *3 (-618 (-665 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) - (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) - (-5 *3 (-618 (-665 *5))))) + (-12 (-4 *4 (-170)) (-4 *2 (-1203 *4)) (-5 *1 (-175 *4 *2 *3)) + (-4 *3 (-703 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) - (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) - (-5 *3 (-618 (-665 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-535)) (-4 *5 (-356)) (-4 *5 (-1018)) - (-5 *2 (-112)) (-5 *1 (-1001 *5)))) + (-12 (-5 *3 (-667 (-400 (-925 *5)))) (-5 *4 (-1144)) + (-5 *2 (-925 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444)))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-665 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-112)) - (-5 *1 (-1001 *4))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-618 (-665 *6))) (-5 *4 (-112)) (-5 *5 (-535)) (-5 *2 (-665 *6)) - (-5 *1 (-1001 *6)) (-4 *6 (-356)) (-4 *6 (-1018)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-618 (-665 *4))) (-5 *2 (-665 *4)) (-5 *1 (-1001 *4)) - (-4 *4 (-356)) (-4 *4 (-1018)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-535)) (-5 *2 (-665 *5)) - (-5 *1 (-1001 *5)) (-4 *5 (-356)) (-4 *5 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-1224 *5)) (-4 *5 (-300)) - (-4 *5 (-1018)) (-5 *2 (-665 *5)) (-5 *1 (-1001 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-665 *5))) (-4 *5 (-300)) (-4 *5 (-1018)) - (-5 *2 (-1224 (-1224 *5))) (-5 *1 (-1001 *5)) (-5 *4 (-1224 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-618 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-1018)) - (-5 *1 (-1001 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1224 (-1224 *4))) (-4 *4 (-1018)) (-5 *2 (-665 *4)) - (-5 *1 (-1001 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-873 (-535))) (-5 *4 (-535)) (-5 *2 (-665 *4)) - (-5 *1 (-1000 *5)) (-4 *5 (-1018)))) + (-12 (-5 *3 (-667 (-400 (-925 *4)))) (-5 *2 (-925 *4)) + (-5 *1 (-285 *4)) (-4 *4 (-444)))) + ((*1 *2 *1) + (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1203 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1000 *4)) - (-4 *4 (-1018)))) + (-12 (-5 *3 (-667 (-167 (-400 (-550))))) + (-5 *2 (-925 (-167 (-400 (-550))))) (-5 *1 (-743 *4)) + (-4 *4 (-13 (-356) (-823))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-873 (-535)))) (-5 *4 (-535)) (-5 *2 (-618 (-665 *4))) - (-5 *1 (-1000 *5)) (-4 *5 (-1018)))) + (-12 (-5 *3 (-667 (-167 (-400 (-550))))) (-5 *4 (-1144)) + (-5 *2 (-925 (-167 (-400 (-550))))) (-5 *1 (-743 *5)) + (-4 *5 (-13 (-356) (-823))))) ((*1 *2 *3) - (-12 (-5 *3 (-618 (-618 (-535)))) (-5 *2 (-618 (-665 (-535)))) - (-5 *1 (-1000 *4)) (-4 *4 (-1018))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-618 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-618 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-1000 *3))))) + (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 (-925 (-400 (-550)))) + (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *4 (-1144)) + (-5 *2 (-925 (-400 (-550)))) (-5 *1 (-757 *5)) + (-4 *5 (-13 (-356) (-823)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1144)) + (-5 *2 (-623 *4)) (-5 *1 (-1082 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-623 (-749))) (-5 *1 (-942 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1181))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *4)) (-5 *3 (-890)) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-618 (-665 *4))) (-5 *3 (-890)) (-4 *4 (-1018)) - (-5 *1 (-1000 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-665 (-917 *4))) (-5 *1 (-1000 *4)) - (-4 *4 (-1018))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1181)) (-5 *1 (-1100 *4 *2)) + (-4 *2 (-13 (-586 (-550) *4) (-10 -7 (-6 -4342) (-6 -4343)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-825)) (-4 *3 (-1181)) (-5 *1 (-1100 *3 *2)) + (-4 *2 (-13 (-586 (-550) *3) (-10 -7 (-6 -4342) (-6 -4343))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) + (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) + (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-705))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-550)))) + ((*1 *1 *1 *1) (-5 *1 (-1088)))) +(((*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-429))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-550)) (-4 *3 (-170)) (-4 *5 (-366 *3)) + (-4 *6 (-366 *3)) (-5 *1 (-666 *3 *5 *6 *2)) + (-4 *2 (-665 *3 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-594 *3)) (-5 *5 (-1 (-1140 *3) (-1140 *3))) + (-4 *3 (-13 (-27) (-423 *6))) (-4 *6 (-13 (-825) (-542))) + (-5 *2 (-569 *3)) (-5 *1 (-537 *6 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-667 (-167 (-219)))) + (-5 *2 (-1008)) (-5 *1 (-734))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4338 "*"))) - (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-618 (-665 *4))) (-5 *3 (-890)) (|has| *4 (-6 (-4338 "*"))) - (-4 *4 (-1018)) (-5 *1 (-1000 *4))))) + (-12 (-4 *3 (-542)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) + (-5 *1 (-1171 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-665 (-307 (-535))))) - (-5 *1 (-999))))) -(((*1 *2 *2) (-12 (-5 *2 (-618 (-665 (-307 (-535))))) (-5 *1 (-999))))) -(((*1 *2 *2) (-12 (-5 *2 (-665 (-307 (-535)))) (-5 *1 (-999))))) + (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-665 (-400 (-917 (-535))))) - (-5 *2 (-665 (-307 (-535)))) (-5 *1 (-999))))) + (-12 (-5 *2 (-550)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1020))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1126)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-256))))) +(((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-1106)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-836))) (-5 *2 (-1232)) (-5 *1 (-1106))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-307 (-535)))) - (-5 *1 (-999))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-665 (-307 (-535))))) - (-5 *1 (-999)) (-5 *3 (-307 (-535)))))) + (-12 (-5 *3 (-623 (-623 (-623 *4)))) (-5 *2 (-623 (-623 *4))) + (-5 *1 (-1152 *4)) (-4 *4 (-825))))) +(((*1 *2) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-807))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-749)) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1225 *3)) (-4 *3 (-23)) (-4 *3 (-1181))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-400 (-917 (-535))))) - (-5 *2 - (-618 - (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) - (|:| |radvect| (-618 (-665 (-307 (-535)))))))) - (-5 *1 (-999))))) -(((*1 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-997 *3)) (-4 *3 (-1178))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-996 *3 *2)) (-4 *2 (-634 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -3600 *3) (|:| -2827 (-618 *5)))) - (-5 *1 (-996 *5 *3)) (-5 *4 (-618 *5)) (-4 *3 (-634 *5))))) + (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-410 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-931 *3)) (-5 *1 (-1131 *4 *3)) + (-4 *3 (-1203 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1028 (-995 *4) (-1136 (-995 *4)))) (-5 *3 (-835)) - (-5 *1 (-995 *4)) (-4 *4 (-13 (-821) (-356) (-991)))))) + (-12 (-5 *2 (-1101 (-219))) (-5 *3 (-623 (-256))) (-5 *1 (-1229)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1101 (-219))) (-5 *3 (-1126)) (-5 *1 (-1229)))) + ((*1 *1 *1) (-5 *1 (-1229)))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1028 (-995 *3) (-1136 (-995 *3)))) (-5 *1 (-995 *3)) - (-4 *3 (-13 (-821) (-356) (-991)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) - (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) - (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) - (-5 *4 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) - (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) (-5 *4 (-400 (-535))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *5) (|:| -3455 *5)))) - (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) - (-5 *4 (-2 (|:| -3456 *5) (|:| -3455 *5))))) - ((*1 *2 *3) - (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) - (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535)))))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) - (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535)))) - (-5 *4 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *4) (|:| -3455 *4)))) - (-5 *1 (-993 *3)) (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *5) (|:| -3455 *5)))) - (-5 *1 (-993 *3)) (-4 *3 (-1200 *5)) - (-5 *4 (-2 (|:| -3456 *5) (|:| -3455 *5)))))) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-4 *5 (-361)) + (-5 *2 (-749))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) - (-5 *2 (-618 (-400 (-535)))) (-5 *1 (-992 *4)) (-4 *4 (-1200 (-535)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) - (-5 *2 (-400 (-535))) (-5 *1 (-992 *4)) (-4 *4 (-1200 (-535)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *1 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-113)) (-5 *1 (-161)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *4)) - (-4 *4 (-13 (-414 *3) (-973))))) - ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) - ((*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *4 (-823)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *4)) - (-4 *4 (-13 (-414 *3) (-973) (-1164))))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1224 *6)) (-5 *4 (-1224 (-535))) (-5 *5 (-535)) (-4 *6 (-1067)) - (-5 *2 (-1 *6)) (-5 *1 (-988 *6))))) + (-12 + (-5 *3 + (-623 + (-2 (|:| -2122 (-749)) + (|:| |eqns| + (-623 + (-2 (|:| |det| *7) (|:| |rows| (-623 (-550))) + (|:| |cols| (-623 (-550)))))) + (|:| |fgb| (-623 *7))))) + (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-749)) + (-5 *1 (-897 *4 *5 *6 *7))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-749)) (-4 *3 (-1181)) (-4 *1 (-56 *3 *4 *5)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1) (-5 *1 (-169))) + ((*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1068)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1126)) (-4 *1 (-382)))) + ((*1 *1) (-5 *1 (-387))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) + ((*1 *1) + (-12 (-4 *3 (-1068)) (-5 *1 (-858 *2 *3 *4)) (-4 *2 (-1068)) + (-4 *4 (-644 *3)))) + ((*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1110 *3 *2)) (-14 *3 (-749)) (-4 *2 (-1020)))) + ((*1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) + ((*1 *1 *1) (-5 *1 (-1144))) ((*1 *1) (-5 *1 (-1144))) + ((*1 *1) (-5 *1 (-1161)))) (((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| -3744 *4) (|:| -1572 (-535))))) (-4 *4 (-1067)) - (-5 *2 (-1 *4)) (-5 *1 (-988 *4))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) - (-5 *2 (-618 (-400 *5))) (-5 *1 (-987 *4 *5)) (-5 *3 (-400 *5))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) - (|:| |c2| (-400 *6)) (|:| -3417 *6))) - (-5 *1 (-987 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1200 *6)) - (-4 *6 (-13 (-356) (-145) (-1009 *4))) (-5 *4 (-535)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3600 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-986 *6 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) - (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-986 *4 *5)) - (-5 *3 (-400 *5))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -3417 *6))) - (-5 *1 (-986 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1142)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-618 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1164) (-27) (-414 *8))) - (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-535)) - (-5 *2 (-618 *4)) (-5 *1 (-985 *8 *4))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1142)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-618 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1164) (-27) (-414 *8))) - (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-535)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3455 *4) (|:| |sol?| (-112)))) - (-5 *1 (-984 *8 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) - ((*1 *1 *1) (-4 *1 (-973))) ((*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-983)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-983)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-890)))) - ((*1 *1 *1) (-4 *1 (-983)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-983)) (-5 *2 (-835))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1136 *1)) (-4 *1 (-983))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1136 *1)) (-4 *1 (-983))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-835))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-835))))) -(((*1 *2 *1) (-12 (-4 *3 (-1178)) (-5 *2 (-618 *1)) (-4 *1 (-981 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-618 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-535))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-618 *1)) (|has| *1 (-6 -4337)) (-4 *1 (-981 *3)) - (-4 *3 (-1178))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) - (-5 *2 (-400 (-535))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-398 *3)) (-4 *3 (-534)) - (-4 *3 (-542)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-534)) (-5 *2 (-400 (-535))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) - (-5 *2 (-400 (-535))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-808 *3)) (-4 *3 (-534)) - (-4 *3 (-1067)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-815 *3)) (-4 *3 (-534)) - (-4 *3 (-1067)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) - (-5 *2 (-400 (-535))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542)))) - ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-1009 (-400 (-535))))))) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-1068)) (-5 *2 (-1232)) + (-5 *1 (-1182 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-1068)) (-5 *2 (-1232)) + (-5 *1 (-1182 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) (((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) - ((*1 *2 *1) - (-12 (-5 *2 (-400 (-535))) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542)))) - ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-400 (-535))))) - ((*1 *2 *1) - (-12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) + (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-130)) + (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 *4)))))) ((*1 *2 *1) - (-12 (-5 *2 (-400 (-535))) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-623 (-2 (|:| -2855 *3) (|:| -1792 *4)))) + (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-705)))) ((*1 *2 *1) - (-12 (-5 *2 (-400 (-535))) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) - ((*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977))))) -(((*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-977))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))) - ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-535))) (-5 *4 (-535)) (-5 *2 (-51)) (-5 *1 (-976))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-398 *5)) (-4 *5 (-542)) - (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *5) (|:| |radicand| (-618 *5)))) - (-5 *1 (-313 *5)) (-5 *4 (-747)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-535))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-971 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *1 *1 *1) (-4 *1 (-465))) - ((*1 *1 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) - ((*1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-854)))) - ((*1 *1 *1) (-5 *1 (-942))) - ((*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178))))) + (-12 (-4 *1 (-1205 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) + (-5 *2 (-1124 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) (((*1 *1 *2) - (-12 (-5 *2 (-1108 *3 *4)) (-14 *3 (-890)) (-4 *4 (-356)) - (-5 *1 (-964 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) - (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-591 *1))) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) - ((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-703) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-694 *3)) (-5 *1 (-628 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-703) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542))))) -(((*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-962 *2)) (-4 *4 (-1200 *3)) (-4 *2 (-300)) - (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1009 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-591 *1))) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) - ((*1 *2 *1) - (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) - (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) - (-5 *1 (-628 *3 *4 *2)) (-4 *3 (-694 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542))))) -(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-1018)))) - ((*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542))))) -(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-542)))) - ((*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) - ((*1 *1) (-4 *1 (-361))) - ((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) - ((*1 *1 *1) (-4 *1 (-534))) ((*1 *1) (-4 *1 (-534))) - ((*1 *1 *1) (-5 *1 (-535))) ((*1 *1 *1) (-5 *1 (-747))) - ((*1 *2 *1) (-12 (-5 *2 (-873 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-5 *2 (-873 *4)) (-5 *1 (-876 *4)) (-4 *4 (-1067)))) - ((*1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-534)) (-4 *2 (-542))))) + (-12 (-5 *2 (-623 (-2 (|:| -2763 *3) (|:| -2119 *4)))) + (-4 *3 (-1068)) (-4 *4 (-1068)) (-4 *1 (-1157 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068))))) +(((*1 *1) (-5 *1 (-284)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-949 *4 *5 *3 *6)) (-4 *4 (-1020)) (-4 *5 (-771)) + (-4 *3 (-825)) (-4 *6 (-1034 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-356))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2 *2) (-12 (-5 *2 - (-957 (-400 (-535)) (-836 *3) (-233 *4 (-747)) (-241 *3 (-400 (-535))))) - (-14 *3 (-618 (-1142))) (-14 *4 (-747)) (-5 *1 (-958 *3 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-618 *3)) (-4 *3 (-921 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-823)) - (-4 *6 (-769)) (-5 *1 (-957 *4 *5 *6 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-823)) - (-4 *5 (-769)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4))))) + (-960 (-400 (-550)) (-838 *3) (-234 *4 (-749)) + (-241 *3 (-400 (-550))))) + (-14 *3 (-623 (-1144))) (-14 *4 (-749)) (-5 *1 (-959 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-682 *3)) + (-4 *3 (-596 (-526))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1144)) (-5 *2 (-1 (-219) (-219) (-219))) + (-5 *1 (-682 *3)) (-4 *3 (-596 (-526)))))) (((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-618 *6)) - (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4))))) + (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) + (-14 *6 + (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *2)) + (-2 (|:| -2922 *5) (|:| -3521 *2)))) + (-4 *2 (-232 (-3191 *3) (-749))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-825)) (-4 *7 (-922 *4 *2 (-838 *3)))))) +(((*1 *2 *1) (-12 (-4 *3 (-1181)) (-5 *2 (-623 *1)) (-4 *1 (-983 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-623 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-300)) + (-5 *1 (-177 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 *8)) + (-5 *4 + (-623 + (-2 (|:| -2437 (-667 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-667 *7))))) + (-5 *5 (-749)) (-4 *8 (-1203 *7)) (-4 *7 (-1203 *6)) (-4 *6 (-342)) + (-5 *2 + (-2 (|:| -2437 (-667 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-667 *7)))) + (-5 *1 (-489 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) (((*1 *2 *1) - (-12 (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-957 *3 *4 *5 *2)) (-4 *3 (-444)) - (-4 *4 (-823)) (-4 *5 (-769))))) + (|partial| -12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-1020)) (-4 *6 (-922 *5 *4 *2)) + (-4 *2 (-825)) (-5 *1 (-923 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *6)) (-15 -2705 (*6 $)) + (-15 -2715 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) + (-5 *2 (-1144)) (-5 *1 (-1016 *4))))) (((*1 *1 *1) - (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *4 *3))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1200 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-956 *4 *2 *3 *5)) - (-4 *4 (-343)) (-4 *5 (-701 *2 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) - (-4 *5 (-542)) (-5 *1 (-709 *4 *3 *5 *2)) - (-4 *2 (-921 (-400 (-917 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *5 (-769)) - (-4 *3 - (-13 (-823) - (-10 -8 (-15 -4313 ((-1142) $)) - (-15 -4174 ((-3 $ #1="failed") (-1142)))))) - (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-921 (-917 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-618 *6)) - (-4 *6 - (-13 (-823) - (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) - (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) - (-4 *2 (-921 (-917 *4) *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) - (-4 *5 (-542)) (-5 *1 (-709 *4 *3 *5 *2)) - (-4 *2 (-921 (-400 (-917 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *5 (-769)) - (-4 *3 - (-13 (-823) - (-10 -8 (-15 -4313 ((-1142) $)) - (-15 -4174 ((-3 $ #1="failed") (-1142)))))) - (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-921 (-917 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-618 *6)) - (-4 *6 - (-13 (-823) - (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) - (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) - (-4 *2 (-921 (-917 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-747)) (-4 *1 (-954 *2)) (-4 *2 (-1164))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-845)))) - ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) - ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-155)))) - ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018))))) + (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-705)) (-4 *2 (-1181))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-430)) (-5 *3 (-1144)) (-5 *1 (-1147)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-430)) (-5 *3 (-1144)) (-5 *1 (-1147)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-430)) (-5 *3 (-623 (-1144))) (-5 *4 (-1144)) + (-5 *1 (-1147)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-430)) (-5 *3 (-1144)) (-5 *1 (-1147)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-430)) (-5 *3 (-1144)) (-5 *1 (-1148)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-430)) (-5 *3 (-623 (-1144))) (-5 *1 (-1148))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-749)) (-5 *3 (-916 *5)) (-4 *5 (-1020)) + (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-749))) (-5 *3 (-749)) (-5 *1 (-1132 *4 *5)) + (-14 *4 (-894)) (-4 *5 (-1020)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-749))) (-5 *3 (-916 *5)) (-4 *5 (-1020)) + (-5 *1 (-1132 *4 *5)) (-14 *4 (-894))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) - (-5 *2 (-618 (-2 (|:| C (-665 *5)) (|:| |g| (-1224 *5))))) (-5 *1 (-949 *5)) - (-5 *3 (-665 *5)) (-5 *4 (-1224 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-890)) (-5 *1 (-675)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-665 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) - (-5 *1 (-949 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *2)))) + (-12 (-5 *3 (-400 (-925 (-167 (-550))))) (-5 *2 (-623 (-167 *4))) + (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-823))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) - (-5 *2 (-2 (|:| R (-665 *6)) (|:| A (-665 *6)) (|:| |Ainv| (-665 *6)))) - (-5 *1 (-949 *6)) (-5 *3 (-665 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) - (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) - (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) + (-12 (-5 *3 (-623 (-400 (-925 (-167 (-550)))))) + (-5 *4 (-623 (-1144))) (-5 *2 (-623 (-623 (-167 *5)))) + (-5 *1 (-371 *5)) (-4 *5 (-13 (-356) (-823)))))) (((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) - (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) + (-5 *1 (-174 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) - (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-618 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) - (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) - (-5 *2 (-618 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -3223 *8))) + (-4 *7 (-1034 *4 *5 *6)) (-4 *8 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-623 *7)) (|:| -3223 *8))) + (-4 *7 (-1034 *4 *5 *6)) (-4 *8 (-1040 *4 *5 *6 *7)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1070 (-1070 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1144)) + (-5 *2 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *1 (-1147))))) +(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1126)) (-5 *1 (-186)))) + ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1126)) (-5 *1 (-293)))) + ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1126)) (-5 *1 (-298))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *1 (-948 *5 *6 *7 *8))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-618 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) - (-4 *8 (-823)) (-5 *1 (-948 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3666 (-618 *7)))) - (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-618 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) - (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) - (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6))))) + (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-542) (-145))) + (-5 *1 (-1197 *4 *2)) (-4 *2 (-1203 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1237))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-770)) (-4 *3 (-170))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-219)) + (-5 *2 (-1008)) (-5 *1 (-728))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) - (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) - ((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) + (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-1203 *4)) + (-4 *5 (-1203 (-400 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) - (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) - (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) - (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) - (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7))))) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-846 (-939 *3) (-939 *3))) (-5 *1 (-939 *3)) + (-4 *3 (-940))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-623 (-1200 *5 *4))) + (-5 *1 (-1082 *4 *5)) (-5 *3 (-1200 *5 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) - (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) - (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8))))) + (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-623 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *6 (-1203 *5)) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 (-400 *7))) (-5 *4 (-1 (-623 *6) *7)) + (-5 *5 (-1 (-411 *7) *7)) + (-4 *6 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *7 (-1203 *6)) (-5 *2 (-623 (-400 *7))) (-5 *1 (-790 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-623 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *6 (-1203 *5)) (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-632 *7 (-400 *7))) (-5 *4 (-1 (-623 *6) *7)) + (-5 *5 (-1 (-411 *7) *7)) + (-4 *6 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *7 (-1203 *6)) (-5 *2 (-623 (-400 *7))) (-5 *1 (-790 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-400 *5))) (-4 *5 (-1203 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 (-623 (-400 *5))) (-5 *1 (-790 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) + (-4 *6 (-1203 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 *5 (-400 *5))) (-4 *5 (-1203 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 (-623 (-400 *5))) (-5 *1 (-790 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) + (-4 *6 (-1203 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 (-623 (-400 *6))) (-5 *1 (-790 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1227 *4)) (-4 *4 (-1020)) (-4 *2 (-1203 *4)) + (-5 *1 (-436 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-400 (-1140 (-309 *5)))) (-5 *3 (-1227 (-309 *5))) + (-5 *4 (-550)) (-4 *5 (-13 (-542) (-825))) (-5 *1 (-1098 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) - (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) - (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8))))) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-667 *4)) (-4 *4 (-1020)) (-5 *1 (-1110 *3 *4)) + (-14 *3 (-749))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-429))))) +(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) + ((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1227 *4)) (-5 *1 (-519 *4)) + (-4 *4 (-342))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-942 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-731))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-734))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) - (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) - (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8))))) + (-12 (-4 *6 (-542)) (-4 *2 (-922 *3 *5 *4)) + (-5 *1 (-711 *5 *4 *6 *2)) (-5 *3 (-400 (-925 *6))) (-4 *5 (-771)) + (-4 *4 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) + (-5 *2 (-167 (-309 *4))) (-5 *1 (-182 *4 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 (-167 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-167 *3)) (-5 *1 (-1170 *4 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-618 *8))) (-5 *3 (-618 *8)) (-4 *8 (-1032 *5 *6 *7)) - (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-112)) - (-5 *1 (-948 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3)) - (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-618 *3)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-618 *7) (-618 *7))) (-5 *2 (-618 *7)) - (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) - (-5 *1 (-948 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3)) - (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-947 *4 *5 *3 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) - (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) - (-4 *5 (-1032 *3 *4 *2))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) - (-4 *5 (-1032 *3 *4 *2))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) - (-4 *5 (-1032 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) - ((*1 *2 *2) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3448 *1) (|:| |upper| *1))) - (-4 *1 (-947 *4 *5 *3 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-550)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1020))))) +(((*1 *1 *1) (-4 *1 (-609))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975) (-1166)))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-618 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-618 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542))))) -(((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-618 (-618 (-914 (-219))))))) - ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-618 (-618 (-914 (-219)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1055 (-219))))) - ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219)))))) -(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1055 (-219))))) - ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219)))))) -(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067)))) - ((*1 *2 *1) - (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-4299 *3) (-747))) - (-14 *7 - (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) - (-2 (|:| -2483 *5) (|:| -2484 *6)))) - (-5 *2 (-690 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-823)) - (-4 *8 (-921 *4 *6 (-836 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-703)) (-4 *2 (-823)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1018)))) - ((*1 *1 *1) - (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-618 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) - (-4 *2 (-356)) (-14 *5 (-964 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-690 *5 *6 *7)) (-4 *5 (-823)) (-4 *6 (-232 (-4299 *4) (-747))) - (-14 *7 - (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) - (-2 (|:| -2483 *5) (|:| -2484 *6)))) - (-14 *4 (-618 (-1142))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-921 *2 *6 (-836 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-542)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1200 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-703)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *5)) (-5 *3 (-618 (-747))) (-4 *1 (-717 *4 *5)) - (-4 *4 (-1018)) (-4 *5 (-823)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-807))))) +(((*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-5 *2 (-623 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-460)) (-5 *3 (-623 (-256))) (-5 *1 (-1228)))) + ((*1 *1 *1) (-5 *1 (-1228)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1020))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1020)) (-5 *1 (-50 *2 *3)) (-14 *3 (-623 (-1144))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-623 (-894))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) + (-14 *4 (-894)) (-14 *5 (-966 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) + (-4 *3 (-13 (-1020) (-825))) (-14 *4 (-623 (-1144))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-130)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1068)) (-4 *2 (-1020)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *2 (-542)) (-5 *1 (-603 *2 *4)) + (-4 *4 (-1203 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1020)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1020)) (-5 *1 (-714 *2 *3)) (-4 *3 (-705)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 (-747))) (-4 *1 (-921 *4 *5 *6)) - (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) + (-12 (-5 *2 (-623 *5)) (-5 *3 (-623 (-749))) (-4 *1 (-719 *4 *5)) + (-4 *4 (-1020)) (-4 *5 (-825)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-747)) (-4 *1 (-921 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) - (-4 *2 (-823)))) + (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1020)) + (-4 *2 (-825)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1020)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 *5)) (-4 *1 (-944 *4 *5 *6)) - (-4 *4 (-1018)) (-4 *5 (-768)) (-4 *6 (-823)))) + (-12 (-5 *2 (-623 *6)) (-5 *3 (-623 (-749))) (-4 *1 (-922 *4 *5 *6)) + (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *6 (-825)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-944 *4 *3 *2)) (-4 *4 (-1018)) (-4 *3 (-768)) (-4 *2 (-823))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) - (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) - ((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) - ((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1) (-4 *1 (-841 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823))))) -(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-942))))) -(((*1 *2 *3) - (-12 (-5 *2 (-618 (-618 (-535)))) (-5 *1 (-942)) (-5 *3 (-618 (-535)))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-942))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4099 *4))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4099 *4))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-747)) (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-747)) (-4 *2 (-542)) (-5 *1 (-940 *2 *4)) (-4 *4 (-1200 *2))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-300)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) - (-5 *1 (-379 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2091 (-747)) (|:| -3223 (-747)))) (-5 *1 (-747)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3199 *4))) (-5 *1 (-940 *4 *3)) - (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3199 *4))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-542)) (-4 *2 (-444)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-618 (-747))) (-5 *1 (-940 *4 *3)) - (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-940 *4 *3)) - (-4 *3 (-1200 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4100 *4))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4100 *4))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3478 *3))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3478 *3))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3478 *3))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-747)) (-4 *5 (-542)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) - (-4 *3 (-1200 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-747)) (-4 *5 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-542)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1200 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-747)) (-4 *5 (-542)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) - (-4 *3 (-1200 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-747)) (-4 *5 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-542)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4099 *4))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4099 *4))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-542)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4099 *4))) - (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *1) (-4 *1 (-938)))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *1) (-4 *1 (-938)))) -(((*1 *1 *1 *1) (-4 *1 (-938)))) -(((*1 *1 *1 *1) (-4 *1 (-938)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(((*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(((*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(((*1 *2 *1) - (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938))))) + (-12 (-5 *3 (-749)) (-4 *1 (-922 *4 *5 *2)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *2 (-825)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *2 (-922 *4 (-522 *5) *5)) + (-5 *1 (-1094 *4 *5 *2)) (-4 *4 (-1020)) (-4 *5 (-825)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-925 *4)) (-5 *1 (-1175 *4)) + (-4 *4 (-1020))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254))))) (((*1 *2 *1) - (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938))))) + (-12 (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) + (-5 *2 (-1227 *6)) (-5 *1 (-329 *3 *4 *5 *6)) + (-4 *6 (-335 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-550)) (-4 *5 (-342)) (-5 *2 (-411 (-1140 (-1140 *5)))) + (-5 *1 (-1179 *5)) (-5 *3 (-1140 (-1140 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 (-623 (-623 *4)))) (-5 *2 (-623 (-623 *4))) + (-4 *4 (-825)) (-5 *1 (-1152 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-550)) (-5 *1 (-478 *4)) + (-4 *4 (-1203 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938))))) + (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1020)) + (-4 *2 (-444)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-1203 (-550))) (-5 *2 (-623 (-550))) + (-5 *1 (-478 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-444)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-922 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)) (-4 *3 (-444))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-887 *3)) (-4 *3 (-300))))) (((*1 *2 *1) - (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-749)) (-5 *1 (-113)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1069)) (-5 *1 (-936))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-935 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *3 *2)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-835)))) - ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-934))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-618 *3)) (-5 *1 (-933 *3)) (-4 *3 (-534))))) -(((*1 *2 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-534))))) -(((*1 *2 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-534))))) -(((*1 *1) (-4 *1 (-343))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-542) (-823) (-145))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-618 (-1136 *5))) - (|:| |prim| (-1136 *5)))) - (-5 *1 (-425 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-542) (-823) (-145))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1136 *3)) (|:| |pol2| (-1136 *3)) - (|:| |prim| (-1136 *3)))) - (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-917 *5)) (-5 *4 (-1142)) (-4 *5 (-13 (-356) (-145))) - (-5 *2 - (-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 *5)))) - (-5 *1 (-932 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) - (-4 *5 (-13 (-356) (-145))) - (-5 *2 - (-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 *5))) - (|:| |prim| (-1136 *5)))) - (-5 *1 (-932 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-5 *5 (-1142)) - (-4 *6 (-13 (-356) (-145))) - (-5 *2 - (-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 *6))) - (|:| |prim| (-1136 *6)))) - (-5 *1 (-932 *6))))) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-1132 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1101 (-219))) (-5 *1 (-1229)))) + ((*1 *2 *1) (-12 (-5 *2 (-1101 (-219))) (-5 *1 (-1229))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1132 3 *3)) (-4 *3 (-1020)) (-4 *1 (-1102 *3)))) + ((*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1020))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-566))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-444))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-894)) (-5 *1 (-1003 *2)) + (-4 *2 (-13 (-1068) (-10 -8 (-15 -2391 ($ $ $)))))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1142)) (-5 *1 (-565 *2)) (-4 *2 (-1009 *3)) (-4 *2 (-356)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-565 *2)) (-4 *2 (-356)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-607 *4 *2)) - (-4 *2 (-13 (-414 *4) (-973) (-1164))))) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-922 *4 *6 *5)) (-4 *4 (-444)) + (-4 *5 (-825)) (-4 *6 (-771)) (-5 *1 (-960 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-114)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-414 *4) (-973) (-1164))) - (-4 *4 (-13 (-823) (-542))) (-5 *1 (-607 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-1142)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-931))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-890)) (-4 *5 (-542)) (-5 *2 (-665 *5)) - (-5 *1 (-928 *5 *3)) (-4 *3 (-634 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-925))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) (-4 *3 (-921 *7 *5 *6)) - (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| (-618 *3)))) - (-5 *1 (-924 *5 *6 *7 *3 *8)) (-5 *4 (-747)) - (-4 *8 - (-13 (-356) - (-10 -8 (-15 -3319 (*3 $)) (-15 -3318 (*3 $)) (-15 -4300 ($ *3)))))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) - (-4 *8 (-921 *7 *5 *6)) - (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| *3))) - (-5 *1 (-924 *5 *6 *7 *8 *3)) (-5 *4 (-747)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -3319 (*8 $)) (-15 -3318 (*8 $)) (-15 -4300 ($ *8)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-535))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) - (-4 *8 (-921 *7 *5 *6)) - (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *9) (|:| |radicand| *9))) - (-5 *1 (-924 *5 *6 *7 *8 *9)) (-5 *4 (-747)) - (-4 *9 - (-13 (-356) - (-10 -8 (-15 -3319 (*8 $)) (-15 -3318 (*8 $)) (-15 -4300 ($ *8)))))))) + (-12 (-5 *3 (-1126)) (-4 *4 (-825)) (-5 *1 (-902 *4 *2)) + (-4 *2 (-423 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1144)) (-5 *4 (-1126)) (-5 *2 (-309 (-550))) + (-5 *1 (-903))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-542)) (-4 *7 (-921 *3 *5 *6)) - (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *8) (|:| |radicand| *8))) - (-5 *1 (-924 *5 *6 *3 *7 *8)) (-5 *4 (-747)) - (-4 *8 - (-13 (-356) - (-10 -8 (-15 -3319 (*7 $)) (-15 -3318 (*7 $)) (-15 -4300 ($ *7)))))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-5 *2 (-550))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)) (-4 *5 (-1034 *3 *4 *2))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-823)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2484 (-535)))) (-4 *1 (-414 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -2484 (-861 *3)))) - (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) - (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2484 (-535)))) - (-5 *1 (-922 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-1018)) (-4 *4 (-823)) - (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1018)) (-4 *4 (-823)) - (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) - (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -2484 (-747)))) - (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *2 (-2 (|:| |var| *5) (|:| -2484 (-747)))))) + (-12 (-5 *2 (-623 (-287 *3))) (-5 *1 (-287 *3)) (-4 *3 (-542)) + (-4 *3 (-1181))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-410 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1068)) (-4 *3 (-873 *5)) (-5 *2 (-1227 *3)) + (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-366 *3)) + (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4342))))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) + (-4 *2 (-1203 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *4 *5 *6 *7)) + (-4 *4 (-596 (-526))) (-4 *5 (-1181)) (-4 *6 (-1181)) + (-4 *7 (-1181))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-623 + (-2 (|:| -2122 (-749)) + (|:| |eqns| + (-623 + (-2 (|:| |det| *7) (|:| |rows| (-623 (-550))) + (|:| |cols| (-623 (-550)))))) + (|:| |fgb| (-623 *7))))) + (-4 *7 (-922 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) + (-4 *5 (-13 (-825) (-596 (-1144)))) (-4 *6 (-771)) (-5 *2 (-749)) + (-5 *1 (-897 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-305)) (-5 *1 (-289)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) - (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2484 (-535)))) - (-5 *1 (-922 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))) + (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-305)) (-5 *1 (-289)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-305)) (-5 *1 (-289)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-1126))) (-5 *3 (-1126)) (-5 *2 (-305)) + (-5 *1 (-289))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-618 *1)) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) + (-12 + (-5 *2 + (-623 + (-2 + (|:| -2763 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| -2119 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3170 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-545)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) - (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *3)) (-5 *1 (-922 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))) + (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1181)) + (-5 *2 (-623 *4))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-594 *4)) (-5 *6 (-1140 *4)) + (-4 *4 (-13 (-423 *7) (-27) (-1166))) + (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) + (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1068)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-594 *4)) (-5 *6 (-400 (-1140 *4))) + (-4 *4 (-13 (-423 *7) (-27) (-1166))) + (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) + (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1068))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-618 *1)) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1020)) (-4 *3 (-825)) + (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-894)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) - (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *3)) (-5 *1 (-922 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 *1)) (-4 *1 (-377 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-703)))) + (-12 (-5 *3 (-329 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) + (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) + (-5 *2 (-749)) (-5 *1 (-385 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-811 (-894))))) + ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-550)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) ((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) - (-4 *1 (-921 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-618 (-747))))) + (-12 (-4 *3 (-542)) (-5 *2 (-550)) (-5 *1 (-603 *3 *4)) + (-4 *4 (-1203 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-719 *4 *3)) (-4 *4 (-1020)) + (-4 *3 (-825)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) - (-5 *2 (-747))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-747)))) - ((*1 *2 *1) - (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-747))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) - (-4 *1 (-921 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)) (-4 *2 (-444)))) + (-12 (-4 *1 (-719 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-825)) + (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) ((*1 *2 *3) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-1200 (-535))) (-5 *2 (-618 (-535))) - (-5 *1 (-478 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) - (-4 *3 (-444))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-535)) (-4 *5 (-821)) (-4 *5 (-356)) - (-5 *2 (-747)) (-5 *1 (-916 *5 *6)) (-4 *6 (-1200 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-821)) (-4 *4 (-356)) (-5 *2 (-747)) - (-5 *1 (-916 *4 *5)) (-4 *5 (-1200 *4))))) -(((*1 *2 *3) - (-12 (-4 *2 (-356)) (-4 *2 (-821)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-916 *4 *3)) - (-4 *3 (-1200 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-916 *4 *3)) - (-4 *3 (-1200 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-917 *5)) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) - (-5 *1 (-915 *4 *5)) (-14 *4 (-618 (-1142)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) - (-5 *2 (-917 *5)) (-5 *1 (-915 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) - (-5 *2 (-917 *5)) (-5 *1 (-915 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-917 *5)) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) - (-5 *1 (-915 *4 *5)) (-14 *4 (-618 (-1142)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) - (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) - (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) - ((*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *3 (-1136 (-535))) (-5 *2 (-535)) (-5 *1 (-913))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) - ((*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-185)) (-5 *3 (-535)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-547)) (-5 *3 (-535)))) - ((*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-861 *6))) - (-5 *5 (-1 (-859 *6 *8) *8 (-861 *6) (-859 *6 *8))) (-4 *6 (-1067)) - (-4 *8 (-13 (-1018) (-594 (-861 *6)) (-1009 *7))) (-5 *2 (-859 *6 *8)) - (-4 *7 (-13 (-1018) (-823))) (-5 *1 (-912 *6 *7 *8))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *3 (-164 *6)) - (-4 (-917 *6) (-857 *5)) (-4 *6 (-13 (-857 *5) (-170))) - (-5 *1 (-176 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-859 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-857 *4)) - (-4 *4 (-1067)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) - (-4 *6 (-13 (-1067) (-1009 *3))) (-4 *3 (-857 *5)) (-5 *1 (-902 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) - (-4 *3 (-13 (-414 *6) (-594 *4) (-857 *5) (-1009 (-591 $)))) - (-5 *4 (-861 *5)) (-4 *6 (-13 (-542) (-823) (-857 *5))) - (-5 *1 (-903 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 (-535) *3)) (-5 *4 (-861 (-535))) (-4 *3 (-534)) - (-5 *1 (-904 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 *6)) (-5 *3 (-591 *6)) (-4 *5 (-1067)) - (-4 *6 (-13 (-823) (-1009 (-591 $)) (-594 *4) (-857 *5))) (-5 *4 (-861 *5)) - (-5 *1 (-905 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-856 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) - (-4 *6 (-857 *5)) (-4 *3 (-642 *6)) (-5 *1 (-906 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-859 *6 *3) *8 (-861 *6) (-859 *6 *3))) (-4 *8 (-823)) - (-5 *2 (-859 *6 *3)) (-5 *4 (-861 *6)) (-4 *6 (-1067)) - (-4 *3 (-13 (-921 *9 *7 *8) (-594 *4))) (-4 *7 (-769)) - (-4 *9 (-13 (-1018) (-823) (-857 *6))) (-5 *1 (-907 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) - (-4 *3 (-13 (-921 *8 *6 *7) (-594 *4))) (-5 *4 (-861 *5)) (-4 *7 (-857 *5)) - (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-13 (-1018) (-823) (-857 *5))) - (-5 *1 (-907 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-962 *6)) - (-4 *6 (-13 (-542) (-857 *5) (-594 *4))) (-5 *4 (-861 *5)) - (-5 *1 (-910 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 (-1142))) (-5 *3 (-1142)) (-5 *4 (-861 *5)) - (-4 *5 (-1067)) (-5 *1 (-911 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-618 (-861 *7))) (-5 *5 (-1 *9 (-618 *9))) - (-5 *6 (-1 (-859 *7 *9) *9 (-861 *7) (-859 *7 *9))) (-4 *7 (-1067)) - (-4 *9 (-13 (-1018) (-594 (-861 *7)) (-1009 *8))) (-5 *2 (-859 *7 *9)) - (-5 *3 (-618 *9)) (-4 *8 (-13 (-1018) (-823))) (-5 *1 (-912 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1067) (-1009 *5))) - (-4 *5 (-857 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-902 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) - ((*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) - ((*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-113)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-1124)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-823)) (-5 *1 (-901 *4 *2)) (-4 *2 (-414 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-618 (-1055 (-219)))) - (-5 *1 (-899))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) - (-5 *1 (-898)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) - (-5 *1 (-898))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-618 (-1 (-219) (-219)))) (-5 *3 (-1055 (-219))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-618 (-1 (-219) (-219)))) (-5 *3 (-1055 (-219))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) - (-4 *3 (-594 (-524))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) - (-4 *3 (-594 (-524))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) - ((*1 *2 *1) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-219)))) (-5 *1 (-898))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-896)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) + (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) + (-4 *6 (-1203 *5)) (-4 *7 (-1203 (-400 *6))) + (-4 *8 (-335 *5 *6 *7)) + (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) (-5 *2 (-749)) + (-5 *1 (-884 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-329 (-400 (-550)) *4 *5 *6)) + (-4 *4 (-1203 (-400 (-550)))) (-4 *5 (-1203 (-400 *4))) + (-4 *6 (-335 (-400 (-550)) *4 *5)) (-5 *2 (-749)) + (-5 *1 (-885 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) - (-4 *3 (-594 (-524))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112)) - (-5 *1 (-895 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112)) - (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5))))) + (-12 (-5 *3 (-329 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) + (-4 *7 (-1203 *6)) (-4 *4 (-1203 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) + (-4 *9 (-13 (-361) (-356))) (-5 *2 (-749)) + (-5 *1 (-991 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1203 *3)) (-4 *3 (-1020)) (-4 *3 (-542)) + (-5 *2 (-749)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142)))) - (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-921 *3 *5 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) - (-5 *4 (-665 *12)) (-5 *5 (-618 (-400 (-917 *9)))) (-5 *6 (-618 (-618 *12))) - (-5 *7 (-747)) (-5 *8 (-535)) (-4 *9 (-13 (-300) (-145))) - (-4 *12 (-921 *9 *11 *10)) (-4 *10 (-13 (-823) (-594 (-1142)))) - (-4 *11 (-769)) - (-5 *2 - (-2 (|:| |eqzro| (-618 *12)) (|:| |neqzro| (-618 *12)) - (|:| |wcond| (-618 (-917 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *9)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *9))))))))) - (-5 *1 (-895 *9 *10 *11 *12))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *7)) (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) - (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-747)) (-4 *8 (-921 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) - (-4 *7 (-769)) - (-5 *2 - (-618 - (-2 (|:| |det| *8) (|:| |rows| (-618 (-535))) - (|:| |cols| (-618 (-535)))))) - (-5 *1 (-895 *5 *6 *7 *8))))) + (-12 (-5 *2 (-623 *7)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) + (-5 *1 (-961 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-623 *7)) (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *3 (-444)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) + (-5 *1 (-1075 *3 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-618 *8))) (-5 *3 (-618 *8)) (-4 *8 (-921 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) - (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *5 *6 *7 *8))))) + (-12 (-5 *3 (-623 (-400 (-925 (-167 (-550)))))) + (-5 *2 (-623 (-623 (-287 (-925 (-167 *4)))))) (-5 *1 (-371 *4)) + (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-287 (-400 (-925 (-167 (-550))))))) + (-5 *2 (-623 (-623 (-287 (-925 (-167 *4)))))) (-5 *1 (-371 *4)) + (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-925 (-167 (-550))))) + (-5 *2 (-623 (-287 (-925 (-167 *4))))) (-5 *1 (-371 *4)) + (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-287 (-400 (-925 (-167 (-550)))))) + (-5 *2 (-623 (-287 (-925 (-167 *4))))) (-5 *1 (-371 *4)) + (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *2 (-1227 (-309 (-372)))) + (-5 *1 (-298))))) +(((*1 *2 *1) + (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) + (-4 *5 (-232 (-3191 *3) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2922 *2) (|:| -3521 *5)) + (-2 (|:| -2922 *2) (|:| -3521 *5)))) + (-4 *2 (-825)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-922 *4 *5 (-838 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-304)))) + ((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1068)) + (-4 *2 (-130))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1008)) + (-5 *1 (-728))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-749))) (-5 *3 (-112)) (-5 *1 (-1132 *4 *5)) + (-14 *4 (-894)) (-4 *5 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-1147)) (-5 *3 (-1144))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) - (-4 *6 (-769)) (-5 *2 (-618 (-618 (-535)))) (-5 *1 (-895 *4 *5 *6 *7)) - (-5 *3 (-535)) (-4 *7 (-921 *4 *6 *5))))) + (-12 (-4 *4 (-798)) (-14 *5 (-1144)) (-5 *2 (-623 (-1200 *5 *4))) + (-5 *1 (-1082 *4 *5)) (-5 *3 (-1200 *5 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-618 (-618 *6))) (-4 *6 (-921 *3 *5 *4)) - (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142)))) - (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-618 - (-2 (|:| -3427 (-747)) - (|:| |eqns| - (-618 - (-2 (|:| |det| *7) (|:| |rows| (-618 (-535))) - (|:| |cols| (-618 (-535)))))) - (|:| |fgb| (-618 *7))))) - (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747)) - (-5 *1 (-895 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-618 - (-2 (|:| -3427 (-747)) - (|:| |eqns| - (-618 - (-2 (|:| |det| *7) (|:| |rows| (-618 (-535))) - (|:| |cols| (-618 (-535)))))) - (|:| |fgb| (-618 *7))))) - (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747)) - (-5 *1 (-895 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) - (-4 *6 (-769)) (-5 *2 (-618 *3)) (-5 *1 (-895 *4 *5 *6 *3)) - (-4 *3 (-921 *4 *6 *5))))) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) + (-5 *1 (-174 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-836)))) (-5 *1 (-836)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1110 *3 *4)) (-5 *1 (-966 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-356)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 *5))) (-4 *5 (-1020)) + (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) + (-4 *7 (-232 *3 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1695 (-665 (-400 (-917 *4)))) (|:| |vec| (-618 (-400 (-917 *4)))) - (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) - (-4 *6 (-769)) - (-5 *2 - (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *4))))))) - (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5))))) -(((*1 *2 *2 *3) - (-12 + (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *4 (-1203 *3)) (-5 *2 - (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *4))))))) - (-5 *3 (-618 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-921 *4 *6 *5)) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) - (-5 *1 (-895 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) - (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) + (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-667 *3)))) + (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-1203 *3)) (-5 *2 - (-618 - (-2 (|:| -3427 (-747)) - (|:| |eqns| - (-618 - (-2 (|:| |det| *8) (|:| |rows| (-618 (-535))) - (|:| |cols| (-618 (-535)))))) - (|:| |fgb| (-618 *8))))) - (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-747))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) - (-4 *6 (-769)) (-4 *7 (-921 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-618 *7)) (|:| |n0| (-618 *7)))) - (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-618 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-917 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-921 *4 *6 *5)) - (-5 *1 (-895 *4 *5 *6 *2)) (-4 *5 (-13 (-823) (-594 (-1142)))) - (-4 *6 (-769))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) - (-5 *2 (-618 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)) - (-4 *7 (-921 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) - (-4 *6 (-769)) (-5 *2 (-400 (-917 *4))) (-5 *1 (-895 *4 *5 *6 *3)) - (-4 *3 (-921 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) - (-5 *2 (-665 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) - (-5 *2 (-618 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-665 *11)) (-5 *4 (-618 (-400 (-917 *8)))) (-5 *5 (-747)) - (-5 *6 (-1124)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-921 *8 *10 *9)) - (-4 *9 (-13 (-823) (-594 (-1142)))) (-4 *10 (-769)) + (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-667 *3)))) + (-5 *1 (-746 *4 *5)) (-4 *5 (-402 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-342)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 *3)) (-5 *2 - (-2 - (|:| |rgl| - (-618 - (-2 (|:| |eqzro| (-618 *11)) (|:| |neqzro| (-618 *11)) - (|:| |wcond| (-618 (-917 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *8)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *8)))))))))) - (|:| |rgsz| (-535)))) - (-5 *1 (-895 *8 *9 *10 *11)) (-5 *7 (-535))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) + (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-667 *3)))) + (-5 *1 (-958 *4 *3 *5 *6)) (-4 *6 (-703 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-342)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 *3)) (-5 *2 - (-618 - (-2 (|:| |eqzro| (-618 *7)) (|:| |neqzro| (-618 *7)) - (|:| |wcond| (-618 (-917 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *4)))))))))) - (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5))))) + (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-667 *3)))) + (-5 *1 (-1236 *4 *3 *5 *6)) (-4 *6 (-402 *3 *5))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-400 (-1140 (-309 *3)))) (-4 *3 (-13 (-542) (-825))) + (-5 *1 (-1098 *3))))) (((*1 *2 *3 *4) - (-12 - (-5 *3 - (-618 - (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) - (|:| |wcond| (-618 (-917 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) - (-5 *4 (-1124)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-921 *5 *7 *6)) - (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-535)) - (-5 *1 (-895 *5 *6 *7 *8))))) + (-12 (-5 *3 (-623 (-925 *6))) (-5 *4 (-623 (-1144))) + (-4 *6 (-13 (-542) (-1011 *5))) (-4 *5 (-542)) + (-5 *2 (-623 (-623 (-287 (-400 (-925 *6)))))) (-5 *1 (-1012 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-429))))) +(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) - (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) - (-5 *2 - (-618 - (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) - (|:| |wcond| (-618 (-917 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) - (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-618 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-618 (-1142))) (-4 *8 (-921 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) - (-4 *7 (-769)) - (-5 *2 - (-618 - (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) - (|:| |wcond| (-618 (-917 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) - (-5 *1 (-895 *5 *6 *7 *8)))) + (-12 (-5 *4 (-1 (-623 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) (-4 *6 (-1203 *5)) + (-5 *2 (-623 (-2 (|:| |poly| *6) (|:| -1721 *3)))) + (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-634 *6)) + (-4 *7 (-634 (-400 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-623 *5) *6)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *6 (-1203 *5)) + (-5 *2 (-623 (-2 (|:| |poly| *6) (|:| -1721 (-632 *6 (-400 *6)))))) + (-5 *1 (-790 *5 *6)) (-5 *3 (-632 *6 (-400 *6)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-731))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-542) (-145))) + (-5 *1 (-1197 *4 *2)) (-4 *2 (-1203 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-734)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) + (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-734))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) (-5 *2 (-112)) + (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1166) (-423 (-167 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) - (-5 *2 - (-618 - (-2 (|:| |eqzro| (-618 *7)) (|:| |neqzro| (-618 *7)) - (|:| |wcond| (-618 (-917 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *4)))))))))) - (-5 *1 (-895 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *9)) (-5 *5 (-890)) (-4 *9 (-921 *6 *8 *7)) - (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) - (-4 *8 (-769)) - (-5 *2 - (-618 - (-2 (|:| |eqzro| (-618 *9)) (|:| |neqzro| (-618 *9)) - (|:| |wcond| (-618 (-917 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *6)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *6)))))))))) - (-5 *1 (-895 *6 *7 *8 *9)) (-5 *4 (-618 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 (-1142))) (-5 *5 (-890)) - (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) - (-5 *2 - (-618 - (-2 (|:| |eqzro| (-618 *9)) (|:| |neqzro| (-618 *9)) - (|:| |wcond| (-618 (-917 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *6)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *6)))))))))) - (-5 *1 (-895 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-890)) (-4 *8 (-921 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) - (-4 *7 (-769)) - (-5 *2 - (-618 - (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) - (|:| |wcond| (-618 (-917 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) - (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) - (-5 *1 (-895 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 *9)) (-5 *5 (-1124)) - (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535)) - (-5 *1 (-895 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 (-1142))) (-5 *5 (-1124)) - (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535)) - (-5 *1 (-895 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-1124)) (-4 *8 (-921 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) - (-4 *7 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-665 *10)) (-5 *4 (-618 *10)) (-5 *5 (-890)) (-5 *6 (-1124)) - (-4 *10 (-921 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) - (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-535)) - (-5 *1 (-895 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-665 *10)) (-5 *4 (-618 (-1142))) (-5 *5 (-890)) (-5 *6 (-1124)) - (-4 *10 (-921 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) - (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-535)) - (-5 *1 (-895 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *9)) (-5 *4 (-890)) (-5 *5 (-1124)) (-4 *9 (-921 *6 *8 *7)) - (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) - (-4 *8 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-356)) (-4 *2 (-1200 *4)) - (-5 *1 (-894 *4 *2))))) + (-12 (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-112)) (-5 *1 (-1170 *4 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 *4)))) + (-4 *3 (-1068)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) (((*1 *2 *3) - (-12 (-4 *1 (-892)) (-5 *2 (-2 (|:| -4296 (-618 *1)) (|:| -2492 *1))) - (-5 *3 (-618 *1))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-892))))) + (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3453 *4))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-437 *3)) (-4 *3 (-1020))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-618 (-917 *4))) (-5 *3 (-618 (-1142))) (-4 *4 (-444)) - (-5 *1 (-889 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-618 (-917 *4))) (-5 *3 (-618 (-1142))) (-4 *4 (-444)) - (-5 *1 (-889 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-890))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) - (-4 *2 (-921 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) - (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-300)) (-5 *1 (-885 *2)))) + (-12 (-4 *3 (-356)) (-5 *1 (-998 *3 *2)) (-4 *2 (-634 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-145))) - (-5 *2 (-51)) (-5 *1 (-886 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-398 (-917 *6))) (-5 *5 (-1142)) (-5 *3 (-917 *6)) - (-4 *6 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-886 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-885 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-885 *3)) (-4 *3 (-300))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1136 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300))))) -(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1200 (-400 (-535)))) (-5 *1 (-884 *3 *2)) - (-4 *2 (-1200 (-400 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *3)) - (-4 *3 (-1200 (-400 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))))) - (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *5)) - (-4 *5 (-1200 (-400 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1200 (-400 (-535)))) - (-5 *2 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))) (-5 *1 (-884 *3 *4)) - (-4 *4 (-1200 (-400 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *3)) - (-4 *3 (-1200 (-400 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-535)) (-4 *4 (-1200 (-400 *3))) (-5 *2 (-890)) - (-5 *1 (-884 *4 *5)) (-4 *5 (-1200 (-400 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) - (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) - (-5 *2 (-2 (|:| -4114 (-747)) (|:| -2466 *8))) - (-5 *1 (-882 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) - (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4))) - (-4 *6 (-335 (-400 (-535)) *4 *5)) - (-5 *2 (-2 (|:| -4114 (-747)) (|:| -2466 *6))) (-5 *1 (-883 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1200 *5)) - (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-112)) - (-5 *1 (-882 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) (-4 *4 (-1200 (-400 (-535)))) - (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-883 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-444)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) - (-4 *5 (-881)) (-5 *1 (-449 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-881))))) -(((*1 *2 *3) - (-12 (-5 *2 (-398 (-1136 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1136 *1)) - (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-823)))) - ((*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-398 (-1136 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1136 *1)) - (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-823)))) - ((*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 (-1136 *5))) (-5 *3 (-1136 *5)) (-4 *5 (-164 *4)) - (-4 *4 (-534)) (-5 *1 (-147 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-1200 *4)) - (-4 *4 (-343)) (-5 *1 (-351 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 (-1136 (-535)))) (-5 *3 (-1136 (-535))) - (-5 *1 (-557)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 (-1136 *1))) (-5 *3 (-1136 *1)) (-4 *1 (-881))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-343)) (-5 *2 (-1224 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-143)) (-4 *1 (-881)) - (-5 *2 (-1224 *1))))) -(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-343))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-881))))) + (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -1721 *3) (|:| -3903 (-623 *5)))) + (-5 *1 (-998 *5 *3)) (-5 *4 (-623 *5)) (-4 *3 (-634 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-823)) (-4 *5 (-881)) (-4 *6 (-769)) - (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-398 (-1136 *8))) (-5 *1 (-878 *5 *6 *7 *8)) - (-5 *4 (-1136 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) - (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5))))) + (-12 (-5 *3 (-1140 (-925 *6))) (-4 *6 (-542)) + (-4 *2 (-922 (-400 (-925 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) + (-4 *5 (-771)) + (-4 *4 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $)))))))) (((*1 *2) - (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-881)) (-5 *1 (-449 *3 *4 *2 *5)) - (-4 *5 (-921 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-881)) (-5 *1 (-878 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-881)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1200 *2))))) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) - (-5 *2 (-398 (-1136 *7))) (-5 *1 (-878 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) + (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-807)) (-5 *3 (-1126))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1227 *4)) (-4 *4 (-410 *3)) (-4 *3 (-300)) + (-4 *3 (-542)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-894)) (-4 *4 (-356)) (-5 *2 (-1227 *1)) + (-4 *1 (-322 *4)))) + ((*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1227 *1)) (-4 *1 (-322 *3)))) + ((*1 *2) + (-12 (-4 *3 (-170)) (-4 *4 (-1203 *3)) (-5 *2 (-1227 *1)) + (-4 *1 (-402 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) + (-5 *2 (-1227 *6)) (-5 *1 (-406 *3 *4 *5 *6)) + (-4 *6 (-13 (-402 *4 *5) (-1011 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) + (-5 *2 (-1227 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)) + (-4 *6 (-402 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1227 *1)) (-4 *1 (-410 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1227 (-1227 *4))) (-5 *1 (-519 *4)) + (-4 *4 (-342))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2975 (-623 (-836))) (|:| -2270 (-623 (-836))) + (|:| |presup| (-623 (-836))) (|:| -2810 (-623 (-836))) + (|:| |args| (-623 (-836))))) + (-5 *1 (-1144)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-623 (-836)))) (-5 *1 (-1144))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1094 *4 *3 *5))) (-4 *4 (-38 (-400 (-550)))) + (-4 *4 (-1020)) (-4 *3 (-825)) (-5 *1 (-1094 *4 *3 *5)) + (-4 *5 (-922 *4 (-522 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1175 *4))) (-5 *3 (-1144)) (-5 *1 (-1175 *4)) + (-4 *4 (-38 (-400 (-550)))) (-4 *4 (-1020))))) +(((*1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-550)))) ((*1 *2 *3) - (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) - (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5))))) + (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-550)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-550))))) +(((*1 *2 *3) + (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1140 (-1140 *4)))) + (-5 *1 (-1179 *4)) (-5 *3 (-1140 (-1140 *4)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-411 *3)) (-4 *3 (-542))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) (((*1 *2 *3) - (-12 (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) - (-5 *2 (-398 (-1136 *7))) (-5 *1 (-878 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) + (-12 (-5 *3 (-900)) + (-5 *2 + (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) + (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-400 (-550))) + (-5 *2 + (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) + (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) + (-5 *1 (-151)))) ((*1 *2 *3) - (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) - (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 (-1136 *7))) (-5 *3 (-1136 *7)) - (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) - (-5 *1 (-878 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 (-1136 *5))) (-5 *3 (-1136 *5)) - (-4 *5 (-1200 *4)) (-4 *4 (-881)) (-5 *1 (-879 *4 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-618 (-1136 *7))) (-5 *3 (-1136 *7)) - (-4 *7 (-921 *5 *6 *4)) (-4 *5 (-881)) (-4 *6 (-769)) (-4 *4 (-823)) - (-5 *1 (-878 *5 *6 *4 *7))))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) + (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) + (-5 *1 (-151)) (-5 *3 (-623 (-916 (-219)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) + (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) + (-5 *1 (-151)) (-5 *3 (-623 (-623 (-916 (-219))))))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))) +(((*1 *1 *1) (-4 *1 (-609))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975) (-1166)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-623 (-623 (-623 *4)))) (-5 *3 (-623 *4)) (-4 *4 (-825)) + (-5 *1 (-1152 *4))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1144)) + (-4 *4 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-561 *4 *2)) + (-4 *2 (-13 (-1166) (-932) (-1107) (-29 *4)))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-894)) (-5 *4 (-219)) (-5 *5 (-550)) (-5 *6 (-847)) + (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1181)) + (-4 *2 (-1181)) (-5 *1 (-57 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1068)) (|has| *1 (-6 -4342)) + (-4 *1 (-149 *2)) (-4 *2 (-1181)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) + (-4 *2 (-1181)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) + (-4 *2 (-1181)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1020)) + (-5 *2 (-2 (|:| -2739 (-1140 *4)) (|:| |deg| (-894)))) + (-5 *1 (-215 *4 *5)) (-5 *3 (-1140 *4)) (-4 *5 (-13 (-542) (-825))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-234 *5 *6)) (-14 *5 (-749)) + (-4 *6 (-1181)) (-4 *2 (-1181)) (-5 *1 (-233 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1203 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-542)) (-4 *2 (-825)))) + ((*1 *1 *1) + (-12 (-4 *1 (-328 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1203 *2)) + (-4 *4 (-1203 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1181)) (-4 *2 (-1181)) + (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) + (-5 *1 (-416 *5 *4 *2 *6)) (-4 *4 (-418 *5)) (-4 *6 (-418 *2)))) + ((*1 *1 *1) (-5 *1 (-486))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-623 *5)) (-4 *5 (-1181)) + (-4 *2 (-1181)) (-5 *1 (-621 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1020)) (-4 *2 (-1020)) + (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *8 (-366 *2)) + (-4 *9 (-366 *2)) (-5 *1 (-663 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-665 *5 *6 *7)) (-4 *10 (-665 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1203 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-356)) + (-4 *3 (-170)) (-4 *1 (-703 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1203 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-931 *5)) (-4 *5 (-1181)) + (-4 *2 (-1181)) (-5 *1 (-930 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *2 (-922 *3 *4 *5)) + (-14 *6 (-623 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1020)) (-4 *2 (-1020)) + (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) + (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) + (-5 *1 (-1025 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1023 *5 *6 *7 *8 *9)) (-4 *12 (-1023 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1124 *5)) (-4 *5 (-1181)) + (-4 *2 (-1181)) (-5 *1 (-1122 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1174 *5 *6 *7 *2)) (-4 *5 (-542)) (-4 *6 (-771)) + (-4 *7 (-825)) (-4 *2 (-1034 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1227 *5)) (-4 *5 (-1181)) + (-4 *2 (-1181)) (-5 *1 (-1226 *5 *2))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *6)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) ((*1 *1) (-4 *1 (-534))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) + (|partial| -12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) + (-5 *2 (-112)) (-5 *1 (-960 *3 *4 *5 *6)) + (-4 *6 (-922 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) + (-4 *4 (-13 (-1068) (-34)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-749)) (-5 *3 (-916 *4)) (-4 *1 (-1102 *4)) + (-4 *4 (-1020)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-916 (-219))) (-5 *2 (-1232)) + (-5 *1 (-1229))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-825)) + (-4 *5 (-771)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-922 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-618 (-618 (-747)))) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-873 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1067)) (-5 *2 (-1063 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1067)) (-5 *2 (-1063 (-618 *4))) (-5 *1 (-876 *4)) - (-5 *3 (-618 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1067)) (-5 *2 (-1063 (-1063 *4))) (-5 *1 (-876 *4)) - (-5 *3 (-1063 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) + (-12 (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) + (-5 *2 (-1227 *6)) (-5 *1 (-329 *3 *4 *5 *6)) + (-4 *6 (-335 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)) + (-4 *2 (-356)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-219)))) + ((*1 *1 *1 *1) + (-1561 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1181))) + (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1181))))) + ((*1 *1 *1 *1) (-4 *1 (-356))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-372)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1093 *3 (-594 *1))) (-4 *3 (-542)) (-4 *3 (-825)) + (-4 *1 (-423 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-465))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-526))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-705) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-170)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-705) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-170)) (-4 *2 (-356)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-640 *2 *4 *3)) (-4 *2 (-696 *4)) + (-4 *3 (|SubsetCategory| (-705) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-170)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-696 *4)) + (-4 *2 (|SubsetCategory| (-705) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)) (-4 *2 (-356)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-839 *2 *3 *4 *5)) (-4 *2 (-356)) + (-4 *2 (-1020)) (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-749))) + (-14 *5 (-749)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *2 (-1020)) + (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-356)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1020)) (-4 *3 (-825)) + (-4 *4 (-771)) (-14 *6 (-623 *3)) + (-5 *1 (-1239 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-922 *2 *4 *3)) + (-14 *7 (-623 (-749))) (-14 *8 (-749)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1250 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1020)) + (-4 *3 (-821))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899))))) +(((*1 *2) (-12 (-5 *2 (-818 (-550))) (-5 *1 (-524)))) + ((*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1140 *3)) (-5 *1 (-887 *3)) (-4 *3 (-300))))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) + (-5 *2 + (-623 + (-2 (|:| |eigval| (-3 (-400 (-925 *4)) (-1133 (-1144) (-925 *4)))) + (|:| |eigmult| (-749)) + (|:| |eigvec| (-623 (-667 (-400 (-925 *4)))))))) + (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-925 *4))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-594 *6)) (-4 *6 (-13 (-423 *5) (-27) (-1166))) + (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 (-1140 (-400 (-1140 *6)))) (-5 *1 (-546 *5 *6 *7)) + (-5 *3 (-1140 *6)) (-4 *7 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1203 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1020)))) + ((*1 *2 *1) + (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1203 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1140 *11)) (-5 *6 (-623 *10)) + (-5 *7 (-623 (-749))) (-5 *8 (-623 *11)) (-4 *10 (-825)) + (-4 *11 (-300)) (-4 *9 (-771)) (-4 *5 (-922 *11 *9 *10)) + (-5 *2 (-623 (-1140 *5))) (-5 *1 (-721 *9 *10 *11 *5)) + (-5 *3 (-1140 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-922 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *2 *6)) + (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-14 *6 (-623 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-1063 (-1063 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-1034 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-208 *2)) + (-4 *2 + (-13 (-825) + (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) + (-15 -3656 ((-1232) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1181)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1181)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)))) + ((*1 *1 *1) (-5 *1 (-836))) ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-21))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-618 (-747))) - (-5 *1 (-876 *4))))) + (-12 (-5 *3 (-878 *4)) (-4 *4 (-1068)) (-5 *2 (-623 (-749))) + (-5 *1 (-877 *4))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)) (-4 *5 (-1034 *3 *4 *2))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-618 (-747))) - (-5 *1 (-876 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-876 *4)) (-4 *4 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-875 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-4 *1 (-875 *3))))) + (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1181)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-961 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-1040 *5 *6 *7 *8)) (-4 *5 (-444)) + (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1075 *5 *6 *7 *8 *3))))) +(((*1 *2) (-12 (-5 *2 (-818 (-550))) (-5 *1 (-524)))) + ((*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1068))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-444))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1203 (-550))) (-5 *1 (-478 *3))))) +(((*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-679)))) + ((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-679))))) (((*1 *2 *3) - (-12 (-5 *3 (-1108 *4 *2)) (-14 *4 (-890)) - (-4 *2 (-13 (-1018) (-10 -7 (-6 (-4338 "*"))))) (-5 *1 (-874 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-618 *3)) (|:| |image| (-618 *3)))) - (-5 *1 (-873 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-942)) (-5 *1 (-873 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-1009 (-535))) (-4 *1 (-291)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-1009 (-535))) (-4 *1 (-291)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1063 *3)) (-5 *1 (-873 *3)) (-4 *3 (-361)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-873 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067))))) + (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) + (-4 *4 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) ((*1 *1 *1) (-4 *1 (-227))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-259 *3)) (-4 *3 (-825)))) + ((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) - (-4 *4 (-1200 *3)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) + (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) + (-4 *4 (-1203 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1200 *2)))) - ((*1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)))) + (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) + (-4 *3 (-1203 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-466 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-356)) (-4 *2 (-873 *3)) (-5 *1 (-569 *2)) + (-5 *3 (-1144)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-569 *2)) (-4 *2 (-356)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-836)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 (-747))) (-4 *1 (-871 *4)) - (-4 *4 (-1067)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067))))) + (-12 (-5 *2 (-623 *4)) (-5 *3 (-623 (-749))) (-4 *1 (-873 *4)) + (-4 *4 (-1068)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-873 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *1 (-873 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-873 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1135 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1141 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1142 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1212 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1219 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3)))) +(((*1 *2) + (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) + (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-749))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-208 *2)) + (-4 *2 + (-13 (-825) + (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) + (-15 -3656 ((-1232) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1181)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1181)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-130)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) + (-4 *2 (-1203 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) + (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-526))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-916 (-219))) (-5 *1 (-1177)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-25))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-163 *3 *4)) + (-4 *3 (-164 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1181)) (-5 *2 (-749)) + (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-825)) (-5 *2 (-749)) (-5 *1 (-422 *3 *4)) + (-4 *3 (-423 *4)))) + ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-534 *3)) (-4 *3 (-535)))) + ((*1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-749)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-774 *3 *4)) + (-4 *3 (-775 *4)))) + ((*1 *2) + (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-964 *3 *4)) + (-4 *3 (-965 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-969 *3 *4)) + (-4 *3 (-970 *4)))) + ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-984 *3)) (-4 *3 (-985)))) + ((*1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-749)))) + ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1028 *3)) (-4 *3 (-1029))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-594 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1144))) (-5 *5 (-1140 *2)) + (-4 *2 (-13 (-423 *6) (-27) (-1166))) + (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1068)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-594 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1144))) + (-5 *5 (-400 (-1140 *2))) (-4 *2 (-13 (-423 *6) (-27) (-1166))) + (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1068))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-130))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-550)) (-5 *5 (-1126)) (-5 *6 (-667 (-219))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-728))))) (((*1 *2 *3) - (-12 (-5 *3 (-745)) - (-5 *2 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) - (-5 *1 (-550)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-1030)) - (-5 *2 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) - (-5 *1 (-550)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-763)) (-5 *3 (-1030)) - (-5 *4 - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 - (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) - (|:| |extra| (-1006)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-763)) (-5 *3 (-1030)) - (-5 *4 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1020)) + (-5 *1 (-668 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1078)) (-5 *3 (-550))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-550)) (-5 *1 (-372))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-1227 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-287 (-400 (-925 *5)))) (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-825) (-145))) + (-5 *2 (-1133 (-623 (-309 *5)) (-623 (-287 (-309 *5))))) + (-5 *1 (-1097 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-825) (-145))) + (-5 *2 (-1133 (-623 (-309 *5)) (-623 (-287 (-309 *5))))) + (-5 *1 (-1097 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-5 *1 (-430))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-749)) (-4 *5 (-444)) (-4 *5 (-825)) + (-4 *5 (-1011 (-550))) (-4 *5 (-542)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-423 *5)) + (-4 *2 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *5 (-594 $)) $)) + (-15 -2715 ((-1093 *5 (-594 $)) $)) + (-15 -1518 ($ (-1093 *5 (-594 $)))))))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1144)) (-5 *2 (-1148)) (-5 *1 (-1147))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1126)) (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-219)) (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *2 (-623 *3)) (-5 *1 (-897 *4 *5 *6 *3)) + (-4 *3 (-922 *4 *6 *5))))) +(((*1 *2) + (-12 (-4 *3 (-1185)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) + (-5 *2 (-1227 *1)) (-4 *1 (-335 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *4 (-1203 *3)) (-5 *2 - (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) - (|:| |extra| (-1006)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-776)) (-5 *3 (-1030)) - (-5 *4 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-784)) + (-2 (|:| -2437 (-667 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-667 *3)))) + (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1203 (-550))) (-5 *2 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))))) - (-5 *1 (-781)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-784)) (-5 *4 (-1030)) + (-2 (|:| -2437 (-667 (-550))) (|:| |basisDen| (-550)) + (|:| |basisInv| (-667 (-550))))) + (-5 *1 (-746 *3 *4)) (-4 *4 (-402 (-550) *3)))) + ((*1 *2) + (-12 (-4 *3 (-342)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 *4)) (-5 *2 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))))) - (-5 *1 (-781)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-812)) (-5 *3 (-1030)) - (-5 *4 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) - (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-812)) (-5 *3 (-1030)) - (-5 *4 - (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) - (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) - (|:| |ub| (-618 (-815 (-219)))))) - (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-814)) + (-2 (|:| -2437 (-667 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-667 *4)))) + (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-703 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-342)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 *4)) (-5 *2 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))))) - (-5 *1 (-813)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-814)) (-5 *4 (-1030)) + (-2 (|:| -2437 (-667 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-667 *4)))) + (-5 *1 (-1236 *3 *4 *5 *6)) (-4 *6 (-402 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1151))))) +(((*1 *1 *1) (-4 *1 (-1029))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)))) (-5 *1 (-182 *3 *2)) + (-4 *2 (-13 (-27) (-1166) (-423 (-167 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-749))) (-5 *3 (-169)) (-5 *1 (-1132 *4 *5)) + (-14 *4 (-894)) (-4 *5 (-1020))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) + (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-734))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-623 *7) *7 (-1140 *7))) (-5 *5 (-1 (-411 *7) *7)) + (-4 *7 (-1203 *6)) (-4 *6 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-5 *2 (-623 (-2 (|:| |frac| (-400 *7)) (|:| -1721 *3)))) + (-5 *1 (-787 *6 *7 *3 *8)) (-4 *3 (-634 *7)) + (-4 *8 (-634 (-400 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) (-5 *2 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))))) - (-5 *1 (-813)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-866)) (-5 *3 (-1030)) - (-5 *4 - (-2 (|:| |pde| (-618 (-307 (-219)))) - (|:| |constraints| - (-618 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) - (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) - (|:| |dFinish| (-665 (-219)))))) - (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) - (|:| |tol| (-219)))) - (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) + (-623 (-2 (|:| |frac| (-400 *6)) (|:| -1721 (-632 *6 (-400 *6)))))) + (-5 *1 (-790 *5 *6)) (-5 *3 (-632 *6 (-400 *6)))))) +(((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1020))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-623 (-1144))) (-4 *2 (-170)) + (-4 *4 (-232 (-3191 *5) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2922 *3) (|:| -3521 *4)) + (-2 (|:| -2922 *3) (|:| -3521 *4)))) + (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-825)) + (-4 *7 (-922 *2 *4 (-838 *5)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-623 (-925 *4))))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-623 (-925 *4))) (-5 *1 (-409 *3 *4)) + (-4 *3 (-410 *4)))) + ((*1 *2) + (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-623 (-925 *3))))) + ((*1 *2) + (-12 (-5 *2 (-623 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-869)) - (-5 *2 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))))) - (-5 *1 (-868)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-869)) (-5 *4 (-1030)) - (-5 *2 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))))) - (-5 *1 (-868))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-5 *1 (-867 *2 *4)) (-4 *2 (-1200 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-5 *1 (-867 *2 *3)) (-4 *2 (-1200 *3))))) + (-12 (-5 *3 (-1227 (-445 *4 *5 *6 *7))) (-5 *2 (-623 (-925 *4))) + (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *4 (-170)) + (-14 *5 (-894)) (-14 *6 (-623 (-1144))) (-14 *7 (-1227 (-667 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-807))))) +(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170))))) (((*1 *2 *3) - (-12 (-4 *1 (-866)) - (-5 *3 - (-2 (|:| |pde| (-618 (-307 (-219)))) - (|:| |constraints| - (-618 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) - (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) - (|:| |dFinish| (-665 (-219)))))) - (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) - (|:| |tol| (-219)))) - (-5 *2 (-1006))))) -(((*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-524))) ((*1 *1) (-4 *1 (-699))) ((*1 *1) (-4 *1 (-703))) - ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) - ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823))))) -(((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) - (-5 *2 (-618 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |k| (-864 *3)) (|:| |c| *4)))) - (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) - (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-648 *3))) (-5 *1 (-864 *3)) (-4 *3 (-823))))) + (-12 (-4 *4 (-542)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3453 *4))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *2) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) + (-5 *1 (-174 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1140 (-1140 *4)))) + (-5 *1 (-1179 *4)) (-5 *3 (-1140 (-1140 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1140 *2)) (-4 *2 (-922 (-400 (-925 *6)) *5 *4)) + (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) + (-4 *4 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) + (-4 *6 (-542))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1008))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) - (-14 *4 (-618 (-1142))))) + (-12 (-5 *2 (-846 (-939 *3) (-939 *3))) (-5 *1 (-939 *3)) + (-4 *3 (-940))))) +(((*1 *2 *2) + (-12 (-4 *3 (-596 (-865 *3))) (-4 *3 (-859 *3)) + (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-596 (-865 *3))) (-4 *2 (-859 *3)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-965 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) + (-4 *3 (-366 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1178)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-823))))) -(((*1 *2 *3) - (-12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-618 *5)) (-5 *1 (-862 *4 *5)) - (-4 *5 (-1178))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1178))))) + (-12 (-4 *4 (-542)) (-4 *5 (-965 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-366 *4)) (-4 *3 (-366 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-542)) + (-5 *2 (-2 (|:| |num| (-667 *4)) (|:| |den| *4))) + (-5 *1 (-671 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-356) (-145) (-1011 (-400 (-550))))) + (-4 *6 (-1203 *5)) + (-5 *2 (-2 (|:| -1721 *7) (|:| |rh| (-623 (-400 *6))))) + (-5 *1 (-785 *5 *6 *7 *3)) (-5 *4 (-623 (-400 *6))) + (-4 *7 (-634 *6)) (-4 *3 (-634 (-400 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-965 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1196 *4 *5 *3)) + (-4 *3 (-1203 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) - (-5 *1 (-859 *4 *5)) (-4 *5 (-1067)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-862 *5 *3)) - (-4 *3 (-1178)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-1178)) - (-5 *2 (-112)) (-5 *1 (-862 *5 *6))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-524))) ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 (-861 *3))))) - (-5 *1 (-861 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-618 (-861 *4))) (-5 *1 (-861 *4)) - (-4 *4 (-1067))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-296)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) - (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-112)) (-5 *1 (-861 *4)) (-4 *4 (-1067))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-51)) (-5 *1 (-861 *4)) (-4 *4 (-1067))))) + (-12 (-5 *3 (-550)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-411 *4)) (-4 *4 (-542))))) +(((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-366 *2)) (-4 *2 (-1181)))) + ((*1 *1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-560 *5 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51)))) - (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) (-5 *2 (-112)) + (-5 *1 (-350 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1227 *4)) (-4 *4 (-342)) (-5 *2 (-112)) + (-5 *1 (-519 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-850 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-852 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-855 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-623 (-623 (-623 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-623 *5)) (-4 *5 (-825)) (-5 *1 (-1152 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-1203 *4)) + (-4 *5 (-1203 (-400 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-444)) + (-5 *2 + (-623 + (-2 (|:| |eigval| (-3 (-400 (-925 *4)) (-1133 (-1144) (-925 *4)))) + (|:| |geneigvec| (-623 (-667 (-400 (-925 *4)))))))) + (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-925 *4))))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-749)) + (-4 *3 (-13 (-705) (-361) (-10 -7 (-15 ** (*3 *3 (-550)))))) + (-5 *1 (-240 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-1229))))) (((*1 *2 *1) - (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *5 (-642 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *1) - (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067)) - (-4 *4 (-642 *3)))) - ((*1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-4 *2 (-1067)) - (-5 *1 (-859 *4 *2))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-5 *2 (-856 *5 *6 (-618 *6))) - (-5 *1 (-858 *5 *6 *4)) (-5 *3 (-618 *6)) (-4 *4 (-594 (-861 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-5 *2 (-618 (-286 *3))) (-5 *1 (-858 *5 *3 *4)) - (-4 *3 (-1009 (-1142))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-5 *2 (-618 (-286 (-917 *3)))) (-5 *1 (-858 *5 *3 *4)) - (-4 *3 (-1018)) (-3659 (-4 *3 (-1009 (-1142)))) (-4 *3 (-857 *5)) - (-4 *4 (-594 (-861 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-5 *2 (-859 *5 *3)) (-5 *1 (-858 *5 *3 *4)) - (-3659 (-4 *3 (-1009 (-1142)))) (-3659 (-4 *3 (-1018))) (-4 *3 (-857 *5)) - (-4 *4 (-594 (-861 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1142)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-823)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-823)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-857 *5)) - (-4 *4 (-594 (-861 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *6)) (-4 *6 (-857 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) - (-5 *1 (-858 *5 *6 *4)) (-4 *4 (-594 (-861 *5)))))) + (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-623 *6)) + (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-922 *3 *5 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-859 *4 *5)) (-5 *3 (-859 *4 *6)) (-4 *4 (-1067)) - (-4 *5 (-1067)) (-4 *6 (-642 *5)) (-5 *1 (-856 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1067)) (-5 *2 (-859 *3 *4)) (-5 *1 (-856 *3 *4 *5)) - (-4 *3 (-1067)) (-4 *5 (-642 *4))))) + (-12 (-5 *2 (-1030 (-997 *4) (-1140 (-997 *4)))) (-5 *3 (-836)) + (-5 *1 (-997 *4)) (-4 *4 (-13 (-823) (-356) (-995)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) (((*1 *2 *1) - (-12 (-4 *4 (-1067)) (-5 *2 (-859 *3 *5)) (-5 *1 (-856 *3 *4 *5)) - (-4 *3 (-1067)) (-4 *5 (-642 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *3 (-618 (-535))) (-5 *1 (-854))))) + (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1181)) + (-5 *2 (-623 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34)))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))) - ((*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))) + (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-848 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-850 *2)) (-4 *2 (-1178)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-853 *2)) (-4 *2 (-1178))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1178))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-618 (-1147))) (-5 *1 (-851))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845))))) -(((*1 *2 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-235)) (-5 *3 (-1124)))) - ((*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-235)))) - ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1178)) (-4 *3 (-1178))))) -(((*1 *2 *1) - (-12 (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-117 *3)) (-14 *3 (-535)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1119 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-172 (-535))) (-5 *1 (-742 *3)) (-4 *3 (-397)))) - ((*1 *2 *1) - (-12 (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-842 *3)) (-14 *3 (-535)))) - ((*1 *2 *1) - (-12 (-14 *3 (-535)) (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-843 *3 *4)) - (-4 *4 (-841 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) - ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) - ((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-1119 (-535)))))) + (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *3)) (-4 *3 (-1040 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1200 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-688 *3 *2 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535))))) -(((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535))))) -(((*1 *1 *1) (-4 *1 (-841 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *3 (-535)) (-4 *1 (-841 *4))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-400 *6)) - (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1200 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1214 *5 *6 *7)) (-4 *5 (-356)) - (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1193 *6 *5))) - (-5 *1 (-839 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1214 *5 *6 *7)) (-4 *5 (-356)) - (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1193 *6 *5))) - (-5 *1 (-839 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-172 *6)) - (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1200 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-835))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) - ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-747)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) - ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835))))) -(((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))) -(((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835))))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-291)))) - ((*1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) + (-12 + (-5 *2 + (-1227 + (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) + (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3030 (-550)) + (|:| -2830 (-550)) (|:| |spline| (-550)) (|:| -3705 (-550)) + (|:| |axesColor| (-847)) (|:| -1476 (-550)) + (|:| |unitsColor| (-847)) (|:| |showing| (-550))))) + (-5 *1 (-1228))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) - (-5 *4 (-307 (-166 (-371)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-371))) - (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-535))) - (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-166 (-371))))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-371)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-535)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-166 (-371))))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-371)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-535)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-166 (-371)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-371))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-535))) (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-670))) - (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-675))) - (-5 *1 (-323)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-677))) - (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-670)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-675)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-677)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-670)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-675)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-677)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-670))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-675))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-670))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-675))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-670))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-675))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-323)))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) - ((*1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) - ((*1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-291)))) - ((*1 *1 *1) (-4 *1 (-291))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) - ((*1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-186)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))) + (-12 (-5 *2 (-1144)) (-5 *3 (-427)) (-4 *5 (-825)) + (-5 *1 (-1074 *5 *4)) (-4 *4 (-423 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-1034 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *1 *1) (-4 *1 (-609))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-610 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975) (-1166)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |rm| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-823)))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-747))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-747))) - ((*1 *1 *1 *1) (-5 *1 (-835)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-128)) (-5 *2 (-1086))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-129)) (-5 *2 (-1086))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-51))) (-5 *2 (-1230)) (-5 *1 (-832))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-38 (-400 (-535)))) - (-4 *2 (-170))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1018)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) - (-4 *3 (-825 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) - (-5 *1 (-743 *3 *4)) (-4 *3 (-685 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1018)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) - (-4 *3 (-825 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1018)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1018)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) - (-4 *3 (-825 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-542)) (-4 *3 (-1018)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1018)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) - (-4 *3 (-825 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-624 *5)) (-4 *5 (-1018)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-825 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *1 (-411 *3)) (-4 *3 (-170)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-826 *2 *3)) - (-4 *3 (-825 *2))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1018)) (-5 *1 (-826 *5 *2)) - (-4 *2 (-825 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1018)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) - (-4 *1 (-825 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-999 *3)) (-4 *3 (-1181))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *2 (-825)) (-4 *5 (-1034 *3 *4 *2))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1018)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) - (-4 *1 (-825 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) - (-14 *4 (-747))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) - (-14 *4 (-747))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) - (-14 *4 (-747))))) -(((*1 *2) (-12 (-5 *2 (-815 (-535))) (-5 *1 (-523)))) - ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1067))))) -(((*1 *2) (-12 (-5 *2 (-815 (-535))) (-5 *1 (-523)))) - ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-815 *3)) (-4 *3 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-307 (-371)))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) - (-5 *1 (-813))))) + (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-130)) + (-4 *3 (-770))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-813)))) - ((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-618 (-371))) (-5 *5 (-618 (-815 (-371)))) - (-5 *6 (-618 (-307 (-371)))) (-5 *3 (-307 (-371))) (-5 *2 (-1006)) - (-5 *1 (-813)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-371))) (-5 *5 (-618 (-815 (-371)))) - (-5 *2 (-1006)) (-5 *1 (-813)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) - (-5 *1 (-813)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-307 (-371)))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) - (-5 *1 (-813))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-550)) (-5 *5 (-1126)) (-5 *6 (-667 (-219))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-728))))) +(((*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-300))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) + (-5 *1 (-666 *3 *4 *5 *6)) (-4 *6 (-665 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-678 *3)) + (-4 *3 (-300))))) (((*1 *2 *3) - (-12 (-4 *1 (-812)) - (-5 *3 - (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) - (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) - (|:| |ub| (-618 (-815 (-219)))))) - (-5 *2 (-1006)))) - ((*1 *2 *3) - (-12 (-4 *1 (-812)) - (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) - (-5 *2 (-1006))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-208 (-493))) (-5 *1 (-811))))) -(((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)))) - ((*1 *2 *3) - (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-664 *4 *5 *6 *3)) - (-4 *3 (-662 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) - ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018))))) -(((*1 *2 *2) - (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018))))) + (-12 (-5 *3 (-623 (-219))) (-5 *2 (-1227 (-677))) (-5 *1 (-298))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-618 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1067)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-618 *4))) (-4 *4 (-1067)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-618 *4))) (-5 *1 (-114 *4)) - (-4 *4 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) - (-5 *1 (-691 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) - (-5 *1 (-691 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-113)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *2)) (-4 *2 (-624 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-810 *2)) (-4 *2 (-1018))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-354 (-113))) (-4 *2 (-1018)) (-5 *1 (-691 *2 *4)) - (-4 *4 (-624 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-5 *1 (-810 *2)) (-4 *2 (-1018))))) -(((*1 *2) (-12 (-5 *2 (-808 (-535))) (-5 *1 (-523)))) - ((*1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1067))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-1230)) (-5 *1 (-807))))) + (-12 (-5 *3 (-1144)) (-5 *4 (-925 (-550))) (-5 *2 (-323)) + (-5 *1 (-325))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-798)) (-5 *4 (-51)) (-5 *2 (-1230)) (-5 *1 (-807))))) -(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-51)) (-5 *1 (-807))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-805))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805))))) -(((*1 *2 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-805)) (-5 *3 (-1124))))) -(((*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-805))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-805))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-805))))) -(((*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-51)) (-5 *1 (-805))))) -(((*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-804 *2 *3)) (-4 *2 (-685 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-685 *3)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-797)) (-5 *2 (-1124)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-797)) (-5 *3 (-112)) (-5 *2 (-1124)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-797)) (-5 *3 (-799)) (-5 *2 (-1230)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-797)) (-5 *3 (-799)) (-5 *4 (-112)) (-5 *2 (-1230)))) - ((*1 *2 *3) - (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-797) (-823) (-1018))) (-5 *2 (-1124)) - (-5 *1 (-803 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-797) (-823) (-1018))) - (-5 *2 (-1124)) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-309 *5))) + (-5 *1 (-1097 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-799)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-797) (-823) (-1018))) - (-5 *2 (-1230)) (-5 *1 (-803 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-799)) (-5 *4 (-307 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-797) (-823) (-1018))) (-5 *2 (-1230)) (-5 *1 (-803 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802))))) -(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-801))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-618 (-1142))) (-5 *1 (-801))))) -(((*1 *1) (-5 *1 (-800)))) -(((*1 *1) (-5 *1 (-800)))) -(((*1 *1) (-5 *1 (-800)))) -(((*1 *1) (-5 *1 (-800)))) -(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-799))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1124)) (|:| -3888 (-1124)))) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-800)) (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-800)) (-5 *1 (-799))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-800)) (-5 *1 (-799))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-112)) (-5 *1 (-798))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1124)) (-5 *4 (-1086)) (-5 *2 (-112)) (-5 *1 (-798))))) -(((*1 *2 *1) (-12 (-5 *2 (-799)) (-5 *1 (-798))))) -(((*1 *2 *1) (-12 (-5 *2 (-799)) (-5 *1 (-798))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798))))) -(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-798))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-795 *3)) (-4 *3 (-823))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) - (-5 *1 (-379 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |mm| (-795 *3)) (|:| |rm| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-823))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-5 *2 (-747)) (-5 *1 (-379 *4)) (-4 *4 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-23)) (-5 *1 (-625 *4 *2 *5)) (-4 *4 (-1067)) - (-14 *5 *2))) + (-12 (-5 *3 (-623 (-400 (-925 *5)))) (-5 *4 (-623 (-1144))) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-623 (-309 *5)))) + (-5 *1 (-1097 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) (-5 *6 (-1140 *3)) + (-4 *3 (-13 (-423 *7) (-27) (-1166))) + (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1068)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-623 *3)) + (-5 *6 (-400 (-1140 *3))) (-4 *3 (-13 (-423 *7) (-27) (-1166))) + (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1068))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-444))))) +(((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-749)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-366 *3)) (-4 *3 (-1181)) + (-4 *3 (-1068)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-366 *3)) (-4 *3 (-1181)) (-4 *3 (-1068)) + (-5 *2 (-550)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-366 *4)) (-4 *4 (-1181)) + (-5 *2 (-550)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-550)) (-5 *3 (-139)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-550))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1078)) (-5 *3 (-550))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-219)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-5 *2 (-747)) (-5 *1 (-795 *4)) (-4 *4 (-823))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1067)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-354 *2)) (-4 *2 (-1067)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-379 *2)) (-4 *2 (-1067)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) + (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-219)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-372)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-1067)) (-5 *1 (-625 *2 *4 *5)) (-4 *4 (-23)) - (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-795 *2)) (-4 *2 (-823))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-535))))) (-5 *1 (-354 *3)) - (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-747))))) (-5 *1 (-379 *3)) - (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| -4075 *3) (|:| -2484 (-535))))) (-5 *1 (-398 *3)) - (-4 *3 (-542)))) - ((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-747))))) (-5 *1 (-795 *3)) - (-4 *3 (-823))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-618 *4)) (-4 *4 (-356)) (-5 *2 (-1224 *4)) - (-5 *1 (-790 *4 *3)) (-4 *3 (-634 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)) (-5 *1 (-790 *4 *5)) - (-4 *5 (-634 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-665 *5)) - (-5 *1 (-790 *5 *6)) (-4 *6 (-634 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) - (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-746 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-542)) - (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-746 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2123 (-618 *6))) *7 *6)) - (-4 *6 (-356)) (-4 *7 (-634 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1224 *6) "failed")) - (|:| -2123 (-618 (-1224 *6))))) - (-5 *1 (-789 *6 *7)) (-5 *4 (-1224 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) - (-5 *2 - (-2 (|:| A (-665 *5)) - (|:| |eqs| - (-618 - (-2 (|:| C (-665 *5)) (|:| |g| (-1224 *5)) (|:| -3600 *6) - (|:| |rh| *5)))))) - (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) - (-4 *6 (-634 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-634 *5)) - (-5 *2 (-2 (|:| -1695 (-665 *6)) (|:| |vec| (-1224 *5)))) - (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *6)) (-5 *4 (-1224 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-618 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *6 (-1200 *5)) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 (-400 *7))) (-5 *4 (-1 (-618 *6) *7)) - (-5 *5 (-1 (-398 *7) *7)) - (-4 *6 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *7 (-1200 *6)) (-5 *2 (-618 (-400 *7))) (-5 *1 (-788 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-618 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *6 (-1200 *5)) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *7 (-400 *7))) (-5 *4 (-1 (-618 *6) *7)) - (-5 *5 (-1 (-398 *7) *7)) - (-4 *6 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *7 (-1200 *6)) (-5 *2 (-618 (-400 *7))) (-5 *1 (-788 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 (-400 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-618 (-400 *5))) (-5 *1 (-788 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-27)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-632 *5 (-400 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-618 (-400 *5))) (-5 *1 (-788 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-27)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-618 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) - (-5 *2 (-618 (-2 (|:| |poly| *6) (|:| -3600 *3)))) - (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-618 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *6 (-1200 *5)) - (-5 *2 (-618 (-2 (|:| |poly| *6) (|:| -3600 (-632 *6 (-400 *6)))))) - (-5 *1 (-788 *5 *6)) (-5 *3 (-632 *6 (-400 *6)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-618 *7) *7 (-1136 *7))) (-5 *5 (-1 (-398 *7) *7)) - (-4 *7 (-1200 *6)) (-4 *6 (-13 (-356) (-145) (-1009 (-400 (-535))))) - (-5 *2 (-618 (-2 (|:| |frac| (-400 *7)) (|:| -3600 *3)))) - (-5 *1 (-785 *6 *7 *3 *8)) (-4 *3 (-634 *7)) (-4 *8 (-634 (-400 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-618 (-2 (|:| |frac| (-400 *6)) (|:| -3600 (-632 *6 (-400 *6)))))) - (-5 *1 (-788 *5 *6)) (-5 *3 (-632 *6 (-400 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *7 (-1200 *5)) (-4 *4 (-701 *5 *7)) - (-5 *2 (-2 (|:| -1695 (-665 *6)) (|:| |vec| (-1224 *5)))) - (-5 *1 (-787 *5 *6 *7 *4 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 *4))))) + (-12 (-5 *3 (-749)) (-5 *2 (-400 (-550))) (-5 *1 (-372))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-786 *4 *2)) - (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-632 *2 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-786 *4 *2)) - (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) - (-5 *1 (-786 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-400 *6))) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-2 (|:| -2123 (-618 (-400 *6))) (|:| -1695 (-665 *5)))) - (-5 *1 (-786 *5 *6)) (-5 *4 (-618 (-400 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4)))) - (-5 *1 (-786 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *6 (-400 *6))) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-2 (|:| -2123 (-618 (-400 *6))) (|:| -1695 (-665 *5)))) - (-5 *1 (-786 *5 *6)) (-5 *4 (-618 (-400 *6)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-1200 *4)) - (-5 *1 (-785 *4 *3 *2 *5)) (-4 *2 (-634 *3)) (-4 *5 (-634 (-400 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-734))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)))) (-5 *1 (-182 *3 *2)) + (-4 *2 (-13 (-27) (-1166) (-423 (-167 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) - (-4 *5 (-1200 *4)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *2 (-634 *5)) - (-4 *6 (-634 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-618 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) - (-5 *2 (-618 (-2 (|:| -4294 *5) (|:| -3600 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) - (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6)))))) + (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) + (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 (-167 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1170 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1203 (-550))) (-5 *1 (-478 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1126)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) + (-5 *7 (-667 (-550))) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *2) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-104))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-749))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-749)) (-4 *6 (-356)) (-5 *4 (-1175 *6)) + (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1235 *6)) + (-5 *5 (-1124 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) - (-5 *2 (-618 (-2 (|:| |deg| (-747)) (|:| -3600 *5)))) - (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5)))))) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)) + (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-52)) (-5 *1 (-807))))) (((*1 *2 *3) - (-12 (-4 *2 (-1200 *4)) (-5 *1 (-785 *4 *2 *3 *5)) - (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) - (-4 *5 (-634 (-400 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1200 *4)) (-5 *1 (-783 *4 *2 *3 *5)) - (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) - (-4 *5 (-634 (-400 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1200 *4)) (-5 *1 (-783 *4 *2 *5 *3)) - (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-634 *2)) - (-4 *3 (-634 (-400 *2)))))) + (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) - (-5 *2 (-618 (-2 (|:| -4115 *5) (|:| -3560 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) - (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *4 (-1200 *5)) - (-5 *2 (-618 (-2 (|:| -4115 *4) (|:| -3560 *4)))) (-5 *1 (-783 *5 *4 *3 *6)) - (-4 *3 (-634 *4)) (-4 *6 (-634 (-400 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) - (-5 *2 (-618 (-2 (|:| -4115 *5) (|:| -3560 *5)))) (-5 *1 (-783 *4 *5 *6 *3)) - (-4 *6 (-634 *5)) (-4 *3 (-634 (-400 *5))))) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-1020)) (-5 *2 (-1227 *4)) + (-5 *1 (-1145 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *4 (-1200 *5)) - (-5 *2 (-618 (-2 (|:| -4115 *4) (|:| -3560 *4)))) (-5 *1 (-783 *5 *4 *6 *3)) - (-4 *6 (-634 *4)) (-4 *3 (-634 (-400 *4)))))) + (-12 (-5 *4 (-894)) (-5 *2 (-1227 *3)) (-5 *1 (-1145 *3)) + (-4 *3 (-1020))))) +(((*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1020)))) + ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1020))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1200 *5)) - (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) - (-4 *3 (-634 *2)) (-4 *6 (-634 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-400 *2))) (-4 *2 (-1200 *5)) (-5 *1 (-783 *5 *2 *3 *6)) - (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) - (-4 *6 (-634 (-400 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *4)) (-4 *4 (-335 *5 *6 *7)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4)))) - (-5 *1 (-782 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1142)) - (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-780 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1164) (-931)))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-623 (-623 (-219)))) (-5 *4 (-219)) + (-5 *2 (-623 (-916 *4))) (-5 *1 (-1177)) (-5 *3 (-916 *4))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1034 *6 *7 *8)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *4)))) + (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 (-2 (|:| |val| (-623 *8)) (|:| -3223 *9)))) + (-5 *5 (-112)) (-4 *8 (-1034 *6 *7 *4)) (-4 *9 (-1040 *6 *7 *4 *8)) + (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) + (-5 *2 (-623 (-2 (|:| |val| *8) (|:| -3223 *9)))) + (-5 *1 (-1041 *6 *7 *4 *8 *9))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) - (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-931)))))) + (|partial| -12 (-5 *3 (-749)) (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *2) + (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1011 (-550))) + (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) + (-4 *2 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) + (-15 -2715 ((-1093 *3 (-594 $)) $)) + (-15 -1518 ($ (-1093 *3 (-594 $)))))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-356)) (-4 *7 (-1203 *5)) (-4 *4 (-703 *5 *7)) + (-5 *2 (-2 (|:| -1340 (-667 *6)) (|:| |vec| (-1227 *5)))) + (-5 *1 (-789 *5 *6 *7 *4 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 *4))))) (((*1 *2 *3) - (|partial| -12 + (-12 (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-2 (|:| -1340 (-667 (-400 (-925 *4)))) + (|:| |vec| (-623 (-400 (-925 *4)))) (|:| -2122 (-749)) + (|:| |rows| (-623 (-550))) (|:| |cols| (-623 (-550))))) + (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *2 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))) - (-5 *1 (-779))))) -(((*1 *1 *2) - (-12 + (-2 (|:| |partsol| (-1227 (-400 (-925 *4)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *4))))))) + (-5 *1 (-897 *4 *5 *6 *7)) (-4 *7 (-922 *4 *6 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *3) + (-12 (-4 *4 (-771)) + (-4 *5 (-13 (-825) (-10 -8 (-15 -4028 ((-1144) $))))) (-4 *6 (-542)) + (-5 *2 (-2 (|:| -2270 (-925 *6)) (|:| -3983 (-925 *6)))) + (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-922 (-400 (-925 *6)) *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-652 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-719 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-825)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *1 (-953 *3)) (-4 *3 (-1020)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1040 *4 *5 *6 *7)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 *1)) + (-4 *1 (-1040 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) (-4 *5 (-356)) (-5 *2 - (-618 - (-2 - (|:| -4203 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (|:| -2184 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371))))))) - (-5 *1 (-779))))) -(((*1 *2 *1) + (-2 (|:| |ir| (-569 (-400 *6))) (|:| |specpart| (-400 *6)) + (|:| |polypart| *6))) + (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) + ((*1 *1 *1 *1) (-4 *1 (-771)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3139 *3))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *3 (-1020)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3935 *1))) + (-4 *1 (-827 *3))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-623 (-1144))) (-4 *2 (-170)) + (-4 *3 (-232 (-3191 *4) (-749))) + (-14 *6 + (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *3)) + (-2 (|:| -2922 *5) (|:| -3521 *3)))) + (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-825)) + (-4 *7 (-922 *2 *3 (-838 *4)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-623 *1)) (|has| *1 (-6 -4343)) (-4 *1 (-983 *3)) + (-4 *3 (-1181))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-400 (-925 *6)) (-1133 (-1144) (-925 *6)))) + (-5 *5 (-749)) (-4 *6 (-444)) (-5 *2 (-623 (-667 (-400 (-925 *6))))) + (-5 *1 (-285 *6)) (-5 *4 (-667 (-400 (-925 *6)))))) + ((*1 *2 *3 *4) (-12 - (-5 *2 - (-618 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219))))) - (-5 *1 (-545)))) + (-5 *3 + (-2 (|:| |eigval| (-3 (-400 (-925 *5)) (-1133 (-1144) (-925 *5)))) + (|:| |eigmult| (-749)) (|:| |eigvec| (-623 *4)))) + (-4 *5 (-444)) (-5 *2 (-623 (-667 (-400 (-925 *5))))) + (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-925 *5))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) +(((*1 *2 *1) + (-12 (-4 *2 (-922 *3 *5 *4)) (-5 *1 (-960 *3 *4 *5 *2)) + (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *2 *2) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) + (-5 *1 (-174 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1068)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-661 *4 *5)) (-4 *4 (-1068)))) + ((*1 *2 *2) + (-12 (-4 *3 (-825)) (-5 *1 (-902 *3 *2)) (-4 *2 (-423 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1144)) (-5 *2 (-309 (-550))) (-5 *1 (-903)))) ((*1 *2 *1) - (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-618 *3)))) + (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1020)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-618 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219))))) - (-5 *1 (-779))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-779))))) -(((*1 *1) (-5 *1 (-779)))) + (-12 (-4 *2 (-1020)) (-5 *1 (-1250 *2 *3)) (-4 *3 (-821))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1142)) - (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) - (-4 *4 (-13 (-29 *6) (-1164) (-931))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-618 *4)))) - (-5 *1 (-777 *6 *4 *3)) (-4 *3 (-634 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-776)) - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-1006))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-967 *3)) (-4 *3 (-170)) (-5 *1 (-774 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))) -(((*1 *1 *1) (-4 *1 (-237))) - ((*1 *1 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *2)) - (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3874 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1178))) - (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1178))))) - ((*1 *1 *1) (-4 *1 (-465))) - ((*1 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) - ((*1 *1 *1 *1) (-4 *1 (-769)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) - (|:| |success| (-112)))) - (-5 *1 (-765)) (-5 *5 (-535))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) - (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-535)) - (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) - (-5 *7 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) - (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-535)) - (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) - (-5 *7 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) - (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) - (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) - (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) - (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-763)) (-5 *2 (-1006)) - (-5 *3 - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-763)) (-5 *2 (-1006)) - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-762))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-762))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-890)) (-5 *1 (-762))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1124)) (-5 *1 (-762))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-890)) (-5 *1 (-762))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1124)) (-5 *1 (-762))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-917 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-917 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-170)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-825)) (-5 *4 (-623 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-623 *4)))) + (-5 *1 (-1152 *6)) (-5 *5 (-623 *4))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4342)) (-4 *1 (-586 *4 *3)) (-4 *4 (-1068)) + (-4 *3 (-1181)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1008))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-119 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-894)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-1227 *4)) (-4 *4 (-342)) (-5 *2 (-894)) + (-5 *1 (-519 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-894)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) + ((*1 *2 *1) + (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1203 *2)) (-4 *2 (-170)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1227 *4)) (-5 *3 (-894)) (-4 *4 (-342)) + (-5 *1 (-519 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) + (-4 *5 (-232 *3 *2)) (-4 *2 (-1020))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-460)) (-5 *4 (-894)) (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *2) + (-12 (-4 *3 (-542)) (-4 *4 (-965 *3)) (-5 *1 (-140 *3 *4 *2)) + (-4 *2 (-366 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) + (-12 (-4 *4 (-542)) (-4 *5 (-965 *4)) (-4 *2 (-366 *4)) + (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-366 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-917 (-166 *4)))) (-4 *4 (-542)) - (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-917 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-542)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-542)) + (-5 *2 (-667 *4)) (-5 *1 (-671 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-542)) (-4 *4 (-965 *3)) (-5 *1 (-1196 *3 *4 *2)) + (-4 *2 (-1203 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1020)) + (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-922 *2 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(((*1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-238 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-677)) (-5 *1 (-298))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) + (-5 *1 (-1097 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) - (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) + (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-13 (-300) (-825) (-145))) + (-5 *2 (-623 (-287 (-309 *4)))) (-5 *1 (-1097 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-287 (-400 (-925 *5)))) (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *5)))) + (-5 *1 (-1097 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-542)) (-4 *4 (-823)) - (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) + (-12 (-5 *3 (-287 (-400 (-925 *4)))) + (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-623 (-287 (-309 *4)))) + (-5 *1 (-1097 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-542)) - (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) - (-5 *1 (-761 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) - (-5 *2 (-371)) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) - (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-623 (-400 (-925 *5)))) (-5 *4 (-623 (-1144))) + (-4 *5 (-13 (-300) (-825) (-145))) + (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1097 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 *2)) - (-5 *2 (-371)) (-5 *1 (-761 *4)))) + (-12 (-5 *3 (-623 (-400 (-925 *4)))) + (-4 *4 (-13 (-300) (-825) (-145))) + (-5 *2 (-623 (-623 (-287 (-309 *4))))) (-5 *1 (-1097 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) - (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-623 (-287 (-400 (-925 *5))))) (-5 *4 (-623 (-1144))) + (-4 *5 (-13 (-300) (-825) (-145))) + (-5 *2 (-623 (-623 (-287 (-309 *5))))) (-5 *1 (-1097 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) - (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) - (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5))))) + (-12 (-5 *3 (-623 (-287 (-400 (-925 *4))))) + (-4 *4 (-13 (-300) (-825) (-145))) + (-5 *2 (-623 (-623 (-287 (-309 *4))))) (-5 *1 (-1097 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *3 (-219)) + (-5 *2 (-1008)) (-5 *1 (-728))))) +(((*1 *2 *2) (-12 (-5 *2 (-894)) (|has| *1 (-6 -4333)) (-4 *1 (-397)))) + ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-894)))) + ((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-677)))) + ((*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-677))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1227 (-3 (-460) "undefined"))) (-5 *1 (-1228))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-1078)) (-5 *3 (-550))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1030 (-997 *3) (-1140 (-997 *3)))) + (-5 *1 (-997 *3)) (-4 *3 (-13 (-823) (-356) (-995)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) + (-5 *1 (-734))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-1140 *3)) + (-4 *3 (-13 (-423 *6) (-27) (-1166))) + (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) + (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1068)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-594 *3)) (-5 *5 (-400 (-1140 *3))) + (-4 *3 (-13 (-423 *6) (-27) (-1166))) + (-4 *6 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 (-2 (|:| -1653 *3) (|:| |coeff| *3))) + (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1068))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1108 *4 *5)) (-4 *4 (-13 (-1068) (-34))) + (-4 *5 (-13 (-1068) (-34))) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5))))) +(((*1 *1) (-5 *1 (-430)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-444))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *6 (-219)) + (-5 *3 (-550)) (-5 *2 (-1008)) (-5 *1 (-731))))) +(((*1 *1 *1) (-5 *1 (-219))) ((*1 *1 *1) (-5 *1 (-372))) + ((*1 *1) (-5 *1 (-372)))) (((*1 *2 *3) - (-12 (-5 *2 (-166 (-371))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-371))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-5 *2 (-166 (-371))) (-5 *1 (-761 *3)) - (-4 *3 (-594 (-371))))) - ((*1 *2 *3) - (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-170)) (-4 *5 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-917 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-917 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-170)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-423 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-400 (-917 (-166 *4)))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-542)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) + (-5 *1 (-156 *4 *5)) (-4 *5 (-423 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) + (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-423 *4) (-975))))) ((*1 *2 *3) - (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-542)) (-4 *4 (-823)) - (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) - (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-5 *2 (-371)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-294 *4)) (-4 *4 (-295)))) + ((*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-371)) - (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) - (-5 *2 (-371)) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-114)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-422 *4 *5)) (-4 *4 (-423 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 *2)) (-5 *2 (-371)) - (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 *2)) - (-5 *2 (-371)) (-5 *1 (-761 *5)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) + (-5 *1 (-424 *4 *5)) (-4 *5 (-423 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 *2)) - (-5 *2 (-371)) (-5 *1 (-761 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) - (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-535)))) - (-4 *2 (-170))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-535)))) - (-4 *2 (-170))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-618 (-757 *3))) (-5 *1 (-757 *3)) (-4 *3 (-542)) - (-4 *3 (-1018))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| -4099 *3) (|:| |coef1| (-757 *3)) (|:| |coef2| (-757 *3)))) - (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef1| (-757 *3)))) (-5 *1 (-757 *3)) - (-4 *3 (-542)) (-4 *3 (-1018))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) - (-4 *3 (-542)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-400 (-535)))) - (-5 *2 - (-618 - (-2 (|:| |outval| *4) (|:| |outmult| (-535)) - (|:| |outvect| (-618 (-665 *4)))))) - (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-618 *4)) (-5 *1 (-755 *4)) - (-4 *4 (-13 (-356) (-821)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-665 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-170)) (-4 *2 (-1200 *4)) (-5 *1 (-175 *4 *2 *3)) - (-4 *3 (-701 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-400 (-917 *5)))) (-5 *4 (-1142)) (-5 *2 (-917 *5)) - (-5 *1 (-285 *5)) (-4 *5 (-444)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-400 (-917 *4)))) (-5 *2 (-917 *4)) (-5 *1 (-285 *4)) - (-4 *4 (-444)))) - ((*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-917 (-166 (-400 (-535))))) - (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *4 (-1142)) - (-5 *2 (-917 (-166 (-400 (-535))))) (-5 *1 (-741 *5)) - (-4 *5 (-13 (-356) (-821))))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-917 (-400 (-535)))) - (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *4 (-1142)) - (-5 *2 (-917 (-400 (-535)))) (-5 *1 (-755 *5)) (-4 *5 (-13 (-356) (-821)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-618 (-747))) - (-5 *1 (-754 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *6)) (-4 *7 (-921 *6 *4 *5))))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) + (-5 *1 (-610 *4 *5)) (-4 *5 (-13 (-423 *4) (-975) (-1166)))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1200 *9)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-300)) - (-4 *10 (-921 *9 *7 *8)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-749)) (|:| -2739 *4))) (-5 *5 (-749)) + (-4 *4 (-922 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 - (-2 (|:| |deter| (-618 (-1136 *10))) - (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-618 *6)) (|:| |nlead| (-618 *10)))) - (-5 *1 (-754 *6 *7 *8 *9 *10)) (-5 *3 (-1136 *10)) (-5 *4 (-618 *6)) - (-5 *5 (-618 *10))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1200 *5)) (-5 *2 (-618 *3)) - (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1200 *6)) (-14 *7 (-890))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1124)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) - (-4 *4 (-1032 *6 *7 *8)) (-5 *2 (-1230)) (-5 *1 (-752 *6 *7 *8 *4 *5)) - (-4 *5 (-1038 *6 *7 *8 *4))))) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-441 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-542) (-825) (-1011 (-550)))) (-5 *1 (-182 *3 *2)) + (-4 *2 (-13 (-27) (-1166) (-423 (-167 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) - ((*1 *1 *1) (-5 *1 (-371))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) - (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *2 (-1032 *4 *5 *6)) - (-5 *1 (-752 *4 *5 *6 *2 *3)) (-4 *3 (-1038 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-371)))) - ((*1 *1 *1 *1) (-4 *1 (-534))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) - ((*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-747))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-166 (-400 (-535))))) - (-5 *2 - (-618 - (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-535)) - (|:| |outvect| (-618 (-665 (-166 *4))))))) - (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-618 (-166 *4))) - (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-738)))) -(((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *1 *1 *1) (-4 *1 (-738)))) -(((*1 *1 *1 *1) (-4 *1 (-738)))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-736))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-736))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-917 (-535)))) (-5 *1 (-429)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-219))) (-5 *2 (-1069)) (-5 *1 (-736)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-535))) (-5 *2 (-1069)) (-5 *1 (-736))))) -(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736))))) -(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736))))) -(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-166 (-219))) (-5 *6 (-1124)) (-5 *4 (-219)) - (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1124)) (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *2 (-1006)) - (-5 *1 (-735))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1124)) (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *2 (-1006)) - (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) + (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-542) (-825) (-1011 (-550)))) + (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 (-167 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-1170 *4 *2)) (-4 *2 (-13 (-27) (-1166) (-423 *4)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1203 (-400 (-550)))) (-5 *1 (-886 *3 *2)) + (-4 *2 (-1203 (-400 *3)))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1144))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) + (-12 (-5 *3 (-749)) (-5 *4 (-550)) (-5 *1 (-437 *2)) (-4 *2 (-1020))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) + (-12 (-5 *3 (-1144)) (-5 *4 (-925 (-550))) (-5 *2 (-323)) + (-5 *1 (-325))))) +(((*1 *1) (-5 *1 (-323)))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3170 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-545))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) + (-12 (-5 *3 (-1144)) (-4 *5 (-356)) (-5 *2 (-623 (-1175 *5))) + (-5 *1 (-1235 *5)) (-5 *4 (-1175 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (-5 *2 (-623 (-623 (-219)))) (-5 *1 (-1177))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-52)) (-5 *1 (-807))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-1126)) (-5 *1 (-1228)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1228)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1228)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-1126)) (-5 *1 (-1229)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1229)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1229))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1020)) (-5 *2 (-623 *1)) (-4 *1 (-1102 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-400 *2))) (-4 *2 (-1203 *4)) (-5 *1 (-788 *4 *2)) + (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 *2 (-400 *2))) (-4 *2 (-1203 *4)) + (-5 *1 (-788 *4 *2)) + (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) + (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *9)) (-4 *9 (-1020)) (-4 *5 (-825)) (-4 *6 (-771)) + (-4 *8 (-1020)) (-4 *2 (-922 *9 *7 *5)) + (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) + (-4 *4 (-922 *8 *6 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))) + (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-847)))) + ((*1 *2 *3) (-12 (-5 *3 (-916 *2)) (-5 *1 (-955 *2)) (-4 *2 (-1020))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1203 (-550)))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3139 *3))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) + (-14 *4 (-749)) (-4 *5 (-170))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-242))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-983 *2)) (-4 *2 (-1181))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-166 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-734))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-734))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) - (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-734))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) - (-5 *2 (-1006)) (-5 *1 (-733))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) - (-5 *2 (-1006)) (-5 *1 (-733))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1006)) - (-5 *1 (-733))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) - (-5 *2 (-1006)) (-5 *1 (-733))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) - (-5 *1 (-733))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) - (-5 *2 (-1006)) (-5 *1 (-733))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-733))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-166 (-219)))) (-5 *2 (-1006)) - (-5 *1 (-733))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-112)) (-5 *5 (-665 (-166 (-219)))) - (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-112)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-732))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) - (-5 *2 (-1006)) (-5 *1 (-732)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) - (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *4 (-219)) - (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) - (-5 *1 (-732))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-166 (-219)))) - (-5 *2 (-1006)) (-5 *1 (-731))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-166 (-219)))) - (-5 *2 (-1006)) (-5 *1 (-731))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-166 (-219)))) (-5 *2 (-1006)) - (-5 *1 (-731))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-731))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-731))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) - (-5 *2 (-1006)) (-5 *1 (-731))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-618 (-112))) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) - (-5 *7 (-219)) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-731))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-665 (-535))) (-5 *5 (-112)) (-5 *7 (-665 (-219))) - (-5 *3 (-535)) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-731))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-618 (-112))) (-5 *7 (-665 (-219))) (-5 *8 (-665 (-535))) - (-5 *3 (-535)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1006)) - (-5 *1 (-731))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) - (-5 *1 (-730))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 - *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) - (-12 (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) - (-5 *7 (-665 (-535))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-535)) - (-5 *2 (-1006)) (-5 *1 (-730))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 - *8) - (-12 (-5 *5 (-665 (-219))) (-5 *6 (-112)) (-5 *7 (-665 (-535))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-535)) - (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *2 (-1006)) - (-5 *1 (-730))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1006)) - (-5 *1 (-730))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1006)) - (-5 *1 (-730))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1006)) - (-5 *1 (-730))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-535)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-219)) - (-5 *2 (-1006)) (-5 *1 (-730))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) - (-5 *1 (-729))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) - (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) - (-5 *7 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *6 (-219)) - (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) - (-5 *7 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) - (-5 *1 (-729))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) - (-5 *1 (-729))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) - (-5 *1 (-729))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) - (-5 *1 (-729))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) - (-5 *1 (-729))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) (-5 *3 (-535)) - (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) - (-5 *1 (-729))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) - (-5 *1 (-728))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) - (-5 *1 (-728))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *6 (-219)) - (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-728))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) - (-5 *1 (-728))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 - *4) - (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-651 (-219))) - (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-727))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-1124)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1006)) - (-5 *1 (-727))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) - (-5 *1 (-727))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-726))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1006)) - (-5 *1 (-726)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-381)) - (-5 *2 (-1006)) (-5 *1 (-726))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-726))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1006)) - (-5 *1 (-726))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-665 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-726))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-665 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-726))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-726))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-726))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-725))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-725))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *3 (-219)) - (-5 *2 (-1006)) (-5 *1 (-725))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) - (-5 *1 (-725))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-724))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-724))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-724))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) - (-5 *1 (-724))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1006)) - (-5 *1 (-723))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1006)) - (-5 *1 (-723))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-535)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) - (-5 *1 (-723))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-112)) (-5 *2 (-1006)) - (-5 *1 (-722))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-112)) (-5 *2 (-1006)) - (-5 *1 (-722))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-721 *3)) (-4 *3 (-170))))) + (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1203 *5)) + (-5 *1 (-706 *5 *2)) (-4 *5 (-356))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1136 *6)) (-5 *3 (-535)) (-4 *6 (-300)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-4 *7 (-823)) - (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-4 *8 (-300)) (-5 *2 (-618 (-747))) - (-5 *1 (-719 *6 *7 *8 *9)) (-5 *5 (-747))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-535)) (-5 *4 (-398 *2)) (-4 *2 (-921 *7 *5 *6)) - (-5 *1 (-719 *5 *6 *7 *2)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-300))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-5 *5 (-618 (-618 *8))) - (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) - (-5 *2 - (-2 (|:| |upol| (-1136 *8)) (|:| |Lval| (-618 *8)) - (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 *8)) (|:| -2484 (-535))))) - (|:| |ctpol| *8))) - (-5 *1 (-719 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-618 *7)) (-5 *5 (-618 (-618 *8))) (-4 *7 (-823)) (-4 *8 (-300)) - (-4 *6 (-769)) (-4 *9 (-921 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 *9)) (|:| -2484 (-535))))))) - (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1136 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-535)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-300)) - (-4 *9 (-921 *8 *6 *7)) - (-5 *2 (-2 (|:| -2115 (-1136 *9)) (|:| |polval| (-1136 *8)))) - (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1136 *9)) (-5 *4 (-1136 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) - (-5 *1 (-719 *5 *4 *6 *3)) (-4 *3 (-921 *6 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| -4075 (-1136 *6)) (|:| -2484 (-535))))) - (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-535)) - (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) - (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-921 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-716 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-715))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-713 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-1067)))) - ((*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) - (-5 *2 (-618 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-713 *3)) (-4 *3 (-1067))))) + (|partial| -12 (-5 *2 (-603 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -2682 *4) (|:| |sol?| (-112))) + (-550) *4)) + (-4 *4 (-356)) (-4 *5 (-1203 *4)) (-5 *1 (-560 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1227 (-667 *4))) (-4 *4 (-170)) + (-5 *2 (-1227 (-667 (-925 *4)))) (-5 *1 (-183 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-747)))) - ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-747)))) - ((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-542)) (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) - (-5 *3 (-400 (-917 *6))) (-4 *5 (-769)) - (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1136 (-917 *6))) (-4 *6 (-542)) - (-4 *2 (-921 (-400 (-917 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) - (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1136 *2)) (-4 *2 (-921 (-400 (-917 *6)) *5 *4)) - (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) - (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *6 (-542))))) + (-12 (-5 *2 (-916 *4)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) (((*1 *2 *3) - (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) - (-4 *6 (-542)) (-5 *2 (-2 (|:| -2724 (-917 *6)) (|:| -2166 (-917 *6)))) - (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-921 (-400 (-917 *6)) *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-535)) - (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) - (-5 *1 (-135 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *9)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) - (-4 *8 (-1018)) (-4 *2 (-921 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-769)) (-4 *4 (-921 *8 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1200 *5)) - (-5 *1 (-704 *5 *2)) (-4 *5 (-356))))) + (-12 (-5 *3 (-900)) + (-5 *2 + (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) + (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-400 (-550))) + (-5 *2 + (-2 (|:| |brans| (-623 (-623 (-916 (-219))))) + (|:| |xValues| (-1062 (-219))) (|:| |yValues| (-1062 (-219))))) + (-5 *1 (-151))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *1 *1) + (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) + (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-922 *2 *4 *3))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1227 (-400 (-925 *4)))) + (|:| -2437 (-623 (-1227 (-400 (-925 *4))))))) + (-5 *3 (-623 *7)) (-4 *4 (-13 (-300) (-145))) + (-4 *7 (-922 *4 *6 *5)) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *1 (-897 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-623 (-1144))) (-4 *4 (-1068)) + (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) + (-5 *1 (-1044 *4 *5 *2)) + (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1068)) + (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))) + (-5 *1 (-1044 *3 *4 *2)) + (-4 *2 (-13 (-423 *4) (-859 *3) (-596 (-865 *3))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -3413 (-398 *3)) (|:| |special| (-398 *3)))) - (-5 *1 (-704 *5 *3))))) + (-12 (-5 *3 (-3 (-400 (-925 *5)) (-1133 (-1144) (-925 *5)))) + (-4 *5 (-444)) (-5 *2 (-623 (-667 (-400 (-925 *5))))) + (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-925 *5))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1011 (-550))) + (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) + (-4 *2 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) + (-15 -2715 ((-1093 *3 (-594 $)) $)) + (-15 -1518 ($ (-1093 *3 (-594 $)))))))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-5 *2 + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-699)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112))))) + (-12 (-4 *4 (-1068)) (-5 *2 (-862 *3 *5)) (-5 *1 (-858 *3 *4 *5)) + (-4 *3 (-1068)) (-4 *5 (-644 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) (((*1 *1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) - (-14 *4 (-618 (-1142))))) - ((*1 *1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) - (-14 *4 (-618 (-1142))))) - ((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-170)))) - ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-701 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1224 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) - (-4 *1 (-701 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1200 *5)) (-5 *2 (-665 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) - ((*1 *1 *1) (|partial| -4 *1 (-699)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) - ((*1 *1 *1) (|partial| -4 *1 (-699)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))) + (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-256))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-623 *3)) (-5 *5 (-894)) (-4 *3 (-1203 *4)) + (-4 *4 (-300)) (-5 *1 (-452 *4 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-836))) ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1140 (-550))) (-5 *3 (-550)) (-4 *1 (-842 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-1203 *4)) (-4 *4 (-1020)) + (-5 *2 (-1227 *4))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1205 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) - (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-398 *3)) (-4 *3 (-542)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1067)) (-5 *1 (-690 *3 *2 *4)) (-4 *3 (-823)) - (-14 *4 - (-1 (-112) (-2 (|:| -2483 *3) (|:| -2484 *2)) - (-2 (|:| -2483 *3) (|:| -2484 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-361)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) - ((*1 *2 *1) - (-12 (-4 *2 (-823)) (-5 *1 (-690 *2 *3 *4)) (-4 *3 (-1067)) - (-14 *4 - (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *3)) - (-2 (|:| -2483 *2) (|:| -2484 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-5 *2 (-1224 *3)) (-5 *1 (-689 *3 *4)) - (-4 *4 (-1200 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1018)) (-5 *1 (-689 *3 *4)) - (-4 *4 (-1200 *3))))) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-119 *2)) (-4 *2 (-1181))))) (((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-5 *2 (-1224 *3)) (-5 *1 (-689 *3 *4)) - (-4 *4 (-1200 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) - (-4 *4 (-1200 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) - (-4 *4 (-1200 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-343)) (-4 *2 (-1018)) (-5 *1 (-689 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687))))) -(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687))))) -(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-618 (-1136 *13))) (-5 *3 (-1136 *13)) - (-5 *4 (-618 *12)) (-5 *5 (-618 *10)) (-5 *6 (-618 *13)) - (-5 *7 (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| *13))))) - (-5 *8 (-618 (-747))) (-5 *9 (-1224 (-618 (-1136 *10)))) (-4 *12 (-823)) - (-4 *10 (-300)) (-4 *13 (-921 *10 *11 *12)) (-4 *11 (-769)) - (-5 *1 (-684 *11 *12 *10 *13))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-618 *11)) (-5 *5 (-618 (-1136 *9))) (-5 *6 (-618 *9)) - (-5 *7 (-618 *12)) (-5 *8 (-618 (-747))) (-4 *11 (-823)) (-4 *9 (-300)) - (-4 *12 (-921 *9 *10 *11)) (-4 *10 (-769)) (-5 *2 (-618 (-1136 *12))) - (-5 *1 (-684 *10 *11 *9 *12)) (-5 *3 (-1136 *12))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-618 (-1136 *11))) (-5 *3 (-1136 *11)) - (-5 *4 (-618 *10)) (-5 *5 (-618 *8)) (-5 *6 (-618 (-747))) - (-5 *7 (-1224 (-618 (-1136 *8)))) (-4 *10 (-823)) (-4 *8 (-300)) - (-4 *11 (-921 *8 *9 *10)) (-4 *9 (-769)) (-5 *1 (-684 *9 *10 *8 *11))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *3 *5 *6 *7)) - (-4 *3 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *7 (-1178)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *3 *5 *6)) - (-4 *3 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178))))) + (-12 (-5 *2 (-846 (-939 *3) (-939 *3))) (-5 *1 (-939 *3)) + (-4 *3 (-940))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *4 *5 *6)) - (-4 *4 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-682 *3 *4)) - (-4 *3 (-1178)) (-4 *4 (-1178))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-1142)) (-5 *1 (-524)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-618 (-1142))) (-5 *2 (-1142)) (-5 *1 (-681 *3)) - (-4 *3 (-594 (-524)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-680 *3)) - (-4 *3 (-594 (-524))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-680 *3)) - (-4 *3 (-594 (-524)))))) + (-12 + (-5 *3 + (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) + (-5 *2 (-623 (-219))) (-5 *1 (-298))))) +(((*1 *2 *2) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) + (-5 *1 (-174 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-550)))) (-4 *5 (-1203 *4)) + (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-988 *4 *5)) (-5 *3 (-400 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *4 *5 *6 *7)) - (-4 *4 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *7 (-1178))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-677)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-677))))) + (-12 (-5 *2 (-411 (-1140 (-550)))) (-5 *1 (-185)) (-5 *3 (-550))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-664 *3 *4 *5 *6)) - (-4 *6 (-662 *3 *4 *5)))) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-961 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-676 *3)) - (-4 *3 (-300))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) - ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-675))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) - ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) - ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675))))) -(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) - ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-1 (-219) (-219) (-219) (-219))) - (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *1 (-673))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) - (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) - (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) - (-5 *1 (-673))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) - (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) - (-5 *1 (-673)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-219))) - (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1 (-914 (-219)) (-219) (-219))) - (-5 *4 (-1055 (-219))) (-5 *5 (-618 (-254))) (-5 *1 (-673))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| |deg| (-747)) (|:| -2894 *5)))) (-4 *5 (-1200 *4)) - (-4 *4 (-343)) (-5 *2 (-618 *5)) (-5 *1 (-210 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-2 (|:| -4075 *5) (|:| -4290 (-535))))) (-5 *4 (-535)) - (-4 *5 (-1200 *4)) (-5 *2 (-618 *5)) (-5 *1 (-672 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-535)) (-5 *2 (-618 (-2 (|:| -4075 *3) (|:| -4290 *4)))) - (-5 *1 (-672 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))) - ((*1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1067))))) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-671 *3)) (-4 *3 (-1067)) - (-5 *2 (-618 (-2 (|:| -2184 *3) (|:| -2064 (-747)))))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *7 (-871 *6)) (-5 *2 (-665 *7)) - (-5 *1 (-668 *6 *7 *3 *4)) (-4 *3 (-365 *7)) - (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4336))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *4 (-618 (-1142))) - (-5 *2 (-665 (-307 (-219)))) (-5 *1 (-199)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-4 *6 (-871 *5)) (-5 *2 (-665 *6)) - (-5 *1 (-668 *5 *6 *3 *4)) (-4 *3 (-365 *6)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336))))))) + (-12 (-5 *2 (-623 (-52))) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1227 *4)) (-5 *3 (-550)) (-4 *4 (-342)) + (-5 *1 (-519 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-922 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1078))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-965 *2)) (-4 *2 (-542)) (-5 *1 (-140 *2 *4 *3)) + (-4 *3 (-366 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-965 *2)) (-4 *2 (-542)) (-5 *1 (-494 *2 *4 *5 *3)) + (-4 *5 (-366 *2)) (-4 *3 (-366 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 *4)) (-4 *4 (-965 *2)) (-4 *2 (-542)) + (-5 *1 (-671 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-965 *2)) (-4 *2 (-542)) (-5 *1 (-1196 *2 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2) + (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) + (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-749))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *3 (-871 *6)) (-5 *2 (-665 *3)) - (-5 *1 (-668 *6 *3 *7 *4)) (-4 *7 (-365 *3)) - (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4336))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-665 *3)) - (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-365 *3)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336))))))) + (-12 (-5 *4 (-749)) (-5 *5 (-623 *3)) (-4 *3 (-300)) (-4 *6 (-825)) + (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-605 *6 *7 *3 *8)) + (-4 *8 (-922 *3 *7 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1067)) (-4 *2 (-871 *4)) (-5 *1 (-668 *4 *2 *5 *3)) - (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4336))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-4 *2 (-871 *5)) (-5 *1 (-668 *5 *2 *3 *4)) - (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-1224 *3)) - (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-365 *3)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336))))))) -(((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835)))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-535)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) - (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-662 *3 *5 *6))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-535)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) - (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-662 *3 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-535)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *1 (-664 *4 *5 *6 *2)) (-4 *2 (-662 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) + (-12 (-5 *3 (-894)) (-5 *1 (-1005 *2)) + (-4 *2 (-13 (-1068) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-728))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-660 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-660 *4 *5 *6)) (-4 *4 (-1067))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-660 *4 *5 *6)) (-4 *5 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *4 *5 *6))))) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-238 *2)) (-4 *2 (-1181))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1067)) (-4 *4 (-1067)) (-4 *6 (-1067)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *5 *4 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1203 (-400 *2))) + (-4 *2 (-1203 *5)) (-5 *1 (-209 *5 *2 *6 *3)) + (-4 *3 (-335 *5 *2 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-659 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5)) - (-5 *1 (-659 *4 *5))))) + (-12 (-5 *3 (-1126)) (-5 *2 (-623 (-1149))) (-5 *1 (-853))))) +(((*1 *1) (-5 *1 (-1053)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-659 *4 *3)) (-4 *4 (-1067)) - (-4 *3 (-1067))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-747) *2)) (-5 *4 (-747)) (-4 *2 (-1067)) - (-5 *1 (-654 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-747) *3)) (-4 *3 (-1067)) (-5 *1 (-658 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-658 *2)) (-4 *2 (-1067)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-618 *5) (-618 *5))) (-5 *4 (-535)) (-5 *2 (-618 *5)) - (-5 *1 (-658 *5)) (-4 *5 (-1067))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1179))) (-5 *3 (-1179)) (-5 *1 (-657))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-4 *2 (-1067)) (-5 *1 (-656 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-655 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-655 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-747)) (-4 *2 (-1067)) (-5 *1 (-654 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-1058 (-917 (-535)))) (-5 *2 (-323)) - (-5 *1 (-325)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067))))) -(((*1 *1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1018)) (-4 *2 (-1067))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-651 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1224 (-747))) (-5 *1 (-651 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-747))))) -(((*1 *2 *3) - (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-112)) (-5 *1 (-648 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-890)) (-4 *5 (-823)) - (-5 *2 (-57 (-618 (-648 *5)))) (-5 *1 (-648 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *5)) (-5 *4 (-890)) (-4 *5 (-823)) (-5 *2 (-618 (-648 *5))) - (-5 *1 (-648 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *7)) (-4 *7 (-823)) - (-4 *8 (-921 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1224 (-400 *8)) "failed")) - (|:| -2123 (-618 (-1224 (-400 *8)))))) - (-5 *1 (-645 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-112)) - (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-5 *2 (-112)) - (-5 *1 (-644 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 (-1136 *4))) (-5 *3 (-1136 *4)) (-4 *4 (-881)) - (-5 *1 (-639 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-636 *4 *2)) - (-4 *2 (-634 *4))))) + (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-623 (-1144))) (-4 *5 (-1020)) + (-5 *2 (-925 *5)) (-5 *1 (-917 *4 *5))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-634 *3)) (-4 *3 (-1018)) (-4 *3 (-356)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-636 *5 *2)) - (-4 *2 (-634 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-636 *4 *2)) - (-4 *2 (-634 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *5 (-1200 *4)) (-5 *2 (-618 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) - (-5 *3 (-631 (-400 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-627 *3)) (-4 *3 (-1178))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-627 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))) - (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-460)) (-5 *4 (-894)) (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *1) (-5 *1 (-430)))) (((*1 *1 *2) - (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))) (-4 *3 (-1067)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)))) - ((*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-365 *2)) (-4 *2 (-1178)))) - ((*1 *1 *1) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) - (-14 *5 *4)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-535) (-535))) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-747) (-747))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)) - (-4 *3 (-1067))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-354 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-379 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-625 *3 *4 *5)) (-4 *4 (-23)) - (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1067))))) -(((*1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-618 *3)) (-4 *3 (-1178))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *1)) (-5 *4 (-1224 *1)) (-4 *1 (-617 *5)) (-4 *5 (-1018)) - (-5 *2 (-2 (|:| -1695 (-665 *5)) (|:| |vec| (-1224 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 *1)) (-4 *1 (-617 *4)) (-4 *4 (-1018)) (-5 *2 (-665 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 *5)) (-4 *5 (-356)) - (-4 *5 (-542)) (-5 *2 (-1224 *5)) (-5 *1 (-616 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 *5)) (-3659 (-4 *5 (-356))) - (-4 *5 (-542)) (-5 *2 (-1224 (-400 *5))) (-5 *1 (-616 *5 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1224 *5)) (-4 *5 (-617 *4)) (-4 *4 (-542)) - (-5 *2 (-1224 *4)) (-5 *1 (-616 *4 *5))))) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-4 *1 (-1066 *3)))) + ((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-835)) (-5 *3 (-128)) (-5 *2 (-1088))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1166))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1224 *5)) (-4 *5 (-617 *4)) (-4 *4 (-542)) (-5 *2 (-112)) - (-5 *1 (-616 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-815 *3))) (-4 *3 (-13 (-27) (-1164) (-414 *5))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) + (-12 (-5 *2 - (-3 (-815 *3) - (-2 (|:| |leftHandLimit| (-3 (-815 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-815 *3) #1#))) - "failed")) - (-5 *1 (-614 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1124)) - (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-815 *3)) - (-5 *1 (-614 *6 *3)))) + (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) + (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-815 (-917 *5)))) (-4 *5 (-444)) + (-12 (-5 *2 - (-3 (-815 (-400 (-917 *5))) - (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-815 (-400 (-917 *5))) #2#))) - #3="failed")) - (-5 *1 (-615 *5)) (-5 *3 (-400 (-917 *5))))) + (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) + (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))) + (-5 *4 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-444)) + (-12 (-5 *2 - (-3 (-815 *3) - (-2 (|:| |leftHandLimit| (-3 (-815 *3) #2#)) - (|:| |rightHandLimit| (-3 (-815 *3) #2#))) - #3#)) - (-5 *1 (-615 *5)))) + (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) + (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))) (-5 *4 (-400 (-550))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-286 (-400 (-917 *6)))) (-5 *5 (-1124)) - (-5 *3 (-400 (-917 *6))) (-4 *6 (-444)) (-5 *2 (-815 *3)) - (-5 *1 (-615 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-286 (-808 *3))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-808 *3)) - (-5 *1 (-614 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-808 (-917 *5)))) (-4 *5 (-444)) - (-5 *2 (-808 (-400 (-917 *5)))) (-5 *1 (-615 *5)) (-5 *3 (-400 (-917 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-444)) - (-5 *2 (-808 *3)) (-5 *1 (-615 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-610))))) -(((*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1) (-5 *1 (-610)))) -(((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) - (-5 *2 (-473 *4 *5)) (-5 *1 (-609 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-618 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-618 (-1142))) - (-4 *5 (-444)) (-5 *1 (-609 *4 *5))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-618 (-473 *4 *5))) (-5 *3 (-836 *4)) (-14 *4 (-618 (-1142))) - (-4 *5 (-444)) (-5 *1 (-609 *4 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-241 *5 *6))) (-4 *6 (-444)) - (-5 *2 (-241 *5 *6)) (-14 *5 (-618 (-1142))) (-5 *1 (-609 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-254)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *3 (-618 (-254))) - (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-618 (-1142))) - (-4 *6 (-444)) (-5 *2 (-1224 *6)) (-5 *1 (-609 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 (-473 *3 *4))) (-14 *3 (-618 (-1142))) (-4 *4 (-444)) - (-5 *1 (-609 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-618 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-618 (-1142))) - (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-618 (-1142))) - (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-473 *4 *5))) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) - (-5 *2 (-618 (-241 *4 *5))) (-5 *1 (-609 *4 *5))))) -(((*1 *2 *3) - (-12 (-14 *4 (-618 (-1142))) (-4 *5 (-444)) - (-5 *2 (-2 (|:| |glbase| (-618 (-241 *4 *5))) (|:| |glval| (-618 (-535))))) - (-5 *1 (-609 *4 *5)) (-5 *3 (-618 (-241 *4 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-473 *4 *5))) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) - (-5 *2 (-2 (|:| |gblist| (-618 (-241 *4 *5))) (|:| |gvlist| (-618 (-535))))) - (-5 *1 (-609 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973) (-1164))))) - ((*1 *1 *1) (-4 *1 (-608)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973) (-1164))))) - ((*1 *1 *1) (-4 *1 (-608)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973) (-1164))))) - ((*1 *1 *1) (-4 *1 (-608)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973) (-1164))))) - ((*1 *1 *1) (-4 *1 (-608)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973) (-1164))))) - ((*1 *1 *1) (-4 *1 (-608)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973) (-1164))))) - ((*1 *1 *1) (-4 *1 (-608)))) -(((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-414 *4)))) + (-12 (-5 *5 (-400 (-550))) + (-5 *2 (-623 (-2 (|:| -2671 *5) (|:| -2682 *5)))) (-5 *1 (-993 *3)) + (-4 *3 (-1203 (-550))) (-5 *4 (-2 (|:| -2671 *5) (|:| -2682 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) - (-5 *1 (-156 *4 *5)) (-4 *5 (-414 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) - (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-414 *4) (-973))))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-290 *4)) (-4 *4 (-291)))) - ((*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-413 *4 *5)) - (-4 *4 (-414 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) - (-5 *1 (-424 *4 *5)) (-4 *5 (-414 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) - (-5 *1 (-607 *4 *5)) (-4 *5 (-13 (-414 *4) (-973) (-1164)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-618 (-1142))) - (-5 *2 (-618 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) - (-5 *1 (-606 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-606 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-618 (-917 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-439 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-618 (-756 *3 (-836 *4)))) (-4 *3 (-444)) - (-14 *4 (-618 (-1142))) (-5 *1 (-606 *3 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-618 (-917 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-618 (-756 *3 (-836 *4)))) (-4 *3 (-444)) - (-14 *4 (-618 (-1142))) (-5 *1 (-606 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-444)) (-5 *2 (-112)) - (-5 *1 (-353 *4 *5)) (-14 *5 (-618 (-1142))))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-756 *4 (-836 *5)))) (-4 *4 (-444)) - (-14 *5 (-618 (-1142))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *4)) (-4 *4 (-823)) (-5 *2 (-618 (-640 *4 *5))) - (-5 *1 (-605 *4 *5 *6)) (-4 *5 (-13 (-170) (-694 (-400 (-535))))) - (-14 *6 (-890))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |k| (-648 *3)) (|:| |c| *4)))) - (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) - (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-618 (-286 *4))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) - (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2758 (-618 (-2 (|:| |irr| *10) (|:| -2478 (-535))))))) - (-5 *6 (-618 *3)) (-5 *7 (-618 *8)) (-4 *8 (-823)) (-4 *3 (-300)) - (-4 *10 (-921 *3 *9 *8)) (-4 *9 (-769)) + (-12 (-5 *2 - (-2 (|:| |polfac| (-618 *10)) (|:| |correct| *3) - (|:| |corrfact| (-618 (-1136 *3))))) - (-5 *1 (-603 *8 *9 *3 *10)) (-5 *4 (-618 (-1136 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-747)) (-5 *5 (-618 *3)) (-4 *3 (-300)) (-4 *6 (-823)) - (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-603 *6 *7 *3 *8)) - (-4 *8 (-921 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) - (-5 *1 (-602 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1038 *3 *4 *5 *6)) - (-4 *2 (-1075 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1142)) - (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-600 *4 *2)) (-4 *2 (-13 (-1164) (-931) (-29 *4)))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-596)))) -(((*1 *1) (-5 *1 (-596)))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-596)))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535))))) - (-4 *5 (-1200 *4)) (-5 *2 (-1136 (-400 *5))) (-5 *1 (-595 *4 *5)) - (-5 *3 (-400 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535))))) - (-5 *2 (-1136 (-400 *6))) (-5 *1 (-595 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-591 *4)) (-4 *4 (-823)) (-4 *2 (-823)) - (-5 *1 (-592 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-591 *4)) (-5 *1 (-592 *3 *4)) (-4 *3 (-823)) (-4 *4 (-823))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1164)))) - ((*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-591 *3)) (-4 *3 (-823))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 *1)) (-4 *1 (-291)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-113)) (-5 *3 (-618 *5)) (-5 *4 (-747)) (-4 *5 (-823)) - (-5 *1 (-591 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-586))))) -(((*1 *2 *1) + (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) + (-5 *1 (-994 *3)) (-4 *3 (-1203 (-400 (-550)))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-618 - (-2 - (|:| -4203 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -2184 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1119 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1556 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-545)))) - ((*1 *2 *1) - (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-618 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-618 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4336)) (-4 *1 (-584 *4 *3)) (-4 *4 (-1067)) - (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112))))) + (-623 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550)))))) + (-5 *1 (-994 *3)) (-4 *3 (-1203 (-400 (-550)))) + (-5 *4 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-400 (-550))) + (-5 *2 (-623 (-2 (|:| -2671 *4) (|:| -2682 *4)))) (-5 *1 (-994 *3)) + (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-400 (-550))) + (-5 *2 (-623 (-2 (|:| -2671 *5) (|:| -2682 *5)))) (-5 *1 (-994 *3)) + (-4 *3 (-1203 *5)) (-5 *4 (-2 (|:| -2671 *5) (|:| -2682 *5)))))) (((*1 *2 *1) - (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1178)) (-4 *2 (-1067)) (-4 *2 (-823))))) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) + (-5 *2 (-623 (-623 (-916 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-623 (-623 (-916 *4)))) (-5 *3 (-112)) (-4 *4 (-1020)) + (-4 *1 (-1102 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 (-916 *3)))) (-4 *3 (-1020)) + (-4 *1 (-1102 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-623 (-623 (-623 *4)))) (-5 *3 (-112)) + (-4 *1 (-1102 *4)) (-4 *4 (-1020)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-623 (-623 (-916 *4)))) (-5 *3 (-112)) + (-4 *1 (-1102 *4)) (-4 *4 (-1020)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-623 (-623 (-623 *5)))) (-5 *3 (-623 (-169))) + (-5 *4 (-169)) (-4 *1 (-1102 *5)) (-4 *5 (-1020)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-623 (-623 (-916 *5)))) (-5 *3 (-623 (-169))) + (-5 *4 (-169)) (-4 *1 (-1102 *5)) (-4 *5 (-1020))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-550)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-300)) + (-4 *9 (-922 *8 *6 *7)) + (-5 *2 (-2 (|:| -2739 (-1140 *9)) (|:| |polval| (-1140 *8)))) + (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1140 *9)) (-5 *4 (-1140 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1181)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-1068))))) (((*1 *2 *1) - (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1178)) (-4 *2 (-1067)) (-4 *2 (-823))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1178)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) - (-4 *2 (-1178))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-1178)) (-5 *2 (-1230))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-618 (-591 *2))) (-5 *4 (-618 (-1142))) - (-4 *2 (-13 (-414 (-166 *5)) (-973) (-1164))) (-4 *5 (-13 (-542) (-823))) - (-5 *1 (-580 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-973) (-1164)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823))) (-5 *2 (-166 *5)) (-5 *1 (-580 *4 *5 *3)) - (-4 *5 (-13 (-414 *4) (-973) (-1164))) - (-4 *3 (-13 (-414 (-166 *4)) (-973) (-1164)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823))) - (-4 *2 (-13 (-414 (-166 *4)) (-973) (-1164))) (-5 *1 (-580 *4 *3 *2)) - (-4 *3 (-13 (-414 *4) (-973) (-1164)))))) + (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) + (-5 *2 (-406 *4 (-400 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 *6)) (-4 *6 (-13 (-402 *4 *5) (-1011 *4))) + (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) (-4 *3 (-300)) + (-5 *1 (-406 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-356)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 *4) (-973) (-1164))) - (-5 *1 (-580 *4 *2 *3)) (-4 *3 (-13 (-414 (-166 *4)) (-973) (-1164)))))) + (-12 (-4 *4 (-1203 (-400 *2))) (-5 *2 (-550)) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1203 (-400 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-414 *4) (-973) (-1164))) - (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 (-166 *4)) (-973) (-1164))) - (-5 *1 (-580 *4 *5 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-997 (-815 (-535)))) - (-5 *3 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *4)))) (-4 *4 (-1018)) - (-5 *1 (-576 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-997 (-815 (-535)))) (-5 *1 (-576 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-5 *1 (-576 *3)) - (-4 *3 (-1018))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *6)))) - (-5 *4 (-997 (-815 (-535)))) (-5 *5 (-1142)) (-5 *7 (-400 (-535))) - (-4 *6 (-1018)) (-5 *2 (-835)) (-5 *1 (-576 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-400 (-535))) (-5 *1 (-576 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-618 *3)) (-4 *3 (-1075 *5 *6 *7 *8)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-572 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-535))) (-5 *4 (-873 (-535))) (-5 *2 (-665 (-535))) - (-5 *1 (-571)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-535))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-571)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-535))) (-5 *4 (-618 (-873 (-535)))) - (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-571))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-747)) (-5 *1 (-571))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) - (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1164) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-145)) - (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-307 *5)) - (-5 *1 (-570 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-29 *4) (-1164))) (-5 *1 (-567 *4 *2)) - (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-565 (-400 (-917 *4)))) - (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-307 *4)) - (-5 *1 (-570 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-569 *4)) (-4 *4 (-343))))) -(((*1 *2 *2) (-12 (-5 *1 (-568 *2)) (-4 *2 (-534))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-534))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) + (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-1203 *4)) + (-4 *5 (-1203 (-400 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3015 *3) (|:| -2484 (-747)))) (-5 *1 (-568 *3)) - (-4 *3 (-534))))) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-1061 *3)) (-4 *3 (-1181))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-894)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-256))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-747)) (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-618 - (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 *2)) - (|:| |logand| (-1136 *2))))) - (-5 *4 (-618 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) - (-5 *1 (-565 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-565 *2)) (-4 *2 (-356))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-623 (-1144))) (-5 *2 - (-618 - (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 *3)) - (|:| |logand| (-1136 *3))))) - (-5 *1 (-565 *3)) (-4 *3 (-356))))) + (-623 (-1114 *5 (-522 (-838 *6)) (-838 *6) (-758 *5 (-838 *6))))) + (-5 *1 (-608 *5 *6))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) + (-5 *2 (-1008)) (-5 *1 (-735))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-667 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1108 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1068) (-34))) (-4 *6 (-13 (-1068) (-34))) + (-5 *2 (-112)) (-5 *1 (-1109 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-800)) (-5 *2 (-52)) (-5 *1 (-807))))) (((*1 *2 *1) - (-12 (-5 *2 (-618 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-565 *3)) (-4 *3 (-356))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-565 *3)) (-4 *3 (-356))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-564))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1142)) - (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-1164) (-931) (-1105) (-29 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-559 *5 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |ir| (-565 (-400 *6))) (|:| |specpart| (-400 *6)) - (|:| |polypart| *6))) - (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-601 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3455 *4) (|:| |sol?| (-112))) (-535) *4)) - (-4 *4 (-356)) (-4 *5 (-1200 *4)) (-5 *1 (-559 *4 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-356)) (-5 *1 (-559 *4 *2)) (-4 *2 (-1200 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-618 (-400 *7))) (-4 *7 (-1200 *6)) - (-5 *3 (-400 *7)) (-4 *6 (-356)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-559 *6 *7))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -2242 (-400 *6)) (|:| |coeff| (-400 *6)))) - (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3455 *7) (|:| |sol?| (-112))) (-535) *7)) - (-5 *6 (-618 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1200 *7)) (-5 *3 (-400 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-559 *7 *8))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2242 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-618 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1200 *7)) (-5 *3 (-400 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-559 *7 *8))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3455 *6) (|:| |sol?| (-112))) (-535) *6)) - (-4 *6 (-356)) (-4 *7 (-1200 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) - (-2 (|:| -2242 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) - (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2242 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-356)) (-4 *7 (-1200 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) - (-2 (|:| -2242 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) - (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-618 *6) "failed") (-535) *6 *6)) - (-4 *6 (-356)) (-4 *7 (-1200 *6)) - (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3455 *6) (|:| |sol?| (-112))) (-535) *6)) - (-4 *6 (-356)) (-4 *7 (-1200 *6)) - (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2242 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-356)) (-4 *7 (-1200 *6)) - (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-565 *3) *3 (-1142))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1142))) - (-4 *3 (-277)) (-4 *3 (-608)) (-4 *3 (-1009 *4)) (-4 *3 (-414 *7)) - (-5 *4 (-1142)) (-4 *7 (-594 (-861 (-535)))) (-4 *7 (-444)) - (-4 *7 (-857 (-535))) (-4 *7 (-823)) (-5 *2 (-565 *3)) - (-5 *1 (-558 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-444)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) - (-4 *2 (-277)) (-4 *2 (-414 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-542)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) - (-4 *2 (-414 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *6)) (-5 *4 (-1142)) (-4 *6 (-414 *5)) (-4 *5 (-823)) - (-5 *2 (-618 (-591 *6))) (-5 *1 (-558 *5 *6))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-618 (-591 *6))) (-5 *4 (-1142)) (-5 *2 (-591 *6)) - (-4 *6 (-414 *5)) (-4 *5 (-823)) (-5 *1 (-558 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-591 *5))) (-4 *4 (-823)) (-5 *2 (-591 *5)) - (-5 *1 (-558 *4 *5)) (-4 *5 (-414 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-618 (-591 *5))) (-5 *3 (-1142)) (-4 *5 (-414 *4)) - (-4 *4 (-823)) (-5 *1 (-558 *4 *5))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-1009 (-535)) (-145))) - (-5 *2 (-2 (|:| -2242 (-400 (-917 *5))) (|:| |coeff| (-400 (-917 *5))))) - (-5 *1 (-555 *5)) (-5 *3 (-400 (-917 *5)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 (-400 (-917 *6)))) - (-5 *3 (-400 (-917 *6))) (-4 *6 (-13 (-542) (-1009 (-535)) (-145))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-555 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-400 (-917 *4))) (-5 *3 (-1142)) - (-4 *4 (-13 (-542) (-1009 (-535)) (-145))) (-5 *1 (-555 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) - (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-565 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5))))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749))))) +(((*1 *1) (-5 *1 (-1032)))) +(((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) + (-14 *4 *2) (-4 *5 (-170)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-894)) (-5 *1 (-163 *3 *4)) + (-4 *3 (-164 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-894)))) + ((*1 *2) + (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) + (-5 *2 (-894)))) + ((*1 *2 *3) + (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) + (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-665 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-1009 (-535)) (-145))) - (-5 *2 (-565 (-400 (-917 *5)))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-917 *5)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-535)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-618 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-553 *5 *6))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) - (-5 *2 (-2 (|:| -2242 (-400 *5)) (|:| |coeff| (-400 *5)))) - (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) - (-4 *3 (-13 (-356) (-145) (-1009 (-535)))) (-5 *1 (-553 *3 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-861 (-535)))) - (-4 *5 (-857 (-535))) - (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) - (-4 *3 (-608)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1142)) (-5 *4 (-815 *2)) (-4 *2 (-1105)) - (-4 *2 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-594 (-861 (-535)))) - (-4 *5 (-857 (-535))) - (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) - (-5 *1 (-552 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-861 (-535)))) - (-4 *5 (-857 (-535))) - (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) - (-4 *3 (-608)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) - (-5 *2 (-2 (|:| -2410 *3) (|:| |nconst| *3))) (-5 *1 (-552 *5 *3)) - (-4 *3 (-13 (-27) (-1164) (-414 *5)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-591 *4)) (-5 *6 (-1142)) (-4 *4 (-13 (-414 *7) (-27) (-1164))) - (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4)))) - (-5 *1 (-551 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1142))) - (-4 *2 (-13 (-414 *5) (-27) (-1164))) - (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *1 (-551 *5 *2 *6)) (-4 *6 (-1067))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1164))) - (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-551 *6 *3 *7)) (-4 *7 (-1067))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1164))) - (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3 *6)) - (-4 *6 (-1067))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1164))) - (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-565 *3)) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) - (-4 *7 (-1200 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2241 *3))) - (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7)))) + (-12 (-5 *3 (-667 *5)) (-5 *4 (-1227 *5)) (-4 *5 (-356)) + (-5 *2 (-749)) (-5 *1 (-645 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) - (-5 *2 - (-2 (|:| |answer| (-400 *6)) (|:| -2241 (-400 *6)) - (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) - (-5 *1 (-549 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-747)) (-5 *1 (-547))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))) -(((*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-547)) (-5 *3 (-535))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))) -(((*1 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-547)) (-5 *3 (-535))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-618 (-618 *4))) (-5 *2 (-618 *4)) (-4 *4 (-300)) - (-5 *1 (-177 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 *8)) - (-5 *4 - (-618 - (-2 (|:| -2123 (-665 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-665 *7))))) - (-5 *5 (-747)) (-4 *8 (-1200 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-343)) - (-5 *2 - (-2 (|:| -2123 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7)))) - (-5 *1 (-489 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-591 *4)) (-5 *6 (-1136 *4)) - (-4 *4 (-13 (-414 *7) (-27) (-1164))) - (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) - (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-591 *4)) (-5 *6 (-400 (-1136 *4))) - (-4 *4 (-13 (-414 *7) (-27) (-1164))) - (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4)))) - (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-591 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1142))) (-5 *5 (-1136 *2)) - (-4 *2 (-13 (-414 *6) (-27) (-1164))) - (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1067)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1142))) - (-5 *5 (-400 (-1136 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1164))) - (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1067))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-5 *6 (-1136 *3)) - (-4 *3 (-13 (-414 *7) (-27) (-1164))) - (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1067)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-5 *6 (-400 (-1136 *3))) - (-4 *3 (-13 (-414 *7) (-27) (-1164))) - (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1067))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-1136 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1164))) - (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) - (-4 *7 (-1067)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-400 (-1136 *3))) - (-4 *3 (-13 (-414 *6) (-27) (-1164))) - (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) - (-4 *7 (-1067))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-591 *3)) (-5 *5 (-1136 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1164))) - (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-565 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-591 *3)) (-5 *5 (-400 (-1136 *3))) - (-4 *3 (-13 (-414 *6) (-27) (-1164))) - (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) - (-5 *2 (-565 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067))))) + (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4343)))) + (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4343)))) (-5 *2 (-749)) + (-5 *1 (-646 *5 *6 *4 *3)) (-4 *3 (-665 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-4 *3 (-542)) (-5 *2 (-749)))) + ((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) + (-4 *3 (-665 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) + (-5 *2 (-749))))) +(((*1 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-847)) (-5 *1 (-1230))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 @@ -12488,25 +12707,52 @@ "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1119 (-219))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-545))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1144)) (-5 *4 (-925 (-550))) (-5 *2 (-323)) + (-5 *1 (-325))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-825)) (-5 *3 (-623 *6)) (-5 *5 (-623 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-623 *5)) (|:| |f3| *5) + (|:| |f4| (-623 *5)))) + (-5 *1 (-1152 *6)) (-5 *4 (-623 *5))))) (((*1 *2 *3) - (|partial| -12 + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-667 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-409 *3 *4)) + (-4 *3 (-410 *4)))) + ((*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1181)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-1020)) (-5 *1 (-668 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-749))))) +(((*1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -12514,4016 +12760,5653 @@ "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1119 (-219))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3170 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-545))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-618 - (-2 - (|:| -4203 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -2184 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1119 (-219))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1556 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-545))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-545))))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-544 *2)) (-4 *2 (-534))))) -(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1142)) (-5 *6 (-618 (-591 *3))) (-5 *5 (-591 *3)) - (-4 *3 (-13 (-27) (-1164) (-414 *7))) - (-4 *7 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-543 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) - (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-565 *3)) (-5 *1 (-543 *5 *3)) - (-4 *3 (-13 (-27) (-1164) (-414 *5)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1142)) - (-4 *4 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-543 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 *3)) - (-4 *3 (-13 (-27) (-1164) (-414 *6))) - (-4 *6 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-543 *6 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1142)) - (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-543 *5 *3)) - (-4 *3 (-13 (-27) (-1164) (-414 *5)))))) + (-5 *2 (-1008)) (-5 *1 (-298))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1887 *1) (|:| -4323 *1) (|:| |associate| *1))) - (-4 *1 (-542))))) -(((*1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-400 (-535))) (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))))) - ((*1 *1 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164)))))) -(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-112)) (-5 *1 (-539))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-539))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-539))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1200 *5)) - (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) - (-4 *7 (-1200 (-400 *6))) (-5 *1 (-538 *4 *5 *6 *7 *2)) - (-4 *2 (-335 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-27) (-414 *5))) - (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-4 *8 (-1200 (-400 *7))) - (-5 *2 (-565 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) + (-12 (-4 *3 (-1020)) (-5 *2 (-623 *1)) (-4 *1 (-1102 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1013))))) +(((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1183))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-738))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-594 *1)) (-4 *1 (-295))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-612))))) +(((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1126)) (-5 *1 (-689))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1020)) (-4 *2 (-665 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1203 *4)) (-4 *5 (-366 *4)) + (-4 *6 (-366 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-27) (-414 *5))) - (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-4 *8 (-1200 (-400 *7))) - (-5 *2 (-565 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-591 *3)) (-5 *5 (-1 (-1136 *3) (-1136 *3))) - (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-823) (-542))) (-5 *2 (-565 *3)) - (-5 *1 (-537 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-534)))) -(((*1 *1 *1 *1) (-4 *1 (-534)))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-535) #1="failed") *5)) (-4 *5 (-1018)) - (-5 *2 (-535)) (-5 *1 (-532 *5 *3)) (-4 *3 (-1200 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-535) #1#) *4)) (-4 *4 (-1018)) (-5 *2 (-535)) - (-5 *1 (-532 *4 *3)) (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-535) #1#) *4)) (-4 *4 (-1018)) (-5 *2 (-535)) - (-5 *1 (-532 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1200 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-747))) - (-5 *1 (-528 *3 *2 *4 *5)) (-4 *2 (-1200 *3))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-528 *4 *2 *5 *6)) - (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-528 *4 *2 *5 *6)) - (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-1142))) (-4 *6 (-356)) - (-5 *2 (-618 (-286 (-917 *6)))) (-5 *1 (-527 *5 *6 *7)) (-4 *5 (-444)) - (-4 *7 (-13 (-356) (-821)))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-4 *6 (-444)) - (-5 *2 (-618 (-618 *7))) (-5 *1 (-527 *6 *7 *5)) (-4 *7 (-356)) - (-4 *5 (-13 (-356) (-821)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1136 *5)) (-4 *5 (-444)) (-5 *2 (-618 *6)) - (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-917 *5)) (-4 *5 (-444)) (-5 *2 (-618 *6)) - (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-524)))) - ((*1 *2 *3) (-12 (-5 *3 (-524)) (-5 *1 (-525 *2)) (-4 *2 (-1178))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-5 *2 (-524)) (-5 *1 (-525 *4)) (-4 *4 (-1178))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-524))) (-5 *1 (-524))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-524))))) -(((*1 *1 *1) (-5 *1 (-524)))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-524))))) -(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-524))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-524))) (-5 *2 (-1142)) (-5 *1 (-524))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-524))) (-5 *1 (-524))))) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-950 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-400 *6)) + (-5 *1 (-840 *5 *4 *6)) (-4 *4 (-1218 *5)) (-4 *6 (-1203 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) + (-14 *6 (-1144)) (-14 *7 *5) (-5 *2 (-400 (-1200 *6 *5))) + (-5 *1 (-841 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) + (-14 *6 (-1144)) (-14 *7 *5) (-5 *2 (-400 (-1200 *6 *5))) + (-5 *1 (-841 *5 *6 *7))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *6)) (-5 *5 (-1 (-398 (-1136 *6)) (-1136 *6))) - (-4 *6 (-356)) - (-5 *2 - (-618 - (-2 (|:| |outval| *7) (|:| |outmult| (-535)) - (|:| |outvect| (-618 (-665 *7)))))) - (-5 *1 (-522 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-821)))))) + (-12 (-5 *4 (-1144)) (-5 *5 (-1062 (-219))) (-5 *2 (-900)) + (-5 *1 (-898 *3)) (-4 *3 (-596 (-526))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1144)) (-5 *5 (-1062 (-219))) (-5 *2 (-900)) + (-5 *1 (-898 *3)) (-4 *3 (-596 (-526))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-899)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-899)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-899)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-623 (-1 (-219) (-219)))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-623 (-1 (-219) (-219)))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1062 (-219))) + (-5 *1 (-900))))) +(((*1 *2 *1) + (-12 (-5 *2 (-749)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-526) (-623 (-526)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-526) (-623 (-526)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-563)))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) + (-12 (-5 *2 (-836)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) + (-14 *4 (-749)) (-4 *5 (-170))))) +(((*1 *1 *1) (-4 *1 (-535)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1136 *5)) (-4 *5 (-356)) (-5 *2 (-618 *6)) - (-5 *1 (-522 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *2 (-1136 *4)) - (-5 *1 (-522 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-821)))))) + (-12 (-5 *3 (-667 *8)) (-4 *8 (-922 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) + (-4 *7 (-771)) + (-5 *2 + (-623 + (-2 (|:| -2122 (-749)) + (|:| |eqns| + (-623 + (-2 (|:| |det| *8) (|:| |rows| (-623 (-550))) + (|:| |cols| (-623 (-550)))))) + (|:| |fgb| (-623 *8))))) + (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-749))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-356) (-145) (-1011 (-550)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) + (|:| -2110 *6))) + (-5 *1 (-988 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-730))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-623 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-550))))) + (-5 *1 (-411 *3)) (-4 *3 (-542)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-749)) (-4 *3 (-342)) (-4 *5 (-1203 *3)) + (-5 *2 (-623 (-1140 *3))) (-5 *1 (-489 *3 *5 *6)) + (-4 *6 (-1203 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) + (-5 *2 + (-2 (|:| -3625 *4) (|:| -2478 *4) (|:| |totalpts| (-550)) + (|:| |success| (-112)))) + (-5 *1 (-767)) (-5 *5 (-550))))) +(((*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147)))) + ((*1 *2) (-12 (-5 *2 (-1232)) (-5 *1 (-1147))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-667 (-219))) (-5 *6 (-112)) (-5 *7 (-667 (-550))) + (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) + (-5 *3 (-550)) (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-732))))) +(((*1 *2 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1034 *3 *4 *5)) (-5 *1 (-604 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1040 *3 *4 *5 *6)) (-4 *2 (-1077 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25)))))) + (-12 (-5 *2 (-623 (-1140 (-550)))) (-5 *1 (-185)) (-5 *3 (-550))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-890)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1136 *1)) - (-4 *1 (-322 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1136 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1200 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4))))) -(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) - ((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343))))) + (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-1146 (-400 (-550)))) + (-5 *1 (-184))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-354 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-5 *2 (-749)) (-5 *1 (-379 *4)) (-4 *4 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *2 (-23)) (-5 *1 (-627 *4 *2 *5)) + (-4 *4 (-1068)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-5 *2 (-749)) (-5 *1 (-797 *4)) (-4 *4 (-825))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-441 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-800))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) (((*1 *2 *2) - (-12 (-5 *2 (-1224 *4)) (-4 *4 (-411 *3)) (-4 *3 (-300)) (-4 *3 (-542)) - (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-890)) (-4 *4 (-356)) (-5 *2 (-1224 *1)) (-4 *1 (-322 *4)))) - ((*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1224 *1)) (-4 *1 (-322 *3)))) - ((*1 *2) - (-12 (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-1224 *1)) - (-4 *1 (-403 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) - (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) - (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1224 *1)) (-4 *1 (-411 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1224 (-1224 *4))) (-5 *1 (-519 *4)) - (-4 *4 (-343))))) + (-12 (-4 *3 (-342)) (-4 *4 (-322 *3)) (-4 *5 (-1203 *4)) + (-5 *1 (-755 *3 *4 *5 *2 *6)) (-4 *2 (-1203 *5)) (-14 *6 (-894)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) + ((*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-356)) (-4 *2 (-361))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-623 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-410 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1227 *4)) (-5 *3 (-1088)) (-4 *4 (-342)) + (-5 *1 (-519 *4))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-749)) (-4 *3 (-542)) (-5 *1 (-942 *3 *2)) + (-4 *2 (-1203 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-950 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1166) (-975)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1053)))) (((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-519 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-890)))) + (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1187 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1020)) + (-5 *1 (-693 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-812 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-550)) (-5 *1 (-235)))) ((*1 *2 *3) - (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-890)) (-5 *1 (-519 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1224 *4)) (-5 *3 (-535)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1086)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) + (-12 (-5 *3 (-623 (-1126))) (-5 *2 (-550)) (-5 *1 (-235))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-38 (-400 (-550)))) + (-4 *2 (-170))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-539))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1020)) (-5 *1 (-1199 *3 *2)) (-4 *2 (-1203 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-629 *2)) (-4 *2 (-1181))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1224 *4)) (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1224 *5)) (-5 *3 (-747)) (-5 *4 (-1086)) (-4 *5 (-343)) - (-5 *1 (-519 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-747)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4))))) + (|partial| -12 (-5 *2 (-400 (-925 *4))) (-5 *3 (-1144)) + (-4 *4 (-13 (-542) (-1011 (-550)) (-145))) (-5 *1 (-556 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) - (-4 *4 (-343)) (-5 *2 (-1230)) (-5 *1 (-519 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1086))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-129)) (-5 *2 (-1086))))) -(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-516))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-516))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-515))))) -(((*1 *2 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-320 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-507 *3 *4)) (-14 *4 (-535))))) -(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-320 *3)) (-4 *3 (-1178)))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-684 *3 *4)) (-4 *3 (-1181)) (-4 *4 (-1181))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-735))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) + (-5 *1 (-721 *5 *4 *6 *3)) (-4 *3 (-922 *6 *5 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-865 *4)) (-4 *4 (-1068)) (-5 *2 (-112)) + (-5 *1 (-862 *4 *5)) (-4 *5 (-1068)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-865 *5)) (-4 *5 (-1068)) (-5 *2 (-112)) + (-5 *1 (-863 *5 *3)) (-4 *3 (-1181)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *6)) (-5 *4 (-865 *5)) (-4 *5 (-1068)) + (-4 *6 (-1181)) (-5 *2 (-112)) (-5 *1 (-863 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-836) (-836))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-836) (-623 (-836)))) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-747)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 (-535))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-320 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-535)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1178)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 (-535))))) -(((*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-823))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) - (-4 *5 (-170)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) - (-4 *5 (-170)))) - ((*1 *2 *2 *3) - (-12 + (|partial| -12 (-5 *2 (-1 (-836) (-623 (-836)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1232)) (-5 *1 (-208 *3)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 (*2 $)) + (-15 -3656 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-387)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-387)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-493)))) + ((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-689)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1161)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-1161))))) +(((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181))))) +(((*1 *1) (-5 *1 (-142))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-256))) (-5 *2 (-1101 (-219))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-1101 (-219))) (-5 *1 (-256))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-862 *4 *5)) (-5 *3 (-862 *4 *6)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-644 *5)) (-5 *1 (-858 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) + (-4 *5 (-13 (-542) (-825) (-1011 (-550)) (-619 (-550)))) (-5 *2 - (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) - (-5 *3 (-618 (-836 *4))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) - (-5 *1 (-496 *4 *5))))) + (-2 (|:| |func| *3) (|:| |kers| (-623 (-594 *3))) + (|:| |vals| (-623 *3)))) + (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1166) (-423 *5)))))) (((*1 *2 *3) - (-12 (-14 *4 (-618 (-1142))) (-14 *5 (-747)) - (-5 *2 - (-618 - (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535)))))) - (-5 *1 (-496 *4 *5)) - (-5 *3 - (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535)))))))) -(((*1 *2 *2) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-667 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-409 *3 *4)) + (-4 *3 (-410 *4)))) + ((*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-667 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) + (-14 *4 (-1144)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1013)) (-5 *3 (-372))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535))))) +(((*1 *1 *1 *1) (-4 *1 (-940)))) +(((*1 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) + ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-821))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-667 (-400 (-925 (-550))))) + (-5 *2 (-667 (-309 (-550)))) (-5 *1 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1020))))) +(((*1 *2) (-12 - (-5 *2 - (-495 (-400 (-535)) (-233 *4 (-747)) (-836 *3) (-241 *3 (-400 (-535))))) - (-14 *3 (-618 (-1142))) (-14 *4 (-747)) (-5 *1 (-496 *3 *4))))) + (-5 *2 (-2 (|:| -3429 (-623 (-1144))) (|:| -1374 (-623 (-1144))))) + (-5 *1 (-1183))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) + (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-542)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) + (-4 *7 (-965 *4)) (-4 *2 (-665 *7 *8 *9)) + (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-665 *4 *5 *6)) + (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) + (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *1 (-666 *3 *4 *5 *2)) + (-4 *2 (-665 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-667 *2)) (-4 *2 (-356)) (-4 *2 (-1020)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1091 *2 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) + ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-1152 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-634 *3)) (-4 *3 (-1020)) (-4 *3 (-356)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-749)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) + (-5 *1 (-637 *5 *2)) (-4 *2 (-634 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-623 (-114)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-526))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) + ((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-654)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) (((*1 *2 *3) (-12 (-5 *3 - (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) - (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5))))) -(((*1 *2 *3) + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))))) + (-5 *2 (-1008)) (-5 *1 (-298)))) + ((*1 *2 *3) (-12 (-5 *3 - (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) - (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-295 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-2 (|:| -3459 (-372)) (|:| -1916 (-1126)) + (|:| |explanations| (-623 (-1126))) (|:| |extra| (-1008)))) + (-5 *2 (-1008)) (-5 *1 (-298))))) +(((*1 *2) + (-12 (-5 *2 (-1227 (-1069 *3 *4))) (-5 *1 (-1069 *3 *4)) + (-14 *3 (-894)) (-14 *4 (-894))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-916 (-219)) (-916 (-219)))) (-5 *3 (-623 (-256))) + (-5 *1 (-254)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-916 (-219)) (-916 (-219)))) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1055 (-815 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) - (-5 *1 (-296)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))) + (-12 (-5 *4 (-623 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) + (-14 *5 (-623 (-1144))) (-4 *6 (-444)) (-5 *2 (-1227 *6)) + (-5 *1 (-611 *5 *6))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) - (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) - (-4 *2 (-921 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *3 *4))))) + (-12 (-5 *3 (-878 *4)) (-4 *4 (-1068)) (-5 *2 (-623 (-749))) + (-5 *1 (-877 *4))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-172 *6)) + (-5 *1 (-840 *5 *4 *6)) (-4 *4 (-1218 *5)) (-4 *6 (-1203 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) + (-5 *1 (-1041 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) + (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-931 (-1088))) (-5 *1 (-336 *3 *4)) (-14 *3 (-894)) + (-14 *4 (-894)))) + ((*1 *2) + (-12 (-5 *2 (-931 (-1088))) (-5 *1 (-337 *3 *4)) (-4 *3 (-342)) + (-14 *4 (-1140 *3)))) + ((*1 *2) + (-12 (-5 *2 (-931 (-1088))) (-5 *1 (-338 *3 *4)) (-4 *3 (-342)) + (-14 *4 (-894))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-423 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1144)))) + ((*1 *1 *1) (-4 *1 (-158)))) +(((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1126)) (-5 *1 (-689))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-102 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-1126)) (-5 *5 (-667 (-219))) + (-5 *2 (-1008)) (-5 *1 (-726))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) - (-5 *2 - (-2 (|:| |mval| (-665 *4)) (|:| |invmval| (-665 *4)) - (|:| |genIdeal| (-495 *4 *5 *6 *7)))) - (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6))))) -(((*1 *1 *2) - (-12 + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1203 *4)) (-4 *4 (-1185)) + (-4 *6 (-1203 (-400 *5))) (-5 *2 - (-2 (|:| |mval| (-665 *3)) (|:| |invmval| (-665 *3)) - (|:| |genIdeal| (-495 *3 *4 *5 *6)))) - (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) - (-4 *6 (-921 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-921 *2 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) - (-5 *2 (-406 *4 (-400 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))) - (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *3 (-300)) - (-5 *1 (-406 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) - (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-921 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) - (-4 *2 (-921 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *6 (-594 (-1142))) - (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) - (-5 *2 (-1131 (-618 (-917 *4)) (-618 (-286 (-917 *4))))) - (-5 *1 (-495 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-208 *4)) - (-4 *4 - (-13 (-823) - (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) - (-15 -2082 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3)) - (-4 *3 - (-13 (-823) - (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) - (-15 -2082 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *6 (-1200 *5)) - (-5 *2 (-1136 (-1136 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1200 *6))))) + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-335 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1225 *3)) (-4 *3 (-1181)) (-4 *3 (-1020)) + (-5 *2 (-667 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1144)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-623 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1653 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1166) (-27) (-423 *8))) + (-4 *8 (-13 (-444) (-825) (-145) (-1011 *3) (-619 *3))) + (-5 *3 (-550)) (-5 *2 (-623 *4)) (-5 *1 (-987 *8 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-665 (-1136 *8))) - (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-1200 *5)) (-5 *2 (-665 *6)) - (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1200 *6))))) + (-12 (-5 *4 (-623 (-623 *8))) (-5 *3 (-623 *8)) + (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-771)) + (-4 *7 (-825)) (-5 *2 (-112)) (-5 *1 (-950 *5 *6 *7 *8))))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-730))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1013)) (-5 *3 (-372))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1124 *4) (-1124 *4))) (-5 *2 (-1124 *4)) + (-5 *1 (-1252 *4)) (-4 *4 (-1181)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-623 (-1124 *5)) (-623 (-1124 *5)))) (-5 *4 (-550)) + (-5 *2 (-623 (-1124 *5))) (-5 *1 (-1252 *5)) (-4 *5 (-1181))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-749)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-167 (-219))) (-5 *3 (-749)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1107)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1136 *7)) - (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1200 *5)) - (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1200 *2))))) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-623 (-1 *6 (-623 *6)))) + (-4 *5 (-38 (-400 (-550)))) (-4 *6 (-1218 *5)) (-5 *2 (-623 *6)) + (-5 *1 (-1220 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-550)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-842 *3)) (-5 *2 (-550)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-844 *4)) (-14 *4 *3) + (-5 *3 (-550)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-400 (-550))) (-5 *1 (-845 *4 *5)) + (-5 *3 (-550)) (-4 *5 (-842 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-985)) (-5 *2 (-400 (-550))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1037 *2 *3)) (-4 *2 (-13 (-823) (-356))) + (-4 *3 (-1203 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1205 *2 *3)) (-4 *3 (-770)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1518 (*2 (-1144)))) + (-4 *2 (-1020))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))) + (-4 *2 (-13 (-825) (-21)))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1126))))) +(((*1 *2 *1) + (-12 (-4 *2 (-542)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1203 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3662 (-550)) (|:| -1877 (-623 *3)))) + (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) + (-5 *1 (-889 *3 *4 *5 *2)) (-4 *2 (-922 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1140 *6)) (-4 *6 (-922 *5 *3 *4)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-889 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *6 *4 *5)) + (-5 *1 (-889 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-1232)) (-5 *1 (-1147))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) + (-5 *2 (-1008)) (-5 *1 (-732))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-52)) (-5 *1 (-1159))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1136 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) - (-4 *2 (-1200 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1200 *2)))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3) + (-12 (-4 *4 (-882)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-411 (-1140 *7))) + (-5 *1 (-879 *4 *5 *6 *7)) (-5 *3 (-1140 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-882)) (-4 *5 (-1203 *4)) (-5 *2 (-411 (-1140 *5))) + (-5 *1 (-880 *4 *5)) (-5 *3 (-1140 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-1146 (-400 (-550)))) + (-5 *1 (-184))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-899)))) + ((*1 *2 *1) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3139 (-760 *3)) (|:| |coef1| (-760 *3)))) + (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1))) + (-4 *1 (-1034 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 (-1144))) (-4 *4 (-1068)) + (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-423 *5) (-859 *4) (-596 (-865 *4))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) + (-4 *2 (-1068)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-354 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-379 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-411 *2)) (-4 *2 (-542)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *2 (-1068)) (-5 *1 (-627 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-797 *2)) (-4 *2 (-825))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) + (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) + (-4 *7 (-825)) (-4 *8 (-922 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) + (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) + (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *4 (-1200 *5)) - (-5 *2 (-1136 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1200 *4))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) - (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) - (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) - (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) - (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) - (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-747)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) - (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-665 *2)) (-5 *4 (-535)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *5 (-1200 *2)) - (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-665 *2)) (-5 *4 (-747)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *5 (-1200 *2)) - (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-747)) (-4 *5 (-343)) (-4 *6 (-1200 *5)) - (-5 *2 - (-618 - (-2 (|:| -2123 (-665 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-665 *6))))) - (-5 *1 (-489 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2123 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6)))) - (-4 *7 (-1200 *6))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) + (-4 *7 (-825)) (-4 *8 (-922 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) + (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-667 *7)) (-5 *3 (-623 *7)) (-4 *7 (-922 *4 *6 *5)) + (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *1 (-897 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1031)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1031))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1020) (-696 (-400 (-550))))) + (-4 *5 (-825)) (-5 *1 (-1243 *4 *5 *2)) (-4 *2 (-1248 *5 *4))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-618 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-535))))) - (-5 *1 (-398 *3)) (-4 *3 (-542)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-747)) (-4 *3 (-343)) (-4 *5 (-1200 *3)) - (-5 *2 (-618 (-1136 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1200 *5))))) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) + (-5 *2 (-623 (-623 (-623 (-749)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1020)) (-5 *1 (-693 *4 *2)) + (-4 *2 (-626 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-812 *2)) (-4 *2 (-1020))))) (((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486))))) -(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-482))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) - (-4 *3 (-1178))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) - (-4 *4 (-1178)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) - (-4 *4 (-1178)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) - (-5 *2 (-747)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) - (-4 *4 (-1178)) (-5 *2 (-747))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-1068)) (-4 *7 (-873 *6)) + (-5 *2 (-667 *7)) (-5 *1 (-670 *6 *7 *3 *4)) (-4 *3 (-366 *7)) + (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4342))))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-618 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) - (-5 *2 (-618 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-535))) (-5 *2 (-535)) (-5 *1 (-478 *4)) - (-4 *4 (-1200 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1200 (-535))) (-5 *1 (-478 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1200 (-535))) (-5 *1 (-478 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1200 (-535)))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-476 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-618 (-497))) (-5 *2 (-497)) (-5 *1 (-475))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-497))) (-5 *1 (-475))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-535))) (-5 *1 (-241 *3 *4)) (-14 *3 (-618 (-1142))) - (-4 *4 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-535))) (-14 *3 (-618 (-1142))) (-5 *1 (-446 *3 *4 *5)) - (-4 *4 (-1018)) (-4 *5 (-232 (-4299 *3) (-747))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-535))) (-5 *1 (-473 *3 *4)) (-14 *3 (-618 (-1142))) - (-4 *4 (-1018))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-112)) (-5 *1 (-472))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-472))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-836 *5))) (-14 *5 (-618 (-1142))) (-4 *6 (-444)) - (-5 *2 (-2 (|:| |dpolys| (-618 (-241 *5 *6))) (|:| |coords| (-618 (-535))))) - (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-618 (-241 *5 *6))) (-4 *7 (-444))))) + (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1020)) (-4 *4 (-825)) + (-4 *5 (-771)) (-4 *2 (-259 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1174 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *5 (-1034 *2 *3 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *2 (-542)) (-5 *1 (-942 *2 *4)) + (-4 *4 (-1203 *2))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-623 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1034 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-771)) + (-4 *8 (-825)) (-5 *1 (-950 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-717))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-662 *4 *5 *6))))) +(((*1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1181))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 (-473 *4 *5))) (-5 *3 (-618 (-836 *4))) - (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) - (-4 *6 (-444))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-836 *5))) (-14 *5 (-618 (-1142))) (-4 *6 (-444)) - (-5 *2 (-618 (-618 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) - (-5 *3 (-618 (-241 *5 *6))) (-4 *7 (-444))))) -(((*1 *1) (-5 *1 (-460)))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) - (-5 *4 (-618 (-890))) (-5 *5 (-618 (-254))) (-5 *1 (-460)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) - (-5 *4 (-618 (-890))) (-5 *1 (-460)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))) - ((*1 *1 *1) (-5 *1 (-460)))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-460))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *2 (-1230)) - (-5 *1 (-460)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *4 (-845)) (-5 *5 (-890)) - (-5 *2 (-1230)) (-5 *1 (-460))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460))))) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1052 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-550) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1052 *2))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-735))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) - (-5 *1 (-460))))) + (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1218 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-569 *3)) (-5 *1 (-419 *5 *3)) + (-4 *3 (-13 (-1166) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) (-4 *5 (-13 (-542) (-1011 (-550)) (-145))) + (-5 *2 (-569 (-400 (-925 *5)))) (-5 *1 (-556 *5)) + (-5 *3 (-400 (-925 *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1166) (-975)))))) +(((*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-1167 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-623 (-1167 *2))) (-5 *1 (-1167 *2)) (-4 *2 (-1068))))) +(((*1 *1 *1) (-4 *1 (-171))) + ((*1 *1 *1) + (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-618 (-219))) - (-5 *1 (-460))))) -(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) + (-12 (-5 *3 (-623 (-1144))) (-5 *2 (-1232)) (-5 *1 (-1183)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-623 (-1144))) (-5 *2 (-1232)) (-5 *1 (-1183))))) (((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1224 (-1224 (-535)))) (-5 *1 (-458))))) + (-12 (-5 *3 (-623 (-2 (|:| -3338 (-1140 *6)) (|:| -3521 (-550))))) + (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-550)) + (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-922 *6 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1224 (-1224 (-535)))) (-5 *3 (-890)) (-5 *1 (-458))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-823)) (-4 *5 (-769)) (-4 *6 (-542)) - (-4 *7 (-921 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -1860 *3) (|:| -3521 (-749)))) (-5 *1 (-570 *3)) + (-4 *3 (-535))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020))))) +(((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-894)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-256))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1020)) (-5 *1 (-1199 *3 *2)) (-4 *2 (-1203 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-825) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) + (-4 *3 (-13 (-423 *4) (-975)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-542)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1232)) (-5 *1 (-836))))) +(((*1 *1 *2) + (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1011 *4)) (-4 *3 (-300)) + (-4 *4 (-965 *3)) (-4 *5 (-1203 *4)) (-4 *6 (-402 *4 *5)) + (-14 *7 (-1227 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 *6)) (-4 *6 (-402 *4 *5)) (-4 *4 (-965 *3)) + (-4 *5 (-1203 *4)) (-4 *3 (-300)) (-5 *1 (-407 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1144)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1011 (-550))) + (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 - (-13 (-1009 (-400 (-535))) (-356) - (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))) + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *3 (-594 $)) $)) + (-15 -2715 ((-1093 *3 (-594 $)) $)) + (-15 -1518 ($ (-1093 *3 (-594 $)))))))))) +(((*1 *1) (-5 *1 (-781)))) +(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) + ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1250 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-821))))) (((*1 *2 *1) - (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) - (-14 *6 - (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *2)) - (-2 (|:| -2483 *5) (|:| -2484 *2)))) - (-4 *2 (-232 (-4299 *3) (-747))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-823)) (-4 *7 (-921 *4 *2 (-836 *3)))))) + (-12 (-4 *4 (-1068)) (-5 *2 (-862 *3 *4)) (-5 *1 (-858 *3 *4 *5)) + (-4 *3 (-1068)) (-4 *5 (-644 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-96))))) +(((*1 *2 *3) + (-12 (-4 *4 (-825)) (-5 *2 (-623 (-623 *4))) (-5 *1 (-1152 *4)) + (-5 *3 (-623 *4))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1144)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-623 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1653 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1166) (-27) (-423 *8))) + (-4 *8 (-13 (-444) (-825) (-145) (-1011 *3) (-619 *3))) + (-5 *3 (-550)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -2682 *4) (|:| |sol?| (-112)))) + (-5 *1 (-986 *8 *4))))) (((*1 *2 *1) - (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-4299 *3) (-747))) - (-14 *6 - (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *5)) - (-2 (|:| -2483 *2) (|:| -2484 *5)))) - (-4 *2 (-823)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-921 *4 *5 (-836 *3)))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-618 (-1142))) (-4 *2 (-170)) (-4 *4 (-232 (-4299 *5) (-747))) - (-14 *6 - (-1 (-112) (-2 (|:| -2483 *3) (|:| -2484 *4)) - (-2 (|:| -2483 *3) (|:| -2484 *4)))) - (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-823)) - (-4 *7 (-921 *2 *4 (-836 *5)))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-618 (-1142))) (-4 *2 (-170)) (-4 *3 (-232 (-4299 *4) (-747))) - (-14 *6 - (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *3)) - (-2 (|:| -2483 *5) (|:| -2484 *3)))) - (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-823)) - (-4 *7 (-921 *2 *3 (-836 *4)))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-618 *3)) (-5 *5 (-890)) (-4 *3 (-1200 *4)) (-4 *4 (-300)) - (-5 *1 (-452 *4 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-890)) (-4 *5 (-300)) (-4 *3 (-1200 *5)) - (-5 *2 (-2 (|:| |plist| (-618 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) - (-5 *4 (-618 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-618 *5)) (-4 *5 (-1200 *3)) (-4 *3 (-300)) (-5 *2 (-112)) - (-5 *1 (-447 *3 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1224 (-618 *3))) (-4 *4 (-300)) (-5 *2 (-618 *3)) - (-5 *1 (-447 *4 *3)) (-4 *3 (-1200 *4))))) + (|partial| -12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1020)) + (-4 *2 (-1187 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) + (-5 *1 (-1041 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) + (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-654)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-992)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1035)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-1064))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-1068)) (-4 *4 (-1181)) (-5 *2 (-112)) + (-5 *1 (-1124 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) +(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1126)) (-5 *1 (-298))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4342)) (-4 *1 (-481 *3)) (-4 *3 (-1181)) + (-4 *3 (-1068)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-878 *4)) (-4 *4 (-1068)) (-5 *2 (-112)) + (-5 *1 (-877 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-894)) (-5 *2 (-112)) (-5 *1 (-1069 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 (-400 (-925 (-550))))) (-5 *2 (-623 (-309 (-550)))) + (-5 *1 (-1004))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1020)) (-5 *1 (-867 *2 *3)) (-4 *2 (-1203 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-602 *4 *2)) (-4 *2 (-13 (-1166) (-932) (-29 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-95)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1068)) (-4 *2 (-1068)))) + ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1126)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-431 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-594 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-938)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1043 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1083)))) + ((*1 *1 *1) (-5 *1 (-1144)))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -3903 (-114)) (|:| |arg| (-623 (-865 *3))))) + (-5 *1 (-865 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-623 (-865 *4))) + (-5 *1 (-865 *4)) (-4 *4 (-1068))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-730))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-747)) (-4 *4 (-300)) (-4 *6 (-1200 *4)) - (-5 *2 (-1224 (-618 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-618 *6))))) + (-12 (-5 *3 (-667 *6)) (-5 *5 (-1 (-411 (-1140 *6)) (-1140 *6))) + (-4 *6 (-356)) + (-5 *2 + (-623 + (-2 (|:| |outval| *7) (|:| |outmult| (-550)) + (|:| |outvect| (-623 (-667 *7)))))) + (-5 *1 (-523 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-623 (-760 *3))) (-5 *1 (-760 *3)) (-4 *3 (-542)) + (-4 *3 (-1020))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1086)) (-5 *1 (-1083))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-623 (-1140 *13))) (-5 *3 (-1140 *13)) + (-5 *4 (-623 *12)) (-5 *5 (-623 *10)) (-5 *6 (-623 *13)) + (-5 *7 (-623 (-623 (-2 (|:| -2153 (-749)) (|:| |pcoef| *13))))) + (-5 *8 (-623 (-749))) (-5 *9 (-1227 (-623 (-1140 *10)))) + (-4 *12 (-825)) (-4 *10 (-300)) (-4 *13 (-922 *10 *11 *12)) + (-4 *11 (-771)) (-5 *1 (-686 *11 *12 *10 *13))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-726))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 (-473 *3 *4))) (-14 *3 (-623 (-1144))) + (-4 *4 (-444)) (-5 *1 (-611 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1126)) (-5 *1 (-764))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-950 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-372)) (-5 *1 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-411 *3)) (-4 *3 (-542)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-2 (|:| -3338 *4) (|:| -2970 (-550))))) + (-4 *4 (-1203 (-550))) (-5 *2 (-749)) (-5 *1 (-434 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-423 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1060 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-825) (-542))) + (-5 *1 (-156 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 *1)) (-4 *1 (-158)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1144))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) + (-5 *2 (-1008)) (-5 *1 (-732))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-300)) (-5 *2 (-747)) - (-5 *1 (-447 *5 *3))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-618 *1)))) (-4 *1 (-360 *3)))) - ((*1 *2) + (-12 (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-569 *3)) (-5 *1 (-419 *5 *3)) + (-4 *3 (-13 (-1166) (-29 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) (-4 *5 (-1185)) (-4 *6 (-1203 *5)) + (-4 *7 (-1203 (-400 *6))) (-5 *2 (-623 (-925 *5))) + (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1144)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1185)) + (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) (-4 *4 (-356)) + (-5 *2 (-623 (-925 *4)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1020)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3521 (-550)))) (-4 *1 (-423 *3)))) + ((*1 *2 *1) (|partial| -12 + (-5 *2 (-2 (|:| |val| (-865 *3)) (|:| -3521 (-865 *3)))) + (-5 *1 (-865 *3)) (-4 *3 (-1068)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) + (-4 *7 (-922 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3521 (-550)))) + (-5 *1 (-923 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) + (-15 -2715 (*7 $)))))))) +(((*1 *1 *1) (-5 *1 (-526)))) +(((*1 *1) (-5 *1 (-323)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) + (-5 *2 (-623 (-623 (-623 (-916 *3)))))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)) (-4 *2 (-356)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-637 *4 *2)) + (-4 *2 (-634 *4))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1147))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-922 *4 *5 *6)) (-5 *2 (-623 (-623 *7))) + (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-623 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) + (-4 *7 (-825)) (-4 *8 (-922 *5 *6 *7)) (-5 *2 (-623 (-623 *8))) + (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-623 *8))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-550)) (-4 *1 (-275 *3)) (-4 *3 (-1181)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-4 *1 (-275 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |particular| (-445 *3 *4 *5 *6)) - (|:| -2123 (-618 (-445 *3 *4 *5 *6))))) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) - (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3)))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-618 *1)))) (-4 *1 (-360 *3)))) - ((*1 *2) - (|partial| -12 + (-2 + (|:| -2763 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| -2119 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1124 (-219))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3170 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-545)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-673 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |particular| (-445 *3 *4 *5 *6)) - (|:| -2123 (-618 (-445 *3 *4 *5 *6))))) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) - (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3)))))) + (-2 + (|:| -2763 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (|:| -2119 + (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) + (|:| |expense| (-372)) (|:| |accuracy| (-372)) + (|:| |intermediateResults| (-372)))))) + (-5 *1 (-781)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1232)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) +(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-320 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-550)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1181)) (-14 *4 *2)))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) + (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-1240 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1240 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) + (-5 *2 (-1008)) (-5 *1 (-735))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1224 (-1142))) (-5 *3 (-1224 (-445 *4 *5 *6 *7))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-890)) - (-14 *6 (-618 (-1142))) (-14 *7 (-1224 (-665 *4))))) + (-12 (-5 *3 (-354 (-114))) (-4 *2 (-1020)) (-5 *1 (-693 *2 *4)) + (-4 *4 (-626 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-445 *4 *5 *6 *7))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-890)) (-14 *6 (-618 *2)) - (-14 *7 (-1224 (-665 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 (-1142))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1142)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-890)) (-14 *5 (-618 *2)) (-14 *6 (-1224 (-665 *3))))) - ((*1 *1) - (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-890)) - (-14 *4 (-618 (-1142))) (-14 *5 (-1224 (-665 *2)))))) + (-12 (-5 *3 (-354 (-114))) (-5 *1 (-812 *2)) (-4 *2 (-1020))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1136 (-917 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) + (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) + (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) - (-5 *2 (-1136 (-917 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-749))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-411 *2)) (-4 *2 (-300)) (-5 *1 (-887 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-888 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-411 (-925 *6))) (-5 *5 (-1144)) (-5 *3 (-925 *6)) + (-4 *6 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-888 *6))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) + (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 (-550))))) + (-5 *1 (-354 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 (-749))))) + (-5 *1 (-379 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| -3338 *3) (|:| -3521 (-550))))) + (-5 *1 (-411 *3)) (-4 *3 (-542)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 (-749))))) + (-5 *1 (-797 *3)) (-4 *3 (-825))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) (((*1 *2 *1) - (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) + (-14 *4 (-623 (-1144))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1020) (-825))) + (-14 *4 (-623 (-1144)))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-1035))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1126))))) +(((*1 *1) (-5 *1 (-1050)))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1136 (-917 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-1140 (-925 *4))) (-5 *1 (-409 *3 *4)) + (-4 *3 (-410 *4)))) ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) - (-5 *2 (-1136 (-917 *3))))) + (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) + (-5 *2 (-1140 (-925 *3))))) ((*1 *2) - (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) + (-12 (-5 *2 (-1140 (-400 (-925 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) + (-12 (-5 *2 (-2 (|:| -3139 (-760 *3)) (|:| |coef2| (-760 *3)))) + (-5 *1 (-760 *3)) (-4 *3 (-542)) (-4 *3 (-1020)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| -3139 *1) (|:| |coef2| *1))) + (-4 *1 (-1034 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3)))))) + (-12 (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-300)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) + (-5 *1 (-379 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3526 (-749)) (|:| -2786 (-749)))) + (-5 *1 (-749)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *8)) (-5 *4 (-749)) (-4 *8 (-922 *5 *7 *6)) + (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1144)))) + (-4 *7 (-771)) + (-5 *2 + (-623 + (-2 (|:| |det| *8) (|:| |rows| (-623 (-550))) + (|:| |cols| (-623 (-550)))))) + (-5 *1 (-897 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-623 *2))) (-5 *4 (-623 *5)) + (-4 *5 (-38 (-400 (-550)))) (-4 *2 (-1218 *5)) + (-5 *1 (-1220 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-838 *3)) (-14 *3 (-623 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-962)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1060 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1205 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-770)) + (-5 *2 (-1144)))) + ((*1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1223 *3)) (-14 *3 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-894)))) ((*1 *1) (-4 *1 (-535))) + ((*1 *2 *2) (-12 (-5 *2 (-894)) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-825)) + (-4 *3 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-618 (-917 *4))))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-618 (-917 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-618 (-917 *3))))) - ((*1 *2) - (-12 (-5 *2 (-618 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) - (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) - (-14 *6 (-1224 (-665 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1224 (-445 *4 *5 *6 *7))) (-5 *2 (-618 (-917 *4))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *4 (-170)) (-14 *5 (-890)) - (-14 *6 (-618 (-1142))) (-14 *7 (-1224 (-665 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-444)))) - ((*1 *1 *1 *1) (-4 *1 (-444)))) + (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-411 *3)) + (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-922 *6 *4 *5))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1227 (-309 (-219)))) (-5 *4 (-623 (-1144))) + (-5 *2 (-667 (-309 (-219)))) (-5 *1 (-199)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1068)) (-4 *6 (-873 *5)) (-5 *2 (-667 *6)) + (-5 *1 (-670 *5 *6 *3 *4)) (-4 *3 (-366 *6)) + (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4342))))))) +(((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2) + (-12 (-4 *3 (-825)) (-5 *1 (-902 *3 *2)) (-4 *2 (-423 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1144)) (-5 *2 (-309 (-550))) (-5 *1 (-903))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-747)) (|:| -2115 *4))) (-5 *5 (-747)) - (-4 *4 (-921 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) + (|partial| -12 (-5 *2 (-550)) (-5 *1 (-555 *3)) (-4 *3 (-1011 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-623 (-1140 *7))) (-5 *3 (-1140 *7)) + (-4 *7 (-922 *4 *5 *6)) (-4 *4 (-882)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *1 (-879 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-623 (-1140 *5))) (-5 *3 (-1140 *5)) + (-4 *5 (-1203 *4)) (-4 *4 (-882)) (-5 *1 (-880 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-442 *6 *7 *8 *4))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-769)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) - (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7))))) + (-2 (|:| -3030 (-749)) (|:| |curves| (-749)) + (|:| |polygons| (-749)) (|:| |constructs| (-749))))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-323)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-323))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-836))))) +(((*1 *1 *1) + (-12 (-4 *2 (-300)) (-4 *3 (-965 *2)) (-4 *4 (-1203 *3)) + (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1011 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-623 (-219)))) (-5 *1 (-899))))) (((*1 *2 *3) - (-12 (-5 *3 (-535)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) - (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6))))) + (-12 (-5 *3 (-594 *5)) (-4 *5 (-423 *4)) (-4 *4 (-1011 (-550))) + (-4 *4 (-13 (-825) (-542))) (-5 *2 (-1140 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-594 *1)) (-4 *1 (-1020)) (-4 *1 (-295)) + (-5 *2 (-1140 *1))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-894)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-256))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-623 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-423 *4) (-975))) (-4 *4 (-13 (-825) (-542))) + (-5 *1 (-269 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-535)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-769)) (-4 *4 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) - (-5 *1 (-442 *5 *6 *7 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-535)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-769)) (-4 *4 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) - (-5 *1 (-442 *5 *6 *7 *4))))) + (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1166) (-975)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) + (-4 *3 (-1203 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-825)) (-5 *1 (-1152 *3))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-985)) (-5 *2 (-836))))) +(((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) + (-5 *1 (-1041 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) + (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-1232)) + (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1040 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6))))) + (|partial| -12 (-5 *3 (-925 *4)) (-4 *4 (-1020)) (-4 *4 (-596 *2)) + (-5 *2 (-372)) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-925 *5)) (-5 *4 (-894)) (-4 *5 (-1020)) + (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) + (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) + (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-372)) + (-5 *1 (-763 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1181)) (-4 *2 (-825)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1020)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *1)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) + (-14 *3 (-894)) (-4 *4 (-1020)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-894)) (-4 *3 (-1020))))) +(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-482))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-623 (-1144))) (-5 *2 (-1144)) (-5 *1 (-323))))) +(((*1 *2 *1) + (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) + ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-298))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-542)) + (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-1198 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1126))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *4 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-1068)) (-5 *2 (-623 *1)) + (-4 *1 (-375 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-705)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-922 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-550)) (-5 *5 (-667 (-219))) (-5 *6 (-653 (-219))) + (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-729))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-145) (-27) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *5 (-1203 *4)) (-5 *2 (-1140 (-400 *5))) (-5 *1 (-597 *4 *5)) + (-5 *3 (-400 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-145) (-27) (-1011 (-550)) (-1011 (-400 (-550))))) + (-5 *2 (-1140 (-400 *6))) (-5 *1 (-597 *5 *6)) (-5 *3 (-400 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1144)) + (-4 *6 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-4 *4 (-13 (-29 *6) (-1166) (-932))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2437 (-623 *4)))) + (-5 *1 (-779 *6 *4 *3)) (-4 *3 (-634 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184))))) +(((*1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1020)) + (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) + (-14 *5 (-1144)) (-5 *2 (-550)) (-5 *1 (-1082 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-1034 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-535)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6))))) + (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) (-5 *3 (-550))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-726))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-550))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1020)) + (-14 *4 (-623 (-1144))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1218 *3)) + (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1189 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *4 (-1187 *3)) + (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1210 *3 *4)) (-4 *5 (-956 *4)))) + ((*1 *1 *1) (-4 *1 (-277))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *1 *2) + (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-5 *1 (-607 *3 *4 *5)) + (-14 *5 (-894)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1129 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) + (-5 *1 (-1130 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1020) (-696 (-400 (-550))))) + (-4 *5 (-825)) (-5 *1 (-1243 *4 *5 *2)) (-4 *2 (-1248 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-5 *1 (-1247 *3 *4)) + (-4 *4 (-696 (-400 (-550)))) (-4 *3 (-825)) (-4 *4 (-170))))) +(((*1 *2 *1) + (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-5 *2 (-1126))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *2)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1068))))) (((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-618 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-769)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) - (-5 *1 (-442 *3 *4 *5 *6))))) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) + (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1034 *4 *5 *6)) (-4 *4 (-542)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-950 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-623 *7) (-623 *7))) (-5 *2 (-623 *7)) + (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-771)) + (-4 *6 (-825)) (-5 *1 (-950 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 + (-12 (-14 *4 (-623 (-1144))) (-14 *5 (-749)) + (-5 *2 + (-623 + (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) + (-241 *4 (-400 (-550)))))) + (-5 *1 (-496 *4 *5)) (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-769)) (-4 *2 (-921 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) - (-4 *4 (-444)) (-4 *6 (-823))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 *3)))) (-5 *4 (-747)) - (-4 *3 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) - (-5 *1 (-442 *5 *6 *7 *3))))) + (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) + (-241 *4 (-400 (-550)))))))) +(((*1 *2) + (-12 (-5 *2 (-894)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *2) + (-12 (-5 *2 (-894)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *2)) - (-4 *2 (-921 *3 *4 *5))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-940))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-410 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) + (-5 *2 (-1008)) (-5 *1 (-732))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-623 *11)) (-5 *5 (-623 (-1140 *9))) + (-5 *6 (-623 *9)) (-5 *7 (-623 *12)) (-5 *8 (-623 (-749))) + (-4 *11 (-825)) (-4 *9 (-300)) (-4 *12 (-922 *9 *10 *11)) + (-4 *10 (-771)) (-5 *2 (-623 (-1140 *12))) + (-5 *1 (-686 *10 *11 *9 *12)) (-5 *3 (-1140 *12))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-618 *3)) (-4 *3 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) - (-4 *7 (-823)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-442 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-618 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-747)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-769)) (-4 *6 (-921 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-823)) - (-5 *1 (-442 *4 *3 *5 *6))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-618 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-769)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) - (-5 *1 (-442 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-618 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-769)) (-4 *3 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) - (-5 *1 (-442 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) - (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-921 *4 *3 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) - (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-921 *4 *3 *5))))) + (-12 (-5 *4 (-667 (-400 (-925 (-550))))) + (-5 *2 (-623 (-667 (-309 (-550))))) (-5 *1 (-1004)) + (-5 *3 (-309 (-550)))))) +(((*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-1068)) (-5 *2 (-749))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-769)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) - (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-618 *7)) (-5 *3 (-535)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) - (-5 *3 (-618 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) - (-5 *3 (-618 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) - (-5 *3 (-618 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) - (-5 *3 (-618 *8))))) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-825) (-542)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-623 (-169))))))) +(((*1 *2 *3) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-547)) (-5 *3 (-550))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *1 *2) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1140 *5)) (-4 *5 (-356)) (-5 *2 (-623 *6)) + (-5 *1 (-523 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) - (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) - (-5 *3 (-618 *7)))) + (-12 (-4 *4 (-542)) (-5 *2 (-1140 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-356) (-295) + (-10 -8 (-15 -2705 ((-1093 *4 (-594 $)) $)) + (-15 -2715 ((-1093 *4 (-594 $)) $)) + (-15 -1518 ($ (-1093 *4 (-594 $)))))))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1068)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) - (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) - (-5 *3 (-618 *8))))) + (-12 (-5 *4 (-550)) (-5 *2 (-1124 *3)) (-5 *1 (-1128 *3)) + (-4 *3 (-1020)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-797 *4)) (-4 *4 (-825)) (-4 *1 (-1244 *4 *3)) + (-4 *3 (-1020))))) (((*1 *2 *2) - (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-769)) - (-4 *5 (-823)) (-5 *1 (-440 *3 *4 *5 *6)))) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-300)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-439 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-300)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *7)))) + (-12 (-5 *2 (-623 *7)) (-5 *3 (-1126)) (-4 *7 (-922 *4 *5 *6)) + (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-439 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-300)) - (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) - (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-438)) (-5 *3 (-535))))) -(((*1 *2 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) - ((*1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018))))) + (-12 (-5 *2 (-623 *7)) (-5 *3 (-1126)) (-4 *7 (-922 *4 *5 *6)) + (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-439 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-535)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018))))) + (|partial| -12 (-4 *2 (-1068)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1068))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-623 (-473 *5 *6))) (-5 *4 (-838 *5)) + (-14 *5 (-623 (-1144))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) + (-4 *6 (-444)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-473 *5 *6))) (-5 *4 (-838 *5)) + (-14 *5 (-623 (-1144))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) + (-4 *6 (-444))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1126)) (-5 *1 (-96)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1126)) (-5 *1 (-96))))) (((*1 *2 *3) - (-12 (-5 *2 (-535)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-437 *3)) (-4 *3 (-1018))))) -(((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018))))) -(((*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) - ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-535)) (-5 *1 (-437 *2)) (-4 *2 (-1018))))) + (-12 (-5 *3 (-1 *5 (-623 *5))) (-4 *5 (-1218 *4)) + (-4 *4 (-38 (-400 (-550)))) + (-5 *2 (-1 (-1124 *4) (-623 (-1124 *4)))) (-5 *1 (-1220 *4 *5))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *2 (-1008)) + (-5 *1 (-735))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-894)) (-4 *1 (-1205 *3 *4)) (-4 *3 (-1020)) + (-4 *4 (-770)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-400 (-550))) (-4 *1 (-1208 *3)) (-4 *3 (-1020))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1232)) (-5 *1 (-809))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-520)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-520))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-398 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-1018)) - (-5 *2 (-618 *6)) (-5 *1 (-436 *5 *6))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-890)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-890)) (-5 *4 (-747)) (-5 *1 (-434 *2)) - (-4 *2 (-1200 (-535))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *1 (-434 *2)) - (-4 *2 (-1200 (-535))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *5 (-747)) - (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *5 (-747)) - (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 *10)) + (-5 *1 (-604 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1040 *5 *6 *7 *8)) + (-4 *10 (-1077 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-398 *2)) (-4 *2 (-1200 *5)) (-5 *1 (-436 *5 *2)) - (-4 *5 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| -4075 *4) (|:| -4290 (-535))))) - (-4 *4 (-1200 (-535))) (-5 *2 (-713 (-747))) (-5 *1 (-434 *4)))) + (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-1017 *5 *6))) + (-5 *1 (-608 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-623 (-1144))) + (-5 *2 + (-623 (-1114 *5 (-522 (-838 *6)) (-838 *6) (-758 *5 (-838 *6))))) + (-5 *1 (-608 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-623 (-1000 *5 *6 *7 *8))) (-5 *1 (-1000 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-623 (-1000 *5 *6 *7 *8))) (-5 *1 (-1000 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-623 (-758 *5 (-838 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) + (-14 *6 (-623 (-1144))) (-5 *2 (-623 (-1017 *5 *6))) + (-5 *1 (-1017 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-1040 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-623 (-1114 *5 *6 *7 *8))) (-5 *1 (-1114 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-112)) (-4 *8 (-1034 *5 *6 *7)) + (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-5 *2 (-623 (-1114 *5 *6 *7 *8))) (-5 *1 (-1114 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-398 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-1018)) - (-5 *2 (-713 (-747))) (-5 *1 (-436 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4))))) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-1174 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1147))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -2038 (-623 *7)))) + (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1166))))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-836))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 *4)) (-5 *3 (-1 *4 (-550))) (-4 *4 (-1020)) + (-5 *1 (-1128 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) + (-5 *2 (-623 (-623 *4))) (-5 *1 (-334 *3 *4 *5 *6)) + (-4 *3 (-335 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-623 (-623 *3)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) + (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-1240 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-623 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1034 *5 *6 *7)) (-4 *5 (-542)) + (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1240 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-623 (-749)))) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-836))))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1126)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-497)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-575)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-470)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-606)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1064)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1058)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1042)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-943)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-178)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1009)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-304)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-649)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-152)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-516)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1238)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1035)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-508)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-659)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-95)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1083)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-132)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1237)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-654)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-212)))) + ((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-515)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1149))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-542)) (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-623 *1)) (-4 *1 (-1034 *3 *4 *5))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) + (-4 *3 (-1068))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1140 (-400 (-925 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *3 (-1020)) + (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-827 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1020)) + (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-828 *5 *3)) + (-4 *3 (-827 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-623 *4)) (-4 *4 (-356)) (-5 *2 (-1227 *4)) + (-5 *1 (-792 *4 *3)) (-4 *3 (-634 *4))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1112)) (-5 *3 (-142)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-219))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1 (-372))) (-5 *1 (-1013)))) + ((*1 *1 *1 *1) (-4 *1 (-1107)))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-894)) (-5 *1 (-764))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-295)) (-4 *2 (-1181)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-594 *1))) (-5 *3 (-623 *1)) (-4 *1 (-295)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-287 *1))) (-4 *1 (-295)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-287 *1)) (-4 *1 (-295))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *5 *3 *6)) - (-4 *3 (-1200 *5)) (-4 *6 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))))) + (-12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1182 *2)) + (-4 *2 (-1068)))) ((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-1068)) (-4 *2 (-825)) + (-5 *1 (-1182 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) + (-4 *7 (-825)) (-4 *8 (-1034 *5 *6 *7)) (-5 *2 (-623 *3)) + (-5 *1 (-574 *5 *6 *7 *8 *3)) (-4 *3 (-1077 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-4 *5 (-1018)) - (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))) - (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1200 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1063 (-747))) (-5 *6 (-747)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 - (-2 (|:| |contp| (-535)) - (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) - (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2897 (-535)) (|:| -2758 (-618 *3)))) (-5 *1 (-434 *3)) - (-4 *3 (-1200 (-535)))))) -(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-398 *3)) (-4 *3 (-542)))) - ((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| -4075 *4) (|:| -4290 (-535))))) - (-4 *4 (-1200 (-535))) (-5 *2 (-747)) (-5 *1 (-434 *4))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-618 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-535))))) - (-4 *2 (-542)) (-5 *1 (-398 *2)))) + (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) + (-5 *1 (-1046 *5 *6)) (-5 *3 (-623 (-925 *5))) + (-14 *6 (-623 (-1144))))) ((*1 *2 *3) + (-12 (-4 *4 (-13 (-300) (-145))) + (-5 *2 + (-623 (-2 (|:| -2553 (-1140 *4)) (|:| -1373 (-623 (-925 *4)))))) + (-5 *1 (-1046 *4 *5)) (-5 *3 (-623 (-925 *4))) + (-14 *5 (-623 (-1144))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) + (-5 *2 + (-623 (-2 (|:| -2553 (-1140 *5)) (|:| -1373 (-623 (-925 *5)))))) + (-5 *1 (-1046 *5 *6)) (-5 *3 (-623 (-925 *5))) + (-14 *6 (-623 (-1144)))))) +(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1013))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-816)) (-5 *4 (-1032)) (-5 *2 (-1008)) (-5 *1 (-815)))) + ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1008)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-623 (-372))) (-5 *5 (-623 (-818 (-372)))) + (-5 *6 (-623 (-309 (-372)))) (-5 *3 (-309 (-372))) (-5 *2 (-1008)) + (-5 *1 (-815)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-372))) + (-5 *5 (-623 (-818 (-372)))) (-5 *2 (-1008)) (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-372))) (-5 *2 (-1008)) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-309 (-372)))) (-5 *4 (-623 (-372))) + (-5 *2 (-1008)) (-5 *1 (-815))))) +(((*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-300))))) +(((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)) (-4 *2 (-535)))) + ((*1 *1 *1) (-4 *1 (-1029)))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |contp| (-535)) - (|:| -2758 (-618 (-2 (|:| |irr| *4) (|:| -2478 (-535))))))) - (-4 *4 (-1200 (-535))) (-5 *2 (-398 *4)) (-5 *1 (-434 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-430))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-430))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-430))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 "void"))) (-5 *1 (-429))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1009 (-48))) - (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) - (-5 *2 (-398 (-1136 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) - (-5 *2 - (-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) - (|:| -2958 (-112)))) - (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) - (-5 *2 (-398 (-1136 (-400 (-535))))) (-5 *1 (-428 *4 *5 *3)) - (-4 *3 (-1200 *5))))) + (-623 + (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 *2)) + (|:| |logand| (-1140 *2))))) + (-5 *4 (-623 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-356)) (-5 *1 (-569 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *4 (-542)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -1527 *4))) (-5 *1 (-942 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-623 (-400 *6))) (-5 *3 (-400 *6)) + (-4 *6 (-1203 *5)) (-4 *5 (-13 (-356) (-145) (-1011 (-550)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-623 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-554 *5 *6))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1144)) (-4 *4 (-1020)) (-4 *4 (-825)) + (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3521 (-550)))) + (-4 *1 (-423 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1020)) (-4 *4 (-825)) + (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3521 (-550)))) + (-4 *1 (-423 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| |var| (-594 *1)) (|:| -3521 (-550)))) + (-4 *1 (-423 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-865 *3)) (|:| -3521 (-749)))) + (-5 *1 (-865 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-922 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-2 (|:| |var| *5) (|:| -3521 (-749)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) + (-4 *7 (-922 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3521 (-550)))) + (-5 *1 (-923 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) + (-15 -2715 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-836))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-718 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) - (-5 *2 (-398 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-1230)) - (-5 *1 (-426 *3 *4)) (-4 *4 (-414 *3))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1068)) (-4 *5 (-1068)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-400 (-535))) - (-5 *1 (-426 *4 *3)) (-4 *3 (-414 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-414 *5)) - (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-1136 (-400 (-535)))) - (-5 *1 (-426 *5 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-356) (-145) (-1011 (-550)) (-1011 (-400 (-550))))) + (-4 *5 (-1203 *4)) (-5 *2 (-623 (-631 (-400 *5)))) + (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-1068)) (-4 *3 (-873 *6)) + (-5 *2 (-667 *3)) (-5 *1 (-670 *6 *3 *7 *4)) (-4 *7 (-366 *3)) + (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4342))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-535))))) - (-4 *2 (-13 (-823) (-21)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-535))))) - (-4 *2 (-13 (-823) (-21)))))) + (-12 (-4 *3 (-1020)) (-4 *4 (-1203 *3)) (-5 *1 (-162 *3 *4 *2)) + (-4 *2 (-1203 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) + (-4 *4 (-342)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) + (-4 *4 (-342)))) + ((*1 *1) (-4 *1 (-361))) + ((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1227 *4)) (-5 *1 (-519 *4)) + (-4 *4 (-342)))) + ((*1 *1 *1) (-4 *1 (-535))) ((*1 *1) (-4 *1 (-535))) + ((*1 *1 *1) (-5 *1 (-550))) ((*1 *1 *1) (-5 *1 (-749))) + ((*1 *2 *1) (-12 (-5 *2 (-878 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-550)) (-5 *2 (-878 *4)) (-5 *1 (-877 *4)) + (-4 *4 (-1068)))) + ((*1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-535)) (-4 *2 (-542))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1020)) + (-5 *1 (-828 *5 *2)) (-4 *2 (-827 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1203 *5)) + (-4 *5 (-13 (-27) (-423 *4))) + (-4 *4 (-13 (-825) (-542) (-1011 (-550)))) + (-4 *7 (-1203 (-400 *6))) (-5 *1 (-538 *4 *5 *6 *7 *2)) + (-4 *2 (-335 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) - (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-565 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1067)) (-5 *2 (-747))))) -(((*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-361))))) -(((*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-361)) (-4 *2 (-1067))))) + (-12 (-5 *4 (-623 (-623 *8))) (-5 *3 (-623 *8)) + (-4 *8 (-922 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) + (-4 *6 (-13 (-825) (-596 (-1144)))) (-4 *7 (-771)) (-5 *2 (-112)) + (-5 *1 (-897 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1164) (-414 *3))) - (-14 *4 (-1142)) (-14 *5 *2))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-749)) (-4 *2 (-1068)) + (-5 *1 (-656 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1181)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-4 *2 (-13 (-27) (-1164) (-414 *3) (-10 -8 (-15 -4300 ($ *4))))) - (-4 *4 (-821)) - (-4 *5 - (-13 (-1203 *2 *4) (-356) (-1164) - (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) - (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-954 *5)) (-14 *7 (-1142))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-4 *3 (-13 (-27) (-1164) (-414 *6) (-10 -8 (-15 -4300 ($ *7))))) - (-4 *7 (-821)) - (-4 *8 - (-13 (-1203 *3 *7) (-356) (-1164) - (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) - (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8)) - (-14 *10 (-1142))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-4 *3 (-13 (-27) (-1164) (-414 *6) (-10 -8 (-15 -4300 ($ *7))))) - (-4 *7 (-821)) - (-4 *8 - (-13 (-1203 *3 *7) (-356) (-1164) - (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) - (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8)) - (-14 *10 (-1142))))) + (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1181)) + (-14 *4 (-550))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1140 *1)) (-4 *1 (-985))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *2 - (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) - (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) - (-14 *6 (-1142)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-823)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) - ((*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1142)) (-5 *3 (-618 *1)) (-4 *1 (-414 *4)) (-4 *4 (-823)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) - (-5 *2 (-2 (|:| -4296 (-535)) (|:| |var| (-591 *1)))) (-4 *1 (-414 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-542)) (-5 *1 (-412 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1200 *4)) (-4 *4 (-1183)) - (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1200 (-400 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1224 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1224 *1)) (-4 *4 (-170)) - (-4 *1 (-363 *4 *5)) (-4 *5 (-1200 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) - (-4 *4 (-1200 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) - ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) - ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) - ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) - ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3))))) + (-12 (-5 *3 (-749)) (-5 *4 (-1227 *2)) (-4 *5 (-300)) + (-4 *6 (-965 *5)) (-4 *2 (-13 (-402 *6 *7) (-1011 *6))) + (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1203 *6))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-535))) + ((*1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1020)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) + (-5 *1 (-1041 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1126)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) (-5 *2 (-1232)) + (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1040 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) (((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) + (-12 (-4 *4 (-342)) (-5 *2 (-931 (-1140 *4))) (-5 *1 (-350 *4)) + (-5 *3 (-1140 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1194 (-550)))))) +(((*1 *2) + (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) (-4 *6 (-1203 (-400 *5))) + (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1009 *4)) (-4 *3 (-300)) - (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *6 (-403 *4 *5)) - (-14 *7 (-1224 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1224 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-962 *3)) - (-4 *5 (-1200 *4)) (-4 *3 (-300)) (-5 *1 (-408 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *1) - (-12 (-4 *2 (-300)) (-4 *3 (-962 *2)) (-4 *4 (-1200 *3)) - (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1009 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-1224 *2)) (-4 *5 (-300)) (-4 *6 (-962 *5)) - (-4 *2 (-13 (-403 *6 *7) (-1009 *6))) (-5 *1 (-406 *5 *6 *7 *2)) - (-4 *7 (-1200 *6))))) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)) - (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) - (-5 *2 (-665 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) - (-5 *2 (-665 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-398 *3)) (-4 *3 (-542))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-398 *4)) (-4 *4 (-542))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-535)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-398 *2)) (-4 *2 (-542))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-254)))) - ((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542))))) -(((*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890))))) -(((*1 *2 *3) - (-12 (-5 *3 (-535)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-890))))) -(((*1 *2 *3) - (-12 (-5 *3 (-535)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-890))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-747)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-747))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-747)))) - ((*1 *1 *1) (-4 *1 (-395)))) -(((*1 *1 *2) - (-12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145))) - (-5 *1 (-392 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1200 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-356) (-145))) - (-5 *2 (-618 (-2 (|:| -2484 (-747)) (|:| -4115 *4) (|:| |num| *4)))) - (-5 *1 (-392 *3 *4)) (-4 *4 (-1200 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-388))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-618 (-618 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-618 (-3 (|:| |array| (-618 *3)) (|:| |scalar| (-1142))))) - (-5 *6 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-618 (-618 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-618 (-3 (|:| |array| (-618 *3)) (|:| |scalar| (-1142))))) - (-5 *6 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-618 (-1142))) (-5 *5 (-1145)) (-5 *3 (-1142)) (-5 *2 (-1069)) - (-5 *1 (-388))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386))))) -(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-384))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-384)))) - ((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-384))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-384))))) -(((*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384))))) -(((*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384))))) -(((*1 *2 *1) - (-12 (-5 *2 (-835)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) - (-4 *5 (-170))))) -(((*1 *2 *1) - (-12 (-5 *2 (-835)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) - (-4 *5 (-170))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 (-400 (-917 (-535))))) (-5 *4 (-618 (-1142))) - (-5 *2 (-618 (-618 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-821) (-356))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 (-535)))) (-5 *2 (-618 *4)) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-821) (-356)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 (-166 (-535))))) (-5 *2 (-618 (-166 *4))) - (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-618 (-400 (-917 (-166 (-535)))))) (-5 *4 (-618 (-1142))) - (-5 *2 (-618 (-618 (-166 *5)))) (-5 *1 (-372 *5)) - (-4 *5 (-13 (-356) (-821)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-400 (-917 (-166 (-535)))))) - (-5 *2 (-618 (-618 (-286 (-917 (-166 *4)))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-356) (-821))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-286 (-400 (-917 (-166 (-535))))))) - (-5 *2 (-618 (-618 (-286 (-917 (-166 *4)))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-356) (-821))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-917 (-166 (-535))))) - (-5 *2 (-618 (-286 (-917 (-166 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-356) (-821))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-400 (-917 (-166 (-535)))))) - (-5 *2 (-618 (-286 (-917 (-166 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-356) (-821)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-535)) (-5 *1 (-371))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-219)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-371)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-371))))) -(((*1 *1 *1) (-5 *1 (-219))) ((*1 *1 *1) (-5 *1 (-371))) - ((*1 *1) (-5 *1 (-371)))) -(((*1 *1 *1) (-5 *1 (-219))) - ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) - (-4 *4 (-380)))) - ((*1 *1 *1) (-5 *1 (-371))) ((*1 *1) (-5 *1 (-371)))) -(((*1 *1) (-5 *1 (-219))) ((*1 *1) (-5 *1 (-371)))) -(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337))))))) + (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1062 (-818 (-219)))) (-5 *2 (-219)) (-5 *1 (-298))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337))))))) + (-12 (-5 *2 (-847)) (-5 *3 (-623 (-256))) (-5 *1 (-254))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1227 (-1227 (-550)))) (-5 *1 (-458))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170))))) -(((*1 *2 *1) - (-12 (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-823)) (-5 *2 (-112)))) + (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1020) (-825))) + (-5 *1 (-217 *3 *4)) (-14 *4 (-623 (-1144)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-825)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-1152 *4)) + (-5 *3 (-623 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-594 *4)) (-4 *4 (-825)) (-4 *2 (-825)) + (-5 *1 (-593 *2 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-667 *5)) (-4 *5 (-1020)) (-5 *1 (-1024 *3 *4 *5)) + (-14 *3 (-749)) (-14 *4 (-749))))) +(((*1 *2 *3) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1203 (-48))))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1178)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-535)) (|has| *1 (-6 -4337)) (-4 *1 (-365 *3)) (-4 *3 (-1178))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4337)) (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-365 *3)) - (-4 *3 (-1178))))) -(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1224 *1)) (-4 *1 (-360 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1136 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1136 *3))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-618 (-1224 *4))) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) - ((*1 *2) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) - (-5 *2 (-618 (-1224 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1136 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1136 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) -(((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-825)))) + ((*1 *2 *2) + (-12 (-5 *2 (-569 *4)) (-4 *4 (-13 (-29 *3) (-1166))) + (-4 *3 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) + (-5 *1 (-567 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-569 (-400 (-925 *3)))) + (-4 *3 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) + (-5 *1 (-572 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1203 *5)) (-4 *5 (-356)) + (-5 *2 (-2 (|:| -2005 *3) (|:| |special| *3))) (-5 *1 (-706 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1227 *5)) (-4 *5 (-356)) (-4 *5 (-1020)) + (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1002 *5)) + (-5 *3 (-623 (-667 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1227 (-1227 *5))) (-4 *5 (-356)) (-4 *5 (-1020)) + (-5 *2 (-623 (-623 (-667 *5)))) (-5 *1 (-1002 *5)) + (-5 *3 (-623 (-667 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-623 *1)) (-4 *1 (-1112)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-623 *1)) (-4 *1 (-1112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-916 *5)) (-4 *5 (-1020)) (-5 *2 (-749)) + (-5 *1 (-1132 *4 *5)) (-14 *4 (-894)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-749))) (-5 *3 (-749)) (-5 *1 (-1132 *4 *5)) + (-14 *4 (-894)) (-4 *5 (-1020)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-749))) (-5 *3 (-916 *5)) (-4 *5 (-1020)) + (-5 *1 (-1132 *4 *5)) (-14 *4 (-894))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *5 (-1126)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1008)) + (-5 *1 (-729))))) +(((*1 *1) (-5 *1 (-155)))) +(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) + ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) + (-14 *5 (-1144)) (-5 *2 (-550)) (-5 *1 (-1082 *4 *5))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-726))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1166) (-975)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1218 *4)) (-5 *1 (-1220 *4 *2)) + (-4 *4 (-38 (-400 (-550))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-550)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1181)) + (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4343)) (-4 *1 (-119 *3)) + (-4 *3 (-1181)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4343)) (-4 *1 (-119 *3)) + (-4 *3 (-1181)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-207 *4 *2)) (-14 *4 (-894)) + (-4 *2 (-1068)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1068)) + (-4 *2 (-1181)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1144)) (-5 *1 (-612)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1194 (-550))) (|has| *1 (-6 -4343)) (-4 *1 (-629 *2)) + (-4 *2 (-1181)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-623 (-550))) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4343)) (-4 *1 (-983 *2)) + (-4 *2 (-1181)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) + (-4 *2 (-1181)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4343)) (-4 *1 (-1215 *3)) + (-4 *3 (-1181)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) + (-4 *2 (-1181))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3) + (-12 (-4 *1 (-778)) + (-5 *3 + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *2 (-1008))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1124)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1067)) (-4 *4 (-1067)))) - ((*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1124)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))) -(((*1 *1 *1) (-4 *1 (-171))) - ((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))) + (-12 (-5 *2 (-623 (-1180))) (-5 *3 (-1180)) (-5 *1 (-659))))) +(((*1 *2) + (-12 (-5 *2 (-894)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *2) + (-12 (-5 *2 (-894)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-542)) + (-5 *2 (-2 (|:| -1340 (-667 *5)) (|:| |vec| (-1227 (-623 (-894)))))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-894)) (-4 *3 (-634 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) + (-5 *2 (-1008)) (-5 *1 (-732))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-623 *3)) + (-5 *1 (-1197 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1068)) (-4 *2 (-361))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-623 (-1140 *7))) (-5 *3 (-1140 *7)) + (-4 *7 (-922 *5 *6 *4)) (-4 *5 (-882)) (-4 *6 (-771)) + (-4 *4 (-825)) (-5 *1 (-879 *5 *6 *4 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-1124))))) -(((*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))) + (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-623 (-169)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *3)) + (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) (((*1 *2 *3) - (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) - (-4 *2 - (-13 (-395) - (-10 -7 (-15 -4300 (*2 *4)) (-15 -2121 ((-890) *2)) - (-15 -2123 ((-1224 *2) (-890))) (-15 -4271 (*2 *2))))) - (-5 *1 (-350 *2 *4))))) + (-12 (-5 *2 (-1124 (-550))) (-5 *1 (-1128 *4)) (-4 *4 (-1020)) + (-5 *3 (-550))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-653 *2)) (-4 *2 (-1020)) (-4 *2 (-1068))))) +(((*1 *1 *1 *1) (-5 *1 (-129)))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-623 (-1140 *11))) (-5 *3 (-1140 *11)) + (-5 *4 (-623 *10)) (-5 *5 (-623 *8)) (-5 *6 (-623 (-749))) + (-5 *7 (-1227 (-623 (-1140 *8)))) (-4 *10 (-825)) + (-4 *8 (-300)) (-4 *11 (-922 *8 *9 *10)) (-4 *9 (-771)) + (-5 *1 (-686 *9 *10 *8 *11))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-922 *4 *5 *6)) (-4 *4 (-300)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *2))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) + (-5 *3 (-623 (-550))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) + (-5 *3 (-623 (-550)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-411 *4) *4)) (-4 *4 (-542)) (-5 *2 (-411 *4)) + (-5 *1 (-412 *4)))) + ((*1 *1 *1) (-5 *1 (-899))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-899)))) + ((*1 *1 *1) (-5 *1 (-900))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) + (-5 *4 (-400 (-550))) (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) + (-5 *1 (-993 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) + (-5 *4 (-400 (-550))) (-5 *1 (-994 *3)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2671 (-400 (-550))) (|:| -2682 (-400 (-550))))) + (-5 *1 (-994 *3)) (-4 *3 (-1203 (-400 (-550)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1030 *2 *3)) + (-4 *3 (-1203 *2))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-550)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-749)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-894)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-749)) + (-4 *4 (-170)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-894)) (-5 *1 (-155)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166))) + (-5 *1 (-221 *3)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1181)) (-4 *2 (-705)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1181)) (-4 *2 (-705)))) + ((*1 *1 *2 *1) + (-12 (-5 *1 (-287 *2)) (-4 *2 (-1080)) (-4 *2 (-1181)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-287 *2)) (-4 *2 (-1080)) (-4 *2 (-1181)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-825)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-623 (-1144))) (-4 *4 (-170)) + (-4 *6 (-232 (-3191 *3) (-749))) + (-14 *7 + (-1 (-112) (-2 (|:| -2922 *5) (|:| -3521 *6)) + (-2 (|:| -2922 *5) (|:| -3521 *6)))) + (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-825)) + (-4 *2 (-922 *4 *6 (-838 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) + (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-526))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-579 *3)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1020)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1020)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1027)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-662 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-665 *3 *2 *4)) (-4 *3 (-1020)) (-4 *2 (-366 *3)) + (-4 *4 (-366 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-665 *3 *4 *2)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *2 (-366 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-550)) (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-366 *2)) + (-4 *4 (-366 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-699))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1068)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1227 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-542)) + (-5 *1 (-942 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1027)))) + ((*1 *1 *1 *1) (-4 *1 (-1080))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1091 *3 *4 *2 *5)) (-4 *4 (-1020)) (-4 *2 (-232 *3 *4)) + (-4 *5 (-232 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1091 *3 *4 *5 *2)) (-4 *4 (-1020)) (-4 *5 (-232 *3 *4)) + (-4 *2 (-232 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-825)) (-5 *1 (-1094 *3 *4 *2)) + (-4 *2 (-922 *3 (-522 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-916 (-219))) (-5 *3 (-219)) (-5 *1 (-1177)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-705)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1181)) (-4 *2 (-705)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-550)) (-4 *1 (-1225 *3)) (-4 *3 (-1181)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1250 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-821))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-550)))) + (-4 *2 (-170))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-735))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-799)) (-5 *4 (-52)) (-5 *2 (-1232)) (-5 *1 (-809))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-929 (-1136 *4))) (-5 *1 (-349 *4)) - (-5 *3 (-1136 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (-12 (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *2 (-1140 *4)) + (-5 *1 (-523 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-823)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4342)) (-4 *1 (-481 *4)) + (-4 *4 (-1181)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1181)) (-4 *2 (-825)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1181)))) + ((*1 *2 *2) + (-12 (-5 *2 (-623 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1020)) (-4 *5 (-771)) (-4 *3 (-825)) + (-4 *6 (-1034 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -1608 *1) (|:| |upper| *1))) + (-4 *1 (-949 *4 *5 *3 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-129)))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) + (-5 *2 (-623 (-2 (|:| -2027 *1) (|:| -3257 (-623 *7))))) + (-5 *3 (-623 *7)) (-4 *1 (-1174 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-667 (-400 (-925 (-550))))) + (-5 *2 + (-623 + (-2 (|:| |radval| (-309 (-550))) (|:| |radmult| (-550)) + (|:| |radvect| (-623 (-667 (-309 (-550)))))))) + (-5 *1 (-1004))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1068)) (-4 *6 (-1068)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *5 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-770)))) + ((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1020)) (-5 *2 (-749)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *6)) (-4 *1 (-922 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-749))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-922 *4 *5 *3)) (-4 *4 (-1020)) (-4 *5 (-771)) + (-4 *3 (-825)) (-5 *2 (-749))))) +(((*1 *2 *1) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *1) (-5 *1 (-219))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *1 *1) (-5 *1 (-372))) ((*1 *1) (-5 *1 (-372)))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1020)) (-4 *3 (-825)) + (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-623 (-749))))) + ((*1 *2 *1) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-623 (-749)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1146 (-400 (-550)))) (-5 *2 (-400 (-550))) + (-5 *1 (-184))))) (((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-623 (-1144))) (-5 *2 (-1232)) (-5 *1 (-1147)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-1144))) (-5 *3 (-1144)) (-5 *2 (-1232)) + (-5 *1 (-1147)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-623 (-1144))) (-5 *3 (-1144)) (-5 *2 (-1232)) + (-5 *1 (-1147))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) + (-5 *1 (-745 *3 *4)) (-4 *3 (-687 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *3 (-1020)) + (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-827 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1020)) + (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-828 *5 *3)) + (-4 *3 (-827 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) (((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-623 (-473 *4 *5))) (-14 *4 (-623 (-1144))) + (-4 *5 (-444)) (-5 *2 (-623 (-241 *4 *5))) (-5 *1 (-611 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-542)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 (-1240 *4 *5 *6 *7))) + (-5 *1 (-1240 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-623 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1034 *6 *7 *8)) (-4 *6 (-542)) + (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-623 (-1240 *6 *7 *8 *9))) + (-5 *1 (-1240 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-5 *1 (-569 *2)) (-4 *2 (-356))))) (((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) + (-12 + (-5 *3 + (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) + (-241 *4 (-400 (-550))))) + (-14 *4 (-623 (-1144))) (-14 *5 (-749)) (-5 *2 (-112)) + (-5 *1 (-496 *4 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-155)) (-5 *2 (-1232)) (-5 *1 (-1229))))) (((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 (-877 *3)) (|:| -2483 (-1086)))))) - (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) - ((*1 *2) - (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))) - (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1136 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))) - (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890))))) -(((*1 *2) - (-12 (-5 *2 (-665 (-877 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890)))) - ((*1 *2) - (-12 (-5 *2 (-665 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) - (-14 *4 - (-3 (-1136 *3) (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086))))))))) - ((*1 *2) - (-12 (-5 *2 (-665 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890))))) + (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-410 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1110 *3 *4)) (-14 *3 (-894)) (-4 *4 (-356)) + (-5 *1 (-966 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) - (-4 *4 (-343)) (-5 *2 (-747)) (-5 *1 (-340 *4)))) - ((*1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) - ((*1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) - (-14 *4 - (-3 (-1136 *3) (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086))))))))) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)) + (-5 *1 (-792 *4 *5)) (-4 *5 (-634 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-749)) (-4 *5 (-356)) + (-5 *2 (-667 *5)) (-5 *1 (-792 *5 *6)) (-4 *6 (-634 *5))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1011 (-550)))) + (-4 *5 (-1203 *4)) + (-5 *2 (-2 (|:| -1653 (-400 *5)) (|:| |coeff| (-400 *5)))) + (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) ((*1 *2) - (-12 (-5 *2 (-747)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890))))) -(((*1 *2) - (-12 (-4 *1 (-343)) - (-5 *2 (-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-535)) (-5 *2 (-1151 (-890) (-747)))))) -(((*1 *1) (-4 *1 (-343)))) -(((*1 *2) - (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) + (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-623 (-1144))) + (-14 *4 (-623 (-1144))) (-4 *5 (-380))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-423 *3))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) + (-4 *4 (-13 (-1020) (-859 *3) (-825) (-596 (-865 *3)))) + (-5 *2 (-623 (-1144))) (-5 *1 (-1044 *3 *4 *5)) + (-4 *5 (-13 (-423 *4) (-859 *3) (-596 (-865 *3))))))) +(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-3 (-1136 *4) (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086))))))) - (-5 *1 (-340 *4)) (-4 *4 (-343))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-890)) - (-5 *2 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) - (-5 *1 (-340 *4)) (-4 *4 (-343))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-550)))) + (-4 *4 (-13 (-1203 *3) (-542) (-10 -8 (-15 -3139 ($ $ $))))) + (-4 *3 (-542)) (-5 *1 (-1206 *3 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-887 *3)) (-4 *3 (-300))))) +(((*1 *2 *3) + (-12 (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-444)) (-4 *4 (-542)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1527 *4))) + (-5 *1 (-942 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) +(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1029)))) + ((*1 *1 *1) + (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-623 (-1144))) + (-14 *3 (-623 (-1144))) (-4 *4 (-380)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)) (-4 *2 (-1029)))) + ((*1 *1 *1) (-4 *1 (-823))) + ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)) (-4 *2 (-1029)))) + ((*1 *1 *1) (-4 *1 (-1029))) ((*1 *1 *1) (-4 *1 (-1107)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-90 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1218 *4)) + (-4 *4 (-38 (-400 (-550)))) + (-5 *2 (-1 (-1124 *4) (-1124 *4) (-1124 *4))) (-5 *1 (-1220 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1140 *1)) (-4 *1 (-985))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) + (-4 *8 (-825)) (-4 *9 (-1034 *6 *7 *8)) + (-5 *2 + (-2 (|:| -1721 (-623 *9)) (|:| -3223 *4) (|:| |ineq| (-623 *9)))) + (-5 *1 (-961 *6 *7 *8 *9 *4)) (-5 *3 (-623 *9)) + (-4 *4 (-1040 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) + (-4 *8 (-825)) (-4 *9 (-1034 *6 *7 *8)) + (-5 *2 + (-2 (|:| -1721 (-623 *9)) (|:| -3223 *4) (|:| |ineq| (-623 *9)))) + (-5 *1 (-1075 *6 *7 *8 *9 *4)) (-5 *3 (-623 *9)) + (-4 *4 (-1040 *6 *7 *8 *9))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-542))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-716 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-1068)))) + ((*1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1203 *6)) + (-4 *6 (-13 (-27) (-423 *5))) + (-4 *5 (-13 (-825) (-542) (-1011 (-550)))) (-4 *8 (-1203 (-400 *7))) + (-5 *2 (-569 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) + (-4 *3 (-335 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) - (-4 *4 (-343)) (-5 *2 (-665 *4)) (-5 *1 (-340 *4))))) + (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-186)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-293)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-298))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) + (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-922 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-623 *1)) (-4 *1 (-1040 *4 *5 *6 *3)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-623 *1)) (-5 *3 (-623 *7)) (-4 *1 (-1040 *4 *5 *6 *7)) + (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-623 *7)) (-4 *7 (-1034 *4 *5 *6)) (-4 *4 (-444)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-1040 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-623 *1)) + (-4 *1 (-1040 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-878 *3))) (-4 *3 (-1068)) (-5 *1 (-877 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) - (-5 *2 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) - (-5 *1 (-340 *4))))) + (-12 (-5 *2 (-594 *4)) (-5 *1 (-593 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-825))))) +(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1013))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) + (-5 *2 (-1008)) (-5 *1 (-729))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1068)) (-4 *3 (-873 *5)) (-5 *2 (-667 *3)) + (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-366 *3)) + (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4342))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-929 (-1086))) - (-5 *1 (-340 *4))))) -(((*1 *2) - (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-337 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890)))) - ((*1 *2) - (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-1136 *3)))) - ((*1 *2) - (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-890))))) -(((*1 *2) - (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) - (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)))) ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-747))))) -(((*1 *2) - (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) - (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + (-12 (-4 *4 (-170)) (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)) + (-5 *1 (-401 *3 *4 *5)) (-4 *3 (-402 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) + (-5 *2 (-667 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1144)) + (-5 *2 (-550)) (-5 *1 (-1082 *4 *5))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-495 (-400 (-550)) (-234 *4 (-749)) (-838 *3) + (-241 *3 (-400 (-550))))) + (-14 *3 (-623 (-1144))) (-14 *4 (-749)) (-5 *1 (-496 *3 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1183)) (-4 *5 (-1200 *3)) (-4 *6 (-1200 (-400 *5))) - (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1144)))) + (-4 *6 (-771)) (-5 *2 (-623 (-623 (-550)))) + (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-550)) (-4 *7 (-922 *4 *6 *5))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-726))))) +(((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1126)) (-5 *1 (-764))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-847)) (-5 *3 (-623 (-256))) (-5 *1 (-254))))) +(((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)) (-4 *2 (-535)))) + ((*1 *1 *1) (-4 *1 (-1029)))) (((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) - (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) + (-12 (-4 *4 (-825)) (-5 *2 (-623 (-623 (-623 *4)))) + (-5 *1 (-1152 *4)) (-5 *3 (-623 (-623 *4)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-623 (-2 (|:| -3338 (-1140 *6)) (|:| -3521 (-550))))) + (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-922 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1020))))) +(((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1020)) (-4 *2 (-356))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-623 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-550))))) + (-4 *2 (-542)) (-5 *1 (-411 *2)))) ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) - (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-550)) + (|:| -1877 (-623 (-2 (|:| |irr| *4) (|:| -4245 (-550))))))) + (-4 *4 (-1203 (-550))) (-5 *2 (-411 *4)) (-5 *1 (-434 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1140 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229)))) + ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1229))))) +(((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-894)) (-5 *2 (-372)) (-5 *1 (-763 *3)) + (-4 *3 (-596 *2)))) ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) - (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-925 *4)) (-4 *4 (-1020)) (-4 *4 (-596 *2)) + (-5 *2 (-372)) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-925 *5)) (-5 *4 (-894)) (-4 *5 (-1020)) + (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) - (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5))))) + (-12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) (-4 *4 (-596 *2)) + (-5 *2 (-372)) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) + (-4 *4 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-309 *5)) (-5 *4 (-894)) (-4 *5 (-542)) (-4 *5 (-825)) + (-4 *5 (-596 *2)) (-5 *2 (-372)) (-5 *1 (-763 *5))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) + (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-732))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1227 (-1227 (-550)))) (-5 *3 (-894)) (-5 *1 (-458))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) - (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) + (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-423 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) - (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) - (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) - (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) - (-5 *2 (-2 (|:| |num| (-1224 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) - (-5 *2 (-2 (|:| |num| (-1224 *4)) (|:| |den| *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1200 *4)) (-4 *4 (-1183)) - (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1200 (-400 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183)) - (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) - (-5 *2 (-2 (|:| |num| (-665 *5)) (|:| |den| *5)))))) + (|partial| -12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) + (-4 *3 (-1068)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-623 *1)) (-4 *1 (-922 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) + (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-623 *3)) + (-5 *1 (-923 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) + (-15 -2715 (*7 $)))))))) +(((*1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-361)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-735))))) +(((*1 *1 *1) + (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-825)) + (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-922 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-550))) (-5 *1 (-1087)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1068)) (-4 *5 (-1068)) + (-5 *2 (-1 *5)) (-5 *1 (-661 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-916 *4)) (-4 *4 (-1020)) (-5 *1 (-1132 *3 *4)) + (-14 *3 (-894))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1185)) (-4 *5 (-1203 *3)) (-4 *6 (-1203 (-400 *5))) + (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1164) (-973))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 (-400 *2))) (-4 *2 (-1200 *4)) - (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183)) - (-4 *4 (-1200 (-400 *2))) (-4 *2 (-1200 *3))))) + (-12 (-4 *4 (-1020)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) + (-4 *3 (-1203 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-438)) (-5 *3 (-550))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 (-400 *2))) (-4 *2 (-1200 *4)) - (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183)) - (-4 *4 (-1200 (-400 *2))) (-4 *2 (-1200 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-1183)) - (-4 *6 (-1200 (-400 *5))) - (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-335 *4 *5 *6))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *5 (-1183)) (-4 *6 (-1200 *5)) - (-4 *7 (-1200 (-400 *6))) (-5 *2 (-618 (-917 *5))) - (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183)) - (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-4 *4 (-356)) - (-5 *2 (-618 (-917 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) - (-5 *2 (-618 (-618 *4))) (-5 *1 (-334 *3 *4 *5 *6)) - (-4 *3 (-335 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-618 (-618 *3)))))) + (-12 (-5 *2 (-1 (-916 *3) (-916 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-356) (-1166) (-975)))))) +(((*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-825))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) - (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) - (-14 *4 (-618 (-1142))) (-4 *5 (-380))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-356)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) - (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-535)) (-4 *2 (-356)) (-4 *4 (-1200 *2)) - (-4 *5 (-1200 (-400 *4))) (-4 *1 (-329 *2 *4 *5 *6)) - (-4 *6 (-335 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-356)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))) - (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) - (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) - (-4 *1 (-329 *3 *4 *5 *6))))) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) - (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-142))))) +(((*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-52)) (-5 *1 (-809))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-170)) (-5 *1 (-777 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) - (-5 *2 (-1224 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-623 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1144)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *3 *5 *6 *7)) + (-4 *3 (-596 (-526))) (-4 *5 (-1181)) (-4 *6 (-1181)) + (-4 *7 (-1181)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *3 *5 *6)) + (-4 *3 (-596 (-526))) (-4 *5 (-1181)) (-4 *6 (-1181))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-542) (-145))) + (-5 *2 (-2 (|:| -2671 *3) (|:| -2682 *3))) (-5 *1 (-1197 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *1 *1) + (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1020) (-825))) + (-14 *3 (-623 (-1144)))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) + (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) + (-5 *1 (-1143))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-1068)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1068)) (-5 *2 (-112)) + (-5 *1 (-1182 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-547))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *1 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-940))))) +(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-323))))) +(((*1 *1) (-5 *1 (-155)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-542)) (-4 *3 (-1020)) + (-5 *2 (-2 (|:| -3526 *1) (|:| -2786 *1))) (-4 *1 (-827 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1020)) + (-5 *2 (-2 (|:| -3526 *3) (|:| -2786 *3))) (-5 *1 (-828 *5 *3)) + (-4 *3 (-827 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) - (-5 *2 (-1224 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325))))) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1068)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-1034 *4 *5 *6)) (-4 *4 (-542)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-950 *4 *5 *6 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *3 (-623 (-550))) + (-5 *1 (-856))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-823))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1058 (-917 (-535)))) (-5 *3 (-917 (-535))) (-5 *1 (-323)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1058 (-917 (-535)))) (-5 *1 (-323))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-670))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-323)))) - ((*1 *1) (-5 *1 (-323)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-5 *1 (-323))))) -(((*1 *1) (-5 *1 (-323)))) -(((*1 *1) (-5 *1 (-323)))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-323))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1142)) (-5 *1 (-323))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1218 *4)) (-5 *1 (-1220 *4 *2)) + (-4 *4 (-38 (-400 (-550))))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) + (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) + (-5 *1 (-1143))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-865 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1068)) + (-4 *5 (-1181)) (-5 *1 (-863 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-865 *4)) (-5 *3 (-623 (-1 (-112) *5))) (-4 *4 (-1068)) + (-4 *5 (-1181)) (-5 *1 (-863 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-865 *5)) (-5 *3 (-623 (-1144))) + (-5 *4 (-1 (-112) (-623 *6))) (-4 *5 (-1068)) (-4 *6 (-1181)) + (-5 *1 (-863 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1181)) (-4 *4 (-825)) + (-5 *1 (-910 *4 *2 *5)) (-4 *2 (-423 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-623 (-1 (-112) *5))) (-4 *5 (-1181)) (-4 *4 (-825)) + (-5 *1 (-910 *4 *2 *5)) (-4 *2 (-423 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1144)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1181)) + (-5 *2 (-309 (-550))) (-5 *1 (-911 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1144)) (-5 *4 (-623 (-1 (-112) *5))) (-4 *5 (-1181)) + (-5 *2 (-309 (-550))) (-5 *1 (-911 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-623 (-1144))) (-5 *3 (-1 (-112) (-623 *6))) + (-4 *6 (-13 (-423 *5) (-859 *4) (-596 (-865 *4)))) (-4 *4 (-1068)) + (-4 *5 (-13 (-1020) (-859 *4) (-825) (-596 (-865 *4)))) + (-5 *1 (-1044 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-899))))) (((*1 *2 *1) (-12 (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") - (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") - (|:| |Goto| "goto") (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-323))))) + (-623 + (-2 (|:| |scalar| (-400 (-550))) (|:| |coeff| (-1140 *3)) + (|:| |logand| (-1140 *3))))) + (-5 *1 (-569 *3)) (-4 *3 (-356))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-58 *3)) (-4 *3 (-1181)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-58 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-5 *2 (-1232)) (-5 *1 (-1147)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1144)) + (-5 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *2 (-1232)) + (-5 *1 (-1147)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1144)) + (-5 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) (-5 *2 (-1232)) + (-5 *1 (-1147))))) +(((*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-825)) (-4 *2 (-1020)))) + ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542))))) +(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-659)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-943)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1042)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1086))))) +(((*1 *1 *2) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-623 *6)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-878 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1203 *3)) + (-4 *3 (-13 (-356) (-145) (-1011 (-550)))) (-5 *1 (-554 *3 *4))))) +(((*1 *1 *1) (-5 *1 (-1143))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-309 (-550))) (|:| -3260 (-309 (-372))) + (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1143)))) + (-5 *1 (-1143))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1124 (-550))) (-5 *1 (-1128 *4)) (-4 *4 (-1020)) + (-5 *3 (-550))))) +(((*1 *2 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-1232)) (-5 *1 (-839 *4 *5 *6 *7)) + (-4 *4 (-1020)) (-14 *5 (-623 (-1144))) (-14 *6 (-623 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-749)) (-4 *4 (-1020)) (-4 *5 (-825)) (-4 *6 (-771)) + (-14 *8 (-623 *5)) (-5 *2 (-1232)) + (-5 *1 (-1239 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-922 *4 *6 *5)) + (-14 *9 (-623 *3)) (-14 *10 *3)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-985)) (-5 *2 (-836))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4342)) (-4 *1 (-481 *4)) + (-4 *4 (-1181)) (-5 *2 (-112))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) + (-2 (|:| |var| (-1144)) + (|:| |arrayIndex| (-623 (-925 (-550)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) + (-2 (|:| |var| (-1144)) (|:| |rand| (-836)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1141)) (|:| |thenClause| (-323)) + (-2 (|:| |switch| (-1143)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| - (-2 (|:| -3745 (-112)) - (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) - (|:| |blockBranch| (-618 (-323))) (|:| |commentBranch| (-618 (-1124))) - (|:| |callBranch| (-1124)) + (-2 (|:| -2902 (-112)) + (|:| -3625 + (-2 (|:| |ints2Floats?| (-112)) (|:| -1810 (-836)))))) + (|:| |blockBranch| (-623 (-323))) + (|:| |commentBranch| (-623 (-1126))) (|:| |callBranch| (-1126)) (|:| |forBranch| - (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) - (|:| -3567 (-323)))) - (|:| |labelBranch| (-1086)) - (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 (-323)))) + (-2 (|:| -3170 (-1060 (-925 (-550)))) + (|:| |span| (-925 (-550))) (|:| -1925 (-323)))) + (|:| |labelBranch| (-1088)) + (|:| |loopBranch| (-2 (|:| |switch| (-1143)) (|:| -1925 (-323)))) (|:| |commonBranch| - (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) - (|:| |printBranch| (-618 (-835))))) + (-2 (|:| -1916 (-1144)) (|:| |contents| (-623 (-1144))))) + (|:| |printBranch| (-623 (-836))))) (-5 *1 (-323))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-323))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-323))))) -(((*1 *2 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323))))) -(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1136 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356))))) -(((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) - (-5 *2 (-1136 *3)))) +(((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1181))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-5 *2 (-623 (-1144))) (-5 *1 (-204)) + (-5 *3 (-1144)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-309 (-219))) (-5 *4 (-749)) (-5 *2 (-623 (-1144))) + (-5 *1 (-260)))) ((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-747)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) - (-4 *3 (-170))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-535)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-130))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)) (-4 *3 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-535)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1018)) - (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-921 *2 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1136 *7)) (-5 *3 (-535)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) - (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *1 (-314 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1136 *6)) (-4 *6 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) - (-5 *2 (-1136 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1136 *7)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) - (-4 *6 (-1018)) (-5 *2 (-1136 *6)) (-5 *1 (-314 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-5 *5 (-618 *8)) (-4 *7 (-823)) - (-4 *8 (-1018)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-1136 *8)) - (-5 *1 (-314 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-400 (-535))) (-5 *1 (-312 *3 *4 *5)) - (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) - (-5 *6 (-535)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) - (-5 *6 (-535)) (-5 *7 (-1124)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) - (-5 *6 (-219)) (-5 *7 (-535)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) - (-5 *6 (-219)) (-5 *7 (-535)) (-5 *8 (-1124)) (-5 *2 (-1174 (-898))) - (-5 *1 (-311))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-286 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) - (-4 *5 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-618 *7)) (-4 *7 (-414 *6)) - (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-618 (-286 *7))) (-5 *4 (-618 (-113))) (-5 *5 (-286 *7)) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-618 (-286 *8))) (-5 *4 (-618 (-113))) (-5 *5 (-286 *8)) - (-5 *6 (-618 *8)) (-4 *8 (-414 *7)) - (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-618 *7)) (-5 *4 (-618 (-113))) (-5 *5 (-286 *7)) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-113))) (-5 *6 (-618 (-286 *8))) - (-4 *8 (-414 *7)) (-5 *5 (-286 *8)) - (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-286 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) - (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) - (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) - (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-5 *6 (-618 *3)) (-4 *3 (-414 *7)) - (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) - (-5 *1 (-310 *7 *3))))) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *2 (-623 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 *3)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-866 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1020)) + (-5 *2 (-623 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-542)) (-4 *3 (-823))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-535)) (-5 *1 (-307 *3)) (-4 *3 (-542)) (-4 *3 (-823))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-747))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-300)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) - (-4 *1 (-300))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-300))))) -(((*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-821)) (-5 *1 (-297 *3))))) + (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-825)) + (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-219))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) - (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-400 (-535))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-623 (-1144))) (-4 *5 (-542)) + (-5 *2 (-623 (-623 (-287 (-400 (-925 *5)))))) (-5 *1 (-748 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-925 *4))) (-4 *4 (-542)) + (-5 *2 (-623 (-623 (-287 (-400 (-925 *4)))))) (-5 *1 (-748 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-667 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2437 (-623 *6))) + *7 *6)) + (-4 *6 (-356)) (-4 *7 (-634 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1227 *6) "failed")) + (|:| -2437 (-623 (-1227 *6))))) + (-5 *1 (-791 *6 *7)) (-5 *4 (-1227 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020))))) (((*1 *2 *3) + (-12 (-14 *4 (-623 (-1144))) (-4 *5 (-444)) + (-5 *2 + (-2 (|:| |glbase| (-623 (-241 *4 *5))) (|:| |glval| (-623 (-550))))) + (-5 *1 (-611 *4 *5)) (-5 *3 (-623 (-241 *4 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-823) (-356))) (-5 *2 (-112)) (-5 *1 (-1030 *4 *3)) + (-4 *3 (-1203 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-550)))) + (-4 *2 (-170))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-4 *1 (-149 *3)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))) - (-5 *2 (-1006)) (-5 *1 (-296))))) + (-5 *2 (-623 (-2 (|:| -3521 (-749)) (|:| -3335 *4) (|:| |num| *4)))) + (-4 *4 (-1203 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-5 *3 (-623 (-925 (-550)))) (-5 *4 (-112)) (-5 *1 (-430)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-5 *3 (-623 (-1144))) (-5 *4 (-112)) (-5 *1 (-430)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1124 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-170)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) + (-4 *4 (-170)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) + (-4 *4 (-170)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) + (-4 *4 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 (-623 *3)))) (-4 *3 (-1068)) + (-5 *1 (-653 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-692 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-1068)) + (-14 *4 + (-1 (-112) (-2 (|:| -2922 *2) (|:| -3521 *3)) + (-2 (|:| -2922 *2) (|:| -3521 *3)))))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-846 *2 *3)) (-4 *2 (-1181)) (-4 *3 (-1181)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-2 (|:| -2763 (-1144)) (|:| -2119 *4)))) + (-4 *4 (-1068)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1068)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 *5)) (-4 *5 (-13 (-1068) (-34))) + (-5 *2 (-623 (-1108 *3 *5))) (-5 *1 (-1108 *3 *5)) + (-4 *3 (-13 (-1068) (-34))))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-2 (|:| |val| *4) (|:| -3223 *5)))) + (-4 *4 (-13 (-1068) (-34))) (-4 *5 (-13 (-1068) (-34))) + (-5 *2 (-623 (-1108 *4 *5))) (-5 *1 (-1108 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3223 *4))) + (-4 *3 (-13 (-1068) (-34))) (-4 *4 (-13 (-1068) (-34))) + (-5 *1 (-1108 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-1068) (-34))) + (-5 *1 (-1109 *2 *3)) (-4 *2 (-13 (-1068) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-623 (-1108 *2 *3))) (-4 *2 (-13 (-1068) (-34))) + (-4 *3 (-13 (-1068) (-34))) (-5 *1 (-1109 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-623 (-1109 *2 *3))) (-5 *1 (-1109 *2 *3)) + (-4 *2 (-13 (-1068) (-34))) (-4 *3 (-13 (-1068) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1108 *3 *4)) (-4 *3 (-13 (-1068) (-34))) + (-4 *4 (-13 (-1068) (-34))) (-5 *1 (-1109 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-623 *10)) (-5 *5 (-112)) (-4 *10 (-1040 *6 *7 *8 *9)) + (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *9 (-1034 *6 *7 *8)) + (-5 *2 + (-623 + (-2 (|:| -1721 (-623 *9)) (|:| -3223 *10) (|:| |ineq| (-623 *9))))) + (-5 *1 (-961 *6 *7 *8 *9 *10)) (-5 *3 (-623 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-623 *10)) (-5 *5 (-112)) (-4 *10 (-1040 *6 *7 *8 *9)) + (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *9 (-1034 *6 *7 *8)) + (-5 *2 + (-623 + (-2 (|:| -1721 (-623 *9)) (|:| -3223 *10) (|:| |ineq| (-623 *9))))) + (-5 *1 (-1075 *6 *7 *8 *9 *10)) (-5 *3 (-623 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-916 (-219)))) (-5 *1 (-1228))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1194 (-550))) (-4 *1 (-629 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-629 *3)) (-4 *3 (-1181))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1119 (-219))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1006)) (-5 *1 (-296))))) + (-12 (-5 *2 (-1146 (-400 (-550)))) (-5 *1 (-184)) (-5 *3 (-550))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-542)) (-4 *2 (-444)) (-5 *1 (-942 *2 *3)) + (-4 *3 (-1203 *2))))) (((*1 *2 *3) + (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-186)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-293)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-219))) (-5 *2 (-623 (-1126))) (-5 *1 (-298))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-356)) (-4 *3 (-1203 *4)) (-4 *5 (-1203 (-400 *3))) + (-4 *1 (-328 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-550)) (-4 *2 (-356)) (-4 *4 (-1203 *2)) + (-4 *5 (-1203 (-400 *4))) (-4 *1 (-328 *2 *4 *5 *6)) + (-4 *6 (-335 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-356)) (-4 *3 (-1203 *2)) (-4 *4 (-1203 (-400 *3))) + (-4 *1 (-328 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-1203 *3)) (-4 *5 (-1203 (-400 *4))) + (-4 *1 (-328 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) + (-4 *1 (-328 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *1 *1) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-825)) + (-4 *3 (-13 (-170) (-696 (-400 (-550))))) (-14 *4 (-894)))) + ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *6)) (-4 *1 (-922 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)))) + ((*1 *2 *1) + (-12 (-4 *1 (-922 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-749))))) +(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-749))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-356)) (-14 *6 (-1227 (-667 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-894)) (-14 *5 (-623 (-1144))))) + ((*1 *1 *2) (-12 (-5 *2 (-1093 (-550) (-594 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1181)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532 'JINT 'X 'ELAM) (-1532) (-677)))) + (-5 *1 (-60 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 'XC) (-677)))) + (-5 *1 (-62 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-1532 'X) (-1532) (-677))) (-5 *1 (-63 *3)) + (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 (-332 (-1532) (-1532 'X 'HESS) (-677)))) + (-5 *1 (-64 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-1532) (-1532 'XC) (-677))) (-5 *1 (-65 *3)) + (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532 'X) (-1532 '-2004) (-677)))) + (-5 *1 (-70 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 'X) (-677)))) + (-5 *1 (-73 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532 'X 'EPS) (-1532 '-2004) (-677)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1144)) (-14 *4 (-1144)) + (-14 *5 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532 'EPS) (-1532 'YA 'YB) (-677)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1144)) (-14 *4 (-1144)) + (-14 *5 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-1532) (-1532 'X) (-677))) (-5 *1 (-76 *3)) + (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-1532) (-1532 'X) (-677))) (-5 *1 (-77 *3)) + (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 'XC) (-677)))) + (-5 *1 (-78 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 'X) (-677)))) + (-5 *1 (-79 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532) (-1532 'X) (-677)))) + (-5 *1 (-80 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532 'X '-2004) (-1532) (-677)))) + (-5 *1 (-81 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 (-332 (-1532 'X '-2004) (-1532) (-677)))) + (-5 *1 (-82 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 (-332 (-1532 'X) (-1532) (-677)))) (-5 *1 (-83 *3)) + (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532 'X) (-1532) (-677)))) + (-5 *1 (-84 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-332 (-1532 'X) (-1532 '-2004) (-677)))) + (-5 *1 (-85 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 (-332 (-1532 'XL 'XR 'ELAM) (-1532) (-677)))) + (-5 *1 (-86 *3)) (-14 *3 (-1144)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 (-1532 'X) (-1532 '-2004) (-677))) (-5 *1 (-88 *3)) + (-14 *3 (-1144)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-92)))) + ((*1 *2 *1) (-12 (-5 *2 (-977 2)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-107)))) + ((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-129)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-550)) (-14 *4 (-749)) (-4 *5 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-550)) (-14 *4 (-749)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1110 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) + ((*1 *1 *2) + (-12 (-5 *2 (-234 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1227 (-667 *4))) (-4 *4 (-170)) + (-5 *2 (-1227 (-667 (-400 (-925 *4))))) (-5 *1 (-183 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *3)) + (-4 *3 + (-13 (-825) + (-10 -8 (-15 -2680 ((-1126) $ (-1144))) (-15 -2048 ((-1232) $)) + (-15 -3656 ((-1232) $))))) + (-5 *1 (-208 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-977 10)) (-5 *1 (-211)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-211)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 *3)) (-5 *1 (-239 *3)) (-4 *3 (-825)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1060 (-309 *4))) + (-4 *4 (-13 (-825) (-542) (-596 (-372)))) (-5 *2 (-1060 (-372))) + (-5 *1 (-251 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-268)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1203 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1212 *4 *5 *6)) (-4 *4 (-13 (-27) (-1166) (-423 *3))) + (-14 *5 (-1144)) (-14 *6 *4) + (-4 *3 (-13 (-825) (-1011 (-550)) (-619 (-550)) (-444))) + (-5 *1 (-306 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-323)))) + ((*1 *2 *1) + (-12 (-5 *2 (-309 *5)) (-5 *1 (-332 *3 *4 *5)) + (-14 *3 (-623 (-1144))) (-14 *4 (-623 (-1144))) (-4 *5 (-380)))) + ((*1 *2 *3) + (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *3 *4 *2)) + (-4 *3 (-322 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *2 *4 *3)) + (-4 *3 (-322 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *2 (-1251 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *2 (-1242 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))))) - (-5 *2 (-1006)) (-5 *1 (-296)))) + (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) + (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-667 (-677))) (-4 *1 (-376)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) + (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-377)))) + ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1126)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-4 *1 (-382)))) + ((*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-386 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2) (-12 (-5 *2 (-836)) (-5 *1 (-387)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) + (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-389)))) + ((*1 *1 *2) + (-12 (-5 *2 (-287 (-309 (-167 (-372))))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-287 (-309 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-287 (-309 (-550)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-309 (-372))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-309 (-550))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-287 (-309 (-672)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-287 (-309 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-287 (-309 (-679)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-309 (-672))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-309 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-309 (-679))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) + (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) + (-14 *3 (-1144)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1144)) + (-14 *4 (-3 (|:| |fst| (-427)) (|:| -3730 "void"))) + (-14 *5 (-623 (-1144))) (-14 *6 (-1148)))) + ((*1 *1 *2) + (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-825) (-21))) + (-5 *1 (-420 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-550))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-420 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-550))))) + (-4 *3 (-13 (-825) (-21))))) + ((*1 *1 *2) + (-12 (-5 *2 (-400 (-925 (-400 *3)))) (-4 *3 (-542)) (-4 *3 (-825)) + (-4 *1 (-423 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-925 (-400 *3))) (-4 *3 (-542)) (-4 *3 (-825)) + (-4 *1 (-423 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-400 *3)) (-4 *3 (-542)) (-4 *3 (-825)) + (-4 *1 (-423 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1093 *3 (-594 *1))) (-4 *3 (-1020)) (-4 *3 (-825)) + (-4 *1 (-423 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-427)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-427)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-427)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-427)))) + ((*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-430)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-430)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) + (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-1227 (-677))) (-4 *1 (-432)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1148)) (|:| -1542 (-623 (-323))))) + (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-323))) (-4 *1 (-433)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1227 (-400 (-925 *3)))) (-4 *3 (-170)) + (-14 *6 (-1227 (-667 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-14 *4 (-894)) (-14 *5 (-623 (-1144))))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-623 (-916 (-219))))) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-460)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-1020)) (-14 *4 (-1144)) + (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-466 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-977 16)) (-5 *1 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 (-550))) (-5 *1 (-479)))) + ((*1 *1 *2) (-12 (-5 *2 (-1093 (-550) (-594 (-486)))) (-5 *1 (-486)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-493)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-356)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-515)))) + ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-587)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-588)))) + ((*1 *1 *2) + (-12 (-4 *3 (-170)) (-5 *1 (-589 *3 *2)) (-4 *2 (-723 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1020)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) + (-4 *4 (-13 (-170) (-696 (-400 (-550))))) (-14 *5 (-894)))) + ((*1 *1 *2) + (-12 (-4 *3 (-170)) (-5 *1 (-615 *3 *2)) (-4 *2 (-723 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + ((*1 *2 *1) + (-12 (-5 *2 (-931 (-931 (-931 *3)))) (-5 *1 (-653 *3)) + (-4 *3 (-1068)))) + ((*1 *1 *2) + (-12 (-5 *2 (-931 (-931 (-931 *3)))) (-4 *3 (-1068)) + (-5 *1 (-653 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-659)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *2)) (-4 *4 (-366 *3)) + (-4 *2 (-366 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-836))))) + ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-836))))) + ((*1 *2 *1) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-167 (-679))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-167 (-677))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-167 (-550))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-672)))) + ((*1 *1 *2) (-12 (-5 *2 (-679)) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-372)) (-5 *1 (-677)))) ((*1 *2 *3) + (-12 (-5 *3 (-309 (-550))) (-5 *2 (-309 (-679))) (-5 *1 (-679)))) + ((*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1068)))) + ((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1126)) (-5 *1 (-689)))) + ((*1 *2 *1) + (-12 (-4 *2 (-170)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1203 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2922 *3) (|:| -3521 *4))) + (-5 *1 (-692 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-1068)) + (-14 *5 (-1 (-112) *2 *2)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| -2922 *3) (|:| -3521 *4))) (-4 *3 (-825)) + (-4 *4 (-1068)) (-5 *1 (-692 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-170)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-2 (|:| -2855 *3) (|:| -1792 *4)))) + (-4 *3 (-1020)) (-4 *4 (-705)) (-5 *1 (-714 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-742)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) - (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) - (-5 *2 (-1006)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1124)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-186)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-294)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1124)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-1224 (-307 (-371)))) - (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1224 (-675))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-675)) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) - (-5 *2 (-618 (-219))) (-5 *1 (-296))))) -(((*1 *2 *2) (-12 (-5 *2 (-1055 (-815 (-219)))) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-400 (-535)))) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 - (-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) - (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535)))) - (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) - (-5 *2 (-371)) (-5 *1 (-260)))) - ((*1 *2 *3) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-400 (-535))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-535))) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1055 (-815 (-371)))) (-5 *2 (-1055 (-815 (-219)))) - (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-815 (-371))) (-5 *2 (-815 (-219))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-371))) (-5 *2 (-307 (-219))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *4 (-1142)) - (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-294))))) -(((*1 *2 *3) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (|:| |mdnia| + (-2 (|:| |fn| (-309 (-219))) + (|:| -3170 (-623 (-1062 (-818 (-219))))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) + (-5 *1 (-747)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) + (-5 *2 + (-2 (|:| |fn| (-309 (-219))) + (|:| -3170 (-623 (-1062 (-818 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-1119 (-219))) (-5 *1 (-186)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-618 (-1142))) - (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *4 (-618 (-1142))) - (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1136 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-618 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-618 (-1142))) - (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219)))) - (-5 *2 (-618 (-219))) (-5 *1 (-186)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219)))) - (-5 *2 (-618 (-219))) (-5 *1 (-294))))) -(((*1 *2 *3) + (-5 *1 (-747)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-112)) (-5 *1 (-294))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-291)) (-4 *2 (-1178)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-618 (-591 *1))) (-5 *3 (-618 *1)) (-4 *1 (-291)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-286 *1))) (-4 *1 (-291)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-291))))) -(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-4 *1 (-291)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-591 *1))) (-4 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-591 *1))) (-4 *1 (-291))))) -(((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-618 (-113)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1142)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *5)) (-4 *5 (-414 *4)) (-4 *4 (-1009 (-535))) - (-4 *4 (-13 (-823) (-542))) (-5 *2 (-1136 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-1018)) (-4 *1 (-291)) (-5 *2 (-1136 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-304)) (-5 *1 (-289)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 (-1124))) (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1018)) (-4 *4 (-1200 *3)) (-5 *1 (-162 *3 *4 *2)) - (-4 *2 (-1200 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-703)) (-4 *2 (-1178))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-703)) (-4 *2 (-1178))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-542)) - (-4 *3 (-1178))))) -(((*1 *2 *3) - (-12 (-4 *4 (-444)) - (-5 *2 - (-618 - (-2 (|:| |eigval| (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4)))) - (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 *4)))))))) - (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-917 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-444)) (-5 *2 - (-618 - (-2 (|:| |eigval| (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4)))) - (|:| |geneigvec| (-618 (-665 (-400 (-917 *4)))))))) - (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-917 *4))))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-400 (-917 *6)) (-1131 (-1142) (-917 *6)))) (-5 *5 (-747)) - (-4 *6 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *6))))) (-5 *1 (-285 *6)) - (-5 *4 (-665 (-400 (-917 *6)))))) - ((*1 *2 *3 *4) + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *1 (-747)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-747)))) + ((*1 *2 *3) (-12 (-5 *2 (-752)) (-5 *1 (-751 *3)) (-4 *3 (-1181)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-400 (-917 *5)) (-1131 (-1142) (-917 *5)))) - (|:| |eigmult| (-747)) (|:| |eigvec| (-618 *4)))) - (-4 *5 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *5))))) (-5 *1 (-285 *5)) - (-5 *4 (-665 (-400 (-917 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-400 (-917 *5)) (-1131 (-1142) (-917 *5)))) (-4 *5 (-444)) - (-5 *2 (-618 (-665 (-400 (-917 *5))))) (-5 *1 (-285 *5)) - (-5 *4 (-665 (-400 (-917 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-400 (-917 *4)))) (-4 *4 (-444)) - (-5 *2 (-618 (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4))))) - (-5 *1 (-285 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1051))) (-5 *1 (-284))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-284))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-1069)) (-5 *1 (-284))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-618 (-936))) (-5 *1 (-284))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-936))) (-5 *1 (-284))))) -(((*1 *1) (-5 *1 (-284)))) -(((*1 *1) (-5 *1 (-284)))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) - (-4 *2 (-1178))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-356)) (-5 *2 (-618 (-1119 *4))) (-5 *1 (-278 *4 *5)) - (-5 *3 (-1119 *4)) (-4 *5 (-1217 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-275 *3)) (-4 *3 (-1178))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3)) - (-4 *3 (-1067)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178))))) -(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1069)) (-5 *1 (-273))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-400 (-535))) - (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))) - (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-270 *4 *2))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-618 (-591 *2))) (-5 *4 (-1142)) - (-4 *2 (-13 (-27) (-1164) (-414 *5))) - (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-270 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-618 (-591 *3))) (|:| |vals| (-618 *3)))) - (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) - (-4 *3 (-13 (-414 *4) (-973)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-618 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-414 *4) (-973))) (-4 *4 (-13 (-823) (-542))) - (-5 *1 (-269 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-973)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-823) (-542)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-823) (-542)))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-268))))) -(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-268))))) -(((*1 *2 *3) + (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) + (|:| |fn| (-1227 (-309 (-219)))) (|:| |yinit| (-623 (-219))) + (|:| |intvals| (-623 (-219))) (|:| |g| (-309 (-219))) + (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-5 *1 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-786)))) + ((*1 *2 *1) + (-12 (-4 *2 (-873 *3)) (-5 *1 (-795 *3 *2 *4)) (-4 *3 (-1068)) + (-14 *4 *3))) + ((*1 *1 *2) + (-12 (-4 *3 (-1068)) (-14 *4 *3) (-5 *1 (-795 *3 *2 *4)) + (-4 *2 (-873 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-802)))) + ((*1 *1 *2) (-12 - (-5 *3 + (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) - (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) - (|:| |ub| (-618 (-815 (-219)))))) + (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) + (|:| |lb| (-623 (-818 (-219)))) + (|:| |cf| (-623 (-309 (-219)))) + (|:| |ub| (-623 (-818 (-219)))))) (|:| |lsa| - (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) - (-5 *2 (-618 (-1124))) (-5 *1 (-260))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-260))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260))))) -(((*1 *2 *2) (-12 (-5 *2 (-618 (-307 (-219)))) (-5 *1 (-260))))) -(((*1 *2 *2) (-12 (-5 *2 (-618 (-307 (-219)))) (-5 *1 (-260))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) - (-5 *1 (-260))))) -(((*1 *2 *3) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260))))) -(((*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-260))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-260))))) -(((*1 *2 *2) + (-2 (|:| |lfn| (-623 (-309 (-219)))) + (|:| -3862 (-623 (-219))))))) + (-5 *1 (-816)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) - (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) - (|:| |ub| (-618 (-815 (-219)))))) - (-5 *1 (-260))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-815 (-219)))) (-5 *4 (-219)) (-5 *2 (-618 *4)) - (-5 *1 (-260))))) -(((*1 *2 *1) - (-12 (-4 *3 (-227)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) - (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) - (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-259 *2)) (-4 *2 (-823))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) - (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) - ((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) - (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *2 (-51)) - (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *1 (-256 *2)) - (-4 *2 (-1178))))) -(((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *1) (-5 *1 (-142))) - ((*1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-254)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))) -(((*1 *2 *3) - (-12 (-5 *3 (-896)) - (-5 *2 - (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) - (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) - (-5 *1 (-151)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-896)) (-5 *4 (-400 (-535))) + (-2 (|:| |lfn| (-623 (-309 (-219)))) (|:| -3862 (-623 (-219))))) + (-5 *1 (-816)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) - (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) - (-5 *1 (-151)))) + (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) + (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) + (|:| |ub| (-623 (-818 (-219)))))) + (-5 *1 (-816)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-816)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *3)) (-14 *3 (-1144)) (-5 *1 (-830 *3 *4 *5 *6)) + (-4 *4 (-1020)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-833)))) + ((*1 *1 *2) + (-12 (-5 *2 (-925 *3)) (-4 *3 (-1020)) (-5 *1 (-839 *3 *4 *5 *6)) + (-14 *4 (-623 (-1144))) (-14 *5 (-623 (-749))) (-14 *6 (-749)))) + ((*1 *2 *1) + (-12 (-5 *2 (-925 *3)) (-5 *1 (-839 *3 *4 *5 *6)) (-4 *3 (-1020)) + (-14 *4 (-623 (-1144))) (-14 *5 (-623 (-749))) (-14 *6 (-749)))) + ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847)))) + ((*1 *2 *3) + (-12 (-5 *3 (-925 (-48))) (-5 *2 (-309 (-550))) (-5 *1 (-848)))) ((*1 *2 *3) + (-12 (-5 *3 (-400 (-925 (-48)))) (-5 *2 (-309 (-550))) + (-5 *1 (-848)))) + ((*1 *1 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-866 *3)) (-4 *3 (-825)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) - (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) - (-5 *1 (-151)) (-5 *3 (-618 (-914 (-219)))))) + (-2 (|:| |pde| (-623 (-309 (-219)))) + (|:| |constraints| + (-623 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) + (|:| |grid| (-749)) (|:| |boundaryType| (-550)) + (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) + (|:| |tol| (-219)))) + (-5 *1 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-871)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1167 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-878 *3))) (-4 *3 (-1068)) (-5 *1 (-877 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-623 (-878 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-878 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-5 *1 (-878 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-400 (-411 *3))) (-4 *3 (-300)) (-5 *1 (-887 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-887 *3)) (-4 *3 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-469)) (-5 *2 (-309 *4)) (-5 *1 (-892 *4)) + (-4 *4 (-13 (-825) (-542))))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) + ((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-940)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-944)))) + ((*1 *2 *1) + (-12 (-5 *2 (-400 (-550))) (-5 *1 (-977 *3)) (-14 *3 (-550)))) + ((*1 *2 *3) (-12 (-5 *2 (-1232)) (-5 *1 (-1006 *3)) (-4 *3 (-1181)))) + ((*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1006 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *2 (-922 *3 *4 *5)) + (-14 *6 (-623 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1181)))) + ((*1 *2 *3) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-1016 *3)) (-4 *3 (-542)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1020)))) + ((*1 *2 *1) + (-12 (-5 *2 (-667 *5)) (-5 *1 (-1024 *3 *4 *5)) (-14 *3 (-749)) + (-14 *4 (-749)) (-4 *5 (-1020)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-4 *4 (-825)) (-5 *1 (-1094 *3 *4 *2)) + (-4 *2 (-922 *3 (-522 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-4 *2 (-825)) (-5 *1 (-1094 *3 *2 *4)) + (-4 *4 (-922 *3 (-522 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1020)) (-5 *2 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1112)))) + ((*1 *1 *2) + (-12 (-5 *2 (-623 *3)) (-4 *3 (-1181)) (-5 *1 (-1124 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1020)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1135 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1141 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1142 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1020)) (-14 *4 (-1144)) + (-14 *5 *3) (-5 *1 (-1142 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1143)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1144)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154 (-1144) (-430))) (-5 *1 (-1148)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1149)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1149)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1149)))) + ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1149)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-1153 *3)) (-4 *3 (-1068)))) + ((*1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *1 (-1160 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2) (-12 (-5 *2 (-836)) (-5 *1 (-1161)))) + ((*1 *1 *2) + (-12 (-5 *2 (-925 *3)) (-4 *3 (-1020)) (-5 *1 (-1175 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1144)) (-5 *1 (-1175 *3)) (-4 *3 (-1020)))) + ((*1 *1 *2) + (-12 (-5 *2 (-931 *3)) (-4 *3 (-1181)) (-5 *1 (-1178 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-4 *1 (-1189 *3 *2)) (-4 *2 (-1218 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1062 *3)) (-4 *3 (-1181)) (-5 *1 (-1194 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *3)) (-14 *3 (-1144)) (-5 *1 (-1200 *3 *4)) + (-4 *4 (-1020)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-4 *1 (-1210 *3 *2)) (-4 *2 (-1187 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1212 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1219 *3 *4 *5)) + (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1020)) (-14 *4 (-1144)) + (-14 *5 *3) (-5 *1 (-1219 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1223 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-1228)))) + ((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1228)) (-5 *1 (-1231)))) + ((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-1232)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-623 *4)) + (-5 *1 (-1239 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-922 *3 *5 *4)) + (-14 *7 (-623 (-749))) (-14 *8 (-749)))) + ((*1 *2 *1) + (-12 (-4 *2 (-922 *3 *5 *4)) (-5 *1 (-1239 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-1020)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-623 *4)) + (-14 *7 (-623 (-749))) (-14 *8 (-749)))) + ((*1 *1 *2) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1020)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1251 *3 *4)) (-5 *1 (-1247 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-1247 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) + (-5 *1 (-1247 *3 *4)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1250 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-821))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-550)) (-5 *5 (-667 (-219))) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) + (-5 *4 (-219)) (-5 *2 (-1008)) (-5 *1 (-728))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-542))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-410 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1144)) + (-5 *2 (-550)) (-5 *1 (-1082 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1203 *6)) + (-4 *6 (-13 (-27) (-423 *5))) + (-4 *5 (-13 (-825) (-542) (-1011 (-550)))) (-4 *8 (-1203 (-400 *7))) + (-5 *2 (-569 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) + (-4 *3 (-335 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1232)) (-5 *1 (-1106)))) ((*1 *2 *3) + (-12 (-5 *3 (-623 (-836))) (-5 *2 (-1232)) (-5 *1 (-1106))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1008)) + (-5 *1 (-725))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1103))) (-5 *1 (-1058))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) + (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |rm| (-797 *3)))) + (-5 *1 (-797 *3)) (-4 *3 (-825)))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) - (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) - (-5 *1 (-151)) (-5 *3 (-618 (-618 (-914 (-219))))))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254))))) -(((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254))))) -(((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-254))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-400 (-535))))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254))))) + (-5 *3 + (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) + (-241 *4 (-400 (-550))))) + (-14 *4 (-623 (-1144))) (-14 *5 (-749)) (-5 *2 (-112)) + (-5 *1 (-496 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-922 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-444)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *3 (-1034 *4 *5 *6)) + (-5 *2 (-623 (-2 (|:| |val| *3) (|:| -3223 *1)))) + (-4 *1 (-1040 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1185))) + ((*1 *2 *2) + (-12 (-4 *3 (-542)) (-5 *1 (-1206 *3 *2)) + (-4 *2 (-13 (-1203 *3) (-542) (-10 -8 (-15 -3139 ($ $ $)))))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-300))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) + (-4 *4 (-342))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-731))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-254))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1227)) - (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1227)) (-5 *1 (-248 *3)) - (-4 *3 (-13 (-594 (-524)) (-1067))))) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *1 (-413 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1166) (-423 *3))) + (-14 *4 (-1144)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-4 *2 (-13 (-27) (-1166) (-423 *3) (-10 -8 (-15 -1518 ($ *4))))) + (-4 *4 (-823)) + (-4 *5 + (-13 (-1205 *2 *4) (-356) (-1166) + (-10 -8 (-15 -2393 ($ $)) (-15 -1489 ($ $))))) + (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *6 (-956 *5)) (-14 *7 (-1144))))) +(((*1 *1) (-5 *1 (-155)))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-770)) + (-4 *2 (-542)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-542))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-665 *2 *3 *4)) (-4 *2 (-1020)) + (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-542)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-749))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1020)) (-4 *2 (-542)))) + ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1227 *4)) (-4 *4 (-1203 *3)) (-4 *3 (-542)) + (-5 *1 (-942 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *2 (-1020)) + (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-542)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-894)) (-4 *1 (-723 *3)) (-4 *3 (-170))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1144)) (-4 *5 (-596 (-865 (-550)))) + (-4 *5 (-859 (-550))) + (-4 *5 (-13 (-825) (-1011 (-550)) (-444) (-619 (-550)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-553 *5 *3)) (-4 *3 (-609)) + (-4 *3 (-13 (-27) (-1166) (-423 *5)))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) + (-4 *2 (-1203 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-542)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) + (-5 *1 (-1171 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1060 (-818 *3))) (-4 *3 (-13 (-1166) (-932) (-29 *5))) + (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-213 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-848 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) - (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-248 *6)))) + (-12 (-5 *4 (-1060 (-818 *3))) (-5 *5 (-1126)) + (-4 *3 (-13 (-1166) (-932) (-29 *6))) + (-4 *6 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-213 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-848 *5)) (-5 *4 (-1058 (-371))) - (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-248 *5)))) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1060 (-818 (-309 *5)))) + (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-3 (|:| |f1| (-818 (-309 *5))) (|:| |f2| (-623 (-818 (-309 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-214 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) - (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *6)))) + (-12 (-5 *3 (-400 (-925 *6))) (-5 *4 (-1060 (-818 (-309 *6)))) + (-5 *5 (-1126)) + (-4 *6 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-3 (|:| |f1| (-818 (-309 *6))) (|:| |f2| (-623 (-818 (-309 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-214 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-371))) - (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) - (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1228)) (-5 *1 (-248 *3)) - (-4 *3 (-13 (-594 (-524)) (-1067))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) - (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-371))) - (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *5)))) + (-12 (-5 *4 (-1060 (-818 (-400 (-925 *5))))) (-5 *3 (-400 (-925 *5))) + (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-3 (|:| |f1| (-818 (-309 *5))) (|:| |f2| (-623 (-818 (-309 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-214 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) - (-5 *2 (-1227)) (-5 *1 (-249)))) + (-12 (-5 *4 (-1060 (-818 (-400 (-925 *6))))) (-5 *5 (-1126)) + (-5 *3 (-400 (-925 *6))) + (-4 *6 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-3 (|:| |f1| (-818 (-309 *6))) (|:| |f2| (-623 (-818 (-309 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-214 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1227)) - (-5 *1 (-249)))) + (-12 (-5 *4 (-1144)) + (-4 *5 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-3 *3 (-623 *3))) (-5 *1 (-421 *5 *3)) + (-4 *3 (-13 (-1166) (-932) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-466 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1062 (-818 (-372)))) + (-5 *5 (-372)) (-5 *6 (-1032)) (-5 *2 (-1008)) (-5 *1 (-551)))) + ((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1008)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1062 (-818 (-372)))) + (-5 *5 (-372)) (-5 *2 (-1008)) (-5 *1 (-551)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-249)))) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1062 (-818 (-372)))) + (-5 *5 (-372)) (-5 *2 (-1008)) (-5 *1 (-551)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1227)) - (-5 *1 (-249)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1062 (-818 (-372)))) + (-5 *2 (-1008)) (-5 *1 (-551)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) - (-5 *1 (-249)))) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1062 (-818 (-372))))) + (-5 *2 (-1008)) (-5 *1 (-551)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) - (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) - (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) - (-5 *2 (-1228)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) - (-5 *2 (-1228)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-1142)) (-5 *5 (-618 (-254))) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-1227)) - (-5 *1 (-250 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1227)) (-5 *1 (-253)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-618 (-219))) (-5 *4 (-618 (-254))) (-5 *2 (-1227)) - (-5 *1 (-253)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *2 (-1227)) (-5 *1 (-253)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *4 (-618 (-254))) (-5 *2 (-1227)) - (-5 *1 (-253)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1228)) (-5 *1 (-253)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-618 (-219))) (-5 *4 (-618 (-254))) (-5 *2 (-1228)) - (-5 *1 (-253))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-251))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-251))))) -(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-251))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1055 (-219))) - (-5 *2 (-1228)) (-5 *1 (-251))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1055 (-219))) - (-5 *5 (-112)) (-5 *2 (-1228)) (-5 *1 (-251))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-914 (-219)) (-219) (-219))) - (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-249))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) - (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) - (-5 *1 (-248 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-371))) - (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) - (-5 *1 (-248 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) - (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *3)) - (-4 *3 (-13 (-594 (-524)) (-1067))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) - (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) - (-5 *1 (-248 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-371))) - (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) - (-5 *1 (-248 *5)))) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1062 (-818 (-372))))) + (-5 *5 (-372)) (-5 *2 (-1008)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1062 (-818 (-372))))) + (-5 *5 (-372)) (-5 *2 (-1008)) (-5 *1 (-551)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-309 (-372))) (-5 *4 (-623 (-1062 (-818 (-372))))) + (-5 *5 (-372)) (-5 *6 (-1032)) (-5 *2 (-1008)) (-5 *1 (-551)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) - (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) + (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-818 (-372)))) + (-5 *5 (-1126)) (-5 *2 (-1008)) (-5 *1 (-551)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) + (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-818 (-372)))) + (-5 *5 (-1144)) (-5 *2 (-1008)) (-5 *1 (-551)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-145) (-1011 (-550)))) (-4 *5 (-1203 *4)) + (-5 *2 (-569 (-400 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) - (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) - (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) - (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) - (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) - (-5 *2 (-1099 (-219))) (-5 *1 (-249))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-216 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-247 *3)))) - ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) - (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-618 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) - (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-618 (-747))))) - ((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) - (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-618 (-747)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) - (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) - (-4 *2 (-259 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) - (-4 *4 (-259 *3)) (-4 *5 (-769))))) -(((*1 *1 *1) - (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) - (-4 *4 (-259 *3)) (-4 *5 (-769))))) -(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) -(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-242))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-747)) - (-4 *3 (-13 (-703) (-361) (-10 -7 (-15 ** (*3 *3 (-535)))))) - (-5 *1 (-240 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-535)) (-5 *1 (-235)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-535)) (-5 *1 (-235))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-235)))) - ((*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1230)) (-5 *1 (-235))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-235))))) -(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-235))))) -(((*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1178)) (-4 *1 (-232 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-286 (-917 (-535)))) - (-5 *2 - (-2 (|:| |varOrder| (-618 (-1142))) - (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) - (|:| |hom| (-618 (-1224 (-747)))))) - (-5 *1 (-230))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-229 *3)))) - ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1067))))) -(((*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))) -(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-219))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-917 *6)) (-5 *4 (-1142)) - (-5 *5 (-815 *7)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-4 *7 (-13 (-1164) (-29 *6))) (-5 *1 (-218 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1136 *6)) (-5 *4 (-815 *6)) - (-4 *6 (-13 (-1164) (-29 *5))) - (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-218 *5 *6))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-815 *4)) (-5 *3 (-591 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1164) (-29 *6))) - (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *1 (-218 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) - (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1164) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142))))) + (-12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-1144)) (-4 *5 (-145)) + (-4 *5 (-13 (-444) (-1011 (-550)) (-825) (-619 (-550)))) + (-5 *2 (-3 (-309 *5) (-623 (-309 *5)))) (-5 *1 (-572 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) - (-14 *3 (-618 (-1142)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) - (-14 *4 (-618 (-1142))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) - (-14 *4 (-618 (-1142)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) - (-14 *4 (-618 (-1142)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) - (-14 *3 (-618 (-1142)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1142)) (-5 *6 (-112)) - (-4 *7 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) - (-4 *3 (-13 (-1164) (-931) (-29 *7))) + (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-550)))) (-4 *2 (-1020)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-825)) + (-4 *3 (-38 (-400 (-550)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1144)) (-5 *1 (-925 *3)) (-4 *3 (-38 (-400 (-550)))) + (-4 *3 (-1020)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-4 *2 (-825)) + (-5 *1 (-1094 *3 *2 *4)) (-4 *4 (-922 *3 (-522 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) + (-5 *1 (-1128 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1135 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1141 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1142 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1144)) (-5 *1 (-1175 *3)) (-4 *3 (-38 (-400 (-550)))) + (-4 *3 (-1020)))) + ((*1 *1 *1 *2) + (-1561 + (-12 (-5 *2 (-1144)) (-4 *1 (-1187 *3)) (-4 *3 (-1020)) + (-12 (-4 *3 (-29 (-550))) (-4 *3 (-932)) (-4 *3 (-1166)) + (-4 *3 (-38 (-400 (-550)))))) + (-12 (-5 *2 (-1144)) (-4 *1 (-1187 *3)) (-4 *3 (-1020)) + (-12 (|has| *3 (-15 -3141 ((-623 *2) *3))) + (|has| *3 (-15 -1489 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1187 *2)) (-4 *2 (-1020)) (-4 *2 (-38 (-400 (-550)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-38 (-400 (-550)))))) + ((*1 *1 *1 *2) + (-1561 + (-12 (-5 *2 (-1144)) (-4 *1 (-1208 *3)) (-4 *3 (-1020)) + (-12 (-4 *3 (-29 (-550))) (-4 *3 (-932)) (-4 *3 (-1166)) + (-4 *3 (-38 (-400 (-550)))))) + (-12 (-5 *2 (-1144)) (-4 *1 (-1208 *3)) (-4 *3 (-1020)) + (-12 (|has| *3 (-15 -3141 ((-623 *2) *3))) + (|has| *3 (-15 -1489 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1020)) (-4 *2 (-38 (-400 (-550)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1212 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-1561 + (-12 (-5 *2 (-1144)) (-4 *1 (-1218 *3)) (-4 *3 (-1020)) + (-12 (-4 *3 (-29 (-550))) (-4 *3 (-932)) (-4 *3 (-1166)) + (-4 *3 (-38 (-400 (-550)))))) + (-12 (-5 *2 (-1144)) (-4 *1 (-1218 *3)) (-4 *3 (-1020)) + (-12 (|has| *3 (-15 -3141 ((-623 *2) *3))) + (|has| *3 (-15 -1489 (*3 *3 *2))) (-4 *3 (-38 (-400 (-550)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1020)) (-4 *2 (-38 (-400 (-550)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 *4)) (-14 *4 (-1144)) (-5 *1 (-1219 *3 *4 *5)) + (-4 *3 (-38 (-400 (-550)))) (-4 *3 (-1020)) (-14 *5 *3)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1068)) (-4 *2 (-873 *4)) (-5 *1 (-670 *4 *2 *5 *3)) + (-4 *5 (-366 *2)) (-4 *3 (-13 (-366 *4) (-10 -7 (-6 -4342))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-400 *6)) (-4 *5 (-1185)) (-4 *6 (-1203 *5)) + (-5 *2 (-2 (|:| -3521 (-749)) (|:| -2855 *3) (|:| |radicand| *6))) + (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-749)) (-4 *7 (-1203 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1180))) (-5 *1 (-659)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1149))) (-5 *1 (-1086))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-950 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-623 *7)) (-5 *3 (-112)) (-4 *7 (-1034 *4 *5 *6)) + (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-5 *1 (-950 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 (-623 *6))) (-4 *6 (-922 *3 *5 *4)) + (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1144)))) + (-4 *5 (-771)) (-5 *1 (-897 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 - (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| "failed") - (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *7 *3)) (-5 *5 (-815 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211))))) + (-2 (|:| |minor| (-623 (-894))) (|:| -1721 *3) + (|:| |minors| (-623 (-623 (-894)))) (|:| |ops| (-623 *3)))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-894)) (-4 *3 (-634 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-639))) ((*1 *1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1218 *4)) + (-4 *4 (-38 (-400 (-550)))) (-5 *2 (-1 (-1124 *4) (-1124 *4))) + (-5 *1 (-1220 *4 *5))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1013))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-305)) (-5 *1 (-807))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-623 (-372))) (-5 *3 (-623 (-256))) (-5 *1 (-254)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-372))) (-5 *1 (-460)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-847)) (-5 *2 (-1232)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1126)) (-5 *2 (-1232)) (-5 *1 (-1228))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1070 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1140 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) + ((*1 *1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-799))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1144)) (-4 *5 (-596 (-865 (-550)))) + (-4 *5 (-859 (-550))) + (-4 *5 (-13 (-825) (-1011 (-550)) (-444) (-619 (-550)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-553 *5 *3)) (-4 *3 (-609)) + (-4 *3 (-13 (-27) (-1166) (-423 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1144)) (-5 *4 (-818 *2)) (-4 *2 (-1107)) + (-4 *2 (-13 (-27) (-1166) (-423 *5))) + (-4 *5 (-596 (-865 (-550)))) (-4 *5 (-859 (-550))) + (-4 *5 (-13 (-825) (-1011 (-550)) (-444) (-619 (-550)))) + (-5 *1 (-553 *5 *2))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-825)) (-4 *5 (-771)) + (-4 *6 (-542)) (-4 *7 (-922 *6 *5 *3)) + (-5 *1 (-454 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1011 (-400 (-550))) (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) + (-15 -2715 (*7 $)))))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-618 (-2 (|:| |deg| (-747)) (|:| -2894 *3)))) - (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4))))) + (-12 (-5 *3 (-623 (-526))) (-5 *2 (-1144)) (-5 *1 (-526))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-639))) ((*1 *1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-876 *3)) (-4 *3 (-1068)) (-5 *2 (-1070 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1068)) (-5 *2 (-1070 (-623 *4))) (-5 *1 (-877 *4)) + (-5 *3 (-623 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1068)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-877 *4)) + (-5 *3 (-1070 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1070 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *2) + (-12 (-4 *1 (-342)) + (-5 *2 (-623 (-2 (|:| -3338 (-550)) (|:| -3521 (-550)))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |gen| *3) (|:| -1812 *4)))) + (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-916 *5)) (-5 *3 (-749)) (-4 *5 (-1020)) + (-5 *1 (-1132 *4 *5)) (-14 *4 (-894))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-343)) + (-12 (-5 *3 (-411 *5)) (-4 *5 (-542)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) - (-5 *1 (-210 *5 *3)) (-4 *3 (-1200 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1200 (-400 *2))) - (-4 *2 (-1200 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-618 (-307 (-219)))) - (|:| |constraints| - (-618 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) - (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) - (|:| |dFinish| (-665 (-219)))))) - (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) - (|:| |tol| (-219)))) - (-5 *2 (-112)) (-5 *1 (-204))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-618 (-307 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) - (-5 *1 (-204))))) -(((*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-204))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) - (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) - (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-307 (-219)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) - (-5 *1 (-199))))) -(((*1 *2 *3) (-12 (-5 *3 (-665 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-199))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-199)))) - ((*1 *2 *2 *3) (-12 (-5 *3 (-618 (-371))) (-5 *2 (-371)) (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-535)) (-5 *1 (-198))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-618 (-219))) (-5 *1 (-198))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| -2827 (-113)) (|:| |w| (-219)))) (-5 *1 (-198))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-186))))) + (-2 (|:| -3521 (-749)) (|:| -2855 *5) (|:| |radicand| (-623 *5)))) + (-5 *1 (-313 *5)) (-5 *4 (-749)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-550))))) +(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-944))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-916 *3)) (-4 *3 (-13 (-356) (-1166) (-975))) + (-5 *1 (-174 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-186))))) + (|partial| -12 (-5 *3 (-925 (-167 *4))) (-4 *4 (-170)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-925 (-167 *5))) (-5 *4 (-894)) (-4 *5 (-170)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-925 *4)) (-4 *4 (-1020)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-925 *5)) (-5 *4 (-894)) (-4 *5 (-1020)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-925 *4))) (-4 *4 (-542)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-400 (-925 *5))) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-400 (-925 (-167 *4)))) (-4 *4 (-542)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-400 (-925 (-167 *5)))) (-5 *4 (-894)) + (-4 *5 (-542)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) + (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-542)) (-4 *4 (-825)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) + (-5 *1 (-763 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-542)) (-4 *4 (-825)) + (-4 *4 (-596 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-763 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-894)) (-4 *5 (-542)) + (-4 *5 (-825)) (-4 *5 (-596 (-372))) (-5 *2 (-167 (-372))) + (-5 *1 (-763 *5))))) +(((*1 *2) + (-12 (-5 *2 (-1232)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1068))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-219)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -3260)))) + (-5 *2 (-1008)) (-5 *1 (-725))))) +(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) + ((*1 *2 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-300)))) + ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) + ((*1 *2 *1) (-12 (-4 *1 (-1029)) (-5 *2 (-550))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-235)) (-5 *3 (-1126)))) + ((*1 *2 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-235)))) + ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847))))) +(((*1 *2 *1) + (-12 (-5 *2 (-623 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-569 *3)) (-4 *3 (-356))))) +(((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170))))) +(((*1 *2) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1020))))) +(((*1 *1 *1) (-4 *1 (-542)))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1197 *3 *2)) + (-4 *2 (-1203 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-623 *1)) + (-4 *1 (-423 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-623 (-865 *3))) (-5 *1 (-865 *3)) + (-4 *3 (-1068)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-623 *1)) (-4 *1 (-922 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1020)) + (-4 *7 (-922 *6 *4 *5)) (-5 *2 (-623 *3)) + (-5 *1 (-923 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-356) + (-10 -8 (-15 -1518 ($ *7)) (-15 -2705 (*7 $)) + (-15 -2715 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-4 *3 (-13 (-27) (-1166) (-423 *6) (-10 -8 (-15 -1518 ($ *7))))) + (-4 *7 (-823)) + (-4 *8 + (-13 (-1205 *3 *7) (-356) (-1166) + (-10 -8 (-15 -2393 ($ $)) (-15 -1489 ($ $))))) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| "There is a singularity at the lower end point") - (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-186))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126)))))) + (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1126)) (-4 *9 (-956 *8)) + (-14 *10 (-1144))))) (((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-661 *4 *3)) (-4 *4 (-1068)) + (-4 *3 (-1068))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1126)) (-5 *2 (-752)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-1072)) (-5 *1 (-938))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) +(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-823)) (-5 *1 (-296 *3))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-260))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1124 (-623 (-550)))) (-5 *1 (-856)) + (-5 *3 (-623 (-550)))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1008)) + (-5 *1 (-725))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-749)) (-4 *5 (-170)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-749)) (-4 *5 (-170)))) + ((*1 *2 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-186))))) -(((*1 *2 *3) (-12 (-5 *2 (-398 (-1136 (-535)))) (-5 *1 (-185)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-618 (-1136 (-535)))) (-5 *1 (-185)) (-5 *3 (-535))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-618 (-535))) (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 (-535))) (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1144 (-400 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-184))))) -(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1224 (-665 *4))) (-4 *4 (-170)) - (-5 *2 (-1224 (-665 (-917 *4)))) (-5 *1 (-183 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-181))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-181))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1178)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1178)) (-5 *2 (-747)) (-5 *1 (-180 *4 *3)) (-4 *3 (-650 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1178)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-821))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2758 (-398 *3)))) (-5 *1 (-179 *4 *3)) - (-4 *3 (-1200 (-166 *4)))))) + (-495 (-400 (-550)) (-234 *5 (-749)) (-838 *4) + (-241 *4 (-400 (-550))))) + (-5 *3 (-623 (-838 *4))) (-14 *4 (-623 (-1144))) (-14 *5 (-749)) + (-5 *1 (-496 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-550)) + (|:| -1877 (-623 (-2 (|:| |irr| *3) (|:| -4245 (-550))))))) + (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-550)) + (|:| -1877 (-623 (-2 (|:| |irr| *3) (|:| -4245 (-550))))))) + (-5 *1 (-1192 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-550)) (-5 *1 (-1124 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1200 (-166 *2)))))) + (|partial| -12 (-5 *2 (-1140 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-821))) - (-4 *3 (-1200 *2))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1200 (-166 *2))))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1203 (-48)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-894)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1140 *1)) + (-4 *1 (-322 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1140 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) + (-4 *2 (-1203 *3)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1200 (-166 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) - (-4 *2 (-1200 (-166 *3)))))) + (-12 (-5 *3 (-1227 *4)) (-4 *4 (-342)) (-5 *2 (-1140 *4)) + (-5 *1 (-519 *4))))) +(((*1 *2) (-12 (-5 *2 (-623 (-894))) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-623 (-894))) (-5 *1 (-1230))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1140 (-550))) (-5 *1 (-915)) (-5 *3 (-550)))) + ((*1 *2 *2) + (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) + (-5 *1 (-1092 *3 *4 *5 *2)) (-4 *2 (-665 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-999 *2)) (-4 *2 (-1181))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-1200 (-166 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) - (-4 *2 (-1200 (-166 *3)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-821))) - (-5 *2 (-618 (-2 (|:| -2758 (-618 *3)) (|:| -1651 *5)))) - (-5 *1 (-179 *5 *3)) (-4 *3 (-1200 (-166 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-356) (-821))) - (-5 *2 (-618 (-2 (|:| -2758 (-618 *3)) (|:| -1651 *4)))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4)))))) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-4 *3 (-13 (-27) (-1166) (-423 *6) (-10 -8 (-15 -1518 ($ *7))))) + (-4 *7 (-823)) + (-4 *8 + (-13 (-1205 *3 *7) (-356) (-1166) + (-10 -8 (-15 -2393 ($ $)) (-15 -1489 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126)))))) + (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1126)) (-4 *9 (-956 *8)) + (-14 *10 (-1144))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1144)) (-5 *6 (-112)) + (-4 *7 (-13 (-300) (-825) (-145) (-1011 (-550)) (-619 (-550)))) + (-4 *3 (-13 (-1166) (-932) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-818 *3)) (|:| |f2| (-623 (-818 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-213 *7 *3)) (-5 *5 (-818 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-847))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-618 (-166 *4))) (-5 *1 (-153 *3 *4)) - (-4 *3 (-1200 (-166 (-535)))) (-4 *4 (-13 (-356) (-821))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-166 *4))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1140 *7)) (-4 *5 (-1020)) + (-4 *7 (-1020)) (-4 *2 (-1203 *5)) (-5 *1 (-492 *5 *2 *6 *7)) + (-4 *6 (-1203 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-166 *4))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-618 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1164) (-973)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1164) (-973)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1164) (-973)))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1020)) (-4 *7 (-1020)) + (-4 *4 (-1203 *5)) (-5 *2 (-1140 *7)) (-5 *1 (-492 *5 *4 *6 *7)) + (-4 *6 (-1203 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-623 *4)) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-356)) (-5 *1 (-869 *2 *3)) + (-4 *2 (-1203 *3))))) +(((*1 *2) (-12 (-5 *2 (-894)) (-5 *1 (-155))))) +(((*1 *1 *1) + (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1020)) (-4 *3 (-825)) + (-4 *4 (-259 *3)) (-4 *5 (-771))))) +(((*1 *2 *1) + (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1166))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1037 *4 *3)) (-4 *4 (-13 (-823) (-356))) + (-4 *3 (-1203 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1181))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-400 (-550)))) (-5 *1 (-1220 *3 *2)) + (-4 *2 (-1218 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1164) (-973)))))) + (-12 (-5 *3 (-623 (-473 *4 *5))) (-14 *4 (-623 (-1144))) + (-4 *5 (-444)) + (-5 *2 + (-2 (|:| |gblist| (-623 (-241 *4 *5))) + (|:| |gvlist| (-623 (-550))))) + (-5 *1 (-611 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1164) (-973)))))) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-1034 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1164) (-973)))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1144)) (|:| |fn| (-309 (-219))) + (|:| -3170 (-1062 (-818 (-219)))) (|:| |abserr| (-219)) + (|:| |relerr| (-219)))) + (-5 *2 (-2 (|:| -3903 (-114)) (|:| |w| (-219)))) (-5 *1 (-198))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1164) (-973)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) - (-5 *1 (-174 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) - (-5 *1 (-174 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) - (-5 *1 (-174 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) - (-5 *1 (-174 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) - (-5 *1 (-174 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) - (-5 *1 (-174 *3))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1018))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *2 (-1008)) (-5 *1 (-730))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1) (-5 *1 (-1228)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1227 *3)) (-4 *3 (-1020)) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1203 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) - (-5 *1 (-174 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-108))) (-5 *1 (-173))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1119 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) -(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) + (-12 + (-5 *2 + (-623 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-771)) (-4 *6 (-922 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) + (-5 *1 (-441 *3 *4 *5 *6))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1020)) + (-4 *5 (-825)) (-5 *2 (-925 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1020)) + (-4 *5 (-825)) (-5 *2 (-925 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-1218 *4)) (-4 *4 (-1020)) + (-5 *2 (-925 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-749)) (-4 *1 (-1218 *4)) (-4 *4 (-1020)) + (-5 *2 (-925 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1027)) (-4 *3 (-1164)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-159))) - ((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-159))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-414 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) - ((*1 *1 *1) (-4 *1 (-158)))) + (-12 (-5 *2 (-623 (-878 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-825)) + (-4 *4 (-1020)) (-4 *4 (-170)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1020)) + (-4 *3 (-170))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1144)) + (-4 *5 (-13 (-825) (-1011 (-550)) (-444) (-619 (-550)))) + (-5 *2 (-2 (|:| -1441 *3) (|:| |nconst| *3))) (-5 *1 (-553 *5 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-894)) (-4 *5 (-825)) + (-5 *2 (-58 (-623 (-650 *5)))) (-5 *1 (-650 *5))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1070 (-749))) (-5 *6 (-749)) + (-5 *2 + (-2 (|:| |contp| (-550)) + (|:| -1877 (-623 (-2 (|:| |irr| *3) (|:| -4245 (-550))))))) + (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-550)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1181)) + (-4 *3 (-366 *4)) (-4 *5 (-366 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-887 *3)) (-4 *3 (-300))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *1)) (-4 *1 (-1034 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1174 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-623 (-623 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-623 (-3 (|:| |array| (-623 *3)) (|:| |scalar| (-1144))))) + (-5 *6 (-623 (-1144))) (-5 *3 (-1144)) (-5 *2 (-1072)) + (-5 *1 (-390)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-623 (-623 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-623 (-3 (|:| |array| (-623 *3)) (|:| |scalar| (-1144))))) + (-5 *6 (-623 (-1144))) (-5 *3 (-1144)) (-5 *2 (-1072)) + (-5 *1 (-390)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-623 (-1144))) (-5 *5 (-1147)) (-5 *3 (-1144)) + (-5 *2 (-1072)) (-5 *1 (-390))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-414 *4)))) + (-12 (-5 *2 (-667 *4)) (-5 *3 (-894)) (-4 *4 (-1020)) + (-5 *1 (-1001 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1058 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) - (-5 *1 (-156 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))) -(((*1 *1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-534)) (-5 *1 (-157 *2))))) -(((*1 *1 *1) (-4 *1 (-141))) + (-12 (-5 *2 (-623 (-667 *4))) (-5 *3 (-894)) (-4 *4 (-1020)) + (-5 *1 (-1001 *4))))) +(((*1 *1) (-5 *1 (-801)))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1126)) (-5 *1 (-52))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-594 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1140 (-48))) (-5 *3 (-623 (-594 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1140 (-48))) (-5 *3 (-594 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1203 (-167 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-894)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) + ((*1 *2 *1) + (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1203 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1203 *2)) (-4 *2 (-965 *3)) (-5 *1 (-406 *3 *2 *4 *5)) + (-4 *3 (-300)) (-4 *5 (-13 (-402 *2 *4) (-1011 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1203 *2)) (-4 *2 (-965 *3)) + (-5 *1 (-407 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-402 *2 *4)) + (-14 *6 (-1227 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-894)) (-4 *5 (-1020)) + (-4 *2 (-13 (-397) (-1011 *5) (-356) (-1166) (-277))) + (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1203 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-594 (-486)))) (-5 *1 (-486)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-486))) (-5 *1 (-486)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1140 (-486))) (-5 *3 (-623 (-594 (-486)))) + (-5 *1 (-486)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1140 (-486))) (-5 *3 (-594 (-486))) (-5 *1 (-486)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1227 *4)) (-5 *3 (-894)) (-4 *4 (-342)) + (-5 *1 (-519 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-444)) (-4 *5 (-703 *4 *2)) (-4 *2 (-1203 *4)) + (-5 *1 (-753 *4 *2 *5 *3)) (-4 *3 (-1203 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170)))) + ((*1 *1 *1) (-4 *1 (-1029)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-752)) (-5 *1 (-114))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-894)) (-4 *3 (-356)) + (-14 *4 (-966 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1203 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + ((*1 *1 *1) (|partial| -4 *1 (-701))) + ((*1 *1 *1) (|partial| -4 *1 (-705))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1037 *3 *2)) (-4 *3 (-13 (-823) (-356))) + (-4 *2 (-1203 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-823) (-542)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-823) (-542)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-823) (-542)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-823) (-542)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-823) (-542)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-823) (-542)))))) + (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3))))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-155))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-219)) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1140 *1)) (-5 *4 (-1144)) (-4 *1 (-27)) + (-5 *2 (-623 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1140 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-925 *1)) (-4 *1 (-27)) (-5 *2 (-623 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1144)) (-4 *4 (-13 (-825) (-542))) (-5 *2 (-623 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *2 (-623 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-309 (-219))) (-5 *4 (-623 (-1144))) + (-5 *5 (-1062 (-818 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-293))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1034 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-771)) + (-4 *4 (-825)) (-4 *2 (-542))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-1020))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-427)) (-5 *2 - (-2 (|:| |brans| (-618 (-618 (-914 *4)))) (|:| |xValues| (-1055 *4)) - (|:| |yValues| (-1055 *4)))) - (-5 *1 (-151)) (-5 *3 (-618 (-618 (-914 *4))))))) + (-623 + (-3 (|:| -1916 (-1144)) + (|:| -1509 (-623 (-3 (|:| S (-1144)) (|:| P (-925 (-550))))))))) + (-5 *1 (-1148))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *1)) (-4 *1 (-295)))) + ((*1 *1 *1) (-4 *1 (-295))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836)))) + ((*1 *1 *1) (-5 *1 (-836)))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3)) (-4 *3 (-1068)) + (-4 *3 (-1181))))) +(((*1 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-950 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-896)) + (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *4)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1203 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-550))))))) + (-5 *2 (-623 *3)) (-5 *1 (-1096 *4 *3)) (-4 *4 (-1203 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-287 (-811 *3))) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 (-811 *3)) (-5 *1 (-616 *5 *3)) + (-4 *3 (-13 (-27) (-1166) (-423 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-287 (-811 (-925 *5)))) (-4 *5 (-444)) + (-5 *2 (-811 (-400 (-925 *5)))) (-5 *1 (-617 *5)) + (-5 *3 (-400 (-925 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-287 (-400 (-925 *5)))) (-5 *3 (-400 (-925 *5))) + (-4 *5 (-444)) (-5 *2 (-811 *3)) (-5 *1 (-617 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1068)) (-4 *4 (-1068)) + (-4 *6 (-1068)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *4 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-916 (-219)) (-916 (-219)))) (-5 *1 (-256)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) + (-5 *2 (-667 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1227 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-667 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-1227 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1203 *4)) (-5 *2 (-1227 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-402 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1203 *4)) (-5 *2 (-667 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1203 *3)) + (-5 *2 (-1227 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-410 *4)) (-4 *4 (-170)) + (-5 *2 (-667 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1227 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-667 *5))) (-5 *3 (-667 *5)) (-4 *5 (-356)) + (-5 *2 (-1227 *5)) (-5 *1 (-1054 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1034 *6 *7 *8)) (-5 *2 - (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) - (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) - (-5 *1 (-151)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-896)) (-5 *4 (-400 (-535))) + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1040 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 - (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) - (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) - (-5 *1 (-151))))) -(((*1 *1 *2) - (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) - (-14 *5 (-964 *3 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)) - (-4 *2 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-4 *3 (-1034 *6 *7 *8)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) - (|:| |c2| (-400 *5)) (|:| |deg| (-747)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1200 *2)) (-4 *2 (-1183)) (-5 *1 (-146 *2 *4 *3)) - (-4 *3 (-1200 (-400 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-400 *6)) (-4 *5 (-1183)) (-4 *6 (-1200 *5)) - (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| *6))) - (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-747)) (-4 *7 (-1200 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) - (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-747)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) - (-5 *2 (-2 (|:| -4296 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) - (-4 *3 (-1200 (-400 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-142))))) -(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-142))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 (-142))) (-5 *1 (-139)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-139))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-137))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-618 (-535))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) - (-14 *4 (-747)) (-4 *5 (-170))))) -(((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170))))) -(((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170))))) -(((*1 *2 *1) - (-12 (-5 *2 (-618 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) - (-14 *4 (-747)) (-4 *5 (-170))))) -(((*1 *1 *2) - (-12 (-5 *2 (-618 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) - (-14 *4 (-747))))) -(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-133))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-747)) (-5 *2 (-1230))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-128))))) -(((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-126 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1067))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-121 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) - ((*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1178))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1178))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-1009 (-400 *2)))) (-5 *2 (-535)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1200 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1067)) (-4 *2 (-823)) - (-5 *1 (-114 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-823)) (-4 *3 (-1067))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-618 (-1 *4 (-618 *4)))) (-4 *4 (-1067)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-618 (-1 *4 (-618 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-618 (-936))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1124) (-749))) (-5 *1 (-113))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-747)) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-524) (-618 (-524)))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-524) (-618 (-524)))) (-5 *1 (-113))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-113))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-749)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1124) (-749))) (-5 *1 (-113))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-109))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-936))) (-5 *1 (-108))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-106 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178))))) -(((*1 *2) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-104))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1142)) + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1113 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) (-5 *2 - (-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) - (|:| |singularities| (-1119 (-219))))) - (-5 *1 (-104))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4338 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) - (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1200 *2)) - (-4 *4 (-662 *2 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4338 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) - (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1200 *2)) - (-4 *4 (-662 *2 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1018)) (-4 *2 (-662 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) - (-4 *3 (-1200 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1018)) (-4 *2 (-662 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) - (-4 *3 (-1200 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-102 *3)) (-4 *3 (-1067))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1067))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-618 *2) *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *4 *3)) - (-4 *3 (-1200 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-13 (-444) (-145))) - (-5 *2 (-398 *3)) (-5 *1 (-99 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-535))) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-96))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1124)) (-5 *1 (-96)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1124)) (-5 *1 (-96))))) -(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-90 *3))))) + (-2 (|:| |done| (-623 *4)) + (|:| |todo| (-623 (-2 (|:| |val| (-623 *3)) (|:| -3223 *4)))))) + (-5 *1 (-1113 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-818 *3)) (-4 *3 (-1068))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *5 (-542)) + (-12 (-4 *5 (-1068)) (-4 *2 (-873 *5)) (-5 *1 (-670 *5 *2 *3 *4)) + (-4 *3 (-366 *2)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4342))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-550)) (-4 *5 (-823)) (-4 *5 (-356)) + (-5 *2 (-749)) (-5 *1 (-918 *5 *6)) (-4 *6 (-1203 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-1068)) (-5 *1 (-973 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-799))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-667 (-400 (-550)))) (-5 *2 - (-2 (|:| |minor| (-618 (-890))) (|:| -3600 *3) - (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 *3)))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-634 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-89 *4 *5)) - (-5 *3 (-665 *4)) (-4 *5 (-634 *4))))) + (-623 + (-2 (|:| |outval| *4) (|:| |outmult| (-550)) + (|:| |outvect| (-623 (-667 *4)))))) + (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-738))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-542)) - (-5 *2 (-2 (|:| -1695 (-665 *5)) (|:| |vec| (-1224 (-618 (-890)))))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-634 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-57 *3)) (-4 *3 (-1178)))) - ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-57 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-535)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1178)) (-4 *3 (-365 *4)) - (-4 *5 (-365 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-535)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) - (-4 *3 (-365 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-1067)) - (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) - (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-618 (-1041 *4 *5 *2))) (-4 *4 (-1067)) - (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) - (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-618 (-1041 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1067)) - (-4 *6 (-13 (-1018) (-857 *5) (-823) (-594 (-861 *5)))) - (-4 *2 (-13 (-414 *6) (-857 *5) (-594 (-861 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1069)) (-5 *3 (-749)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-51))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1124)) (-5 *1 (-51))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-5 *3 (-623 *6)) (-5 *4 (-1144)) (-4 *6 (-423 *5)) + (-4 *5 (-825)) (-5 *2 (-623 (-594 *6))) (-5 *1 (-559 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-1203 *3)) + (-4 *5 (-1203 (-400 *4))) + (-5 *2 (-2 (|:| |num| (-1227 *4)) (|:| |den| *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-5 *3 (-1140 *4)) (-4 *4 (-342)) + (-4 *2 + (-13 (-395) + (-10 -7 (-15 -1518 (*2 *4)) (-15 -2253 ((-894) *2)) + (-15 -2437 ((-1227 *2) (-894))) (-15 -2072 (*2 *2))))) + (-5 *1 (-349 *2 *4))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-667 (-219))) (-5 *4 (-550)) (-5 *5 (-112)) + (-5 *2 (-1008)) (-5 *1 (-724))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1140 *6)) (-5 *3 (-550)) (-4 *6 (-300)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-922 *6 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *1 *1) (-4 *1 (-740)))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) -(((*1 *2) - (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-5 *2 (-623 (-623 (-550)))) (-5 *1 (-944)) + (-5 *3 (-623 (-550)))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-5 *3 (-925 *5)) (-4 *5 (-1020)) (-5 *2 (-241 *4 *5)) + (-5 *1 (-917 *4 *5)) (-14 *4 (-623 (-1144)))))) +(((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) + ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-424 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-5 *3 (-623 *4)) (-4 *4 (-823)) (-4 *4 (-356)) (-5 *2 (-749)) + (-5 *1 (-918 *4 *5)) (-4 *5 (-1203 *4))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1124 (-2 (|:| |k| (-550)) (|:| |c| *6)))) + (-5 *4 (-999 (-818 (-550)))) (-5 *5 (-1144)) (-5 *7 (-400 (-550))) + (-4 *6 (-1020)) (-5 *2 (-836)) (-5 *1 (-578 *6))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1144)) (-5 *1 (-273))))) +(((*1 *1) (-5 *1 (-155)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-4 *5 (-13 (-444) (-825) (-1011 (-550)) (-619 (-550)))) + (-5 *2 + (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1126)) (|:| |prob| (-1126)))))) + (-5 *1 (-413 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1166) (-423 *5))) + (-14 *6 (-1144)) (-14 *7 *3)))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-623 *8)) (-5 *4 (-623 (-865 *6))) + (-5 *5 (-1 (-862 *6 *8) *8 (-865 *6) (-862 *6 *8))) (-4 *6 (-1068)) + (-4 *8 (-13 (-1020) (-596 (-865 *6)) (-1011 *7))) + (-5 *2 (-862 *6 *8)) (-4 *7 (-13 (-1020) (-825))) + (-5 *1 (-914 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 (-550))) (-5 *2 (-749)) (-5 *1 (-573))))) +(((*1 *2 *1) + (-12 (-5 *2 (-400 (-925 *3))) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-894)) + (-14 *5 (-623 (-1144))) (-14 *6 (-1227 (-667 *3)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-667 *3)) (|:| |invmval| (-667 *3)) + (|:| |genIdeal| (-495 *3 *4 *5 *6)))) + (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-1017 *5 *6))) (-5 *1 (-1253 *5 *6 *7)) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-925 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-1017 *5 *6))) (-5 *1 (-1253 *5 *6 *7)) + (-14 *6 (-623 (-1144))) (-14 *7 (-623 (-1144))))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-925 *4))) + (-4 *4 (-13 (-823) (-300) (-145) (-995))) + (-5 *2 (-623 (-1017 *4 *5))) (-5 *1 (-1253 *4 *5 *6)) + (-14 *5 (-623 (-1144))) (-14 *6 (-623 (-1144)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-167 (-219))) (-5 *5 (-550)) (-5 *6 (-1126)) + (-5 *3 (-219)) (-5 *2 (-1008)) (-5 *1 (-737))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-922 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-219))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) + (-5 *1 (-298))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-542)) (-5 *2 (-1227 (-667 *4))) (-5 *1 (-89 *4 *5)) + (-5 *3 (-667 *4)) (-4 *5 (-634 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) + (-4 *3 (-1203 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1203 (-550))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 (-749))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1203 (-550))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-623 (-749))) (-5 *5 (-749)) (-5 *2 (-411 *3)) + (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-749)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) + (-4 *3 (-1203 (-550))))) + ((*1 *2 *3) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-980 *3)) + (-4 *3 (-1203 (-400 (-550)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-411 *3)) (-5 *1 (-1192 *3)) (-4 *3 (-1203 (-550)))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-113)) (-5 *4 (-747)) (-4 *5 (-444)) (-4 *5 (-823)) - (-4 *5 (-1009 (-535))) (-4 *5 (-542)) (-5 *1 (-41 *5 *2)) (-4 *2 (-414 *5)) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *5 (-591 $)) $)) - (-15 -3318 ((-1091 *5 (-591 $)) $)) - (-15 -4300 ($ (-1091 *5 (-591 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) - (-15 -3318 ((-1091 *3 (-591 $)) $)) - (-15 -4300 ($ (-1091 *3 (-591 $)))))))))) + (-12 (-4 *1 (-342)) (-5 *3 (-550)) (-5 *2 (-1154 (-894) (-749)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-667 *3)) + (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-667 *3)) + (-4 *3 (-13 (-300) (-10 -8 (-15 -3564 ((-411 $) $))))) + (-4 *4 (-1203 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-749)) (-4 *3 (-1020)) (-4 *1 (-665 *3 *4 *5)) + (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1020)) (-4 *1 (-1091 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) + (-4 *5 (-232 *3 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) - (-15 -3318 ((-1091 *3 (-591 $)) $)) - (-15 -4300 ($ (-1091 *3 (-591 $)))))))))) + (-12 + (-5 *2 + (-2 (|:| |fn| (-309 (-219))) (|:| -3862 (-623 (-219))) + (|:| |lb| (-623 (-818 (-219)))) (|:| |cf| (-623 (-309 (-219)))) + (|:| |ub| (-623 (-818 (-219)))))) + (-5 *1 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-555 *3)) (-4 *3 (-1011 (-550))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *3 (-1068)) (-4 *4 (-1068)) + (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-1068)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-900))))) +(((*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-204))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4342)) (-4 *1 (-149 *2)) (-4 *2 (-1181)) + (-4 *2 (-1068))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1144)) + (-4 *4 (-13 (-825) (-300) (-1011 (-550)) (-619 (-550)) (-145))) + (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1166) (-932))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-836))) ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *2 *3) + (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1020))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-1155 *2)) (-4 *2 (-356))))) +(((*1 *2 *1) + (-12 (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-117 *3)) (-14 *3 (-550)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-172 (-550))) (-5 *1 (-744 *3)) (-4 *3 (-397)))) + ((*1 *2 *1) + (-12 (-5 *2 (-172 (-400 (-550)))) (-5 *1 (-844 *3)) (-14 *3 (-550)))) + ((*1 *2 *1) + (-12 (-14 *3 (-550)) (-5 *2 (-172 (-400 (-550)))) + (-5 *1 (-845 *3 *4)) (-4 *4 (-842 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) + (-4 *3 (-1034 *5 *6 *7)) + (-5 *2 (-623 (-2 (|:| |val| (-112)) (|:| -3223 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1040 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-114))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-899)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-219))) (-5 *1 (-900)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1232)) (-5 *1 (-1229))))) +(((*1 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1230)))) + ((*1 *2 *2) (-12 (-5 *2 (-623 (-749))) (-5 *1 (-1230))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) - (-15 -3318 ((-1091 *3 (-591 $)) $)) - (-15 -4300 ($ (-1091 *3 (-591 $)))))))))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1020)) (-5 *1 (-1128 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1020)) (-14 *3 (-1144)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-550))) (-5 *3 (-550)) + (-5 *2 (-1008)) (-5 *1 (-733))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *2 (-1008)) + (-5 *1 (-726))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *3 (-623 (-256))) + (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-256)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1062 (-372)))) (-5 *1 (-460))))) +(((*1 *2 *3) + (-12 (-4 *4 (-542)) (-4 *5 (-771)) (-4 *6 (-825)) + (-4 *7 (-1034 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-623 *7)) (|:| |badPols| (-623 *7)))) + (-5 *1 (-950 *4 *5 *6 *7)) (-5 *3 (-623 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-800))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-550)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) + (-5 *2 (-1008)) (-5 *1 (-730))))) +(((*1 *2) + (-12 (-4 *3 (-542)) (-5 *2 (-623 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-410 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-542)) (-5 *2 (-1136 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) - (-15 -3318 ((-1091 *4 (-591 $)) $)) - (-15 -4300 ($ (-1091 *4 (-591 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) - (-15 -3318 ((-1091 *3 (-591 $)) $)) - (-15 -4300 ($ (-1091 *3 (-591 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) - (-15 -3318 ((-1091 *3 (-591 $)) $)) - (-15 -4300 ($ (-1091 *3 (-591 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-618 *2)) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) - (-15 -3318 ((-1091 *4 (-591 $)) $)) - (-15 -4300 ($ (-1091 *4 (-591 $))))))) - (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-618 (-591 *2))) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) - (-15 -3318 ((-1091 *4 (-591 $)) $)) - (-15 -4300 ($ (-1091 *4 (-591 $))))))) - (-4 *4 (-542)) (-5 *1 (-41 *4 *2))))) + (-12 (-5 *3 (-623 (-550))) (-5 *2 (-877 (-550))) (-5 *1 (-890)))) + ((*1 *2) (-12 (-5 *2 (-877 (-550))) (-5 *1 (-890))))) (((*1 *2 *2) - (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) - (-15 -3318 ((-1091 *3 (-591 $)) $)) - (-15 -4300 ($ (-1091 *3 (-591 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-4 *5 (-1200 *4)) (-5 *2 (-1230)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1200 (-400 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) - (-5 *2 (-2 (|:| -4203 *3) (|:| -2184 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-535)) (-4 *2 (-414 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1009 *4)) - (-4 *3 (-13 (-823) (-542)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-618 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-823) (-542))) - (-5 *2 (-835)) (-5 *1 (-32 *4 *5))))) + (-12 (-4 *3 (-1011 (-550))) (-4 *3 (-13 (-825) (-542))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-423 *3)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1140 *4)) (-5 *1 (-163 *3 *4)) + (-4 *3 (-164 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1020)) (-4 *1 (-295)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1140 *3)))) + ((*1 *2) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1203 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *2)) (-4 *3 (-13 (-823) (-356))) + (-4 *2 (-1203 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 (-623 *3))) (-4 *3 (-1068)) (-4 *1 (-876 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-825)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1174 *2 *3 *4 *5)) (-4 *2 (-542)) + (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1034 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-749)) (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) + ((*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1136 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) - (-5 *1 (-32 *4 *2))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-917 (-535))) (-5 *3 (-1142)) (-5 *4 (-1055 (-400 (-535)))) - (-5 *1 (-30))))) + (-12 + (-5 *2 + (-623 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-771)) (-4 *3 (-922 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) + (-5 *1 (-441 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) +(((*1 *2 *1) + (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) + (-5 *2 (-1140 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1136 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-618 *1)) - (-4 *1 (-29 *4)))) + (-12 (-5 *2 (-623 (-167 *4))) (-5 *1 (-153 *3 *4)) + (-4 *3 (-1203 (-167 (-550)))) (-4 *4 (-13 (-356) (-823))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-167 *4))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-623 (-167 *4))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1203 (-167 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1185)) (-4 *5 (-1203 *4)) + (-5 *2 (-2 (|:| -2855 (-400 *5)) (|:| |poly| *3))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1203 (-400 *5)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-594 *4)) (-5 *6 (-1144)) + (-4 *4 (-13 (-423 *7) (-27) (-1166))) + (-4 *7 (-13 (-444) (-1011 (-550)) (-825) (-145) (-619 (-550)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2437 (-623 *4)))) + (-5 *1 (-552 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1068))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1008)) (-5 *3 (-1144)) (-5 *1 (-186))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4343)) (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1) (-5 *1 (-836))) ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1181)))) + ((*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-760 *3)) (|:| |polden| *3) (|:| -3363 (-749)))) + (-5 *1 (-760 *3)) (-4 *3 (-1020)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1020)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3363 (-749)))) + (-4 *1 (-1034 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1203 (-550)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-623 *1)) (-4 *1 (-1034 *4 *5 *6)) (-4 *4 (-1020)) + (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1034 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-771)) + (-4 *5 (-825)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1174 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-771)) + (-4 *5 (-825)) (-4 *6 (-1034 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1174 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-771)) + (-4 *6 (-825)) (-4 *3 (-1034 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-665 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-366 *3)) + (-4 *5 (-366 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *5 (-1020)) + (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-586 *3 *2)) (-4 *3 (-1068)) (-4 *3 (-825)) + (-4 *2 (-1181)))) + ((*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) + ((*1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1181)) (-5 *1 (-846 *2 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-866 *3)) (-4 *3 (-825)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-5 *3 (-1142)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-917 *1)) (-4 *1 (-27)))) + (|partial| -12 (-4 *1 (-1174 *3 *4 *5 *2)) (-4 *3 (-542)) + (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1034 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-542))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-542)))))) -((-1258 . 729306) (-1259 . 728879) (-1260 . 728758) (-1261 . 728643) - (-1262 . 728517) (-1263 . 728387) (-1264 . 728318) (-1265 . 728264) - (-1266 . 728129) (-1267 . 728053) (-1268 . 727897) (-1269 . 727669) - (-1270 . 726705) (-1271 . 726458) (-1272 . 726156) (-1273 . 725854) - (-1274 . 725552) (-1275 . 725214) (-1276 . 725122) (-1277 . 725030) - (-1278 . 724938) (-1279 . 724846) (-1280 . 724754) (-1281 . 724662) - (-1282 . 724567) (-1283 . 724472) (-1284 . 724380) (-1285 . 724288) - (-1286 . 724196) (-1287 . 724104) (-1288 . 724012) (-1289 . 723910) - (-1290 . 723808) (-1291 . 723706) (-1292 . 723614) (-1293 . 723547) - (-1294 . 723496) (-1295 . 723444) (-1296 . 723393) (-1297 . 723342) - (-1298 . 723272) (-1299 . 722834) (-1300 . 722632) (-1301 . 722509) - (-1302 . 722386) (-1303 . 722242) (-1304 . 722072) (-1305 . 721948) - (-1306 . 721709) (-1307 . 721636) (-1308 . 721495) (-1309 . 721444) - (-1310 . 721395) (-1311 . 721325) (-1312 . 721190) (-1313 . 721055) - (-1314 . 720827) (-1315 . 720581) (-1316 . 720401) (-1317 . 720230) - (-1318 . 720153) (-1319 . 720079) (-1320 . 719924) (-1321 . 719769) - (-1322 . 719583) (-1323 . 719400) (-1324 . 719223) (-1325 . 719166) - (-1326 . 719110) (-1327 . 719054) (-1328 . 718980) (-1329 . 718902) - (-1330 . 718846) (-1331 . 718815) (-1332 . 718746) (-1333 . 718672) - (-1334 . 718616) (-1335 . 718545) (-1336 . 718392) (-1337 . 718318) - (-1338 . 718244) (-1339 . 718192) (-1340 . 718140) (-1341 . 718088) - (-1342 . 718026) (-1343 . 717903) (-1344 . 717581) (-1345 . 717493) - (-1346 . 717392) (-1347 . 717271) (-1348 . 717190) (-1349 . 717109) - (-1350 . 716952) (-1351 . 716801) (-1352 . 716723) (-1353 . 716665) - (-1354 . 716592) (-1355 . 716527) (-1356 . 716462) (-1357 . 716400) - (-1358 . 716327) (-1359 . 716211) (-1360 . 716177) (-1361 . 716143) - (-1362 . 716091) (-1363 . 716047) (-1364 . 715976) (-1365 . 715924) - (-1366 . 715875) (-1367 . 715823) (-1368 . 715771) (-1369 . 715655) - (-1370 . 715539) (-1371 . 715447) (-1372 . 715355) (-1373 . 715232) - (-1374 . 715179) (-1375 . 715151) (-1376 . 715123) (-1377 . 715095) - (-1378 . 715067) (-1379 . 714957) (-1380 . 714905) (-1381 . 714853) - (-1382 . 714801) (-1383 . 714749) (-1384 . 714697) (-1385 . 714645) - (-1386 . 714617) (-1387 . 714514) (-1388 . 714462) (-1389 . 714296) - (-1390 . 714112) (-1391 . 713901) (-1392 . 713786) (-1393 . 713553) - (-1394 . 713454) (-1395 . 713360) (-1396 . 713245) (-1397 . 712847) - (-1398 . 712629) (-1399 . 712580) (-1400 . 712552) (-1401 . 712524) - (-1402 . 712496) (-1403 . 712468) (-1404 . 712377) (-1405 . 712265) - (-1406 . 712153) (-1407 . 712041) (-1408 . 711929) (-1409 . 711817) - (-1410 . 711705) (-1411 . 711532) (-1412 . 711456) (-1413 . 711274) - (-1414 . 711216) (-1415 . 711158) (-1416 . 710820) (-1417 . 710535) - (-1418 . 710451) (-1419 . 710318) (-1420 . 710260) (-1421 . 710208) - (-1422 . 710153) (-1423 . 710101) (-1424 . 710027) (-1425 . 709953) - (-1426 . 709872) (-1427 . 709791) (-1428 . 709736) (-1429 . 709662) - (-1430 . 709588) (-1431 . 709514) (-1432 . 709437) (-1433 . 709382) - (-1434 . 709323) (-1435 . 709224) (-1436 . 709125) (-1437 . 709026) - (-1438 . 708927) (-1439 . 708828) (-1440 . 708729) (-1441 . 708630) - (-1442 . 708516) (-1443 . 708402) (-1444 . 708288) (-1445 . 708174) - (-1446 . 708060) (-1447 . 707946) (-1448 . 707829) (-1449 . 707753) - (-1450 . 707677) (-1451 . 707290) (-1452 . 706944) (-1453 . 706842) - (-1454 . 706580) (-1455 . 706478) (-1456 . 706273) (-1457 . 706160) - (-1458 . 706058) (-1459 . 705901) (-1460 . 705812) (-1461 . 705718) - (-1462 . 705638) (-1463 . 705578) (-1464 . 705525) (-1465 . 705406) - (-1466 . 705324) (-1467 . 705242) (-1468 . 705160) (-1469 . 705078) - (-1470 . 704996) (-1471 . 704902) (-1472 . 704832) (-1473 . 704762) - (-1474 . 704671) (-1475 . 704577) (-1476 . 704495) (-1477 . 704413) - (-1478 . 703922) (-1479 . 703369) (-1480 . 703159) (-1481 . 703084) - (-1482 . 702830) (-1483 . 702603) (-1484 . 702393) (-1485 . 702263) - (-1486 . 702182) (-1487 . 702033) (-1488 . 701678) (-1489 . 701386) - (-1490 . 701094) (-1491 . 700802) (-1492 . 700510) (-1493 . 700451) - (-1494 . 700344) (-1495 . 699916) (-1496 . 699756) (-1497 . 699557) - (-1498 . 699421) (-1499 . 699321) (-1500 . 699221) (-1501 . 699127) - (-1502 . 699068) (-1503 . 698726) (-1504 . 698625) (-1505 . 698506) - (-1506 . 698290) (-1507 . 698109) (-1508 . 697942) (-1509 . 697727) - (-1510 . 697288) (-1511 . 697235) (-1512 . 697126) (-1513 . 697011) - (-1514 . 696942) (-1515 . 696873) (-1516 . 696804) (-1517 . 696738) - (-1518 . 696613) (-1519 . 696396) (-1520 . 696318) (-1521 . 696268) - (-1522 . 696197) (-1523 . 696054) (-1524 . 695913) (-1525 . 695832) - (-1526 . 695751) (-1527 . 695695) (-1528 . 695639) (-1529 . 695566) - (-1530 . 695426) (-1531 . 695373) (-1532 . 695321) (-1533 . 695269) - (-1534 . 695151) (-1535 . 695033) (-1536 . 694915) (-1537 . 694782) - (-1538 . 694501) (-1539 . 694365) (-1540 . 694309) (-1541 . 694253) - (-1542 . 694194) (-1543 . 694135) (-1544 . 694079) (-1545 . 694023) - (-1546 . 693826) (-1547 . 691484) (-1548 . 691357) (-1549 . 691211) - (-1550 . 691083) (-1551 . 691031) (-1552 . 690979) (-1553 . 690927) - (-1554 . 686888) (-1555 . 686793) (-1556 . 686654) (-1557 . 686445) - (-1558 . 686343) (-1559 . 686241) (-1560 . 685325) (-1561 . 685248) - (-1562 . 685119) (-1563 . 684992) (-1564 . 684915) (-1565 . 684838) - (-1566 . 684711) (-1567 . 684584) (-1568 . 684418) (-1569 . 684291) - (-1570 . 684164) (-1571 . 683947) (-1572 . 683509) (-1573 . 683143) - (-1574 . 683036) (-1575 . 682817) (-1576 . 682748) (-1577 . 682689) - (-1578 . 682608) (-1579 . 682497) (-1580 . 682431) (-1581 . 682365) - (-1582 . 682291) (-1583 . 682219) (-1584 . 681842) (-1585 . 681790) - (-1586 . 681731) (-1587 . 681627) (-1588 . 681523) (-1589 . 681416) - (-1590 . 681309) (-1591 . 681202) (-1592 . 681095) (-1593 . 680988) - (-1594 . 680881) (-1595 . 680774) (-1596 . 680667) (-1597 . 680560) - (-1598 . 680453) (-1599 . 680346) (-1600 . 680239) (-1601 . 680132) - (-1602 . 680025) (-1603 . 679918) (-1604 . 679811) (-1605 . 679704) - (-1606 . 679597) (-1607 . 679490) (-1608 . 679383) (-1609 . 679276) - (-1610 . 679169) (-1611 . 679062) (-1612 . 678955) (-1613 . 678848) - (-1614 . 678741) (-1615 . 678562) (-1616 . 678440) (-1617 . 678189) - (-1618 . 677886) (-1619 . 677680) (-1620 . 677513) (-1621 . 677342) - (-1622 . 677290) (-1623 . 677227) (-1624 . 677164) (-1625 . 677112) - (-1626 . 676923) (-1627 . 676769) (-1628 . 676689) (-1629 . 676609) - (-1630 . 676529) (-1631 . 676399) (-1632 . 676167) (-1633 . 676139) - (-1634 . 676111) (-1635 . 676030) (-1636 . 675940) (-1637 . 675862) - (-1638 . 675775) (-1639 . 675715) (-1640 . 675557) (-1641 . 675364) - (-1642 . 674879) (-1643 . 674637) (-1644 . 674375) (-1645 . 674274) - (-1646 . 674193) (-1647 . 674112) (-1648 . 674042) (-1649 . 673972) - (-1650 . 673813) (-1651 . 673509) (-1652 . 673266) (-1653 . 673142) - (-1654 . 673083) (-1655 . 673021) (-1656 . 672959) (-1657 . 672894) - (-1658 . 672832) (-1659 . 672553) (-1660 . 672343) (-1661 . 672069) - (-1662 . 671498) (-1663 . 670984) (-1664 . 670839) (-1665 . 670772) - (-1666 . 670691) (-1667 . 670610) (-1668 . 670508) (-1669 . 670434) - (-1670 . 670353) (-1671 . 670279) (-1672 . 670070) (-1673 . 669857) - (-1674 . 669767) (-1675 . 669700) (-1676 . 669564) (-1677 . 669497) - (-1678 . 669415) (-1679 . 669334) (-1680 . 669232) (-1681 . 669032) - (-1682 . 668964) (-1683 . 668722) (-1684 . 668471) (-1685 . 668229) - (-1686 . 667987) (-1687 . 667919) (-1688 . 667583) (-1689 . 666582) - (-1690 . 666362) (-1691 . 666281) (-1692 . 666207) (-1693 . 666133) - (-1694 . 666059) (-1695 . 665955) (-1696 . 665882) (-1697 . 665814) - (-1698 . 665604) (-1699 . 665552) (-1700 . 665497) (-1701 . 665407) - (-1702 . 665320) (-1703 . 663469) (-1704 . 663390) (-1705 . 662645) - (-1706 . 662515) (-1707 . 662308) (-1708 . 662146) (-1709 . 661984) - (-1710 . 661823) (-1711 . 661684) (-1712 . 661590) (-1713 . 661492) - (-1714 . 661398) (-1715 . 661283) (-1716 . 661198) (-1717 . 661100) - (-1718 . 660904) (-1719 . 660813) (-1720 . 660719) (-1721 . 660652) - (-1722 . 660599) (-1723 . 660546) (-1724 . 660493) (-1725 . 659355) - (-1726 . 658845) (-1727 . 658766) (-1728 . 658707) (-1729 . 658679) - (-1730 . 658651) (-1731 . 658592) (-1732 . 658479) (-1733 . 658102) - (-1734 . 658049) (-1735 . 657938) (-1736 . 657885) (-1737 . 657832) - (-1738 . 657776) (-1739 . 657720) (-1740 . 657555) (-1741 . 657485) - (-1742 . 657390) (-1743 . 657295) (-1744 . 657200) (-1745 . 657043) - (-1746 . 656886) (-1747 . 656733) (-1748 . 655975) (-1749 . 655722) - (-1750 . 655411) (-1751 . 655059) (-1752 . 654842) (-1753 . 654579) - (-1754 . 654204) (-1755 . 654020) (-1756 . 653886) (-1757 . 653720) - (-1758 . 653554) (-1759 . 653420) (-1760 . 653286) (-1761 . 653152) - (-1762 . 653018) (-1763 . 652887) (-1764 . 652756) (-1765 . 652625) - (-1766 . 652242) (-1767 . 652115) (-1768 . 651987) (-1769 . 651735) - (-1770 . 651611) (-1771 . 651359) (-1772 . 651235) (-1773 . 650983) - (-1774 . 650859) (-1775 . 650574) (-1776 . 650301) (-1777 . 650028) - (-1778 . 649730) (-1779 . 649628) (-1780 . 649483) (-1781 . 649342) - (-1782 . 649191) (-1783 . 649030) (-1784 . 648942) (-1785 . 648914) - (-1786 . 648832) (-1787 . 648735) (-1788 . 648267) (-1789 . 647916) - (-1790 . 647483) (-1791 . 647342) (-1792 . 647272) (-1793 . 647202) - (-1794 . 647132) (-1795 . 647041) (-1796 . 646950) (-1797 . 646859) - (-1798 . 646768) (-1799 . 646677) (-1800 . 646591) (-1801 . 646505) - (-1802 . 646419) (-1803 . 646333) (-1804 . 646247) (-1805 . 646173) - (-1806 . 646068) (-1807 . 645842) (-1808 . 645764) (-1809 . 645689) - (-1810 . 645596) (-1811 . 645492) (-1812 . 645396) (-1813 . 645227) - (-1814 . 645150) (-1815 . 645073) (-1816 . 644982) (-1817 . 644891) - (-1818 . 644691) (-1819 . 644536) (-1820 . 644381) (-1821 . 644226) - (-1822 . 644071) (-1823 . 643916) (-1824 . 643761) (-1825 . 643694) - (-1826 . 643539) (-1827 . 643384) (-1828 . 643229) (-1829 . 643074) - (-1830 . 642919) (-1831 . 642764) (-1832 . 642609) (-1833 . 642454) - (-1834 . 642380) (-1835 . 642306) (-1836 . 642251) (-1837 . 642196) - (-1838 . 642141) (-1839 . 642086) (-1840 . 642015) (-1841 . 641810) - (-1842 . 641709) (-1843 . 641518) (-1844 . 641425) (-1845 . 641288) - (-1846 . 641151) (-1847 . 641014) (-1848 . 640946) (-1849 . 640830) - (-1850 . 640714) (-1851 . 640598) (-1852 . 640545) (-1853 . 640348) - (-1854 . 640263) (-1855 . 639955) (-1856 . 639900) (-1857 . 639248) - (-1858 . 638933) (-1859 . 638649) (-1860 . 638530) (-1861 . 638478) - (-1862 . 638426) (-1863 . 638374) (-1864 . 638321) (-1865 . 638268) - (-1866 . 638209) (-1867 . 638096) (-1868 . 637983) (-1869 . 637925) - (-1870 . 637867) (-1871 . 637817) (-1872 . 637682) (-1873 . 637632) - (-1874 . 637569) (-1875 . 637509) (-1876 . 636912) (-1877 . 636852) - (-1878 . 636685) (-1879 . 636593) (-1880 . 636480) (-1881 . 636396) - (-1882 . 636281) (-1883 . 636190) (-1884 . 636099) (-1885 . 635910) - (-1886 . 635855) (-1887 . 635668) (-1888 . 635545) (-1889 . 635472) - (-1890 . 635399) (-1891 . 635279) (-1892 . 635206) (-1893 . 635133) - (-1894 . 635060) (-1895 . 634840) (-1896 . 634507) (-1897 . 634323) - (-1898 . 634179) (-1899 . 633818) (-1900 . 633650) (-1901 . 633482) - (-1902 . 633226) (-1903 . 632970) (-1904 . 632775) (-1905 . 632580) - (-1906 . 631986) (-1907 . 631910) (-1908 . 631772) (-1909 . 631370) - (-1910 . 631243) (-1911 . 631084) (-1912 . 630758) (-1913 . 630269) - (-1914 . 629780) (-1915 . 629262) (-1916 . 629194) (-1917 . 629123) - (-1918 . 629052) (-1919 . 628869) (-1920 . 628750) (-1921 . 628631) - (-1922 . 628540) (-1923 . 628449) (-1924 . 628157) (-1925 . 628035) - (-1926 . 627983) (-1927 . 627931) (-1928 . 627879) (-1929 . 627827) - (-1930 . 627775) (-1931 . 627626) (-1932 . 627445) (-1933 . 627205) - (-1934 . 627010) (-1935 . 626982) (-1936 . 626954) (-1937 . 626926) - (-1938 . 626898) (-1939 . 626870) (-1940 . 626842) (-1941 . 626814) - (-1942 . 626762) (-1943 . 626672) (-1944 . 626622) (-1945 . 626553) - (-1946 . 626484) (-1947 . 626379) (-1948 . 626008) (-1949 . 625857) - (-1950 . 625706) (-1951 . 625501) (-1952 . 625379) (-1953 . 625304) - (-1954 . 625226) (-1955 . 625151) (-1956 . 625073) (-1957 . 624995) - (-1958 . 624920) (-1959 . 624842) (-1960 . 624608) (-1961 . 624453) - (-1962 . 624154) (-1963 . 623999) (-1964 . 623673) (-1965 . 623533) - (-1966 . 623393) (-1967 . 623312) (-1968 . 623231) (-1969 . 622966) - (-1970 . 622233) (-1971 . 622096) (-1972 . 622005) (-1973 . 621868) - (-1974 . 621800) (-1975 . 621731) (-1976 . 621643) (-1977 . 621555) - (-1978 . 621384) (-1979 . 621310) (-1980 . 621166) (-1981 . 620706) - (-1982 . 620326) (-1983 . 619562) (-1984 . 619418) (-1985 . 619274) - (-1986 . 619112) (-1987 . 618874) (-1988 . 618733) (-1989 . 618586) - (-1990 . 618347) (-1991 . 618111) (-1992 . 617872) (-1993 . 617680) - (-1994 . 617557) (-1995 . 617353) (-1996 . 617130) (-1997 . 616891) - (-1998 . 616750) (-1999 . 616612) (-2000 . 616473) (-2001 . 616220) - (-2002 . 615964) (-2003 . 615807) (-2004 . 615653) (-2005 . 615412) - (-2006 . 615127) (-2007 . 614989) (-2008 . 614902) (-2009 . 614236) - (-2010 . 614060) (-2011 . 613878) (-2012 . 613702) (-2013 . 613520) - (-2014 . 613341) (-2015 . 613162) (-2016 . 612975) (-2017 . 612593) - (-2018 . 612414) (-2019 . 612235) (-2020 . 612048) (-2021 . 611666) - (-2022 . 610673) (-2023 . 610289) (-2024 . 609905) (-2025 . 609787) - (-2026 . 609630) (-2027 . 609488) (-2028 . 609370) (-2029 . 609188) - (-2030 . 609064) (-2031 . 608774) (-2032 . 608484) (-2033 . 608200) - (-2034 . 607916) (-2035 . 607637) (-2036 . 607549) (-2037 . 607464) - (-2038 . 607365) (-2039 . 607266) (-2040 . 607042) (-2041 . 606942) - (-2042 . 606839) (-2043 . 606761) (-2044 . 606436) (-2045 . 606144) - (-2046 . 606071) (-2047 . 605686) (-2048 . 605658) (-2049 . 605459) - (-2050 . 605285) (-2051 . 605044) (-2052 . 604989) (-2053 . 604913) - (-2054 . 604542) (-2055 . 604426) (-2056 . 604349) (-2057 . 604276) - (-2058 . 604195) (-2059 . 604114) (-2060 . 604033) (-2061 . 603932) - (-2062 . 603873) (-2063 . 603654) (-2064 . 603415) (-2065 . 603291) - (-2066 . 603167) (-2067 . 602940) (-2068 . 602887) (-2069 . 602832) - (-2070 . 602500) (-2071 . 602176) (-2072 . 601988) (-2073 . 601797) - (-2074 . 601633) (-2075 . 601298) (-2076 . 601131) (-2077 . 600890) - (-2078 . 600562) (-2079 . 600370) (-2080 . 600153) (-2081 . 599980) - (-2082 . 599558) (-2083 . 599331) (-2084 . 599060) (-2085 . 598922) - (-2086 . 598781) (-2087 . 598303) (-2088 . 598180) (-2089 . 597944) - (-2090 . 597690) (-2091 . 597440) (-2092 . 597145) (-2093 . 597004) - (-2094 . 596660) (-2095 . 596519) (-2096 . 596326) (-2097 . 596133) - (-2098 . 595958) (-2099 . 595684) (-2100 . 595249) (-2101 . 595175) - (-2102 . 595014) (-2103 . 594851) (-2104 . 594690) (-2105 . 594523) - (-2106 . 594470) (-2107 . 594417) (-2108 . 594288) (-2109 . 594228) - (-2110 . 594175) (-2111 . 594122) (-2112 . 594051) (-2113 . 593998) - (-2114 . 593856) (-2115 . 593761) (-2116 . 593670) (-2117 . 593554) - (-2118 . 593460) (-2119 . 593362) (-2120 . 593268) (-2121 . 593127) - (-2122 . 592862) (-2123 . 592005) (-2124 . 591849) (-2125 . 591480) - (-2126 . 591395) (-2127 . 591307) (-2128 . 591161) (-2129 . 591012) - (-2130 . 590722) (-2131 . 590644) (-2132 . 590569) (-2133 . 590516) - (-2134 . 590463) (-2135 . 590432) (-2136 . 590369) (-2137 . 590250) - (-2138 . 590161) (-2139 . 590041) (-2140 . 589746) (-2141 . 589552) - (-2142 . 589364) (-2143 . 589219) (-2144 . 589074) (-2145 . 588788) - (-2146 . 588343) (-2147 . 588309) (-2148 . 588272) (-2149 . 588235) - (-2150 . 588198) (-2151 . 588161) (-2152 . 588130) (-2153 . 588099) - (-2154 . 588068) (-2155 . 588034) (-2156 . 588000) (-2157 . 587945) - (-2158 . 587756) (-2159 . 587514) (-2160 . 587272) (-2161 . 587035) - (-2162 . 586983) (-2163 . 586928) (-2164 . 586858) (-2165 . 586769) - (-2166 . 586700) (-2167 . 586628) (-2168 . 586398) (-2169 . 586346) - (-2170 . 586291) (-2171 . 586260) (-2172 . 586154) (-2173 . 585921) - (-2174 . 585603) (-2175 . 585421) (-2176 . 585228) (-2177 . 584949) - (-2178 . 584876) (-2179 . 584811) (-2180 . 584783) (-2181 . 584733) - (-2182 . 583310) (-2183 . 582162) (-2184 . 581024) (-2185 . 580532) - (-2186 . 579954) (-2187 . 579212) (-2188 . 578635) (-2189 . 577991) - (-2190 . 577412) (-2191 . 577338) (-2192 . 577286) (-2193 . 577234) - (-2194 . 577160) (-2195 . 577105) (-2196 . 577053) (-2197 . 577001) - (-2198 . 576949) (-2199 . 576879) (-2200 . 576431) (-2201 . 576217) - (-2202 . 575960) (-2203 . 575618) (-2204 . 575356) (-2205 . 575046) - (-2206 . 574835) (-2207 . 574535) (-2208 . 573965) (-2209 . 573827) - (-2210 . 573624) (-2211 . 573343) (-2212 . 573257) (-2213 . 572912) - (-2214 . 572770) (-2215 . 572478) (-2216 . 572257) (-2217 . 572132) - (-2218 . 572008) (-2219 . 571862) (-2220 . 571719) (-2221 . 571604) - (-2222 . 571474) (-2223 . 571102) (-2224 . 570842) (-2225 . 570567) - (-2226 . 570327) (-2227 . 569997) (-2228 . 569652) (-2229 . 569244) - (-2230 . 568821) (-2231 . 568624) (-2232 . 568349) (-2233 . 568181) - (-2234 . 567980) (-2235 . 567758) (-2236 . 567603) (-2237 . 567410) - (-2238 . 567341) (-2239 . 567271) (-2240 . 567152) (-2241 . 566974) - (-2242 . 566919) (-2243 . 566673) (-2244 . 566583) (-2245 . 566393) - (-2246 . 566320) (-2247 . 566250) (-2248 . 566185) (-2249 . 566130) - (-2250 . 566039) (-2251 . 565732) (-2252 . 565387) (-2253 . 565313) - (-2254 . 564991) (-2255 . 564784) (-2256 . 564698) (-2257 . 564612) - (-2258 . 564526) (-2259 . 564440) (-2260 . 564354) (-2261 . 564268) - (-2262 . 564182) (-2263 . 564096) (-2264 . 564010) (-2265 . 563924) - (-2266 . 563838) (-2267 . 563752) (-2268 . 563666) (-2269 . 563580) - (-2270 . 563494) (-2271 . 563408) (-2272 . 563322) (-2273 . 563236) - (-2274 . 563150) (-2275 . 563064) (-2276 . 562978) (-2277 . 562892) - (-2278 . 562806) (-2279 . 562720) (-2280 . 562634) (-2281 . 562548) - (-2282 . 562445) (-2283 . 562356) (-2284 . 562147) (-2285 . 562088) - (-2286 . 562032) (-2287 . 561943) (-2288 . 561831) (-2289 . 561744) - (-2290 . 561597) (-2291 . 561412) (-2292 . 561248) (-2293 . 561081) - (-2294 . 560896) (-2295 . 560675) (-2296 . 560551) (-2297 . 560343) - (-2298 . 560251) (-2299 . 560159) (-2300 . 560023) (-2301 . 559928) - (-2302 . 559833) (-2303 . 558317) (-2304 . 558257) (-2305 . 558167) - (-2306 . 558072) (-2307 . 557991) (-2308 . 557684) (-2309 . 557489) - (-2310 . 557396) (-2311 . 557290) (-2312 . 556872) (-2313 . 556819) - (-2314 . 556791) (-2315 . 556738) (-2316 . 556563) (-2317 . 556486) - (-2318 . 556297) (-2319 . 556117) (-2320 . 555693) (-2321 . 555541) - (-2322 . 555361) (-2323 . 555188) (-2324 . 554926) (-2325 . 554674) - (-2326 . 553863) (-2327 . 553694) (-2328 . 553475) (-2329 . 552571) - (-2330 . 552427) (-2331 . 552283) (-2332 . 552139) (-2333 . 551995) - (-2334 . 551851) (-2335 . 551707) (-2336 . 551512) (-2337 . 551318) - (-2338 . 551175) (-2339 . 550860) (-2340 . 550745) (-2341 . 550405) - (-2342 . 550245) (-2343 . 550106) (-2344 . 549967) (-2345 . 549838) - (-2346 . 549753) (-2347 . 549701) (-2348 . 549213) (-2349 . 547935) - (-2350 . 547820) (-2351 . 547691) (-2352 . 547384) (-2353 . 547133) - (-2354 . 547058) (-2355 . 546983) (-2356 . 546908) (-2357 . 546849) - (-2358 . 546778) (-2359 . 546725) (-2360 . 546663) (-2361 . 546592) - (-2362 . 546229) (-2363 . 545942) (-2364 . 545831) (-2365 . 545738) - (-2366 . 545645) (-2367 . 545558) (-2368 . 545338) (-2369 . 545118) - (-2370 . 544975) (-2371 . 544882) (-2372 . 544739) (-2373 . 544587) - (-2374 . 544433) (-2375 . 544362) (-2376 . 544153) (-2377 . 543975) - (-2378 . 543765) (-2379 . 543587) (-2380 . 543469) (-2381 . 543154) - (-2382 . 542876) (-2383 . 542755) (-2384 . 542628) (-2385 . 542543) - (-2386 . 542470) (-2387 . 542380) (-2388 . 542309) (-2389 . 542253) - (-2390 . 542197) (-2391 . 542141) (-2392 . 542070) (-2393 . 541999) - (-2394 . 541928) (-2395 . 541849) (-2396 . 541771) (-2397 . 541686) - (-2398 . 541426) (-2399 . 541337) (-2400 . 541039) (-2401 . 540941) - (-2402 . 540863) (-2403 . 540785) (-2404 . 540642) (-2405 . 540563) - (-2406 . 540491) (-2407 . 540288) (-2408 . 540232) (-2409 . 540044) - (-2410 . 539945) (-2411 . 539827) (-2412 . 539706) (-2413 . 539563) - (-2414 . 539420) (-2415 . 539280) (-2416 . 539140) (-2417 . 538997) - (-2418 . 538870) (-2419 . 538740) (-2420 . 538616) (-2421 . 538492) - (-2422 . 538386) (-2423 . 538280) (-2424 . 538177) (-2425 . 538027) - (-2426 . 537874) (-2427 . 537721) (-2428 . 537577) (-2429 . 537423) - (-2430 . 537346) (-2431 . 537266) (-2432 . 537111) (-2433 . 537031) - (-2434 . 536951) (-2435 . 536871) (-2436 . 536768) (-2437 . 536709) - (-2438 . 536534) (-2439 . 536381) (-2440 . 536228) (-2441 . 536054) - (-2442 . 535862) (-2443 . 535563) (-2444 . 535368) (-2445 . 535253) - (-2446 . 535127) (-2447 . 535050) (-2448 . 534918) (-2449 . 534612) - (-2450 . 534429) (-2451 . 533884) (-2452 . 533664) (-2453 . 533490) - (-2454 . 533320) (-2455 . 533221) (-2456 . 533122) (-2457 . 532904) - (-2458 . 532802) (-2459 . 532729) (-2460 . 532653) (-2461 . 532574) - (-2462 . 532277) (-2463 . 532178) (-2464 . 532016) (-2465 . 531782) - (-2466 . 531340) (-2467 . 531210) (-2468 . 531070) (-2469 . 530761) - (-2470 . 530459) (-2471 . 530143) (-2472 . 529737) (-2473 . 529669) - (-2474 . 529601) (-2475 . 529533) (-2476 . 529438) (-2477 . 529330) - (-2478 . 529222) (-2479 . 529120) (-2480 . 529018) (-2481 . 528916) - (-2482 . 528838) (-2483 . 528514) (-2484 . 528033) (-2485 . 527406) - (-2486 . 527342) (-2487 . 527223) (-2488 . 527104) (-2489 . 526996) - (-2490 . 526888) (-2491 . 526732) (-2492 . 526130) (-2493 . 525892) - (-2494 . 525724) (-2495 . 525602) (-2496 . 525204) (-2497 . 524968) - (-2498 . 524767) (-2499 . 524559) (-2500 . 524366) (-2501 . 524096) - (-2502 . 523923) (-2503 . 523744) (-2504 . 523675) (-2505 . 523599) - (-2506 . 523458) (-2507 . 523255) (-2508 . 523111) (-2509 . 522861) - (-2510 . 522553) (-2511 . 522197) (-2512 . 522038) (-2513 . 521832) - (-2514 . 521672) (-2515 . 521599) (-2516 . 521480) (-2517 . 521361) - (-2518 . 521201) (-2519 . 521021) (-2520 . 520838) (-2521 . 520740) - (-2522 . 520642) (-2523 . 520541) (-2524 . 520437) (-2525 . 520311) - (-2526 . 520185) (-2527 . 520056) (-2528 . 519924) (-2529 . 519826) - (-2530 . 519728) (-2531 . 519627) (-2532 . 519526) (-2533 . 519360) - (-2534 . 519194) (-2535 . 519000) (-2536 . 518834) (-2537 . 518666) - (-2538 . 518495) (-2539 . 518330) (-2540 . 518165) (-2541 . 518065) - (-2542 . 517873) (-2543 . 517772) (-2544 . 517577) (-2545 . 517327) - (-2546 . 517082) (-2547 . 516760) (-2548 . 516372) (-2549 . 516171) - (-2550 . 515907) (-2551 . 515364) (-2552 . 515070) (-2553 . 514933) - (-2554 . 514687) (-2555 . 514483) (-2556 . 514376) (-2557 . 514275) - (-2558 . 514165) (-2559 . 514055) (-2560 . 513927) (-2561 . 513820) - (-2562 . 513716) (-2563 . 513560) (-2564 . 513426) (-2565 . 513292) - (-2566 . 513182) (-2567 . 513063) (-2568 . 512886) (-2569 . 512752) - (-2570 . 512615) (-2571 . 512484) (-2572 . 512374) (-2573 . 512252) - (-2574 . 512127) (-2575 . 512026) (-2576 . 511842) (-2577 . 511668) - (-2578 . 511469) (-2579 . 511295) (-2580 . 511179) (-2581 . 511054) - (-2582 . 510926) (-2583 . 510807) (-2584 . 510582) (-2585 . 510411) - (-2586 . 510240) (-2587 . 510063) (-2588 . 509911) (-2589 . 509634) - (-2590 . 509242) (-2591 . 509111) (-2592 . 508906) (-2593 . 508723) - (-2594 . 508539) (-2595 . 508410) (-2596 . 508306) (-2597 . 508165) - (-2598 . 508033) (-2599 . 507919) (-2600 . 507771) (-2601 . 507632) - (-2602 . 507531) (-2603 . 507427) (-2604 . 507320) (-2605 . 507210) - (-2606 . 507109) (-2607 . 507002) (-2608 . 506895) (-2609 . 506782) - (-2610 . 506675) (-2611 . 506562) (-2612 . 506431) (-2613 . 506282) - (-2614 . 505744) (-2615 . 505601) (-2616 . 505451) (-2617 . 505328) - (-2618 . 505224) (-2619 . 505120) (-2620 . 505013) (-2621 . 504875) - (-2622 . 504768) (-2623 . 504637) (-2624 . 504481) (-2625 . 504208) - (-2626 . 504061) (-2627 . 503858) (-2628 . 503757) (-2629 . 503603) - (-2630 . 503483) (-2631 . 503354) (-2632 . 503259) (-2633 . 503171) - (-2634 . 503083) (-2635 . 502995) (-2636 . 502907) (-2637 . 502819) - (-2638 . 502725) (-2639 . 502637) (-2640 . 502549) (-2641 . 502461) - (-2642 . 502373) (-2643 . 502285) (-2644 . 502197) (-2645 . 502109) - (-2646 . 502021) (-2647 . 501933) (-2648 . 501845) (-2649 . 501707) - (-2650 . 501569) (-2651 . 501449) (-2652 . 501329) (-2653 . 501188) - (-2654 . 501100) (-2655 . 501012) (-2656 . 500924) (-2657 . 500836) - (-2658 . 500698) (-2659 . 500560) (-2660 . 500472) (-2661 . 500384) - (-2662 . 500296) (-2663 . 500208) (-2664 . 500120) (-2665 . 500032) - (-2666 . 499941) (-2667 . 499847) (-2668 . 499753) (-2669 . 499656) - (-2670 . 499606) (-2671 . 499556) (-2672 . 499503) (-2673 . 499249) - (-2674 . 499200) (-2675 . 499150) (-2676 . 499116) (-2677 . 499051) - (-2678 . 499014) (-2679 . 498877) (-2680 . 498639) (-2681 . 498390) - (-2682 . 498232) (-2683 . 497691) (-2684 . 497492) (-2685 . 497277) - (-2686 . 497115) (-2687 . 496716) (-2688 . 496549) (-2689 . 495474) - (-2690 . 495351) (-2691 . 495134) (-2692 . 495003) (-2693 . 494872) - (-2694 . 494714) (-2695 . 494610) (-2696 . 494551) (-2697 . 494492) - (-2698 . 494386) (-2699 . 494280) (-2700 . 493362) (-2701 . 491233) - (-2702 . 490417) (-2703 . 488612) (-2704 . 488544) (-2705 . 488476) - (-2706 . 488408) (-2707 . 488340) (-2708 . 488272) (-2709 . 488194) - (-2710 . 487792) (-2711 . 487436) (-2712 . 487254) (-2713 . 486725) - (-2714 . 486549) (-2715 . 486327) (-2716 . 486105) (-2717 . 485883) - (-2718 . 485664) (-2719 . 485445) (-2720 . 485226) (-2721 . 485007) - (-2722 . 484788) (-2723 . 484569) (-2724 . 484468) (-2725 . 483735) - (-2726 . 483680) (-2727 . 483625) (-2728 . 483570) (-2729 . 483515) - (-2730 . 483365) (-2731 . 483072) (-2732 . 482813) (-2733 . 482785) - (-2734 . 482735) (-2735 . 482143) (-2736 . 481609) (-2737 . 481160) - (-2738 . 480988) (-2739 . 480797) (-2740 . 480508) (-2741 . 480120) - (-2742 . 479244) (-2743 . 478902) (-2744 . 478733) (-2745 . 478510) - (-2746 . 478259) (-2747 . 477909) (-2748 . 476891) (-2749 . 476576) - (-2750 . 476364) (-2751 . 475797) (-2752 . 475281) (-2753 . 473503) - (-2754 . 473031) (-2755 . 472432) (-2756 . 472182) (-2757 . 472048) - (-2758 . 471596) (-2759 . 471107) (-2760 . 470747) (-2761 . 470464) - (-2762 . 470349) (-2763 . 470234) (-2764 . 470019) (-2765 . 469966) - (-2766 . 469913) (-2767 . 469861) (-2768 . 469809) (-2769 . 469717) - (-2770 . 469646) (-2771 . 469572) (-2772 . 469501) (-2773 . 469448) - (-2774 . 469377) (-2775 . 469324) (-2776 . 469271) (-2777 . 469218) - (-2778 . 469165) (-2779 . 469112) (-2780 . 469059) (-2781 . 469006) - (-2782 . 468953) (-2783 . 468900) (-2784 . 468847) (-2785 . 468794) - (-2786 . 468741) (-2787 . 468688) (-2788 . 468635) (-2789 . 468564) - (-2790 . 468493) (-2791 . 468421) (-2792 . 468349) (-2793 . 468274) - (-2794 . 468221) (-2795 . 468168) (-2796 . 468115) (-2797 . 468062) - (-2798 . 468009) (-2799 . 467956) (-2800 . 467903) (-2801 . 467850) - (-2802 . 467797) (-2803 . 467744) (-2804 . 467691) (-2805 . 467638) - (-2806 . 467585) (-2807 . 467532) (-2808 . 467480) (-2809 . 467428) - (-2810 . 467375) (-2811 . 467322) (-2812 . 467231) (-2813 . 467178) - (-2814 . 467150) (-2815 . 467122) (-2816 . 467094) (-2817 . 467066) - (-2818 . 466988) (-2819 . 466928) (-2820 . 466876) (-2821 . 466824) - (-2822 . 466772) (-2823 . 466720) (-2824 . 466668) (-2825 . 465864) - (-2826 . 465787) (-2827 . 465710) (-2828 . 465644) (-2829 . 465577) - (-2830 . 465510) (-2831 . 465453) (-2832 . 465377) (-2833 . 465309) - (-2834 . 465238) (-2835 . 465167) (-2836 . 465101) (-2837 . 465014) - (-2838 . 464942) (-2839 . 464835) (-2840 . 464649) (-2841 . 464480) - (-2842 . 464300) (-2843 . 463709) (-2844 . 463546) (-2845 . 462968) - (-2846 . 462893) (-2847 . 462527) (-2848 . 461848) (-2849 . 461670) - (-2850 . 461598) (-2851 . 461458) (-2852 . 461268) (-2853 . 461161) - (-2854 . 461054) (-2855 . 460938) (-2856 . 460822) (-2857 . 460706) - (-2858 . 460555) (-2859 . 460411) (-2860 . 460337) (-2861 . 460251) - (-2862 . 460177) (-2863 . 460103) (-2864 . 460029) (-2865 . 459885) - (-2866 . 459734) (-2867 . 459559) (-2868 . 459408) (-2869 . 459257) - (-2870 . 459130) (-2871 . 458741) (-2872 . 458455) (-2873 . 458169) - (-2874 . 457758) (-2875 . 457472) (-2876 . 457399) (-2877 . 457252) - (-2878 . 457146) (-2879 . 457072) (-2880 . 457001) (-2881 . 456930) - (-2882 . 456833) (-2883 . 456736) (-2884 . 456576) (-2885 . 456489) - (-2886 . 456402) (-2887 . 456315) (-2888 . 456256) (-2889 . 456197) - (-2890 . 456064) (-2891 . 456005) (-2892 . 455835) (-2893 . 455747) - (-2894 . 455650) (-2895 . 455616) (-2896 . 455585) (-2897 . 455501) - (-2898 . 455445) (-2899 . 455383) (-2900 . 455349) (-2901 . 455315) - (-2902 . 455281) (-2903 . 455247) (-2904 . 455213) (-2905 . 452460) - (-2906 . 452426) (-2907 . 452392) (-2908 . 452358) (-2909 . 452246) - (-2910 . 452212) (-2911 . 452160) (-2912 . 452126) (-2913 . 452029) - (-2914 . 451967) (-2915 . 451876) (-2916 . 451785) (-2917 . 451730) - (-2918 . 451678) (-2919 . 451626) (-2920 . 451574) (-2921 . 451522) - (-2922 . 451098) (-2923 . 450932) (-2924 . 450863) (-2925 . 450810) - (-2926 . 450654) (-2927 . 450133) (-2928 . 449992) (-2929 . 449958) - (-2930 . 449903) (-2931 . 449192) (-2932 . 448877) (-2933 . 448372) - (-2934 . 448294) (-2935 . 448242) (-2936 . 448190) (-2937 . 448006) - (-2938 . 447954) (-2939 . 447902) (-2940 . 447826) (-2941 . 447764) - (-2942 . 447546) (-2943 . 447291) (-2944 . 447224) (-2945 . 447130) - (-2946 . 447036) (-2947 . 446853) (-2948 . 446771) (-2949 . 446649) - (-2950 . 446527) (-2951 . 446381) (-2952 . 445726) (-2953 . 445019) - (-2954 . 444915) (-2955 . 444814) (-2956 . 444713) (-2957 . 444602) - (-2958 . 444434) (-2959 . 444228) (-2960 . 444135) (-2961 . 444058) - (-2962 . 444002) (-2963 . 443931) (-2964 . 443811) (-2965 . 443710) - (-2966 . 443612) (-2967 . 443532) (-2968 . 443452) (-2969 . 443375) - (-2970 . 443304) (-2971 . 443233) (-2972 . 443162) (-2973 . 443091) - (-2974 . 443020) (-2975 . 442949) (-2976 . 442856) (-2977 . 442661) - (-2978 . 442417) (-2979 . 442247) (-2980 . 441875) (-2981 . 441706) - (-2982 . 441590) (-2983 . 441086) (-2984 . 440704) (-2985 . 440458) - (-2986 . 440029) (-2987 . 439937) (-2988 . 439840) (-2989 . 436550) - (-2990 . 435730) (-2991 . 435617) (-2992 . 435543) (-2993 . 435451) - (-2994 . 435257) (-2995 . 435063) (-2996 . 434992) (-2997 . 434921) - (-2998 . 434840) (-2999 . 434759) (-3000 . 434634) (-3001 . 434500) - (-3002 . 434419) (-3003 . 434345) (-3004 . 434180) (-3005 . 434021) - (-3006 . 433790) (-3007 . 433642) (-3008 . 433538) (-3009 . 433434) - (-3010 . 433349) (-3011 . 432981) (-3012 . 432900) (-3013 . 432813) - (-3014 . 432732) (-3015 . 432486) (-3016 . 432266) (-3017 . 432079) - (-3018 . 431757) (-3019 . 431464) (-3020 . 431171) (-3021 . 430861) - (-3022 . 430544) (-3023 . 430415) (-3024 . 430227) (-3025 . 429754) - (-3026 . 429672) (-3027 . 429457) (-3028 . 429242) (-3029 . 428983) - (-3030 . 428552) (-3031 . 428031) (-3032 . 427901) (-3033 . 427627) - (-3034 . 427448) (-3035 . 427333) (-3036 . 427229) (-3037 . 427174) - (-3038 . 427097) (-3039 . 427027) (-3040 . 426954) (-3041 . 426899) - (-3042 . 426826) (-3043 . 426771) (-3044 . 426416) (-3045 . 426008) - (-3046 . 425855) (-3047 . 425702) (-3048 . 425621) (-3049 . 425468) - (-3050 . 425315) (-3051 . 425180) (-3052 . 425045) (-3053 . 424910) - (-3054 . 424775) (-3055 . 424640) (-3056 . 424505) (-3057 . 424449) - (-3058 . 424296) (-3059 . 424185) (-3060 . 424074) (-3061 . 424006) - (-3062 . 423896) (-3063 . 423793) (-3064 . 419642) (-3065 . 419194) - (-3066 . 418767) (-3067 . 418150) (-3068 . 417549) (-3069 . 417331) - (-3070 . 417153) (-3071 . 416893) (-3072 . 416482) (-3073 . 416188) - (-3074 . 415745) (-3075 . 415567) (-3076 . 415174) (-3077 . 414781) - (-3078 . 414596) (-3079 . 414389) (-3080 . 414168) (-3081 . 413862) - (-3082 . 413663) (-3083 . 413034) (-3084 . 412877) (-3085 . 412486) - (-3086 . 412434) (-3087 . 412385) (-3088 . 412333) (-3089 . 412284) - (-3090 . 412232) (-3091 . 412086) (-3092 . 412034) (-3093 . 411888) - (-3094 . 411836) (-3095 . 411690) (-3096 . 411638) (-3097 . 411263) - (-3098 . 411211) (-3099 . 411162) (-3100 . 411110) (-3101 . 411061) - (-3102 . 411009) (-3103 . 410960) (-3104 . 410908) (-3105 . 410859) - (-3106 . 410807) (-3107 . 410758) (-3108 . 410692) (-3109 . 410574) - (-3110 . 409412) (-3111 . 408995) (-3112 . 408887) (-3113 . 408642) - (-3114 . 408493) (-3115 . 408344) (-3116 . 408177) (-3117 . 405926) - (-3118 . 405649) (-3119 . 405495) (-3120 . 405349) (-3121 . 405203) - (-3122 . 404984) (-3123 . 404852) (-3124 . 404777) (-3125 . 404702) - (-3126 . 404567) (-3127 . 404437) (-3128 . 404307) (-3129 . 404180) - (-3130 . 404053) (-3131 . 403926) (-3132 . 403799) (-3133 . 403696) - (-3134 . 403596) (-3135 . 403502) (-3136 . 403372) (-3137 . 403221) - (-3138 . 402842) (-3139 . 402727) (-3140 . 402484) (-3141 . 402021) - (-3142 . 401708) (-3143 . 401140) (-3144 . 400570) (-3145 . 399558) - (-3146 . 399015) (-3147 . 398702) (-3148 . 398364) (-3149 . 398033) - (-3150 . 397713) (-3151 . 397660) (-3152 . 397533) (-3153 . 397004) - (-3154 . 395847) (-3155 . 395792) (-3156 . 395737) (-3157 . 395661) - (-3158 . 395542) (-3159 . 395467) (-3160 . 395392) (-3161 . 395314) - (-3162 . 395163) (-3163 . 395071) (-3164 . 395001) (-3165 . 394909) - (-3166 . 394839) (-3167 . 394747) (-3168 . 394677) (-3169 . 394585) - (-3170 . 394515) (-3171 . 394460) (-3172 . 394390) (-3173 . 394270) - (-3174 . 394215) (-3175 . 394145) (-3176 . 394111) (-3177 . 394077) - (-3178 . 393980) (-3179 . 393883) (-3180 . 393665) (-3181 . 393515) - (-3182 . 393385) (-3183 . 393255) (-3184 . 393155) (-3185 . 392978) - (-3186 . 392818) (-3187 . 392718) (-3188 . 392541) (-3189 . 392381) - (-3190 . 392222) (-3191 . 392083) (-3192 . 391933) (-3193 . 391803) - (-3194 . 391673) (-3195 . 391526) (-3196 . 391399) (-3197 . 391296) - (-3198 . 391189) (-3199 . 391092) (-3200 . 390927) (-3201 . 390779) - (-3202 . 390350) (-3203 . 390250) (-3204 . 390147) (-3205 . 390059) - (-3206 . 389979) (-3207 . 389829) (-3208 . 389699) (-3209 . 389647) - (-3210 . 389557) (-3211 . 389445) (-3212 . 389132) (-3213 . 388951) - (-3214 . 387340) (-3215 . 386707) (-3216 . 386647) (-3217 . 386529) - (-3218 . 386411) (-3219 . 386267) (-3220 . 386112) (-3221 . 385951) - (-3222 . 385790) (-3223 . 385582) (-3224 . 385393) (-3225 . 385238) - (-3226 . 385080) (-3227 . 384922) (-3228 . 384767) (-3229 . 384627) - (-3230 . 384201) (-3231 . 384073) (-3232 . 383945) (-3233 . 383817) - (-3234 . 383674) (-3235 . 383531) (-3236 . 383389) (-3237 . 383244) - (-3238 . 382491) (-3239 . 382331) (-3240 . 382143) (-3241 . 381986) - (-3242 . 381746) (-3243 . 381499) (-3244 . 381252) (-3245 . 381041) - (-3246 . 380902) (-3247 . 380691) (-3248 . 380401) (-3249 . 380190) - (-3250 . 380051) (-3251 . 379840) (-3252 . 379534) (-3253 . 379389) - (-3254 . 379247) (-3255 . 379023) (-3256 . 378881) (-3257 . 378656) - (-3258 . 378457) (-3259 . 378300) (-3260 . 377970) (-3261 . 377810) - (-3262 . 377650) (-3263 . 377490) (-3264 . 377318) (-3265 . 377146) - (-3266 . 376971) (-3267 . 376619) (-3268 . 376425) (-3269 . 376263) - (-3270 . 376189) (-3271 . 376115) (-3272 . 376041) (-3273 . 375967) - (-3274 . 375893) (-3275 . 375819) (-3276 . 375695) (-3277 . 375521) - (-3278 . 375397) (-3279 . 375311) (-3280 . 375245) (-3281 . 375179) - (-3282 . 375113) (-3283 . 375047) (-3284 . 374981) (-3285 . 374915) - (-3286 . 374849) (-3287 . 374783) (-3288 . 374717) (-3289 . 374651) - (-3290 . 374585) (-3291 . 374519) (-3292 . 374453) (-3293 . 374387) - (-3294 . 374321) (-3295 . 374255) (-3296 . 374189) (-3297 . 374123) - (-3298 . 374057) (-3299 . 373991) (-3300 . 373925) (-3301 . 373859) - (-3302 . 373793) (-3303 . 373727) (-3304 . 373661) (-3305 . 373595) - (-3306 . 372946) (-3307 . 372297) (-3308 . 372169) (-3309 . 372046) - (-3310 . 371923) (-3311 . 371782) (-3312 . 371627) (-3313 . 371483) - (-3314 . 371308) (-3315 . 370670) (-3316 . 370547) (-3317 . 370423) - (-3318 . 369745) (-3319 . 369047) (-3320 . 368946) (-3321 . 368890) - (-3322 . 368834) (-3323 . 368778) (-3324 . 368722) (-3325 . 368663) - (-3326 . 368599) (-3327 . 368491) (-3328 . 368383) (-3329 . 368275) - (-3330 . 367996) (-3331 . 367922) (-3332 . 367696) (-3333 . 367615) - (-3334 . 367537) (-3335 . 367459) (-3336 . 367381) (-3337 . 367302) - (-3338 . 367224) (-3339 . 367131) (-3340 . 367032) (-3341 . 366964) - (-3342 . 366915) (-3343 . 366223) (-3344 . 365574) (-3345 . 364782) - (-3346 . 364701) (-3347 . 364597) (-3348 . 364505) (-3349 . 364413) - (-3350 . 364339) (-3351 . 364265) (-3352 . 364191) (-3353 . 364136) - (-3354 . 364081) (-3355 . 364015) (-3356 . 363949) (-3357 . 363887) - (-3358 . 363500) (-3359 . 362999) (-3360 . 362533) (-3361 . 362279) - (-3362 . 362089) (-3363 . 361746) (-3364 . 361449) (-3365 . 361280) - (-3366 . 361149) (-3367 . 361009) (-3368 . 359925) (-3369 . 359770) - (-3370 . 359601) (-3371 . 358215) (-3372 . 358081) (-3373 . 357939) - (-3374 . 357710) (-3375 . 357441) (-3376 . 357382) (-3377 . 357326) - (-3378 . 357270) (-3379 . 357058) (-3380 . 356919) (-3381 . 356812) - (-3382 . 356695) (-3383 . 356629) (-3384 . 356556) (-3385 . 356442) - (-3386 . 356185) (-3387 . 356083) (-3388 . 355885) (-3389 . 355569) - (-3390 . 355095) (-3391 . 354988) (-3392 . 354880) (-3393 . 354729) - (-3394 . 354587) (-3395 . 354168) (-3396 . 353918) (-3397 . 353241) - (-3398 . 353086) (-3399 . 352971) (-3400 . 352860) (-3401 . 352030) - (-3402 . 351977) (-3403 . 351924) (-3404 . 351728) (-3405 . 350373) - (-3406 . 349922) (-3407 . 348520) (-3408 . 347657) (-3409 . 347607) - (-3410 . 347557) (-3411 . 347507) (-3412 . 347439) (-3413 . 347363) - (-3414 . 347159) (-3415 . 347086) (-3416 . 347010) (-3417 . 346937) - (-3418 . 346819) (-3419 . 346573) (-3420 . 346255) (-3421 . 346170) - (-3422 . 346085) (-3423 . 346023) (-3424 . 345633) (-3425 . 344758) - (-3426 . 344182) (-3427 . 342944) (-3428 . 342134) (-3429 . 341882) - (-3430 . 341630) (-3431 . 341296) (-3432 . 341050) (-3433 . 340804) - (-3434 . 340558) (-3435 . 340312) (-3436 . 340066) (-3437 . 339820) - (-3438 . 339573) (-3439 . 339326) (-3440 . 339079) (-3441 . 338832) - (-3442 . 338402) (-3443 . 338284) (-3444 . 337440) (-3445 . 337408) - (-3446 . 337061) (-3447 . 336834) (-3448 . 336734) (-3449 . 336634) - (-3450 . 334864) (-3451 . 334750) (-3452 . 333699) (-3453 . 333606) - (-3454 . 332615) (-3455 . 332280) (-3456 . 331945) (-3457 . 331840) - (-3458 . 331753) (-3459 . 331724) (-3460 . 331667) (-3461 . 331587) - (-3462 . 331515) (-3463 . 331440) (-3464 . 331365) (-3465 . 331333) - (-3466 . 331301) (-3467 . 331269) (-3468 . 331237) (-3469 . 331205) - (-3470 . 331173) (-3471 . 331141) (-3472 . 331109) (-3473 . 331080) - (-3474 . 330967) (-3475 . 330854) (-3476 . 330741) (-3477 . 330628) - (-3478 . 329539) (-3479 . 329417) (-3480 . 329280) (-3481 . 329146) - (-3482 . 329012) (-3483 . 328715) (-3484 . 328418) (-3485 . 328070) - (-3486 . 327840) (-3487 . 327610) (-3488 . 327497) (-3489 . 327384) - (-3490 . 322103) (-3491 . 317730) (-3492 . 317418) (-3493 . 317263) - (-3494 . 316735) (-3495 . 316402) (-3496 . 316205) (-3497 . 316008) - (-3498 . 315811) (-3499 . 315614) (-3500 . 315498) (-3501 . 315372) - (-3502 . 315256) (-3503 . 315140) (-3504 . 315045) (-3505 . 314950) - (-3506 . 314837) (-3507 . 314631) (-3508 . 313474) (-3509 . 313379) - (-3510 . 313263) (-3511 . 313168) (-3512 . 312919) (-3513 . 312806) - (-3514 . 312588) (-3515 . 312469) (-3516 . 312170) (-3517 . 311400) - (-3518 . 310823) (-3519 . 310329) (-3520 . 310081) (-3521 . 309833) - (-3522 . 309534) (-3523 . 308920) (-3524 . 308472) (-3525 . 308315) - (-3526 . 308169) (-3527 . 307843) (-3528 . 307685) (-3529 . 307542) - (-3530 . 307399) (-3531 . 307256) (-3532 . 306975) (-3533 . 306753) - (-3534 . 306226) (-3535 . 306011) (-3536 . 305796) (-3537 . 305408) - (-3538 . 305228) (-3539 . 305016) (-3540 . 304706) (-3541 . 304505) - (-3542 . 304323) (-3543 . 303169) (-3544 . 302780) (-3545 . 302570) - (-3546 . 302357) (-3547 . 301514) (-3548 . 301485) (-3549 . 301416) - (-3550 . 301345) (-3551 . 301178) (-3552 . 301149) (-3553 . 301120) - (-3554 . 301064) (-3555 . 300903) (-3556 . 300843) (-3557 . 300147) - (-3558 . 298969) (-3559 . 298908) (-3560 . 298684) (-3561 . 298612) - (-3562 . 298555) (-3563 . 298498) (-3564 . 298441) (-3565 . 298384) - (-3566 . 298309) (-3567 . 297718) (-3568 . 297359) (-3569 . 297284) - (-3570 . 297224) (-3571 . 297106) (-3572 . 296155) (-3573 . 296028) - (-3574 . 295815) (-3575 . 295740) (-3576 . 295686) (-3577 . 295567) - (-3578 . 295458) (-3579 . 295145) (-3580 . 295037) (-3581 . 294934) - (-3582 . 294773) (-3583 . 294672) (-3584 . 294574) (-3585 . 294436) - (-3586 . 294298) (-3587 . 294160) (-3588 . 293898) (-3589 . 293688) - (-3590 . 293550) (-3591 . 293261) (-3592 . 293108) (-3593 . 292829) - (-3594 . 292607) (-3595 . 292454) (-3596 . 292301) (-3597 . 292148) - (-3598 . 291995) (-3599 . 291842) (-3600 . 291686) (-3601 . 291567) - (-3602 . 291176) (-3603 . 290841) (-3604 . 290496) (-3605 . 290145) - (-3606 . 289800) (-3607 . 289455) (-3608 . 289068) (-3609 . 288681) - (-3610 . 288294) (-3611 . 287923) (-3612 . 287193) (-3613 . 286842) - (-3614 . 286388) (-3615 . 285959) (-3616 . 285342) (-3617 . 284741) - (-3618 . 284349) (-3619 . 284013) (-3620 . 283621) (-3621 . 283285) - (-3622 . 283063) (-3623 . 282536) (-3624 . 282321) (-3625 . 282106) - (-3626 . 281890) (-3627 . 281710) (-3628 . 281494) (-3629 . 281314) - (-3630 . 280926) (-3631 . 280746) (-3632 . 280534) (-3633 . 280444) - (-3634 . 280354) (-3635 . 280263) (-3636 . 280176) (-3637 . 280086) - (-3638 . 280005) (-3639 . 279816) (-3640 . 279760) (-3641 . 279679) - (-3642 . 279598) (-3643 . 279517) (-3644 . 279382) (-3645 . 279247) - (-3646 . 279123) (-3647 . 279002) (-3648 . 278884) (-3649 . 278748) - (-3650 . 278615) (-3651 . 278496) (-3652 . 278237) (-3653 . 278054) - (-3654 . 277982) (-3655 . 277890) (-3656 . 277798) (-3657 . 277712) - (-3658 . 277614) (-3659 . 277497) (-3660 . 277218) (-3661 . 276939) - (-3662 . 276879) (-3663 . 276813) (-3664 . 276747) (-3665 . 276606) - (-3666 . 276549) (-3667 . 276492) (-3668 . 276432) (-3669 . 276035) - (-3670 . 275511) (-3671 . 275233) (-3672 . 274812) (-3673 . 274699) - (-3674 . 274257) (-3675 . 274025) (-3676 . 273822) (-3677 . 273640) - (-3678 . 273510) (-3679 . 273304) (-3680 . 273097) (-3681 . 272906) - (-3682 . 272341) (-3683 . 272085) (-3684 . 271794) (-3685 . 271500) - (-3686 . 271203) (-3687 . 270903) (-3688 . 270773) (-3689 . 270640) - (-3690 . 270504) (-3691 . 270365) (-3692 . 269086) (-3693 . 268761) - (-3694 . 268380) (-3695 . 268267) (-3696 . 268013) (-3697 . 267717) - (-3698 . 267421) (-3699 . 267160) (-3700 . 266985) (-3701 . 266906) - (-3702 . 266818) (-3703 . 266717) (-3704 . 266622) (-3705 . 266540) - (-3706 . 266468) (-3707 . 265667) (-3708 . 265595) (-3709 . 265263) - (-3710 . 265191) (-3711 . 264859) (-3712 . 264787) (-3713 . 264338) - (-3714 . 264266) (-3715 . 264161) (-3716 . 264086) (-3717 . 264011) - (-3718 . 263939) (-3719 . 263596) (-3720 . 263466) (-3721 . 263389) - (-3722 . 262840) (-3723 . 262697) (-3724 . 262554) (-3725 . 262056) - (-3726 . 261710) (-3727 . 261482) (-3728 . 261212) (-3729 . 260832) - (-3730 . 260592) (-3731 . 260352) (-3732 . 260112) (-3733 . 259872) - (-3734 . 259644) (-3735 . 259416) (-3736 . 259264) (-3737 . 259080) - (-3738 . 258975) (-3739 . 258852) (-3740 . 258744) (-3741 . 258636) - (-3742 . 258309) (-3743 . 258043) (-3744 . 257732) (-3745 . 257427) - (-3746 . 257117) (-3747 . 256382) (-3748 . 255787) (-3749 . 255610) - (-3750 . 255465) (-3751 . 255310) (-3752 . 255187) (-3753 . 255082) - (-3754 . 254967) (-3755 . 254868) (-3756 . 254384) (-3757 . 254274) - (-3758 . 254164) (-3759 . 254054) (-3760 . 252950) (-3761 . 252435) - (-3762 . 252368) (-3763 . 252294) (-3764 . 251421) (-3765 . 251347) - (-3766 . 251291) (-3767 . 251235) (-3768 . 251203) (-3769 . 251117) - (-3770 . 251085) (-3771 . 250999) (-3772 . 250575) (-3773 . 250151) - (-3774 . 249594) (-3775 . 248482) (-3776 . 246758) (-3777 . 245196) - (-3778 . 244400) (-3779 . 243896) (-3780 . 243406) (-3781 . 243000) - (-3782 . 242342) (-3783 . 242267) (-3784 . 242195) (-3785 . 242123) - (-3786 . 242081) (-3787 . 241959) (-3788 . 241519) (-3789 . 241079) - (-3790 . 240639) (-3791 . 240117) (-3792 . 239952) (-3793 . 239787) - (-3794 . 239476) (-3795 . 239389) (-3796 . 239299) (-3797 . 238967) - (-3798 . 238850) (-3799 . 238769) (-3800 . 238610) (-3801 . 238496) - (-3802 . 238421) (-3803 . 237569) (-3804 . 236383) (-3805 . 236283) - (-3806 . 236183) (-3807 . 235842) (-3808 . 235763) (-3809 . 235687) - (-3810 . 235580) (-3811 . 235422) (-3812 . 235314) (-3813 . 235178) - (-3814 . 235042) (-3815 . 234919) (-3816 . 234823) (-3817 . 234674) - (-3818 . 234578) (-3819 . 234423) (-3820 . 234268) (-3821 . 233588) - (-3822 . 232908) (-3823 . 232165) (-3824 . 231597) (-3825 . 231029) - (-3826 . 230461) (-3827 . 229780) (-3828 . 229099) (-3829 . 228418) - (-3830 . 227849) (-3831 . 227280) (-3832 . 226711) (-3833 . 226143) - (-3834 . 225575) (-3835 . 225007) (-3836 . 224439) (-3837 . 223871) - (-3838 . 223303) (-3839 . 223199) (-3840 . 222610) (-3841 . 222504) - (-3842 . 222428) (-3843 . 222285) (-3844 . 222192) (-3845 . 222099) - (-3846 . 222006) (-3847 . 221907) (-3848 . 221801) (-3849 . 221677) - (-3850 . 221553) (-3851 . 221186) (-3852 . 221063) (-3853 . 220961) - (-3854 . 220597) (-3855 . 220063) (-3856 . 219987) (-3857 . 219911) - (-3858 . 219818) (-3859 . 219636) (-3860 . 219540) (-3861 . 219464) - (-3862 . 219371) (-3863 . 219278) (-3864 . 219116) (-3865 . 218555) - (-3866 . 217994) (-3867 . 215266) (-3868 . 215093) (-3869 . 213629) - (-3870 . 213067) (-3871 . 212868) (-12 . 212696) (-3873 . 212524) - (-3874 . 212352) (-3875 . 212180) (-3876 . 212008) (-3877 . 211836) - (-3878 . 211664) (-3879 . 211471) (-3880 . 211356) (-3881 . 211086) - (-3882 . 211023) (-3883 . 210960) (-3884 . 210897) (-3885 . 210619) - (-3886 . 210352) (-3887 . 210299) (-3888 . 209638) (-3889 . 209587) - (-3890 . 209394) (-3891 . 209321) (-3892 . 209241) (-3893 . 209128) - (-3894 . 208938) (-3895 . 208574) (-3896 . 208302) (-3897 . 208251) - (-3898 . 208200) (-3899 . 208130) (-3900 . 208011) (-3901 . 207982) - (-3902 . 207880) (-3903 . 207758) (-3904 . 207704) (-3905 . 207527) - (-3906 . 207466) (-3907 . 207285) (-3908 . 207224) (-3909 . 207152) - (-3910 . 206677) (-3911 . 206302) (-3912 . 203018) (-3913 . 202965) - (-3914 . 202837) (-3915 . 202685) (-3916 . 202632) (-3917 . 202490) - (-3918 . 200632) (-3919 . 191277) (-3920 . 191126) (-3921 . 191075) - (-3922 . 191024) (-3923 . 190973) (-3924 . 190903) (-3925 . 190705) - (-3926 . 190562) (-3927 . 190448) (-3928 . 190327) (-3929 . 190209) - (-3930 . 190097) (-3931 . 189979) (-3932 . 189874) (-3933 . 189793) - (-3934 . 189689) (-3935 . 188752) (-3936 . 188532) (-3937 . 188295) - (-3938 . 188213) (-3939 . 187866) (-3940 . 187792) (-3941 . 187697) - (-3942 . 187623) (-3943 . 187421) (-3944 . 187330) (-3945 . 187214) - (-3946 . 187101) (-3947 . 187010) (-3948 . 186919) (-3949 . 186829) - (-3950 . 186739) (-3951 . 186649) (-3952 . 186561) (-3953 . 184199) - (-3954 . 184131) (-3955 . 184077) (-3956 . 183952) (-3957 . 183888) - (-3958 . 183763) (-3959 . 183644) (-3960 . 182876) (-3961 . 182815) - (-3962 . 182696) (-3963 . 181944) (-3964 . 181891) (-3965 . 181702) - (-3966 . 181638) (-3967 . 181584) (-3968 . 181475) (-3969 . 180152) - (-3970 . 180070) (-3971 . 179980) (-3972 . 179922) (-3973 . 179657) - (-3974 . 179572) (-3975 . 179497) (-3976 . 179412) (-3977 . 179355) - (-3978 . 179139) (-3979 . 178998) (-3980 . 178263) (-3981 . 177693) - (-3982 . 177123) (-3983 . 176553) (-3984 . 175818) (-3985 . 175136) - (-3986 . 174544) (-3987 . 173952) (-3988 . 173674) (-3989 . 173219) - (-3990 . 172870) (-3991 . 172512) (-3992 . 172188) (-3993 . 172055) - (-3994 . 171922) (-3995 . 171590) (-3996 . 171481) (-3997 . 171372) - (-3998 . 171263) (-3999 . 171154) (-4000 . 171045) (-4001 . 170936) - (-4002 . 170827) (-4003 . 170718) (-4004 . 170609) (-4005 . 170500) - (-4006 . 170391) (-4007 . 170282) (-4008 . 170173) (-4009 . 170064) - (-4010 . 169955) (-4011 . 169846) (-4012 . 169737) (-4013 . 169628) - (-4014 . 169519) (-4015 . 169410) (-4016 . 169301) (-4017 . 169192) - (-4018 . 169083) (-4019 . 168974) (-4020 . 168865) (-4021 . 168667) - (-4022 . 168352) (-4023 . 166781) (-4024 . 166626) (-4025 . 166488) - (-4026 . 166345) (-4027 . 166142) (-4028 . 164191) (-4029 . 164063) - (-4030 . 163938) (-4031 . 163810) (-4032 . 163586) (-4033 . 163362) - (-4034 . 163234) (-4035 . 163031) (-4036 . 162852) (-4037 . 162325) - (-4038 . 161798) (-4039 . 161517) (-4040 . 161099) (-4041 . 160572) - (-4042 . 160387) (-4043 . 160244) (-4044 . 159744) (-4045 . 159102) - (-4046 . 159046) (-4047 . 158952) (-4048 . 158831) (-4049 . 158760) - (-4050 . 158686) (-4051 . 158455) (-4052 . 157830) (-4053 . 157398) - (-4054 . 157316) (-4055 . 157174) (-4056 . 156696) (-4057 . 156574) - (-4058 . 156452) (-4059 . 156312) (-4060 . 156125) (-4061 . 156009) - (-4062 . 155748) (-4063 . 155679) (-4064 . 155480) (-4065 . 155321) - (-4066 . 155166) (-4067 . 155059) (-4068 . 155008) (-4069 . 154624) - (-4070 . 154383) (-4071 . 154292) (-4072 . 152477) (-4073 . 151888) - (-4074 . 151809) (-4075 . 146341) (-4076 . 145551) (-4077 . 145172) - (-4078 . 145100) (-4079 . 144911) (-4080 . 144736) (-4081 . 144246) - (-4082 . 143824) (-4083 . 143384) (-4084 . 142520) (-4085 . 142396) - (-4086 . 142269) (-4087 . 142160) (-4088 . 142008) (-4089 . 141894) - (-4090 . 141755) (-4091 . 141673) (-4092 . 141591) (-4093 . 141483) - (-4094 . 141063) (-4095 . 140639) (-4096 . 140564) (-4097 . 140298) - (-4098 . 140031) (-4099 . 139648) (-4100 . 138947) (-4101 . 138887) - (-4102 . 138812) (-4103 . 138737) (-4104 . 138614) (-4105 . 138362) - (-4106 . 138275) (-4107 . 138199) (-4108 . 138123) (-4109 . 138027) - (-4110 . 134063) (-4111 . 132881) (-4112 . 132218) (-4113 . 132031) - (-4114 . 129809) (-4115 . 129483) (-4116 . 129102) (-4117 . 128658) - (-4118 . 128423) (-4119 . 128175) (-4120 . 128084) (-4121 . 126588) - (-4122 . 126509) (-4123 . 126403) (-4124 . 124867) (-4125 . 124454) - (-4126 . 124037) (-4127 . 123935) (-4128 . 123853) (-4129 . 123695) - (-4130 . 122302) (-4131 . 122220) (-4132 . 122141) (-4133 . 121786) - (-4134 . 121729) (-4135 . 121657) (-4136 . 121600) (-4137 . 121543) - (-4138 . 121413) (-4139 . 121209) (-4140 . 120840) (-4141 . 120418) - (-4142 . 115254) (-4143 . 114651) (-4144 . 114023) (-4145 . 113808) - (-4146 . 113593) (-4147 . 113425) (-4148 . 113210) (-4149 . 113042) - (-4150 . 112874) (-4151 . 112706) (-4152 . 112538) (-4153 . 110395) - (-4154 . 110123) (-4155 . 103186) (** . 100123) (-4157 . 99703) - (-4158 . 99455) (-4159 . 99398) (-4160 . 98900) (-4161 . 95995) - (-4162 . 95845) (-4163 . 95681) (-4164 . 95517) (-4165 . 95421) - (-4166 . 95303) (-4167 . 95179) (-4168 . 95036) (-4169 . 94865) - (-4170 . 94738) (-4171 . 94593) (-4172 . 94440) (-4173 . 94280) - (-4174 . 93794) (-4175 . 93704) (-4176 . 93036) (-4177 . 92842) - (-4178 . 92746) (-4179 . 92436) (-4180 . 91260) (-4181 . 91053) - (-4182 . 89876) (-4183 . 89801) (-4184 . 88620) (-4185 . 85015) - (-4186 . 84651) (-4187 . 84374) (-4188 . 84282) (-4189 . 84189) - (-4190 . 83912) (-4191 . 83819) (-4192 . 83726) (-4193 . 83633) - (-4194 . 83249) (-4195 . 83178) (-4196 . 83086) (-4197 . 82928) - (-4198 . 82574) (-4199 . 82416) (-4200 . 82308) (-4201 . 82279) - (-4202 . 82212) (-4203 . 82058) (-4204 . 81899) (-4205 . 81505) - (-4206 . 81430) (-4207 . 81324) (-4208 . 81252) (-4209 . 81174) - (-4210 . 81101) (-4211 . 81028) (-4212 . 80955) (-4213 . 80883) - (-4214 . 80811) (-4215 . 80738) (-4216 . 80497) (-4217 . 80157) - (-4218 . 80009) (-4219 . 79936) (-4220 . 79863) (-4221 . 79790) - (-4222 . 79536) (-4223 . 79392) (-4224 . 78056) (-4225 . 77862) - (-4226 . 77591) (-4227 . 77443) (-4228 . 77295) (-4229 . 77055) - (-4230 . 76860) (-4231 . 76590) (-4232 . 76394) (-4233 . 76365) - (-4234 . 76264) (-4235 . 76163) (-4236 . 76062) (-4237 . 75961) - (-4238 . 75860) (-4239 . 75759) (-4240 . 75658) (-4241 . 75557) - (-4242 . 75456) (-4243 . 75355) (-4244 . 75240) (-4245 . 75125) - (-4246 . 75074) (-4247 . 74957) (-4248 . 74899) (-4249 . 74798) - (-4250 . 74697) (-4251 . 74596) (-4252 . 74480) (-4253 . 74451) - (-4254 . 73719) (-4255 . 73594) (-4256 . 73469) (-4257 . 73329) - (-4258 . 73211) (-4259 . 73086) (-4260 . 72931) (-4261 . 71948) - (-4262 . 71089) (-4263 . 71035) (-4264 . 70981) (-4265 . 70773) - (-4266 . 70399) (-4267 . 69985) (-4268 . 69624) (-4269 . 69263) - (-4270 . 69110) (-4271 . 68808) (-4272 . 68652) (-4273 . 68326) - (-4274 . 68255) (-4275 . 68184) (-4276 . 67972) (-4277 . 67165) - (-4278 . 66959) (-4279 . 66585) (-4280 . 66065) (-4281 . 65797) - (-4282 . 65247) (-4283 . 64697) (-4284 . 64571) (-4285 . 63342) - (-4286 . 62136) (-4287 . 61534) (-4288 . 61316) (-4289 . 61130) - (-4290 . 59030) (-4291 . 56855) (-4292 . 56707) (-4293 . 56525) - (-4294 . 56117) (-4295 . 55816) (-4296 . 55465) (-4297 . 55297) - (-4298 . 55129) (-4299 . 54815) (-4300 . 31672) (-4301 . 17711) - (-4302 . 16591) (* . 12095) (-4304 . 11839) (-4305 . 11653) (-4306 . 10648) - (-4307 . 10379) (-4308 . 9747) (-4309 . 8470) (-4310 . 7222) (-4311 . 6350) - (-4312 . 5085) (-4313 . 382) (-4314 . 280) (-4315 . 160) (-4316 . 30))
\ No newline at end of file + (-12 (-5 *2 (-749)) (-4 *1 (-1215 *3)) (-4 *3 (-1181)))) + ((*1 *2 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1181))))) +(((*1 *1 *2) + (-12 (-5 *2 (-623 *1)) (-4 *1 (-1102 *3)) (-4 *3 (-1020)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1203 *3)) (-4 *3 (-1020)) + (-4 *3 (-542)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1203 *2)) (-4 *2 (-1020)) (-4 *2 (-542))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387)))) + ((*1 *2 *1) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-1161))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1020)) (-5 *2 (-1227 *3)) (-5 *1 (-691 *3 *4)) + (-4 *4 (-1203 *3))))) +(((*1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-423 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1174 *4 *5 *3 *6)) (-4 *4 (-542)) (-4 *5 (-771)) + (-4 *3 (-825)) (-4 *6 (-1034 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-542))) (-5 *1 (-269 *3 *2)) + (-4 *2 (-13 (-423 *3) (-975)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1172 *3 *2)) + (-4 *2 (-13 (-423 *3) (-1166)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-868)) + (-5 *3 + (-2 (|:| |pde| (-623 (-309 (-219)))) + (|:| |constraints| + (-623 + (-2 (|:| |start| (-219)) (|:| |finish| (-219)) + (|:| |grid| (-749)) (|:| |boundaryType| (-550)) + (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) + (|:| |f| (-623 (-623 (-309 (-219))))) (|:| |st| (-1126)) + (|:| |tol| (-219)))) + (-5 *2 (-1008))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-749)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) + (-4 *2 (-1203 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-550)) (-5 *1 (-674 *2)) (-4 *2 (-1203 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 (-836))) (-5 *1 (-836))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1068))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-623 *6)) (-4 *6 (-1034 *3 *4 *5)) (-4 *3 (-444)) + (-4 *3 (-542)) (-4 *4 (-771)) (-4 *5 (-825)) + (-5 *1 (-950 *3 *4 *5 *6))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-865 *4)) (-4 *4 (-1068)) (-5 *1 (-862 *4 *3)) + (-4 *3 (-1068))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-623 (-1126))) (-5 *1 (-387))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-550))) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1126) (-752))) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144)) + (-5 *2 + (-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) + (|:| |singularities| (-1124 (-219))))) + (-5 *1 (-104))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1018))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1008)) (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-309 (-372)))) (-5 *4 (-623 (-372))) + (-5 *2 (-1008)) (-5 *1 (-815))))) +(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))) +(((*1 *2 *3) + (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-292 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1062 (-818 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) + (-5 *1 (-298)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) + (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-922 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-623 (-1144))) (-5 *1 (-1148))))) +(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + ((*1 *1 *1 *1) (-4 *1 (-465))) + ((*1 *1 *1) (-12 (-4 *1 (-775 *2)) (-4 *2 (-170)))) + ((*1 *2 *2) (-12 (-5 *2 (-623 (-550))) (-5 *1 (-856)))) + ((*1 *1 *1) (-5 *1 (-944))) + ((*1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-749)) (-5 *2 (-667 (-925 *4))) (-5 *1 (-1001 *4)) + (-4 *4 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-800))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1020)) + (-5 *1 (-1128 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 (-1140 *4)) (-5 *1 (-350 *4)) + (-4 *4 (-342))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1227 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) + (-5 *2 (-1227 (-667 *4))))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1227 (-667 *4))) (-5 *1 (-409 *3 *4)) + (-4 *3 (-410 *4)))) + ((*1 *2) + (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1227 (-667 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-1144))) (-4 *5 (-356)) + (-5 *2 (-1227 (-667 (-400 (-925 *5))))) (-5 *1 (-1054 *5)) + (-5 *4 (-667 (-400 (-925 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-623 (-1144))) (-4 *5 (-356)) + (-5 *2 (-1227 (-667 (-925 *5)))) (-5 *1 (-1054 *5)) + (-5 *4 (-667 (-925 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 (-667 *4))) (-4 *4 (-356)) + (-5 *2 (-1227 (-667 *4))) (-5 *1 (-1054 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) + (-5 *2 (-2 (|:| -2855 (-550)) (|:| |var| (-594 *1)))) + (-4 *1 (-423 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-956 *2)) (-4 *2 (-1166))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *1) (-4 *1 (-940)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-894)) + (-4 *4 (-1020))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-623 *5)) (-5 *4 (-894)) (-4 *5 (-825)) + (-5 *2 (-623 (-650 *5))) (-5 *1 (-650 *5))))) +((-1260 . 737867) (-1261 . 737771) (-1262 . 737674) (-1263 . 737608) + (-1264 . 737461) (-1265 . 736760) (-1266 . 736666) (-1267 . 736567) + (-1268 . 736514) (-1269 . 736412) (-1270 . 736133) (-1271 . 736072) + (-1272 . 735728) (-1273 . 735661) (-1274 . 735483) (-1275 . 735398) + (-1276 . 735221) (-1277 . 735152) (-1278 . 734920) (-1279 . 734857) + (-1280 . 734753) (-1281 . 734590) (-1282 . 734505) (-1283 . 734446) + (-1284 . 734260) (-1285 . 733831) (-1286 . 733722) (-1287 . 733615) + (-1288 . 733403) (-1289 . 733227) (-1290 . 733125) (-1291 . 733006) + (-1292 . 732735) (-1293 . 732122) (-1294 . 731875) (-1295 . 731628) + (-1296 . 731101) (-1297 . 731021) (-1298 . 730705) (-1299 . 730530) + (-1300 . 730446) (-1301 . 730369) (-1302 . 730052) (-1303 . 729886) + (-1304 . 729499) (-1305 . 729405) (-1306 . 729353) (-1307 . 729114) + (-1308 . 728687) (-1309 . 728604) (-1310 . 728107) (-1311 . 727970) + (-1312 . 727875) (-1313 . 727741) (-1314 . 727688) (-1315 . 727474) + (-1316 . 727179) (-1317 . 727117) (-1318 . 727013) (-1319 . 726884) + (-1320 . 726711) (-1321 . 726596) (-1322 . 726254) (-1323 . 726198) + (-1324 . 725979) (-1325 . 725470) (-1326 . 725396) (-1327 . 725053) + (-1328 . 724954) (-1329 . 724895) (-1330 . 724846) (-1331 . 724565) + (-1332 . 724346) (-1333 . 724114) (-1334 . 724040) (-1335 . 723984) + (-1336 . 723643) (-1337 . 723559) (-1338 . 722762) (-1339 . 722638) + (-1340 . 722534) (-1341 . 722393) (-1342 . 722255) (-1343 . 721614) + (-1344 . 721378) (-1345 . 721323) (-1346 . 721144) (-1347 . 721070) + (-1348 . 720790) (-1349 . 720762) (-1350 . 720433) (-1351 . 720405) + (-1352 . 720342) (-1353 . 720133) (-1354 . 720003) (-1355 . 719772) + (-1356 . 719645) (-1357 . 719552) (-1358 . 719518) (-1359 . 719452) + (-1360 . 719292) (-1361 . 719173) (-1362 . 718947) (-1363 . 718781) + (-1364 . 718638) (-1365 . 718589) (-1366 . 718372) (-1367 . 718319) + (-1368 . 718245) (-1369 . 718094) (-1370 . 717941) (-1371 . 717869) + (-1372 . 716751) (-1373 . 715559) (-1374 . 715502) (-1375 . 715359) + (-1376 . 714856) (-1377 . 714565) (-1378 . 714390) (-1379 . 714300) + (-1380 . 714130) (-1381 . 713949) (-1382 . 713890) (-1383 . 713768) + (-1384 . 713194) (-1385 . 713085) (-1386 . 711869) (-1387 . 711795) + (-1388 . 711688) (-1389 . 709905) (-1390 . 709838) (-1391 . 709810) + (-1392 . 709609) (-1393 . 709006) (-1394 . 708479) (-1395 . 708406) + (-1396 . 708283) (-1397 . 708049) (-1398 . 707922) (-1399 . 707708) + (-1400 . 707499) (-1401 . 707416) (-1402 . 706990) (-1403 . 706754) + (-1404 . 706652) (-1405 . 706623) (-1406 . 706558) (-1407 . 706424) + (-1408 . 706339) (-1409 . 706070) (-1410 . 705931) (-1411 . 705724) + (-1412 . 705625) (-1413 . 705508) (-1414 . 705436) (-1415 . 705329) + (-1416 . 705081) (-1417 . 704963) (-1418 . 704914) (-1419 . 704816) + (-1420 . 704636) (-1421 . 704302) (-1422 . 704250) (-1423 . 703908) + (-1424 . 703416) (-1425 . 703360) (-1426 . 703155) (-1427 . 703040) + (-1428 . 702665) (-1429 . 702587) (-1430 . 702501) (-1431 . 702339) + (-1432 . 702191) (-1433 . 701812) (-1434 . 701372) (-1435 . 701192) + (-1436 . 701095) (-1437 . 701026) (-1438 . 700953) (-1439 . 700883) + (-1440 . 700730) (-1441 . 700631) (-1442 . 700139) (-1443 . 700086) + (-1444 . 699479) (-1445 . 699419) (-1446 . 699307) (-1447 . 699276) + (-1448 . 699217) (-1449 . 699093) (-1450 . 699038) (-1451 . 698919) + (-1452 . 698733) (-1453 . 698506) (-1454 . 698346) (-1455 . 698252) + (-1456 . 696396) (-1457 . 696297) (-1458 . 696190) (-1459 . 696078) + (-1460 . 695848) (-1461 . 695725) (-1462 . 695582) (-1463 . 695516) + (-1464 . 695419) (-1465 . 695047) (-1466 . 694981) (-1467 . 694904) + (-1468 . 694827) (-1469 . 694746) (-1470 . 694440) (-1471 . 693840) + (-1472 . 693788) (-1473 . 693700) (-1474 . 693626) (-1475 . 693474) + (-1476 . 693090) (-1477 . 693019) (-1478 . 692969) (-1479 . 692941) + (-1480 . 692788) (-1481 . 692681) (-1482 . 692615) (-1483 . 692376) + (-1484 . 692191) (-1485 . 691882) (-1486 . 691763) (-1487 . 691552) + (-1488 . 691399) (-1489 . 684400) (-1490 . 684329) (-1491 . 684196) + (-1492 . 684093) (-1493 . 683775) (-1494 . 683702) (-1495 . 682841) + (-1496 . 682813) (-1497 . 682295) (-1498 . 682207) (-1499 . 682078) + (-1500 . 681956) (-1501 . 681862) (-1502 . 681757) (-1503 . 681702) + (-1504 . 681615) (-1505 . 681168) (-1506 . 680970) (-1507 . 680807) + (-1508 . 680593) (-1509 . 680532) (-1510 . 680452) (-1511 . 680269) + (-1512 . 680124) (-1513 . 679876) (-1514 . 679755) (-1515 . 679660) + (-1516 . 679523) (-1517 . 679229) (-1518 . 655906) (-1519 . 655809) + (-1520 . 655566) (-1521 . 655514) (-1522 . 655138) (-1523 . 654995) + (-1524 . 654237) (-1525 . 654119) (-1526 . 653871) (-1527 . 653771) + (-1528 . 653687) (-1529 . 653531) (-1530 . 653464) (-1531 . 652831) + (-1532 . 650079) (-1533 . 649973) (-1534 . 649859) (-1535 . 649752) + (-1536 . 649554) (-1537 . 649468) (-1538 . 648864) (-1539 . 648731) + (-1540 . 647915) (-1541 . 647845) (-1542 . 646664) (-1543 . 646540) + (-1544 . 646485) (-1545 . 646105) (-1546 . 646005) (-1547 . 645806) + (-1548 . 645665) (-1549 . 645443) (-1550 . 645387) (-1551 . 645128) + (-1552 . 645004) (-1553 . 644631) (-1554 . 644487) (-1555 . 644380) + (-1556 . 644295) (-1557 . 644117) (-1558 . 644065) (-1559 . 644013) + (-1560 . 642856) (-1561 . 642684) (-1562 . 642566) (-1563 . 642469) + (-1564 . 642324) (-1565 . 642205) (-1566 . 641919) (-1567 . 641891) + (-1568 . 641838) (-1569 . 641783) (-1570 . 641692) (-1571 . 641626) + (-1572 . 641574) (-1573 . 641313) (-12 . 641141) (-1575 . 641040) + (-1576 . 640987) (-1577 . 640829) (-1578 . 640517) (-1579 . 640374) + (-1580 . 640300) (-1581 . 640146) (-1582 . 640080) (-1583 . 639970) + (-1584 . 639791) (-1585 . 639649) (-1586 . 639575) (-1587 . 639461) + (-1588 . 639368) (-1589 . 639294) (-1590 . 639085) (-1591 . 638800) + (-1592 . 638698) (-1593 . 638580) (-1594 . 638248) (-1595 . 638141) + (-1596 . 638088) (-1597 . 638020) (-1598 . 637411) (-1599 . 637323) + (-1600 . 637098) (-1601 . 636177) (-1602 . 636076) (-1603 . 636002) + (-1604 . 635631) (-1605 . 635560) (-1606 . 635299) (-1607 . 635181) + (-1608 . 635081) (-1609 . 635002) (-1610 . 634934) (-1611 . 634833) + (-1612 . 634626) (-1613 . 634446) (-1614 . 634328) (-1615 . 633995) + (-1616 . 633821) (-1617 . 633684) (-1618 . 633634) (-1619 . 633538) + (-1620 . 633455) (-1621 . 633377) (-1622 . 633289) (-1623 . 632329) + (-1624 . 632078) (-1625 . 631830) (-1626 . 631651) (-1627 . 631580) + (-1628 . 631446) (-1629 . 630807) (-1630 . 630745) (-1631 . 630679) + (-1632 . 630512) (-1633 . 630439) (-1634 . 630332) (-1635 . 629831) + (-1636 . 629745) (-1637 . 629580) (-1638 . 629483) (-1639 . 629410) + (-1640 . 629340) (-1641 . 629105) (-1642 . 629053) (-1643 . 628849) + (-1644 . 628818) (-1645 . 628724) (-1646 . 628471) (-1647 . 628256) + (-1648 . 628006) (-1649 . 627905) (-1650 . 627810) (-1651 . 627733) + (-1652 . 627535) (-1653 . 627480) (-1654 . 627411) (-1655 . 626994) + (-1656 . 626917) (-1657 . 626774) (-1658 . 626721) (-1659 . 626310) + (-1660 . 626030) (-1661 . 625933) (-1662 . 625652) (-1663 . 625545) + (-1664 . 625348) (-1665 . 625282) (-1666 . 625103) (-1667 . 624640) + (-1668 . 624500) (-1669 . 624358) (-1670 . 624145) (-1671 . 624093) + (-1672 . 623887) (-1673 . 623853) (-1674 . 623422) (-1675 . 623298) + (-1676 . 623152) (-1677 . 623100) (-1678 . 623013) (-1679 . 622906) + (-1680 . 622800) (* . 618254) (-1682 . 617188) (-1683 . 616999) + (-1684 . 616906) (-1685 . 616762) (-1686 . 616417) (-1687 . 616383) + (-1688 . 616115) (-1689 . 616015) (-1690 . 615895) (-1691 . 615846) + (-1692 . 615737) (-1693 . 615592) (-1694 . 615511) (-1695 . 615318) + (-1696 . 615247) (-1697 . 615133) (-1698 . 614962) (-1699 . 614864) + (-1700 . 614694) (-1701 . 614539) (-1702 . 614458) (-1703 . 614165) + (-1704 . 614071) (-1705 . 612670) (-1706 . 612563) (-1707 . 612510) + (-1708 . 612386) (-1709 . 612272) (-1710 . 612171) (-1711 . 612035) + (-1712 . 611934) (-1713 . 611906) (-1714 . 611660) (-1715 . 611296) + (-1716 . 610187) (-1717 . 610069) (-1718 . 609960) (-1719 . 609855) + (-1720 . 609736) (-1721 . 609580) (-1722 . 609495) (-1723 . 609418) + (-1724 . 609339) (-1725 . 609091) (-1726 . 608818) (-1727 . 608751) + (-1728 . 608646) (-1729 . 608591) (-1730 . 608199) (-1731 . 607872) + (-1732 . 607688) (-1733 . 607622) (-1734 . 607458) (-1735 . 607357) + (-1736 . 607250) (-1737 . 607026) (-1738 . 606774) (-1739 . 606688) + (-1740 . 606561) (-1741 . 605911) (-1742 . 605752) (-1743 . 605560) + (-1744 . 605351) (-1745 . 605230) (-1746 . 605152) (-1747 . 605100) + (-1748 . 604025) (-1749 . 603716) (-1750 . 603628) (-1751 . 603480) + (-1752 . 603424) (-1753 . 603178) (-1754 . 603078) (-1755 . 603023) + (-1756 . 602344) (-1757 . 602294) (-1758 . 601430) (-1759 . 601228) + (-1760 . 600949) (-1761 . 600881) (-1762 . 600828) (-1763 . 600477) + (-1764 . 600403) (-1765 . 600266) (-1766 . 599980) (-1767 . 599793) + (-1768 . 599694) (-1769 . 599560) (-1770 . 599494) (-1771 . 597636) + (-1772 . 597549) (-1773 . 597173) (-1774 . 596862) (-1775 . 596755) + (-1776 . 596589) (-1777 . 596356) (-1778 . 596305) (-1779 . 594337) + (-1780 . 594230) (-1781 . 594127) (-1782 . 594055) (-1783 . 593983) + (-1784 . 593728) (-1785 . 593618) (-1786 . 593451) (-1787 . 593310) + (-1788 . 592989) (-1789 . 592901) (-1790 . 592849) (-1791 . 592383) + (-1792 . 592107) (-1793 . 591860) (-1794 . 591711) (-1795 . 591652) + (-1796 . 591543) (-1797 . 591469) (-1798 . 591381) (-1799 . 591269) + (-1800 . 591198) (-1801 . 591055) (-1802 . 590724) (-1803 . 590553) + (-1804 . 590458) (-1805 . 590403) (-1806 . 590296) (-1807 . 590141) + (-1808 . 589856) (-1809 . 589103) (-1810 . 588965) (-1811 . 588869) + (-1812 . 587657) (-1813 . 587553) (-1814 . 587469) (-1815 . 587353) + (-1816 . 587220) (-1817 . 587128) (-1818 . 587058) (-1819 . 586799) + (-1820 . 586366) (-1821 . 586159) (-1822 . 585843) (-1823 . 585790) + (-1824 . 585650) (-1825 . 585596) (-1826 . 585448) (-1827 . 585200) + (-1828 . 585099) (-1829 . 584852) (-1830 . 584771) (-1831 . 584718) + (-1832 . 584180) (-1833 . 583340) (-1834 . 582998) (-1835 . 582936) + (-1836 . 582853) (-1837 . 582757) (-1838 . 582643) (-1839 . 582452) + (-1840 . 582323) (-1841 . 582237) (-1842 . 582182) (-1843 . 581936) + (-1844 . 581870) (-1845 . 581726) (-1846 . 581674) (-1847 . 581561) + (-1848 . 581386) (-1849 . 581287) (-1850 . 580956) (-1851 . 580904) + (-1852 . 580818) (-1853 . 580665) (-1854 . 580609) (-1855 . 580310) + (-1856 . 580220) (-1857 . 580126) (-1858 . 579985) (-1859 . 579823) + (-1860 . 579577) (-1861 . 579088) (-1862 . 578942) (-1863 . 578889) + (-1864 . 578583) (-1865 . 578510) (-1866 . 578075) (-1867 . 577775) + (-1868 . 577709) (-1869 . 577677) (-1870 . 577295) (-1871 . 577266) + (-1872 . 577213) (-1873 . 577094) (-1874 . 576878) (-1875 . 576790) + (-1876 . 576648) (-1877 . 576196) (-1878 . 576068) (-1879 . 575711) + (-1880 . 575438) (-1881 . 575250) (-1882 . 575112) (-1883 . 574736) + (-1884 . 574573) (-1885 . 574342) (-1886 . 571927) (-1887 . 571547) + (-1888 . 571496) (-1889 . 571416) (-1890 . 571238) (-1891 . 571129) + (-1892 . 571074) (-1893 . 570973) (-1894 . 570945) (-1895 . 570914) + (-1896 . 570329) (-1897 . 569977) (-1898 . 569791) (-1899 . 569739) + (-1900 . 569562) (-1901 . 569224) (-1902 . 569168) (-1903 . 568963) + (-1904 . 568895) (-1905 . 568788) (-1906 . 568625) (-1907 . 568557) + (-1908 . 568442) (-1909 . 568335) (-1910 . 567914) (-1911 . 567842) + (-1912 . 567738) (-1913 . 567448) (-1914 . 567338) (-1915 . 567082) + (-1916 . 566418) (-1917 . 566243) (-1918 . 566172) (-1919 . 566010) + (-1920 . 565902) (-1921 . 565586) (-1922 . 565518) (-1923 . 565420) + (-1924 . 565306) (-1925 . 564715) (-1926 . 564645) (-1927 . 564253) + (-1928 . 564156) (-1929 . 563636) (-1930 . 563532) (-1931 . 563481) + (-1932 . 563359) (-1933 . 563207) (-1934 . 563121) (-1935 . 563020) + (-1936 . 562992) (-1937 . 562690) (-1938 . 562566) (-1939 . 562205) + (-1940 . 562136) (-1941 . 562024) (-1942 . 561902) (-1943 . 561818) + (-1944 . 561689) (-1945 . 561633) (-1946 . 561555) (-1947 . 561460) + (-1948 . 561270) (-1949 . 561067) (-1950 . 560908) (-1951 . 560802) + (-1952 . 560584) (-1953 . 560470) (-1954 . 560119) (-1955 . 560064) + (-1956 . 559915) (-1957 . 559833) (-1958 . 559778) (-1959 . 559708) + (-1960 . 559642) (-1961 . 559532) (-1962 . 559363) (-1963 . 559264) + (-1964 . 559211) (-1965 . 559068) (-1966 . 558999) (-1967 . 558771) + (-1968 . 558668) (-1969 . 558543) (-1970 . 558425) (-1971 . 558230) + (-1972 . 558175) (-1973 . 558003) (-1974 . 557905) (-1975 . 557752) + (-1976 . 557647) (-1977 . 557594) (-1978 . 557395) (-1979 . 556631) + (-1980 . 556139) (-1981 . 555934) (-1982 . 555634) (-1983 . 555516) + (-1984 . 555407) (-1985 . 555310) (-1986 . 555203) (-1987 . 555147) + (-1988 . 554851) (-1989 . 554763) (-1990 . 554695) (-1991 . 554543) + (-1992 . 554473) (-1993 . 554421) (-1994 . 554010) (-1995 . 553888) + (-1996 . 553791) (-1997 . 553739) (-1998 . 553660) (-1999 . 553607) + (-2000 . 553488) (-2001 . 552813) (-2002 . 552642) (-2003 . 552367) + (-2004 . 552098) (-2005 . 552020) (-2006 . 551963) (-2007 . 551890) + (-2008 . 551786) (-2009 . 551700) (-2010 . 551512) (-2011 . 550991) + (-2012 . 550892) (-2013 . 550666) (-2014 . 550540) (-2015 . 550466) + (-2016 . 550398) (-2017 . 550110) (-2018 . 549812) (-2019 . 549470) + (-2020 . 549399) (-2021 . 549240) (-2022 . 549136) (-2023 . 548791) + (-2024 . 548683) (-2025 . 548347) (-2026 . 548095) (-2027 . 547936) + (-2028 . 547883) (-2029 . 547824) (-2030 . 547614) (-2031 . 546648) + (-2032 . 546538) (-2033 . 546481) (-2034 . 546395) (-2035 . 546274) + (-2036 . 546086) (-2037 . 545985) (-2038 . 545928) (-2039 . 545894) + (-2040 . 545821) (-2041 . 545617) (-2042 . 545446) (-2043 . 545187) + (-2044 . 544928) (-2045 . 544782) (-2046 . 544614) (-2047 . 544558) + (-2048 . 543804) (-2049 . 543429) (-2050 . 543363) (-2051 . 543219) + (-2052 . 543088) (-2053 . 542958) (-2054 . 542813) (-2055 . 542657) + (-2056 . 542573) (-2057 . 542503) (-2058 . 542397) (-2059 . 542254) + (-2060 . 542072) (-2061 . 541991) (-2062 . 541962) (-2063 . 541890) + (-2064 . 541776) (-2065 . 541577) (-2066 . 541471) (-2067 . 541343) + (-2068 . 541242) (-2069 . 541144) (-2070 . 541035) (-2071 . 540928) + (-2072 . 540626) (-2073 . 540400) (-2074 . 540348) (-2075 . 540204) + (-2076 . 539844) (-2077 . 539771) (-2078 . 539711) (-2079 . 539641) + (-2080 . 539547) (-2081 . 539470) (-2082 . 539386) (-2083 . 539197) + (-2084 . 538917) (-2085 . 538798) (-2086 . 538579) (-2087 . 538244) + (-2088 . 538131) (-2089 . 538079) (-2090 . 537805) (-2091 . 537391) + (-2092 . 537360) (-2093 . 537247) (-2094 . 537187) (-2095 . 537006) + (-2096 . 536910) (-2097 . 535730) (-2098 . 535505) (-2099 . 534969) + (-2100 . 534809) (-2101 . 534721) (-2102 . 534563) (-2103 . 534495) + (-2104 . 534443) (-2105 . 534285) (-2106 . 534220) (-2107 . 534170) + (-2108 . 534098) (-2109 . 534047) (-2110 . 533974) (-2111 . 533897) + (-2112 . 532832) (-2113 . 532719) (-2114 . 532637) (-2115 . 532391) + (-2116 . 532132) (-2117 . 531907) (-2118 . 531809) (-2119 . 530607) + (-2120 . 530521) (-2121 . 530420) (-2122 . 529170) (-2123 . 529141) + (-2124 . 528895) (-2125 . 528829) (-2126 . 528652) (-2127 . 528481) + (-2128 . 528325) (-2129 . 528102) (-2130 . 527973) (-2131 . 527914) + (-2132 . 527837) (-2133 . 527585) (-2134 . 527470) (-2135 . 526992) + (-2136 . 526851) (-2137 . 526601) (-2138 . 525794) (-2139 . 524370) + (-2140 . 524281) (-2141 . 524210) (-2142 . 524081) (-2143 . 524053) + (-2144 . 523961) (-2145 . 523865) (-2146 . 523738) (-2147 . 523631) + (-2148 . 523602) (-2149 . 523524) (-2150 . 523361) (-2151 . 523278) + (-2152 . 523028) (-2153 . 522917) (-2154 . 522737) (-2155 . 522578) + (-2156 . 522156) (-2157 . 522078) (-2158 . 522022) (-2159 . 521727) + (-2160 . 521630) (-2161 . 521551) (-2162 . 521164) (-2163 . 521080) + (-2164 . 520890) (-2165 . 520791) (-2166 . 520648) (-2167 . 520532) + (-2168 . 520437) (-2169 . 520354) (-2170 . 520255) (-2171 . 520203) + (-2172 . 520060) (-2173 . 519936) (-2174 . 519725) (-2175 . 519639) + (-2176 . 519517) (-2177 . 519298) (-2178 . 518996) (-2179 . 518803) + (-2180 . 518411) (-2181 . 518374) (-2182 . 518080) (-2183 . 517957) + (-2184 . 517851) (-2185 . 517453) (-2186 . 517354) (-2187 . 517235) + (-2188 . 517017) (-2189 . 516895) (-2190 . 516812) (-2191 . 516759) + (-2192 . 516643) (-2193 . 516555) (-2194 . 516481) (-2195 . 516351) + (-2196 . 516265) (-2197 . 516107) (-2198 . 516024) (-2199 . 515900) + (-2200 . 515866) (-2201 . 515641) (-2202 . 515240) (-2203 . 514922) + (-2204 . 514845) (-2205 . 514736) (-2206 . 514342) (-2207 . 514260) + (-2208 . 514172) (-2209 . 514105) (-2210 . 514021) (-2211 . 513896) + (-2212 . 512600) (-2213 . 512572) (-2214 . 512474) (-2215 . 512383) + (-2216 . 512332) (-2217 . 512228) (-2218 . 512179) (-2219 . 511584) + (-2220 . 511477) (-2221 . 511187) (-2222 . 510283) (-2223 . 510198) + (-2224 . 510024) (-2225 . 509911) (-2226 . 509883) (-2227 . 509738) + (-2228 . 509136) (-2229 . 509020) (-2230 . 508883) (-2231 . 508802) + (-2232 . 508719) (-2233 . 508626) (-2234 . 508502) (-2235 . 508340) + (-2236 . 508122) (-2237 . 507877) (-2238 . 507737) (-2239 . 506452) + (-2240 . 506390) (-2241 . 506323) (-2242 . 506194) (-2243 . 506111) + (-2244 . 506021) (-2245 . 505634) (-2246 . 505495) (-2247 . 505442) + (-2248 . 505340) (-2249 . 504900) (-2250 . 504814) (-2251 . 504722) + (-2252 . 504296) (-2253 . 504152) (-2254 . 504069) (-2255 . 504016) + (-2256 . 503880) (-2257 . 503682) (-2258 . 503266) (-2259 . 503167) + (-2260 . 503130) (-2261 . 503007) (-2262 . 502937) (-2263 . 502452) + (-2264 . 502381) (-2265 . 502308) (-2266 . 502204) (-2267 . 501911) + (-2268 . 501767) (-2269 . 501637) (-2270 . 501536) (-2271 . 501314) + (-2272 . 500116) (-2273 . 499877) (-2274 . 499843) (-2275 . 499395) + (-2276 . 499183) (-2277 . 499074) (-2278 . 498968) (-2279 . 498666) + (-2280 . 498580) (-2281 . 498050) (-2282 . 497908) (-2283 . 497820) + (-2284 . 497683) (-2285 . 497487) (-2286 . 497329) (-2287 . 497245) + (-2288 . 497178) (-2289 . 497040) (-2290 . 496882) (-2291 . 496810) + (-2292 . 496753) (-2293 . 496554) (-2294 . 496472) (-2295 . 496389) + (-2296 . 495794) (-2297 . 495687) (-2298 . 495556) (-2299 . 495395) + (-2300 . 495079) (-2301 . 494996) (-2302 . 494475) (-2303 . 494362) + (-2304 . 494310) (-2305 . 494258) (-2306 . 493454) (-2307 . 493129) + (-2308 . 493031) (-2309 . 492947) (-2310 . 492650) (-2311 . 492595) + (-2312 . 492273) (-2313 . 492185) (-2314 . 492088) (-2315 . 491960) + (-2316 . 491691) (-2317 . 491547) (-2318 . 491461) (-2319 . 491345) + (-2320 . 491293) (-2321 . 491174) (-2322 . 490814) (-2323 . 490431) + (-2324 . 490326) (-2325 . 490228) (-2326 . 490175) (-2327 . 490033) + (-2328 . 489892) (-2329 . 489740) (-2330 . 489594) (-2331 . 489352) + (-2332 . 489100) (-2333 . 489005) (-2334 . 488862) (-2335 . 488631) + (-2336 . 488413) (-2337 . 488311) (-2338 . 488158) (-2339 . 488106) + (-2340 . 487835) (-2341 . 487677) (-2342 . 487452) (-2343 . 487332) + (-2344 . 487298) (-2345 . 487211) (-2346 . 486341) (-2347 . 486307) + (-2348 . 486106) (-2349 . 486011) (-2350 . 485945) (-2351 . 485892) + (-2352 . 485688) (-2353 . 485566) (-2354 . 485407) (-2355 . 485308) + (-2356 . 485259) (-2357 . 485112) (-2358 . 485057) (-2359 . 485000) + (-2360 . 484929) (-2361 . 484261) (-2362 . 484043) (-2363 . 483956) + (-2364 . 483663) (-2365 . 483595) (-2366 . 483021) (-2367 . 482872) + (-2368 . 482748) (-2369 . 482470) (-2370 . 482279) (-2371 . 482209) + (-2372 . 481211) (-2373 . 481033) (-2374 . 480859) (-2375 . 480786) + (-2376 . 480628) (-2377 . 480287) (-2378 . 480194) (-2379 . 480087) + (-2380 . 479706) (-2381 . 479618) (-2382 . 479541) (-2383 . 479486) + (-2384 . 479403) (-2385 . 479297) (-2386 . 479213) (-2387 . 478825) + (-2388 . 478724) (-2389 . 478118) (-2390 . 477259) (-2391 . 476073) + (-2392 . 475730) (-2393 . 473568) (-2394 . 473485) (-2395 . 473386) + (-2396 . 473303) (-2397 . 473190) (-2398 . 473083) (-2399 . 472347) + (-2400 . 472249) (-2401 . 472121) (-2402 . 472017) (-2403 . 470835) + (-2404 . 470680) (-2405 . 470594) (-2406 . 470478) (-2407 . 469629) + (-2408 . 469361) (-2409 . 469282) (-2410 . 469175) (-2411 . 469126) + (-2412 . 469073) (-2413 . 468978) (-2414 . 466772) (-2415 . 466612) + (-2416 . 466457) (-2417 . 466256) (-2418 . 465981) (-2419 . 462360) + (-2420 . 462202) (-2421 . 461997) (-2422 . 461909) (-2423 . 461812) + (-2424 . 461698) (-2425 . 461554) (-2426 . 460638) (-2427 . 460463) + (-2428 . 460411) (-2429 . 460345) (-2430 . 460227) (-2431 . 460154) + (-2432 . 460032) (-2433 . 459775) (-2434 . 459741) (-2435 . 459426) + (-2436 . 459148) (-2437 . 458282) (-2438 . 458158) (-2439 . 458080) + (-2440 . 457904) (-2441 . 457693) (-2442 . 457462) (-2443 . 457393) + (-2444 . 457266) (-2445 . 457196) (-2446 . 457053) (-2447 . 456692) + (-2448 . 456154) (-2449 . 455936) (-2450 . 455809) (-2451 . 455690) + (-2452 . 455171) (-2453 . 455116) (-2454 . 455066) (-2455 . 454870) + (-2456 . 454757) (-2457 . 453878) (-2458 . 453445) (-2459 . 453346) + (-2460 . 453211) (-2461 . 453129) (-2462 . 453068) (-2463 . 453016) + (-2464 . 452892) (-2465 . 452691) (-2466 . 452620) (-2467 . 452513) + (-2468 . 452416) (-2469 . 452270) (-2470 . 451983) (-2471 . 451881) + (-2472 . 451229) (-2473 . 451071) (-2474 . 450720) (-2475 . 448452) + (-2476 . 447798) (-2477 . 446256) (-2478 . 445947) (-2479 . 445554) + (-2480 . 445468) (-2481 . 445303) (-2482 . 445200) (-2483 . 445025) + (-2484 . 444930) (-2485 . 444829) (-2486 . 444701) (-2487 . 444627) + (-2488 . 444539) (-2489 . 444288) (-2490 . 444144) (-2491 . 444046) + (-2492 . 443905) (-2493 . 443790) (-2494 . 443677) (-2495 . 443593) + (-2496 . 443524) (-2497 . 443471) (-2498 . 443380) (-2499 . 443248) + (-2500 . 443095) (-2501 . 442823) (-2502 . 442753) (-2503 . 442371) + (-2504 . 442270) (-2505 . 442204) (-2506 . 442083) (-2507 . 441943) + (-2508 . 441783) (-2509 . 441704) (-2510 . 440116) (-2511 . 440057) + (-2512 . 439947) (-2513 . 439873) (-2514 . 439805) (-2515 . 439753) + (-2516 . 439680) (-2517 . 439498) (-2518 . 439354) (-2519 . 439266) + (-2520 . 439211) (-2521 . 439159) (-2522 . 439071) (-2523 . 438744) + (-2524 . 438551) (-2525 . 438408) (-2526 . 438349) (-2527 . 438221) + (-2528 . 438118) (-2529 . 437959) (-2530 . 437890) (-2531 . 437791) + (-2532 . 437397) (-2533 . 437143) (-2534 . 437076) (-2535 . 435298) + (-2536 . 435163) (-2537 . 435068) (-2538 . 434816) (-2539 . 434552) + (-2540 . 434437) (-2541 . 434383) (-2542 . 434253) (-2543 . 434053) + (-2544 . 433940) (-2545 . 433844) (-2546 . 433789) (-2547 . 433704) + (-2548 . 433247) (-2549 . 433140) (-2550 . 433042) (-2551 . 432986) + (-2552 . 432887) (-2553 . 432572) (-2554 . 432486) (-2555 . 432119) + (-2556 . 431633) (-2557 . 431550) (-2558 . 431072) (-2559 . 430486) + (-2560 . 430412) (-2561 . 430128) (-2562 . 429894) (-2563 . 429714) + (-2564 . 429556) (-2565 . 429486) (-2566 . 429415) (-2567 . 429324) + (-2568 . 429181) (-2569 . 429153) (-2570 . 428951) (-2571 . 428857) + (-2572 . 428704) (-2573 . 428606) (-2574 . 428540) (-2575 . 428159) + (-2576 . 428106) (-2577 . 427913) (-2578 . 427143) (-2579 . 426750) + (-2580 . 426592) (-2581 . 426394) (-2582 . 426290) (-2583 . 426195) + (-2584 . 425988) (-2585 . 425917) (-2586 . 425741) (-2587 . 425623) + (-2588 . 425478) (-2589 . 425347) (-2590 . 425259) (-2591 . 425101) + (-2592 . 425017) (-2593 . 424884) (-2594 . 424811) (-2595 . 424661) + (-2596 . 424508) (-2597 . 424319) (-2598 . 424191) (-2599 . 424035) + (-2600 . 423966) (-2601 . 423907) (-2602 . 423815) (-2603 . 423536) + (-2604 . 423240) (-2605 . 423169) (-2606 . 423062) (-2607 . 422938) + (-2608 . 421853) (-2609 . 421821) (-2610 . 421278) (-2611 . 421186) + (-2612 . 421137) (-2613 . 421052) (-2614 . 420872) (-2615 . 417536) + (-2616 . 417356) (-2617 . 417288) (-2618 . 416816) (-2619 . 416557) + (-2620 . 416111) (-2621 . 416023) (-2622 . 415937) (-2623 . 415508) + (-2624 . 415425) (-2625 . 415371) (-2626 . 415200) (-2627 . 415022) + (-2628 . 414936) (-2629 . 414746) (-2630 . 414466) (-2631 . 414359) + (-2632 . 414276) (-2633 . 413787) (-2634 . 413643) (-2635 . 413588) + (-2636 . 413341) (-2637 . 413285) (-2638 . 412998) (-2639 . 412875) + (-2640 . 412809) (-2641 . 412735) (-2642 . 412680) (-2643 . 412536) + (-2644 . 411898) (-2645 . 411758) (-2646 . 411472) (-2647 . 411330) + (-2648 . 411217) (-2649 . 411046) (-2650 . 410903) (-2651 . 410787) + (-2652 . 410713) (-2653 . 410600) (-2654 . 410459) (-2655 . 410381) + (-2656 . 410131) (-2657 . 409740) (-2658 . 409558) (-2659 . 409524) + (-2660 . 409471) (-2661 . 409418) (-2662 . 409010) (-2663 . 408839) + (-2664 . 408810) (-2665 . 408588) (-2666 . 408442) (-2667 . 408309) + (-2668 . 408186) (-2669 . 408074) (-2670 . 407454) (-2671 . 407116) + (-2672 . 404189) (-2673 . 403952) (-2674 . 403357) (-2675 . 403329) + (-2676 . 403241) (-2677 . 403021) (-2678 . 402923) (-2679 . 402627) + (-2680 . 397420) (-2681 . 397294) (-2682 . 396956) (-2683 . 396811) + (-2684 . 396740) (-2685 . 396582) (-2686 . 396252) (-2687 . 396144) + (-2688 . 396043) (-2689 . 395870) (-2690 . 395817) (-2691 . 395657) + (-2692 . 395439) (-2693 . 395292) (-2694 . 395161) (-2695 . 395109) + (-2696 . 394914) (-2697 . 394699) (-2698 . 394526) (-2699 . 394383) + (-2700 . 394309) (-2701 . 394277) (-2702 . 394206) (-2703 . 394132) + (-2704 . 393914) (-2705 . 393213) (-2706 . 393082) (-2707 . 392803) + (-2708 . 392541) (-2709 . 392432) (-2710 . 391998) (-2711 . 391856) + (-2712 . 391763) (-2713 . 391667) (-2714 . 391614) (-2715 . 390936) + (-2716 . 390781) (-2717 . 390568) (-2718 . 390431) (-2719 . 390359) + (-2720 . 390080) (-2721 . 389873) (-2722 . 389753) (-2723 . 389659) + (-2724 . 389625) (-2725 . 388285) (-2726 . 382947) (-2727 . 382789) + (-2728 . 382661) (-2729 . 382536) (-2730 . 382371) (-2731 . 382248) + (-2732 . 382127) (-2733 . 382071) (-2734 . 381806) (-2735 . 381676) + (-2736 . 381593) (-2737 . 381448) (-2738 . 381390) (-2739 . 381292) + (-2740 . 381190) (-2741 . 380849) (-2742 . 380711) (-2743 . 380382) + (-2744 . 380275) (-2745 . 380201) (-2746 . 380115) (-2747 . 380012) + (-2748 . 379720) (-2749 . 379623) (-2750 . 379546) (-2751 . 379463) + (-2752 . 379408) (-2753 . 379298) (-2754 . 379182) (-2755 . 379064) + (-2756 . 378978) (-2757 . 378912) (-2758 . 378774) (-2759 . 378612) + (-2760 . 378262) (-2761 . 378043) (-2762 . 377991) (-2763 . 377837) + (-2764 . 377765) (-2765 . 377471) (-2766 . 376864) (-2767 . 376793) + (-2768 . 376684) (-2769 . 376554) (-2770 . 376473) (-2771 . 376367) + (-2772 . 376279) (-2773 . 376205) (-2774 . 376132) (-2775 . 375991) + (-2776 . 375684) (-2777 . 375530) (-2778 . 375393) (-2779 . 375175) + (-2780 . 374766) (-2781 . 374608) (-2782 . 374549) (-2783 . 374497) + (-2784 . 374389) (-2785 . 374222) (-2786 . 374014) (-2787 . 369951) + (-2788 . 369808) (-2789 . 369736) (-2790 . 369598) (-2791 . 369421) + (-2792 . 369249) (-2793 . 368803) (-2794 . 368672) (-2795 . 368509) + (-2796 . 368439) (-2797 . 368381) (-2798 . 368310) (-2799 . 368211) + (-2800 . 368109) (-2801 . 368053) (-2802 . 367743) (-2803 . 367410) + (-2804 . 367238) (-2805 . 367168) (-2806 . 367140) (-2807 . 367108) + (-2808 . 366738) (-2809 . 366659) (-2810 . 366625) (-2811 . 366481) + (-2812 . 366429) (-2813 . 366167) (-2814 . 366002) (-2815 . 365792) + (-2816 . 365620) (-2817 . 365412) (-2818 . 365341) (-2819 . 364787) + (-2820 . 364622) (-2821 . 364203) (-2822 . 364109) (-2823 . 364012) + (-2824 . 363722) (-2825 . 363582) (-2826 . 363540) (-2827 . 363368) + (-2828 . 363122) (-2829 . 363088) (-2830 . 362995) (-2831 . 362891) + (-2832 . 362540) (-2833 . 362401) (-2834 . 362293) (-2835 . 359948) + (-2836 . 359762) (-2837 . 359651) (-2838 . 359466) (-2839 . 359285) + (-2840 . 359205) (-2841 . 358988) (-2842 . 358898) (-2843 . 358646) + (-2844 . 358533) (-2845 . 358372) (-2846 . 358178) (-2847 . 358104) + (-2848 . 358030) (-2849 . 358002) (-2850 . 357908) (-2851 . 357680) + (-2852 . 357213) (-2853 . 356916) (-2854 . 356181) (-2855 . 355823) + (-2856 . 355744) (-2857 . 355658) (-2858 . 355549) (-2859 . 355357) + (-2860 . 355237) (-2861 . 355080) (-2862 . 355003) (-2863 . 354929) + (-2864 . 354363) (-2865 . 353964) (-2866 . 353210) (-2867 . 353050) + (-2868 . 352982) (-2869 . 352916) (-2870 . 352624) (-2871 . 352546) + (-2872 . 352327) (-2873 . 352275) (-2874 . 351709) (-2875 . 351644) + (-2876 . 351459) (-2877 . 351241) (-2878 . 351071) (-2879 . 350988) + (-2880 . 350847) (-2881 . 350769) (-2882 . 350388) (-2883 . 350303) + (-2884 . 350114) (-2885 . 350046) (-2886 . 349926) (-2887 . 349723) + (-2888 . 349550) (-2889 . 349423) (-2890 . 349356) (-2891 . 349328) + (-2892 . 349240) (-2893 . 349187) (-2894 . 349153) (-2895 . 348700) + (-2896 . 348635) (-2897 . 348552) (-2898 . 348382) (-2899 . 348322) + (-2900 . 348243) (-2901 . 348143) (-2902 . 347838) (-2903 . 338278) + (-2904 . 338157) (-2905 . 338055) (-2906 . 337999) (-2907 . 337947) + (-2908 . 337857) (-2909 . 337411) (-2910 . 337379) (-2911 . 336996) + (-2912 . 336645) (-2913 . 336456) (-2914 . 336203) (-2915 . 335945) + (-2916 . 335727) (-2917 . 335266) (-2918 . 335172) (-2919 . 335092) + (-2920 . 334962) (-2921 . 334675) (-2922 . 334348) (-2923 . 334240) + (-2924 . 334136) (-2925 . 334074) (-2926 . 332987) (-2927 . 332901) + (-2928 . 332741) (-2929 . 332660) (-2930 . 332567) (-2931 . 332081) + (-2932 . 331831) (-2933 . 331688) (-2934 . 331388) (-2935 . 331277) + (-2936 . 331203) (-2937 . 331137) (-2938 . 330891) (-2939 . 330841) + (-2940 . 330618) (-2941 . 330488) (-2942 . 330387) (-2943 . 330313) + (-2944 . 330169) (-2945 . 330044) (-2946 . 329892) (-2947 . 329809) + (-2948 . 329700) (-2949 . 329642) (-2950 . 329526) (-2951 . 329474) + (-2952 . 329394) (-2953 . 329307) (-2954 . 329255) (-2955 . 329031) + (-2956 . 328976) (-2957 . 328860) (-2958 . 327622) (-2959 . 327542) + (-2960 . 327324) (-2961 . 327272) (-2962 . 327192) (-2963 . 326228) + (-2964 . 326151) (-2965 . 326123) (-2966 . 326074) (-2967 . 325929) + (-2968 . 325877) (-2969 . 325778) (-2970 . 323664) (-2971 . 323569) + (-2972 . 323350) (-2973 . 323322) (-2974 . 323178) (-2975 . 323144) + (-2976 . 322986) (-2977 . 322808) (-2978 . 322725) (-2979 . 322522) + (-2980 . 322148) (-2981 . 322052) (-2982 . 321860) (-2983 . 321807) + (-2984 . 321066) (-2985 . 320995) (-2986 . 320943) (-2987 . 320814) + (-2988 . 320368) (-2989 . 320246) (-2990 . 320088) (-2991 . 319832) + (-2992 . 319780) (-2993 . 319429) (-2994 . 319278) (-2995 . 318537) + (-2996 . 318503) (-2997 . 318431) (-2998 . 318341) (-2999 . 318231) + (-3000 . 318157) (-3001 . 318075) (-3002 . 318020) (-3003 . 317882) + (-3004 . 317772) (-3005 . 317084) (-3006 . 317056) (-3007 . 316843) + (-3008 . 316675) (-3009 . 316512) (-3010 . 316402) (-3011 . 316315) + (-3012 . 316283) (-3013 . 316124) (-3014 . 315814) (-3015 . 315684) + (-3016 . 315108) (-3017 . 314291) (-3018 . 314175) (-3019 . 314089) + (-3020 . 313882) (-3021 . 313608) (-3022 . 313481) (-3023 . 313278) + (-3024 . 313135) (-3025 . 312559) (-3026 . 312404) (-3027 . 312305) + (-3028 . 311648) (-3029 . 311524) (-3030 . 311431) (-3031 . 311320) + (-3032 . 311246) (-3033 . 310670) (-3034 . 310545) (-3035 . 310217) + (-3036 . 310092) (-3037 . 309889) (-3038 . 309818) (-3039 . 309759) + (-3040 . 308946) (-3041 . 308269) (-3042 . 307557) (-3043 . 306871) + (-3044 . 306812) (-3045 . 306739) (-3046 . 306566) (-3047 . 306469) + (-3048 . 306419) (-3049 . 306337) (-3050 . 306252) (-3051 . 306218) + (-3052 . 305532) (-3053 . 305414) (-3054 . 305298) (-3055 . 305200) + (-3056 . 305172) (-3057 . 305077) (-3058 . 304999) (-3059 . 304838) + (-3060 . 304089) (-3061 . 304015) (-3062 . 303750) (-3063 . 303486) + (-3064 . 303449) (-3065 . 303222) (-3066 . 303125) (-3067 . 302906) + (-3068 . 302724) (-3069 . 302564) (-3070 . 302460) (-3071 . 302407) + (-3072 . 301833) (-3073 . 301735) (-3074 . 301610) (-3075 . 301468) + (-3076 . 301179) (-3077 . 301100) (-3078 . 301004) (-3079 . 300894) + (-3080 . 300543) (-3081 . 299969) (-3082 . 299918) (-3083 . 299800) + (-3084 . 299695) (-3085 . 299342) (-3086 . 299259) (-3087 . 299185) + (-3088 . 298981) (-3089 . 298823) (-3090 . 298634) (-3091 . 298496) + (-3092 . 298427) (-3093 . 298294) (-3094 . 297720) (-3095 . 297650) + (-3096 . 297557) (-3097 . 297494) (-3098 . 297434) (-3099 . 297275) + (-3100 . 297110) (-3101 . 297061) (-3102 . 296823) (-3103 . 296136) + (-3104 . 296084) (-3105 . 295912) (-3106 . 295825) (-3107 . 295739) + (-3108 . 295436) (-3109 . 295383) (-3110 . 295351) (-3111 . 295143) + (-3112 . 294400) (-3113 . 294257) (-3114 . 293570) (-3115 . 293391) + (-3116 . 293311) (-3117 . 292654) (-3118 . 291025) (-3119 . 290897) + (-3120 . 290718) (-3121 . 290594) (-3122 . 289945) (-3123 . 289258) + (-3124 . 289118) (-3125 . 289002) (-3126 . 288950) (-3127 . 288891) + (-3128 . 288754) (-3129 . 287888) (-3130 . 287784) (-3131 . 287713) + (-3132 . 287617) (-3133 . 287538) (-3134 . 284757) (-3135 . 284182) + (-3136 . 284109) (-3137 . 283510) (-3138 . 283013) (-3139 . 281911) + (-3140 . 281738) (-3141 . 280364) (-3142 . 279937) (-3143 . 278491) + (-3144 . 278336) (-3145 . 278279) (-3146 . 277704) (-3147 . 277473) + (-3148 . 277385) (-3149 . 277290) (-3150 . 277237) (-3151 . 277034) + (-3152 . 276928) (-3153 . 276900) (-3154 . 276746) (-3155 . 276664) + (-3156 . 276503) (-3157 . 275928) (-3158 . 275829) (-3159 . 275455) + (-3160 . 275339) (-3161 . 274588) (-3162 . 274516) (-3163 . 274321) + (-3164 . 274205) (-3165 . 274127) (-3166 . 274074) (-3167 . 273500) + (-3168 . 273362) (-3169 . 273180) (-3170 . 273041) (-3171 . 272937) + (-3172 . 272746) (-3173 . 272664) (-3174 . 272277) (-3175 . 272141) + (-3176 . 271567) (-3177 . 271516) (-3178 . 271479) (-3179 . 271336) + (-3180 . 271145) (-3181 . 270809) (-3182 . 270716) (-3183 . 270558) + (-3184 . 270393) (-3185 . 270320) (-3186 . 270197) (-3187 . 269623) + (-3188 . 269555) (-3189 . 269488) (-3190 . 269338) (-3191 . 269021) + (-3192 . 267183) (-3193 . 267074) (-3194 . 266893) (-3195 . 266798) + (-3196 . 266710) (-3197 . 266542) (-3198 . 265968) (-3199 . 265565) + (-3200 . 265479) (-3201 . 264451) (-3202 . 264333) (-3203 . 262823) + (-3204 . 262763) (-3205 . 262711) (-3206 . 262537) (-3207 . 261721) + (-3208 . 261440) (-3209 . 260866) (-3210 . 260770) (-3211 . 260642) + (-3212 . 260589) (-3213 . 260471) (-3214 . 258923) (-3215 . 258793) + (-3216 . 258759) (-3217 . 258641) (-3218 . 258588) (-3219 . 258544) + (-3220 . 258449) (-3221 . 258389) (-3222 . 258244) (-3223 . 258182) + (-3224 . 258068) (-3225 . 257883) (-3226 . 257830) (-3227 . 257200) + (-3228 . 257096) (-3229 . 256943) (-3230 . 256505) (-3231 . 255960) + (-3232 . 255904) (-3233 . 255767) (-3234 . 255540) (-3235 . 254804) + (-3236 . 254752) (-3237 . 254603) (-3238 . 254332) (-3239 . 254272) + (-3240 . 253863) (-3241 . 253622) (-3242 . 253130) (-3243 . 252905) + (-3244 . 252747) (-3245 . 252515) (-3246 . 252462) (-3247 . 252278) + (-3248 . 252116) (-3249 . 251870) (-3250 . 251524) (-3251 . 251420) + (-3252 . 251310) (-3253 . 251152) (-3254 . 251015) (-3255 . 250937) + (-3256 . 250810) (-3257 . 250636) (-3258 . 250563) (-3259 . 250341) + (-3260 . 250263) (-3261 . 250210) (-3262 . 250071) (-3263 . 249976) + (-3264 . 249824) (-3265 . 249768) (-3266 . 249708) (-3267 . 249064) + (-3268 . 248864) (-3269 . 248812) (-3270 . 247515) (-3271 . 247351) + (-3272 . 247138) (-3273 . 247087) (-3274 . 247013) (-3275 . 246942) + (-3276 . 246617) (-3277 . 245445) (-3278 . 245339) (-3279 . 243207) + (-3280 . 243144) (-3281 . 243006) (-3282 . 242933) (-3283 . 242838) + (-3284 . 242659) (-3285 . 242489) (-3286 . 242423) (-3287 . 242308) + (-3288 . 242231) (-3289 . 242116) (-3290 . 241885) (-3291 . 241775) + (-3292 . 241710) (-3293 . 241570) (-3294 . 240996) (-3295 . 239859) + (-3296 . 239797) (-3297 . 239309) (-3298 . 239175) (-3299 . 239000) + (-3300 . 238939) (-3301 . 238658) (-3302 . 237770) (-3303 . 237614) + (-3304 . 237505) (-3305 . 237309) (-3306 . 235901) (-3307 . 234589) + (-3308 . 234561) (-3309 . 234501) (-3310 . 234262) (-3311 . 234210) + (-3312 . 234045) (-3313 . 233932) (-3314 . 232202) (-3315 . 231952) + (-3316 . 231837) (-3317 . 231515) (-3318 . 231326) (-3319 . 231224) + (-3320 . 231083) (-3321 . 230983) (-3322 . 230930) (-3323 . 230416) + (-3324 . 230022) (-3325 . 229823) (-3326 . 229770) (-3327 . 229718) + (-3328 . 229509) (-3329 . 229261) (-3330 . 229079) (-3331 . 228859) + (-3332 . 228703) (-3333 . 228618) (-3334 . 228376) (-3335 . 228045) + (-3336 . 227513) (-3337 . 227394) (-3338 . 221881) (-3339 . 221715) + (-3340 . 221328) (-3341 . 221226) (-3342 . 221175) (-3343 . 221073) + (-3344 . 221014) (-3345 . 220468) (-3346 . 220406) (-3347 . 220304) + (-3348 . 220106) (-3349 . 220009) (-3350 . 219770) (-3351 . 219565) + (-3352 . 219022) (-3353 . 218634) (-3354 . 218575) (-3355 . 218422) + (-3356 . 218354) (-3357 . 218252) (-3358 . 218115) (-3359 . 217905) + (-3360 . 217805) (-3361 . 217731) (-3362 . 217508) (-3363 . 217409) + (-3364 . 217377) (-3365 . 216922) (-3366 . 216537) (-3367 . 215286) + (-3368 . 215180) (-3369 . 215124) (-3370 . 214989) (-3371 . 214916) + (-3372 . 214850) (-3373 . 214766) (-3374 . 214593) (-3375 . 214540) + (-3376 . 214357) (-3377 . 214008) (-3378 . 213817) (-3379 . 213671) + (-3380 . 213353) (-3381 . 213270) (-3382 . 213187) (-3383 . 213137) + (-3384 . 212891) (-3385 . 212701) (-3386 . 212594) (-3387 . 212478) + (-3388 . 212293) (-3389 . 212213) (-3390 . 212083) (-3391 . 211963) + (-3392 . 211911) (-3393 . 211814) (-3394 . 211627) (-3395 . 211590) + (-3396 . 211481) (-3397 . 210930) (-3398 . 210451) (-3399 . 210197) + (-3400 . 210039) (-3401 . 209861) (-3402 . 209709) (-3403 . 209637) + (-3404 . 209216) (-3405 . 209113) (-3406 . 209042) (-3407 . 208894) + (-3408 . 208784) (-3409 . 208681) (-3410 . 208578) (-3411 . 208444) + (-3412 . 208416) (-3413 . 208249) (-3414 . 208054) (-3415 . 207712) + (-3416 . 207593) (-3417 . 206016) (-3418 . 205897) (-3419 . 205766) + (-3420 . 205689) (-3421 . 205574) (-3422 . 205510) (-3423 . 205430) + (-3424 . 205298) (-3425 . 204734) (-3426 . 204589) (-3427 . 204409) + (-3428 . 204316) (-3429 . 204259) (-3430 . 204175) (-3431 . 204123) + (-3432 . 203649) (-3433 . 203350) (-3434 . 203220) (-3435 . 203167) + (-3436 . 203108) (-3437 . 203035) (-3438 . 202984) (-3439 . 202449) + (-3440 . 202133) (-3441 . 201967) (-3442 . 201868) (-3443 . 201773) + (-3444 . 201656) (-3445 . 201541) (-3446 . 201404) (-3447 . 201318) + (-3448 . 200928) (-3449 . 200718) (-3450 . 200499) (-3451 . 200430) + (-3452 . 200277) (-3453 . 199574) (-3454 . 199491) (-3455 . 199278) + (-3456 . 198763) (-3457 . 198669) (-3458 . 198596) (-3459 . 195297) + (-3460 . 195231) (-3461 . 195002) (-3462 . 194885) (-3463 . 194854) + (-3464 . 194801) (-3465 . 194539) (-3466 . 193664) (-3467 . 193422) + (-3468 . 193333) (-3469 . 193250) (-3470 . 193197) (-3471 . 193081) + (-3472 . 193000) (-3473 . 192696) (-3474 . 192562) (-3475 . 192383) + (-3476 . 192227) (-3477 . 192199) (-3478 . 192018) (-3479 . 191938) + (-3480 . 191556) (-3481 . 191419) (-3482 . 191310) (-3483 . 191063) + (-3484 . 191010) (-3485 . 189845) (-3486 . 189468) (-3487 . 189416) + (-3488 . 189324) (-3489 . 189290) (-3490 . 185130) (-3491 . 184922) + (-3492 . 184120) (-3493 . 183952) (-3494 . 183839) (-3495 . 183684) + (-3496 . 183564) (-3497 . 183205) (-3498 . 182829) (-3499 . 182302) + (-3500 . 182133) (-3501 . 182066) (-3502 . 181889) (-3503 . 181530) + (-3504 . 181258) (-3505 . 181181) (-3506 . 181008) (-3507 . 180980) + (-3508 . 180796) (-3509 . 180701) (-3510 . 180578) (-3511 . 180067) + (-3512 . 180015) (-3513 . 179819) (-3514 . 179726) (-3515 . 179511) + (-3516 . 179083) (-3517 . 178915) (-3518 . 178857) (-3519 . 178723) + (-3520 . 178669) (-3521 . 178188) (-3522 . 178074) (-3523 . 178015) + (-3524 . 177959) (-3525 . 177072) (-3526 . 176822) (-3527 . 176265) + (-3528 . 176107) (-3529 . 176055) (-3530 . 175923) (-3531 . 175328) + (-3532 . 174705) (-3533 . 174495) (-3534 . 174044) (-3535 . 174016) + (-3536 . 173942) (-3537 . 173810) (-3538 . 173710) (-3539 . 173557) + (-3540 . 173363) (-3541 . 173256) (-3542 . 173204) (-3543 . 173146) + (-3544 . 173087) (-3545 . 172744) (-3546 . 172658) (-3547 . 172297) + (-3548 . 172121) (-3549 . 171990) (-3550 . 171958) (-3551 . 171879) + (-3552 . 171726) (-3553 . 171615) (-3554 . 171503) (-3555 . 171451) + (-3556 . 171293) (-3557 . 171210) (-3558 . 171144) (-3559 . 171067) + (-3560 . 170983) (-3561 . 170810) (-3562 . 170593) (-3563 . 170533) + (-3564 . 169261) (-3565 . 168912) (-3566 . 168832) (-3567 . 168695) + (-3568 . 168457) (-3569 . 168341) (-3570 . 168290) (-3571 . 168237) + (-3572 . 167056) (-3573 . 166952) (-3574 . 166870) (-3575 . 166839) + (-3576 . 166695) (-3577 . 166572) (-3578 . 166357) (-3579 . 166284) + (-3580 . 165774) (-3581 . 165665) (-3582 . 165432) (-3583 . 165338) + (-3584 . 165268) (-3585 . 165199) (-3586 . 165097) (-3587 . 164837) + (-3588 . 164766) (-3589 . 164581) (-3590 . 164468) (-3591 . 164413) + (-3592 . 164330) (-3593 . 164226) (-3594 . 163981) (-3595 . 163541) + (-3596 . 163455) (-3597 . 163251) (-3598 . 163180) (-3599 . 162981) + (-3600 . 162901) (-3601 . 161431) (-3602 . 161378) (-3603 . 160382) + (-3604 . 160311) (-3605 . 160177) (-3606 . 160121) (-3607 . 159899) + (-3608 . 159753) (-3609 . 159559) (-3610 . 159446) (-3611 . 159298) + (-3612 . 158850) (-3613 . 158268) (-3614 . 158178) (-3615 . 157926) + (-3616 . 157846) (-3617 . 157791) (-3618 . 157650) (-3619 . 157541) + (-3620 . 156881) (-3621 . 156670) (-3622 . 156549) (-3623 . 156493) + (-3624 . 156398) (-3625 . 156087) (-3626 . 156035) (-3627 . 155955) + (-3628 . 155800) (-3629 . 155651) (-3630 . 155546) (-3631 . 155491) + (-3632 . 155038) (-3633 . 154809) (-3634 . 154693) (-3635 . 154636) + (-3636 . 154079) (-3637 . 154000) (-3638 . 153944) (-3639 . 153778) + (-3640 . 153691) (-3641 . 153590) (-3642 . 153527) (-3643 . 153225) + (-3644 . 153116) (-3645 . 153033) (-3646 . 152917) (-3647 . 152859) + (-3648 . 152736) (-3649 . 152602) (-3650 . 152449) (-3651 . 152383) + (-3652 . 152303) (-3653 . 152244) (-3654 . 152053) (-3655 . 151892) + (-3656 . 151470) (-3657 . 151312) (-3658 . 150439) (-3659 . 150120) + (-3660 . 150018) (-3661 . 149830) (-3662 . 149746) (-3663 . 149594) + (-3664 . 149457) (-3665 . 149049) (-3666 . 148972) (-3667 . 148816) + (-3668 . 148734) (-3669 . 148626) (-3670 . 148468) (-3671 . 148325) + (-3672 . 148248) (-3673 . 148165) (-3674 . 147853) (-3675 . 147756) + (-3676 . 147666) (-3677 . 147613) (-3678 . 147333) (-3679 . 147301) + (-3680 . 147245) (-3681 . 147171) (-3682 . 146948) (-3683 . 146874) + (-3684 . 146812) (-3685 . 146738) (-3686 . 146541) (-3687 . 146447) + (-3688 . 146230) (-3689 . 146170) (-3690 . 146093) (-3691 . 145954) + (-3692 . 145826) (-3693 . 145703) (-3694 . 145566) (-3695 . 145372) + (-3696 . 145316) (-3697 . 145172) (-3698 . 144954) (-3699 . 144587) + (-3700 . 144466) (-3701 . 144304) (-3702 . 144233) (-3703 . 144042) + (-3704 . 143969) (-3705 . 143715) (-3706 . 143612) (-3707 . 142794) + (-3708 . 142738) (-3709 . 142652) (-3710 . 142583) (-3711 . 142378) + (-3712 . 141002) (-3713 . 140912) (-3714 . 140828) (-3715 . 140754) + (-3716 . 140642) (-3717 . 140489) (-3718 . 140293) (-3719 . 140041) + (-3720 . 139988) (-3721 . 139801) (-3722 . 139621) (-3723 . 139474) + (-3724 . 139410) (-3725 . 139336) (-3726 . 138928) (-3727 . 138819) + (-3728 . 138747) (-3729 . 138695) (-3730 . 138666) (-3731 . 138444) + (-3732 . 138276) (-3733 . 138224) (-3734 . 138143) (-3735 . 137983) + (-3736 . 137556) (-3737 . 137460) (-3738 . 137302) (-3739 . 137176) + (-3740 . 137121) (-3741 . 137033) (-3742 . 136880) (-3743 . 136824) + (-3744 . 136723) (-3745 . 136667) (-3746 . 136552) (-3747 . 136421) + (-3748 . 135874) (-3749 . 135721) (-3750 . 135598) (-3751 . 135475) + (-3752 . 135409) (-3753 . 134891) (-3754 . 134782) (-3755 . 134528) + (-3756 . 134434) (-3757 . 133774) (-3758 . 133547) (-3759 . 133364) + (-3760 . 133308) (-3761 . 133178) (-3762 . 132939) (-3763 . 132746) + (-3764 . 132690) (-3765 . 132627) (-3766 . 132500) (-3767 . 132398) + (-3768 . 132261) (-3769 . 132097) (-3770 . 131966) (-3771 . 131723) + (-3772 . 131049) (-3773 . 130945) (-3774 . 130781) (-3775 . 130404) + (-3776 . 130216) (-3777 . 130020) (-3778 . 129967) (-3779 . 129899) + (-3780 . 129642) (-3781 . 129590) (-3782 . 129323) (-3783 . 129252) + (-3784 . 128669) (-3785 . 128488) (-3786 . 128431) (-3787 . 128338) + (-3788 . 128022) (-3789 . 127948) (-3790 . 127797) (-3791 . 127710) + (-3792 . 127555) (-3793 . 127505) (-3794 . 127454) (-3795 . 127122) + (-3796 . 126978) (-3797 . 126908) (-3798 . 126800) (-3799 . 126729) + (-3800 . 126645) (-3801 . 126593) (-3802 . 126405) (-3803 . 126327) + (-3804 . 126256) (-3805 . 126057) (-3806 . 125948) (-3807 . 125877) + (-3808 . 125828) (-3809 . 125588) (-3810 . 125511) (-3811 . 125396) + (-3812 . 125316) (-3813 . 125261) (-3814 . 125124) (-3815 . 125052) + (-3816 . 124806) (-3817 . 124694) (-3818 . 124573) (-3819 . 124511) + (-3820 . 124448) (-3821 . 124333) (-3822 . 124281) (-3823 . 124207) + (-3824 . 124094) (-3825 . 124042) (-3826 . 123943) (-3827 . 123694) + (-3828 . 123060) (-3829 . 123006) (-3830 . 122857) (-3831 . 122215) + (** . 119126) (-3833 . 119095) (-3834 . 118742) (-3835 . 118639) + (-3836 . 118553) (-3837 . 118466) (-3838 . 117856) (-3839 . 117729) + (-3840 . 117610) (-3841 . 117522) (-3842 . 117018) (-3843 . 116877) + (-3844 . 116776) (-3845 . 116621) (-3846 . 116475) (-3847 . 116409) + (-3848 . 116050) (-3849 . 115963) (-3850 . 115837) (-3851 . 115450) + (-3852 . 115376) (-3853 . 115269) (-3854 . 115196) (-3855 . 114925) + (-3856 . 114753) (-3857 . 114457) (-3858 . 114182) (-3859 . 114079) + (-3860 . 113785) (-3861 . 113529) (-3862 . 113404) (-3863 . 113320) + (-3864 . 113250) (-3865 . 113218) (-3866 . 109220) (-3867 . 109090) + (-3868 . 108963) (-3869 . 108803) (-3870 . 108496) (-3871 . 106645) + (-3872 . 106481) (-3873 . 106429) (-3874 . 106376) (-3875 . 106274) + (-3876 . 106208) (-3877 . 106138) (-3878 . 105968) (-3879 . 105662) + (-3880 . 101120) (-3881 . 101053) (-3882 . 100886) (-3883 . 100833) + (-3884 . 100615) (-3885 . 100437) (-3886 . 99835) (-3887 . 99764) + (-3888 . 99594) (-3889 . 99268) (-3890 . 98613) (-3891 . 98560) + (-3892 . 98014) (-3893 . 97941) (-3894 . 97832) (-3895 . 97586) + (-3896 . 97518) (-3897 . 97358) (-3898 . 97250) (-3899 . 97162) + (-3900 . 96935) (-3901 . 96855) (-3902 . 96759) (-3903 . 96680) + (-3904 . 96508) (-3905 . 96456) (-3906 . 96342) (-3907 . 96004) + (-3908 . 95712) (-3909 . 95660) (-3910 . 95516) (-3911 . 95225) + (-3912 . 95099) (-3913 . 94986) (-3914 . 94880) (-3915 . 94656) + (-3916 . 94520) (-3917 . 94420) (-3918 . 94295) (-3919 . 93891) + (-3920 . 93862) (-3921 . 93632) (-3922 . 93534) (-3923 . 93004) + (-3924 . 92934) (-3925 . 92840) (-3926 . 92683) (-3927 . 92570) + (-3928 . 92173) (-3929 . 92018) (-3930 . 91956) (-3931 . 91627) + (-3932 . 91387) (-3933 . 90998) (-3934 . 90886) (-3935 . 90275) + (-3936 . 90085) (-3937 . 89956) (-3938 . 89868) (-3939 . 89677) + (-3940 . 89457) (-3941 . 89389) (-3942 . 89316) (-3943 . 89251) + (-3944 . 88834) (-3945 . 88639) (-3946 . 88567) (-3947 . 88488) + (-3948 . 88139) (-3949 . 87978) (-3950 . 87735) (-3951 . 87649) + (-3952 . 87428) (-3953 . 87295) (-3954 . 87245) (-3955 . 87179) + (-3956 . 86906) (-3957 . 86822) (-3958 . 86692) (-3959 . 86305) + (-3960 . 86132) (-3961 . 86068) (-3962 . 85967) (-3963 . 85848) + (-3964 . 85682) (-3965 . 85321) (-3966 . 85235) (-3967 . 84917) + (-3968 . 84845) (-3969 . 84630) (-3970 . 84601) (-3971 . 84462) + (-3972 . 70348) (-3973 . 70219) (-3974 . 70148) (-3975 . 69998) + (-3976 . 69853) (-3977 . 69744) (-3978 . 69637) (-3979 . 69581) + (-3980 . 69271) (-3981 . 69031) (-3982 . 68957) (-3983 . 68888) + (-3984 . 68661) (-3985 . 68529) (-3986 . 68050) (-3987 . 67998) + (-3988 . 67877) (-3989 . 67843) (-3990 . 67512) (-3991 . 67367) + (-3992 . 66657) (-3993 . 66321) (-3994 . 66156) (-3995 . 66074) + (-3996 . 66017) (-3997 . 65835) (-3998 . 65758) (-3999 . 65640) + (-4000 . 65149) (-4001 . 64908) (-4002 . 64684) (-4003 . 64444) + (-4004 . 64391) (-4005 . 63968) (-4006 . 63837) (-4007 . 63722) + (-4008 . 63520) (-4009 . 63409) (-4010 . 63281) (-4011 . 63165) + (-4012 . 62970) (-4013 . 62900) (-4014 . 62847) (-4015 . 62730) + (-4016 . 62666) (-4017 . 62142) (-4018 . 62020) (-4019 . 61941) + (-4020 . 61723) (-4021 . 61247) (-4022 . 61100) (-4023 . 60853) + (-4024 . 60796) (-4025 . 60702) (-4026 . 60622) (-4027 . 60519) + (-4028 . 55800) (-4029 . 55717) (-4030 . 55659) (-4031 . 55429) + (-4032 . 55334) (-4033 . 55124) (-4034 . 55047) (-4035 . 54711) + (-4036 . 54639) (-4037 . 54308) (-4038 . 54038) (-4039 . 53906) + (-4040 . 53515) (-4041 . 53429) (-4042 . 53331) (-4043 . 53279) + (-4044 . 53196) (-4045 . 53008) (-4046 . 52953) (-4047 . 52884) + (-4048 . 52535) (-4049 . 52478) (-4050 . 52342) (-4051 . 52254) + (-4052 . 52147) (-4053 . 52039) (-4054 . 51734) (-4055 . 51662) + (-4056 . 51554) (-4057 . 51488) (-4058 . 51381) (-4059 . 51215) + (-4060 . 51080) (-4061 . 50837) (-4062 . 50664) (-4063 . 50605) + (-4064 . 50504) (-4065 . 50452) (-4066 . 50399) (-4067 . 49815) + (-4068 . 49692) (-4069 . 49420) (-4070 . 49308) (-4071 . 49141) + (-4072 . 48957) (-4073 . 48519) (-4074 . 48391) (-4075 . 48299) + (-4076 . 47875) (-4077 . 47766) (-4078 . 47400) (-4079 . 47261) + (-4080 . 47182) (-4081 . 47057) (-4082 . 46918) (-4083 . 46680) + (-4084 . 46608) (-4085 . 46478) (-4086 . 46337) (-4087 . 46257) + (-4088 . 46202) (-4089 . 46037) (-4090 . 45913) (-4091 . 45860) + (-4092 . 45745) (-4093 . 45540) (-4094 . 45390) (-4095 . 45075) + (-4096 . 44903) (-4097 . 44793) (-4098 . 44520) (-4099 . 44423) + (-4100 . 44352) (-4101 . 44295) (-4102 . 44188) (-4103 . 44025) + (-4104 . 43910) (-4105 . 43632) (-4106 . 43533) (-4107 . 43280) + (-4108 . 43062) (-4109 . 42489) (-4110 . 41892) (-4111 . 41575) + (-4112 . 41450) (-4113 . 41023) (-4114 . 40949) (-4115 . 40895) + (-4116 . 40801) (-4117 . 40527) (-4118 . 40023) (-4119 . 39572) + (-4120 . 39369) (-4121 . 39216) (-4122 . 38886) (-4123 . 38808) + (-4124 . 38750) (-4125 . 38664) (-4126 . 38549) (-4127 . 38417) + (-4128 . 38323) (-4129 . 37870) (-4130 . 37623) (-4131 . 37551) + (-4132 . 37091) (-4133 . 36799) (-4134 . 36719) (-4135 . 36611) + (-4136 . 36503) (-4137 . 36390) (-4138 . 36295) (-4139 . 36229) + (-4140 . 36175) (-4141 . 36122) (-4142 . 36069) (-4143 . 35968) + (-4144 . 35919) (-4145 . 35860) (-4146 . 35084) (-4147 . 34893) + (-4148 . 34738) (-4149 . 34661) (-4150 . 34503) (-4151 . 34396) + (-4152 . 34322) (-4153 . 33995) (-4154 . 33907) (-4155 . 33803) + (-4156 . 33600) (-4157 . 33499) (-4158 . 33427) (-4159 . 33167) + (-4160 . 33058) (-4161 . 32967) (-4162 . 32594) (-4163 . 32187) + (-4164 . 31907) (-4165 . 31664) (-4166 . 31408) (-4167 . 31042) + (-4168 . 30901) (-4169 . 30849) (-4170 . 30794) (-4171 . 30714) + (-4172 . 30547) (-4173 . 30384) (-4174 . 30356) (-4175 . 30142) + (-4176 . 29827) (-4177 . 29656) (-4178 . 29533) (-4179 . 29399) + (-4180 . 29192) (-4181 . 28959) (-4182 . 28776) (-4183 . 27944) + (-4184 . 27500) (-4185 . 27205) (-4186 . 27098) (-4187 . 26674) + (-4188 . 26512) (-4189 . 25799) (-4190 . 25441) (-4191 . 25306) + (-4192 . 25182) (-4193 . 25053) (-4194 . 24923) (-4195 . 24810) + (-4196 . 24680) (-4197 . 24523) (-4198 . 24304) (-4199 . 24244) + (-4200 . 23648) (-4201 . 23560) (-4202 . 23448) (-4203 . 23354) + (-4204 . 23097) (-4205 . 23023) (-4206 . 22808) (-4207 . 22722) + (-4208 . 22531) (-4209 . 22221) (-4210 . 21943) (-4211 . 21865) + (-4212 . 21794) (-4213 . 21700) (-4214 . 20690) (-4215 . 20596) + (-4216 . 20492) (-4217 . 20329) (-4218 . 20214) (-4219 . 20111) + (-4220 . 19934) (-4221 . 19862) (-4222 . 19784) (-4223 . 19718) + (-4224 . 19397) (-4225 . 19187) (-4226 . 19083) (-4227 . 19033) + (-4228 . 18866) (-4229 . 18742) (-4230 . 18604) (-4231 . 18485) + (-4232 . 18408) (-4233 . 18328) (-4234 . 18220) (-4235 . 18123) + (-4236 . 17753) (-4237 . 17369) (-4238 . 17155) (-4239 . 16819) + (-4240 . 16652) (-4241 . 16222) (-4242 . 16093) (-4243 . 16015) + (-4244 . 15877) (-4245 . 15769) (-4246 . 15634) (-4247 . 15322) + (-4248 . 15213) (-4249 . 15111) (-4250 . 14928) (-4251 . 14714) + (-4252 . 14422) (-4253 . 13935) (-4254 . 13813) (-4255 . 13731) + (-4256 . 13404) (-4257 . 13327) (-4258 . 12746) (-4259 . 12567) + (-4260 . 12454) (-4261 . 12359) (-4262 . 12282) (-4263 . 12175) + (-4264 . 12122) (-4265 . 11975) (-4266 . 11898) (-4267 . 11735) + (-4268 . 11634) (-4269 . 11582) (-4270 . 11459) (-4271 . 11358) + (-4272 . 11306) (-4273 . 11151) (-4274 . 10984) (-4275 . 10828) + (-4276 . 10551) (-4277 . 10453) (-4278 . 10400) (-4279 . 10293) + (-4280 . 10216) (-4281 . 10128) (-4282 . 9975) (-4283 . 9788) + (-4284 . 9661) (-4285 . 9588) (-4286 . 9538) (-4287 . 9358) + (-4288 . 9330) (-4289 . 9038) (-4290 . 8909) (-4291 . 8857) + (-4292 . 8466) (-4293 . 8223) (-4294 . 8037) (-4295 . 7914) + (-4296 . 7470) (-4297 . 7351) (-4298 . 7299) (-4299 . 7163) + (-4300 . 6603) (-4301 . 6575) (-4302 . 6260) (-4303 . 6208) + (-4304 . 5846) (-4305 . 5772) (-4306 . 5606) (-4307 . 5081) + (-4308 . 5029) (-4309 . 4684) (-4310 . 4391) (-4311 . 4338) + (-4312 . 2075) (-4313 . 1869) (-4314 . 1788) (-4315 . 1598) + (-4316 . 1452) (-4317 . 1399) (-4318 . 1314) (-4319 . 311) + (-4320 . 222) (-4321 . 169) (-4322 . 30))
\ No newline at end of file |